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ABSTRACT

The purpose of this work is to develop a method for obtaining
solutions to the time-iﬁdependent Bo]timann neutron transport
equation on triangular grids with,nonorfhogona] boundaries and
anisotropic scattering."A functionaf is developed from the canonical
form of the mu]tfgroup transport equatidn.. The angular Variéb]e is
then removéd by expanding'the functional ih spherical harmonics
retaining only the first two moments dndllimiting the anisotropic
scattering to be linear. The finite é]ement method is then
implemented using quadratiC»Lagrange-type interpolating polynomials |
to span the spatial domain. | |

The resultant set of coupled Tinear equations is then solved
iteratively. . The applicability of cbnvergence acceleration techniques
developed for the finiteldifference method are tesfed and implemented
where appropriate.

Fina11y,_a number of numerical experiments are performed to
'eva]uate fhe performance of the proposed method. The results are
compared to results obtéined by various estab]ished methods. In all

cases, agreement. is excellent.
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CHAPTER 1
INTRODUCTION

The objective of this dissertation is to develop a numerical
technique for obtaining approximate solutions to the multigroup P]
equations. Emphasis is placed on the ability of the method to
accommodate nonorthogonal boundaries, triangular meshs, and Tinearly
anisotropic scattering.‘ The impetus for choosing these objectives

is discussed in the remaining sections of this chapter.
I. Reactor Physics Calculations

Numerical methods for obtaining solutions to neutron transport -
problems have been widely used and have been shown to be more
powerful and versatile than analytic methods. This is particularly
true for advanced core designs in which the reactor's geometry and
nuclear cross sections are extremely complex. The most widely used
numerical method is -the finite difference method. This method is
quite simple, but suffers from a few important restrictions. Finite
difference techniques require small mesh spacing and therefore a
ré]atively large anber of unknowns are necessary to adequately
describe the behavior of the neutron flux across the solution domain.
This manifests itself in the fact that most finite difference computer
codes, both those based on the diffusion approximation and the various

transport approximations, are limited to two-dimensional calculations.
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There are a few coarse mesh three-dimensional computer codes based
on the diffusion approximation.(]’z)
The finite difference method has at least one further
restriction. The implementation of the difference equations for mesh
grids other than regular orthogonal coordinate systems is relatively
complex. There are, however, a few computer codes than can perform

calculations on triangular and hexagonal grids.(]’z’B)

This is of
particular importance since current engineeriﬁg designs for fast
breeder reactors are based on arrays of hexagonal subassemblies.

In addition to these geometric complications, there are further
calculational difficd]ties introduced by the nuclear cross sections.
It has been shown, that for large fast reactors, the inclusion of
only the isotropic component of the scattering cross section results
in errors in the calculation of keff and certain ex-core reaction

(4)

rates. For a one-dimensional model of the Fast Test Reactor, the
use of classic P0 diffusion theory introduced errors of approximately
2.0 percent in keff when compared to a 38P3 discrete ordinates
transport calculation. These errors were reduced to approximately
0.3 percent when the lTinearly anisotropic component of the scattering
cross section was considered in the calculation. These results indicate
that higher order scattering must be considered in a calculation if
high order accuracy is required. .

Hfgh order transport methods could be employed to remedy the

scattering problem, however, the number of unknowns per spatial node

increases rapidly with higher order approximations. This, in
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conjunction with the number of nodes necessary to describe the spatial
variation of the neutron flux, makes many calculations intractable

even on modern computers.
II. The Finite Element Method

Recently, the finite element method has been demonstrated to
provide a high accuracy, coarse mesh method for obtaining solutions

(5,6)

to the neutron diffusion equation. The finite element method

was originally developed in the area of structural analysis and has
almost totally replaced the finite difference method in that area.(7)
_The popularity of this method can be attributed to its ability to be
applied to almost any geometric configuration and the ease with which
higher order approximation procedures can be implemented.

The basis of the finite element method is to partition the
solution domain into a number of subdomains or "finite elements."
A piecewise continuous po]ynomié] in each of the independent variables
is used to approximate the behaviorof the unknown functions and its
derivatives within each element. The coefficients of these interpolating
polynomials are determined by evaluating the unknown function at
specified points or nodes within each element. The coupling between
elements is realized by requiring the unknown function to be single
valued at nodes that are common to two or more adjacent elements.
This also insures continuity of the function across the element

boundaries. Unlike the synthesis method, the finite element method

does not require a prior knowledge of the unknown functions behavior,
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The finite element method is generally based on an integral.
formulation rather than a differential formulation.like the finite
difference method. This integral formulation can be obtained
through a number of techniques. The two basic methods are the
weighted residual method and the variational method.(7)

~The weighted residual method consists of substituting the
1nterpolating polynomials into the differential equation of interest.
Since the interpolating polynomials only approximate the behavior of
the unknown function there results a residual. A number of
independent weight functions are then chosen. The number of weight
functions required is equal to the number of unknown nodal values.
The integral of the product of the residual and each weight function
is then set to zero. This produces the. set of algebraic equations
to be solved. The weighted residual ‘method can be subdivided into
more specific classes depending on the weight function employed.
If a Dirac delta function is used as a weight function, the method
is referred to as a collocation method, if the interpolating polynomial
is used, the method is referred to as the-Galerken method, and if the
algebraic equations are obtained by differentiation of the square of
the residuals with respect to the unknowns it is referred to as the
least squares method.

The variational method is the most widely used method. This
method consists of substituting the approximation for the unknown
function into a functional whose Euler equation-is the differential
equation of interest. The first variation of the functional with -

respect to the nodal unknowns is set equal to zero yielding a set



of coupled algebraic equations. This approach guarantees that the
resulting coefficient matrix will be symmetric. This is an important
property to consider for numerical computations where computer core

storage requirements are important.
III. Applications in Reactor Physics‘

If is only recently that finite element methods have been
investigated for use in the area of reactor physics calculations.

(8)

Kang and Hansen have applied the method to static neutron
diffusion problems, neutron slowing-down problems, and point
kinetics problems. Their study was limited to the consideration of
rectangular elements in which Hermite polynomials were used as
interpolating functions.

Another choice of interpolating functions are the Lagrange
polynomials. These polynomials are defined in terms of unknowns
on the boundaries and on the interior of each element, thus preventing
the imposition of derivative continuity across the element boundaries.
The Hermite po]yndmia]s are defined in terms of function and its

derivative values along the boundaries of each element and therefore

derivative continuity can be imposed, but these polynomials become

(9)

difficult to.generate for triangular elements. Semenza et al have
used linear Lagrange polynomials with triangular elements and bilinear
polynomials with rectangular elements to obtain solutions to the vari-
ational form of the multigroup diffusion equations. The results of their

calculations for a two-dimensional slab reactor with a planar control

rod demonstrate the flexibility of the finite element method to
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describe the problem efficiently by allowing many elements to be used
near the control rod where steep flux gradients would be expected to
appear and relatively few elements in the remainder of the problem.

