

MASTER

GENERAL ATOMIC  
Division of General Dynamics Corporation

John Jay Hopkins Laboratory  
for Pure and Applied Science

GAMD-974  
MGCR-M-223

Copy No. 18

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights, or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

COMPARISON OF BeO VERSUS GRAPHITE AS A  
MODERATOR FOR MGCR

Work done by:

J. F. Quirk  
M. T. Simnad  
J. M. Stein  
W. P. Wallace

Report written by:

W. P. Wallace  
M. T. Simnad

This document, which was prepared primarily for internal use at General Atomic, may contain preliminary or incomplete data. It is informal and is subject to revision or correction; it does not, therefore, represent a final report.

Project No. 40  
AT(04-3)-187

11 September 1959

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

### Properties Desired in a Moderator

The major requirement for a moderator is that of good neutron economy; this can be expressed by these factors: high slowing down power for neutrons, and low thermal absorption cross-section. The result is that BeO is a better moderator (for a core of 5-7 ft) than graphite. For example, the slowing down power of BeO is 2.5 times greater than that of graphite (see Table I); the conversion ratio of a BeO moderated core is 2.0 times better than for a graphite core; the burn-up lifetime of a BeO core is 1.5 times greater than that of graphite. Also, the  $(n, 2n)$  reaction in BeO helps the reactivity of the reactor.

In addition to the nuclear requirements for the moderator, mechanical, physical and chemical properties are important, particularly the manner in which these properties are affected by radiation. From the data in Table I, one can conclude that BeO is a better moderator than graphite for the 5-7 ft core.

Of primary importance, of course, is the cost of the moderator. In this case, graphite is less expensive than BeO. However, when the nuclear properties are factored in, this lower cost of graphite is offset by the greater neutron economy resulting from the use of BeO in the MGCR.

As noted above, the moderator must perform satisfactorily under irradiation. This subject is discussed in the next section.

Table I

| Properties of Moderators and MGCR Cores                                           |                         |                  |                     |                 |  |
|-----------------------------------------------------------------------------------|-------------------------|------------------|---------------------|-----------------|--|
| <u>Nuclear Properties</u>                                                         | BeO Core                |                  | Graphite Core       |                 |  |
|                                                                                   | Un-Irr.                 | Irrad.           | Un-Irr.             | Irrad.          |  |
| Slowing down power                                                                | 0.16                    |                  | 0.063               |                 |  |
| Fermi Age, $\text{cm}^2$                                                          | 103                     |                  | 320                 |                 |  |
| Microscopic cross-section, mb                                                     | 11.0                    |                  | 3.7                 |                 |  |
| Over-all rating for MGCR                                                          | Excellent               |                  | Good                |                 |  |
| <u>Physical Properties</u>                                                        |                         |                  |                     |                 |  |
| Thermal conduct, cal/sec $\text{cm}^2$ $^{\circ}\text{C}$<br>(200 $^{\circ}$ )    | 0.25                    | 0.15             | 0.30                | 0.12            |  |
| Thermal expan., $10^{-6}/^{\circ}\text{C}$ (20-1800)                              | 9.8                     | Slight effect    | 3.0                 | No change       |  |
| Thermal shock resistance                                                          | Good                    |                  | Excellent           |                 |  |
| Change in length after irrad, %<br>(>600 $^{\circ}\text{C}$ irr.)                 |                         | +0.01            |                     | -0.05           |  |
| F. P. release from diluted fuel                                                   | Low                     |                  | High                |                 |  |
| Over-all rating for MGCR                                                          | Good                    |                  | Good                |                 |  |
| <u>Mechanical Properties</u>                                                      |                         |                  |                     |                 |  |
| Tensile Strength, psi RT                                                          | 21,000                  | 21,000           | 1,300               |                 |  |
| Compressive strength, psi RT                                                      | 175,000                 | 200,000          | 6,000               | 7,000           |  |
| Young's modulus, psi RT                                                           | $52 \times 10^6$        | $20 \times 10^6$ | $1.2 \times 10^6$   | $3 \times 10^6$ |  |
| Creep, %/hr, 2300 $^{\circ}\text{F}$ , 100 psi                                    | $5 \times 10^{-5}$      |                  | $<5 \times 10^{-5}$ |                 |  |
| Over-all rating for MGCR                                                          | Excellent               |                  | Fair                |                 |  |
| <u>Chemical Stability</u> , threshold<br>reaction temperature, $^{\circ}\text{C}$ |                         |                  |                     |                 |  |
| With $\text{O}_2$                                                                 | No React.               |                  | 420                 | $<420$          |  |
| With $\text{H}_2\text{O}$ ( $10^{-4}$ atm)                                        | 1250 $^{\circ}\text{C}$ |                  | 700                 |                 |  |
| With $\text{CO}_2$                                                                | No React.               |                  | 900                 |                 |  |
| Over-all rating for MGCR                                                          | Excellent               |                  | Fair                |                 |  |
| <u>Economics</u>                                                                  |                         |                  |                     |                 |  |
| Cost of fabricated mod. blocks                                                    | \$22/lb.                |                  | \$2/lb.             |                 |  |
| Over-all reactor economics                                                        | Excellent               |                  | Fair                |                 |  |

