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SUMMARY 

Detailed m e a s u r e m e n t s of performance and energy t ransfer have been 

made on two highly ins t rumented cyl indrical ces ium thermionic conver te rs 

with e lec t r ica l ly heated tungsten e m i t t e r s . The f irst converter , OC-4, 

which had a niobium collector , operated with an initial e lec t r ica l output of 
2 2 

6. 9 w a t t s / c m . This output gradual ly degraded to a value of 4. 6 w a t t s / c m 

after 1351 hr . These power values were m e a s u r e d at the e lect rodes for 

an average enaitter t empera tu re of 1750 C. Converter OC-5, which had 

a nnolybdenum col lector , has operated 260 hr to date, with a power output 

and efficiency of 11. 1 w a t t s / c m and 16%, respect ively, at an average 

emi t te r tenaperature of 1800 C. These operating data a re compared with 

those for lower emi t t e r t e m p e r a t u r e s below. 
Emi t t e r 

T e m p e r a t u r e 
(°C) 
1800 

1600 

1400 

1200 

Power 
Density 

(wa t t s / cm ) 

11. 1 

7. 5 

4. 2 

1. 0 

Efficiency 
(%) 

16 

12 

8 . 4 

4. 9 

Energy values of the emi t t e r e lec t ron cooling, collector e lec t ron 

heating, t he rma l radiat ion, and ces ium conduction were ca lor imet r ica l ly 

de te rmined as a function of emi t t e r t empe ra tu re , collector t empera tu re , 

ces ium p r e s s u r e , and cur ren t . For a l l the data obtained, the emi t te r 

t e m p e r a t u r e profile was m e a s u r e d by thermocouples . F rom the ca lo r ime te r 

m e a s u r e m e n t s , cor re la t ions were found for the predict ion of emit ter 

e lec t ron cooling AQ and collector e lec t ron heating AQ : 
E Ci 

AQ^ = I (2. 6 + V) , 

AQ^ = 1 (2 .6 ) . 



i i 

The cor re la t ion is valid within 4% accuracy over the operating 
o o 

var iable range: emi t t e r t empera tu re of 1200 to 1800 C; ces ium r e s e r v o i r 
t empera tu re of 300 to 400 C; collector t empe ra tu r e of 600 to 700 C; 

2 

and cur ren t of ze ro to 15 a m p / c m . Through m e a s u r e m e n t s of emi t t e r -

s t ruc tu re heat l o s se s , of the ces ium-vapor t he rma l conduction, and of 

the e lect rode radiat ion heat t ransfer , it was found that all the z e r o - c u r r e n t 

ene rgy- t r ans fe r quanti t ies can be accura te ly predic ted with RAT, a two-

dimensional d ig i ta l -computer hea t - t r ans fe r code. 

The e lec t ron cooling corre la t ion, together with the ability to calculate 

al l of the power - loss values in a thermionic conver te r , makes it possible 

to compute the efficiency of a conver ter when the I-V cha rac te r i s t i c s and 

m a t e r i a l s p roper t i e s a r e known. This is of special in te res t to thermionic 

r eac to r analys is , since the input to the r eac to r problena is the amount of 

f ission produced in each of a very la rge number of cells within the r eac to r . 

Apart from the utility of the cor re la t ion discovered, the determinat ion of 

the value of 2. 6 volts in the cur ren t -hea t ing t e r m s is of fundamental in te res t 

and invites fur ther study. 
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I. INTRODUCTION 

* 
The f i r s t objective of the Mark VI out-of-pile conver te r test ing 

p r o g r a m is to obtain bench per formance data from the cell which is the 

counterpar t of the in-pile c o n v e r t e r s , for the diagnosis of any further 

design, m a t e r i a l s , or fabrication p r o b l e m s . Two conve r t e r s , designated 

as OC-4 and OC-5 , were fabricated and successfully tested to meet this 

initial objective. 

The second objective of the out-of-pile testing p r o g r a m is to p rec i se ly 

de termine the thermionic ene rgy - t r ans fe r p roper t i es of these conver te r s 

for use in the analysis of thermionic r eac to r sys tems employing s imi la r 

ce l l s . The energy input to conve r t e r s at zero cur ren t can be computed 

from the p rope r t i e s and geomet r ies of the naaterials used. At finite c u r r e n t s , 

however , the emi t t e r power input is a function of the operating var iab les 

of emi t t e r t e m p e r a t u r e , col lector t e m p e r a t u r e , ces ium p r e s s u r e , and 

cur ren t . It becomes one of the p r i m a r y goals of this work to find cor re la t ions 

for predict ing the ene rgy- t r ans fe r quanti t ies ar is ing from the conduction 

of e l ec t r i ca l cu r ren t between the conver te r e lec t rodes . Although misnamed, 

these energy quanti t ies a re coinmonly t e rmed "emit ter e lec t ron cooling" 

and "collector e lect ron heating. " 

To obtain these cor re la t ion r e s u l t s , experimental techniques have 

been developed that are more sophist icated than those prac t iced previously. 

Exper iments were performed for the determinat ion of accurate emi t te r 

t empera tu re dis tr ibut ion (Appendix A), and for the measu remen t of the rmal 

energ ies received by the col lector (Appendix B). The la t te r exper iment 

was accomplished with a conduction-type ca lor imete r in which the heat 

t r ans fe r was calculated from the m e a s u r e d t empera tu re gradients . A 

* 
Mark VI is the designation for cyl indrical conver te r s designed and 

built for in-pi le and bench t es t s under AEC Contract AT(04-3) -167. 

1 
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pre l imina ry exper iment was performed on the ca lo r imete r to ca l ibra te 

the ra te of heat conduction. 

The ene rgy - t r ans fe r m e a s u r e m e n t s and cor re la t ions were obtained 

with both OC-4 and OC-5. However, because a g r ea t e r number of naeasure-

ments were made on OC-5 and with g r e a t e r accuracy, only the OC-5 

energy re su l t s will be repor ted here in (Sees. 5. 2 and 5. 3). The testing 

procedures for determining the performance and energy data a r e outlined 

in Appendix C. A h is tory of the conver ter operation is given in Appendix D. 

The reduction of data by a d ig i ta l -computer code and the ins t rumentat ion 

used a r e descr ibed in Appendixes E and F, respect ively. 

II. CONVERTER DESIGN 

The Mark VI out-of-pile conver te r and the e m i t t e r - t e m p e r a t u r e -

profile and co l l ec to r - ca lo r ime te r ins t rumentat ion a r e shown in Fig. 1. 

These cy l indr ica l -geomet ry conver te r s have emi t t e r s of vapor-depos i ted 

tungsten. Two conver t e r s , designated OC-4 and OC-5, were fabricated 

with the design features l is ted in Table 1. 

Table 1 

DESCRIPTION OF TWO MARK VI CONVERTERS 

OC-4 OC-5 

Emi t t e r 

Area , cm^ 14. 8 14. 0 

Wall thickness , in 0. 152 0.213 

Collector m a t e r i a l Niobium Molybdenum 

In tere lec t rode spacing (cold), in. . 0. Oil 0.010 

Emi t t e r lead 

Mater ia l Tantalum Tantalum 

Area / l eng th 0. 0536 0. 0787 

In te re lec t rode insulator m a t e r i a l . G. E. Lucalox G. E, Lucalox 

Ca lo r ime te r m a t e r i a l Niobium Molybdenum 
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Emitter 
rmocouples 

Insu la to r 

Ca lo r ime te r 

Col lector 

Radiation 
Shields 

Emitter 

-Air 

Cesium Rese rvo i r 

F i g . 1 - - D e s i g n of M a r k VI o u t - o f - p i l e t e s t c e l l s O C - 4 and O C - 5 
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Measuremen t of the emi t t e r t empera tu re profile is made possible 

through cor re la t ions developed in separa te exper iments that allow the 

computation of the emi t t e r t empera tu re distr ibution from the t e m p e r a t u r e s 

of four W/W—26 Re thermocouples located in the emi t te r walls at four 

axial posi t ions. 

