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ABSTRACT

The damping theory, which includes the decay of quantum states,
is developed in terms of the projection operators. The concept of
probability that a transition from a given initial state will be
towards & specified final state is introduced, and the probability
is calculated by using the damping theory. . When the decay of the
final state is neglected, this probability reduces to the condi-
tional probability, introduced by Heitler, that the system will be
found in a specified final state after a transition from the given
initial state has definitely taken place, With this new probability
concept, an approximate expression is obtained for the transition
probability per unit time from the initial to the final state. This
expression is the starting point of the present line shape theory,
which is applicable to both neutron and photon spectra. In this work,
only the scattering of slow neutrons by an anharmonic crystal is con-
sidered. However, the differential scattering cross section formula
is obtained first for an arbitrary macroscopic medium, and then ap-
plied to a crystal. The cross section formula in the harmonic approx-
imation follows from the present cross section formuls when the width
and shift of lines are neglected. The novel feature of this deriva-
tion is that it does not use Bloch's theorem. Explicit: formulas for
the width and the shift of the observed peaks in the energy spectrum
of the inelastically scattered slow neutrons by crystals are obtained,
and compared in the case of a single-phonon event to those by Maradudin
and Fein. It is found that the shift formulas agree exactly at all
temperatures, whereas the width formulas agree only in the zero temper-
ature limit. The discrepancy in the width formules at finite tempera-
tures is discussed in terms of the concept of phonon lifetime. The
application of the present line shape theory to.the'interpretation of

4 the optical experiments is also discussed. - -
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CHAPTER I

INTRODUCTION

In recent years thg scattering ofbleW'neutrons by macroscopic sys-
tems has received increasing attention as a research tooi,'providing in-
formation about the'dynamical condit}ons of the scattering medium, in -
addition to the determiné£ion of nuclear scattering lengths of the cdn-
stituent atoms. For exdmple) the scattering of slow neuﬁrons by crystals
provides a useful compleméht to other technidues'for the determination
of the energy levels of the crystal. The general theory of neutron
scattering by macroscopic systems, in terms'of the:time-reiaxed space
correlation function, provides a convenient computational tool when the
energy eigenstapes of the scatigrer are known, waéver, except for
some spéciél physical systems, e.g., an ideal gas, the. eigenfunctions
of the Hamiltonian H® of the scatterer are not available. In such
cases the evaluatioh‘df the thermal avérages Appearing in the cross
section formula have to be pérformgd‘in’a différent c6mplete set gen-
erated by a certain Hamiitonian éZ(s.' The 1£¥£§r'is chosen as a part

of Hs, viz.,
)8 ‘ o
i = }( + ", . (1.2)
for which the eigenvalue problem

(H° -B)ln> = o (1.2)

. -




can be solved. In some applications, it may be a good approximation to

replace B by ;{s; thereby ignoring H' completely, in order to explain A

4

the dominant aspects of a certain scattering experiment. wagver, in-
terpretation of the details of the'recenf neut;on scattering experiments
requires a more refined analysié than that'obtained by -ignoring H' com-
pletely. As an example, consider again the scattering of slow neutrons
by crystals, which will be ourﬂmain concern in.phe subsequent chapters.
Here, H' is taken to be the cubic and the higher order terms in the
Taylor expansion of the crystal's potential energy.‘ The harmonic approx-
imation which corresponds to ignoring H'Apredicts sharp linesjin ﬁhe en-
ergy spectrum of neutrons scattered inelasticaliy~by thé crystal, and
fails to yield any information_about the structure of the obsefved pesaks,
Since the width of these peaks can be meaéured.by'prgsent-day experi-
mental techniques,l the need for a refined théory of.neutrop scattering
by crystals, one which ié capable of predicting the;observed width and
shift, is apparent. Valueble infofmation abouf the'ﬁaﬁﬁre.of anhar-
monic forces in cerystals can be.gained by,éomparing the éxperimehtal

and computed widths once a reliable_theofy is available. The study of
neutron line shape may also prove to.be é very suitable microscopic
probe in the exploration of intermolecular forces in liquids.

Several theoretical studies of the neutron scattering by anharmonic

crystals have.appeared in the literature in recent years.2'6. The most
recent one, by Maradudin and Fein,6 contains a brief survey of the pre-

ceding works as well as & comparison between iheoretical and experi-
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*A list of the original papers and several excellent review articles can

mental results for the widthiof one phonon line in lead. ‘The agreement
is reportei mo be only in the order_of magnitude. As the authors point
out, however, this.discrepancy may be due either to the computational
techniques used to represent function, er to. the simple crystal modei
used to describe lead, rather tnan'to the approximation made in the
derivstions° In this reéard, en indenendent formulation of the theory
of neutron line-shape would be very desirable.

The potential of the study of the optical line shape as a non-
1nterfering diagnostic tool for investigation of the physical properties
of the surrounding of an emitting etom has long been recognized and
used in astronomical observations. In the past fifteen years; the.op-
tical line width techniques have found application also in high temper-
ature plasma experiments as a probe for: measuring temperatures and ion
coneentrations within & plasma, where the nse'of material probes is
ruied out because ofithe high temperatures involved. Consequently, the
optical line shape theory has enjoyed rapld progress in recent years.

Accuracies better than 20% in determining the ion density with the line

. width technique have ‘been reported.* In spite of this numerical suc-

cess, however, the exlsting line shape theory contains some intuitive
arguments, such as the folding of Doppler and pressure effects, as well
as some gaps. . It treats the effect of ions in the quasi-static limit by

assuming the ions to be at rest, whereas it treats electron effects

be found in Ref. T.




with the impact approximation. It does not offer any good treatment for
the intermediate region, where neiéher of these two limiting approxima-
tions is vélid (see p. 56ﬁ.of Ref. 7). The'stafting poiﬁt of the exist-
ing.theory is the -quantum mechanical Fourier integfal formula which ex-
presses the optical}spectrum as the Fourief transform of the éutocorrela-
tion function of the time-dependent dipole operator.

In the present work, an attempt has been made to develop a line
shape theory that can be applied to both optical and neutron spectra.
This theory involves épproximations of a general natﬁre in contrast to
the previous optical and neufrop iine shapeitheories, which involve ap-
proximations ?ppropriate'to specific physical sjstems, é.g., plasme and
crystals, and therefore have a limited range of applicability; The
present theory provides a general,iine shape formula fof arbitrary medie,
i,e., phe surrounding of the emitting atom injthe phopon casé and the
macroscopic scatterer in the neutron case, which reduces the line shape
calculations immediately to a computational form.‘Jihe ﬁature of the
physical system under coﬁsideraﬁion.first enters atithiéjcomputétional
stage. |

The pfesent formulation of line shape 1is Based on an éntirely dif-
ferent approach than the correlation formalism used by the existing
line shape theories fdr both neutrons and photons. This approach uses
the damping theory originally due to HEitler,8’9 and is essentially a
perturbation approach which includes the decay with time of the quantum

states of the system. This épproach was chosen for the present study

3 8 622 3 €O M &3




because, as will be demonstrated by two specific applications,.it pro-
vides a computatiénal framework which is more systematic or more inter-
pretable physically than any used in similar applications, and which
can be applied directly to any line shape problem without approximations
of the physical nature appropriate to.a partiéular system. In the case
of the séudy of optical line shape, the present theory illuminates the
manner in which»the various simultaneous contributions to a line shape,A
i.e., Doppler effect, natural broadening, and pressure broadening, arise
and are combined; and it frovides a method of éomputation which may im-
prove upon existing approximatiéns,.i.e,, quasi-static and impact ap-
proximation, in,the-intérmedi@te range men&ioned above, In the case of
the study of line shape in the energy épectrum of inelastically scat-
tered neutrons by an anharmonic érystal, the present approach yields, in
& simpler and more interpretable way, fo';'mula.s for the width g.nd shift
of the lines in thé zZero teﬁperature limit which are identical to those
presented by Maradudin and Feih,6 waever,.tﬁé éresent line width
fo;mula at finite temperatures differs from-theirs; and prédictsla'
larger width, This discrepancy, if it does‘hotlarise from an arith-
metical error, may improve the order gf magnitudé agreément reported
by Maradudin and Fein., ' . .

In Chapter II, the damping theory 1s developed and extended by in-
troducing the concept of probability that the transition  from an ini-
tial state will be toward a spécified final state; this 1s wvalid even

if the decay of the final state is not negligible, as is the case in




crystals. The remaining chapters contain the application of the basic
formula derived in Chapter II for the transition probability per unit
time, to the scattering of slow neutrons by aﬁ anharmonic crystal. The
application of the present theory to the study of optical line shape is
not included in this work because it has been presented as a separate

report.lO

It is hoped that the preéent\work will contribute to the theoretical
understanding of line broadening and line shift phenomena- in general.
Such understanding is essentiai.for the success of the line shape studies
as a convenient probe to explore intermoiecular'forces in a macroscopic

medium.




'CHAPTER II

DAMPING THEORY

The interpretation of almost any experiment can be reduced in quan-
tum mechanics, without introducing any serious approximation, to evlua-

tion of the quantity

Won = |Upn(t) [3/6, (2.1)

where the numerator is the probability of finding the system under con-
sideration in the state |m > at time t, knowing that it was in the
state |n > at the initigl time t = 0. The.purpose;of this chapter is
to derive an expression for Wy, which is suitable to the.study of line
shape problems in general. Such an expreésioﬁ can be obtained by using
the damping theory, which, in contrast t;4the conventional perturbation
theory, takes into ﬁccount the decay in tiﬁe'df the quantum states. Al-
though the first atfempt to Include the finifé lifet1me of the states

in the perturbation theory was made by Weip;kopf aﬂd Wignef,ll the first
systematic development of the damping theory>iéAdue to Heitler.8’9 The
present derivation differs from Heitler's original derivation in two
respects: First, it ié developed iﬁ.terms.of the projection operator,
end second, it employs a different iteratién procedure. . Although the.
results are essentially the same'as those obtained by Heitler, the pres-
ent. approach has several appealing features. It is an extention df the
quantum treatment of the evolution of a.decayiﬁg state presented by

T




A. Messia.h.l2

A. BASIC THEORY

The temporal development of a quantum mechanical system is deter-

mined by the "time-evolution" operator U(t):
|t >_:= u(t) o >,

where |0 > and |t > are the state vectors at t = O and at. time t. When
the Hamiltonian H of the system is not an explicit function of time,

U(ﬁ) is given by
u(t) = e-itE o (2.2)

where the units are chosen so that f=1, Assﬁme that H can be split

into two parts as
Bo= B +V ’ | (2.3)
in such a way that the eigenvalﬁe problem
(Ho-Ep) [n-> = o' o (2. "

cen be solved. The eigenvectors |n > are assumed to be complete and
orthonormal, and phus provide a basis for the physical problem under
consideration. The eigenvalues E,, which may be discrete or continuous,
are allowed to be degenerate. We want to calculate the matrix elements

Unpn(t) and Upn(t) for t > 0. However, we shall first consider the

E3 € 0 £33 ) O £ ) £ 3o e/, 3 /| e



operators PyU(t)P, and PnU(t)Pn, where P, and P, are projection operators
on the subspaces gzland E;lspanned by the eigenvectors belonging to
the eigenvalues E, and E, respectively. The projection on the comple-
mentary subspace of Ezn will.be denoted by Qn'_ The following relations

are immediste consequences of the preceding definitions:

.
Pp = Z |lny > < nv| , Z P, =.1, .’ (2.5)

] v n

PoB, = EpPp = HgPp - (2.6)
Ph+Q, = 1, @QuHy, = HoQu . . (2.7)

In (2.5), the symbol v indicates the multiplicity éf,the elgenvalue E,.

