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ABSTRACT 

The damping theory, which includes t h e  decay of quantum s t a t e s ,  
i s  developed i n  terms of t he  projection operators. The concept of 
probabi l i ty  t h a t  a t r ans i t i on  from a given i n i t i a l  s t a t e  w i l l  be 
towards a specified f i n a l  s t a t e  i s  introduced, and the  probabi l i ty  
i s  calculated by using the  damping theory. . When t h e  decay of t h e  
f i n a l  s t a t e  i s  neglected, t h i s  probabi l i ty  reduces t o  t h e  condi- 
t i o n a l  probabil i ty,  introduced by Heitler ,  t h a t  t he  system t r i l l  be 
found - i n  a specified f i n a l  s t a t e  a f t e r  a t r ans i t i on  from the  given 
i n i t i a l  s t a t e  has de f in i t e ly  taken place, With t h i s  new probabi l i ty  
concept, an approximate expression i s  obtained f o r  t he  t r a n s i t i o n  
probabi l i ty  per uni t  -- time from the  i n i t i a l  t o  t he  f i n a l  s t a t e .  This 
expression i s  t he  s t a r t i n g  point of t h e  present l i n e  shape theory, 
which i s  applicable t o  both neutron and photon spectra. In t h i s  work, 
only the  sca t te r ing  of slow neutrons by an anharmonic c r y s t a l  i s  con- 
sidered. However, the d i f f e r e n t i a l  sca t te r ing  cross section formula 
i s  obtained f i r s t  f o r  an a rb i t r a ry  macroscopic medium, and then ap- 
pl ied t o  a c rys ta l .  The cross section formula i n  t he  harmonic approx- 
imation follows from the  present cross section formula when the  width 
and s h i f t  of l i n e s  a r e  neglected. The novel feature  of t h i s  deriva- 
t i o n  i s  t h a t  it does not use Blochl s theorem. Expl ic i t  formulas f o r  
the  width arid t he  s h i f t  of t h e  observed peaks i n  t he  energy spectrum 
of t h e  i n e l a s t i c a l l y  scattered slow neutrons by c rys t a l s  a re  obtained, 
and compared i n  t h e  case of a single-phonon event t o  those by Maradudin 
and Fein. It i s  found t h a t  t h e  s h i f t  formulas agree exactly a t  a l l  
temperatures, whereas the  width' formulas agree only i n  the  zem temper- .. 

a ture  l i m i t .  The discrepancy i n  t he  width 'formulas a t  f i n i t e  tempera- 
. t u r e s  i s  discussed i n  terms of t he  concept of phonon l i fe t ime.  The 

application of the  present l i n e .  shape theory t o  the' in te rpre ta t ion  of 
t h e  op t i ca l  experiments i s  a l so  discussed. - . , ' . . .  , :. . ,: .. . 

:: . . 



INTRODUCTION 
. "  . 

In recent years the  scat ter ing of slow neutrons by macroscopic sys- 

tems has received increasing at tent ion as  a research tool ,  'providing in- 

formation about the  ' dynamical conditions of the  s'cattering medium, i n  
I 

addition t o  the determination of nuclear scat ter ing lengths of the  con- 

s t i tuent  atoms. For example, the scat ter ing of slow neutrons by crys ta l s  

provides a useful  complemerk t o  other techniques' f o r  the  determination 

o f  the  energy levels  of the  c rys ta l .  The general theory of neutron 
' 

scat ter ing by macroscopic systems,. i n  terms of the.time-relaxed space 
' 

correlation f'unction, provides a convenient computa'tional t o o l  when the 

energy eigenstates o f  the  sca t te rer  are  known.   ow ever, except fo r  

some special  physical systems, e.g., an idea l  gas, the.eigenfunctions 

of the  Hamiltonian of the sca t te rer  a re  not available. In such 

. . 

cases the evaluation' of the thermal averages appearing i n  the  cross 
C 

1 
section formula have t o  be performed i n ' d  d i f fe rent  complete se t  gen- 

, . 
. . .  

erated by a .cer tain ~ami l tonian  $( '. The l & t e r  i s  chosen as  a par t  

of H9, viz., . . .  
I ~ .. . , 

. . 

~, HS . = . aQs  + H' , 
. . . . .. . , . ... 

(1.1) 
... . . 

fo r  which the  eigenvalue problem 



can be solved. In some applications, it may be a good approximation t o  

replace dj by @, thereby ignoring H1 completely, i n  order t o  explain 

the dominant aspects of a cer ta in , sca t te r ing  experiment. However, in- 

terpretat ion of the  d e t a i l s  of the  recent neutron scat ter ing experiments 

requires a more refined analysis than tha t  obtained by .ignoring H' com- 

pletely.  A s  an example, consider again the  scat ter ing of slow neutrons 

I 
by crystals ,  which w i l l  be our. main concern i n  the subsequent chapters. 

Here, H1 i s  taken t o  be the  cubic and the  higher order terms i n  the  

Taylor expansion of the  c rys t a l1s  potent ial  energy. The harmonic approx- 

imation which corresponds t o  ignoring H1.predicts sharp l ines  i n  the  en- 

ergy spectrum of neutrons scattered i n e l a s t i c a l l y  by the  crystal ,  and 

f a i l s  t o  yield any information about the  s t ructure of the  observed peaks. 

Since the  width of these peaks can be measured by present-day experi- 

mental techniques,' the  need fo r  a refined theory of neutron scat ter ing 

by crystals ,  one which i s  capable of predicting the. observed width and 
. . 

sh i f t ,  i s  apparent. Valuable inforriation about the  nature .of anhar- 

monic forces i n  c rys ta l s  can be gained by, comparing the  experiinental 

and computed widths once a re l iab le  . . theory i s  available. The study of 

neutron l i n e  shape may a lso  prove t o  be a very sui table  microscopic 

probe i n  the  exploration of intermolecular forces  i n  l iquids.  

Several theore t ica l  studies of the  neutron scat ter ing by anharmonic 

crystals  have- appeared i n  the  l i t e r a t u r e  i n  recent The most 

recent one, by Maradudin and ~ e i n , ~  contains a br ie f  survey of the  pre-' 

ceding works as  well as  a comparison between theore t ica l  and experi- 



mental resu l t s  for the  width. ot' one phonon l i n e  i n  lead. The agreement 

i s  reported t o  be only i n  the  order of magnitude. As the  authors point 

out, however, t h i s  discrepancy may be due e i the r  t o  the  computational 

techniques used t o  represent 6 function, or  to .  the  simple c rys t a l  model 
. . 

used t o  describe lead, ra ther  than t o  the  approximation made i n  the  
. . 

derivations. In t h i s  regard, an independent formulation of the. theory 

of neutron l i n e  shape would be very desirable. 

The potent ial  of the  study of the  opt ica l  l ine.  shape as  a non- 

interfer ing diagnostic t o o l  fo r  investigation of the  physical properties 

of the  surrounding of an emitting atom has long been recognized and 

used i n  astronomical observations. In the past f i f t e e n  years, the  op- 
. . 

pJ t i c a l  l i n e  width techniques have found application a lso  i n  high temper- 

ature plasma experiments as  a probe for;measuring temperatures and ion 
' I  

concentrations within a plasma, where the use 'of material  probes i s  
. . .  

ruled out because of the  high temperatures involved, Consequently, the 

opt ica l  l i n e  shape'theory has enjoyed rapid progress i n  recent years. 

Accuracies be t t e r  than 209 i n  determining the ion density with the  l i n e  

width technique have .been reported.* In  sp i t e  of t h i s  numerical suc- 
. a  I .  

cess, however, the exieting l i n e  shape theory contains eame i n tu i t ive  

arguments, such as the  folding of Doppler and pressure effects ,  as  well 

as some gaps. . It treats .  the  e f fec t  of ions i n  the  quasi-s tat ic  l i m i t  by 

assuml~lg the  ions t o  be a t  r e s t ,  whereas it t r e a t s  electron. e f fec ts  

*A l ist  of the  or ig ina l  papers and several excellent review a r t i c l e s  can 
- . '. 

be found i n  Ref. 7. . . 



with the impact approximation. It does not o f fe r  any good' .treatme.nt f o r  

the intermedi~ke region, where neither of these two l imit ing approxima- 

t ions i s  valid ( see  p. 504 of Ref. .7).   he' s t a r t ing  point of the exis t -  

ing theory i s  the.quantum mechanical Fourier in tegra l  formula which ex- 

presses the  opt ica l  spectrum as the  Fourier transform of the autocorrela- 

t i o n  function of the  time-dependent dipole operator. 

In the  present work, an attempt has been made t o  develop a l i n e  

shape theory t h a t  can be applied t o  both opt ica l  and neutron spectra. 

This theory involves approximations of a general nature i n  contrast  t o  

the previous opt ica l  and neutron l i n e  shape theories,  which involve ap- 

proximations appropriate t o  specific physical systems, e.g., plasma and 
, 

crystals ,  and therefore have a limited range of applicabili ty.  The 

present theory provides a genera1,line shape formula f o r  a rb i t ra ry  media, 

i . e . , the  surrounding of the  emitting atom in'  the  photon case and the  

macroscopic sca t te rer  i n  the  neutron case, which reduces the  l i n e  shape 
. . 

cabculations imuediately t o  a computational form. '' The nature of the  

physical system under consideration. first enters  a t  j this '  computational 

st age. 

The present formulation of l i n e  shape i s  based on an ent i re ly  d i f -  

f erent approach than the correlation formalism used by the  exis t ing 
. . 

l i n e  shape theories  fo r  both neutrons and photons. This approach uses 

the damping theory or iginal ly  due t o  ~ e i t l e r , O r g  and i s  essent ia l ly  a 

perturbation approach, which Includes the decay with time of the  quantum 

s t a t e s  of the  system. This approach was chosen f o r  the  present study 



because, as  w i l l  be demonstrated by two specific applications, it pro- 

D vides a computational framework which i s  more systematic or more in te r -  

pretable physically than any used i n  similar applications, and which 

l W  can be applied d i rec t ly  t o  any l i n e  shape problem without approximations 

of the physical nature appropriate t o  a par t icu lar  system. In  the  case 

of the  study of opt ica l  l i n e  shape, the  present theory illuminates the  

manner i n  which the various simultaneous contributions t o  a l i n e  shape, 

i. e., Doppler effect ,  natural  broadening, and pressure broadening, a r i se  

and are  combined; and it provides a method of computation which may i m -  

prove upon exis t ing approximations, i. e., quasi-s tat ic  and impact ap- 

proximation, i n ,  t h e  intermediate range mentioned above. In  the  case of 

the study of l i n e  shape i n . t h e  energy spectrum of ine las t ica l ly  scat- 

tered neutrons by an anharmonic crystal ,  the present approach yields, i n  

.a simpler and more interpretable way, formulas f o r  the width and eh i f t  

of the  l ines  i n  the  zero temperature l i m i t  which are  ident ica l  t o  those 

presented by Maradudin and ~ e i n . ~  HDuever, the  present l i n e  width 

formula a t  f i n i t e  temperatures d i f f e r s  from the i r s ,  and predicts  a 

la rger  width. This discrepancy, i f  it does not: a r i s e  from an a r i th -  

metical error,  may improve the  order of magnitude agreement reported 

by Maradudin and Fein. ' - .  