The col lector ca lo r ime te r , as shown in Fig. 1, is a th ick-wal l 

cylinder which has located in it many smal l thermocouples for measur ing 

axial and rad ia l t empera tu re profi les . Ten tantalum radiat ion heat shields 

a r e located at its axial ends to reduce axial heat losses to l ess than 1 watt. 

Heat is removed at the outer edge of the ca lo r ime te r through 16 closely 

spaced cooling tubes. A flow of cooling a i r is uniformly dis t r ibuted 

through these tubes by the use of baffled heade r s . Calrod-type hea t e r s 

a r e provided in the outer edge of the ca lo r ime te r between the cooling lines 

for automatic t empera tu re control of the collector . 

The total amount of heat removed from the collector is the sum of 

the heats conducted away in the upper and lower sk i r t s of the collector and 

the heat conducted through the ca lo r ime te r to the cooling l ines . Calibration 

exper iments were performed on the ca lo r ime te r before the conver te r was 

instal led, as descr ibed in Appendix B. It was determined with the OC-5 

c a l o r i m e t e r that the collector heat t r ans fe r could be de termined to an 

accuracy of ±35 watts , which re su l t s in a 4% e r r o r for a total power 

throughput of 800 wat ts . Only smal l e r r o r s a re introduced in the total 

col lector heat by the uncer ta in t ies in the t empera tu re gradients in the 

col lector sk i r t s , since re la t ive ly low ra te s of heat t r ans fe r a r e involved. 

III. INITIAL POWER-OPTIMIZATION MEASUREMENTS 

Among the init ial m e a s u r e m e n t s obtained on these conver te r s a r e 

the power-opt imizat ion data at emi t te r t empe ra tu r e s of the o rde r of 1800 C. 

Optimum values of cell cur ren t , c e s i u m - r e s e r v o i r t e m p e r a t u r e , and 

collector t e m p e r a t u r e a r^ de termined while the emi t te r t empera tu re is 

maintained constant at a p redesc r ibed value. It is impor tant that these 
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data be obtained as ear ly in the cel l life as possible in o rder to determine 

if any per formance degradation is occurr ing during the initial hours of 

operat ion. 

The p roces s of determining the optimum values of the operating 

var iab les that give maximum power output is an i terat ive p rocess because 

the va r iab les are interdependent . When the final optima are found, curves 

of the power output ve r sus the var iable in question are obtained, as shown 

in F igs . 2 through 5. These power outputs a re obtained at the conver ter 

l eads . The maximum power produced by OC-4 and OC-5 and the optimum 

values of the operat ing var iab les have been extracted from F igs . 2 through 

5 and a re l is ted in Table 2. 

Table 2 

COMPARISON OF PERFORMANCE OF TWO MARK VI CONVERTERS 

OC-4 OC-5 
(Niobium (Molybdenum 
Collector) Collector) 

Maximum power at conver te r 

l eads , watts 80 128 

Average emi t t e r t e m p e r a t u r e , C . . . 1750 1800 

Optimized operating var iab les 

Voltage (lead), volt 0. 59 0.67 

Cur ren t , amp 135 190 

Cesium r e s e r v o i r , C 350 350 

Col lector , °C 730 700 

Maximum over -a l l efficiency at 
emi t t e r l eads , % 9.2 13.6 

When compar ing the outputs of these two conve r t e r s , the obvious 

difference is the vastly improved per formance of OC-5 over OC-4. The 

causes for i ts bet ter performance are believed to be (1) c loser hot spacing, 

(2) m o r e uniform emi t t e r t e m p e r a t u r e , (3) lower collector work function, 

(4) no re s i s t ive oxide on col lector s u r f a c e , ' ' and (5) a 50°C grea te r emi t te r 
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t e m p e r a t u r e . If OC-5 were compared with OC-4 on the bas i s of an average 
o 

emi t t e r t empera tu re of 1750 C, it would have had a power output of 8% 

le s s than is repor ted at 1800 C. Even with this allowance, OC-5 has a 

power density 60% g r e a t e r than that of OC-4. 

Maximum power m e a s u r e m e n t s for OC-5 were also obtained at 

emi t t e r t empe ra tu r e s of 1200' , 1400 , and 1600 C. In Fig. 6 the maximum 

power density and efficiency at the e lec t rodes a r e plotted as functions of 

emi t t e r t empera tu re . The result ing curves a r e near ly l inear between 1200 

and 1800 C. It is in teres t ing to note that powers of 5 w a t t s / c m a re 
o 

obtained at emi t te r t e m p e r a t u r e s as low as 1450 C. 

Examples of emi t t e r t empera tu re distr ibut ions for these conver te rs 

a r e shown in F igs . 7 and 8. These surface t e m p e r a t u r e dis tr ibut ions a r e 

der ived from the in ternal thermocouple t e m p e r a t u r e s . In Fig. 7 the OC-4 

data r e p r e s e n t th ree different exper imenta l conditions: 

(1) 1 = 0 and T^ = 117°C, 
Cs 

(2) 1 = 0 and T = 349°C, 
(3) I = 130 amp and T = 350°C. 

Cs 

It is seen that the resul t ing surface t empe ra tu r e profile data a re near ly 

identical for these cases . A slight inc rease of the t empera tu re near the 

lead is detectable, however, as a resul t of r e s i s t ance heating of the 

tantalum emi t te r lead. 

Also indicated on the Fig. 7 curve is the average value of the 

e m i t t e r - t e m p e r a t u r e data and the integrated mean value of the c u r v e - -

values of 1760 and 1750 C, respect ively . It is in teres t ing to note that 

the mean and the average differ by only 10 C. Because of this close 

cor re la t ion between the predicted mean and the m e a s u r e d average for this 

t empe ra tu r e level and for the other t empera tu re levels investigated, it is 

sufficient to r epor t the average and assume that this r ep re sen t s the mean 

emi t t e r t empera tu re . This is war ran ted since the m e a s u r e d differences 

a r e within the re la t ive e r r o r s . 
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The OC-5 emi t t e r t empera tu re -d i s t r ibu t ion data a re shown in Fig. 8 

for a single tes t point. The solid line is the computed emi t t e r t empera tu re 

distr ibution, which demons t ra tes that the values obtained with the digi tal-

computer hea t - t r ans f e r codes compare well with m e a s u r e m e n t s . The 

predic ted mean emi t t e r t empera tu re and the m e a s u r e d data average agree 

within 5 C. 

Upon comparing the OC-4 and OC-5 t empe ra tu r e dis t r ibut ions , one 

may note that the la t te r is m o r e uniform. This resu l t is expected, because 

of the thicker OC-5 emi t te r wall. 

IV. PERFORMANCE MAPPING 

The objective of the mapping is to provide input and output data that 

a r e convenient for the analysis of thermionic r eac to r systenas. F r o m the 

data obtained in the p re l iminary exper iments and from sys t ems-ana lys i s 

considera t ions , it was decided that the range of the var iables be specified 
o o 

as follows: emi t t e r t empera tu re , 1200 to 1800 C; ces ium t empera tu re , 

300 to 400 C; col lector t empera tu re , 600 to 800 C; and load cur ren t , 

from 0 to 10 a m p / c m ^ for OC-4 , and 0 to 15 a m p / c m for OC-5 . A 

typical per formance-mapping resu l t is shown in Fig. 9, where the cell 

voltage is given as a function of total emi t t e r power with the p a r a m e t e r s 

of cur ren t density and enaitter t e m p e r a t u r e . The ent i re d iagram was 

const ructed at a constant ces ium t e m p e r a t u r e of 350 C and a collector 

t empera tu re of 730 C. 