Similar relations hold also for Pp. We may rgcalljfz’l3 that any hermi-

tian operator satisfying the relation
P2 = P g (2.8)

is é projection opefator. ‘Tt will be apparentvat the end that P, and

P, can be defined as projections on some gubspaces of the subspaces

E?n and an respectively. 1In particular,'they éan be chosen as the . ‘
projectors on the initial and final state vectors. In this case, and

also wheh the eigenvalues are non-degenerate, the present,approach re-

duces to that of Heitler's excepf for the iteration‘pfocedure{.

_We now introduce the resolvent of H, i.e.,

m:

oz = =, ‘ (2.9)
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where z is a complex number. Since the eigenvalueé of H are real and

positive,‘the singularities of G{z) all lie on the positive real axis.
The disc;ete and continuous portions of the spectrum of H give rise to
simple poles and branch cuts on the real axis. The evolution operator

U(t) can be expressed in terms of G(z) as

yootie

u(t) =- az g(z)e**, e>0,  (2.10)
2ni cotie
or
u(t) =~ — [ axla(x") - o(x) Je”1xt (2.11)
where
Ax¥) = lim —2— = PP A F im(x-H) . (2.12)
e+0 x-Htie x-H

In the last expression ?f denotes the principal parf.

It may be noted in passing tﬁat the contributién,of_fhe second term
in (2.11) vanishes for t > 0, since G(z) is analytic inighe entire lower
half plene as well as upper half plane. | )

Our problem is now reduced to calculating .

Gl = BBy G ()

Folloﬁing Messiah,* we introduce .

PmG(.z)P . (2.1L4)

*See p. 994, Vol. 2 (second printing in English)of Ref. 12, .

€ 3 £ ¢33 E£I3 ] & @ €3
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H = ﬁ' + H":
where H' and H" are defined by B
H' = P,HP, + Qy HQ, = ._Ho + PoVP, + Q;VQn , (2.1k4a)
H' = P HQ, + QP = P,V@ ?anpn . (2.14D)

|
The following relations can be verified by using the foregoing defini-

tions:

(P,,H'] o, [,®}.= o0, ' ~ (2.151)

PnH" = H"Qn} Q,nH" = Hlan, PnH"Pn = %H"%. - O .
A : L _ (2.15Y)

The following operetor identities will be needed: .

. (2.16)

|-

1. _1,1_.1 _ 1 1
A8 - AYA®aE T B3 PiT1
1 _ P 1 . .
D SR - . 2.
F z-R z-R . z-PR ’ (r,P] ,'0 ’ (2.17)

where A and B are two arbitrary operators, P isiany projection operator,
i,e., hermitian and P° = P, and R is any operator commuting with P. The
prbof of these identities is straightforward.

Using (2.16), one can write G(z) from (2.9) as follows:

1 1
z) = o+ o5 B'de) (2.18a)
1 1 ., 1 1 1 ’
= =t om B =5 + 7o B oy H'G(z) . (2.180b)
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Ve
We can now compute ;;hn(z) by operating on both sides of (2.18b) by Py,

noting that the second term vanishes by (2.15b), and by using (2.17).

The result is

~ (?/nn(Z) = ;_—m , s (2.19)

where the symbol I,.(z) is defined by
Inn(z) = PplVv + V(z-QuHQn) “*VIP, . (2.20)

We now attempt to compute g%;n(i)o It proves more convenient. to compute

‘first Q,G(z)P,, and then to obtain g%ﬁn(z) by multiplying.the'lafter from

the left by Pp. Thus;'using (E;iBa) for &z), oné_finds:
%mn( z) = Pplz-QuHQ,) ~'QuV %n( z) . (2.21)

Noting that
Qn=ZPu7

ufn

one rewrites (2.21) as follows:

% (2) = Bo(z-Gnuay) PV Lo(n) + ; Py z-QnHQn)‘lruv%n( z) .
: HFn,m | : (2.22)

It is noted that all the foregoing results are exact. Hbﬁever, they

i

. st1ll contain the operator (z-QnHQn)'l, which can not be calculated

3 O 3 3 . M
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exactly.* At this point, one resorts to an iteration procedure which

consists of applying the foregoing analysis to (z-Q,nHQn)-1 by defining
A = amy, X - }go N/ (2.238)

‘."HO QnHan: '1},"‘ QnVQn s (2'25b)

and noting that
mefo = P,HQ, = EPf, = J‘(oPm"A : (2.24)

Thus, Pm(z-jz)'le in (2.22), which can be labelled as g%ém(z) according

to (2.13), can be 'readily obtained from (2.19) by‘replacing Ho and V by

J(o and Zﬂ? f

' 1 i .
%mm(z) g (2.25)
where '
Fﬁm(g) = ?m[V + V(z-QanHQnQaj'1V]Pm . (2.26)

The calculation of Pm(z-QnHQn)'lPu appearing in (2.22) requires closer
attention, because of the order of Pp and P,. We note that in this
operator, P denotes the initial subspace whereas in (2.13) 1t denotes

the final subspace. Therefore, the order of the initial and final sub-

#Messiah approximates this operator by (z-HO)'l by ignoring the QnVQn

in QnHQn = Ho + QnVQn [cf. (2.14a) ], and thus obtains a closed form for
g?ﬁn(z) from (2.21). But this approximation excludes automatically the
width and shift of the final state |m > as will be apparent presently
fef. (2.28) 1.
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spaces in éu(z) = m(z-QnHQn)'lP“ is reversed as compared with that
in g%&(z); To avdid“any‘cgnfusion, one can. start with the second op-

erator identity in (2.16) to compute gi'

mu(z). The result can be easily

seen to be

%0 = Gl Valeafe) s, . (2.20

The result of the first iteration can now be obtained by substituting -

(2.26) and (2.27) into (2.22). The resulting formula will.contain op-
How) 2 b

erator (z-Qp47Q,) ~*, which can be iterated once more. (We shall give

the result after the second iteration.) .Omitt;ng'thg arguments (z) for

typographical simplicity, one finds:

%, = %% u;n%’,;m"%u\’% + (220

+

where

" 1 -
%,w = —_—,  (2.29)
: . z=By-Thy - .
_ -1y

Iy = B[V + V(2-Q,QuQnHonCnQy) ~ VIR, . (2.30)
It is observed that (2.28) represents formally an expansion in.powers
of V. The first term corresponds to the direct transitions from the
initial subspace to the final subspace; theé second term represents the
transitions via an intermediate subspéce; and so on. In the present
analysis of line shape, we shall consider only direct transitions, and

hence only the first term in (2.28).

) )y e 3 3
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In evaluating the operators I, I}, PSH’ etc., one may approximate
the operators (2-QnHQn), (2-Qn@nEQnQm), (2-Q,QmenHenQnQ,), etc., appear-

ing in their expressions, by replacing H by H,. Thus, I'np and Iy, become
Tnn(2) = P,V + Vap(z-H,) "'VIP, , (2.31)
I 2) ol PplV + vQuQn(z-Hy) “*VIP, . (2.32)

The approximate expressions-for Pﬂu, etc., can be obtained in a similar
way.
When the eigenvalues En, Ey, E,, etc., are all non-degenerate, or

when the operators Pp, Py, Py, etc., are defined as the projectors on

-the individuel elgenvectors, the operators ﬁ;;n = PnGPy, %%;n = PnGPp,

etc., can be replaced by their matrix eleﬁents-with respect to. the

_eigenvectors |n >, |m >, etec::

% = BT, Gpld) = leEarm()1
SRR (2.33)

|
n

oa = Jun ¥ - 'Vpnlz<z-2o'1, Tim( 2 = Vm Z lvumﬁz-%;l
7 | wf,m (2.3)

G () - & (v @ (2 . (2.39)

The foregoing results are identical to those’obfained by Heitler's
methodlo of iteration except for the fact that the quantity Ij, in
(2.34), which will be interpreted below as the width and shift function

of the final state, éxcludes the trensition back to the initial state
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as well as the transitionkinto itself. However, this difference does
not. seem to be of any significance in the’applicapions_we shall be con-
cerned with.

When the eigenvalues are degenerate, the sbove formulas, i.e.,
(2.33), (2.34), and (,2.35) , can still be used, as we shall do in the
subsequent analysis.. waever,;when the damping theory is formulated in
terms of the projection operaﬁors and the projection operators are de-
fined as the projectors 6n the entire subspaces spanned by éegenerate

eigenvectors, there are new poésibilities in the case of degenerate eigen-

values. Although we are not going to explore or make use of these pos-

‘ sibilities, it may‘still be worthwhile to discuss‘briefly.soﬁe'of,the

relevant aspects. Let the degenerate states be labelled as |n>=|Eja>
and |m > = [Emﬁ.}.. The matrix element of i?%ﬁ = PmG(z)Pn-followF from

(2.28) as

< EnB| & 2z) [Eya > - |
(2.36)

). < 50 ) (B> < B V1> < B (G () [Enr > .
a')B' ‘ ) ) ; ) 4.
Suppose that the operafors ﬁ?;m(z) and %;;h(z) can be diégonalized

with respect.to the degenerate states. Then, (2.36) reduces to

< EBlK(2) B > = <'Fmel%m( z) |Byp > < EmﬁlvltEna. >< ‘Enal%(»z) |Eqa >
(2.37) -

O C £33 € ¢33 £/ ./ £33 e
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The first and the third terms on the right hand 's‘ide of this equation
are simply the eigenvalues of the non-hermitian operatofs %;m( z) and
%n( z) respectively. It follows from (2.25) and (2.19) that one has A
to diagonalize the operators ryn(z) end T ( z) to obtain the foregoing
eigenvalues. To carry the discussion, consider I‘nn( z) , which is de-
fined by (2.20). V_Je are interested in the behaﬂof of thig operator in

!
the neighborhood of branch cuts [cf. (2.12) ]:

Tu(xte) = 8500 350 , (2.38)

where
Sn(x) = P,V + VPP(x-QuHQn) ~*VIP, , - (2.39) -
To(x) = 27‘31:'nV5(x'QnI.'.IQ'n) VPp . - (2.40)

Note that both Sp(x) and 7,(x) are hermitian operators. The non-
hermitian operator I‘nn(xi) can be die.gona.lized if it is normel, i.e.,

if 8y and y, commute, in the case of degeneracies of finite order. In

.some applications, such as those invblving photon émiésion, the sub-

space gn can be written as the tensor product of two spaces én' and

gnn, where én, is a finite dimensional space and gn,, is a continuum.