In Chapter 11, the  damping theory i s  developed and extended by in- 

troducing the  concept of probabili ty t h a t  the t rans i t ion  . from an i n i -  

t i a l  s t a t e  w i l l  be towmd a specified f i n a l  s ta te;  t h i s  i s  valid even 

i f  the  decay of the  f i n a l  s t a t e  i s  not negligible, as  is  the  case i n  



crystals .  The remaining chapters co~ltttin t he  application of t he  basic 

formula derived i n  Chapter I1 f o r  t he  t r ans i t i on  probabi l i ty  per un i t  

time, t o  the  sca t te r ing  of slow neutrons by an anharmonic c rys ta l .  The 

application of the  present theory t o  the  study of op t i ca l  l i n e  shape i s  

not included i n  t h i s  work because it has been presented a s  a separate 

report .  10 

It i s  hoped that the  present\work w i l l  contribute t o  the  t heo re t i ca l  ' 

understanding of l i n e  broadening and l i n e  s h i f t  phenomena i n  general. 

Such understanding i s  e s sen t i a l  f o r  the  success of t h e  l i n e  shape s tudies  

as  a convenient probe t o  explore intermolecular forces  i n  a macroscopic 

medium. . 



CHAPTER I1 

DAMPING THEORY 

The interpretat ion of almost any experiment can be reduced in quan- 

tum mechanics,' without introducing any serious approximation, t o  evlua- 

t i o n  of the  quantity 

where the numerator 'is the  probabili ty of finding the. system under con- 

sideration i n  the  s t a t e  Im > a t  time t, knowing t h a t  it was i n  the  

s t a t e  In > a t  the i n i t i a l  time t = 0. The purpose of this chapter i s  

t o  derive an expression fo r  W,, which i s  sui table  t o  the study of l i n e  

shape problems i n  general. Such an expression can be obtained by using 

the  damping theory, which, i n  contrast  t o  'the conventional perturbation 

theory, takes into account the  decay i n  time of the  quantum s ta tes .  Al- 
\ 

though the  f i r s t  attempt t o  include the  f i n i t e  l i fe t ime of the  s t a t e s  

i n  the  perturbation theory was made b y  Weisskopf and wigner,ll the  f i r s t  

systematic development of the  damping theory i s  due t o  ~ e i t l e r . ~ , g  The 

present derivation d i f f e r s  from Eeitber's or ig ina l  derivation i n  two 

respects: F i rs t ,  it i s  developed i n  terms of the  projection operator, 

and second, it employs a different  i t e ra t ion  pro'cedure. . Although the  

r e su l t s  are  essent ia l ly  the same a s  those obtained .by Heitler,. the  pres- 

ent .  approach has several ,  appealing features. It i s  an extention of the  

quantum treatment of the  evolution of a .decaying s t a t e  presented by 



A. Messiah. 12 

A. BASIC THEORY 

The temporal development of a quantum mechanical system i s  deter- 

mined by the  "time-evolution" operator ~ ( t )  : 

It > , =  u ( t )  10 > , 
I 

where 10 > and It > a r e  the  s t a t e  vectors a t  t = 0 and a t . t ime  t. When 

the  Hamiltonian H of,  t he  system . i s  not an expl ic i t  f inc t ion  of time, 

where the  uni t s  are  chosen. so t h a t  6 = 1. ~ s s b e  t h a t  H can be s p l i t  
, . . , 

- .  

into two pa r t s  as  . .  . . 

i n  E U C ~  a way tha t  the eigenvalue problem 
. . 
. . 

can be solved. The eigenvectors ( n  > are assumed t o  be complete and n 
orthonormal, and thus provide a basis  f o r  the physical problem under 

consideration. The eigenvalues E,, which may be d iscre te  or  continuous, 

are  allowed t o  be degenerate. We want t o  calculate  the  matrix elements 0 
u,(t) and um(t) for  t > 0. However, we sha l l  f i r s t  consider the 



operators Pnu(t)pn and pmu(t)pn, where Pn and Pm are  projection operators 

on the subspaces En and Em spanned by the  eigenvectors belonging t o  

the eigenvalues E, and E, respectively. The projection on the  comple- 

mentary subspace of % w i l l  be denoted by %. The following relat ions 

a re  immediate consequences of the  preceding defini t ions:  

In (2.5))  the symbol v indicates the mult ipl ic i ty  of the  eigenvalue E,. 

Similar relat ions hold a l so  for  Pm. We may r e c a l l  *'13 t ha t  any hermi- 
. . . . ' .  

t i a n  operator sat isfying the  re la t ion  . 

i s  a  projection operator. ' It w i l l  be apparent a t  t he  end tha t  Pn and 

Pm can be defined as  projections on some subspaces of the  subspaces 

En and respectively. In part icular ,  they can b,e chosen as  the  

projectors on the  i n i t i a l  and f i n a l  s t a t e  vectors. In  t h i s  case, and 

! also when the eigenvalues are non-degenerate, t he  present approach re-  

duces t o  tha t  of He i t l e r l s  except f o r  the  i t e ra t ion  procedure. 

We now introduce the resolvent of H, i .e . ,  



where z i s  a complex number. Since the  eigenvalues of H a re  r e a l  and 

posit ive,  the s ingular i t ies  of G( z) a l l  l i e  on the  posi t ive r e a l  axis. 

The discrete  and continuous portions of the  spectrum of H give r i s e  t o  

simple poles and branch cuts on the  r e a l  axis. The evolution operator 

~ ( t )  can be expressed' i n  terms of G( z) as  

where 

In the  l a s t  expression PP denotes the  pr incipal  par t .  

It may be noted i n  passing that the  contribution,of.  t he  second term 

i n  (2.11) vanishes fo r  t > 0, since G( z) i s  analytic i n  the  en t i r e  lower 
- .  
. . half plane as  well as upper half plane. . . 

, .. 
Our, problem i s  now reduced t o  calculating . 

Following Messiah,* we introduce , 

*See p. 994, Vol. 2 ( second print ing i n  Ebglish) of Ref. 12. 



- 
where HI and H" are defined by 

I 
The following re la t ions  c ' m  be verified by using, the foregoing defini-  

t ions  : 

The following operator iden t i t i e s  w i l l  be .needed: . 
. . 

1 . - 1  1 1 - 1 1 1 .  - = - + - B -  = - B - +  
A-E A A A-B A-B A ' 

- .  . 
, . 

where A and B are  two arb i t ra ry  operators, P i s . any  projection operator, 

i.e., hermitian and p2 = P, and R is any operator commuting with P. The 

proof of these iden t i t i e s  i s  straightforward. 

Using (2.16), one ?an write ~ ( z )  from (2.9). as follows: 



We can now compute F n n (  2) by Operating on both, sides of (2.18b) by pn, 

noting tha t  the second term vanishes by (2.l5b), and by using (2.17) . 
The resu l t  i s  

where the  symbol rm(z) i s  defined by 

We now attempt t o  compute %m( L) . It proves more convenient. t o  compute 

first Q ~ G (  z) Pn, aid then t o  obtain pm( 4) by multiplying, t he '  l a t t e r  from 

the  l e f t  by Pm. Thus, 'using (2.18a) fo r  G(z) , one finds: 
, , 

Noting t h a t  

one rewrites (2.21) as  follows: . , 

. . 

It i s  noted tha t  a l l  the  foregoing r e su l t s  a re '  exact. '' However, they , 

s t i l l  contain the  operator ( z - Q ~ H Q ~ )  01, which can not be calculated 
. . 



exactly. * At t h i s  point ,  one resor t s  t o  an i t e r a t i o n  procedure which 

consis ts  of applying the  foregoing analysis t o  ( Z-Q~HQ~)  by defining 

and noting t h a t  I 

Thus, Pm( z- 2) -'P, i n  ( 2.22) , which can be labelled a s  yk( z) according 

t o  (2.13) , can be ' read i ly  obtained from (2.19) by replacing HO and V by 

Xo and te 

where 

The calculation of Pm(Z-&~QJ-'PP appearing i n  (2.22) requires c loser  

a t tent ion,  because of t he  order of Pm and PP. We note t h a t  i n  t h i s  

operator, Pm denotes t he  i n i t i a l  subspece whereas i n  (2 .13)  it denotes 

t he  ' f ina l ,  subspace. Therefore, t he  order of t h e  i n i t i a l  &d f i n a l  sub- 

+Messiah approximates ' t h i s  operator by ( z-€Io) -' by ignoring the %VQn 
i n  QnHQn = Ho + QnVQn [cf. ( 2. lka) 1, arid thus  obtains a closed form for  Fm( z) from ( 2.21) . But t h i s  approximat ion excludes automatically t he  
width and s h i f t  of t he  f i n a l  s t a t e  Im > a s  w i l l  be apparent presently 
[ c f .  (2.28) 1. 



spaces i n  Fhp( z) P,( z-&H&) -'P i s  reversed as compared with tha t  
CI 

i n  ( z) To *void- 'any cpnfusion, one c a n  s t a r t  with the  second op- 

erator  ident i ty  i n  (2.16) t o  compute $&( 2). The r e su l t  can be eas i ly  

seen t o  be 

! 

The resu l t  of the  first i t e ra t ion  can now be obtained by subst i tut ing ' 

(2.26) and ( 2.27) in to  ( 2.22) , The resul t ing formula w i l l .  contain op- 

;tP era tor  ( z-$, %) -I, which can 'be i te ra ted  once more. . (we sha l l  give 
. , 

the  r e su l t  a f t e r  the  second i terat ion.)  Omitting the  . arguments . (2) f o r  

typographical simplicity, one finds: 

where, 

It i s  observed t h a t  (2.28) represents formally an expansion in' powers 

of V. The first term corresponds t o  the  d i rec t  t rans i t ions  from the  

i n i t i a l  subspace t o  the  f i n a l  subspace; t h i  second term represents the  

t rans i t ions  v ia  an intermediate subspace; and so on. In the  present 

analysis of l i ne  shape, we s h a l l  consider o w  di rec t  t ransi t ions,  and 

hence only the  f i r s t  term i n  (2.28). 



In evaluating the  operators rm, r,&, I'Lp, e tc .  , one' may approximate , . ' 

the  operators ( Z - Q ~ H Q ~ )  , ( z-hQnHQnh) , ( z-QpQmQnHQnQmQp) , etc.  , appem- 

ing i n  t h e i r  expressions, by replacing H by Q. Thus, l', and r h  become 

rm(z) = pn[v + VQ~(Z-%)- 'VIP~  , ( 2-31) 

The approximate expressions . for  r" etc. ,  can be obtained i n  a similar 
PCI' 

way. 