When the per formance resu l t s a r e obtained in this form, thermionic 

sys tems containing conver te rs with unequal power inputs may be analyzed 

conveniently. For example, the total power output from an e l ec t r i ca l 

s e r i e s of conve r t e r s may easi ly be obtained by adding the voltages obtained 

from a cons tan t -cu r ren t curve. The resu l t would be for the case where 

al l the conver t e r s a r e operated at one ces ium tempera tu re and one collector 

t e m p e r a t u r e . Other graphs s imi l a r to Fig. 9, but at other ces ium and 

col lector t e m p e r a t u r e s , pe rmi t per formance calcu.lations of sys t ems where 
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the individual conver te r s do not have equal ces ium and collector 

t e m p e r a t u r e s , 
(2) A code has been developed at General Atomic whereby data of this 

type can be submitted to the l i b r a r y of FORTRAN data in o rder that auto­

mat ic interpolat ion may be per formed over the ent i re range of var iab les 

investigated. This offers the analyst a convenient method of calculating 

sys tems perfornaance in cases where each conver ter , whether operated 

in s e r i e s or in pa ra l l e l c ircui t , can have different operating cha rac t e r i s t i c s . 

It should be noted, however, that the resu l t s r epor ted here in apply 

only to cel ls which have s imi la r geomet r ies and m a t e r i a l s . What is actually 

needed a r e general ized express ions fronn which the analyst can compute 

the power requ i red to operated thermionic conver te rs that have any geo­

m e t r y or m a t e r i a l s . A f irst s tep towards this goal has been achieved 

through the energy m e a s u r e m e n t s which a r e descr ibed in the following 

sect ions . 

V. ENERGY MEASUREMENTS AND ANALYSIS 

5. 1. Equations for Energy Conservat ion 

Energy-conserva t ion equations for the filament, emi t te r , collector, 

and ca lo r ime te r a re derived from the t e r m s depicted in Fig. 10. The 

e l ec t r i ca l power to the emi t t e r filament chamber Q is the sum of a-c 
F 

r e s i s t ance heating and e lec t ron-bombardment power. Q is diss ipated 
F 

by emi t t e r surface heating Q ; by the var ious the rmal conduction and 
E 

radiat ion lo s ses of the emi t t e r s t ruc tu re and filament, Q , , Q, , , Q ^, 
r l kl r4 

Q ; and by e lec t r i ca l leakages Q,., , as formalized by Eq. (1): 
k 4 lJ_i 

Qp = Q E + ^ r l " ^ k l + Qr4 + Qk4 + S L = ^ E + ^ E L + ^ I L ' ^'^ 

where Q—. is the sum of all the emi t t e r s t ruc ture and filament the rmal 
EL 

lo s se s . 
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F ig . 1 0 - - T e r m s for energy conservation of 
conver ter components 
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The energy leaving the emi t t e r surface goes to col lector heating 

Q to provide e lec t rons with an energy that will be diss ipated in the emit ter 

lead and the load IV, and to supply energy leakage from the p lasma at the 

ends of the cyl indrical in te re lec t rode space, 0-,^ = Q i + Q T. or 
PL/ pi p2 

Q^ = Q^ + IV + Q p ^ . (2) 

Equations (3) and (4) account for the heat to the col lector surface 

Q and the heat to the ca lo r ime te r inner surface Q ' : 

^ C = Q K ^ Qr2 + Qr3 ' ^^^ 

F r o m ca lo r ime te r - ca l i b r a t i on exper iments , it was found that Q ^ plus 
r2 

Q _ is much less than Q,,, and can be neglected since the i r values a re 
r3 K 

well within the exper imenta l e r r o r s of determining Q . Under this 
K 

considerat ion, Q reduces to 

^ C = ^K + Qk2 + Qk3 • < )̂ 

For each exper imenta l point, Q , QI^T* ^^^ ^-[^-x ^^^ calculated from 

m e a s u r e d t empera tu re gradients and l i t e r a tu re values of the m a t e r i a l 
(3) 

t he rma l conductivity. Q is a measu red quantity through Eq. (5) and 

the cor re la t ion of Appendix B. Exper imenta l values of Q a r e accura te ly 

m e a s u r e d to within about 1%. The power diss ipated in the emi t t e r lead 

and the load IV is also a m e a s u r e d quantity within about 1% acccracy . The 

remaining unknown values a r e Q , 0^-,,. , Q^T > ^^'^ Q-OT • ^^ Eqs . (1) and 

(2) a r e combined, 

Q E L + ^ P L + S L = ^ F - (^C + ^^) • < )̂ 

Since al l the t e r m s on the r ight-hand side of Eq. (6) a re measured , the 

sum of Q_,T , Qjj , and QT-,, is a lso a m e a s u r e d quantity. With these t e r m s 
EJ-i Li-i PLi 

separa te ly unknown, Q from Eq. (2) also remains unknown. 
E 
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The quantit ies of emi t te r e lec t ron cooling and collector e lect ron 

heating are der ived from subtracting Q and Q at ze ro cur ren t from 
E C 

values of Q and Q at non-zero cu r ren t s : 
E C 

AQ^ = (QC^I - (Qc)l=0 • («) 

It is noted that to call the quantit ies given in Eqs. (7) and (8) e lectron 

cooling or heating is actually a misnomer , since ion cur ren ts and resonance 
(4) 

radiat ion from the plasma may also contribute to these quantit ies. 
Values of AQ a re di rect ly measu red , but AQ^ can only be de te r -

C E 
nnined by combining Eqs. (2), (7), and (8): 

AQ^ = AQ^ + IV + AQpj^ , (9) 

where AQ_,T ®̂ defined in a s imi la r manner as in Eqs. (7) and (8). Because 
PXJ 

the ra t io of the p lasma end a r e a s to the emi t t e r a r ea is very small , it is 

a s sumed that AQ can be neglected in the following analysis of the exper i -
P J-/ 

menta l data. Hence, under that assumption, AQ is a measu red quantity 
E 

through Eq. (10) since AQ and IV a r e exper imental ly determined: 

AQ^ ^ AQ^ + IV . (10) 

5. 2. Ene rgy - lo s s Measu remen t s and Calculations at Zero Currents 

The total power input to the emi t t e r filament chamber is ei ther 

diss ipated as t he rma l loss or is converted into e lec t r ica l power del ivered 

to the load. At z e r o - c u r r e n t operation, therefore , all of the power input 

is d iss ipated as energy loss . The energy quantities measured at ze ro 

cur ren t a r e the total power input to the filament chamber Q , the power 
F 

in tercepted by the col lector Q , and the cesium thermal conduction from 

the emi t t e r to the col lector . In Table 3 the data for a single tes t point 

a r e shown, along with computed loss values . Heat losses from other than 

the emitting surface a r e Q minus Q , which for this case is 200 watts . 
i C 
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Table 3 

MEASURED AND CALCULATED LOSS VALUES 
FOR TEST POINT 18, CONVERTER OC-5 

Measured Data 

Q 469 watts 

Q^ 269 watts 

I Zero 

T „ 1800°C 
E 

T ^ 700°C 
T ^ 350°C 

Cs 
Q^^ = Q ^ - Q„ 200 watts 

EL F C 
Q^^ = Q , + Q, . + Q . + Q, . E L rl kl r4 k4 

Corgputer Resul ts 

Q , 47 watts 
r l 

Q, , 102 watts 
kl 

Q . + Q, . ~40 watts 

r4 k4 

(QEL)calc ^^"^ "^^"^ 

Ces ium thermal conduction (determined 
experimentally) 51 watts 

Heat t r a n s f e r r e d by radiat ion 269 - 51 = 

218 watts 

E lec t rode effective emiss iv i ty 0. 157 

Emi t t e r emiss iv i ty (from previous exper iment) . . 0. 349 

Collector emiss iv i ty 0. 222 
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These emi t t e r s t ruc tu ra l losses a r e the sum of the the rmal radiation from 

the emi t te r end, the the rma l conduction in the emi t te r lead, the thermal 

radiat ion from the filament chamber , and the the rmal conduction from the 

filament leads . This total value was calculated with an IBM-7090 digital 

computer to be 189 watts , which is a close comparison to the 200-watt 

loss exper imenta l ly determined. 