The former represents the degeneracies of the discrete energy levels of

the emitting atom and the latter correspénds to the continuous energy
spectrum of the surrounding medium. In such cases, the non-hermitian

operator Pnn( xi) can be diagonalized, in the subspace én"' The ad-

,See the footnote on p. 996 of Ref, 12.
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vantage of this diagonalization procedurg can be appreciated only when
one actually performs the summations and averages on the final and ini-
tial states in the interpretation of a given experiment. Some of these
points are discussed in Ref. 10; we shall not dwell on the matter be-

cause in the present application, i.e., scattéring of neutrons by crys-

tals, the formulas (2.33), (2.34), and (2.35) prove to be sufficient.

B. EVALUATION OF THE INVERSION INTEGRALS
We are now in a position to compute the matrix elements of the
~evolution operator U(t), viz., Upn(t), and Upp(t), by substituting
%nn( z) from (2.33) va.nd %n( z) from (2.35) into either :(2.10) or (2.11).
First consider the diagonal element Up,(t). By combiﬁing (2.38), (2.33),
~and (2.11) one obtains the following integration: |

7n( %)

[x-En-Sn(2) 1° * & 72(x)
, - (2.41) -

+o0
Upn(t) = Fy(t) =%;f ax e 1¥t
-00

We have introduced the s&mboiﬂFh(t) for a later use. We shall evaluate
this integral approximately by treating Sp(x) anévyh(x) as a constant.
This is justified because Sp(x) and y,(x) are slo&ly varying in the
vicinity of the point. x.= E, where the integrand.akta;ns its meximum,
and because the dominant contribution to the integralAcomgg from this
region. Taking the constant values of Sp(x) and y,(x) asvsn(En) and

yn(Ep) , one finds from (2.41) the following:

Fp(t) =~ expl- %‘ 7ot] exp[-1E,t] (2.42)

sl |

£ £33 g3 £,

3 £33 £33 Em 3 ED
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where

En = Eq+8y, Sy = Sp(BEy), oy = m(By) . (2.43)

Now consider the off-diagonal matrix element of U(t), which can be

written as

wo+ie

Up(t) = E%E'; f az e %% %—,;m(z)vmn?fm(z) . (2.hke)

-o+le

This inversion integral can be expressed as the convolution of Fh(t)

and Fp(t), which are épprbximétely given by (2.42):

. | | .
Um(t) = Vpp f Fp(t-7)F(7)ar .~ (2.44v)
0 .

The latter can be evaluated immediately. :Since“we are interested in

=3

‘the probabilities rather than in the matrix elements, only |Upn(t)|?

==

will be given:

| “ .
o (t) % ¥ — |V |2 ;- 2ot -3 omt ~A(Ea-E)t
- (Em=En) #+(1/4) (ym-70) 2 o :

=3
-~
n
[ ]
=
\n
V‘

C. TRANSITION PROBABILITY PER UNIT TIME

This section is devoted to the discussion of the behavior of

[Upn(t) |? in different time intervals by using (2.45).

Lo oyt <1, b <1, £ > 1/ |En~En|

m

For such an interval of time to exist, Jih-fﬁl must be much greater
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2
~than both y_ and y . The behavior of |Upn(t) | in this interval can be
obtained by setting y; = 7y = O and teking the limit t + = in (2.45).

Noting also that

one obtains the well known first order perturbation result, i.e.,
|

Unn() |© = 2melvy |® 8(BaBw) . (2.46)

It is noted that in this time ihferval, the meaningful concept appears
to be the transition probability per unit time, i.e., |Upn(t)|3/t,
rather than the probability of finding the system'in the state |m > at

time t.

2.yt >>1, 9t <1 (or vice versa)

This time interval exists when 7, >> 7 or vice versa. In this

N

interval, (2.45) reduces to

-~

[ Vo I” b .(2 47)
= N P . . .
" (BaEacSm) 21 L
where Spp is defined by |
Som = Sn - Sp - (2.48)

Note that in obtaining (2.47), 7y has been neglected"as cbmpared with 7,
in the denominator of (2.45) so that the equation will be consistent

with the condition y, >> w7

0 3 O ) ) £ 3 BB 3 M OO0 D 3 M B 3 ER B 53
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It may be pointed out here that (2.47) rigorously follows from

(2.44p) if Tpyy(z) = 0, This can be seen as follows: When Ppm(2) = 0,

Fp(t) can be evaluated rigorously [ef. (2.41)] as
“1Egt _
Fp(t) = e En , t>0.

Substituting this into ( 2|.,lmb) gives

%
J[‘ dr eiEmT Fp(T)

o)

| 2 2 -
|Upn(t) |Z = /an, g (2.49)

To obtain the behavior of'IUmn(t)|2 for large times, i.e., 7yt >> 1, one
has to consider the limit of (2.49) as t » w, In this limit, the inte-
gral involved in (2.49) defines the Laplace transform of Fy(T), which is

6%;5(2) given by (2.33). Thus, replacing z by Ep in %?; (2) immediaiely
' nn

‘gives (2.47). However there is a slight difference between (2.47) end = |

the result obtained’with the rigorous derivation. The S, and y, are
evaluated at x = E, in (2.47), whereas they a%e evaluated at x = Ep in
the latter case. But since'the'difference;between E, and Ep is of the
order of & line width, and furthermore'sincgisn(x) ahd 7n(x) are slowly
varying fﬁnctionsrof i, no aistinction will bé‘made.bgtweep (Ey) end
7n(Em) or between S,(E,) and Sp(Ep) . |

In copclusioﬁ,'one may state that when the widths of both initial
and final,states are much smaller than thé tfanéition frequency (En-Eh),
the transition probabiiity per unit time appears to be a meaningful con-
cept. On the other hand, when 7ﬁ >> s the meaningful;conéept is the

conditional probability of finding the system in the state Im > after it
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is certain that a transition from the initial state |n > to any other

=3

state has taken place (y,t >> 1).

3' Vm ~ yn

When y, and 7, are comparable, there is no time interval in which

|Unn(t) |2/t or |Upn(t) | can be approximated by & time-independent quant-

ity. The conditional probability defined above becomes time-dependent

because the decay of the final state cannot be ignoredAwhen ”m is of the

same order of magnitude as y . - However, there is & probability concept.

s 3

which can be defined and computed unembigiously in all the above three

cases. This is the prqbability'js;n that a transition from the initial

state |n > will be into the final state |m >. To compute ?mn’ one

.|

first observes that the approximation of constantAyﬁiand Y implies that

the states decay exponentially at all times. :This can bey‘.se‘en from

(2.42), which can also be written as

E:

[Upn(t) |2 = e ', . '(2.50).

)

Using this information and the probability mh;léneican"calculate

|Upn(t) |Z in an alternstive way:

U (t) 12 = f~e'7nt gt ?mn;e”m(t't») (2.51)

° 4
or
U (t) 2 = B (778" oty P (2.52)
mn 7n-7m mn [ [
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- In (2.51), the factor exp(-y,t')7,dt' is the probability that a transi-

tion will occur in 4t' about t', j?%n is the probability that this

transition will be into |m >, and the last factor is ﬁhe probability

that the system will remain in |m > in the time interval (t-t'). Note

that jsgn may be a function of t'. In obtaining (2.52), it is explic-

itly assumed, as an addipional approximation, tﬁat.gamn 1s independent

of time. We shall now compare (2.52) with (2.45), which is obtained ‘
directly by the damping theory. For the sake of défigiténess we assume

that yy > 7,. When (y,-7,)t >> 1, the foregoing comparison yields the

following expression for f;%uf

A,2 N 3 o | |
g = - |v mn . 2.
GF;n = | Vi | = ;_)2+HE | | (2.53)

where we have introduced

Yan = |7a"7ml/2 - (2.54)

It is noted that.gamn reduces to (2.47) when Tn << 7n.
The expression (2.53) of g?mn.suggests'that 7nf§in be interpreted
as the transition'probability‘per unit time, wﬁn,-frqm |n > into jm >,

because y, is the probability of decay of the initial stéte per unit

time [cf. (2.50) ]:

Wmn = yn(:?mn = 2|an|2 (f‘sz:;la-o-ya v (2-55)
- mn

It is again observed that W reduces to the conventional form (2.41)

when y << (E;~En) . The crux of the matter appears to be that the en-
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ergy conserving delta function in-the conventignai form of the transi-
tion probability per unit time is replaced in (2.55) by‘the last factor,
which is a peaked function. ’
Equation (2.55) is the starting point'in the present theory of
line shape. The subsequent chapters will illustrate its application to
the study of line shape in negtron spectrum, ‘In view of its importance
in the present work, we shall givé an alternative derivation for (2.555
with the hope that it may reflect more clearly the nature of the approx-
imation inherent in (2.55). wé start with Wy, = |Upn(t) |?/t, which ap-
pears directly in the interpretation of many experiments in quantum
mechanics. Since U(t) is unitary, one has }:IUﬁn(t)lz = 1.. Using

m ‘
this relation, and multiplying the numerator anq;the denominator by

2
vUnn?Umml } one can write Wy, as follows:

W = IUhnlz ) }: |Uh'n|2 E:'-}Uh'mla 5
mn - 2 ' t - . t (2'5 )
“Uhﬂﬁumml l n'#n n'gm

We have omitted the arguments of Umn(t) in (2.56);. the-équatioﬁ is of
course exact. We introduce the first approximation~by evaluating the
first term, in the time interval |y,-7,|t >> 1, using (2.45) and (2.50).
This approximation implies also retaining only the first term in the
expansion of f%;n [ef. (2.28) ], and assuming that.ynjand-ym are slowly
varying. To approximate tﬁé second factor in (2.56), we first let y,
and y, tend to zero and then let |E,-Ej|t be large. In this approxima-

tion, the second factor is equal to |7n=7m|, @s can be seen from (2.k4a)
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and (2.40). With the foregoing approximations, (2.56) reduces to (2.55).
The justification and the implication of these approximations are be-
yond our reach. Therefore, the validity of the basic formula (2.55)

will have to be demonstrated 5y its succgss in various applications.