The mu1tigroup‘dfffusion equations have also been investigated
by Kaper et a1ﬂ6’]o) using higher order Lagrange polynomials. Their
work indicated that higher order approximations could lead to
substantial computational savings compared to low order finite
difference methods. They also concluded that quadratic polynomials
are probably the optimum based on the increased number of unknowns
needed for higher order approximations versus the increased accuracy
obtained by using higher order polynomials. ‘

A number of efforts have been made to apply the finite element
method to the neutron transport pr051em in which both the spatial
and angular domains must be considered. Miller et a]ﬁ]]’]z) have
applied the method to obtain solutions to the se]f.a§joint, second-
order form of the transport equation using the variational method.
They used both rectangular and triangular elements in the spatial
domain and rectangular, "phase-space," elements in the angular
domain. They included linearly anisotropic scattering in their one-
dimensional studies, but considered only isotropic scattering in
their two-dimensional studies because of the increased complexity.

Kaper et a]ﬂ]3)

have compiled the most significant body of

work on the application of the finite element method to neutron trans-
port calculations. Their work contains a study of four different
classes of finite element approximations based on: (1) a piecewise

polynomial basis in the angular domain, (2) a bi-cubic spline basis
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in the angular domain, (3) a surface harmonic approximation in the
angular domain, and (4) cubature formulae. The spatial domain is-
spanned by piecewise continuous Lagrange interpolating polynomials
on triangular elements. As in Miller's work, this study was limited
to isotropic scattering. | |

“Recently, Lilliel14)

has developed a method that accommodates
anisotropic scattering and anisotropic neutron flux. The method is
based on a variational form of the canonical discrete ordinates
equations and employs linear Lagrange interpolating polynomials over
triangular elements. The method performs well, but with significant
increases in computational time as the order of anisotropy increases.

At present, the only production oriented approach was investigated
by Reed et aL(]S) and is incorporated into the computer code TRIPLET.(]S)

This code solves the multigroup discrete ordinates form of the

-transport equation in triangular geometry. The angular flux is

approximated by a -Lagrange po1yn0m1a1 over each element. A weighted
residual approach is used to generate the necessary algebraic
equations. This set of equations is then solved iteratively rather
than directly which is the traditional method employed in the finite
element method.

-The iterative process for solving the finite element equations

(16)

has also been investigated by Yuan et al. They applied various
iterative techniques to the one group, second-order form of the
transport equation. Included in their study were the point and

block overrelaxation techniques.and accelerated block overrelaxation
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techniques. They concluded that iterative methods for finite element
calculations are as efficient as iterative methods for discrete

ordinates calculations. .
IV. Scope and Organization

As stated earlier, the objective of this work is to develop a
technique for obtaining approximafe numerical solutions to the multi-
group P] equations with particular ehphasis on nonorthogonal boundaries,
triangular meshes, and linearly anisotropic scatteriﬁg. To attain
these objectives, triangular finite elements are'used to span the
spatial domain. The neutron flux is allowed to vary quadraticaly
over each element. The set of algebraic equations to be solved are
obtained through a variational formulation of the P] edquations. The

resultant set of algebraic equations is then solved iteratively.

The development of the mathematical and finite element models
are presented in Chapter II. Chapter 111 presents the development
of the numerical techniques employed in thiS‘WOPk.. The fesu]ts of
a few numerical experiments are presented in Chapter IV. The
results of a‘fixed source problem calculation are compared to a
discrete ordinates ca]cuTatioh. A comparison with diffusion theory
on a thermal reactor calculation is discussed in this chapter. A
comparison with transport theory is aiéo included on a fast reactor
calculation to demonstrate the abi]ity'of the method to accommodate
linearly anisotropic scatter%ng. Chapter V presents the conclusions

and a number of recommendations for future_efforts.



CHAPTER II

DEVELOPMENT OF THE THECRETICAL MODEL

~The derivation of the canonical P] equations is presented in

development of the finite element equations.

I. The Mathematical Model -

the first section of this chapter. The second section contains the

The transport of neutrons in a medium can be described by fhe

Boltzmann neutron transport equation. The time independent form of

this equation in cartesean coordinates is

where

X,Y

o

>

G0 (X,Y,E.8) + (X, Y,E) o(X,Y,E,D) =

L GnEd o E3) (L Y,EEY) divde” +
e Q, N ) .
O T Sr 00YE) ok Y,EF7) dirde” +

m E~- 5» ) ’ .

Q(X,Y,E,Q),

position variables,
the particle's kinetic energy
a unit vector which describes the particle's direction

of motion,
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o (X,Y,E,8)

the time independent angular flux,

Q(X,Y,E,ﬁ) the source of particles emitted per unit volume
and time at position X, Y in direction @ with

‘energy E,

5(X,Y;E“Q"~E,Q) = the scattering cross section which describes the
| probabf]ity that a particle with an initial
energy E- and direction [ underéoes a scéttering
co]lisioﬁ ataposition X,Y which places it into a

direction ¢ with energy E,

5-3¢(X,Y,E,§) = the net convective 10ss per unit volume and time
. at positioﬁ X,Y with direction ﬁaand energy E,
vzf(X,Y,E) = thé neutron production cross section at position
X,Y for particles with energy E, |
f(E) = the fraction of the total number of particles
produced with energy E, and
2(X,Y,E) = the total cross section at position X,Y for

particles with energy E.

The multigroup form of Equation (2.1) is

99 .,

G
> > <> > > >
g.v ¢ (@) + 3z ¢ (R) = ] ] Yo (2°eR) ¢ _.(27) dac o+
g g g g;=] 3' S g
f G
o GZ=1v fo” 3- 0g-(27) da” + Qga), (2.2)
where g =1, . . ., G andvG is the total number of energy groups.

The.definitions of the variables appearing in Equation (2.2) are
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(17)

standard and can be found elsewhere. The X,Y variables have also
been removed from the‘equation for simplicity.

If the possibility that a neutron can gain energy through a
scattering interaction is neglected, the scattering source term can

be simplified to

G < > >

o] aENEg) 6 @) & -

g’=1 @~ 9
J’ g>g,z. > > - g-] 'f g‘+g >, > > >
5 IS (27-Q) ¢g(s2 ) der + ¥ |2 Ig (R7-Q) ¢(Q”) de-.  (2.3)
Q g’: - . v

Rewriting Equation (2.2) for the gth energy group gives

B3 08 + 50y (8) = é’ sT9@8) 0y(3) &b+ s @), (2.0)
where
s (@) = gil F3979@-.3) ¢ L(87) &b +
g g-=1 g ° 9
'y § v ) 6 @) B+ 0 (B). (2.5)
Am .2y Tf97 2. 797 g

For further simplification, the subscript g is now dropped and the

monoenergetic form of the Boltzmann equation is considered. -

The Canonical Transport Equation

Consider Equation (2.4) for % and for -3. For @ the result is

3.V o(8) + £ o(R) =

O —

zs(a».a) 6(27) do- + S(B) (2.6a)

3

and for -8
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- >

-2 9(-8) + 1 ¢(-) = £ p(870-8) ¢(8°) di- + S(-R). (2.6b)
>.

Decompose the flux, ¢(§), into its even-parity component,

¥(2), and its odd-parity component, x(%), as follows

o () = w(@) + x(@) (2.7)
where
b(@) = 3 Lo + o(-B)1, (2.8)
and
x(®) = 2 [6(@) - o(-)]1. (2.9)

 The following definitions are made

22(@8) = 32 (38) + 2 (B°-B)] (2.10)
o(80e0) = %-[25(5'-5) - 1 (®7-8)] (2.11)
Se(8) = 5 [S(8) + S(-B)] (2.12)
°@) = 7 [S@) - s(-8)] (2.13)

where these quantities are the even-parity scattering cross section,
the odd-parity scattering cross section, the even-parity source and
the odd-parity source respectively.

