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Honiocienixation is an approach which studies the macrobehaviour of a medium 
by i ts microproperties. The origin of this word is related to the question of a re 
placement of the heterogenous material by an "equivalent" homogenous one. 

Homogenization is significant in two directions: 
a) as the physical and mechanical interpretation of the global behaviour, 

and 
b) as a tool for the numerical treatment of problems with microstructures. 

Problems with a microstructure play an essential role in many fields. Let us 
mention some: 

Mechanics - e.g. in the analysis of the behaviour of composite materials, 
Chemistry - e.g. in the theory of polymers, 
Physics - e.g. in the problems of quantum mechanics of electrons in crystal 

1atti ces, 
Reactor Engineering - e.g. in the analysis of power reactors. 

For surveys and extensive references about these problems we refer the reader to [1 ] , 
[2 ] , [3 ] , [4 ] , and references included in this, paper. 

We wi l l concentrate our attention on a simple specific model problem which w i l l 
i l lustrate results and problems typical to the homogenization approach. We wi l l treat 
here the diffusion problem only, but wi l l sometimes make statements ->bout the elastic-
i ty of composite materials (the diffusion equation is then replaced by the well-known 
elasticity equations). 
1.2. The Model Problem 

We are interested in the solution of the differential equation on a c R, 

1. Introduction 
1.1. The Homogenization 

(1) 

uH = 0 on as 



2. 
H 0 , an«l ;i( o ) 0 is .j |.<ri"dic fr/nction in with p»*»iotli<.1 ty I [.mH will 
•>«ai*;ty i tion..I tiv.uwp linns let* out lotoi'). He u«.ud tlin notation u* to un»i i 
1 fIK? the d<uicii(i.»ntc on II . 

h?t u.s !»«.' more specific about our "interest. He are intoix*r>t<id in fi»>»lin»j, v/i m II u 

d rt»ftsoit<shl'< oci.uracy, the function u and the fluxe?, tV 

(3) t» = a(&.„") 1 - 1 , 2 . 
Fluxes t^ (reip. stresses in elasticity computations) are many times the primary goal 
in the application*. 

I t ir. ncccssary to underline some circumatanccs which are important to thin 
proitlcfoi. 

a) li is a given parameter, with physical meaning which cannot be changed, 
e.g. cannot be made "sufficiently" small. I f the diameter of W is about 10H - 15H 
and the function *(',,•]) is discontinuous with a complicated structure, a direct 
numerical treatment by tlie f inite element method is virtually impossible because a 
reasonable accuracy can be achieved only with many elements in every cell. For more 
see e.g. [1] part ?., [7], [8], [9]. In three dimensions the above mentioned ratio 
10H - 15H will be smaller. I t means that H could be relatively "large". 

b) There is a boundary layer behaviour (also when &2 is smooth) which sig-
nificantly influences the fluxes. This boundary layer was shown in [2] and [5] and 
explains the rather unusual failure of fibrous composite laminates, see [6], 

Problems related to the media with microstructure were, and are s t i l l , studied 
very intensively. The f i rst paper dealing with homogenization problems 1s likely [10]. 
[11] presents an excellent survey of ideas and results until 1925. The analysis of 
periodic structures plays an important role In quantum mechanics. We mention here 
e.g. the results related to the form of eigenfunctions in [12] and [13]. See also 
[14] and [15]. For additional references, see [1] and [2]. 

There are many different approaches for treating media with microstructures. 
Very typically, these approaches are leading to significantly different results. For 
more, see e.g. [2], [16], and [17]. 

To illustrate problems and results in the simplest way we will analyze separ-
ately linear and nonlinear cases and problems with and without boundaries. 

2. The Linear Case without Boundary 
In this section we will assume that the function aU,f)) in (1) is independent 

of -q , and is piecewise smooth, 0 < ĉ  < a(s) < C£ < » and f is smooth, has com-
pact support and / fdx = 0 ^ . 