¢




CHAPTER III

GENERAL FORMULATION OF NEUTRON SCATTERING

BY MACROSCOPIC. SYSTEMS
»

The expected number of neutrons having a momentum 6§f.and spin T¢

in a system composed of neutrons and the scattering medium is given by
’ .

X(l_&‘:'rf) = Tr[p(l_{f)Tf)D] ’ : (3.1)
where p is the number operator for neutrons of the specified kind, and
D is the usual density operator. The Hamiltonian H of the system con-

sists of the kinetic energy of neutrons, Hp, the Hamiltonian HE° of the’

scatterer, and the interaction potential V? between the tw¢,‘viz.,
H= B +E+vV ., ' "~ (3.2)

The interaction between neﬁtrons is neglected. IetWHP‘and V denote the
unperturbed Hamiltonian and the perturbation respeéﬁiVely,‘and.let them

be chosen as

¢P='ﬂéfw , | -~ (3.38)

<
|

Ve o+ H O, (3.3D)

wherest and H' are defined by (1.1). By computing the trace in (3.1)
in a representation [In > } where HQ, p, and the projection of the spin

of neutron are diagonal, one can expressloo'15 the rate of change in the

26
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neutron number of the given kind as follows:

X = }; ?ni(nf'ni)whfni . (3.4)

nj,nse

In this equation, Ini > and Inf > are the initial and final states of
the system; Pni, nr, and ny are the diagonal elements of the density

matrix and the number operator, viz.,

Pny = Dnyny » M4 .= Pnyng » N .= Pnpng 3

and, finally, W

neng 18 defined by .

Wnfny = (1/8) ] < nflegpk-iﬂﬁ/ﬁ)lni >|2 -.. (3.5)

The elgenstates |ni > and |ng > are~labeiled'inid¢tail as follows:

[ng > Ing >|7y > 1>

|ng > Ing >|7¢ > |f >, -

where |t > and |ty > denote the spin states of neutrons, and |1 > and
2 L .
|f > are the eigenstates of including the spin states of the

scatterer, i.e.,

HE)lu> = 0, (u=1,8 . (5.6)

The occupation numbers for neutrons are either zero or one. Hence,

(nf-qi) in (3.4) is either +1 or -1. The terms with positive sign cor-

respond to the scattering of neutrons into the momentum state ﬁ§f,and
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and spin state T, whereas those with negative sign correspond to the
scattering out of the state (Ef,Tf). In a scattering experiment with a
monoenergetic beam of neutrons, the initial occupation numbers are

given by

n4(k,T) 1, fork=%kj, T=14,

O,lotherwise.

Henceforth, the spatial part of neutron states will be denoted by |§ >
The rate of change in the expected number of neutrons having a

momentum in £°3%ke about #ke can be computéd from (3.&).&8

Mg a%kg = (1/2) z Z z Wneng »  (3:7)

€d kf i Ti : qTf

where Pni has been approximated by PiPTiPEi furthermore, Pk has been
replaced by unity since the neutrons are preparedsin lEi > initially,
and PTi has been set equal to (;/2), assuming thétffhé iﬁitial beam is
unpolarized. | “ | |

The differential cross section per.particle.fdr‘scaﬁtering of ne&-
trons from ky into d6 about § = (ke/kg) ; A€ abox}*t; éf E"(ﬁ2k§/2m) is
obtained from (3.7) by dividing both sides by the initial neutron curs

rent (fk;/mQ) as well as by the number of particles N:

g2 kpge 3 |

of gf:é) = 3 ’2%\? Z By wnfni y (5'8)_ _
(2m)~ ky

' (iyf,Tf)Ti) : ’

In (3.8), Q.1is the volume of normalization and m is the neutron mass.
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.

Except for writing Pni as the product of PiBriPEi and neglecting the
off-diagonal matrix element of the density matrix, (3.8) does not con-
tain any approximation. The main approximation will be made at this
stage by substituting anni from (2,55), which is provided by the damp-
ing theory. 1In this approximation, Wneng is proportional to
|< ne|VR+H' |ng >12, as can be seen from (2.55). Since H' does not de-
pend on neutron coordinates, and since the initial and final neutron
st;tes are not identical, < ng|H'|ngy > = 0. Thus, one has only to
evaluate < ng|V%(x,R) [ny >, where r is the position of the neutron and
R denotes the totality of the pésifions of the particleé in the scat-
terer. To evaluate this matrix element, oné may éﬁproximate VB by the.
Fermi-pséudopotential,l6 i.e.,
N ' N

Vo= (2nt/m) Z'als(g-f_&,z) o - (3.9

: =1 P b
where a, is the scattering length of the Zth_pucle%s. In general; this

scattering length is spin-dependent:
a, = A, + Bz(_s__'_sé y

where s and Syare respectively the neutron and nuclear sﬁin, and A and
B,afe nuclear constants. Use of thé‘Fermi-pseudopotentiai restricts the
following analysis to the scattering of élow neutroné (€1 < ev) whose
wavelength is large compared with the range of nuclear forces.

With the foregoing remarks, the differential cross sec%ion can be

obtained from (3.8) as follows:
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< frr] Z&zeiﬁ'& [i7y >I27nfni
ke .
: £ )
AEH -t L L 2 ’
* T1,Tr 1,1 (.Ei'Ef"'g'Snfni) +7121fn1 (3.10)
where
k= k- ke,

-
€5 = (82/2)xf ¢,

E- gi-gf’

Snen; = Re[%im+(rnf-rni)] p - (3.118)
7nfn1 =\Im[€l+o nf ni)]l . (j-llb)
- . '
T, = < ng|Vi+H'[ng > -z <ol >l 5y

nfny FnPng Hie

Equation (3.10) is the desired differentiallcross section formula

for the scattering of slow neutrons by an arbitrary-macroscopic system.

The matrix elements appearing in this formula are expressed in the repre- -

sentation generated by‘7(s. If the latter is chésén as Hs, i.e., the
Hamiltonian of the scattering medium rather than a part of it, then the
shift,and the width in (3.10) are caused solély by the neutron interac-
tion. They can fhen be ignored when the intepsity of the incident neu-
tron beam is not too high. Hencé, in the reéresentation generated by
Hs, one may take the limit Yngng 0 and obtain the conventionalascat-

tering formula,
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When the eigenfunctions of H°® are not available, (3.10) offers an
approximation which is sufficiently accurate to include the broadening
and the shift of the lines which may be present in the energy spectrum
of the inelastically scattered neutrons. Whetherisuch spectral lines
exist or not depends, of course, on the natureof the scatterer. If the

energy spectrum of the latter has discrete portions, then the neutron

spectrum has & line structure. Howéver, these lines may not be recog-

nizeble in the actual spectrum as a result of the broadening and over-
lapping of the adjacent lines. At any rate, (3.10) will be valid. The
subsequent‘chapter contains the application of (3.10) to the neutron

scattering from crystals.




CHAPTER IV

LATTICE DYNAMICS*

We shall give in this chapter a brief review of crystal dynamics.

The purpose of this review is to present those aspects of crystal dy-
namics that are relevant to the subsequent analysis of neutron scatter-

ing. To simplify the presentation, we shall consider a monatomic simple

lattice with one atom in each unit cell (Bravais Lattice). The gen-

eralization to polyatomic crystals is straightforward.

The Hamiltonian of a crystal can be written as follows:

KLY e Y et
T aM Pia * 2 Xgo®1'arVia, 1o
ia : |

1
fa, 0'at o (W)
o= B3 L w M,
where
l . " N .
H3 - 30 Z XgoXprarXpaUsa, a1 5 (4.2)
a,i'ar, " R

—
élﬂ. = 3 zd X ' U S
= T gt Xa ¥ e Yy, e, £t 2"t
i, . :
l”a",z"'a"' . . . (h.})

*For detailed discussion, see Refs, 18-20.
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placed by an amount X

=Y
N

In these expressions, M is the atomic mass, yﬁa is the ath Cartesian
component of the momentum of the fth atom, Xy is the ath Cartesian com-
ponent of the displacement from equilibrium of tﬁe £th atom and

Uga, 21t 8Te the partial derivatives of the crystal's potential energy,

viz.,

Usa 1';a' N ' S :‘ . , (4.4)
’ axlaaxl'a' ££=O )

The meening of the remaining symbols are self explanatory. The H(B)
and H(u) are the cubic and quartic anharmonic potentials. The displace-
ments are measured from the equilibrium positions denoted by {. The

latter is glven in terms of the lattice vectors ay as
L = &l +82l2 * 8ala , (4.5)

where £,, Iz, and I3 are integers known as the latticé indices. We
shall always denote them by a single letter g_for.simplicity. The phys-
ical interpretation of Uza,Z'a' is apparent from (%.l). It is the vec-
tor force acting on the atom located at [ when the.atom at £' 1s dis-

X0 Since a homogeneousrdisplacement of all atoms

¢

in any direction causes no net force, the following condition should
hold:
11

»

By considering a uniform expansion which does not destroy the transla-
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tional invariance of the crystal, one finds* that
Z Uza,lval’l'la" = O ’ (4.6)
1"
and Uza)ﬂ,a,’znan depend on (1'-2)‘and (zf-z) because of the transla-
tional invariance of the lattice.
We shall now express the crystal Hamiltonian in terms of phonon
creation and destruction operators. For this purpbse, one first expands

x, and Zi into normal modes as

Xp .= Z Jﬁ/2MNw>\ e eig.i (ai'}\+a>\)- : (4.7)
* - | |
and
£ =LZ NFwy M/2N g_; e-ig'.& (’a{ﬁgi\) o (4.8)
x ‘

In theée expressions, N 'is the number of atoms witﬁin.the periodic
boundaries. The running index A denotes the pair (g,J), where g is

one of the N allowable‘wévé vectors and J 1is the po;arizétion index
which takes the values j = 1,2,3, in a Bravais lattice. Note that

-x = (-q,J), and indicates a plane %ave traveling inAthe opposite direc-
tion to that corresponding to A. The frequency of the normal mode
described by A.is denoted by Wwy). Since wé allow neg;tive as well as
positive values of 4, w).1s always positive and satisfies w) = w_j.

The latter condition will be used very frequently in the following

*See p. 33 of Ref. 17 or Ref. 6.
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analysis without being pointed out. Finally, a{ and a) in (4.7) and
(4.8) are phonon creation and destrucfion operators* which satisfy the

known commutation relations
[ey,8n] = 0, [g,a{i] = 8 . (k9).