When the  eigenvalues En, E,, q, etc . ,  a re  a l l  non-degenerate, or  

when the  operators Pn,Pm, PP, etc. ,  are  defined a s  the  projectors on 

the  individual eigenvectors, t he  operators Fm = Pnmn, qm = PmGPn, 

etc. ,  can be replaced by t h e i r  matrix elements with respect to .  the  

eigenvectors In >, Im >, etc: : 

The foregoing r e su l t s  a re  ident ica l  t o  those obtained by Hei t le r ' s  

method1' of i t e ra t ion  except f o r  the  f ac t  t ha t  t he  quantity l"& i n  

(2.34) ,, which w i l l  be interpreted below as  the  width and s h i f t  function 

of the  f i n a l  s t a t e ,  dxcludes the  t r ans i t ion  back t o  the  i n i t i a l  s t a t e  



as well as the t rans i t ion  in to  i t s e l f .  However, t h i s  difference does 

not. seem t o  be of any significance i n  the  applications we sha l l  be con- 

cerned with. 

When the eigenvalues are  degenerate, the  above formulas, i .e . ,  

(2.33), (2.34), and (2.35), can s t i l l  be used, as  we sha l l .do  i n  the 

subsequent analysis., However,, when the  damping theory i s  formulated i n  

terms of the  projection operators and the  projection operators are  de- 

fined as the  projectors on the  en t i r e  subspaces spanned by degenerate 

eigenvectors, there  a re  new i n  the  case of. degenerate. eigen- 

values. Although,we are not going t o  explore o r  make use of 'these pos- 

s i b i l i t i e s ,  it may s t i l l  be worthwhile t o  discuss b r i e f l y  some of the  

relevant aspects. kt the  degenerate 'states be labelled as  In>= I%a> 

and Im > I %p. > . The matrix element of yi 7 PmD( i) P, follows from 

Suppose tha t  the  operators y k ( z )  and &,(z) can be diagonalized 

wi th . respec t . to  t h e  degenerate s ta tes .  Then, (2.36) reduces t o  



The f i r s t  and the  th i rd  terms on t h e  r ight  hand 's ide of t h i s  equation 

are  simply the  eigenvalues of the  non-hermitian operators $k (z )  and 

Fm( z) respectively. It follows from (2.25) and (2.19) tha t  one has 

t o  diagonalize the  operators r k ( z )  and F,(z) t o  obtain the  foregoing 

eigenvalues . To carry the  discussion, consider r,( z) , which i s  de- 

fined by (2.20). We are  interested i n  the behavior of t h i s  operator i n  
I 

. the  neighborhood of branch cuts  [cf . ( 2.12) ] : 

i 
= sn(x) yn( , r,(xfi~) - 

where 

Note t h a t  both Sn(x) and 7n(x) are  hermitian operators. The non-- 

hermitian operator rM(Xf) can be diagonalized i f  it i s  normal, i.e., 

i f .  Sn and yn commute, i n  the  case of.degeneraciea of f i n i t e  order. In 

, some applications, such as  those. involving . photon . emission, t he  sub- 

space en can be wri t ten as  the  tensor product of two spaces &, and 

gnw, where &, i s  a f i n i t e  dimensional space and enll is  a continuum. 

The former represents t h e  degeneracies of t h e  discrete  energy levels  of 

the  emitting atom and the  l a t t e r  corresp&nds t o  ' t h e  continuous energy 

spectrum of the  surrounding medium. In such cases, t he  non-hermitian 

f operator r,( x ) can be diagonalized, i n  the  subspace en, . The ad- 

=See the footnote on p. 996 of Ref. 12, 



vantage of t h i s  diagonalization procedure can be appreciated only when 

one actually performs the  summations and averages on t h e  f i n a l  and i n i -  

t i a l  s t a t e s  i n  the  interpretat ion of a given experiment. Some of these 

points are  discussed i n  Ref, 10; we sha l l  not dwell 'on the  matter be- 

cause i n  the  present application, i.e.,  scat ter ing of neutrons by crys- 

t a l s ,  the  formulas (2.33) , (2.34) , and (2.35) prove t o  be sufficient.  

. . 

B, EVALUATION OF THE INVERSION IlKlTGRAIS 

We are now i n  a posit ion t o .  compute the  matrix elements of the  

evolution operator U( t )  , viz., unn( t) , and urn( t )  , by subst i tut ing 

?,(z) from (2.33) and Fm(z) from (2.33) in tb  e i the r  (2.10) or (2.11). 

F i rs t  consider the  diagona1,element um(t ) .  By combining (2.38), (2.33), 

and ( 2'. 11) one obtains the' following integration: 

. . 
+oo 

u,(t) ~ , ( t )  = J dx e - ixt yn( XI.  
231 , 1 2  

[x-%-sn( x) I" + 6 ~ n (  
(2.41) . .  

We have introduced the symbol ~ , ( t )  f o r  a l a t e r  use. We sha l l  evaluate 

this in tegra l  approximately by t rea t ing  h ( x )  and yn(x) as a constant. 

This i s  just i f ied because h ( x )  and yn(x) are  slowly varying i n  the  

I 

vic in i ty  of the  point. x . = E, where the integrand a t t a ins  its maximum, 

and because the  dominant contribution t o  the  integral .  comes from t h i s  

region. Taking the constant values of h ( x )  and yn(x) as s ~ ( E ~ )  and 

yn( %) , one f inds from ( 2.41) the  following: 
. . 

1 -. 
~ ~ ( t )  exp[- 2 yntI e x p [ - i k t l  ( 2 .'42) 



where 

Now consider the  off-diagonal matrix element of ~ ( t ) ,  which can be 

wri t ten as 

This inversion integral. can be expressed as  the  convolution of F,(t) 

and Fm(t),  which are  approximitely given by (2.42) : 

The l a t t e r  can be evaluated immediately. . sincel'we are  Interested i n  

the  probabi l i t ies  rather  than i n  the  matrix elements, only iU&(t) l2 
. . 
. , . w i l l  be given: 

I 

C. TRANSITION PROBABILITY PE3 UNIT TIME 

This section i s  devoted t o  the  discussion of t h e  behavior of 

I,um(t) I" i n  different  time intervals  by i k i &  (2.45) . , 

For such an in terva l  of time t o  ex is t ,  I&-&,/ must be much greater 



2 
than both yn and ym. The behavior of I I L , , ( ~ )  I i n  this in terva l  can be 

- 0 and taking the  l i m i t  t + i n  (2.45). obtained by se t t ing  7, = 7, - 
. , 

Noting also t h a t  

-ixt 2 
l i m  il-e = 226(x) , 
t- x2t 

one obtains the  well  known f i r s t  order perturbation resul t ,  i.e.., 
I 

It i s  noted t h a t  i n  t h i s  time interval,  t he  meaningful concept appears 

t o  be the t r ans i t ion  probabili ty per uni t  time, i .e. ,  l k ( t ) . l 2 / t ,  

ra ther  than the  probabili ty of finding t h e  system i n  the  s t a t e  Im > at 

time t. . 

2. 7,t >> 1, 7,t << 1 ( o r  vice versa) 

This time in terva l  ex is t s  when 7, >> 7, or  vice versa. In t h i s  
. . 

.\;, ' " -  
._/ ' . interval,  (2.43) reduces t o  . . . . 

. . -. ., . 

where S, i s  defined by 

. Note tha t  i n  obtaining (2.47), ym has been neglected as compared with yn 

i n  the denominator of (2.45) so tha t  the  equation w i l l  be consistent 

with the  condition yn >> ym. . . 



It may be pointed out here tha t  (2.47) rigorously follows14 from 

(2.44b) if rm( z) = 0. T h i s  can be seen as  follows : When rm( z) = 0, 

F ~ (  t )  can be evaluated rigorously [cf.  (2.41) 1. as  

. . 

Substituting t h i s  in to  ( 2,. 44b) gives 

2 
To obtain the  behavior o f  Ium(t) I fo r  large times, i.e., y t  >> 1, one , 

has t o  consider the  l i m i t  of (2.49) as t + m. In  t h i s  l imit ,  t he  inte-  

g ra l  involved ;n (2..49) defines the  Tsplace transform of F ~ ( T ) ,  which i s  

em( z) given by (2.33) . Thus, replacing, z by Q i n  ym( Z) irrrmedi*t e ly  
- .  

gives  (2.4j)  . Hmever there i s  a s l igh t  difference between (2.47) ' and . ' t  

t he  r e su l t  obtained with the  rigorous derivation. The S, and yn are  

evaluated a t  x = .E, i n  .(2.47), whereas they are  evaluated a t .  x = i n  ' 

the  l a t t e r  case. But since the  'difference between En and E, i s  of the  
. . 

order of a l i n e  width, apd furthermore since s ~ ( x )  and vn(x) are slowly 
, . 

varying funptions of x, no d is t inc t ion  w i l l  be made , between . yn(%) and 

Y,( %) or  between '%( E ~ )  and sn( %) . 
In  conclusion, one may s t a t e  tha t  when. the. widths of both i n i t i a l  

and f ina l ,  s t a t e s  a re  much smaller than t h e  t r ans i t ion  frequency ( E~-E~), 

the  t rans i t ion  probabili ty per uni t  time appears t o  be a meaningful con- 
--., 

I 

cept . On the  other hand, when 7, >> ym, the  meaningful, concept i s  the  

conditional probabili ty of finding the  system i n  the  s t a t e  Irn > af'ter it 
. . 



i s  cer tain tha t  a t rans i t ion  from the  i n i t i a l  s t a t e  In > t o  any other 

s t a t e  has taken place ( ynt >> 1) . . . 

3 .  7, 7, . . 

When yn and 7, are  comparable, there  i s  no time in terva l  i n  which 

Ium(t) 12/t or  Ium(t) l 2  can be approximated by a time-independent quant- 

i t y .  The conditional probabili ty defined above becomes time-dependent 

because the  decay of the  f i n a l  s t a t e  cannot be ignored when ym i s  of the  

same order of magnitude as  7,. . However, there  i s  a probabili ty concept. 

which can be defined and computed unambigiously i n  a l l  the  above three 

cases. This i s  the  probabili ty ym tha t  a t rans i t ion  from the  i n i t i a l  

s t a t e  In > w i l l  be in to  the  f i n a l  s t a t e  im >. To compute ym, one 

f i r s t  observes t h a t  t he  approximation of constant 7 i .  and ym implies t h a t  
, ,, . . I 

the  slates decay exlpsnentially.at a l l  times. .This can be .seen from 
.' . . "  , 

(2.42), which,can a lso  be written as  . . . . . .  . . 