The addition of Equations (2.6) and noting that
3(G8) vw(@) di” = 0 (2.14)

yields
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Similarly, the subtraction of the same two equations yields

97 w(8) + () = J O(07-8) x(07) di” + s°(F).  (2.15b)
3.

This form of the neutron transport equation is referred to as the

canonical transport equation.(]S)

The Even-Parity Form of the Transport Equation

Equation (2.15) can now be combined to form two second order
equations. The second order equation is the even-parity flux, which
is of interest in this work, can be obtained in the following manner.

Rewrite Equation (2.15b) as

>

Hx (R) = -G+Vu(9) + S°(3), (2.16)

where I is an operator defined as follows:

Me(@) = x(3) - L 10@-8) x(E) dde. (2.17)
S
Therefore,
(@) = W [2-3(3) + °(B)7. (2.18)

To obtain the operator, H'], expand the scattering cross

section, s in Legendre Polynomials as follows,

.2 5 204 2.2
ZS(Q Q) _zzo e Es,z PQ(Q Q) (2.19)

. f , . .
where Zs is the 2t1 term in the series expansion,

s L



>, > _ Ar % - + Ty g
PQ(Q Q) = Tt T Z Y () Y (Q-)*, (2.20)

and Yz m(5) are surface harmonics which are defined e]sewhere.(]g)

Substitution of Equation (2.20) into Equation (2.19) yields
25(5'-5)= Vs
2=0

+

2
.
LYo m®) Yy

(@-). 2.2
RN (@) (2.21)

S,2

At this point, it should be noted that for even functions Equatioh
(2.21) has nonzero coefficients for only even values of 2. It

should also be remembered that

Pz(ﬁ‘-ﬁ) = Pg(ﬁ-ﬁ’). (2.22)

Noting these facts, the even and odd-parity scattering cross sections

can be defined as

2 ,
s>, = > + -+
s (Qce@) = Y = Yooy, () vy, (Q7). (2:23)
S g even 2% p=-y BT o
and ) '
£2(8--8) = z f Y @)Y @) (2.24)
s ¢ odd S*% p=og %M 2,m

Substitution of these results into Equation (2.17) gives

L
@) = 2@ - 1 5., ) Y E) «87) dd-.(2.25)

@ v
2 odd °°7 m=- Q°

) YSZ,,m

Equation (2.25) is multiplied by YZ, (8) and integrated over

sm”
all & space. Noting that

j > + > >SN A m’
.. Yz,m(Q) Yl,m(Q) do =6, & (2.26)

*The superscript "+" denotes the complex conjugate of the
function of interest.
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where éi‘ and 62 are the Kronecker delta function. The resultant

equation is

f > + -+ —>= ,[ + > -~ >
2 G(Q) Yz’,m’(g) dQ = 5 Yz‘,m‘(g) x(Q) do -
) H* (8) x(8) 8- (2.27)
> a\ X s .
g odd St pEap g oM
where
6(3) = Hx(3). - (2.28)
Since © and %~ are only variables of integration
+ > > - + - > > ,
é Yg,m(Q) x(2) d@ = é‘ Yg’m(Q ) x(8°) da-. (2.29)
Equation (2.27) can now be written as
J 63 YE @) dd= Y (z-z. ) § [y (8%) x(2°) da~
R sodd Y peep B BT ’
' o ‘ (2.30)
or upon rearrangement as
f + > > > 1 % I > + > >
2oy () x(e7) dem = Y Yy 2 G6(Q) Y, (2) da. (2.31)
G- %M % odd Z"%s.8 m=-¢ & sl

HX(2) = 6(8) = x(3) -

J Yo%) Hx(87) do-. (2.32)
5, 2,Mm
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Now substitute Equation (2.16) into the integral in Equation (2.25)

and rearrange to obtain

«() = T (@) + S°E)

5

lzzs_,zfy’(g)
L 9 odd Z’Zs,z m=-2

Yo (&) [-at¥(80) + s°(R0)] -,
(2.33)
Using the expansions for the cross sections defined by
Equations (2.23) and (2.24), Equatidn (2.15a) can now be rewritten

as

~12
>3

)
o))

N

z

- 6°) w(@) i - s8(@). (2.34)
0 b . . .

o~ 8

2 m=-2

Equation (2.33) can now be substituted into Equation (2.34) to

yield the following second order form of the even-parity transport

equation,
G-V[8-V (@)1 %-v s°(%)
P z -
ALy S oy @) f v @@ - B tEn] di
L poodd 27%s,q meap BT 3 AeM )
() + ]z % v, @) L vt @) u@Ee) dé o+
v even >t piogp Lo g- A

s€(2) = o. (2.35)
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The Even-Parity Functional

The advantages of using variational techniques to obtain the
set of algebraic equations to be solved were discussed in Chapter
I, page 4. It is oflinterest to construct a functional whose first
variation with respect to the unknown function, ¢ in this case,
gives Equation (2.35) as its Euler Equation. To accomplish this,

(20)

introduce the jdea of the variational derivative, §, defined as

SF(v) = 2im -g? F(y + esu). (2.36)

e~>0

The equation for the first variation of the functional can be

written as
> D> > -> 5> o> 0,+
sF(w) = £ £ su(d) (& v[nsz(ﬂ)] _Q vzs (3) _
rQ
55[ ) - DV, L@ LY @) 0@ - Ry i)
L £ odd Z-ZS,SL m=-9 £,m 6; L,m

> > + > >, - e,»> > >
sp(Q) + ) Is.a _2 Yz,m(Q) i’ Yz’m(g ) w(e7) do + ST(R)}) dadr
2 even m=-2 Q
(2.37)
where ¥ denotes the entire solution dohain.
Operating on Equation (2.37) with the following vector
identities(Z])
Q-Vf = Veof (2.38)

and

WS-V = v-[udf] - [B-vu]f (2.39)
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yields the following functional,

20(a) s%(8) - 28-Fu(R) é g(d-+8) s°(d~) di-} didr +
o,
{iV-dw'Gﬁ)ﬁ['g vy (%) + SZ(Q)
rQ
I g@-3) 3-%u@) @+ L g@-3) $°G) @1 &dF (2.40)
Q- Q-
where
z L '
>, > 1 S, 2 > -
g(ec.q) == ) —= Yooy, (@) vy, _(2°). (2.41)
L g odd ¥7%s,p me-g oM %M

The terms in brackets in the second integral over @ in
Equation (2.40) is equivalent to Equation (2.33). Therefore,

Equation (2.40) can be written as



203) S2@) - 2890 | 9@-3) @) ) dd +
Y
VeLov(@)ax(%)] didr. (2.42)

Since w(ﬁ) and x(2) are both continuous functions in phase-
space over the region ¥ Green's Theorem can be applied to the last

integral in Equation (2.42) as follows,

I 3 tse@dx®)1 didr = L au@) 30 x@) e, (2.43)
r Q ' Q

where T represents all the external surfaces of the solution domain
-> . >
and n is a unit vector normal to T.
At this point, it becomes necessary to examine the effeéts of
some common boundary conditions on the form of the functional For

the nonreturn boundary

() = 0. For 2.1 < 0, (2.44)
which, in terms 6f the even and odd-parity fluxes can be written as

0. For g-n <0 (2.45a)

w(8) + x(%)
and
n > 9. (2.45b)

OV

) = 0. For

DY

w(8) - x(

Equation (2.43) can be rewritten as

su(2) 8-n x(2) dadr. (2.46)



20

Applying Equations (2.45) gives

PoL s sat-e@a didt « L1 su@) 3-3003)1 @t -

I qen<0 I' Q+.n>0
;{ _{ 6¢(§)|5 Z"p(a) dﬁdr = —g-_{_{ Iﬁ'_n>|lb(§)2 dﬁd? (2.47)
I @ T3

as the appropriate term to be included in the functional for nonreturn
boundaries. | ”

The second type of boundary ;ondition considered is the
symmetric boundary condition. |

For symmetric boundaries

8(8,.) = o(8), (2.48)

where 5r is the reflected direction vector. This can be written as

o3 = (@) | (2.49a)

and

x(ar) = x(2) ‘ (2.49b)
in terms of the even and odd-parity fluxes.