It is straightforward to yerify that the commutation relation
(x40 Prrar ] = 1858+ is satisfied owing to the following orthog-
onality relations:

E: ego €qja = Oy . | (4.10)
R S |

and

: ig.(2-4"' : - ::
z e.'g'( L) = Noypn e _ (4.11)
q ; '

Substitution of (4.7) and (4.8) into (4.1), (4.2),.and (4.3) yields

A ) e
(3 _ 1 ey 5
H = S-!' G)\lkgheﬂ(a-k'i*-a}\i) -9 (l“'lj) . ':
AMisNasha =1 |
| u |
G i_ Z Cr s Aehahe )f (alygteny) - (4.18)
ISR T i=1

*The symbol a was also used for the scattering length a, in (3.9).  The
different subscripts will distinguish between these two usages.




36

In these expressions, the symbol G is defined by

3

_ 43 8( 2,91 +92+45)

G>\ }\2 =
17A2A3 J;;;;;;;z;“
+1(g2-ha1+ga- hp) |
Z e . an,hla' ,hza' exlaew. exsan . ()-l». 15)
h,hs

(w,an)

The definition of GK1K2A3K4 is similar to £hat of leke%e' The explicit
form Gy apAghy Will not be needed. The s&mbol 8(g,q1+a2+qs) in (L.15)
is a kronecker delta expressing the conservation of the wave vectors in
phonon-phonon interactions. The vector g is a-lgttice vectof,in £he
reciprocal lattice. |

- Enormous typographical simplification can be ac#ieved if we agree
to drop A.in the subscripts whenever no confusion arises. According

to this convention, we have the following abbreviations:

M TV Gapong T G1,2,8 0 By T 81, 8By T8y

The following symmetry properties of Gl 2,3, which play an im-
portant role in the subsequent analysis, can be proved directly from

(A.l5) and the translational invariance of Ula,!'d',l"a"?* A

Gi,2,3 = G2,1,3 = Gi,3,2 . - L (k.26)

*See p. 304 of Ref, 18.
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It also follows readily from (L.15) with g(_53~; ey that
G-1,-2,-3 = Gi,2,3 - (b.17)

The special case of G;,2,-2 Will be encountered very often. According
to (4.15) it is proportional to

. | .
. . igs-h
eXp[flg_e-(_l_l'l-Ea) ]Uw hia' . ho" = e* T plend Uwu ' ,h'q -
, 007, XX i ’ ’
h;ho ’ h -~ h'.

The summation on h' vanishes as & consequence of the condition (L4.6).

Thus, one obtains the important result#*
Gl,2,f-2 = O . ' ()-hlB)

We now return to H(B) as defined by (4,13). The eight. terms con-
taining the combinations-of three phononlcreation and destruction op-
erators can be arranged, by virtue of the foregoing'symmetry properties
of Gi,2,3 , &8s follows:

1 ‘ L
#3) = Tl Z; G1,2,al(atatzala+a)a083) + j(algtgaa+atlagaia)] .
1,2,3 - o (4.19)
The derivation of (4.19) is given in the Appendix.

The relative magnitudes of the various. anharmonic poténtials, in

particular those of the cubic and gquartic anharmoﬁiq potentials, will be

*See for example p. 37, second footnote of Ref. 17, or footnote 22 of
Ref. 6.




needed for a consistent scheme of approximations; Van Hove* has pointed

out that the expectation values of H(n) decrease very rapidly with in-
creasing n at temperatures which are low compared with melting point.

In fact, he has given the order of magnitude'of the expected value of

the nth order anharmonic potential as
n-2
(/o)

per unit volume for n 2 2. Here, w is some mean vibrational frequency

of the crystal, u is an averaged atomic displacement at a given temper-~

ature, and ro is the nearest-neighbor separation in the lattice. As
pointed out also by Maradudin and Fein,6 the anharmonic Hamiltonian

‘can be written schematically as

mo= Wi 4+ oe® (4.20)

where u = (u/r) .

To complete these introductory remarks, it mﬁy be mentioned that
the eigenstates of 3?6, which form’the basic set in the present form-
ulation{ can be labelled most conveniently iﬁ.tefmé}of the phonon oc-

cupation numbers, - Thus, an eigenstate |u > can be spec;fied as

> = faed, oo, >, (heD)

where nﬁ is the number of phonons described by A = (g,J). The mean

*

*See p. 1l of Ref. 21.
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energy in this state is

n

39

}: oy ( o +.% ) .

. Since all the operators in the cross section formula (3.10) can be ex-

pressed in terms of the creation and destruction operators, it is suf-

ficient to note the following

matrix elements:

+
a}\,lnly

ak|n1,

co nk,

LY nk,

re >

ooo>

relatioﬁs to0 evaluate all the relevant

1]

N+l |ny, ... n, +1, ...5, (L.22a)

Vnk 'Inl,' vo b nx - l, ;oo> . (ho22b)




CHAPTER V

DIFFERENTIAL CROSS SECTION FOR SCATTERING OF SLOW
NEUTRONS BY AN ANHARMONIC CRYSTAL

A. CROSS SECTION FORMULA

We are now in a position éo write down the neutron cross section
formula for a Bravais crystal.' Substituting RZ z+x£ in (3.10), as-
suming thet the spin and spatial states of the scatterer are separable,.
and denoting the spin states by 151 >, 'Sf > and spétial states by

|i >, |f > [note that |i > and |f > in (3.10) include both spatial and

spin states], one obtains

ke . e (£-2')
FyA . Si,Sf . . i,‘f -H‘ )
CT1,TF
' Tnenyg o '
X v (5.1)
€.) & %2 -
- WAmA-Sneny Tneng
A .
where
I
Ay = < Tfsf|az|8171 >, . (5.2)
ikex, v
I, = <fle="tj1>. (5.3)

. In this expression, my) denotes the difference between the final and ini-

tial occupation numbers, viz.,

Lo

Ea 2 3 ;&

a2 o E3 B3 3 £ 3

E2 3 E3 B3 EX &




Henceforth we shall specify the final states in terms of my rgther than
in terms of ni. Then, the superscript i on ni becomes redundant and
hence will be omitted. Note that thé summation on the final spin states
appearing in (5.1) cannot be performed because the width Tneng and the
shift Snfni are also spig-dependent. prever, when the width and the
shift due to the neutron. interaction are neglected, then.the last factor
in (5.1) becomes spin-independent; and fhe summation op.spin statgsvre-_

duces to

N+

}: < siTi|a£aI'[siT£‘>'F§5 . . (5.4)
81,71 ‘ o

The foregoing discussion indicates thatftﬁe spin dgpendence.of the neu-
tron-nucleus interaction does not affect,thefghépe of the lines. (This
point will be ﬁofé apparent in the subsequenﬁ;secfion.) ‘Therefore, we
shall ignore spin effects ‘end replace the average in .(5'.)4). by &%, The

cross section formula (5,1) then reads

kra® ik-(4-2") 4
A f =\ets 2 I%y o
o(§2,§9 = o E e _ Py I,Ij £ Z
- .
' - i,f (é- g ‘ ﬁwxm}\'snfni +7nfni

(5.5)

Our. next task will be to compute the I, Tnfny’ and Sﬁfni appearing in’

the cross section formula.




B. COMPUTATION OF MATRIX ELEMENTS OF exp(iﬁ-iz)

This section is devoted to the computation of I, defined by (5.3).

Using the expansion (h.7), one can write .S, also in~thé followihg form:

X, = Z (a;ga{"‘d}\ga}\) , | (5.6)
' A
where
ayy = (h/2Mwy) 1/2(.‘3.;\'5)-8@(13'9 S A

The.matrix eleﬁent to be compdied is
I = <f£ \ exp[i(a{lax + axzéh)]li >,
Using the operator identity

eA+B = efeB e-(l/z)[A’B] ’ 3 | (5.8)

where A and B-are operators satisfying [A,[A,B]] =.[B,[A,B]] =0, and
expressing the initial and final states in terms'df'occupation'numbers,

one gets:

-X, /2 | o io#,at i, ,a - S
I =7§e A/<m>:rn>\le . Iy >0 (5.9)

where XK denotes
Xy = logg® = (B/amwe) eykl2 . (5.10)

Note that X, is independent of f{. To compute the matrix element in

(5.9), one uses the following relations:




k3
n
ica o (ia) ° n!
e n> = — (n-s)' |n-s >, (5.11)
8=0 ' '
. o ‘
+ ' - - 1 f t
elo¥et o> - }: (n-s-t)!  (1a*) |n-s+t> . (5.12)
(n-s)! t! -
v . -'t=o . .
The result 1s 5 -
t
., -x>/2 Z 2 (1on) (iag,) \/nkl(nx-sﬂz)!
T n)+m) ,n)-s+t
t=0 50 © . (m\-8)! NIV
or
=X, /2 . ) -
II = ;‘ e >‘/ (ia;il)mXan!(nﬁm;‘)!' z : ( XA’)
T oL ' " 620 sl(nxfs)!(mh+s)!

(5.13).

The last expression can'be written in a.compactjway.by'recalling~the

definition of associate Laguerre polynomials; viz,,

Inx) "= Z ()i (9%

b (n-S)!(¥+é);, 51_4

- JCe™2 g™ [t oy, (aw
A . (np+my)! _

which is the desired formula.

as

The product 1117. which appears in (5.3) follows from (5.1k4) as

:F!I,‘l/‘ = ];\E elm}g (—!_) g(n}\ym}\)x)\) ’ (5.15)
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where

‘ ) (0,m,%)

We shall now calculate the thermal average of {7 (ny,my,X;) with

M B X [1hx) )2 . (5.16)

(n+m) !

n

respect to the initial occupation humbers.,_ i.e.,

< g (n}\,m)\,X;‘) > = ( l'Yi) Z Yinx ;7( ),y X}\) ) (5.17)
o (. A g . n>\=O . . :

where -~ °

e-(*ﬁw}\/ng)

I (5.18) |

Droppii'llg' the sﬁbs,ciiﬁts and argﬁménts , and combi.n'ing‘ ( 5;16)" and ( 5.17) ’
one finds
- n! 2
> = (1-y2) e~ Z yn 2 ®
=0 (n+m) ! _

To compute the summat‘ion in the ldst expression, one may usé the follow-

ing expension, given by Magnus (p, 85, Ref. 22):

iy W0R - ) e G
n+m) ! = s!(m+s) !
The: result is
! - m+2s
<> = (1Bt 25(en) ¥ .
sZo (m+s) }: s  (5.20)

The summation on n can be performed by using the generating function for

the associated Laguerre polynbmials (p. 84, Ref. 22), viz.,

SO
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¥t/ (1-t) =
W = Z: In(x)t"
as follows: |
Z:o Lo (2™ = Eelz:ii;i) (5.21)
Inserting the last fdrﬁula into (5.20), one finally obtains¥
> - ym e-x(1+y2)/<;-y2)_1m<i_>_cy% , (5.22)

where Ip(x) is the modified Bessel function of the first kind. This
formula will be used in Section D when we are discussing the cross sec-

tion formula.