. .  ' 

Using t h i s  information and the  probabili ty ?&, ?ne.can calculate  

I h( t )  I 2  i n  an al ternat ive way: 



In (2.51), the factor  exp( -ynt ' ) yndtl i s  the probabili ty that a  t r ans i -  

t i on  w i l l  occur i n  d t '  about t ' ,  
Ymn 

i s  the  probabili ty that t h i s  

t rans i t ion  w i l l  be in to  Im >, and the  l a s t  fac tor  i s  t he  probabili ty 

tha t  the  system w i l l  remain i n  Im > i n  the time in terva l  (t-t ' )  . Note 

tha t  y!, may be a  function of t ' . In obtaining (2.52), it i s  explic- 

i t l y  assumed, as  an additional approximation, t ha t  ymn i s  independent . 

of time. We sha l l  now compare (2.52) with (2.45), which i s  obtained 
. , .,. . 

di rec t ly  by the damping theory. For the  sake ,of definiteness we assun)e 

tha t  yn > 7,. When (yn-ym) t >> 1, the  foregoing comparison yields the 

following expression fo r  F k n :  

where we have introduced . . 

. . 

It i s  noted tha t  F,, reduces t o  (2.47) when ym << y,. 

. The expression (2.53) of ymn suggests t h a t  ynYm be interpreted 

as the  t rans i t ion  probabi l i ty 'per  uni t  time, wA, .from In >- i n to  Im > , 

because 7, i s  t he  probabili ty of decay of the  i n i t i a l  s t a t e  per uni t  

time [cf.  (2.50) 1: 

It i s  again observed t h a t  W,, reduces t o  the conventional form (2.41) 

when ymn << (Em-%). The crux of the  matter appears t o  be t h a t  the  en- , 



ergy conserving d e l t a  function i n . t h e  conventional form of t h e  t r a n s i -  

t i o n  probabi l i ty  per un i t  time i s  replaced i n  (2.55) by t h e  l a s t  factor ,  

which i s  a peaked function. 

Equation (2.55) i s  t h e  s t a r t i n g  point  i n  t h e  present theory of 

l i n e  shape. The subsequent chapters w i l l  i l l u s t r a t e  i t s  appl icat ion t o  

t he  study of l i n e  shape i n  neutron spectrum. In view of i t s  importance 

i n  t he  present work, we s h a l l  give an a l t e rna t ive  der ivat ion f o r  (2.55) 

with t he  hope t h a t  it may r e f l e c t  more c l e a r l y  t he  nature of t h e  approx- 

imation inherent i n  (2.55) . We s t a r t  with Wm = Ium(t) 12/t, which ap- 

pears d i r e c t l y  i n  the  in te rpre ta t ion  of many experiments i n  quantum 

mechanics. Since U( t )  i s  unitary, one has 1 l ~ k ( t )  I 2  = 1. Using 
m 

t h i s  re la t ion,  and multiplying the  numerator andL t h e  denominator by 

\I U ~ U ~  one can wri te  wm a s  follows : . . 

We have omitted t h e  arguments of h ( t )  i n  (2.56) ;. t he  equation i s  of 

course exact. We, introduce t h e  first approximation .by eyaluating t h e  

first term, i n  t he  time in t e rva l  Iyn-ymlt >> 1, using (2.45) and (2.50). 

This approximation implies a l so  re ta in ing  only t he  f i r s t  term i n  t h e  

expansion of Fm [cf.  (2.28) 1, and assuming t h a t  yn'and ym are  slowly 

varying. To ~pproximate t h e  second f ac to r  i n  (2.56), we f i r s t  l e t  7, 

and 7, tend t o  zero and then l e t  IG-Qlt be large.  In this approxima- 

t ion ,  t he  second f ac to r  i s  equal t o  (7n-7ml ,  a s  can be seen from (2.44a) 



and ( 2.40) . With the foregoing approximations, ( 2.56) reduces t o  ( 2.55) . 
The jus t i f ica t ion  and the  implication of these approximations a re  be- 

yond our reach. Therefore, the  va l id i ty  of the  basic formula (2.55) 
. . 

w i l l  have t o  be demonstrated by i t s  success i n  various applications. 



CHAPTER I11 

GENERAL FORMULATION OF NEUTRON SCATTERING 

BY MACROSCOPIC SYSTEMS 
b 

The expected number of neutrons having a momentum %, and spin T~ 

i n  a system composed of neutrons and the  scat ter ing m e d k  i s  given by 

where p i s  the  number operator f o r  neutrons of the  specified kind, and 

D i s  the usual density operator. The Hamiltonian H of the  system con- 

s i s t s  of the  kinet ic  energy of ieutrdns, #, the  Hamiltonian Il! of t h e  

. . 
scat terer ,  and the.  interact ion potent ial  vn between the  two, viz. ,  

The interact  ion between neutrons i s  neglected. Let ' H' - apd V denote the  

unperturbed Hamiltonian and the  perturbation respectively, and l e t  them 

_ . I  .,. . 
be chosen as  

where 8 and HI are defined by (1.1) . By computing the  t r ace  i n  ( 3.1) 

i n  a representation ( In > ) where HO, p, and the  projection of the  spin 

of neutron are  diagonal, one can express10,15 the  r a t e  of change i n  the  



I D *  

neutron number of the. given kind as  follows: 

In t h i s  equation, Ini > and Inf > are  the  i n i t i a l  and f i n a l  s t a t e s  of 

the system; P i  vf, and v i  a re  the  diagonal elements of the  density 

matrix and the  number operator, viz., 

- - - 
Pni = h i n i  , . 7 i  . = Pnjni r 'If . = Pnfnf ; 

. . 

and, f inal ly ,  Wnfni i s  defined by, . 

The eigenstates Ini > and Inf > are  labelled i n  d e t a i l  as  follows: 

!?I where 1 -ri > and 1 -rf > denote the  spin s t a t e s  of neutrons, and 1 i > and 

If > are the  eigenstates of as including the  spin s t a t e s  of the  

scat terer ,  i. e., 

The occupation numbers f o r  neutrons are  e i ther  zero or one. Hence, 

(rlf-li) i n  (3.4) i s  e i the r  +1 or -1. The terms with posi t ive sigh cor- 

respond t o  the  scat ter ing of neutrons in to  the  momentum s t a t e  ef, and 



and spin s t a t e  -rf, whereas those with negative sign correspond t o  ,the 

scat ter ing out of the s t a t e  ( 9 , ~ ~ ) .  In R scat ter ing experiment with a 

monoenergetic beam of neutrons, the  i n i t i a l .  occupation numbers a re  

given by 

I 
= 0, otherwise. 

The r a t e  of change i n  the  expected number of neutrons having a 

momentum i n  'h3d3kf about tULf can be computed from (3 .4) .  as  
' 

i 

where P has  been. approximated by PiPTiPk. 
"i 

' F'urtheqnore, Pk has been 
-1 

replaced by unity since ' the  neutrons a re  prepared.'in llci > i n i t i a l l y ,  

and P, has been se t  equal t o  (1/2), assuming t h a t  '.the i n i t i a l  beam i s  i 

unpolarized. . . 

The d i f f e ren t i a l  cross section per p a r t i c l e  f o r  scat ter ing of neu- 

h 2 2 t rons from 5 i n to  dB about - 9 = ( 9 / k f )  ; dl? about gf sr (6 $/a) i s  

obtained from (3.7) by dividing both sides by the  i n i t i a l  neutron cur- 

I rent (Wci/mi2) as  well as  by the  number of pa r t i c l e s  N: - 1 

In (3.8), Q . i s  the  volume of normalization and m i s  the.neutron mass. 
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Except for  wri t ing Pn as  t he  product of PiBriP% and neglecting the  
i 

off-diagonal matrix element of the  density matrix, (3.8) does not con- 

t a i n  any approximation. The main approximation w i l l  be made a t  t h i s  

stage by subs t i tu t ing  Wnfni from (2.55)) which i s  provided by the  damp- 

ing theory. In t h i s  approximation, Wnfni i s  proportional t o  

2 I< nf IV"+HI Ini > I  , a s  can be seen from (2.55) . Since H1 does not de- 

pend on neutron coordinates, and since t h e  i n i t i a l  and f i n a l  neutron 

s t a t e s  a re  not ident ical ,  < nfIH1 Ini > = 0. Phus, one has only t o  

evaluate < nf ~ V ' ( ~ E )  Ini >, where - r i s  t h e  posi t ion of t h e  neutron and 

R - denotes t he  t o t a l i t y  of t he  posi t ions  of t he  pa r t i c l e s  i n  t he  scat-  

t e r e r .  To evaluate t h i s  matrix eletnent, one may &proximate vn by t h e  

Fermi-ps~udopotential,16 i. e. ,  . . 

where a1 i s  the  sca t te r ing  length of t he  i t h  nuc1e.u~. In  general, t h i s  

sca t te r ing  length i s  spin-dependent: 
I 

where - s and %are respectively the  neutron and nuclear spin, and.A and' 

B a r e  nuclear constants. Use of the' Fermi-pseudopotential r e s t r i c t s  t h e  

following analysis  t o  t he  sca t te r ing  of slow neutrons ( E ~  ,< ev). whose 

wavelength i s  large compared with the  range of nuclear forces.  

With the  foregoing remarks, the  d i f f e r e n t i a l  cross  sect ion can be 

obtained from (3.8) a s  follows b 



where 

Equation (3.10) i s  the  desired d i f f e ren t i a l '  cross section formula 

fo r  the scat ter ing of slow neutrons by an arbitrary-macroscopic system. 

The matrix elements appearing i n  t h i s  formula a re  expressed i n  the repre- 

sentation generated by xS. If the l a t t e r  i s  chosen as  8, i .e . ,  the  

Hamiltonian of the  scat ter ing medium rather  than a par t  of it, then the  

s h i f t .  and the  width, i n  (3.10) are  caused solely by the  neutron iriterac- 

t ion. They can then be ignored when the  in tens i ty  of the  incident neu- 

t ron  beam i s  not too high. Hence, i n  the  representation generated by 
\ 

8, one may take the  l i m i t  ynfni + 0 and obtain the  conventional scat-  

t e r ing  T o m l a .  



When the eigenfunctions of H' are  not tivailable, (3.10) of fers  an 

approximation which i s  suf f ic ien t ly  accurate t o  include the  broadening 

and the s h i f t  of the  l ines  which may be present i n  the  energy spectrum 

of the  ine las t ica l ly  scattered neutrons. Whether such spectral  l i nes  

ex is t  or  not depends, of course, on the  nature of the  scat terer .  If .the 

energy spectrum of the  l a t t e r  has discrete  portions, then the neutron 

spectrum has a l i n e  structure.  HoweveY, these l ines  may not be recog- 

nizable i n  the actual  spectrum as  a resu l t  of the  ,broadening and over- 

lapping of the  adjacent l ines .  A t  any rate,  ' (3.10) w i l l  be valid. The 

subsequent chapter contains the application of (3.10) t o  the  neutron 
. . 

. . scat ter ing from crystals .  



CHAPTER I V  

LATTICE DYNAMICS* 

We s h a l l  give i n  t h i s  chapter a b r i e f  review of c r y s t a l  dynamics. 