Equation (2.46) can be written as

ééaumﬁixﬁ)ﬁﬁ=
f J’ >y > > > > > j f ‘ >y > > > > >
Lo s ou(@) qen x(e) dadr + 4 7 sy(@) Qen x(a) dadr. (2.50)
r 2.n>0 I' 2+n<0
It is also known that
den = -3 _.n (2.51)
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which is evident from Figure 1. Therefore,

g h rr g n>0

I su@ya ma@) & d =L 1 su@ 87 (@) did.
T Qr-n<0 ra,. '
T S (2.52)

Substitution of this result into Equation (2.50) and using Equations
(2.49) yields

Alx (@) - x(8,)] didF = 0. (2.53)

(o]
<
—

oV

¢

The even-parity functional can now be written as

> > ,rya2
_! {[Q.vg(g)] + Zw(ﬁ)z _
2

187 w(3)? dddt, (2.54)
where

y = 0 for symmetric boundaries

1 for nonreturn boundaries.

When applying the symmetric boundary condition to Equation (2.42)
to obtain Equation (2.54), it is not necessary to use the v(2)
constraint equatioh, Eqdatidn (2.49a). Therefore, it is necessary to

consider the variation of the odd-parity function to obtain the
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Figure 1. Reflected Angle ﬁr in the g-n-u Coordinate System.
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essential boundary céhditions, if any, thgt should be imposed on the
even-parity functional. |
The odd-parity functional is obtained through a procedure
similar to that used to obtain the even-parity functional or by

(18,22)

envoking an involutory transformation. The oddearity

functional is.

/18 dodt | 2.55)
5 A QdT, | (2.

where g(ﬁ‘-ﬁ)* is defined in the same manner as 9(5‘-5) except the
sum is over the odd values of £ -instead of the even values of &.

The first variation of Equation (2.55) with respect to (&) is

> >> > > > > @,
§F(y) = -?IS{ sx(2). & V[Qév.x(fz)] _9 vzs (2) _
R % Y, (%) J Yo (84) x(3) 43~ -
g odd ot =y LM ge oM



f\)|-<

g(5--3)* (8- -Tx(57) + SB(%-) 1S 11 dddr. (2.56)

&) , J
X >,
Q

The bracketed term in the third integral is w(2). Using

Green's Theorem, Equation (2.56) can be written as

I I B .
sF(x) = 7 2 ex(a) { - - —5 -
r
ix(@) + ) I % Y, (2 I Y; m(a‘) x(2°) di- -
¢ odd >T m=-2 ’ o3 ’

> >

55 ] 9@ [83) - 3@ 1 &7 + S°R)) didF +
9]

sy (3) |80 (3) didt - I_{,ax(a) 53t u(@) dddt. (2.57)
I Q

Consider the nonreturn boundary condition once agaiﬁ; Using
the same procedure used to obtain Equation (2.54) it can be shown
that the second surface integral is equal‘to the first. Thérefore,
their difference is equal to zero. Thus, the nonreturn boundary
condition imposes no additional constraints on the éven-parity
functional.

For the symmetric boundary condition, substitute Equation
(2.49a) into the secbnd surface integral. As in the even-parity
functional, the result is zero. It can therefore be concluded
that both the nonreturn and the symmetric béundary Conditioné are

natural conditions arising from the functional. " That 15; the
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surface 1htegra1 is inciqaed in thé FUnctidna] for nonreturn
boundaries and deleted for symmétrié boundaries.
The adjoint problem is often of intefest 1n-reactor physics
studies. A discussion of - the formu]étion of'fhe adjoint problem is

presented in Appendix A.

The Reduced Functional

The even and odd-parity fluxes are now ekpanded in surface
harmonics. |

2

X3 = 3 o, (X, ) (2.58
Aw( 2) . zven mz_l 92,T( Y)Y, a8 (2.58)
: . | 9 . '

X,¥,8) = L X,Y) Y : 2.59
X(X,Y,2) , qu ngz X m(XsY) Q’W(Q) (2.59)

The scope of the remaining derivation is limited to the
" consideration of linearly anisotropic scattering and linearly
anisotropic fluxes. The expansions for the fluxes and sources

now degenerates to the following set of polynomials,

W(X,Y,0) = gy o(X.Y) ¥, (), (2.60a)

X‘(XsY’Q) = X],_](X’Y) Y],_](Q) + X’] ,O(X,Y) Y'l ,O(Q) +

SIRLC T 0T U G (2.60b)

SB(X,Y,8) = S, A(X,Y) Y. (& (2.60c)

0,0(
and
0 - SO ] : > >
S (X,Y,Q) = S]’_](X,Y) Y],_](Q)u+ S],O(X,Y) Y1,0(Q) +

s];](x,Y) v, 4@ - (2.60d)
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The substitution of Equatibns (2.60) into Equation (2.54) yields

2192
| [2.v v ¥5.0 V0,0
)

F(o) = 5 ] : + 2luy o ¥g o(D17 -
Y\ ] 9 i .

Y,0 0,0 %50 Y0,0(%

[Sq 97,8 +5y oV (@) + 8¢ 1Y, (D] -

2 99,0 Y0,00%) Sg.0 Y500 -

: I +4'_> . 3. i -9
269 vy 4 Yo 0 (&) - 9(~+3) [Sy,20Y7,.0(@7) + Sy g¥q o(87) +

S, .Y, J(8)] dd-) dddr +

1,171,
%31‘1 |&-n| wO,OZ'YO 6(5)2 dadf, (2.61)
I' Q .
~ where
1 ;
yooo= A (2.62a)
0.0 i

V. =af SN 6 e-1®
11 Warshe e, (2.62b)
Y, =4/ COS (2.62¢)
1,0 " Y@ “ 8 o Dee
Y. . =-4/3 sINgel? 62d
1,1 - 8_TT e ’, . (2. )
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and

,] - > + -
z(z-zs’] mz_ Y, (@) vo (). (2.63)

g(d-0) =
The angles & and ¢ are defined in Figure 2.
Equations (2.62) and Equation (2.63) are substituted into
- Equation (2.61) and the indicated integrations over % and 8~ are

performed. The resultant functional is

2 > 2
N1 el 2 2, LV ¥,0l" %
F(v) = 73 == *T¥%.,0 ~Zs,0%,0 * 3E(z-z, ¢)
210 .1 Moo 1 Moo g
tPE T 1T s 21,0 T Z Y 1
2 u. S - 2 ZSJ []_ 311)0’0 S + 1_3‘1}_01_@_5 _
0_,0_40,0 p(z-zg 4) g Y T1-1 0 g X L0
BY
1.770,0 - Yf 2 =
— 2= S, 1Y dr + £y dt. (2.64)
/E oY 1,1 4 £ 0,0

2

s,0) Y00 ~ 2 Y%,08

Fly) = l { 22+ (z-z 0.0 -
r B 3

(z-zs {) VE oY 1,-1 A3 oX 1,0 JE aY 1,1

Equation (2.65) can now be minimized and the even-parity flux

ca]cq]ated.
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Figure 2. The Coordinate System in Rectangular Geometry.
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The odd-parity flux can be obtained from Equation (2.33) once
its reduced form is derived. For a P expansion, Equation (2.33)
takes the following form;

(%) [s°(3°) - 8-V p(37)] d3-.

