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1. Intyoduction
1.1. The Homogenization

Homogenization is an approach which studies the macrobehaviour of a medium
by its microproperties. The origin of this word is related to the question of a re-
placement of the heterogenous material by an "equivalent" homogenous one.

Homngenization is significant in two directions: .

a) as the physical and mechanical interpretation of the global behaviour,
and
b) as a tool for the numerical treatment of'prob]ems with microstructures.

Problems with a microstructure play an essential role in many fields. Let us

mention some:
Mechanics - e.g. in the analysis of the behaviour of composite materials,
Chemistry - e.g. in the theory of polymers,
Physics - e.g. in the problems of quantum mechanics of electrons in crystal
lattices,
Reactor Engineering - e.g. in the analysis of power reactors.
For surveys and extensive references about these problems we refer the reader to [1],
{2], [3], [4], and references included in this paper.

We will concentrate our attention on a simple specific model problem which will
il1lustrate results and problems typical to the homogenization approach. We will treat
here the diffusion problem only, but will sometimes make statements -bout the elastic-
ity of composite materials (the diffusion equation is then replaced by the well-known
elasticity equations).

1.2. The Model Problem
We are interested in the solution of the differential equation on Q¢ R2

2 H
3 Hy su -
(1) ifl ax; a(z,m ) ax; f

with the boundary condition

(2) “W=0 on ae.

We dennte = ﬁx X i (x1.x2), |x|2 = x% + xg-.nﬂ = “2 = arad uH, and assume that
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Fluxes t? (resp. stresscs in elasticity computations) are many times the primary goa)
in the applications.

It in nocnssary to underline some circumatances which are important to this
problem,

a) W is a given parameter, with physical meaning which cannot be changed,
e.g. cannot be made "sufficiently" small. If the diameter of & 1is about 10H - 150
and the function a(s,n) is discontinuous with a complicated structure, a direct
numerical treatnent by the finite element method is virtually impossible because a
rcasonable accuracy can be achieved only with many elements in every cell. For more
see c.g. [1] part 2, [7]. [8], [9]). In three dimensions the above mentioned ratio
10H - 15H will be smaller. It means that H could be relatively "large".

b) There is a boundary layer behaviour (also when @@ is smooth) which sig-
nificantly influences the fluxes. This boundary layer was shown in [2) and [5] and
explains the rather unusual failure of fibrous composite laminates, see [6].

Problems related to the media with microstructure were, and are still, studied
very intensively. The first paper dealing with homogenization problems is likely [10].
[11] presents an excellent survey of ideas and results until 1925, The analysis of
periodic structures plays an important role in quantum mechanics. We mention here
e.g. the results velated to the form of eigenfunctions in [12] and [13). See also
(14] and {15]. ftor additional references, see [1] and [2].

There are many different approaches for treating media with microstructures.
Very typically, these approaches are leading to significantly different results. For
more, see e.g. {2], [16], and [17].

To illustrate problems and results in the simplest way we will analyze separ-
ately linear and nonlinear cases and problems with and without boundaries.

2. The Linear Case without Boundary

In this section we will assume that the function a{z,m) in (1) is independent
of n, and is piecewise smooth, 0 < ¢ < a(z) < Cp< = and f 1s smooth, has com-
pact support and { fdx = 0 !

Me will denote L,(R,) the usual space of squarc integrable funclions, LZ( )(R )
Sobolev (quotient) space, with

P I L e ) R

1) Thesc as sum;lnnu. can be made weaker,
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In addition, let K = {x| lxil < %} be a unit cube and l; PER(}') be the quotient
space of periodic functions with period 1 ,

2
uuu S 41 + 12y .
U peal® PR P2 LK)

It is well-known that there exists an unique weak solution uH of (1) for

any 0<H=1 on u = R, (in LZ(RZ) He will always normalize the free additional
constant so that { u dx a0,

2.1, A Typical Homogenization Result and Its Application for the Numerical Solution
Theorem 1. 1) There exists U ¢ L§1)(R2). { Udx = 0 such that

(3) whon s
L2 Q
where & 1is any bounded domain [C depends on &, f, a(x), but is independent of H ]
2) Function U satisfies the (elliptic) differential equation