C. WIDTH AND SHIFT FORMULAS
In this section, we compute Tneng and ngni‘ "They are defined by
(3.11) and (3.12). It is observed from the latter that they involve

the matrix. element |< n|VP+H'|ny >|Z, which can be .written as follows:

% < Wl 12 >1% + % amel <l O%(0) 1 > < ulw [ >] (k)

< ul)e >Pe(k) (5.23)

n .
where (¥ (K) is the Fourier transform of vV, 1.e.,

S = % ‘/‘.dsr R 2t Z gy X8y
: : £ _ (5.24)

*An alternative derivation of (5.22) was also given by 0. Ruehr, the
Radiation Laboratory, The University of Michigan (private communica-
tion). .
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and where K = k. -k. It follows from (5.24) that (}p(O) is independent
of the atomic coordinates R,; thus the motrix element < wl o) 11 >
is proportional to Sui' The second term in (5.23) is then nonvanish-:
ing only for n = ny. Since the summation in (3.12) ex¢ludes the case

n = n4y, there is no contribution from this term to the width and shift.

Accordingly, one can split [py in (3.12) into two parts as

'_rni =_‘ rrr:i + T‘? P . ' (5-25)
where
| a2
TR = Van, - z —;—n—lﬁ" b (5.20)
+ nény En-Engtie | o .

1 I.'-'z‘ i ‘ . :
o= Hy - z e Rl | (5.27)
‘ i By-Eite N 3

The first term, Fﬁi, represents the broadening an@ﬁthe.shift due to
transitions ceaused by neutrons. It corresponds t§ the natural broad-
ening of the optical lines, The second term, P?, i§ due to transitions
caused by phonon-phonon interactions., In many appiications, the neu-
tron width is expected tb be small compared with Pg. Therefofe, only
the latter will be considered in the remainder of this work. As indi-
cated by .the sqbscript ;, P? depends only on £he‘spa£ial part of the
crystal states provided H'. does not include spin dependence.

Now consider (5.27). First note that H(g) has no diagonal éatrix

elements since .it involves terms containing an odd number of creation’

£ 3 £

2 E3 Ea £33 3

23 e3 3

3 &£ 3 £33
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and destruction operators [cf. (4.19)]. The first term in (5.27) starts
with H(h), which is second order in u, as indicatéd by (4.20). The re-
maining off-diagonal matrix elements in (5.27) start with K3, But,
they are also of the second order infp because of the square. Hence,

P? can be given, in the lowest order, as
3 s -
1"1.1’ = H(il;) - < 1|H(3)(]( -Ej+ie) 1H(5) li>. (5.28)

This is the quantity, provided by the damping theory, which gives the
width and the shift according to (3.11). The shift is related to the
real part of F?. Hence, one finds that the quartic anharmonic potential

contributes only to the shift in the lowest approximation, whereas the

" cubic anharmonic potential contributes to both‘the shift and the width.

The remaining task is to compute the matrix elements in (5.28).

First consider Hgg). It is clear from (h.lh).that the nonvanishing

(1)

terms in the expansion of H are those that contain creation and de-

struction operators in pairs. The possible permutationsvare listed be-

low:
aIa;(alég + 828,) - QN;Na ,A !
ata,ata, + alasata, = N;(2No+1)
ala,azed + 31323155- = 2N;(Nz+1)
ajafasef + apajajaf = (ﬁi;i)(2N2+1J |
aj8z8ief + ajazafal = 2(Ny+1)(Na+l)
ayajatay + azafata;, = N;(N2+l) + (14N,;) N2
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where N; is the number operator, i.e., N; = a}a;. We.recall that ay
and N; denote ay; and Nyp;. Since (4.14) involves a summation on Ao
and Ao, the terms containing a{ and ag in the reversed sequence should
not be considered separately. .Using the invariance of G1,2,3,4 With

respect to the interchange of the subscripts, one obtains -

(L)

1 ‘ «
BHi' = 5 ;E:'Gl,-l,2,-2(n1n2+n1+n2+3) .- (5.29)

J

Y Ly '
As indicated by (3.1l), the shift depends on Hgf)-ﬂgi). The matrix
element in the final state can be obtained easily from (5.29) by re--
Placing the:occupation numbers nj by nj+mj. . Hence,

L L) 1. ‘ :
Héf) - Hgi) = % j{: G1,-1,2,-2 (2nmatmyma+m,) . (5.30)

1,2

We now consider the second term in (5.28). To compute the matrix

element involved, we first calculate H(B)li >, The:use:of'(h.l9) yields:

i) 1> = Z -is—?ﬁ [[(l+n-1)(l+n-2)(l+n-3)]J'/zln-1+l,n-2"rl,n-a+l>
. 1,2,3 : B
1/2
+ [nynana] [ny-1,n2-1,n3-1 >
f
3
' 1/2
+ 3[1’11(1'*‘11-2) n3] Inl-l,n-2+l,n3-l > .
+ 5[(l+n_1)n2(l+n_3)]l/2 |n-3+1,n2-1,n.5+1 >:} . (5.31)

s -1 . '
Since the operator (1? -Ej+ieg) is diagonal in {|i >}, it does not alter

the occupation numbers in the intermediate state H(B)Ii >. Therefore,
L3)

the changes in the occupation numbers caused by the first have to

3 O 0 £33 3 3 M &

esn B |

O O
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be removed by the second H(B). It is convenient to write the latter
by reversing the sign of the subscripts and using Gfl;' ,=3 = G§,2,3

as follows:

(3) 1

H = E: Gf,g,a[a{a§a§4a_1a-éa_3+3(a_laga;3+a{a_2a§)] .
1,2,3 (5.32)
FEach term in (5.31) has to be matched by the appropriate term in (5.32).
For example, the first term in (5.31), which corresponds to the crea-
tion of three phonons characterized by -A;, -Az, and -Az, will be paired

by the second term in (5.32). However, since two sets of three numbers

can be paired in 3! ways, this term has a factor 3!. ~Similarly, one

can see that the combinatorial factors for the second, third, and
fourth terms in (5.31) are 3!, 2!, and 2! respectively. With the fore-

going remarks,‘one finds:

<,1|n<3)<5’r”s-Ei+ie>?lx<3> 1> ) [62,2,5]2 | (140-) (1#n.2) (14n-o)

1,23 3%h wytWaotwatie
+
nyNpha . n,{l+n_s)na . (1+ny) n.o(1+ng) . (5.33)
Wytwotwa-1e Wy +tWa-Watie Wy~Waotwatle.

In obtaining (5.33), we have not considered the special cases in which.
& phonon is created and asbsorbed at the same vertex (instantaneous
phonons) , or in which two or three intermediate phonons are identical.
Instantaneous phonons correspond to those termé in (4.19) in which a
pair of creation and destruction operators belong to the same moﬁe,

viz;; A2 = -Ag Or A2 = -A;. Since these terms are multiplied by G,,2,-2,
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they vanish by by virtue of (4.18). Hence, instantaneous phonons do |
not occur at three phonon vertices in a Bravais lattice.6 Identical
intermediate phonons arise when two or three creation (or destfuction)
operaﬁors in (4.19) are of the same kind. As an example,‘consider the
second term in (4.19) and assume that Aé = Aa; Thi§ term would give

¥

rise to i

R n:f ng-l) jet-)

witewo-ie
which is different from the corresponding term in (5.33) obtained by

setting Ao = Ag. The appropriate corrections for these special cases -

can be included in (5.33). But their contribution can be ignored, as

will be discussed presently.

The matrix element in the final state can be obtained from (5.33)

again by replacing ny by np+m). The difference between the two metrix

elements is then found as:

< £|H3 (HP-Bprie) 2 uD) |2 > - < 1|H(5)(}7(s-Ei+1e)'IH(?5:.|'1~ > =

Z 161,231 | 3my(14np) (1+ng) +3myma(1+ns) +mymsms

314 Wi tWotWatie
1,2,3 1Therrs

. _ OMyNoNgt3mymong+m,moms

wytWotwa-ie

+ 3 2m1( l+n-2) Na+m-o-n 1n3+2mlm-2n3+m lmé( 1l+n- 2) +MmyMm-oMa

-WitWo-watie

+ 3 2myn-p( 1+na) +m-o(1+n,) (1+ns) +2mym-( 1+ns) +myman-o+mym-omg |,
: Wl -Wo +W3+i€

(5.34)

€N 3 &E23 & &8 533 33 &89 6 /|, £33

ED D O 3 e &3 € £




The shift and the width can now be obtained by inserting (5.30) and

(5.3&5 inté (3.11):

. 1. 2
s¥i = E z Gl, -] 2’ -2 ml( 2nl+l+m2) Z |Gl’2,3 I
1’2 . 2 .

RI"

x PP ]§l+n2+n§!+m3m2 + 2ml(n3 n-g)-m-2(1+nl+n3)-2mlm-2+m3m3
Wytwztwg Wo-Wi-W3

(5.35)

7fi = gﬁ\ }: |G1 2 3! [2m1(n3+n-2+2n_2n3)+m-2(l+n1+n3+2n1n3)

1,2,3

+ mlm-2(2n3+l)+m1m3(2n;2+l)+2mlm,2m3]6(wl-w2+w5)

In the case of creation or annihilation of:phonons of one kind, the

above formulas simplify considerably. Then,.the final state differs

from the initial state in the occupation number of the excited (or de-

excited). mode only; Let the latter mode,be'denotqd by Ao+ Substituting

my .= Mg, for A=2»N ‘,"

= 0, otherwise ,
one obtains the shift and the width.in thise case as:follows:

D m N m 2
Sfi = 59 §: Go,-0,1,-1(2n;+1) - 5% }: 1Go,1,2]

+nq+ ‘Neg- +n_q+n-
x PP ltngtn, . 0o -np _ l4n_jd4n-o (5.37)
Wotwyt+wae Wo=~Wytwa Wo=Wi-W2 .