(2.66)

s,1" m==1

Once again the fluxes and sources are expanded in surface
harmonics as per Equations (2.60). These éxpansions are then sub-
stituted into Equation (2.66). The result is then multiplied through
by YZ,’m,(ﬁ) and then integrated over all Q. Using the orthogonal
properties of the surface harmonics results in the following set

of equations;

oy
1 1 0,0
X = e (2.67a)
1,-1 z-zs’] 3 oY 1,-1
X = 1 [—_] 3‘1)0,0 + S ] (2 67b)
1,0 Z'Zs,] <3 oX 1,0
and

11 Py

07T L = 59,11 (2.67¢)
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Now that all the components of the real flux are known, it can

be reconstructed in the following form;

3

1 .
> 0,0 3 -i¢
o(Q) = —=+x 7—C0S e+ yx ,4z=SINee ° -
2/_” ],0 4‘" ],"] 811'
: , 3 id
X],] 8n SIN 6 e ", . (2.68)

This can be rewritten as

v Ny |
> _ 0,0 3
3

o SIN 6 COS ¢[x],_] - x]’]] -

K
i Ygr SIN 0 SIN olxy _y + x; 41 (2.69)

Since the flux is a real valued functioh

X-I’-I = -X]’f1‘ ' (2.70)

Equation (2.69) can now be written as

> _Y0,0 3
o(Q) = =+ oy — COS 6 +
ey 1,0 ‘V4n

[3
Xy,.1 Vzr SIN 0 COS 6. | (2.71)

o(X,¥) = Jo(@) & = 2/ uy . (2.72)
Q 9

The scalar flux is
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The substitution of Equation (2.70) dinto Equation (2.65) yields

the final form of the reduced functional.

FW =75 5 (225 o) ¥g,0" - 2 ¥,0 So,0 -
2 .2 9,0 1 2,0 7
AN + — 2= S dr +
(Z-Z ,]) /6— B,Y -Ia"'] /3‘ aX 130]} r
L1y, 2 dt (2.73)
T ? .

The multigroup even and odd-parity sources are now considered.
Their derivation follows the same strategy used in the derivation
of the canonical transport equations. For brevity, only the results

are presented here.

e,> f G >
Sg(Q) = G’Z vng, ) wq,(g') do- +
g_] e q’»q,>. > -+ > e,
) [ 589 9(3-.q) v_.(27) dd- + QS(%) (2.74)
g’:] 5’. s g g .
and
0,2 9:! [ 0 g=g2. > > 0z
s)(a) = 0 97958 « L(B)dd- + Q°(R). (2.75a)
S g1t e
where
Q¢ = 3 [0 (@) + o (-8)] (2.75b)
and
Q) = 5 [0 (B) - 0 (-8)] (2.75¢)
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Equations (2.60) are substituted into Equations (2.74) and

(2.75a). Then the indicated integrations are performed resulting

in the following set of equations;

G - g-] - -
g 9° ., g*>g g g (2.76)
S9.0° Tg L VEeg- Y00t L %0 Yo,0* Q0,0 >
? g’=1 g”“=1
g-] - -
g . 9°+9 g
Syop T LT, (2.77a)
) g __'I
g . %' L9990 (2.77b)
>1,0 ~ gZ:: s, 9,0 '

and by envoking Equation (2.70)

Y07 -5 (2.77¢)

The odd-parity fixed source is set to zero for simplicity.

This completes the so-called "weak" formulation of the transport
problem. It is termed weak because the family of functions that
satisfy the functional must be continuous functions in the spatial
domain and the first derivative must be square integrable,while the
family of functions that safisfy the diffusion equation must be
continuous and all the derivatives through the second must exist.

This is a more stringent restriction on the even-parity flux
than that imposed by the functional. However, this has been'shown

(8)

to have a minimal influence on the accuracy of the solution.
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II. The Finite Element Model

The solution domain is now divided into a number of smaller

subdomains. Equation (2.65) is now approximated by a sum of

integrals. The functional is now written as

2
NE (Vo o)
1 | 0,0 2

F(y) = o :

W=z L L. Gr3 T+ (700 Yo,07 - 2 %,050,0 -
n 9
3y v >

(2_22 2 _0,04 #1005 9y g7 4

4—4 ol @1 (2.78)

where ?n and ?n are the areas and external surfaceé, respectively,
of each of the NE e1ement§.

The subdomains are taken to be triangular in shape. A
quadratic polynomial is used to describe the spatial variation of

the even-parity flux over each triangular element. The reason for

this choice of polynomial is discussed in Chapter I, page 6.
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Therefore,
v (X,Y) = a + a X+ a Y +a X2 + a XY + a Y2
n'"’ 1,n 2,n 3,n 4,n 5,n " %p4n
(2.79a)
or
- 2 2 A

v Yy =1 x ¥y oxt Xy o ¥]ax (2.79b)
or

@ (XJY) - fla : | (2.79¢)

n ’ LI . .

The double zero subscript has beeﬁ deleted for simplicity.

For quadratic interpolating functions, it is necessary to
describe the function in terms of six nodal points on the edges of
each element. Three of these points, "nodes," are located at the

vertices of the triangle and the remaining three are located at

the mid-point of each side as illustrated in Figure 3. The
variation of the flux is now expfessed in terms of these nodal

values as follows,

I R T A A R a)]
7 X, Yy X XY, Yl fa
Y N R TR G XYy V5| ia
Vg R g Yo Xg KXYy Y| |3
Vg ToXg Yg Xe o ag¥s Yol |ag

%) |7 % Y6 s YeYs Y | %

(2.80).

*Single underlined term denotes a vector and a doubly under-
lined term denotes a matrix.
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Figure 3. A Typical Triangular Element Illustrating the Nodal
Numbering Scheme.
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or symbolically

v, =Ma. (2.81)
Therefore,
N
3, =M. (2.82)
Equation (2.82) is now substituted into Equation (2.79c). The
results are |
T -1 =
wn(X,Y) =f M Y- (2.83)
This is now reduced to
Nl
v (Y) = N g, (2.84)
where @% is the element flux vector, the jth element of which is
the even-parity flux evaluated at the jth node of the triangle and
ND= [N, N, N, N, Mo N.] (2.85)
- 1 2 3 4 5 6-° )
The elements of the N vector are defined as follows;
N = (2L - 1) Ly, et (2.86a)
for elements 1 through 3 and
N4 =4 L] L2; etc. (2.86b)
for elements 4 through 6, where
Li = (ai‘+ bi X + Ci Y)/2a, (2.87)
i=1,2,3,
-aq = X2Y3 - X3Y2, (2.88a)
b] =-Y2 - Y3,  (2.88b)
and
¢y = X3 - X2 (2.88¢c)
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and the remaining coefficients are permutations of these equations,
i.e., 1 goes to 2, 2 to 3, and 3 to 1, and A is the area of the
triangle.