Hp 

We will denote L.̂ Rg) the usuol space of square integrable functions, Lj (R;>) 
Soholcv (quotient) space, with 

1) These nssiws|«l ionr; can be- IIMK' weaker. 



3. 

2 . 2 2 

LJ(R2) L2(R2) *X2 4 ( R 2 ) 

In addition, let K * {x| fx^| be a unit cube and I.J PE,<(K) be the quotient 
space of periodic functions with period 1 , 

Hull21 « llfg-ll* , * I ! — / 
4 > p E R (K ) ®*1 L2(K) 2 L2(K) 

U 
I t is well-known that there exists an unique weak solution u of (1) for 

any 0 < H -J 1 on U « R2 (in L2(R2). We wi l l always normalize the free additional 
constant so that £ uHdx » 0 . 

2.1. A Typical Homogenization Result and Its Application for the Numerical Solution 
Theorem 1. 1} There exists U c ( . P ^ R O , / U dx • 0 such that c t K 

(3) ||uH-U|| „ < CH 
l2(S) 

where § is any bounded domain [C depends on s, f , a(x) , but is independent of H 3 
2) Function U satisfies the (e l l ip t ic ) differential equation 

2 a2u 

(4) E Ai 1 r p - - = f 

where (2 aW 3W\ 

2 a(x) - J l ~ i l ) d x m, n = 1, 2 
with Wk * + r)k(x), rik(x) € L2 PERM» / ^ M d x « 0 , k = 1, 2 and rik(x) is such 
that * K 

(6) / [ £ a(x) ^ ^ - I d x - 0 

K L 1=1 dX1 a x l J 

for every X. € L ^ p ^ K ) and 

2 (7) ||UH-U-H 2 j g - t h U J l l 7 5 CH. i=i a x i 1 LJ(R2) 



CH 

4 . 
3) Denoting 

<8> Tt • ' " ' 2 

then there exist periodic functions xjr^(s) such that 

(9) lit"- * T / X ^ k ) ! ! ^ 2 CH 1 = 1 , 2 
1 j=1 j j L2(a) 

2 

5) Defining 

<"> zi<»> " JT ! *<£> i f M dy 
" y-x/HcK 1 

we have 

(12) ||Trz"|| . s CH 
1 1 i2(s) 

For proof and more see [ 5 ] , and also [1] and [2] . Theorem 1 can be generalized 
so that the error of the order Ĥ  is obtained. 

Theorem 1 can be used for numerical treatment of (1) directly or indirectly. 
1) Di rect way 

We compute f i r s t the function ^ ( x ) , Ŵ  and x ^ (which are inde-
pendent of f ) by solving particular (periodic) problems on K . Using those func-
tions we determine the coefficients A. . in (4) . Then wo solve in the usual manner 

• »J 
(e.g. by tiie f in i te element method) this differential equation, and find U and T_. . 

Til H Using function x j J we get the approximate values for t^ . A particular numerical 
example of this apporach for elasticity equations is shown in [2] . 

2) Indirect way 
In the sp i r i t of the f in i te element method we use t r i a l functions 

2 

(13) v(x) - u ( 0 ) + JS tuCOuP^x) 
i * l 1 1 

where uj1^ are (say) bilinear functions on squares with side length L > H , i.e. we 
nro ubituj theorem 1 for tho construction of special "super tilenients". Then we use. 
these elements in the usual way to solve the original eo^tion, i.e. we construct the 
•jfci ffiu.";«i matrix, etc. and coir.puto the? (micro) r.tiffn>;:;s. r-itrix simultaneously with 
ii| . Another jios'iib'i lity is l:o take 



5. 
2 

(14) v(x) - u(x) + H X j S - ^ U ) 
M i 1 

where u is (say) a bicubic function on squares (u i C1). We underline here that 
i t is essential in (13) to have al l three terms. I f we would force uj1^ - 0 , then 
the answer would be completely wrong. I t is easy to show that for L > H wo would 
get an approximate solution of a different equation. 