(5.36)

W r——
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7?1 = gg |mg | }Z |Go,1,2|2'{:[(l+n-1)(1+n-2)+n-19-2]5(vo“31'wz)»

1,2

+ 2[(l+n-1)né+n-1(l+na)]8(wo-wl+W2{} - (5.38)

Note that we have disreéafded the terms céntaining the product of two
or three my ih:ebtaining (5.37) and (5.58)."The%e terms are nonvanish-
ing only in the special casesﬁdiscussed previously. Consider the terms,
both in (5.35) and (5.36), which contain mym_». .They are nonvanishing

i ) ‘ i
only when Ay = -A2 = Ao. But in that case, G, .j), vanishes by (4.18).

The terms containing mymp (or mymg), which are proportional to GaoroNy?

do not necessarii& vanish. Their contribution to the shift and the

‘width in (5.37) and (5.38), however, may be neglected as compared with

the remaining terms because they involve.bne more constraint than the
othér terms. " |
Equafionsf(5}37) and (5.38) are the shift and;width formulas of -
the present thedfy. The following'physical interpfetation‘for the width
seems to be in order. Suppose that a phonon SSD)JO) haé been cfea£ed
by neutron interaction. This phonon is of coursé indistinguishable
from the already existing phonons in that particular normal mode. In
view of this indistinguishability, the concept of‘lifetime of the
created phonon requires careful consideration. 6ne can define the life-
time of an additional pﬁonon in g given normal mode as tﬁe reciprocal
of the absolute value'qf difference between the ﬁidths associated with

two crystal states which differ from each other by 1 in the occupation
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number of the mode described by 955do¢ The lifetime defined as above
depends on the initial crystal state. The mean lifetime can be obtained
by takiﬁg the thermal average.

According to the foregoing definition, the lifetime of an additional
phonon is determined by the transitions involving the normal mode g5,Jq-
There are four types of‘ﬁuchltransitions'if the interaction between
phonons is approximated By-the cubic anharmonic potent;al. These are

shown schematicélly as
(qo,Jo) (g_l,Jl) + (Q2:J2) . (5.39a)
(25500 * (21,31) = (@=,d2) - (5.39b)

The first and the third of these transitions corrgspond»to the annihila-
tion, and the remaining two to the creation, of a phonon in the normal
mode under considefation. An inspection of (5.38) reveals that 7P con-
tains Just these four phonon processes with appropriaxe emplitudes. The
concept of lifetime as introduced above applies equally well to the
annihilation.of & phonon.

In.the zero temperature limit, the foregoing definition of phonon
lifetime becomes more concre£e. In this case, the width of the initial
state, i.e., the ground state of the crystal, 1s‘zero. Since there is
only one phonon in the final state, the lifetime of the latter is actu-

aliy equal to the mean decay time of the created phonon.
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D. DISCUSSION OF THE CROSS SECTION FORMULA

We are now in a position to discuss some aspects. of the cross sec-
tion formula (5.1). Since we have decided to specify the final state
in terms of my, i.e., ni = my+n), the summation on final states in (5.1)
can be replaced by summation on (m;,ms,.. .mk,...m5N) . The limits of
these summations are -n) and +w. But, as indicated by (5.15) and (5.16),
the matrix elements, of exp(_i_vgog-z) vanish automatically when m) < -n,).
Therefore, one can replace the lower limits by -e. Since the limits
then become independent of the initial occupation numbers, the order of

the summations on initial and final states can be interchanged. With

these remarks, the cross section formula takes on the following form:

+o0
ol w, 9) az kf Jf Z Z (1-y%) n’\F(m;\,_):/(mh,nh,X)‘)]

A=L my=-e n)=0

. _T(m,n) , L (5.0

2
l:w'-z: vxux-S(m,n) | +I%(m,n)

A

where we have introduced

Rmy®) = § Z ei(ﬁ-m*‘g)'u'z')‘;n '.(5.h1)
£ : ' :
wo= weedad) , (bue)
I(m,n) = I(my,ma,...m3y30y,02...03y) = (1/'1&)??1 ,  (5.43) -
8(m,n) = S(my,mz...may;ny,nz...nsy) = (1/B)Spy . (5.kk)
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The expression for SPi and yB; are to be substituted from (5.35) and
(5.36). All the quantities enteriug the cross section formula have now
been defined explicitly. The remaining task is to consider the various

limiting cases, such as zero and high temperature limits, and to ex-

tract some information. about thé'shape of the observed peaks in the en-
ergy spectrum of scattered neutrons.

First; we want to show that (5.40) reduces to the cross section
formula for scattering‘bf neutrons by harmonic crystals, when I' and S
tend to zero. Indeed, wﬁéh I = S =0 the last factor in (5.40) ap-
proaches a delta fgnctioniand becbﬁes indépendent,of the initial occupa-
tion numbers. Then the thermal average oflijkmx,nk,xx)”can be performed
independently, which follows from (5.22) as

Z '(l.'yi)?'inh.:/(mwnwxx) = e (e, (5.43)

gm0 RO B , .

where we have introduced for brevity

g Lo =R/, (5.48)

m.

P

\ = 2n/(198) . I (5.47)

The factor exp(-2W) is known as the Debye-Waller factor.

With the foregoing remarks, (5.40) reduces to

+o0
U(W;é) = az(kf/ki)e?zw Z ) <’ -ZW@Q TCF(m}‘,;ﬁ)Y;\mK Imy(Py)
: A A .

m=-co
(5.18)
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where m denotes the set (ml,mg,...ij). This formula is identical to. .-

the differential cross section formula obtained by Zemach and G-laulu—:r."fe5

The novelty about (5.48) is that it is obtained, without resorting to
Bloch's theorem to perform the thermal averages, by thg mathematical :
identitigs proved in Section B. The preéent derivation séems to be
more straightforward, It might be informative to mention that we could

|
not use quch's theorem in the original cross section formula (5.1) be-

causéb of the last.factor in the formula which appears as a delta func-,
tion in the conventional formulation of the cross section. We could
.ngpfperform the summation on final states, and_this is needed for the:,
application of Bloch's phéorem.

Second, we investigate the cross section in thg zero'temperature(_
limit, where all the occupation numbers are zero. As mentioned pre-
viéﬁéiy, the cr&s;al is.in.the ground state in tﬁisdlimit. Equation

(5.40) reduces to the following form as T + O:

3N 4 .
o(w,é) - 22 s e-ew(o) []—z z F(mx;ﬁ)()g;\l.wm);!) '
‘ A S

n k3
m)\=0 .
.  I(m,0). SRR -
X - ’ ) . (5.49)
' 2
W o- Z wam\-5(m,0) | +r3(m,0) X
x
where we have used
. "-x m
’j (m}\) 0, x}\) = € )\( X)xk/m}\: ) .

*3ee alsoc p. 52 of Ref. 24,

3 =3

3
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In the last formula, I'(m,0) and S(m,0) are to be obtained from ( 5.35)

d (5.36) by setting n; = ng = ng = O everywhere. It is noted that
(5.49) contains only the positive values of m, as a result of m,; in
the denominator. Physically, this implies that the crystal cannot give
energy to neutrons when it is in the ground state. The cross section
for one-phonon excitation, which is pfobably the most interesting case
from the experimental point of view, can be obtained from (5.49) by

setting

my =1, for A=>nx,

0, otherwise.

The result is

\ 82h k Kee RS
| G(W,g) EI(M ki 5(&’ -&)) z Vo, - (w-wo-S)2+r?' ’ (5.50)

where S and T are obtained from (5.37) and (5.38) by substituting

me = 1 and ny = O:

1 E } ' 1 1
S = — Go, - - +'-— G PP - l
24 ©,=0,1,-1 o2 | ©s1 2| [;o-wl—wg Wotwytia ’

1 1,2 ,
o (5.51)
. o :
I = == }Z |Go,1,2]" &(wo-wi-wz) . . (5.52)
o 1,2 ' ' :
Apart from differences in ?otations, this formula is identical to that

obtained by Maradudin and Fein.6




We now consider the cross section :at a finite tgmperaturef EBqua-:7
tion (5.40) expresses the cross section.as a weighted supcrposition of
a sequence of Lorentzian distributions with different widths and shifts.
For each initial and final state there corresponds‘g_Lorentzian»distfibu-
tion. For a specified final state, the average,qf-the appropriate
Lorentzian distributions over initial states, gives.a peaked curve which
corresponds to aﬁ observed lineAin~the neutron spectrum. Although the-
individual distributions have a Lorentzian form, their thermal average
will not in general be a Lorenfzian distribution. However, as an ap-
proximation; one may replace.%he resuitgnt curve by a lorentiian dis-
tribution with an average width‘anélsh;ft; benoﬁing the average width

and shift by T(m) and S(m), one obtains the following cross section

formula:
k N\ .
. g(w’é) - ia é -2W Z P(mL S ij(mX’—) yk Im%.(PA')
o [ Zw—s mi +Fm T (5.53)

The average shift and width are to be obtained-from (5.35) and (5.36)

by replacing the occupation numbers ny by their mean values, viz.,

: m, =ny§/(l-y§ . Note that the approximetion made in getting (5 53)

from (5.40) is equivalent to replacing the average of a function by
the function of the a&eraged variables. The cross section for one nor-
mal mode interaction is obtained again by choosing the set :

m = m,ma...may in (5.53) as m = (0,0,...m,,0,...). . The result is
/ - '
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a2 kr

oW -
ofw,8) = el F(mo, ) ¥g © Ing(Po)

T( |my|)
[w-mowo-5(mg) 13+12( |mg |)

x]—C I(P) » | , (5.54)

Mg
where
=y | Mo, i 2
S(mo) = 25 'Go,-o 1,-1 (2nl+l) '.ﬁ |G0,1,2|
1
X PP [J."‘Hl'f:r_]a_ + Hl'ﬁz - l‘f‘ﬁ]f"ﬁ)2_] . (5.55)
WO+W1+W2 WO—W1+W2 Wo=W3i=W2 ,
- LS
F(lmol) = 2 V“o| }Z |Go 1 2| ‘[[(l+n1 (l+n2)+n1n2]6(wo-wl-w2)
1,2
+ 20(148,) Faiy  14732) Ja<wo-wl+w2')} . (5.56)

Equation (5.54) can be further simplified in many applications by using

the asymptotic value of Ip(x) for small arguments, i.e.,

Im| 1

()~ (x/2) "
as follows:’
) _ a2 ke -ow 1 A . 2|m°|~
o(w,8) = =i F(mo, k) T [zmwo % sol:lA
"-Bﬁwo(lmol'mo)/2 - ‘
e T
(Jm0|) . (5.57)

(l_e'Bﬁwp)lmol [w-womo-gkmo)]2+?2(|mo|)




In the zero temperature limit, this cross section vanishes when mg < 0
as a result of the factor exp[-phwy( |mg|-my)/2]. This result is in
agreement with (5.49). As a matter of fact, (5.57) redﬁéés-exactly to