### Irradiation Effects on Beryllium Oxide

We have reviewed the results of published work on irradiation effects on BeO and on BeO containing  $UO_2$  dispersions. (1-12) The conclusions may be summarized as follows.

#### (1) U.S. Work. (1-8)

(a) Work at Argonne<sup>(1)</sup> included irradiation of pure BeO and of BeO- $UO_2$  compacts containing 2% and 10%  $UO_2$  (30% enriched) by exposure to  $3.6 \times 10^{19}$  nvt (fast) and  $1.3 \times 10^{20}$  nvt (thermal). The only measured property of the pure BeO that was affected appreciably by the irradiation was thermal conductivity which decreased to about 60% of the original value and appeared to be approaching saturation value. After annealing the irradiated samples at  $980^{\circ}\text{C}$  the conductivity values were found to be almost equal to the values before irradiation. Considerably larger effects were observed in the BeO- $UO_2$  samples. Linear expansions up to 1% occurred after the longest irradiation, which could be annealed out at  $900^{\circ}\text{C}$ . The compressive strength decreased from 20 to 30% and appeared to have reached a saturation value. The thermal conductivity decreased by a factor of six for both the 2% and the 10%  $UO_2$  compacts. The temperature of irradiation has a marked effect since the 10%  $UO_2$  compacts were irradiated at a higher temperature ( $650^{\circ}\text{C}$ ). Several experiments were carried out to determine the effect of post-irradiation annealing on thermal conductivity of the fueled samples. Annealing at  $1000^{\circ}\text{C}$  for 7 hours increased the conductivity by a factor of three, and further heating at temperatures as high as  $1200^{\circ}\text{C}$  produced no additional change in thermal conductivity. The first sign of annealing was observed at about  $600^{\circ}\text{C}$ .

(b) Preliminary data from ORNL on pure BeO exposed to  $7 \times 10^{19}$  nvt (fast) indicates that the thermal conductivity decreased by 30%, with no

change in density. (2)

(c) Results of the GE-ANP irradiation work on fueled BeO samples was presented at the classified Fuel Conference held in Gatlinburg last year. We attended this meeting and detailed notes are available (M. Simnad, classified files). (3)

(d) Recent irradiation studies at Battelle for our MGCR project included irradiations of BeO-UO<sub>2</sub> fuel pellets. (4) These samples contained 20% UO<sub>2</sub> by volume and were exposed to about  $1 \times 10^{19}$  nvt\*, with axial temperature of 2350°F and ambient gas temperature of 1500°F. This exposure resulted in a 1.5% burnup of the U-235 atoms. No dimensional changes were observed after irradiation. Similar samples are being irradiated in the MTR.

(e) The creep properties of BeO have been measured recently at temperatures above 1500°C. (5) No work has been reported on the creep properties of irradiated BeO. Swelling of BeO at 1300°C probably would be appreciable.

(2) British Work

(a) The review paper on ceramic fuels presented at Geneva<sup>(6)</sup> discusses BeO. It is stated that the thermal shock resistance is high so that there is the possibility that cracking may not occur under irradiation. The effect of irradiation is reported to be a 0.3% expansion in the C-spacing with no change either in the A-spacing or the thermal conductivity. The swelling temperature (due to bubble formation) is considered to be above 1000°C.