Cesium the rma l conduction between the conver ter e lec t rodes was 

previously de termined exper imental ly at 51 wat ts , which compares closely 
(5) 

to values predicted by Kit r i lakis amd Meeker . The heat t r ans fe r red 

by radiat ion between the e lec t rodes is 218 watts , which is the difference 

between the col lector heat and the cesium the rma l conduction. F r o m the 

radiat ion heat, the in te re lec t rode effective emiss iv i ty is calculated to be 

0. 157, The emi t t e r total emiss iv i ty is known from previous exper iments 

to be equal to 0. 349 at an emi t t e r t empera tu re of 1800 C. There resu l t s 

a collector emiss iv i ty of 0. 222. It may be noted at this point that it is 

possible to predic t analytically al l of the energy- t rans fe r quantities 

observed for a z e r o - c u r r e n t case . 

5. 3. Energy Measuremen t s at Non-Zero Currents 

Energy m e a s u r e m e n t s were made over the same range of operating 

var iab les that the per formance-mapping exper iments covered. This range 

included: emi t t e r t empera tu re of 1200 to 1800 C, cesium r e se rvo i r 

t empera tu re of 300 to 400 C, collector t empera tu re of 600 to 700 C, 
/ 2 and cu r ren t of z e r o to 15 a m p / c m (where possible) , A few typical 

examples of the energy m e a s u r e m e n t s a r e shown in Figs. 11 and 12, where 

the values of Q , Q , IV, and (Q + IV) a re shown as a function of con-
J? C C 

v e r t e r cu r r en t density. Both of these examples a re at an emit ter t em­

pera tu re of 1800 C and a collector t empera tu re of 700 C. The difference 

between the operating conditions of Fig. 11 and Fig. 12 is the cesium 

r e s e r v o i r t empe ra tu r e . The "col lector e lec t ron heating" and "emi t te r 

e lect ron cooling" energ ies a re determinable from these data and from 

Eqs. (7) and (8). 
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In F i g s . 11 and 12 t h e Q c u r v e s a r e found to be not p a r a l l e l wi th 
F 

the (Q + IV) c u r v e s . T h e i m p l i c a t i o n of t h i s r e s u l t i s tha t t he s u m of 

AQ , AQ , and AQ i s a n e g a t i v e quan t i t y , a s would be d e r i v e d f r o m 
IL P L E L 

Eq. (7). It i s p r o b a b l e t h a t AQ i s a n e g a t i v e quan t i t y due to the fac t 
E L 

tha t h e a t i s c o n d u c t e d b a c k to t h e e m i t t e r f r o m r e s i s t a n c e h e a t i n g in t h e 

e m i t t e r l e a d . T h e m a x i m u m v a l u e t h i s could h a v e , h o w e v e r , would be 
, 2 

15 w a t t s when J i s 14 a m p / c m , s i n c e t h e t o t a l m e a s u r e d p o w e r g e n e r a t e d 

in the s t e m due to r e s i s t a n c e h e a t i n g i s 30 w a t t s . The r e m a i n d e r of t h e 

d i f f e r e n c e , t hen , m u s t be due to c h a n g e s in e i n i t t e r t e m p e r a t u r e d i s t r i b u t i o n , 
in e m i t t e r v o l t a g e d i s t r i b u t i o n , in Q^^T > ° ^ ^^ QTT • ^ ° def ini te c o n c l u s i o n s 

P L I L 

r e g a r d i n g t h e s e d i f f e r e n c e s can be m a d e , h o w e v e r , s i n c e t h e e n v e l o p e 

of t h e c a l o r i m e t e r e r r o r s n e a r l y e n c o m p a s s e s t h e r e m a i n i n g d i f f e r e n c e s . 

A f u r t h e r i m p r o v e m e n t in t h e p r e c i s i o n of c a l o r i m e t r i c m e a s u r e m e n t s 

would be of v a l u e in u n d e r s t a n d i n g t h e s e d i f f e r e n c e s . 

VI. E M I T T E R E L E C T R O N - C O O L I N G C O R R E L A T I O N 

It i s i n t e r e s t i n g to no t e t ha t t he Q c u r v e s in F i g s . 11 and 12 a r e 
C 

l i n e a r func t ions of J and h a v e n e a r l y equa l s l o p e s . F u r t h e r m o r e , for a l l 

t he c a s e s s t ud i ed it i s found tha t Q v e r s u s J c u r v e s have d e r i v a t i v e s of 
C 

2. 6 ±0. 2 w a t t s / a m p . T h e r a n g e of v a r i a b l e s c o v e r e d in the e x p e r i m e n t 

i nc luded e m i t t e r t e m p e r a t u r e of 1200 to 1800 C, c e s i u m t e m p e r a t u r e of 

300° to 400°C , and c o l l e c t o r t e m p e r a t u r e of 600° to 700°C. 

With the v a l u e of dQ / d l known to wi th in the e r r o r s i nd i ca t ed , i t i s 
C 

c l e a r tha t one m a y d e t e r m i n e with f a i r a c c u r a c y the e n e r g y q u a n t i t i e s due 

to e m i t t e r e l e c t r o n 

ob ta in ing t h e r e s u l t : 

to e m i t t e r e l e c t r o n cool ing by s u b s t i t u t i n g the v a l u e of AQ into Eq. (10), 

dQ 
A Q ^ = A Q ^ + IV = - ^ I + IV = 1(2 .6 + V ) . (11) 

E m i t t e r e l e c t r o n coo l ing i s t h e r e f o r e p r e d i c t e d f r o m Eq . (11) if p e r f o r m a n c e 

c h a r a c t e r i s t i c s in the f o r m of I -V c u r v e s a r e a v a i l a b l e . It i s no ted t h a t 

t he u n c e r t a i n t y of ±0. 2 vo l t in t h e s lope of Q r e p r e s e n t s only an 8% e r r o r 

in d e t e r m i n i n g t h e c o l l e c t o r e l e c t r o n h e a t i n g . S ince the e l e c t r o n coo l ing 
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of the emi t t e r usual ly compr i ses only one-half or less of the total power 

input to the emi t t e r , the maximum e r r o r using this corre la t ion must be 

l ess than 4%. Under mos t c i r cums tances , the e r r o r would be considerably 

l e s s , 

VII, CONCLUSIONS 

The e lect ron-cool ing corre la t ion , together with the ability to calculate 

al l of the power - los s values in a thermionic converter , makes it possible 

to conapute the efficiency of a conver te r when the I-V cha rac te r i s t i c s and 

m a t e r i a l s p roper t i e s a r e known. This is an ext remely important analytical 

tool for the analyst to use in computing the performance of complicated 

sys tems of thermionic conver te r s where wide var ia t ions in the operating 

var iab les may occur . 

Conver ter OC-5 with the raolybdenum collector gave electrode power 
2 

outputs of 11 w a t t s / c m , which is 60% g rea t e r than the output of OC-4 with 

a niobium col lector . This per formance difference is g rea te r than would 

be predic ted based only on work-function and thermal -expans ion differences. 

It is postulated that the lower per formance of OC-4 was caused by combination 

effects of l a rge r emi t t e r t empera tu re profile var ia t ions and stable res i s t ive 

l aye r s of niobium oxides that accumulated on the collector surface during 

fabrication and operat ion. 
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Appendix A 

EMITTER SURFACE TEMPERATURE DISTRIBUTION EXPERIMENT 

In this exper iment , cor re la t ions were developed for determining 

emi t te r surface t e m p e r a t u r e s from in ternal thermocouple readings . This 

is done with a tes t emi t t e r outside a cell by measur ing t empera tu re 

differences between in terna l thermocouples and optical hohlraums in the 

enaitter surface. The br igh tness t e m p e r a t u r e s of the emi t te r a r e measu red 

at the sanae t ime, so that emiss iv i ty correc t ion is obtained for predicting 

t rue t e m p e r a t u r e s on s imi l a r surfaces where optical hohlraums a re absent. 

Concurrent ly with the experiment , the surface t empera tu re d i s ­

tr ibutions were calculated using a two-dimensional hea t - t r ans fe r digital 

computer code (RAT). Fo r a given power input to both the experiment and 

the computation, the tenaperature distr ibution determined in the code resu l t s 

was duplicated by adjusting the t h e r m a l emiss iv i t ies of both the emi t te r 

and its lead. Duplication of the t empe ra tu r e distr ibutions and of de te r ­

mination of the emiss iv i t i e s is par t icu la r ly worthwhile for further corre la t ion 

work in different geomet r i e s , d imensions, or operating conditions. Of 

special i n t e re s t is the application to thermionic reac tor calculations and 

in-pi le experinaents. 