We wi l l show an example. Let 

aU;) « * for e = K - {f, | |fm| < k} 

a(c) s 1 for £ € K - K 

In this case A-J-J = A = A22, A12 = A21 = 0 , i . e . U solves equation 

( 1 5 ) AAU = f 

On the other hand, using only the function u ^ in (13) we wi l l get the approximate 
solution of 

(16) AAV - f 

Table 1 shows the coefficients A and A for different $ . 

$ A A 

1 1 1 

2 1 . 1 8 2 2 1 . 2 5 

4 1 . 3 6 2 2 1 . 7 5 

6 1 . 4 5 2 2 2 . 2 5 

1 0 1 . 5 4 3 4 3 . 2 5 

1 0 0 1 . 7 0 8 4 2 5 . 7 5 

Table 1 

The direct and indirect methods yield some numerical results, but the question 
of how reliable (accurate) these results are is s t i l l open. The estimates, of course, 
show that the results are accurate enough when H is "sufficiently" small. But as we 
said ear l ier , H is physically given and cannot be changed. Therefore the question 
arises whether a given H insuf f ic ient ly small with respect to the desired accuracy 
(obviously the ratio of the scale of f and H is relevant), and v/hether the defini-
tion of the bulk coefficients stemming from the limiting behaviour H -*• 0 is the-op-
timal one. 
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2.2. Numerical Solution - Continuation 
Coming hack to (13) we may ask whether the functions ^ ( O lpadinct to the 

construction of the super elements are optimal; so let us have 

N 
( 1 7 ) v ( x ) = Z U . ( X ) K . ( 0 

.1=0 3 J 

with K^C) periodic in £ with period 1 , and let us ask about a good (resp. opti-
mal) choice of . 

Using the results in [12] and [13] i t is not hard to show that 

H I Ux^+Xpt,,) 
(18) u"(x) = J F ( t r t 2 ) I 1 1 1 i v(t1H,t2H,rJ 

R2 

H"2 X ^ t j H . t g H j d t , dt2 

where v f ^ ,T2 ,£) (periodic in £ with period 1) 1s the solution of a so-called quasi-
static eigenvalue problem: 

(19) ^ i f r . t o ) * ^ 1 ^ ( t , . ^ 

where 

/ - J ^ l * ^ , rl 

and |i is generally a complex periodic function and \ the associated eigen-
value ( rea l ) , 

F ( t v t 2 ) = ^ 
-1(t1X1+t9X9) 

f ( x r x 2 ) I 1 1 c L v(t1H,t2H,c)dx1 dx2 

In the l ight of (18), i t is obvious that the choice of ^ ( g ) in (17) is related 
to an approximation of the function V(TJ,T2,£). For a small H we can approximate 
V(TI»T2,?) by i ts Taylor series (1n T^,T2). Using only linear terms (in T^,T2) we 
wi l l get exactly form (13) and in addition 

2 2, ^ ( t , , ^ ) 2 Ai JTJT' + O(T ) 1 Z 1 f j s l i , J U 

where Â  j are given by (5) . 
As an example let us compute a one dimensional problem with a(s) - 100 for 

- % < i; < 0 and a(t;) = 1 for 0 < £ z k . Figure 1 shows <p1 = Rev(«r,2nr) 
tl>2 = Im (x.,2n£) for t/2tt - .1, .2 , .5 . 
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rorrni:l/> (18) shows more precisely the modning of the ^tatf-ment that H has to be 
small with respect to the scale of f when the direct use of Theorem 1 is possible. 
I t is only necessary to realize that the functions ^^(r) are the derivatives of 
v ( t 1» t 2 '£ ) T ] = t 2 = ® a s m e n t * o n e c ' above. The analysis we have shown clearly 
hints to the way of a possible selfadaptive approach one has to follow. We have to 
simultaneously refine the mesh and construct proper "super elements" by ei(nonfunctions 
of quasi static problems. Therefore, an effective computation of those are of great 
importance. For some aspects related to this problem, see [18]. 