2 2
“ g1 il 5%;L%i; "
where
2 W, oW
(5) Ap.n = {((31 a(x) 5('1"37;) dx mne=1,2

with W, = X+ nk(x). qk(x) ¢ L;.PER(K). i nk(X)dx =0, k=7,2 and nk(x) is such
that

: 2
k
(6) . o[ 200 gE %o

for every ¥ € L;.PER(K) and

2
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(N flu”-U-H 2 S— . (&)l = CH,
joy 3§ La(Ry)
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3) Dencting

(8) Ti =

then there exist periodic functions zgi](g) such that

2
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5) Defining
H
(n Z'i'(*)=lz f alfp) - (y) dy
y-x/HeK -
vie have
(12) L T
§ 1L2(9)

For proof and more see [5], and also [1] and [2]. Theorem 1 can be generalized
so that the error of the order Hj is obtained.
Theorem 1 can be used for numerical treatment of (1) directly or indirectly.
1) Direct way
We compute first the function nk(x). Wy and xgi] (which are inde-
pendent of f ) by solving particular (periodic) problems on K . Using those func-
tions we determine the coefficients Ai,j in (4). Then we solve in the usual manner
{e.g. by the finite element method) this differential equation, and find U and T, .
Using function x§1] we get the approximate values for t? . A particular numerical
example of this apporach for elasticity equations is shown in [2].
2) Indirect way

In the spirit of the finite element method we use trial functions

(13) v(x) = uf®) + .51 n; ()u1 (x)

j=
vihere ugi) are (say) bilinear functions on squares with side length L >H , i.e. we
are using theoram 1 for the construction of special "super elements". Then we use.
these elements in the usual way to solve the original eovation, i.e. we construct the
stiffuess matrix, ete. and coupute the (micro) stiffness satrix simultancously with
ny, - Another possibility i o take

e o e Seade e S s
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(14) vix) = u(x) +H 2 E=n.(r)

i1 % 1
whcre u is (say) a bicubic function on squares (u ¢ C]). We underline here that
it is cssential in (13) to have all three terms. 1f we would force ugl) =0, then
the answer would be completely wrong. It is easy to show that for L = H we would
get an approximate solution of a different equation.

We will show an example. Let

a(e)

a(z)
In this case A]] = A= A22‘ A]2 = A

¢ for £=K= {&llg;] = %)

1 for £ €K - 2

21 0, i.e. U solves equation

(15) . AaU = f

On the other hand, using only the function u(o) in (13) we will get the approximate
solution of

(16) Rav = f

Table 1 shows the coefficients A and A for different & .

¢ A A
111 1
2]1.1822 1 1.25
4 ]11.3622 | 1.75
6 | 1.4522 2.25

10 | 1.5434 | 3.25

100 | 1.7084 | 25.75

Table 1

The diéect and indirect methods yield some numerical results, but the question
of how reliable (accurate) these results are is still open. The estimates, of course,
show that the results are accurate enough when H is "sufficiently" small. But as we
said earlier, H is physically given and cannot be changed. Therefore the question
arises whether a given H is sufficiently small with respect to the desired accuracy
(obviously the ratio of the scale of f and H 1is relevant), and whether the defini-

tion of the bulk coefficients stemming from the limiting behaviour H - 0 is the-op-
timal one.
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2.2. Numerical Solution - Continuation
Coming back to (13) we may ask whether the functions ni(a) leadina to the
construction of the super elements are optimal; so let us have

N
(17) . v(x) = 2 uj(x)»:j(r,)

3

with nj(g) periodic in £ with period 1 , and let us ask about a good (resp. opti-

mal) choice of Koo

Using the results in [12) and [13] it is not hard to show that
Pi(xqt *+x,t,)
(18) u(x) =] Fltyaty) ¢ 11 220 y(tH,toH,2)
Ry
W2 A7Vt H,t H)dt, dt
12 1 "2

. Jabaled do ' .
where v(¢].12.5) (periodic in £ with period 1) is the solution of a so-called quasi-
static eigenvalue problem:

2 {Ty97,)
) om 12" _
where

RN

\’("'1 -"'2:5) =2 ll(‘t'l "52-5)

and p is general]& a complex pertodic—{im—r) function and A the associated eigen-
value (real),

F(t]gtz) = %‘;1' f(x-',xz) I 4 ?(t‘H’tzH.E)dx] dxz

2

In the light of (18), it is obvious that the choice of xj(g) in (17) is related
to an approximation of the function v(r1.12.5). For a small H we can approximate
v(TI,Tz.E) by its Taylor series (in ’11.12). Using only linear terms (in 11.12) we
will get exactly form (13) and in addition

2 2
X(wl.wz) = 1 §=1 Ai’Jritj + o(x“)
1}
where Ai,j are given by (5).

As an example let us compute a one dimensional problem with a(x) = 100 for
-%<t=0 and a(f) =1 for 0=<k=1% . Figure 1 shows 0 = Rev(<,2n:)
¢y = Im (es2nr) for «/2v = .1, .2, .5.

B S O U OreE V. 9
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Fornt:le (18) shows wore precisely the meaning of the statement that H  has to be
small with respect to the scale of f when the direct use of Theorem 1 is possiblc.
1t is only necassary to realize that the functions n;(r) are the derivatives of
v(w],rz,g) for T T Ty E 0 as mentioned above. The analysis we have shown clearly
hints to the way of a possible selfadaptive approach one has to follow. He have to
simultluneously refine the mesh and construct proper "super elements" by eigenfunctions
of quasi static problems. Therefore, an effective computation of those are of great
importance. For sowe aspects related to this problem, see [18].

2.3. Some Additional! Connections and References

The theoretical use of formula (17),together with the variational principles,
can be traced (although derived from a different point of view), e.g. [19] and [20].
The functions xj(g) are obtained intuitively in [19] and [20] but Kj(t)f L;,PER(K) R
and they are treated similarly as nonconforming elements in the finite element method.
See also [21]. '

As we said, the quasi static case, and its effective treatment, plays an impor-
tant role. Together with [18], we also refer the reader to [22] and [23]. For a sur-
vey of problems mentioned in this paper in relation to composite materials, we refer
e.g. to [24], [25], and [26]. We mentioned the same essential questions orly in con-
nection with e.g. (1). Similar problems are related to other equations, too. We men-
tion here e.g. the case of the neutron transport equations [27], [28]. So far we have
referred the reader mostly to nonmathematical papers. For a survey of recent mathe-
matical results, we refer e.g. to survey papers [1], [2], [29], and [30].

3. Linear Case with Boundary

Let the assumptions about function a be the same as in section 2. First, we
will assume that Q@ 1is a bounded Lipschitz domain with smooth or unsmooth boundary.
We are intaerested in this solution of (1) and (2). The solution obviously exists and
is uniquely defined. The first principal quéstion is how will Theorem 1 change in
this case. The answer is given in
Theorem 2. Let U be the solution of (4) with boundary condition U=0 on ag .
In addition, let U be smooth. Then

2
H ay 1
(20) flu' = U -H z S—n.(8) < CH
=1 2% T (g)
W2 [ 1
(21) Ity = 2 T"(eMl g = CHY
J=1 Lz(sz)

The rate H11 is optimal,
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Theorem 2 shows that the presence of the boundary influenees the acoraey -3 i
honogenizad solution significantly, Let us assume now that v i a haliplane. neve iy
o= R {xlx2 0} and denote RV (2) - {xlxzuz}, z . 0. Then the next thaorem o i
proven,

Theorem 3. Assume that f is smooth, f(x) = 0 for x| ~ 1. Let & - Rt be any

bounded domain ard (z) = & N RY(z) . Then

1) )
(22) W - u - i n; ()] < C [H“j %E + u]
i=) jxl ! L;(?(z))
2 . 2t
(23) Ity - 2T 1My . - [H‘-'- L H]
I L5(5(2))

2) There exists function p(:), xgk)(g) defined on P = {(llcll IETRPR)
periodic in 12 with period 1 and r exponentially decreasing with ¢, so that

v ;‘{
" 2
(24) fflu® -U-~-H 2 ax n;(g) - H 3 . (x1 ,0)p(£) 5 < CH
i=1 9% L (&)
T [4] 2 (4)
(25) ey - 2 Tows' () - 2T, (x].O)n (F)H . = CH
=1 9 3=1 L,(&)

For the proof, see [5].