The purpose of t h i s  review i s  . t o  present those aspects of c r y s t a l  dy- 

namics t h a t  a r e  relevant t o  t he  subsequent analysis of neutron sca t te r -  

ing. To simplif'y t he  presentation,  we s h a l l  consider a monatomic simple 

l a t t i c e  with one atom i n  each un i t  c e l l  (Bravais ~ a t t i c e ) .  The gen- 

e r a l i za t i on  t o  polyatomic c rys t a l s  i s  straightforward. 

The .Hamiltonian of a c rys t a l  can be wri t ten a s  follows: n 
ma* 1 laf 

where 

*For detailed discussion, see Refs, 18-20. 
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In these expressions, M i s  the  atomic mass, yIa is  the a t h  Cartesian 

component of t h e  momentum of the  I t h  atom, xiOl i s  the  a t h  Cartesian com- 

ponent of the  displacement from equilibrium of the  Pth atom and 

Ula, 1 t a t  a re  the  p a r t i a l  derivatives of. the  c rys ta l1  s potent ia l  energy, 

viz., 

The meaning of the  remaining symbols are  se l f  explanatory. The d3) 
. . 

and H( 4, are the  cubic aid quartic anharmonic potentials.  The displace- 

ments a re  measured from the  equilibrium positions denoted by - I .  The 

l a t t e r  i s  given i n  terms of the  l a t t i c e  vectors 9 as  

where a l ,  12, and l 3  are integers known as  t h e  l a t t i c e  indices. We 

sha l l  always denote them by a s ingle  l e t t e r  I , for  .simplicity. The phys- 

i c a l  interpretat ion of UIa, a i s  apparent from . ((4.1) * . It i s  the vec- 

t o r  force acting on the  atom located a t  - .  I when the  atom a t  - P t  i s  dis-  
. . 

placed by an amount x . since a homogeneous displacement of a l l  atoms 
-1 ' 

i n  any direct ion causes no net force, , the following condition should 

hold : 

. . 

a 

By considering a uniform expansion which does not destroy the  t rans la-  



t i ona l  invariance of the cry'stal, one finds* t h a t  

and * i a , ~ ~ a ~ , i " a  II  depend on ( i f - 1 ) .  and (1"-1) because of the  t ransla-  

t i ona l  invariance of the  l a t t i c e .  

We sha l l  now express the  c rys t a l  Hamiltonian i n  terms of phonon 

creation and destruction operators. For this purpose, one f i r s t  expands 

zi and & i n to  normal modes as 

and 

A 
. . 

In these expressions, N , i s  the  number of atoms within the  periodic 

boundaries. The running index A denotes the  pa i r  (2, j) ,. where q i s  - 
one of the N allowable, wave vectors and j ie the polar izat ion index 

: 

which. takes the  ,values j = l,2,3, i n  a Bravais l a t t i c e .  Note t h a t  

-A = (-9, j),  and indicates a plane wave t ravel ing i n  the  opposite direc- 

t i o n  t o  tha t  corresponding t o  A. The frequency of the  normal mode 

described by A . i s  denoted by w ~ .  Since we allow negative as  well as  

posit ive values of q, w ~ i s  always posi t ive and s a t i s f i e s  wh = w , ~ .  . - 
The l a t t e r  condition w i l l  be used very frequently i n  the following 

*See p. 33 of Ref. 17 or  Ref. 6. 



+ 
analysis without being pointed out. Finally, aA and ah i n  (4.7) and 

(4.8) are phonon creation and deotruction operators* which sa t i s fy  the 

known commutation relat ions 

It i s  straightforward t o  ~ e r i f y  tha t  t he  commutation relat ion 

\ [xla, Pr t a t  ] = iama t 6mt i s  sa t i s f ied  owing t o  t h e ,  following orthog- 

onality relat ions:  

and 

Substitution of ,(4..'7) and j4.8) in to  (4.1), (,4.2), .and. (4.3) yields  
. . 

Vhe symbol a was a l so  used f o r .  t he  scat ter ing length al i n  ( 3.9) . . The 
d'ifferent subscripts w i l l  dist inguish between these two usages. 



In these expressions, the  symbol G i s  defined by 

The def in i t ion  of G 
A1bb)cq 

i s  similar t o  t h a t  of G 
A l k k l *  

The exp l i c i t  

form GhlX2b~ w i l l  not be needed. The symbol 6(&,ql+*+q3) i n  ( 4.15) .- - - 
i s  a kronecker d e l t a  expressing the  conservation oC the  wave vectors i n  

phonon-phonon interact ions .  The vector i s  a .  l a t t i c e  vector . i n  t h e  

reciprocal  l a t t i c e .  

Enormous typographical simplification can be achieved i f  we agree 

t o  drop A.in t he  subscripts whenever no confusion a r i ses .  According 

t o  t h i s  convention, we have the  following.abbreviations: 

The following symmetry proper t ies  of G1 2 3 , which play an i m -  
) .  ) 

portant ro le  i n  t he  subsequent analysis,  can be proved d i r e c t l y  from 

( 4.15) and the  t r ans l a t i ona l  invariance of Ula, tht , "a",* . 

*See p. 304 of Ref. 18. 



It also follows readi ly from ( 4.15) with q -h) , = s t h a t  

The special  case of Gl,2,-2 w i l l  be encountered very often. According 

to .  ( 4.15) it i s  proportional t o  

The summation on h1 vanishes as  a consequence of t h e  condition (4.6) . 
Thus, one obtains the  important resul t*  

. 

We now return t o  H! as  defined by ( h. U) . The e i g h t  terms con- 

ta in ing  the  combinations.of three  phonon creation and destruction op- 

erators  can be arranged, by v i r tue  of the  foregoing'symmetry properties 

, . . . .  . 
of G1,2,3 , as  follows: 

. . 

The derivation of ,(4,19) i s  given i n  the  Appendix. ' 

The . re la t ive  magnitudes of the  various. anharmonic potent ials ,  i n  

par t icu lar  those o f  the  cubic and quartic anharmonic potent ials ,  w i l l  be 

*See for  example p. 37, second footnote of Ref. 17, o r  footnote 22 of 
Ref. 6. 



needed fo r  a consistent scheme of approximations. Van Hove* has pointed 

out t h a t  t he  expectation values of H! decrease very rapidly with in-  

creasing n a t  temperatures which a r e  low compared with melting point. 

In fac t ,  he has given t h e  order of magnitude of t h e  expected value of 

t he  nth order anharmonic po ten t ia l  a s  

ges u n i t  velwe fo r  n h 2. Here, w I s  some mean vibrat ional  frequency 

of the  c rys ta l ,  u i s  an averaged atomic displacement a t  a given temper- 

ature,  and ro i s  the  nearest-neighbor separation i n  t h e  l a t t i c e .  A s  

pointed out a l so  by Maradudin and ~ e i n , ~  the  anhermonic Brrmiltonian 

'can be wri t ten schematically a s  

where p = (u/ro) . 
To complete these introductory remarks, it may be mentioned t h a t  

t he  e igenstates  of r, which form the  basic s e t  i n  t h e  present form- 

ulat ion,  can be label led most conveniently i n , t e rms .o f  t h e  phonon oc- 

cupation numbers, . Thus, an eigenstate I p  > .can be specified as 

I .  

where n i  i s  the  number of phonons' described by A = ( 3 , ~ ) .  The mean 

*See p. 11 of Ref. 21. 



energy i n  t h i s  s t a t e  i s  

Since a l l  the  operators i n  the  cross .section formula (3.10) can be ex- 

pressed i n  terms of the  creation and destruction operators, it i s  suf- 

f i c i en t  t o  note the  f o l l ~ i n g  relation's t o  evaluate a l l  the  relevant 

matrix elements : 



DIFFERENTIAL CROSS SECTION FOR SCATI%RlXG OF SIXlW 

NEUTRONS BY AN ANHARMONIC CRYSTAL 

A. CROSS SECTION FORMULA 

We are now i n  a position t o  write down the  neutron cross section 

formula for  a Bravais crystal .  Substituting = L+zl i n  (3.10) , as- , 

su ing ,  that the sgin m d  $patla& otatae  o f  the  scat terer  are  separable, 

and denoting the  spin s t a t e s  by ( s i  >, lsf > and spa t i a l  s t a t e s  by 

1 i > If > [note tha t  1 i >.and 1 f > i n  (3.10) include both spa t i a l  and 

spin s t a t e s ] ,  one obtains 

where 
I 

In t h i s  expression, r n ~  denotes the difference between the  f i n a l  and in i -  

t i a l  occupation numbers, viz., 



Henceforth we sha l l  specify the  f i n a l  s t a t e s  i n  terms of mh rather  than 

f i n  te&s of nA. Then, the  superscript i on n i  becomes redundant and 

hence w i l l  be omitted. Note. t h a t  the  summation on the  f i n a l  spin s t a t e s  

appearing i n  (5.1) cannot be performed because the  width 7 nf "i 
and the  

s h i f t  S, are also spin-dependent. However, when the  width and the  
f i  . . 

s h i f t  due t o  the  neutron.interactidn.are neglected, then . the  l a s t  factor  

i n  (5.1) becomes spin-independent, and t h e  sumnation on. spin s t a t e s  re- . 

duces t o  

The foregoing discussion indicates tha t  the  spin dependence of t h e  neu- 

tron-nucleus interact ion does not affect .  t he  shape of the l ines .   h his 

point w i l l  be more apparent i n  the  subsequent section.) Therefore, we 

shall ignore spin Gf f ect s 'and replade the average i n  ,(5,4). by a2, The 
. . . . 

cross section formula (5.1) then reads ' ' .-. 

Our. next task w i l l  be t o  compute the  11, ynFi, 
. . 

and S appearing in '  
"f "i 

the cross section formula. 
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B. COMPUTA!TION OF MATRIX EIEMENTS OF exp( i K x ) - -a 
u 

This section i s  devoted t o  the  computation of IQ defined by (5.3) .  D 
Using the  expansion ( 4.7) , one can write E~ a lso  i n  the  following form: 

[1 
X = 1 (a:la+h+aAlah) , -a . (5.6) 

A 
. . 

1 
where 

i . . El 
( ~ / ' / ~ M N w ~ )  1/2( %.$.exp( 1g.l) . ' .( 5 7)  B 

The matrix element t o  be computed i s  0 
1 = < f$exp[i(aE1aL + a A l a h ) ] ~  > ; 0 

Using the  operator ident i ty  

. . 

A+B 

0 
e = e e  A B ~ - ( ~ / ~ ) [ A , B I  j . '  (5.8) 0 

where A and B.are operators satisfying [A,[A,B]]. =..[B,[A,B]]. = 0, and 

expressing . . t he  i n i t i a l  and f i n a l  s t a t e s  i n  terms. o f '  occupation' !lumbers, 

0 
. . . .  . 

one gets: . . 
. .  . . . 

0 
- . . 