The exper iment is divided into two par t s . F i r s t , a tes t emi t ter is 

p repa red with optical hohl raums that a r e used for deternaining accura te 

naeasurements of the t rue surface t empera tu re distr ibution. In this f irst 

exper iment , information is obtained on how to formulate the corre la t ion 

which will be used at a l a te r t ime in second and thi rd exper iments when 

the OC-4 and OC-5 emi t t e r surface t empera tu re distr ibutions a re cor re la ted 

to the in te rna l thermocouple t e m p e r a t u r e s . 

27 
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APPARATUS 

To reduce both the relat ive and absolute e r r o r s in the exper iment , 

cal ibrat ion m e a s u r e m e n t s were conducted on al l of the t e m p e r a t u r e -

measur ing ins t ruments and optical windows. Sur face - t empera tu re m e a s u r e ­

ments were made with a naicro-opt ical pyronaeter which was ca l ibra ted 

against an NBS tungsten ribbon s tandard. The thermocouples were W/W-

26 Re with 1/16-in. -d i ame te r tantalum sheaths . These thermocouples 

were optically ca l ibra ted to within a re la t ive e r r o r of ±5 C. 

The vapor -depos i ted tungsten tes t emi t te r used in the init ial cor re la t ion 

experinaent had dr i l led into i ts surface five 10-mi l -d iamete r by 70-nail-

deep cavi t ies at equidistant axial locations s tar t ing and ending 50 mi l s 

from the emi t t e r ends. The emi t t e r was heated in a Vaclon high-vacuuna 
-7 

station at vacuunas of 10 t o r r . An elect ron bombardment filament was 

accura te ly positioned in the emi t t e r cent ra l cavity. The four W/W-26 Re 

thermocouple junctions were located at four axial positions in holes located 

within the emi t t e r wal ls , as i l lus t ra ted in Fig, A - 1 . These thermocouples 

lie 90 apar t in the c i rcumferen t ia l direct ion. Two ba re W/W-26 Re t h e r m o ­

couples and two Chromel-Alumel thermocouples were spot-welded to the 

emi t te r lead for determining the e m i t t e r - l e a d t empera tu re d is t r ibut ions . 

EXPERIMENTAL RESULTS 

T e m p e r a t u r e s of the hohl raums, the emi t t e r surface, the emi t t e r 

thernaocouples, and the emi t te r lead were de termined for varying emi t t e r 
o o 

t e m p e r a t u r e levels between 1200 and 1800 C. Correc t ions to the values 

of the hohl raum tenaperatures were n e c e s s a r y in order to obtain t rue 

emi t te r surface t e m p e r a t u r e s , since the t empera tu re m e a s u r e d in the 

hohlraum is actually hot ter by as much as 20 C than the surface t empera tu r e . 

The values of these cor rec t ions were de termined with the two-dimensional 

RAT hea t - t r ans f e r code. F igure A-2 shows the var ia t ions of the t rue 

surface t e m p e r a t u r e , the br ightness tenaperature , and the thermocouple 
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t e m p e r a t u r e s , as a function of the axial surface position z. This is just 

one example of the tenaperature levels studied. The difference between 

the thermocouple and the t rue surface t empera tu re levels at a given 

emi t te r surface position is the cor re la t ion required to co r rec t internal 

thernaocouple readings to a t rue surface t empera tu re . 

Upon examining the curves of the br ightness t empera tu re and the 

t rue surface tenaperature in Fig. A-2, one finds that the tenaperature 

difference between the curves is snaaller in the lower- tenapera ture regions. 

This r esu l t is expected, s ince the br ightness cor rec t ion is actually an 

increas ing function of the t rue surface t empera tu re . Figure A-3 shows 

the br ightness cor rec t ion for the vapor-deposi ted tungsten emi t te r as a 

function of the br ightness t e m p e r a t u r e for the var ious data obtained. This 

experinaental deternaination'of the br ightness cor rec t ion is important 

when t rue t empe ra tu r e s of other emi t t e r surfaces which may not be 

penet ra ted with hohlraums a r e required . Also shown in Fig, A-3 is a 

curve for a tungsten ribbon filanaent lamp. 

To es tabl ish the emi t t e r sur face- to- thermocouple t empera tu re 

cor re la t ion as a function of z and also as a function of the emi t te r t emp­

e r a t u r e , the same exper iment was performed at other t empera tu re levels . 

In Fig. A-4 an example is shown where three different t empera tu re levels 

a r e investigated, with the t rue surface t empera tu res and the thermocouple 

tenapera tures indicated. The curves a re those computed using the RAT 

hea t - t r ans f e r code. It was possible to obtain this close corre la t ion of the 

RAT resu l t s with the exper imenta l r esu l t s by adjusting the total emiss iv i t ies 

of the tungsten emi t te r and the tantalum stem. 

The sur face- to - the rmocouple t empera tu re corre la t ion derived for 

the tes t emi t t e r is shown in Fig, A-5 as a function of the maximum emit ter 

t empe ra tu r e and the axial distance from the emit ter bottom. These resu l t s 

show that the thermocouple t empe ra tu r e is as nauch as 40 C g rea t e r than 

de Vos, J. C. , The Enaissivity of Tungsten Ribbon, Thesis , 
Ams te rdam, 1953. 
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the surface tenaperature at low z values . At high z values, the surface 

t e m p e r a t u r e reads as much as 10 C g r e a t e r than that of the thernaocouples. 

The explanation for this is s imply that the thernaocouple is heated 

a lmost en t i re ly by radiation, with the resu l t that any deviations of the 

thermocouple from the emi t te r tenaperatures a r e the resu l t of heat con­

duction through the thermocouple itself. The reason that the thermocouple 

junction can be hotter than the emi t t e r in low z a r e a s is that the thermocouple 

sheath is heated to higher t e m p e r a t u r e s where it passes through the cent ra l 

emi t t e r a rea . The heat conducts down the sheath and insulation to the 

thernaocouple junction, resul t ing in higher indicated t empera tu res than 

those of the surroundings of the junction. 

To deternaine a sur face- to- thermocouple t empera tu re cor re la t ion 

in the e m i t t e r s to be used in the out-of-pile cel ls , where hohlraums a r e 

not pe rmi t ted in the emi t te r surface, only br ightness tenaperatures and 

thernaocouple tenaperatures may be obtained. The br ightness t empera tu res 

must then be co r rec ted by the br igh tness cor rec t ion given in Fig. A-3 , 

in o rde r to de te rmine t rue surface t e m p e r a t u r e s . This was done for the 

e m i t t e r s in OC-4 and OC-5; the r e su l t s a re shown in F igs . A-6 and A-7. 

It will be noted that the cor re la t ion resu l t s for these emi t t e r s a re very 

s imi la r to those obtained for the tes t enaitter. One should not expect an 

exact compar i son between the th ree cases because the conver t e r - emi t t e r 

geomet ry is considerably different from that of the tes t emi t te r . Also 

shown in F igs . A-6 and A-7 a re dashed lines represent ing z-posi t ions of 

the four thermocouples used in the ac tual conver ter test . The values that 

these curves por t ray a r e used to c o r r e c t the respect ive thermocouples to 

t rue surface t e m p e r a t u r e s . 

Calculations were performed with the hea t - t r ans fe r code to determine 

if the additional hea t - t r ans fe r t e r m of e lec t ron cooling great ly affects the 

emi t t e r t empe ra tu r e profile. It was found that this is a smal l effect and 

that the g rea t e s t factors influencing the profile a r e the end losses of 

t h e r m a l conduction in the emi t t e r lead and radiat ion from the emi t te r end. 
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Appendix B 

COLLECTOR CALORIMETER CALIBRATION EXPERIMENT 

An accura te ca lo r imet ry of the energy t r a n s f e r r e d to the in ternal 

surface of the collector is requi red in o rder to experimental ly obtain an 

energy balance for a thermionic conver ter (see Sec. V). The ca lo r ime t ry 

method selected for this application uses measu red t empe ra tu r e gradients 

over a known geometry and ma te r i a l to calculate the r a t e of heat t r ans fe r . 