Theorem 3 shows clearly the existence of a boundary layer which was mentioned
in section 1. There is an open questioﬁ whether similar behaviour holds when the do-
main is bounded, say, with a smooth boundary(or is also a halfplane with 1rrational
angle between the cell orientation direction and the boundary of the halfplane). We
mean e.g. the question of the validity of (22) and (23) when dist(%,a) > z .

The term
;T 50500 5 (&)
J=1
is the boundary layer term, which can play an essential role in explaining failures
of composite materials. In the case when the domain is a halfplane, this tcrm s
prgctica]]y computable because we can compute only a string, say, of 3 cells and force
K§1)(t],3) = 0 . For a numerical example of the boundary layer computation, see [2].

Although we discussed only the Dirichlet boundary condition, similar behaviour
holds for other conditions too. In the case of the halfplane the gencralization
of Theorem 3 leads to higher order error esiimates.

It is clear thav the boundary layer is of utmost importance. There are no
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Fnown results for general (say smooth) domains. But physically intuitive deliberations
hint of the existence uf boundary layers with the width which is not of exponential
character. We expect to address this question in a future paper. So we see that the
boundary creates essential difficulties which have to be treated very carefully. A1l
questions and problems mentioned in previous sections (e.g. "large" H) are even more
complicated when arising here. Although there are many papers devotad to different
questions of homogenization, there are no papers addressing and treating the problem
of the boundary layer.

4, The Nonlinear Problem 2)

In this section we will discuss the nonlinear problem (1) (2). Denote by
H;(Q), 1 < p < » the ysual Sobolev space furnished with the norm

2
ol 3 ) = WL gy + 23 -—nL (@)
W (2) p =]
p

uhere Lp(Q) is the common space of functions integrable with the p-th power. By
N (9) we denote the subspace with zero traces on dR . Denote “J,PER(K) the space
of periodic functions on K (analogously as in section 2). The existence and other
properties of problem (i) (2) are studied in many papers. We refer the reader e.g.
to [31], [32], and [33].

Let us list the assumed properties of the function alg,m), & ¢ K,
" s (n],nz) € Ry, used in (1).

1) For any =+ € Rps alg,n) is periodic in ¢ with periodicity 1.
2) There exists a number p = 2 such that
*j p-2-j
(26) ——5 albom)| A k(14 DPEI L g0,

ansan
17 k+ =3

3) Problem (1) (2) is properly posed; let G ¢ N](Q), W € ﬁ;(g) and @ =
such that (0 . v = yo) for any v ¢ ﬁ](ﬂ)

2

=H
27 s au_8v eyl yg < vilvi
(27) ; alz, ) ax; ax; TV & ﬂlvnw]m)

G+w

]

then for any G € w;(g), nG—ﬁu ]( )H y there exists at least one o € w;(g) .
W (2
) P

T e e e s Ly v—

2) e disenss here our special model problem. For the yeneral case, see [34].
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u”'uG + v, WE ﬁ;(G) such that

2 H
. _H
I(-IE'I a(*,m ) %;—:T-——g; - fv) dx = 0
o \1= i

for any v ¢ ﬁ;(ﬂ) and

lG-ull { = P
w,‘,m)

where C and 0 < p =1 are independent of + and H .

4) Finally we will specify assumptions for the solution of an associated problem.
Let us define it first. This problem consists of finding a periodic (vector) function
x(g,0) = (x[]-].xu]), x[j](g,o) € w;’PER(K) (ing), i = 1,2 so that

&x[j](a.o)dz =0

and

2 ; (3]
l(_}]]a(igu-) (5‘3 + %‘_—‘)%T)dg =0
i= i i

for any v € w;,PER(K) where p = (u],pz)

2 (k]
= k , ax
T K (5" "o, )

and 5? is the Kronecker symbol. Now we assume

4.a) For every o € R, there exists (at least one) solution X(&,o) of the
associated problem.

4.b) Function x(g,0) has two derivates with resp. to o .