Xe- ' J2<  mA+nAle iaxl a+ a 
$. 

Il = '"nh > ,. '  ' " .  ' (5.9) 
A 

,I 
' . .. .. : 

where X denotes 
- .A 

1 
i 

. . 

Xi 'IaAPI? = ( f i / 2 ' ~ ~ * )  Ise~12 - , (5.10) 
0 1 

I 

Note tha t  XA i s  independent of 1. To compute the  matrix element i n  B 
(5.9) ,  one uses the  following relations: 1 

v,. .. , , ~ . . .  - 

S O  



i a a  e In > 

The r e su l t  i s  - 

The l a s t  expres'sion can:be wri t ten i n  a compact 'way by , recal l ing. the 

def in i t ion '  of associate Laguerre polynomials,. viz. , 
. .... . . . .. . . .  1 .. 

n 

( n+m) ! kc, , .  

(n-s) ! (n t s )  ! s! . . -  s=o 
. . 

which i s  the  desired formula. 

The product 1~1;~ which appears i n  (5.3) follows from (5.14) a s  



where 

- 

We s h a l l  now calculate  t he  thermal average of f(nh,mA,Xh) with 
/ . . .. . 

respect t o  t he  i n i t i a l  occupation numbers., i. e., 

. .  . .. . . . . 

Dropping the  subscripts and ar&m&nt s ,  and combining ( 5.16)'. and ( 5.17) , 

one f inds  

To compute t h e  summation i n  t he  l a s t  expression, one may use t h e  follow- 

ing expansion, given..by Magnus ( p ,  85, Ref, 22) : 
. . . .  . 

00 

The- r e su l t  i s  . . 
. . . . 

The summation on n can be performed by using the  generating function f o r  

the' associated Uguerre polynomials (p.  84, Ref. 22) , viz.  , 



as  follows: 

Inserting the l a s t  formula in to  (5.20) , one f i n a l l y  obtains* 

where Im(x) i s  the modified Bessel, function of the  f i r s t  kind. This 

formula w i l l  be used i n  Section D when we are  discussing the  cross sec- 

t i o n  formula. 

. . 

C. WIDTH AND SHIFT FORMULAS 

In t h i s  section, we compute y nfni and Snfni. They are  defined by 

( 1 )  and (,3.12), It i s  observed from the  l a t t e r  t ha t  they involve 

the  matrix. element I< n l v n + ~ '  Ini > I 2 ,  which can be ,written as  follows: 

where &"( - K) i s  the Fourier transform of V", i. e., 

+&I al ternat ive derivation of (5.22) was a l so  given by .O. Ruehr,.:.the 
Radiation Laboratory, The University of Michigan (pr ivate  communica- 
t ion)  . 



and where - K = k. -k. It follows from (5.24) t h a t  &(o) i s  independent 
-1 - 

of t he  atomic coordinates R . thus t h e  matrix element < p 1 #(0) 1 i > -a , 
i s  proportional t o  tipi. The second term i n  (5.23) i s  then nonvanish-: 

ing only f o r  n = ni,. Since t h e  summation i n  (3.12) exeludes t he  case 

n = n i ,  there  i s  no contribution from t h i s  term t o  t he  width and s h i f t .  

Accordingly, one can s p l i t  I' i n  (3.12) i n to  two p a r t s  as "i . . .  . . , . 
, . .. .. .. . 

_i : 

where 

. . . .  . .. . , 

The f i r s t  term, , represents t h e  broadening a n d ' t h e  s h i f t  due t o  

t r ans i t i ons  caused by  neutron^. It corresponds t o  the  natural  broad- 

ening of the  op t ica l  l ines .  The second term, $, i s  due t o  t r ans i t i ons  

caused by phonon-phonon interact ions .  In many applications,  t he  neu- 

t ron  width i s  expected t o  be small compared with $. Therefore, only 

the  l a t t e r  w i l l  be considered in. t h e  remainder of Lhis work. A s  i.ndi- 

cated by;the subscript  i, $ depends . only . on the  s p a t i a l  pa r t  df t he  

c r y s t a l  s t a t e s  provided HI.. does not include spin dependence. 

Now consider (5.27) . F i r s t  note t h a t  H(5)  ha^ no diagonal matrix 

elements s i n c e . i t  involves terms containing an odd number of creat ion.  



and destruction operators [cf. (4.19) 1. The f i r s t  term i n  (5.27)' s t a r t s  

with H( 4, , which i s  second order i n  p, as  indicat=d by (4.20) . The re-  

maining off -diagonal matrix elements i n  (5.27) start with d 3) . But, 

they are  a l so  of the  second 'order i n  .p because of. the square. Hence, 

< can be given, i n  t h e  lowest order, as  

This i s  the  quantity, provided by the  damping theory, which gives the  

width and the  s h i f t  according t o  (3.11). The s h i f t  i s  related ' t o  the  

r e a l  par t  of <. Hence, one finds tha t  t he  quartic anharmonic potent ia l  

contributes only t o  the  s h i f t  i n  the  lowest approximation, whereas the  

cubic anharmonic potent ia l  contributes t o  both the  s h i f t  and the  width. 

The remaining task i s  t o  compute the  matrix elements i n  (5.28) . 
' (4) Firs t  consider Kli . It i s  c lear  from (4.14) tha t  t,he nonvanishing 

. . 

terms in  the  expansion of H(4) are  those t h a t  contain creation and de- 

s t ruct ion operators' i n  pairs.  The possible permutations are  l i s t e d  be- 
. . , .: , 

. . low : 

ala:(al& + *,a1) = 2N1N2 I 



where Ni i s  t he  number operator, i . e . ,  Ni = afai. We.recal1 t h a t  ai ..., 

and Ni denote ahi and NAi. Since ( 4.14) involves a summation on A1 . . ,. 

and b, the  terms containing af and a$ i n  t he  reversed sequence should 

not be considered separately. .Using the  invariance of G1,2,3,4 with 

respect t o  t he  interchange of t h e  subscripts, .  one obtains 

(4) (4) A s  indicated by (3.11), t he  s h i f t  depends on %ipp -Hii . The matrix 

element. i n  t h e  f i n a l  s t a t e  can be obtained eas i ly  .from (5.29) by re-  
. II 

placing the: occupation numbers ni-  -by ni+mi. . Hence, 

We now consider t he  second term i n  (5.28). To compute t h e  matrix 
. . .. . .  

element involved, we f i r s t  calculate  $ 3, 1 i >.  he. use o f  (4.19) y ie lds  : 

+ ; [n1(l+n-,) n3 ]'I2 inl-l,n-2+l,n3-l > . 

+ 3 [(l+n-,) nz(l+n-,) l1I2 /n-l+i,n2-l,n-3+l > . (5.31) 1 
S 

Since the  operator (r -Ei+i.)-l i s  diagonal i n  ( i  > ,  it does not a l t e r  

0 

t he  occupation numbers i n  t he  intermediate s t a t e  h3) li >. ~ h e r e i o r e ,  

the  changes i n  the  occupation numbers caused by t h e  first H(3) have t o  n I 
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be removed by the  second d 3) . It i s  convenient t o  write the  l a t t e r  

by reversing the  sign of the  subscripts and uning G-1,-2,-3 = ~:,2,3 

as  follows: 

Each term i n  (5.31) has t o  be matched by the  appropriate term i n  (5.32). 

For example, the  first term in ' (5 .31) ,  which corresponds t o  the  crea- 

t ion  of three phonons characterized by -Al, -b, and -A3, w i l l  be paired 

by the  second term i n  (5.32). However, since two s e t s  of three numbere 

can be paired i n  3! ways, t h i s  term has a' factor  31. 'Similar ly,  one 

can see t h a t  t he  combinatorial factors  for' t he  second, th i rd ,  and 

fourth terms i n  (5.31) are  3!, 2!, 'and 2! respectively. With the, fore- 

going remarks, one finds: 

In obtaining (5.33), we have not considered the  special  cases i n  which, 
' 

a phonon i s  created and absorbed a t  t he  same vertex ( instantaneous 

phonons) , or  i n  which two or  three intermediate phonons are  identical.  

Instantaneous phonons correspond t o  those terms i n  (4.19) i n  which a 

p a i r  of creation and destruction operators belong t o  the  ~ & n e  m o d e ,  

viz., = -)c3 or AQ - - -A1. Since these terms a r e  multiplied by G1,2,-2, 



they vanish by by v i r tue  of (4, l8)  . Hence, instantaneous phonons do ' 

not occur a t  three phonon vert ices  i n  a Bravais l a t t i ce .6  1dkntical .' 

intermediate phonons a r i se  when two or  three  creation ( o r  destruction) 

operators i n  (4.19) a re  of the'  same kind. As an example, consider the  

second term i n  (4.19) and assume t h a t  = &. This term would give 

r i s e  t o  

which i s  d i f fe rent  from the  corresponding term i n  (5.33) obtained by 
. . . . 

se t t ing  h;! = A3. The appropriate corrections f o r  these special  cases 
. . , . . . 

can be included i n  (5.33) . But t h e i r  contribution can be ignored, as  , 

w i l l  be discussed presently. 
. . 

The matrix element i n  the  f i n a l  s t a t e  can be obtained from (5.33) 

again by replacing nh by nh+mh. The difference between the  two matrix 

e1ehents"is then found as : 



The s h i f t  and the  width.can now be obtained by inser t ing (5.30) and 
. . 

. . .  
(5.34) in to  (3.11) : 

In the  case of creation or annihilation of.phonons of one kind, the  

above formulas simplify considerably. Then, the  f i n a l  s t a t e  d i f f e r s  

from the i n i t i a l ,  s t a t e  i n . t h e  occupation number of t h e  excited ( o r  de- 

excited). .mode only., Let the l a t t e r  mode be 'denoted by &, Substituting 
< , .  . , .  

. . . . . . . . ,  

, . . . mh.' q,, fo r  h = j ,. . , 

= 0, otherwise , - . 

one obt.ains the  s h i f t  and the  width i n  t h i s e  case as, 'follows : 



Note tha t  we have disregarded the  terms containing the  product of two 

' i  

or three mh i n  obtaining ('5.37) arid (5 .38) .  ~ h e s e  terms are nonvanish- 

ing'only i n  the  special  cases'discussed previously. Consider the  terms, 

both i n  (5.35) and (5.36) , which contain mlm,2. - They a re  nonvanishing 
2 

only when hl = -k = &. But i n  tha t  case, %-hok vanishes by (4.18). 

The terms containing mlmz ( o r  mlm3), which are  proportional t o  Gbbhl, 

do not necessarily vanish. Their contribution t o  the  s h i f t  and the  

width 'in (5.37) and (5.38), however, may be neglected' as  compared with 

the'remaining terms because they involve one more constraint than t'he 

other terms.' 