Introduce a global flux vector, @3 whose jth component is the
even-parity flux evaluated at the jth node in the ent{re system. A
Boolean matrix is used to relate the components in the element flux

vector to their corresponding components in the global flux

I

vector i, This Boolean matrix is defined as follows
6 ”, b
=7 & 5t (2.89)

for ¢ =1,2,...,6;5 k=1,2, ..., NDF, and where B). is a
vector containing the global node number associated with node g

of element n, and NDF is the total number of nodes in the system.

Therefore

="y (2.90)

g

and

b () =0 0" g (2.91)

(<)

Similar arguments are advanced for the spatial variation of

the sources and the results are

<n _ nZ

§0,’0 - i §0,0’ (2.923)

=n n g

§'] ’_'l i §]’_] s. (2.92b)
and

rL U { B

_S_] ,0 - i §] ,0 (2.92C)
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Equation (2.91) and Equations (2.92) are now substituted
into Equation (2.78). The result is

NE T oy T
T N(IN T
F) =+ 3 [0 oJ ar (Lo w1
n=1 r S,] ?
n
R L PO (S SR A LT
> "n=="% 275 Thi(z-z ) S eV = & 2,0
rn "n S, ] 6
1N . T .n2 T .n2 '
Sl L 50l - 2NN L5, o] (2.93)

The first variation of Equation (2.93) with respect to i_is

taken and set equal to zero to obtain the stationary conditions of

the functional. The resulting set of algebraic equations can be

written symbolically as

NE T R NE T
AN A I S VA i (2.94)
n=1 _ n=1 :
where
> T
n_ [ = VN (WN) T n > T
A= dr G (2-25 o) NN'T+ 5 ,{ i NN, (2.95)
r 5] r
n n
and
n_ | = T n2 1 2 0N T n:
¢ = dF (NN J"s, ,+ (=N 1S +
?n n 20,0 -Ig /g'aY = =1,-1
o §] ot (2.96)
/§ oA — = —|,0U° . :

The odd-parity element flux vectors are obtained by the

substitution of Equation (2.91) and Equations (2.92) into Equation
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(2.67). The resulting finite element form of the odd-parity

equations 1is

- _ 1 8N, n- I‘n‘“A | \
L,-1.7 (Z-Zs 1 - ;%:(=l) Q: $.+ J §q’_]] (2-9/3}
and
N R -

=1,0

The derivative vectors are denoted as matriées beéause the term is a
matrix with the derivative vector evaluated at node J in row j of the
‘matrix.

A similar procedure is performed to obféin the multigroup
sources. For brevity, only the results are presented. The even-

parity source equation is

. NE T G R g-1 . .n R
PRI W L S SR A L RS N s S R
=0,0 n=1 g°=1 fg© = ~ g*=1 s,0 = =
+ 9" 05 o1, (2.98)
where [ = a9
\E r 3 drn QO,U(X’Y)
g n .
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and
.0 for corner nodes
o = .
1 for side nodes.

The fixed source, Q, is assumed to be 1Sotropic,‘theref0re, the

odd-parity component is zero. The odd-parity sources can now be

written as
. NE T.g-1 . n
g _ n g’-g —n :
S R D N X o : -
]9_] n='l - g‘=] 591 . A ],-] ' (2.]006)
and
| . NE Tg-1 ..on |
g T = n g-=>g —-n. . ’
1,0 nzlvg: gZ=1 ;1 X1,0 | (2.1006)

This concludes thé'derivapion of the theoretiéal-mode]. The

following chapter is cdncerned with . the development of the numerical

model employed to obtain solutions to Equation (2.94).
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CHAPTER TIT
DEVELOPMENT OF THE NUMERICAL METHOD

.This chapter presents the devéTopment of the numerical .
techniques employed in obtaining solutions. to thé'§et of coup]éd
-algebraic equations that were derived in the preVious chaptér.

The first_sectioﬁ of th1s'éhapteridéa1s with the numerical integration
of the terms in the functional over each e]eméht. The iterative
sﬁkategy and brob]em férminétion:éréteria are discgssed in fhe

remaining section.
~I. Numerical Integration

The 1ntegfa1s 1ndi§ated,fn Equation (2;95) are not simply
'qbtéined:in‘cldsed'form. This can be attribufed to the highef order
approximation used to'describe the spatial variation of.thé flux
and the fact that the integrals of the gradient terms depend on
the 10¢a£ion of the particular element in the mesh. For these
reasons,'é numefica] integration scheme is employed to evaluate
the neceSsary coefficients in the integral matrices. |

(23), is used to perform

A nine pOinthuadrature sét, Tab]e I
the infegrations‘oVér the aréa.of thé'triqngles, The integration
points, Ri and Si’ and the weighté, W, are defined in a transformed
coordinate System in which all triang1és are mapped as tﬁe triangle
illustrated fn Figure 4. To perform the integrations in the g]dba],

X-Y, coordinate system, it is necessary to map the integration
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TABLE I

NINE POINT QUAdRATURE SET FOR TRIANGLES .

S,

A i Wy -
0.10271765483 0. 80869438567 0.05581442049
' 0.45570602025 0.45570602025 0.08930307278
0.80869438567 0.10271765483 0.05581442049
0.06655406786 0.52397906774 0.06367808510
0.29526656780 0.29526656780 0.10188493615
0.52397906774 0.06655406786 0.06367808510
0.02303113229 0.188409405917  0.05581442049
0.10617026910 0.10617026910. 0.08930307278
0.18840940591 0.02393113229 0.05581442049
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(0,0) ~ (1,0)

Figure 4. The Triangular Domain in which the Integration Points
“are Defined.
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points into the global system. This is accomplished by envoking

the following transformations;

K 3 (X3171X]) Ri + (X2 - X]) 51 + X], (3.1a)
Y_.l = (Y3 - Y]) R_i + (Y2 - Y]) Si + Y], (3.1b)

and
W = 2 Wi Ay . f (3.1¢)

where X], Y], X2, etc. are the coordinates of the.corner nodes of
the ﬁriang1e in the global system and A is the area of the .
triangle. The integral of the function of interest, f(x,&),oner
the tr{ang1e is then approximated as

9 . .
£ f(X,Y) dT«n= YR LY.) W, (3.2)

r i
n

The surface integral for the nonreturn boundary condition is
also calculated numerically. A five point Gaussian integrétion
quadrature set is used. The integration points and weights are

(24)

presented in Table II and are defined on the interval from -1.0

to 1.0. The transformation equations for the surface integral are

Ro= L%y - X)) R+ (X + X012, (3.3a)
and
- 2 2,172
w'l = w'l[(x] - X2) + (Y'I 'Yz) ] /23 : (3~3C)
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TABLE II
 FIVE POINT QUADRATURE SET FOR LINES

" - Y
~0.90617985938 0.23692688505
~0.53846931010 0.47862867050

0.0 0.56888838889
053846931010 0.47862867050

0.90617985938 0.23692688505
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where Xj and Yj are the coordinates of the end points of the surface

to be integrated over. The surface integral is then approximated by

5
I fGy) df = 1 f(R, V). (3.4)
P i=

n

II. The Iterative Procedure
This section presénts the development of the iterative strategy.
The overall procedure consists of inner iterations with optimum

overrelaxation on the spatial mesh at each energy group and outer

iterations with acceleration for eigenvalue problems.