A d iagram of this "conduct ion-type" ca lo r imete r is shown in Fig . 1 

(Sec. II). The ca lo r ime te r consis ts of a 3-in. -OD by 1. 1-in. -long cylinder 

with a t ape red 1-in. -d i amete r hole in i ts center . The ca lo r imete r length 

cor responds to the emi t te r length. Sixteen s ta in less steel tubes a r e b razed 

into the outer edge of the cylinder for a i r coolant. Between the tubes a r e 

e lec t r ica l h e a t e r s . On each axial end of the cylinder, ten radiat ion shields 

a r e provided to reduce the end heat l o s se s to l e s s than 1 w at the normal 

operating t e m p e r a t u r e of l e s s than 700 C. This is about 0. 1% of the heat 

flow to the col lector at a maximum power production for an emi t te r t e m ­

p e r a t u r e of 1800 C. Twelve cal ibrated, 40 -mi l -d i ame te r , sheathed 

Chromel-Alumel thermocouples a r e in se r t ed into holes in the ca lo r ime te r 

for measur ing the radial , axial, and c i rcumferent ia l t empe ra tu r e d i s t r i ­

butions. Eight of these thermocouples a r e used for determining rad ia l 

tenaperature gradients . 

In the cal ibrat ion of the collector ca lo r ime te r , a filament is suspended 

into the cent ra l cavity of the ca lo r ime te r and is used for e lec t ron-bombarding 

the ca lo r ime te r inner surface. The ends of the cavity a r e covered with 

radiat ion shields that a r e e lec t r ica l ly insulated from the ca lo r ime te r . 

F igure B-1 schemat ical ly shows the cal ibrat ion set-up and the hea t - t r ans f e r 

values of in te res t in evaluating the cal ibrat ion r e su l t s . An energy balance 

38 
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for the appara tus is given by the equation 

where the lo s ses 

Q F ^ ^ L + ^ K ' (^-^^ 

Q L = Qi + Q2 ^ ^ 3 ^ ^ 4 ^ ^ 5 " ^^-^^ 

Q was evaluated in two different ways for OC-4 and OC-5. Since no energy 
L 

data is p resen ted for OC-4 in this repor t , only the OC-5 ca lo r imete r ca l i ­

bra t ion is descr ibed. 
Values of Q were conaputed with a two-dinaensional, digital-conaputer 

L 
hea t - t r ans f e r code; the inaxinauna computed value was 20 wat ts . A maximuna 

e r r o r in Q was es t imated to be ±20 watts . With Q experinaentally de te r -
L F 

mined at accu rac i e s of ±10 watts , Q is calculated frona Eq. (B. 1) with an 
K 

e r r o r of ±22 watts by propagation of the Q and Q e r r o r s . 
L F 

The radia l heat flow through the calorinaeter is calculated from the 

t e m p e r a t u r e gradients m e a s u r e d with 12 thermocouple combinations by 

means of Eq. (B. 3): 

k 2ir L(T. - T.) 
Qt^-- = T T - T — r ^ ' (B.3) 

Kij l n ( r . / r . ) 

where k = t he rma l conductivity (function of t empera tu re ) , 

L - length of cylinder, 

T = tenaperature , 

r = radius , 

and i and j a r e radial thermocouple posi t ions. The exper imenta l p rocedure 

for the cal ibrat ion of the thermocouple pa i r s is designed to de te rmine if 

the a i r cooling or the e l ec t r i ca l heating of the outer edge of the ca lo r imete r 

affects the heat-flow quanti t ies calculated from the radia l t e m p e r a t u r e 

prof i les . To meet this objective, t empe ra tu r e -g r ad i en t data a r e obtained 

as a function of the e lec t r i ca l power to the filament and of the t empera tu re 

of the ca lo r ime te r . 
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Out of the 12 possible thermocouple pa i r s , one pair , designated 2-8, 

was se lec ted on the bas i s that the lowest s tandard deviation determined 

from mult iple measurenaents was ±25 wat ts . F igure B-2 shows values 

of Q a s a function of Q^,- „. The best curve through the points forms 
K. Is.2, o 

the r equ i red cor re la t ion frona which values of Q will be calculated from 
K 

the thermocouple t e m p e r a t u r e s of thermocouple No. 2 and thermocouple 

No. 8. 

When the ca lo r ime te r is used to naeasure heat frona the collector, 

the filament is renaoved from the inner cavity and the collector is put in 

i ts p lace . Bes ides the heat which goes to the calorinaeter, other heats 

which naust be accounted for a r e the heats conducted away frona the collector 

by the col lector sk i r t s . This heat t r ans fe r is determined by thermocouples 

spot-welded to the collector sk i r t s at known dis tances apar t . The heat 

conduction through the top and bottona sk i r t s , Q^„ and Q,,c>> respect ively, 
TS BS 

is computed using the usual conduction equations. The hea t - t r ans fe r r a t e s 

a r e smal l , and thus the e r r o r s inherent in th is method of determining the 

heat flow a r e unimportant to the o v e r - a l l accuracy of the ca lor imet ry . 
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Appendix C 

CONVERTER TESTING PROCEDURES 

The procedure for testing OC-4 and OC-5 is given in the following 

outline. Briefly, the procedure consis ts of (1) obtaining init ial maximum 

performance data ea r ly in cell life, (2) performing a detailed performance 

mapping of the conver ter operating var iab les , (3) obtaining conver ter 

energy-balance data, and (4) l i fe-test ing to a total operating t ime of 1000 hr . 

A. START-UP 

1. Operating Conditions 

a. Open-circuit load 

b. C e s i u m - r e s e r v o i r t empera tu re <100 C 

2, Measuremen t s and Calculations 

a. Obtain T ve r sus Q_ and Q_ data for T „ up to 1800°C in 
ill E C E 

inc rements of 100 C. 

b. Show that heat radiated to the col lector follows the rmal 

radiat ion laws. 

c. Compute the effective emiss iv i ty of the e lec t rodes as a 
function of T from the heat radia ted to the col lector . 

E 

B. INITIAL PERFORMANCE DETERMINATION 

1. Objectives 

a. Obtain initial performance levels ear ly in conver ter life 

(within 1/2 hr after (T„) is reached) . 
E max 

b. Obtain initial diagnostic data, 
c. Set the var iable boundaries . 

* 
Tempera tu r e s refer to the maximum emi t te r t empera tu re of the 

distr ibution. The maximum occurs very near the surface center position. 
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Data 

a. These data a r e taken immediate ly following the initial effective 

emiss iv i ty naeasurements , when the emi t t e r is at 1800 C and 

the c e s i u m - r e s e r v o i r teiaaperature is 100 C. 

b. The load is at a low r e s i s t ance value of about 1 to 2 naohna. 