4.c) Let o(x) be a function defined on K such that

o < 3 <y w2y
5§;| 4 0zg =y, -
., J
Then functions 41 #K:(x) = 2% ¢ WK j=0,3,2 k+e=3 and
Do']()O‘z p '

«'r‘-'c( X)

. j
iKy8 DI
P ) - T (x50 (0))]
",’)lr’ct’-‘z

- Cr
Toy =70
"l)(f\)

wrore O doos nob depond on
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The assumptions we made about the associated problems can be analyzed e.g. with the
thcory developed in [31].
We define for every o ¢ Ry

, : MO
(28) %*w)=L 2 s + g (o)

(5,‘ [k](x’d))]

e,k = 1,2
Now we can formulate the homogenized problem of (1)(2).
(29) : 5 (U) 52—
29 Z U U=+*
(30) U=0 on aR .

In [34] the following theorem (more general) has been proven.

Theorem 4. Let there exists the solution of the homogenized problem (29) (30). We
assume in addition that the solution U has three bounded derivatives. Then for every
0<H<H, there exists at least one solution o oof (V) and (2) and

2 .
(31) I - u - n 2 g-:— x(‘)(_g,ux)uw,(g)s cue/P
p

Let us now make some additional comments to Theorem 4. First, similar as in
section 3, the right hand side of (31) has in fact two parts, one due to the differen-
tial equation (of order HP) and due to the boundary conditions (of order Hp/p). For
large p the loss of accuracy is very big. So it is desirable to find ways to analyze
this boundary layer behaviour which are expected to lead to an accuracy of the order
H® . Although we formulated Theorem 4 directly for a bounded domain, there is a ver-
sion of it for adomain without boundary which leads to the term HP in the right hand
side. The probiem of optimal treatment for large H has now beome more difficult.

We will study as an example a special case when the function a(z,n) has a form
stemming from the laminates and depends only on the variable & (is independent of
gz). We will assume that

af.m) = a(Inl?) > 0
-.5 < f] < ‘.2

.2 <_f1 < .5

alfen) = a,([n|?) > 0
2 <_g] < .2

(cont)
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a_‘(z) =y 0« zp

ai(z) 5 U.i + ﬂ,i(zz-;l,,'?)Y |r.1 L
0.13’1.0s’12=10’[‘]=5o[‘2=-)

Yy =2, iy = 1.5 , oy = 10

Then we get p =10, p = %~ and the Homogenized equations has the form
ay
1 axy M,1tepee) ax2 Ay, aloys) 8 ox, =
vhere o, = al_ O, = 8l The graphs of functions A A are given in
T 8%y’ 72 axy T 1,1 * 72,2 '

Figure 2 and Figure 3.

The practical implementation of the nonlinear homogenization leads to many open
questions because of the size of the problem. Very 1ikely we have to compute the
functions x[k](x,o) and Ai j(o].cj) simultaneously during the incremental procedure.
This, of course, will be very’expensive and many serious computational prohlems will
have to be solved. There is another possibility to compute the coefficients
A1’j(o].62) in advance for a small number of o and make heavy use of the fitting
procedure. This, of course, is possible only for materials of hyperelastic type
where loading and unloading goes the same way. This is not true for most of the real
materials. In these cases only a step by step solution is possible. We mentioned the
results only for the diffusion equation. Similar results hold for the elasticity
problem, too, but implementation is even more complicated. There are not too many
approaches available for the nonlinear case. For some in the field of composite
matrices we refer to [35], [36], [37], and [38].

5. Some Additional Remarks

So far we concentrated our attention to the problems stemming from numerical
treatment (direction b) mentioned in section 1. We cannot elaborate here in the
second direction although there are many interesting and deep relations with basic
problems in mechanics. It is obvious that on the microscale all materials exhibit a
structure which is revealed in the course of the deformation orocesses of a comparable
scale. The classical equations of homogenous continua cannot predict certain observ-
able phenomena when the scale of solutions (say wavelength) approaches the character-
istic dimension of the heterogenity. The whole approach of the honogenization leads
to the problem of higher order continuum theory and basic problems of mechanics. For
more about higher order continuum thecorics, we refer the reader e.q. to [39], [40],

(411, [42].