Inner Iterations

Inner iterations consists of successive recalculation of the
flux values at a given energy, given the inscatter, fission, and
distributed sources. For a single energy group, the set of
a]gebfaic equations derived in the previous chapter can be

represented symbolically by the following matrix equation

Mo =S, | (3.5)
where M is simply the coefficient matrix obtained from the spatial

operators and the boundary conditions, ¢ is the vector of unknown

even-parity fluxes for the group being considered, and S is the

source vector for that group.

The matrix, M, is now decomposed as follows

I=
1}
1>
1
oo
Py
w
(o)}
g
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. Equation (3.5) is now rewritten as

A¢=5+Bys. (3.7)
"1f a set of fluxes is available for iteration, n, namely, ¢h,
then an iterative scheme such as the following could be
initiated.
1 A S+A Qi{n (3.8)

" This iteration scheme can be slowly converging depending on the

magnitude of the eigenvalues of the iteration matrix,-A_]

B, all
of which are less than unity for a convergent process.
| Consider Equation (3.8) where the celcu1ation of the new
“flux values is based only on.the values from the previous iteration,
The eigenvalues of the iteration matrix contribute to the error in
the current value of the flux according to the fo]]owfng equation,A
e " j

n - % ¢ 3 A" . (3.9)
Therefore, there is a contribution to the error from each error
vector having an associated eigenvalue A5 which depends on the

. value Ci,j and the iteration number. The value ef the eigenvalue
‘kj depends only on the matrix constants and not the source values.
The value of ci,j depends on the initial flux velues.(z) As the
number of iterations is increased, the largest eigenvalue dominates
the rate of error decay. The ratio of two successive values of

Equation (3.9) indicates that the error is reduced by a factor of

A each iteration.
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%, " %i,n i}
%50 = ®i,n-1

(3.10)
The use of the latest values of the flux as they become
available has the effect of accelerating the rate o? convergence,

The effect is that of squaring the eigenvalues giving the asymptotic
2
behavior(“)

%0 " Pn 2 '
¢._ _¢. _A .
]’w 1,n‘-.|
Equation (3.8) becomes

(3.11)

f -1 .

¢y = L- A BLY ATt s+ AT B) 0 (3.12)
when the latest values of the flux are used.. The matrix I is the
identity matrix which is defined e]sewhere.(zs)

~ This is a
significant improvement over simple point relaxation.

The iterative.fluxes can also be driven with overre]axatioh
using the following relationship

‘0 ¢i,n-1) (3.13)
where ¢§ is the newly calculated flux value and Bn is the over-

relaxation coefficient for iteration n. The overrelaxation
coefficient can be optimized as follows

B~ =—_2— _ (
LU R s

(3.14)
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where

1 patg-] -
o = X'[ . ] (3.15)

using the following definitions:

A is the dominate eigenvalue of the iterative process,

g is the current overrelaxation coefficient, and

a]/2‘1s the spectral radius.

The discussion of acceleration techniques has, to this point,
been based on the theory developed for p-cyclic matrices(26) which
arise from the finite differencing of elliptic differential
equations. To test the applicability of these techniques to the
finite element equations, a numerical experiment was performed.

Estimates of the dominate eigenvalue were obtained from successive

ratios of the L] norm which is defined as fol]ows,(z)

NDF
DR IR

*n © NDF ; (3.16)
BRI

where NDF is the number of space points. The equations were then
iterated with a fixed value of B until the dominate eigenvalue
was identified. This wasldone for various values of 8.

The results for a one group hbﬁogeneéus problem are shown
in Figure 5. The theory using the calculated value of a predicts
that the optimum value of the overrelaxation coéfficient should be

1.385. The numerical results confirm that this is the optimum.
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The importance of the use of an overrelaxation coefficient
near the optimum is evident from Figure 5. This figure indicates that
the error reduction is a factor of 0.38 for each iteration with over-
relaxation as cohpared to 0.80 without overrelaxation, Therefore,
for this problem, each iteration performed with the optimum coefficient
-is equivalent to five iterations done without it. |

New values can be obtained for a block of points simultaneously.
When this block relaxation method is used, the new values are over-
relaxed simultaneously. The block relaxation method is the method
used in this work., The overrelaxation coefficients are calculated
in the same manner as for the point relaxation method.

The overrelaxation coefficients are also allowed to vary from
one energy group to the next. This allows a more efficient use of
the procedure by permitting the optimum coefficient to be used in
each group.

A further discussion of the matrix splitting and its effect
on the convergence of the iterative process is presented in

Appendix B.

Quter Iterations

Each outer iteration consists of a full sweep through the
energy groups to obtain new estimates of the point flux values.
The calculation begins in the first or highest energy group and

proceeds downward. For adjoint problems, the sweep is reversed.
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The iterative procedure- for k eigenvalue problems is
relatively simple. . The total fission source is calculated after
each outer iteration using the following relationship

G NE

FS = Y } vz

n ¢ A,. (3.17)
g=1 i=]

fg,i "g,i,n i

The nth estimate of the eigenvalue is then calculated from the

following equation
kn = FSn/FSn_].- , (3,18)

Once an estimate of the eigenvalue is obtained, the fission
source is renormalized and the-iterative process if repeated.

The iterative procedure for problems in which there is a
fixed source present in a multiplying media is somewhat more
complicated. This can be attributed to two effects in particular.
First, the presence of the constant source term tends to perturb
the solutions approach to an asymptotic distribution. Second,
after the convergence.to an asymptotic distribution is obtained,
each iteration contributes approximately (k)" Q new fission
neutrons. Thus, for problems that are only 51ight1y subcritjqa],
a large number of iterations are required to generate the total
fission source. In order to expedite the calculation, an.

(2)

asymptotic extrapolation procedure is employed.
It is assumed that the error in the outer iteration flux
vector can be expahded into a set of linearly independent error

vectors,



‘31 B3 0

=3

(3.19)

%=1

where Oi,n is a residual error, associated with the eigenvalue
estimate. which hopefully small and decreasing with increasing

n. The Bj is diagonal, constant -for each component of ¢ associated
with some previous .state of the problem, and “i,j represents the
eigenvalues of the error vectors.

The single error mode extrapolation procedure is based on

the assumption that one error vector dominates asymptotically, -

b: = i =D, (3.20)

where bi is a constant and u is the dominating eigenvalue. As
in the inner iteration process, estimates of the dominating
eigenvalue are obtained from ratios of -successive value of the

L] norm which, for outer jterations, is defined as

G NE »
—_‘921' 121 l9g,1,n = ¥g,1,n-1] (3.21
“n TG NE -21)
QZ] 1‘21 |¢g,1’,n-1 B ¢g,1’,n-2|

Once the iteration procedure stablizes and the dominate eigenvalue

is identified, the group fluxes can be extrapolated using

6 . =¢ . +dle . -0 (3.22)

g,i,® g,i,n g,i,n g,i,n-1)’
where .

d = - (3.23)

and u is the dominate eigenvalue.
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The powerfulness of this method is illustrated by this simple
example. The two group problem shown in Figure 6 Was calculated
with and without asymptotic extrapo]ationé. The fixed source is
in the highest energy group and the k eigenvalue is 0.8715. When
the extrapolation procedure was not used, 81 outer iterations were
required to calculate the total fission source. The use of the
extrapo]ations reduced the number of outer iterations required to
reach the same degree of convergence to 10. Clearly, the amount
of calculational time saved.by using the extrapolations is well
worth the minimal effort required to implement fhe method.