2.3. Some Additional Connections and References 
The theoretical use of formula (17).together with the variational principles, 

can be traced (although derived from a different point of view), e.g. [19] and [20]. 
The functions *..(£) are obtained intuit ively in [19] and [20] but k j ( 0 f LJ pER^ ' 
and thoy are treated similarly as nonconforming elements in the f in i te element method. 
See also [21]. 

As we said, the quasi static case, and its effective treatment, plays an impor-
tant role. Together with [18], we also refer the reader to [22] and [23]. For a sur-
vey of problems mentioned in this paper in relation to composite materials, we refer 
e.g. to [24], [25], and [26]. We mentioned the same essential questions only in con-
nection with e.g. (1) . Similar problems are related to other equations, too. We men-
tion here e.g. the case of the neutron transport equations [27], [28]. So far we have 
referred the reader mostly to nonmathematical papers. For a survey of recent mathe-
matical results, we refer e.g. to survey papers [1] , [2 ] , [29], and [30]. 

3. Linear Case with Boundary 
Let the assumptions about function a be the same as in section 2. F irst , we 

wi l l assume that 8 is a bounded Lipschitz domain with smooth or unsmooth boundary. 
We are interested in this solution of (1) and (2) . The solution obviously exists and 
is uniquely defined. The f i r s t principal question is how w i l l Theorem 1 change in 
this case. The answer is given in 
Theorem 2. Let U be the solution of (4) with boundary condition U = 0 on afl . 
In addition, "let U be smooth. Then 

(20) £ CH1* 

(21) 

The rate H* is optimal , 



9. 
Theorem ?. shows that the presence of the boundary i n i l u r n c c - : the aci'MMry ; 

Iiuii.u()ciii zed solution iiqui f iccintly. Let us assume now th;u v i** <i hoi ipi.mo . n.-i.-tv 
R1^ : {xjx2 -tiJ and denote R+(z) - {x|x^ -z>t z 0 . Then Hie next ih - r.-in r,.r !>.-• 

proven. 
Theorem 3. Assume that f is smooth, f(x) = 0 for |x| •• 1 . Lot u • R In- .my 
bounded domain and z) = SJ fl R+(z) . Then 

1) 

( 2 2 ) |uH - U - II I " - ^ ( 0 1 1 , r- C [h'5 t H* • 111 
1*1 * X I 1 L J ( 5 { 2 ) ) L J 

2 r zC 
_ t t v [13/ r " " -(?3) HtV - /: T. x^^U)!! < c f*H-- 1 H + H! . 

4 ( 5 ( . ) ) L J 

2) There exists function p(ij, defined on P = { rJ I^ I < '>, i2 • 0} 
periodic in Cj with period 1 and r_ exponentially decreasing with v^ so that 

2 ^ - ^ ( O - H (x1tO)p{t)|| , 
,(5) 

(24) ||uH - U - H s - H jg - <x, ,0)p(t)|| I - CH 
1-1 9Xi 1 2 1 L^a) 

(25) | | t " - I T . K J 1 ^ ) - \ T . U . o U ^ U ) ! ! s CH . 
1 j=l J J j=l J 1 J l 2 ( 5 ) 

For the proof, see [5]. 
Theorem 3 shows clearly the existence of a boundary layer which was mentioned 

in section 1. There is an open question whether similar behaviour holds when the do-
main is bounded, say, with a smooth boundary(or is also a halfplane with irrational 
angle between the cell orientation direction and the boundary of the halfplane). We 
mean e.g. the question of the validity of (22) and (23) when dist(&,aa) > z , 

The term 

I T.(x,,0) KC.i](£) 
j=l 3 1 J 

is the boundary layer term, which can play an essential role in explaining failures 
of composite materials. In the case when the domain is a halfplane, this term is 
practically computable because we can compute only a string, say, of 3 cells and force 

,3) = 0 . For a numerical example of the boundary layer computation, see [2]. 0 ' 
Although we discussed only the Dirichlet boundary condition, similar behaviour 

holds for other conditions too. In the case of the halfplane the generalization 
of Theorem 3 leads to higher order error estimates. 