TSN
]

A

[$1

0N

|0 e

14,

e ettt g » 10 1

5"?

o 1.0 2.0 3.0

O~

FIGURE 2

4.0




c’,,c-‘z)

r

\
2.2

A

LOOVE -

D e ST

100

i e eie

W st eteimme g

G- — s S——

15.

l FUNCTION A

a,z("'n'
1 )

o,
1

1.0 20

O‘,‘.——o-

FIGURE 3

3.0



16.

References

1. Babu¥ka, I., Solution of problems with interfaces and singularities, Mathematical
Aspects of Finite Elements in Partial Differential Equations, (C. deBoor, ed.),
Academic Press 1974, 213-277.

2. Babu¥ka, I., Homogenization and its application. Mathematical and computational
proE1cT3;6Proceeding§ of SYNSPADE 1975, (B. Hubbard, ed.), Academic Press, New
York, .

3. Babu¥ka, I., Numerical solution of partial differential equations, GAMM-TAGUNG,
Minchen, 1973, ZAMM VYol 54 (1974), T1-Ti0.

4. Babutka, I., Kellogg, R. B., Mathematical and computational problems in reactor
calculations, Proceedings of Conference on Mathematical Models and Computatinnal
Techniques for Analysis of Nuclear Systems, Ann Arbor (1973), VII-377VEI-§HT'

5. Babu%ka, I., Solution of interface problems by homogenization I, University of
Maryland, Institute for Fluid Dynamics and Applied Mathematics, Tech Note BN-782,
January 1974.

6. Pagano, N. T., On the calculation of interlaminar normal stress in composite lam-
inates, J. of Composite Materials 8 (1974), 65-81.

7. Babu¥ka, I., Kellogg, R. G., Numerical solution of the nautron diffusion equation
in the presence of corners and interfaces in numerical reactor calculations, Inter-
national Atomic Engergy Agency, Vienna 1972, 473-486.

8. Babu¥ka, I., The selfadaptive approach in the finite element method, The Mathema-
tics of Finite Elements and Applications 11, MAFELAP 1975, (J. R. Whiteman, ed.),
Academic Press, London, to appear.

9. BabuSka, I., Rheinboldt, W., Mesztenyi, C., Selfadaptive refinements in the finite
?legent method, University of Maryland, Computer Science Tech Rep. TR-375, May

975.
10. ??igzgn,ss. D.,Second mém sur la théorie de magnetisme, Mem de L'Acad de France
822), 5.

11. Lichtenecker, K., Die Dielektrizititskonstante natirlicher and klinstlicher
Mischkorper, Phys. Zeitschrift XXVII (1926), 115-158.

12. Witmer, E. E., Rosenfeld, L., Uber die Beugung von Broglieschen Wellen an Kristal-
gittern.Zeitschr. fur Physik 48 (1928), 530-540. '

13. Bloch, F., Uber die Quantenmechanik der Electronen inKristalgittern,Zeitschr. flr
Physik 52 (1929), 555-600.

14. Brillouin, M, L., Lés eTeEtrones libres dans 1és metaux et le role des reflection
de Bragg, J. de Physique 7% Serie T.I (1930), 373-400.

15. Briliouin, M, L., Wave Propagation in Periodic Structures, McGraw-Hill 1946, Dover
Publications, New York, 1953.

16. Barrer, R. M., Diffusion and permeation in heterogenous media, Diffusion in Poly-
mers,(J. Crank, G. S. Park, eds.), Academic Press, 1968.

17. Chams, C. C., Sendeckyj , G. P., Critique on theories predicting thermoelastic
properties of fibrous composites, J. of Composite Material 2 (1968), 332-358.

18. 1. Babuska, Osborn, J., Numerical treatment of eigenvalue problems for equations
with discontinuous coefficients, to appear.

19. Achenbach, J. K., Sun, C. T., The directionally reinforced composite as homogenous
continuum with microstructure, Dynamics of Composite Materials, (E. H. Lee, ed.),
Am. Soc. of Mech. Eng., New York 1972, 48-67.