(b) Two recent publications from Harwell<sup>(7,8)</sup> deal with the stability of BeO and BeO-UO<sub>2</sub> fuels under reactor conditions. In the introductory review attention is drawn to the fact that the results from the U.S. and France show a considerable variation in the magnitude of the irradiation-induced changes and that important parameters such as irradiation temperature are sometimes

\*thermal neutrons, effective flux

missing. (1) BeO: Mechanical properties are affected by only a small amount for doses up to  $10^{21}$  nvt. The compressive strength shows a 9% increase for a dose of  $1.3 \times 10^{20}$  nvt. On annealing, changes in mechanical properties take place at  $850^{\circ}\text{C}$  (annealing commences) and  $1500^{\circ}\text{C}$  (where the anneal is complete). (2) BeO-2%UO<sub>2</sub>: Thermal conductivity decreased by about 80% for a dose of up to  $3 \times 10^{20}$  nvt and the decrease does not appear to be saturating at this dose. Compressive strength and Young's Modulus decreased by about 30%, and these changes appear to saturate between  $5 \times 10^{19}$  and  $5 \times 10^{20}$  nvt. No British data on creep of BeO are available.

(c) The swelling of irradiated Be metal upon annealing at various temperatures has been studied in detail.<sup>(9)</sup> Bubble formation commences at  $600^{\circ}\text{C}$  and eventually results in a swelling of 30% at  $1000^{\circ}\text{C}$ .

(3) French Work

(a) A 20 page paper was presented at the 2nd Geneva Conference on the physical and mechanical properties of sintered beryllia.<sup>(10)</sup> The conclusion in this paper is that "the physical and mechanical properties of beryllia are judged to be sufficient, in first approximation, to justify the use of this material as moderator in a high temperature reactor." Samples of beryllia were irradiated to  $10^{21}$  nvt (fast) and  $7 \times 10^{19}$  nvt (thermal). Length changes up to 0.25% were observed. The thermal conductivity decreased by 80%. Annealing of the irradiated samples indicates that above  $500^{\circ}\text{C}$  the effect of irradiation is relatively less important since recovery appears to take place. Recovery is complete at  $1200^{\circ}\text{C}$ , while at  $1000^{\circ}\text{C}$  recovery is 50%. The compressive strength falls to about 20% of the original value. The elastic modulus is markedly lowered, but recovers upon annealing.

(b) A recent paper<sup>(11)</sup> presents electron-microscope studies of irradiated BeO specimens annealed at temperature up to 1500°C after exposure to  $5.5 \times 10^{19}$  nvt (fast),  $7 \times 10^{20}$  (thermal). The irradiated samples showed fewer striations in fractured sections than the original material. The heating was carried out for 24 hours. The results were as follows:

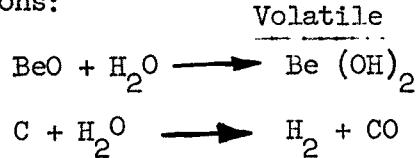
800°C: no change in structure.

1000°C: two types of bubbles were evident: a large number of small (a few hundred Angstrom units in diameter) and a few large bubbles (5 to 10 times larger).

1200°C: marked change in structure. Elongated and oriented bubbles, several microns in size.

1500°C: large bubbles (tens of microns in diameter), fewer in number and much less elongated. Random distribution.

(c) Telegram reply from Salesse<sup>(12)</sup> (head of metallurgy at Saclay) received 9-8-59. Little information, not already known, is reported.


#### Proposed Research on Moderator Ceramics for MGCR

A. One of the most important technical problems in the use of BeO or graphite as MGCR moderator blocks is to determine the effects of structure (macro, micro, and sub-grain) and chemical impurities on:

(1) Dimensional stability under simultaneous temperature, radiation, and mechanical stresses. Specifically, the effects of structure on creep and tensile strength, and their change on irradiation is not precisely known and should be determined. This is true for graphite and BeO.