I t is clear thav the boundary layer is of utmost importance. Then; are nu 



1 0 . 

known results for general (say smooth) domains. But physically intuitive deliberations 
hint of the existence of boundary layers with the width which is not of exponential 
cliorictor. We expect to address this question in a future paper. So we see that the 
boundary creates essential difficulties which have to be treated very carefully. All 
questions and problems mentioned in previous sections (e.g. "large" H) are even more 
complicated when arising here. Although there are many papers devoted to different 
questions of homogenization, there are no papers addressing and treating the problem 
of the boundary layer. 

21 
4. The Nonlinear Problem ' 

In this section we will discuss the nonlinear problem (1) (2). Denote by 
Wp(S2), 1 < p < « the usual Sobolev space furnished with the norm 

w J ( B ) 
P + y llSiLl|P 
L (8) + iJ1 "Sx^L <B) 

where L„(a) is the common space of functions integrable with the p-th power. By Oi p i 
Wp(fi) we denote the subspace with zero traces on aa . Denote Wp' PER(K) the space 
of periodic functions on K (analogously as in section 2). The existence and other 
properties of problem (1) (2) are studied in many papers. We refer the reader e.g. 
to [31], [32], and [33]. 

Let us l is t the assumed properties of the function a(£,T}), ? e K, 
'! s € R2 used in (1). 

1) For any TJ € R2, a(c»"n) is periodic in £ with periodicity 1. 
2) There exists a number p » 2 such that 

(26) aJ 
K(1 + h|)P"2~d , j - 0, 1, 2 

k + t = 3 

3) Problem (1) (2) is properly posed; let G e Wp(s), w € 8p(c) and uH = G + w 
such that (0 y < yn) for any v * 8p(a) 

(27) 

'0' 
r 2 

i=l 
iS2 

-H 
au av 
ax̂  ax. 

- fv dx s rilvii , uj(a) 

then for any fi e w " ! ( f i ) , ||G-G|| , r 
P WJ(s) 

there exists at least one i/* e w^sa) , 

<!) We discur.r, hero our special model problem. Fur titn yeneral case, see [34]. 
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ii" --G + v/, w <• 8J(G) such that r 

S2 
01 . , 

for any v c Wp(S2) and 

||a-u|| , < Cyp 

where C and 0 < p < 1 are independent of y and H . 
4) Finally we will specify assumptions for the solution of an associated problem. 

Let us define i t f i rs t . This problem consists of finding a periodic (vector) function 
x(5,a) = (xC l3,xt 23), X[ j ] ( i : ,a) <• wJ>pER(K) (in K). j = 1,2 so that 

/XCj]U,a)d5 = 0 

and 

For any v c wJ pER(K) where ix = (p-,,p2) 

2 / k a x [ k ] \ 

and is the Kronecker symbol. Now we assume 
4.A) For every a € R2 there exists (at least one) solution X(̂ -.CT) of the 

associated problem. 
4.b) Function x(£,cr) has two derivates with resp. to cr . 
4.c) Let a(x) be a function defined on K such that 

I — I 0 < y < y 

Then functions = — j ™ - / e wI(K) j = 0,1,2 k + i = j and 
1 2 / n-<y(x) 

.1 _ oi (x) - ! 2 * - T ( x l O ( 0 ) ) | | , •: or. 
V'JtK) 

wii-.-rr C dew. not depend nn 
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Tho assumptions wo made about the associated problems can be analyzed e.g. with the 
theory developed in [31]. 