20. Hlavatek, M., On the effective moduli of elastic composite materials, Proceedings
of Symposium on Continuum Model of Discrete Systems, Polish Academy of Sci.,
Jodlawy Dwor, June 1975, to appear.

21. Lee, E. H., A survey of variational methods for elastic wave propagation analysis
in composites with periodic structures, Dynamics of Composite Materials,

(E. H. Lee, ed.), The Am. Soc. of Mech. Eng., New York i§7§. Y22-138.

22. Nggagggasser, S., Harmonic waves in layered composites, J. Appl. Mech. 39 (1972),
850-852.

23, Memat-Nasser, S., General variational principles in ronlinear and linear elasticity
with applications, Mechanics Today, vol. 1 (1974), 214-261. .

24. Hashin, Z., Theory of Fibers Reenforced Materials, NASA Report NASA CR-1974, 1-704.

25. Garg, S. K., Svolbonas, V., Gurtman, G. A., Analysis of Structural Composite
iaterials, Marcel Dekker, Inc., New York 1973,




17.
26. Composite Materials, (L. J. Broutman, R, H. Krock, eds.), Vol. 11, Mechonics of

Tomposite Materfals, (6. P. Sendeckyd, ed.), Acadumic Press, New York 1974,

27. E. M. Gelbard, Heterogeneity effects in neutron transport computations, Procecd-
ings of SYNSPADE 1975. (b. Hubbard, ed.), Academic Press, New York, 1976.

28. larsen, £. V., Neulron transport and diffusion in inhomogenous media I, J. of
Math, Phys., vol. 16, (1975), 1421-1427,

29. Spagnolo, S., Convergence in energy for elliptic operators, Proceedings of SYNSPADE
1975, (B. Hubbard, ed.), Academic Press, New York, 1976.

30. Tions, J. L., Some methods of free boundary problems, Proceedings of Joint IUTAM/
IMU Symposium on Applications of Methods of Functional Analysis to Problems of
Mechanics, Marsetllie, September 1975,

31, Visik, M. I., Quasi-linear strongly elliptic systems of differential equations in
divergence form, Trans. Moscow Math, Soc. 12 (1963), 140-208.

32, Mikhlin, S. G., The Numerical Performance of Variational Methods, Walter-Noordhoff,
Netherlands, 1971.

33. Jakovlev, G. N., The first boundary value problem for quasilinear elliptic equa-
tions of second order, Proc. Steklov Inst. Math., 117 (1972), 381-403.

34, BabuSka, I., Solution of interface problems by homogenization I1I, University of
Maryland, Institute for Fluid Dynamics and Applied Mathematics, to appear.

35, Petit, P. H., Waddoups, M.E., A method of predicting the nonlinear behaviour of
laminated composites, J. Composite Materials 3 (1969), 2-19.

36. Adams, D. F., Inelastic analysis of unidirectional composites subjected to trans-
verse normal loading, J. Composite Materials 4 (1970), 310-328.

37. Hahn, H, T., Tsai, S. W., Nonlinear elastic behaviour of unidirectional composite
laminae, J. Composite Materials 7 (1973), 102-118. :

38. Dvorak, G. J., Rao, M. S. M,, Tarn, S. Q., Yielding.in unidirectional composites
*ggeglgxterna1 loads and temperature changes, J. Composite Materials 7 (1973),

39. Eringen, A. C., Suhubi, E. S., Nonlinear theory of simple micro-elastic solids I,
I1, Int. J. Eng. Sci. 2 (1964), 189-203, 389-404.

40, ?;gglgn, ?.70.. Microstructure in linear elasticity, Arch. Rat. Mech. Anal. 16,

’5"8-

41. Eringen, A. C., Mechanics of micromorphic continua, Mechanics of Generalized
Continua, (E. Kroner, ed.), Springer-Verlag, Berlin 1968, 18-35.

42. Habib, L. M., A continuum theory for an elastic solid with elastic micro-

inclussions, Recent Advances in Engneering Science 5, (A. C. Eringen, ed.),
Gordon and Breach, London, 1970, 17-31.

Research supported in part by the U.S. Energy Research and
Development Administration under Contract #AEC AT (40-1)3443.