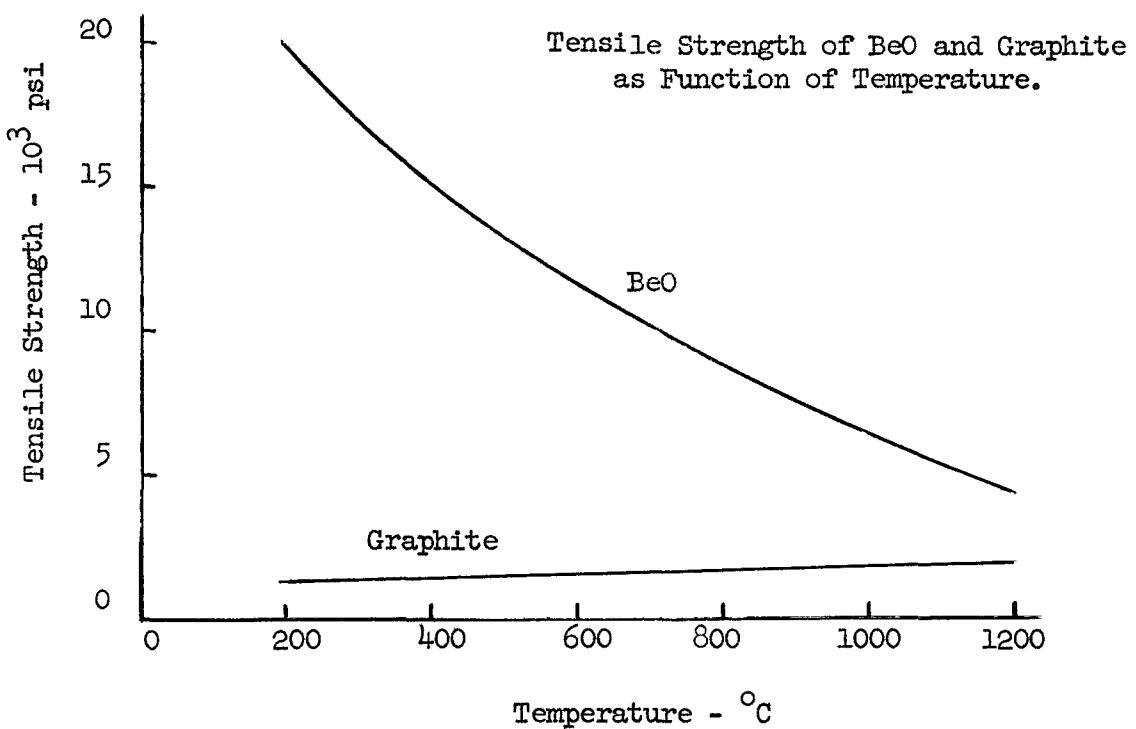
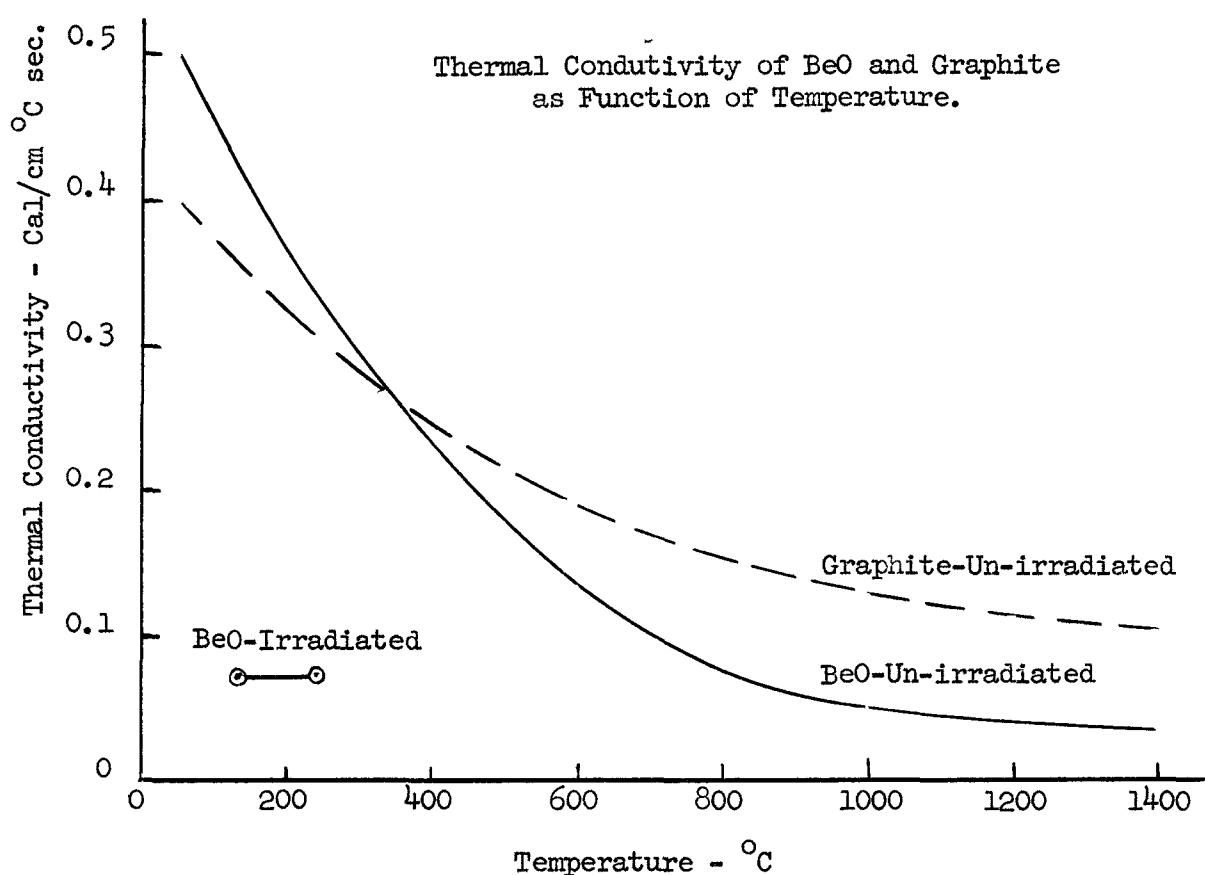
(2) Chemical reactivity under simultaneous temperature and radiation effects. Specifically, the effects of "catalytic" impurities on