~~uat ions . . ' (5 ' .37)  and (5.38) are  the  s h i f t  and' width formulas of .. 

the present theory. The following 'physical interpretat ion '  fo r  the width 

seems t o  be i n  order. Suppose tha t  a phonon (qo,Jo) has been created 
\ .  

by neutron interaction. This phonon i s  of course indistinguishable 

from the  already 'existing phonons i n  . that  par t icu lar  normal mode. In 

view of t h i s  indistinguishabili ty,  the concept of l i fe t ime of the 

created phonon requires careful  consideration. One can define the  l i f e -  

time ,of an additional phonon i n  a given normal mode as  the  reciprocal 
. . -  

of the absolute value' of difference between the  widths associated with 

two c rys t a l  s t a t e s  which d i f f e r  from each other by 1 i n  t h e  occupation 



number of the  mode described by s7 jo. The l i fe t ime defined as above 

depends on the i n i t i a l  c r y s t a l  s t a t e .  The mean l i fe t ime can be obtained 

by taking the thermal average. . . 

According t o  t he  foregoing defin'ition, t he  l i fe t ime of an addit ional 

phonon i s  determined by t h e  t r ans i t i ons  involving the  normal mode go., jo. 

There a re  four types of .such.-1;ransitions i f  t h e  in te rac t ion  between 
I 

phonons i s  approximated by . the  cubic anharmonic potent ia l .  These are  

shown schematically as  . 

The first and the  th l rd  of these t r ans i t i ons  correspond t o  the  annihila- 

t ion ,  and the  remaining two t o  t he  creation,  of a phonon i n . t h e  normal 

mode under consideration. An inspection of ,  (5.38) reveals t h a t  yP con- 
f i  

t a i n s  jus t  ' these four phonon processes with appropriate amplitudes. The 

concept of l i fe t ime as  introduced above,applies equally well  t o  t h e  

annihi la t ion.of  a phonon. 

I n . t h e  zero temperature . l imi t ,  t he  foregoing def in i t ion  of phonon 

l i fe t ime becomes more concrete. In t h i s  case, t h e  width of t h e  i n i t i a l  

s t a t e ,  i . e . ,  the  ground s t a t e  of t he  c rys t a l ,  i s  zero. Since there  'is 

only one phonon i n  t he  f i n a l  s t a t e ,  t he  l i fe t ime of t h e  l a t t e r  i s  actu- 

a l l y  equal to. t he  mean decay time.-of t he  created phonon. , 



D. DISCUSSION OF THE CROSS SECTION FORMULA . . 

We are  now i n  a posi t ion t o  discuss some aspects. of t h e  c ross ,  sec-. 0 
t i on  formula (5.1) . Since we have decided t o  specify t he  f i n a l  s t a t e  

f i n  terms of mh, i . e . ,  nA = mh+nh, the  summation on f i n a l  s t a t e s  i n  (5.1) 

can be replaced by summation on (ml,m2,,. . .mh,. . . m 3 d .  The limits of 

these summations a r e  -nh and +oo. But, a s  indicated by (5.15) and (5.16)) 

t he  matrix elements, of exp( ~ K - X ~ )  - - vanish automatically when mh < -nh. 

Therefore, one can replace t h e  lower  limit^ by -m, 8ieco the  L jmi t s  

then become independent of t h e  i n i t i a l  occupation numbers, t h e  order of 

t he  summations on i n i t i a l  and f i n a l  s t a i e s  can be interchanged. With 

these remarks, the  cross  section formula takes  on the  following form: 

. -  . 

where we have introduced ,. . . 



The expression for  sgi and Si are t o  be substituted from (5.35) k d  

(5 .36 ) .  All the quant i t ies  enter i rg the  cross section formula have now 

been defined expl ici t ly .  The remaining task i s  t o  consider the  various 

l imit ing cases, such as  zero and high temperature limits, and t o  ex- 

t r a c t  some information. about the .  shape of the  observed peaks i n  the  en- 

. . 
ergyl spectrum of sci t tered neutrons. 

' '  

~ i r s t ;  we want to.ihow t h a t  (5.40) reduces t o  the  cross section 

formula fo r  scat ter ing of neutrons by harmonic crystals ;  when r and S 

tend t o  zero. Indeed, when r = S = 0 the  l a s t  factor  i n  (5.40) ap- 

proaches a de l t a  function"and becomes independent. of the  i n i t i a l  occupa- 

t i o n  numbers. Then the  thermal average of ~(mA,nA,Xh)  can be performed 

independently, which follows from (5.22). as 

where we have introduced fo r  brevity , . . . .  

The fac tor  e q (  - 2 ~ )  i s  known as ' the  Debye-Waller factor ,  

With the  foregoing remarks, (5.40) reduces t o  
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where m denotes t h e  s e t  (ml,m2, ... mjN). This formula i s  i den t i ca l  t o :  : .  
.,... 

t he  d i f f e r e n t i a l  cross  sect ion formula obtained by Zemach and G1auber.s 23 

The novelty about (5.48) i s  t h a t  it i s  obtained, without resor t ing  t o  

Blochls theorem t o  perform t h e  thermal averages, by t h e  mathematical . , 

i d e n t i t i e s  proved i n  Section B. The present der ivat ion seems t o  be 

more straightforward. It might be informative t o  mention t h a t  we could 
I 

not, use Blo,chls theorem i n  t h e  o r ig ina l  cross  sect ion formula (5.J) be- 

cause of t h e  l a s t  . f ac to r  i n  t h e  formula which appears as a d e l t a  f'unc-, . . : _ .I , . 

t i o n  i n  t h e  conv~n t iona l  formulation of t h e  cross  section.  We could , . . 

not, perform the  summation on f i n a l  s t a t e s ,  and t h i s  i s  needed f o r  t h e . , ,  
. < .  . 

application of Bloch' s theorem. 

Second, we invest igate  t h e  cross  sect ion i n  t h e  zero temperature 

l i m i t ,  where a l l  t he  occupation numbers a r e  zero. A s  mentioned pre- 
, .. . . 

vioislj. ,  t h e  c r y s t a l  i s  i n  t h e  ground s t a t e  i n  thia"'lim1t. Equation 

(5.40) reduces t o  t h e  following form as  T + 0: 

where we have used 

*See a l so  p. 52 of Ref. 24. 



In  t he  l a s t  formula, r(m,0) and s ( ~ , o )  a r e  t o  be obtained from (5.35) 

and (5.36) by se t t i ng  nJ. = n2 = n3 = 0 evekywhere. It i s  nuked t h a t  

(5.49) contains only the  pos i t ive  values  of mA as  a r e s u l t  of mh! i n  

t he  denominator. Physically, t h i s  implies t h a t  t h e  c rys t a l  cannot give 

energy t o  neutrons when i t - i s  i n  t h e  ground s t a t e .  The cross sect ion 

f o r  one -yhonon' excitation,  which i s  probably the  most in te res t ing .  case 

from the  experimental point of view, can be obtained from (5.49) by 

s e t t i n g  

. . .  . (  

m A =  1 ,  f o r  A =  , 
.. . , . . 

= 0, otherwise. 

The r e su l t  i s  

where S and I' are  obtained from (5.37) and (5.38) by subs t i tu t ing  

m, = 1 and n i  = 0: 

Apart from differences i n  ~ o t a t i o n s ,  t h i s  formula i s  iden t i ca l  t o  t h a t  

obtained by Maradudin and Fein. 6 



We now consider t he  cross section :at a f i n i t e  temperature. , Equa-:,:, 

t i o n  ('5.40) expresses t h e  c,ross . .section a s  a weighted ,~up,crposition' o f . ,  

a sequence of Inrentzian d i s t r ibu t ions  with different,. .widths and s h i f t s .  

For each i n i t i a l  e d  f i n a l  , s ta te . , there  corresponds .a, h r e n t  zian . dis t r ibu-  

t ion .  For a specified . f i na l  , s ta te ,  t he  average.. of t h e  appropriate , . 

Lorent zian distributions, . ,over . ,  . i n i t i a l  s ta tes ;  gives .. a peaked ,curve which 

corresponds t o  an observed l i n e  , in .  t he  neutron ,spectrum.. Although t h e  +. 

individual d i s t r ibu t ions  have a Inrentzian form,, t h e i r  thermal 'average 

w i l l  not i n  general be a Lorentzian d i s t r ibu t ion .  However, a s  an ap- 

., . 3 .  

proximation, one may replace the  resu l tan t  curve by a b r e n t z i a n  d i s -  
. . . . .  

t r i bu t ion  with an average width and s h i f t .  Denoting t h e  average width 

and s h i f t  by F(m) and s(m), one obtains the  following cross s'ect.i.0.n .:! 

formula : 
.. , - 

fm ' : '  

The average s h i f t  and width a r e  t o  be obtainedfrom (5.35) and (5.36) 
. . 

by replacing t h e  oocupati6n numbers nh by t h e i r  me& value?,  v i z .  , 
. . .- . ,. . . . . . . , . . . 

$ =..el( 1-e) . Note t h a t  t he  approximation made i n  ge t t ing  (5.53) 

from (5.40) i s  equivalent t o  replacing the  average of a f inc t iok  by 

the  function of t he  averaged variables.  The c ross ' sec t ion  f o r  one nor- . . 

ma1 mode.interaction i s  obtained again by choosing t h e , s e t  : 

m = m1,m2...m3N i n  (5.53) a s  m = (O,O ,... mo,O ,... ). T h e  r e su l t  i s  



where 

Equation (5.54) can be fu r the r  simplified i n  many appl icat ions  by using 

t h e  asymptotic value of I,(x) f o r  small arguments . . , : .i . e. , 
. , 

as  follows: 



In the zero temperature l i m i t ,  t h i s  cross section .vanishes when mo < 0 
8 .  

as  a r e su l t  of the  factor  exp[-f36wo( lmo 1 -mo) 121. This r e su l t  i s  i n  

agreement with (3.49). A s  a matter of f ac t ,  (5.57) reduces exactly t o  

(5.49) when the  temperature approaches zero, although it involves one : 

more approximation over (5.49) , i. e. , replacing the  width and the  s h i f t  

by t h e i r  mean values. The reason fo r  t h i s  i s  tha t  the  l a t t e r  approxi-' 
I 

mation becomes exact i n  the  zero temperature l i m i t .  

The dependence of the  cross section on %, i . e . ,  the  number of 

phonons exchanged between the c rys t a l  and t h e  neutron, i s  exhibited by 

(5.57) . Because of the  exponential factor  i n  the  numerator, t he  cross 

sec t ion . fo r . the  energy t r m s f e r  from the  neutron t o  the c rys t a l  i s  

greater than the  cross section f o r  an energy t ransfer  t o  the  neutron 
.. . 

by a factor  exp[-ghwo lmo 1 1. A t  high temperatures, both processes be- . 

come ,equally probable. .The shape of the  peaks i n  the.neutron spectrum 
.. . 

depends on lmol .  Hence, the shape i s  the  same f o r  both the  creation , 

and annihilation of phonons. Furthermore, since t h e  width i s  propor- 

t i ona l  t o  Imo 1 ,  the  peaks a re  broadened and reduced i n  height when the  

energy exchange gets larger.  The sihift of t he  line's- i s  proportional 

to mo , and thus depends on the  direct ion of the  energy t ransfer ,  

There w i l l  be two ident ica l  peaks i n  the neutron spectrum on both sides 

of the  incident neutron energy, corresponding t o  the  creation and an- 
.., 

nihi la t ion of equal' number of phonons. 