(5.49) when the temperature approaches zero, although it involves one .

more approximation over (5.49), i.e., replacing the width and the shift

by their mean values. The réafon for this is that the latter approxi-
mation becomes exact in the zéro teﬁpérature limit, f -

The dependence of the cross section on mg,, i.e.,(the number of
phonons exchanged between the éfystal and the neutfon; is exhibited by
(5.57). Because 6f the exponential factor in the numerator, the cross
section . for the energy transfer from'the neutron to the crystél is
greater thah the cross section for an energy transfer to the neutron
by & factor exp(-Bhwg |mo|]. At high temperatufes:-both processes be-
come equally probable, lThe shape of the peaks in the:neuﬁrqn spectrum
depends on |my|. Hence, the shai)g is the sa.me.for“poth the creation
and annihilation of phonons. Furthermore, since the wiqth is propor-
tional to |mg|, the peaks are bfoé&ened and réducedlin height when the
energy exchange gets larger, The shift of the lineélis proportional

to my , end thus depends on the direction of the energy transfer,

There will be two identical peaks.in the neutron spectrum on both sides

of the incident neutron energy, corresponding to the creation and an- -

nihilation of equal number of phonons.
The cross section formula agrees exactly with that obtained by

Maradudin and Fein® except for the value of the width (5.56). The dis-
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agreement lies in the sign of the terms T,f> and n,(1l+hp) in (5.56).
These two terms arise from the imeginary part of the last term in (5.3k)
when e+0+. One observes that the real parts of the last two terms which
enter the shift formula are subtracted, whereas the imaginary parts are
added. Since our shift formula agrees exactly with tﬁat obtained by
Maradudin and Fein, it is very unlikely that the foregoing discrepancy
inlthe width formula is just an arithmetical error in the present cal-b
culations. Moreover, the terms appearing in the width formula (5.56)
have simple physical interpretation. As mentioned earlier, the first
and third terms correspond to tran;itions-in which a phbnon is annihi-
lated, whereas the remaining terms whose sign is the‘point of disagree-

ment correspond to those transitions where a phonon is created. In

.either case the number of phonons in the mode under consideration

changes. It is\not clear to us why the trangitions corresponding to an
increase in ﬁhe phonon number should tend td-decrease the width, and
thus to prolong the lifetime,

As a result of the foregoing discrepahcy, the temperature de-
pendence of the width at high'temperatures,1sléuadratic in our case,
whereas it is linear according to the result obtained by Maradudin and
Fein. The expression for the shift.and width ip the high temperature
limit is qbtaiped by replacing the mean occupation numbegs in (5.55)

and (5.56) by kT/fiv,. Hence, one obtains
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2
- - - G
S(mg) = o kT |2 j{; Go, Ozlz 1 }E | o,l,zl .
v, Wa
x pp| Yat¥z , _Met¥y _ __Wyi¥Wp , (5.58).
WotWi+Wa .WO-W1+W2- Wo-Wi-W2

_ 2 e 2 :
T( |mo|) = ﬂl%l»(,ﬁ%) Z ',_9"_1""-2"'" [B(Wo'wl'w2) +5(Wo'w1+w2)]

1,2 . b o o . (5959)f

As a final remark we note that the cross éeétibn formula at a'

finite temperature, i.e., (5.53), was obtained from (5.40) by replacing

the width and the shift by their mean values. As discussed in Ref. 10,

this épﬁroximation is justified when the width of the individual

Lorentzian'distribﬁtibns corresponding to different initial states is

large compared with their shift. If this is not the case, the observed

width will be dominated by the statistical spread in the locations of
the narrow Loreh%zian diétributions. A measuré of this statistical

spreed is the standard deviation of S(m,n) defined by (thh), viz.,
r2(m) = 82 -8 . L (5.60).

As discussed in Chapter IV-D of Ref. 10, rg(m) may be added to I'3(m),
as a first approximation, in order to include the statistical broad-
ening in (5;5&).“ The relative magnifudes of Fé(ﬁ) and Te(mf will de-

pend on temperature. We shall not attempt here to write down the ex-l

pression for the statistical broadening because it is'rather long and
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not very informative. However, it is straightforward to calculate Fg(m)
from (5.44). We only note that it is a linear, homogeneous function of

the variance ¢

N of the occupation numbers, i.e.,

o ~Phv

ZIT;tEﬁ;K;E . (5.61)

At zero temperature all oi are zero, indicéting that the statistical

broadening, as expected, is not present. At high temperatures, qi and

thus Z(m) are proportional to T2, whereas according to (5.59), I'®(m)

is proportibnal to T%. Therefore, it may be expected that the statis-

tical broadening will not be significant at any temperature in a crys-

tal. It is interesting to recall that the width of the optical lines

from a plasme is determined by the statisticql broadening in the quasi-
static limit, i.e., when the motion of tﬁe'pertufbers is sufficiently
slow. In the impact limit, the width is determined by the finite life-
time of the emitter state§.: It thus appears.that the width of the ob-
"served peaks in the neutron'spectrum is caused primari;y.by the finite
lifetime of the crystal statés rathér than}bylthé.statistical spread

of the lines.
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CHAPTER VI

SUMMARY AND CONCLUSIONS -

In this work, a general theory of line shape which is applicable to
the study of both neutron and photon spectra has been developed and used
to investigate the scattering of slow neutrons by an anharmonic crystal.

The starting point of the preéen‘t ‘theory is (2.55), viz., '

[Upn(t) |2 |70 7m |

Wmn = 1 & |vhnl2

U Eys) ~(Bytsp) PH(8/2) (rq-y)®

This formula reduces to the éonventional expression of the transition
probability per unit time from the initial -state |n > intq the final

state |m >, i.e.,
2 2 "
Mo = 2 [Van|” 8(Ey-Ey)

vhen the states are sharp. Equation (2.55) is an extension of

| ' V2
Vin = |V |® 2 ’

(Bp-Bn-8p) “+(8/2) 72

which has been obtained by Heitler9 to investigate the natural broad- .

ening of the optical lines. The latter follows from (2.55) by setting
Sm = 7y = O, and thus applies only to the.cases wherg the width and
.shift of the final state is négligible. In the study of the optical -
lihes, the interaction of the emitting atom wiph its surrounding’in

the final state can often be neglected since the atom is more tightly

6k
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bound in the final state, which has a lower(enérgy; This is particularly
true il the final state is a ground. state of the atom. In such appli-
cations, the neglect of Sy and 7, is justified. “However, in thé'stugy

of line shape . in the neutron spectrum, or in thé study of optical line

-shape involving transitions between two excited levels, the decay of

the final state cannot generally‘befignored.' In such applicsations, the
use of (2.55) is imperative.~:

When applied to.the scattering of slow neutrons by an anharmonic *
crystal, the pre;ent theéry yields, in the lowest approximation, the '

following expressions- for the width T end the shift“g of the’ observed

' peaks [cf. (5.28) and-(3.21)]: -~ . .- u fﬁ-fﬁ

T

< 21
§ = <Rellim (rg-r§) 1>,

e+0 o
where o : ' ‘
. 'i|'<H<u) e R ﬁ(’i))h;, |

T

where the:final -state differs.- from .the-initial state byilvin the 'number

5

of the occupation number of the normal:mode -under considération; and "
where the symbol'<a--~->T denotes theﬁthermal“averaéeﬁ -At.any'tempefn’
ature, the shift S calculated by the foregoing formulas agrees exactly,
apart from differences in notations, with the shift formula given by
Maradudin and Fein.6 However, the width formulas agree exactly only

in the zero temperature limit. At finite temperature, the width
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. formula (5.56) differs from (5.5b) of Ref. 6 in the sign.of' the second’

and fourth terms. The present theory predicts a larger width:than that -

predicted by Margdudin and Fein, Furthermore, the fempe:ature depend -
ence of the width at'high tempergtures'is;quadratic~accordihg to (5.59)
of the present work,'whérgas it is linear in Ref. 6. The preéént width
formula may yield-a-betterAagreement with the ex?erimental data than
the agreement reéorﬁed.by'Maradudin and Fein, because their calculated
vaiues seem to be smaller than;the experimental values obtained by
Brockhouse et 2;.1'
When applied to the study ‘of the oétical lines;lo*the present'thg-

ory yields a line shape formula which contains the two limiting approx-

imations, i.e., quasi-static and impact approximations, as special

cases. It'treats the electrons and ‘{fons on the same baéis,'thereby in-

cluding the motion of ions in the ca;gulations.

-It may be concludeq in geﬁeral that the fresent theory of line
shape is more systematic, simp}er, and more in@erpretable-ﬁhan the
existing liﬁe shape ﬁheorieé bétﬁ for neutrons épé‘fhotons.‘ The theory
can now be applied wifh.reasohable.confidence to tﬁé intgfpretaiion Qf
a varigty of experiments ianlving photons ahd néutrpns; e.g;;'iasers

and scattering of neutrons by liquids.
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APPENDIX

SIMPLIFICATION OF CUBIC ANHARMONIC POTENTIAL

Write (4.13) explicitly:

(3) + + _+ + _+ + +
B~ Gl’Z’:S (&- 18-p8.31+88p8518-8-p8318-858.3

;]',2)3

+ ajatsat e asatsta atsagtat azas) (A.1)

Consider the third term, and observe the following identities:.

: + o+ +_ o+
Z G1,2,3 8-j8-283 Z Gy 2 3 8-18-382

1,2,3 1,2,3

= + + 4 +
= Z Gi,2,3 8-1828-5 + Z G1,2,3 afilals,ez] .

1,2,3 1,2,3 (n.2)

Note that the first term of the last line in ( A.2) is identical to the
fourth term in (A.l). Repeat the seme procedure for the fifth, sixth,
and eighth terms in (A.l), and get

#3) ~ Z Gl,g’a[(a‘.*lai'gafamlazas) + 3(at,apatatajatzas) ]
1)213 -

+ z G1’2,3%‘il[a;t3o’a2] + [8.2,8.1-1]8:3 + al[aa,&tal + [ai’g,al]as}.

1,2
1855 (4.3)
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The second summation in (A.3) vanishes owing to the commutation rela-

tions (4.9), viz.,

(aZ3,82 = -82,-3 ylap,al;] = 8-1,2 ,lag,ala] = 83,-2 ,[atz,ﬁll = =B1,-2
Using these in (A.3), one finds

i .
}: [-G1,-3,2 8-1 +G1,-1,2 82 +Gy,2,-2 &) -G-1,1,2 a2l ,

1,2

/

which vanishes as & result of the invariance of Gl’g,s under the inter-
chenge of the subscripts. The same result follows also from (4.18),
which indicates that the individual terms in.the last expression are

zero.
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