reaction with impurities in helium, and with metal claddings at high temperature under irradiation should be investigated, e.g., the rate of reactions:



may be accelerated or inhibited by chemical impurities in the solid.

It should be recognized that analytical methods for characterization of BeO and graphite ceramics are inadequate in the present state of the art. A considerable effort (money) will be necessary to utilize the best analytical facilities now available, and where necessary to develop improved analytical methods, e.g.



- (1) Electron and field emission microscopy.
- (2) X-ray low angle scattering studies.
- (3) Gas-adsorption studies.
- (4) Precise spectrographic analytical techniques.

B. Another important problem is that of gas generation and the effect of this gas on the mechanical and physical properties of the moderators. For example, it has been reported that gas in beryllium oxide is formed from the  $(n, 2n)$  and  $(n, \alpha)$  capture reactions. This gas, coupled with lower creep strengths of beryllium oxide at temperatures above  $1100^{\circ}\text{C}$ , could result in swelling of the oxide. As described in the previous section, such swelling has not been observed to any extent in a few irradiation tests that have been conducted. However, these tests were run at low temperatures. Hence, it is proposed to test BeO at high temperatures in a reactor to high burn-ups and determine, as a function of temperature, neutron flux and total exposure time, the swelling characteristics, if any, of BeO.

C. Thermal shock resistance of graphite and BeO are reported to be good. For the MGCR design, it would be desirable to check this feature by subjecting the full size moderator blocks to design temperature gradients and establish the performance characteristics of these blocks.

D. Moderator blocks of MGCR design have not been produced from BeO. This is not considered to be a real hard job; however, some development work will be required.

E. As mentioned earlier, carbon transport by impurities in helium is a real problem for the graphite core. For an all-beryllia core, this problem does not exist. Also, carburization of metallic surfaces by CO ( $O_2$  + graphite reaction) disappears with an all-beryllia core.



REFERENCES

1. Gilbreath and Simpson, "The Effect of Reactor Irradiation on the Physical Properties of Beryllium Oxide", 2nd Geneva Conference, Paper 621.
2. Crawford and Wittels, "Radiation Stability of Non-metals and Ceramics", 2nd Geneva Conference, Paper 679.
3. Notes on AEC Gatlinburg Meeting on Reactor Fuels, 1958 (M. Simnad, classified notes).
4. D. Johnson, MGCR- "Experimental Data Reported by Battelle Memorial Institute for MGCR Fuel Material", GAMD-931.
5. Roger Chang, "High Temperature Creep and Anelastic Phenomena in Polycrystalline Refractory Oxides", J Nuclear Materials, Vol. 1 (1959) No. 2 page 174.
6. Murray and Williams, "Ceramic and Cermet Fuels", 2nd Geneva Conference, Paper 318.
7. Clarke and Williams, "The Stability of BeO under Reactor Conditions", AERE-M/M 229 (1959).
8. Ghosh and Clarke, "An Experiment Concerning the Presence of Free Gas in Irradiated Beryllia", AERE-R-2889 (1959).
9. Rich, Redding and Barnes, "The Effects of Heating Neutron Irradiated Beryllium", J. Nuclear Materials, Vol. 1(1959) No. 1 page 96.
10. Elston and Caillat, "Physical and Mechanical Properties of Sintered Beryllia under Irradiation", 2nd Geneva Conference, Paper 1159.
11. Frisby, Bisson, Caillat, "The Precipitation of Helium in Irradiated BeO", J. Nuclear Materials, Vol. 1 (1959) No. 1 page 106.
12. Telegram from Salesse (Head, Metallurgy Department, Saclay), 9-8-59.