We define for every a € 

(28) A4ik(a) - | ^ a(x.j0(6f + JL . x M ( x,0)) 

4 +-fei*Ck3(^))]f dx 

= 1,2 
Now we can formulate the homogenized problem of (1) (2) . 

2 » a 
( 2 9 ) Z - F - A . , ( U ) r f - U = f 

i , j = l i 1 ' J * d x j 

(30) U = 0 on as . 

In [34] the following theorem (more general) has been proven. 
Theorem 4. Let there exists the solution of the homogenized problem (29) (30). We 
assume in addition that the solution U has three bounded derivatives. Then for every u 
0 < H < Hq there exists at least one solution u of (1) and (2) and 

(31) ||uH - U - H s f7-X(i)(jt,U )|| , < CHp/P i = l 9XI * wj(8) 

Let us now make some .additional comments to Theorem 4. First , similar as in 
section 3, the right hand side of (31) has in fact two parts, one due to the differen-
t ia l equation (of order Hp) and due to the boundary conditions (of order H^P). For 
large p the loss of accuracy is very big. So i t is desirable to find ways to analyze 
this boundary layer behaviour which are expected to lead to an accuracy of the order 
Hp . Although we formulated Theorem 4 directly for a bounded domain, there is a ver-
sion of i t foradomain without boundary which leads to the term Hp in the right hand 
side. The problem of optimal treatment for large H has now beome more d i f f icu l t . 

We wil l study as an example a special case-when the function a(?,ri) has a form 
stemming from the laminates and depends only on the variable ^ (is independent of 
i;2). We wil l assume that 

A ( f » R I ) = a , ( | T J | 2 ) > 0 

- . 5 < < - . 2 

.2 < j f ] < .5 

a(f,r|) = a 2(h| 2) > 0 

-.2 < J-, < .2 

(cunt-.) 
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o.j(z) a o r z •• 

a^z) « a i 4 n,(z2-n?)Y -: z «-

a1 « 1,0 , «2
 3 10 , f^ = 5 , fi2 * .1 

Y - 2 , = 1.5 , n2 = 10 

Then we get p « 10 , p s and the Homogenized equations has the form 

ax7Al,l(arff2> f^f + A2,2(ct1 ox£ * f 

where c^ - , a2
 B . The graphs of functions A1 1 » A2 2 a r e 

Figure 2 and Figure 3. 
The practical implementation of the nonlinear homogenization leads to many open 

questions because of the size of the problem. Very l ikely we have to compute the 
functions X ^ ( x , a ) and A. ,.(o.,,o.) simultaneously during the incremental procedure. i »j i j 
This, of course, wi l l be very expensive and many serious computational problems wi l l 
have to be solved. There is another possibility to compute the coefficients 
Â  ,a2) in advance for a small number of a and make heavy use of the f i t t ing 
procedure. This, of course, is possible only for materials of hyperelastic type 
where loading and unloading goes the same way. This is not true for most of the real 
materials. In these cases only a step by step solution is possible. We mentioned the 
results only for the diffusion equation. Similar results hold for the elast ici ty 
problem, too, but implementation is even more complicated. There are not too many 
approaches available for the nonlinear case. For some in the f ie ld of composite 
matrices we refer to [35], [36], [37], and [38]. 

5. Some Additional Remarks 
So far we concentrated our attention to the problems stemming from numerical 

treatment (direction b) mentioned in section 1. We cannot elaborate here in the 
second direction although there are many interesting and deep relations with basic 
problems in mechanics. I t is obvious that on the microscale a l l materials exhibit a 
structure which is revealed in the course of the deformation processes of a comparable 
scale. The classical equations of homogenous continua cannot predict certain observ-
able phenomena when the scale of solutions (say wavelength) approaches the character-
is t ic dimension of the heterogenity. The whole approach of the homogenization leads 
to the problem of higher order continuum theory and basic problems of mechanics. For 
more about higher order continuum theories, we refer the reader e.g. to [39], [40], 
[41], [42]. 
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