Sixty-cycle a-c osci l lat ions of the conver te r voltage a r e provided 

in o rde r for I-V curves to be displayed on an osci l loscope. 

c. (1) The c e s i u m - r e s e r v o i r t empera tu re is inc reased by i n c r e -

ments to the optimum value for naaxinaum power output found 

for previous conver te r s (about 350 C), 

(2) On the approach to 350 C, the t e m p e r a t u r e is leveled off 

at 100 , 50 , 25 , and 0 C below the a s sumed optimuna in 

order to take photographs of I-V curves and to r eco rd the cell 

data at each point. 

d. The sweep c i rcui t is turned off (ca re being taken not to exceed 

(T ) ), and the load is adjusted to an approximately 

optimum condition. 

e. The c e s i u m - r e s e r v o i r t empera tu re is roughly optimized at 

T „ = 1800°C. 
E 

f. The load is roughly re -op t imized by plotting an I-V cha rac ­

t e r i s t i c at T = 1800°C. 
E 

g. The collector t empera tu re is roughly optimized at T = 1800 C, 
E 

optimum voltage and T . 

h. Steps e, f, and g a r e r e i t e ra t ed to obtain improved optimum 

values , 

i, A detailed I-V curve is obtained from shor t to open c i rcui t at 
T ^ = 1800°C 

E 
T = optimum 
T = optimum 

Cs 

* 
Optimum will always refer to the values of the conver ter var iables 

which maximize power output. 
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j . A P v e r s u s T curve is obtained at T = 1800 C and 
us £j 

I = optinaum 

T = optimum 

k. A P v e r s u s T curve is obtained at T = 1800 C and 
C iî  

I = optimum 

T_ = optimum 
Cs 

3. Computations 

a. The var iab le l imi ts of i n t e re s t a r e determined from the above 

data and from sys t ems-ana lys i s requ i rements . This will 

set the l imi ts on the var iab les investigated in the detailed 

per formance mapping. 

b. Any n e c e s s a r y calculations a r e performed to determine if 

the cell is performing typically by comparison with previous 

conver t e r s . 

DETAILED PERFORMANCE MAPPING 

1. Objective 

Pe r fo rmance mapping of the conver ter var iables : 

- ^ E 
b. Q^ 

c. Q^ 

-̂ ^C 

- ^ C s 
f. J 

g- V 

2. Requi rements 

a. Pe r fo rmance se l f -cons is tency is determined regular ly by 

establ ishing check points twice daily. 

b. Data a r e to be obtained in the eas ies t but most accura te method 

available to the invest igator . The method will usually be 

dictated by the available instrumentat ion. It will be assumed 
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in the following descr ipt ion that it is easy to regulate T , 
E 

T , T , and J. These will be the regula ted var iab les . Q C Cs 

and V will be dependent and nonregulated. 

Data 

a. Using the var iab le l imits found in B. 3. a. above, a ma t r i x is 

es tabl ished involving J, T , and T . The ma t r ix spaces 
C Cs 

are to be filled with V ve r sus T and V v e r s u s Q data. The 
E 

nmatrix xnesh points should be closely enough spaced to allow 

accura te interpolation. It has been found that increments 

of 1 to 2 a m p / c m for J, 5° to 10°C for T , and 50° to 
OS 

100°C for T sufficed. 
D. LIFE TESTING 

1. The conver ter is to be operated for 1000 hr at T = 1800°C. 
E 

2. Pe r fo rmance data a r e obtained daily and plotted to determine 
t rends . 



Appendix D 

HISTORY OF CONVERTER OPERATIONS 

1. OUT-OF-PILE CONVERTER OC-4 

The Mark VI out-of-pi le conver ter OC-4 was operated for 1351 hr 
2 

with an e lec t r i ca l oKitput at the leads of between 3. 9 and 5. 4 w / c m at a 

mean emi t t e r t e m p e r a t u r e of 1750 C. A t ime his tory of the operation is 

shown in Fig. D - 1 . During the f i rs t hours of intermit tent operation, 

s t a r t -up and init ial pe r formance measu remen t s were obtained which indi-
2 

cated a peak power output of 80 w (5, 4 w / c m ) at an emit ter maximunn 

t e m p e r a t u r e of 1800 C. The mean emiitter t empera tu re was es t imated at 

1750 C from the emi t t e r tenaperature profile data. A curve of the power 
2 

at the e lec t rodes (without the I R emi t te r lead loss) is also shown in 
2 

F ig . D - 1 ; this power density var ied between 4. 6 and 6. 9 w /cm . 
An accidental excurs ion in emi t te r t empera tu re to 2300 C for a few 

minutes occur red at 22 hr , with a resul tant sharp dec rease in power density 
, 2 , 2 

from 5. 4 w / c m to 4, 9 w / c m . Following the excursion, the conver ter 

was checked out; it was found that the re was no apparent physical damage 

to the cell or the emi t t e r therrnocouples other than a dec rease in power 

output by 10%. This degradat ion is thought to be caused by outgassing of 

the emi t te r and stem, with resul tant gas buildup, and possibly by surface 

work-function changes. It was noted that the collector t empera tu re did not 

i nc rease from its or iginal level during this short t ime . 

After an additional 25 operating hours , the power density inc reased 
/ 2 to 5. 0 w / c m and remained constant until 200 hr . F r o m that point, the 

power density gradually dec reased at a constant ra te over the next 1150 hr 
/ 2 

to a value of 3. 9 w / c m . Between 50 hr and 500 operating hours , p e r -
fornaance mapping and energy-balance data were obtained. During that 
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per iod of operation, the ca lo r ime te r hea te r open-circui ted, and some of 

the thermocouples on the col lector sk i r t s failed. Because of r i sk to the 

l i fe- tes t , it was elected not to make r e p a i r s , with the resul t that no further 

energy-data or per formance mapping was possible . At 1351 hr, a cooling 

line failed, resul t ing in an inc reased be l l - j a r p r e s s u r e . The operation 

was thereupon discontinued. 

2. OUT-OF-PILE CONVERTER OC-5 

The Mark VI out-of-pile conver ter OC-5 has operated 260 hr, as 
/ 2 

shown in Fig . D-2, with a nnaximium power density of 11. 1 w /cm and an 
efficiency of 16% for a 1800 C emi t te r mean tennperature. Between 100 

2 
and 150 hr a gradual perfornnance degradation to 10. 5 w / c m was noted. 

At the end of that period, the source of degradation was found to be a smal l 

leak in the ca lo r ime te r a i r -cool ing line located inside the bell j a r . The 

effect of this leak was to i nc rease the be l l - j a r p r e s s u r e from 1 x 10 to 
-5 

2 x 1 0 t o r r . Apparently, consti tuents of a i r diffused into the cell in ter ior 

through the h igh - t empera tu re re f rac tory metal pa r t s to cause the observed 

degradation. Once the leak was repa i red , cell per formance degradation 

immediate ly ceased; at the end of 260 hr there appeared a perceptible 
/ 2 

i nc r ea se in power density to 10. 7 w / c m . All of the energy-balance and 

per formance-mapping data were obtained during the f i rs t 100 operating 

hours of level pe r fo rmance . 
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Appendix E 

DATA REDUCTION BY A DIGITAL COMPUTER CODE 

The la rge amount of data, plus the nmany calibrat ion correc t ions and 

cor re la t ions involved in each exper imenta l point, make it uneconomical to 

p e r f o r m all the data reduct ion work manually. It was found that each data 

point r equ i r ed on the order of about 1/2 hr of hand computations to com­

pletely reduce the data so that they could be plotted for an interpreta t ion. 

A digital computer code for the rmionic data reduction, TIDR, was wri t ten 

for machine reduction of the data. 

The input information on each data point consists of 36 floating-point 

number s which cor respond to power inputs, power outputs, and t h e r m o ­

couple t e m p e r a t u r e m e a s u r e m e n t s . The code reduces all of these data 

and t r a n s f o r m s them by means of the var ious correc t ions and corre la t ions 

into a d i rect output, as shown in Table E - 1 ; an explanation of the symbols 

in th is table i s given in Table E - 2 . It i s es t imated this code saves severa l 

hundred hours of hand-calculat ion t ime for each converter tes ted for p e r ­

formance mapping and energy-balance data. Another advantage is that 

within severa l hours after the data a r e taken, reduced re su l t s will be 

avai lable for in terpre ta t ion . 

In o rde r for the data to be en te red directly into the computer l ib ra ry 

of thermionic data, output ca rds with the significant data a r e punched for 

use with the sys t ems analys is code TIPSY. 