The cross section formula agrees exactly with t h a t  obtained by 

Maradudin and ~ e i n ~  except f o r  the  value of the  width (5.36); The d i s -  



agreement l i e s  i n  the sign of the terms ii1ii2 and Fl,(l+ii2) i n  (5.56) . 
These two terms a r i se  from the imaginary par t  of t h e  l a s t  term in (5.34) 

+ 
when EN . One observes t h a t  the  r e a l  par t s  of the  l a s t  two terms which 

enter the  s h i f t  formula are  subtracted, whereas the  imaginary pa r t s  are  

added. Since our s h i f t  formula agrees exactly with t h a t  obtained by 

Maradudin and Fein, it i s  very unlikely tha t  the foregoing discrepancy 

i n  the  width formula i s  just  an arithmetical e r ror  i n  the  present ca l -  

culations. Moreover, the  terms appearing i n  t h e  width formula (5.56) 

have simple physical interpretation. As mentioned ear l ie r ,  t he  f i r s t  

and th i rd  terms correspond t o  t ransi t i0ns. j .n  which a phonon i s  annihi- 

lated, whereas the  remaining terms whose sign i s  the  point of disagree- 

ment correspond t o  those t rans i t ions  where a phonon i s  created. In 

e i ther  case the  number of phonons i n  the  mode under consideration 

changes. It i s  not c lear  t o  us why the  t rans i t ions  corresponding t o  an 

increase in the  phonon number should tend t o  decrease the  width, and 

thus prolong the  l ifetime, 

As a r e su l t  of the  foregoing discrepancy, the  temperature de- 
. . 

pendence of the  width a t  high temperatures, i s  quadratic i n  our case, 

. . 
whereas it i s  l inea r  according t o  the resul t .  obtained by Maradudin and 

Fein. The expression f o r  the  s h i f t  and width i n  the  high temperature 

l i m i t  i s  obtained by replacing the  mean occupation numbers i n  (5:55) 

and (5.56) by k ~ / % w ~ .  Hence, one obtains 



As a f i n a l  remark.we note t h a t  t h e  cross  $ectibn formula a t  a 
.. . 

f i n i t e  temperature, i. e. ,  (5.53) , was obtained from (5.40) by replacing 
, .. '. . 

the'-width and t h e  s h i f t  by t h e i r  mean value;. As discussed i n  Ref. 10, 
. . .  

t h i s  approximat ion i s  just  i f  ied when t h e  width of t h e  ' individual 
. .  . 

Lorentzian dis t r ibut i 'ons  corresponding t o  d i f f e r en t  i n i t i a l  s t a t e s  i s  
large compared with t h e i r  s h i f t .  I f  t h i s  i s  'not ' the  case, t he  observed 

. .  : 

width w i l l  be dominated by t h e  s t a t i s t i c a l  spread i n  t h e  locations of 
. . 

. . ' 8 . ' .  '. ' 

the  narrow ~ o r e n t z i a n  d i s t r ibu t ions .  A measure of .this s t a t i s t i c a l  
- .  

spread i s  the  standard deviation of ~ (m,n )  defined.:by (5.44)) viz., 

As discussed i n  Chapter IV-D of Ref. 10, e ( m )  may be added t o  P(3, 

as a f i r k t  &p&ximation, i n  order t o  include t h e  s t a t i s t i c a l  broad- 
. . . . . . 

ening i n  (5.54). '' The r e l a t i v e  magnitudes of ~ ( m )  ' and ~ ( m )  w i l l  de- 
8 

pend on temperature. We s h a l l  not attempt here t o  write' down t h e  ex- ' '  

pression f o r  the s t a t i s t i c a l  broadening becagse it is' ra ther  long and 



not very informative. However, it i s  straightforward t o  calculate  c (m)  

from (5.44). We only note t h a t  it i s  a l inear ,  homogeneous function of 

the  variance < of the occupation numbers, i. e.  , 

. . .  

A t  zero temperature a l l  6 are  zero, indicating t h a t  t he  s t a t i s t i c a l  
. . 

broadening, as expected, i s  not present. A t  high temperatures, $ and 

thus rE(m) a r e  proportional t o  T2, whereas according t o  (5.59)) p(m)  

i s  proportional t o  T4. Therefore, it may be expected tha t  the  s t a t i s -  

t i c a l  broadening w i l l  nqt be s ignif icant  a t  any temperature i n  a crys- 

t a l .  It i s  interest ing t o  r e c a l l  t h a t  the  width of the  opt ica l  l i nes  

from a plasma i s  determined by the  s t a t i s t i c a l  broadening in. the  quasi- 

s t a t i c  l i m i t ,  i . e . ,  when the  motion of $he'perturbers i s  suf f ic ien t ly  

slow. In  the  impact l i m i t ,  the  width i s  determined by the  f i n i t e  l i f e -  

time of the emitter s ta tes .  It thus appears . t ha t  t he  width of the  ob- 

'served peaks i n  th= neutron spectnun i s  caused primarily by the  f i n i t e  
. . . . 

l i fe t ime of the  c rys t a l  s t a t e s  rather  thaq.by.,the s t a t i s t i c a l  spread 

of the  l ines .  . . . 



CHAPTER V I  

SUMMARY AND CONCLUSIONS. . . 

In t h i s  work, a general theory of l i n e  shape which i s  applicable t o  

the study of both neutron and photon spectra has been developed and used 

t o  investigate the  scat ter ing of slow neutrons by an anhamonic crystal .  

The s t a r t ing  point of the  present 'theory i s  (2.55) , v iz .  , ' 

This formula reduces t o  the  conventional expression of the  t r ans i t ion  

probabili ty per uni t  time.Yrom the in i t i a1 : s t a t e  In > i n to  the  f i n a l  

I 
s t a t e  , I m  >, i . e . ,  

when the s tates;are  sharp. Equation (2.55) i s  an extension of 

which has been obtained by ~ e i t l e r g  t o  investigate the  natural  broad- 

ening of the  opt ica l  l ines .  The l a t t e r  follows from (2.55) by se t t ing  

Sm = ym = 0, and thus applies only t o  the  cases where the  width and 

s h i f t  of the f i n a l  s t a t e  i s  negligible. In the  study of the  opt ical  . 

l ines ,  the interact ion of the  emitting atom with i t s  surrounding i n  

the f i n a l  s t a t e  can often be neglected since the  atom i s  more t i g h t l y  



bound i n  the  f i n a l  s t a t e ,  which has a lower( energy;' T h i s  i s  pa r t i cu l a r ly  

t r u e  if the  f i n a l  s t a t e  i s  a ground. s t a t e .  of t he  atom. In such a i p l i -  

cations,  t he  neglect of S, and yn i s  justified'.  "'However, i n  t h e  ~ t u d y  

of li'ne shape . i n  the  neutron s p e c t m ,  .or. 'in t he  study of op t i ca l  l i n e  

shape involving t r ans i t i ons  between two exc'ited e v e l s ,  the  decay o'f 

t he  f i n a l  s t a t e  cannot generally .be..'%gnored. ' In such applications,  . the  

. . . . .  ... o . _ .  . 1 :  1 use of (2.55) i s  imperative... . .  , . .  : .  . . . .  . . . . 

When applied. to .  t he  scatte.ring. of. slow neutrons. by an anharmonic .' 

crys ta l ,  t h e  present theory yields ,  i n  the  lowest approximation, t he '  ' 

following e~preSS i0ns  foi. t he  width F find .the shift ..i? of the '  observed 

. . . . . . .  .... ..!' . .  . . ... peaks [ c f .  (5.28) b d .  ( 3 . t ~ )  ] .::. . . . . .  ;: :. . . . . .  ,: . . .  <:. . . .  . . 

. . .  . . .. . . .  . . . . . . . . . .  where ., .. . . . . . . .  

where. t he :  f i n a l  .:state d t f fe rs :  from..the.-initial" &ate by 1 i n  the  'number 

of t he  ,occupation number o f .  t h e .  riorma1::mode .'under consideration;. ' a d  ' 

where the  symbol <. > denotes the! theni id  '.average':, . A t .  any temper-, T 

ature, the  s h i f t  S calculated by the  foregoing formulas agrees exactly, 

apart  from differences i n  notations, with the  s h i f t  formula given by 

Maradudin and ~ e i n . ~  However, the  width formulas agree exactly only 

i n  t.hq zero temperature l i m i t .  A t  f i n i t e  temperature, t he  width 



f0rmul.a (5.56) d i f f e r s  from (5.5b) of Ref. 6 i n  the  sign .of: the  second" 

and fourth terms. The present theory predicts a la rger  width than t h a t .  

predicted by Maradudin and Fein. Furthermore, the  temperature dep.end- ' 

ence of the width at .  high temperature's .is.. quadratic-.according t o  ('5.59) 

of the present work, whereas it i s  l inear  i n  R e f .  6. The present width 

formula may yield . a' b e t t e r .  agreement with the. experimental &ata than 

the agreement reported, by Maradudin and Fein, because t h e i r  calculated 
. . 

values seem t o  be smaller tha,ri.the experimental values. obtained by 
I . . 

1 ' .  Brockhouse e t  a l .  -- 

I When applied t o  the study 'of the  opt ical  lines;1° .the present .the- 
. . 

ory yields a Line shape formula which contains the  two l imit ing approx,- 

imations, i . e . ,  quasi-static and impact approximations, a s  special  
. .  . . . . 

, cases. It 2reats  the  electrons and 'ions on the same basis,  ,thereby in- . 

cluding the motion of ions. i n  the  ca;lculations. 
..,. 

It may be concluded i n  general t ha t  the present theory of l i n e  ' .. 

shape i s  more systematic, simpler, and more interpretable than the  
. . . . 

existing l i n e  shape theories both f o r  neutrons ehd photons. The theory 

can now be applied with reasonable confidence t o  the  i n t & - p f e ~ ~ t t m  of 
. . 

. . 
a variety of experiments involving photons and neutrons,' e. g: , l asers  

and scattering of neutrons by liquids.  . . . .  - 
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The second s w a t i o n  i n  (A.3) vanishes owing t o  the  commutation re la -  

t ions (4.9), viz. ,  

! 

Using these i n  ( ~ . 3 )  , one finds 

which vanishes as  a r e s u l t , o f  the  invariance of G1 under the  in t e r -  
9. 9 

change of the  subscripts.   he' same re su l t  follows a lso  from (4.18) , 
which indicates tha t  t he  individual terms i n . t h e  l a s t  expression are  

zero. 
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