'•"Broido, J. , C. Savery, and W. Wright, A Digital Computer Code 
for the Analysis of Thermionic Networks , General Atomic Report GA-4147, 
May 22, 1963. 
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Table E-1 

COMPUTER OUTPUT OF REDUCED OC-4 D A T A ' 

TEMPERATURES OUTPUT 

EMITTER (MAX) 1785. C CURRENT 130.20 A 
EMITTER lAVE) 1744. C CURRENT DENSITY 8.80 A/CMCM 
CESIUM 350 . C POTENTIAL (LEADS) 0 .571 V 
COLLECTOR 726. C POTENTIAL (ELECT) 0 .707 V 

POWER OUTPUT POWER INPUT 

POWER AT LEADS 74,34 
5.023 

POWER AT ELECT* 92.05 
6.220 

OVERALL EFFICIENCY 

ELECTRODE EFFICIENCY 

PHI (RICHARDSON) 

W 
W/CMCM 
W 
W/CNCM 

8.53 

13.20 

3.10 

TOTAL TO EMITTER 

TO COLLECTOR 

COLLECTOR + POWER 
AT ELECT 

PERCENT 

PERCENT 

EV 

872. W 
58.9 W/CMCM 
605. W 
40.9 W/CMCM 
697. W 
47.1 W/CMCM 

MISCELLANEOUS INPUT AND CALCULATED VALUES. 

TE5 
TE6 
TE7 
TE8 

ACV 
ACA 
DCV 
DCA 

1763. 
1785. 
1734. 
1696. 

9*22 
15.05 
470. 
1.56 

DATE8/9/63 

C 
C 
C 
C 

TCI 
TC2 
TC3 
TC6 

V LEAD VOLT 
A LEAD RES. 
V LEAD I«IR 
A LEAD RHO 

LEAD TEMP. 

TIME1025 

695. C TC7 645. C 
350. C TCll 727. C 
589. C TC12 736. C 
734. C TC16 716. C 

0.136 V QK 608.3 W 
0.001045 OHM QTS 0.9 W 

17.7 WATT QBS -4.1 W 
0.000056 OHM CM 

1195. C 

I -V AT TEMAXNOM-1800 C TCS=»350 C 76 

See Table E - 2 for nomenclature . 
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Table E-2 

NOMENCLATURE FOR TABLE E- 1 

^,,^T, . T T ^ ^ ^ , ^ , ^ » , ^ „ / Power Output at Leads \ 
OVERALL EFFICIENCY = U ^ , p = ^ ^ _ : , T T T T—I 

\Total Power Input to Filament Chamber/ 
ELECTRODE EFFICIENCY =( Power Output at Electrodes \ 

\Power Input to the Collector + Power at the Electrodes/ 

PHI (RICHARDSON) = kT ln(J/AT^) 

= (Boltzmann Con8tant)(Average Emitter Temperature) x 
2 

X ln[(Current/Emitter Area) / (Emitter Temp. ) ] 

T E 5 

T E 6 

T E 7 

T E 8 

T C I 

T C 2 

T C 3 

T C 6 

T C 7 

T C l l 

TC12 

TC16 

ACV 

ACA 

DCV 

DCA 

^ K 

° T S 

Q „ o 

= 

= 

= 

= 

= 

= 

= 

= 

= 

=: 

= 

= 

-

= 

-

-

-

= 

-

E m i t t e r Surface T e m p e r a t u r e at z = 0. 

E m i t t e r Surface T e m p e r a t u r e at z = 0. 

E m i t t e r Surface T e m p e r a t u r e at z = 0. 

E m i t t e r Surface T e m p e r a t u r e at z = 0. 

E m i t t e r Lead T e m p e r a t u r e 

Ces ium R e s e r v o i r T e m p e r a t u r e 

C a l o r i m e t e r T e m p e r a t u r e at r = L 27 

Col lec tor Top Skir t T e m p e r a t u r e 

C a l o r i m e t e r T e m p e r a t u r e at r = 0. 55 

Col lec tor Bot tom Skirt Tennpera tu re 

Col lec tor Top Ski r t T e m p e r a t u r e 

Col lector Bot tom Skirt T e m p e r a t u r e 

F i l a m e n t AC A m p e r e s 

F i l a m e n t AC Voltage 

B o m b a r d m e n t Voltage 

Bonnbardment C u r r e n t 

Heat Conduction in C a l o r i m e t e r 

Heat Conduction in Col lec tor Top Skirl 

22 i 

43 i 

68 i 

93 i 

in. 

in. 

Heat Conduction in Col lec tor Bot tom Skir t 
BS 

file:///Total
file:///Power


Appendix F 

INSTRUMENTATION 

The ins t rumenta t ion shown schemat ical ly in Fig, F -1 was used for 

bench testing of the Mark VI conver te r s OC~4 and OC-5. The main features 

of the ins t rumenta t ion include (1) t empera tu re m e a s u r e m e n t and control; 

(2) power output m e a s u r e m e n t and regulation; and (3) emi t t e r power input 

supply, control, and m e a s u r e m e n t . 

TEMPERATURE MEASUREMENT AND CONTROL 

The emi t te r t e m p e r a t u r e was measu red with four W/W—26 Re 

thermocouples located in the emi t t e r walls at four different axial posit ions. 

With that a r rangement , the emi t t e r t empera tu re level and distr ibution can 

be m e a s u r e d during the opera t ions . These thermocouples were cal ibrated 

to an absolute a c . l c . o L : 0 ° C . THe .e laUve . „ o . i s „ . M „ . 3 ° C between 

1200 and 1800 C, The thermocouple emf was displayed on a ze ro to 50 mv 

Brown r e c o r d e r . The r e c o r d e r e r r o r is ±0. 25%. 

The t e m p e r a t u r e s of the ca lo r ime te r collector, ces ium r e s e r v o i r , 

etc. , were m e a s u r e d by floating, shielded-type Chromel -Alumel t he rmo­

couples. Close regulat ion of the ces ium r e s e r v o i r and collector was 

accompl ished with a current-adjust ing- ' type th ree -ac t ion proport ional 

c o n t r o l l e r - r e c o r d e r . The r e s e r v o i r and collector t e m p e r a t u r e e r r o r s 

a r e es t imated to be ±2 C and ±10 C, respect ively . The other 20 converter 

t e m p e r a t u r e s were in termi t tent ly recorded on a 24-point Brown reco rde r 

which is accura te within 0, 25%, 

POWER OUTPUT MEASUREMENT AND REGULATION 

The t e s t - c e l l voltage output was regulated by a h igh -cu r ren t var iable 

r e s i s t o r (load) with a range of 0.001 ohm to 5 ohm. Fo r driving the 
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Fig. F-1- -Simpl i f ied d iagram of ins t rumenta t ion sys tem 
for bench testing Mark VI conve r t e r s 
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tes t cell into the applied voltage region (+), the para l le l ba t te ry c i rcui t 

was used. The driving voltage was regulated with the same r e s i s t o r . 

Converter voltages were m e a s u r e d with copper probes at the emi t te r , 

at the emi t t e r lead, and at the col lector . The cur ren t s were m e a s u r e d 

with prec is ion shunts . Both the voltage and cur ren t were continuously 

r ecorded on a Brown two-point r e c o r d e r . The voltage and cu r ren t e r r o r s 

a r e es t imated to be ±0. 005 volt and ±0. 2 amp. A 60-cps voltage sweeping 

circui t was also used to display vo l t age -cur ren t cha rac t e r i s t i c s on an 

osci l loscope. Po la ro id photographs were used to r eco rd the displays. 

EMITTER POWER INPUT SUPPLY AND CONTROL 

For these bench t e s t s , the e m i t t e r s were heated ar t i f ic ial ly by 

e lect ron bombardment accomplished with a double hel ical filament suspended 

in the emi t t e r cavity and supported by l / l 6 - i n . tantalum leads . 

The a-c cu r r en t to the filamient is supplied and regulated by a cu r r en t -

adjusting-type th ree -ac t ion proport ional control ler . The controlled var iable 

is the emi t t e r t e m p e r a t u r e sensed by one of the W/W—26 Re thermocouples . 

High voltage was supplied by a regulated d-c power unit with ze ro to 1000 volt 

and ze ro to 5 amp range. The power to the emi t t e r was accura te ly m e a s u r e d 

with ca l ibra ted prec is ion a-c and d-c m e t e r s . The e r r o r in the power 

input m e a s u r e m e n t s is es t imated at 1%. 