Once a calculation is underway, it is necessary to measure the
degree of convergence of the solution. Two quantities are checked
to measure convergence. The first is the maximum relative flux
change between two successive inﬁer.iterations. The second is
the fractional deviation of the eigenvalue between two successive
outer iterations. When both of these quantfties are less than some.
prespecified value, the problem is considered converged and then

terminated.
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CHAPTER IV
NUMERICAL RESULTS

This chapter presents the results of three numerical expérﬁments.
The so1qtions obtained from the computer code FEP1, which was
déveloped for this dissertation, are compared with the solutions
obtained from various estab]ished‘computer codes. ATl calculations

were performed using the IBM 360/91 computer.
I. The Fixed Source Problem

The purpbse of this problem is to demonstrate the behavior
of thé'so1utf0n mgthod in a scattering material. The calculational .
model consists of a 6 x 10 cm. rectangle with vacuum boundaries
on all four sides. The fixed source is lTocated in the Tast
centimeter along the cm. side. The model is illustrated in
Figure 7. _

FEP1 and the discrete ordinates transport code DOT III(27)
were used to obtafn solutions to the problem. The dfffusion theory
mode was used in DOT 111 as well as.the transport'mode. The
results of the‘ca1cu1at%ons are shown in Figures 7 and 8.

Figure 7 is a plot of a flux traverse in thé,x;direction
at Y = 2.5 cm. The DOT III diffusion theory solution éhd"the
FEPT solution are in excellent agreement. The Sé'transport'

solution exhibits nonphysical ripples which are commonly referred .

to as ray effects and often arise in problems that have Tow
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scatféring ratioé, Now éhown arelthéS4 results. The increase in
quadrafure mitigatés these.kay‘effécts and then this solution is
also in exce11ent“agreement with the FEP1 and diffusion theory
results. |

Figure‘8<is a plot of a flux traverse in the Y-dfrection a
X'= 5.0 cm. As befOre, the FEP1 and diffusion theory solutions
are fn exce]ient agreement. The ray effects are apparent in the
.52 solution, but are mitigated by the ihcrease in quadrature to S4i

The overall agreement of the so1ut16hs fs excellent.
I1.. The Diffusion Theory Problem

| Tﬁe purpoée‘of this problem is to demonstrate various features
of the'finite element method that are incorporated in this.study.
In particﬁ]ar, the abflity to calculate keff eigenvalues for few
group prob]éms, the ability to calculate forward and adjoint flux
distributions, and the ability to perform these'ca1cu1ations
using meshes composed for irregular triangles of various sizes.
The capability of qsing’nonorthogona1 boundaries is also
. illustrated. |

(28)

The problem model suggesfed by Yang and Henry consists

| of a highly heterogeneous thermal reactor core, Figure 9. The
right and diagonal boundaries are reflected boundaries and the

Tower boundary is a nonreturn (vacuum) surface. The two group

nuclear data is presented in Table III.

A number of calculations were performed using the finite

(2,29)

difference diffdsion theory computer code VENTURE to provide
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TABLE IIT

THEORY PROBLEM

Fission Absorber Moderator
Materijal Material Material
D, {cm) 1.436 1.092 1.545
5, (en™!) 0.02647 0.003185 0.028824
VIg (cm’]). ~0.007293 0.0 0.0
22](cm']) " 0.01596 0.0 0.02838
X, 1.0 0.0 0.0
D, (cm) 0.3868 0.3507 0.3126
L (cm™ 1) 0.1018 0.4021 0.008736
vi gy (em™) 0.1531 0.0 0.0
X, | 0.0 0.0 0.0

*x refer to the fission spectrum, not the odd-parity flux.
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a basis for comparison. Since VENTURE was unable to calculate the
nonorthogonal boundary, it was necessary to use a square model of
the prbb]em rather than a triangular model. Two calculations were
performed using this model. The first was done on a 58 x 58 mesh
and the second on a 116 x 116 mesh. The keff eigenvalues from these
calculations are presented in Table IV including the calculation
times. The eigenvalue reported for the infinite number of mesh
points is an extrapolated value baséd on the two solutions already
discussed.

A single calculation was performed using the FEP1 computer
code. The mesh employed in the calculation is shown in Figure 10.
Triangles of arbitrary size and orientation were used to illustrate
the variety of types of triangles that can be employed in
describing the problems geometry. A relatively coarse mesh (337
nodes, 150 triang]es) was used to describe the problem. The{keff
eigenvalue results for this calculation are also presented in
Table IV along with the compufation time.

The eigenvalues obtained~froh both methods are in excellent
agreement. The computation time pér unknéwn flux is significantly
shorter for the finite difference calculation than it is for the
finite element calculation. This is more than offset by the
ability of the finite element method to use a coarser mesh and non-
orthogonal boundaries making computation times competitive.

The eigenvalue is not the only item of interest in most

reactor physics calculations. The forward and adjoint flux
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TABLE IV

DIFFUSION THEORY PROBLEM RESULTS

FEP1

~No. of Nodes keff %ok CPU(MINS)
VENTURE
(Extrapolated) o 1.0398 0.0 ---
VENTURE 116 x 116~ - 1.0405 0.067 5.334
. VENTURE 58 x 58 1.0426 0.269 1.113
337 1.0391 -0.067 0.720
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distributions are also of interest to analysts. For this reason,
a comparison of flux shape is also presented.

A plot of the first and second group scalar fluxes are shown
in Figures 11 and 12 respectively. The traverse is in the Y-direction
at X = 63.0 cm. The agreement with VENTURE is excellent except near
the vacuum boundary; The reason for the discrepancy is the type of
boundary condition usediin each calculation. The VENTURE calculations
used a zeFo flux boundary condition, i.e., the scalar flux is zero
at the boundary, while the FEP] ca]cu1atioh used a nonreturn boundary
condition, i.e., the inward directed partial current is zero.

A plot of the first and second group scalar adjoint fluxes are
shown in Figures 13 and 14 respectively. The traverse is at the
same section as the forward flux traverse. As before, the agreement
with the finite difference solution is ekce11ent.

The results of this-prob1em indicate that the proposed method
provide a viable tool for obtaining coarse mesh solutions to the
neutron diffusion equationé on an irregu]ar.tfiangu1ar mesh with

nonorthogonal boundaries.
III. - The Transport Theory Problem

The purpose of the third and final test problem is to
demonstrate the ability of the proposed method to calculate the
keff eiéenvéTue and ex-core reaﬁtiﬁn rates fér'fast reactor prob]éms
in which the effects of linearly anisotropic scattering are important.
The model is a modified version of the X-Y model suggested for the

FTR (Fast Test Reactor)(30) and is shown in Figure 15.
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‘The original 51 group cross séction set with a Ps expansion

(31)

of the scattering cross section was proddced by the AMPX system,

The cross sections were then collapsed td a 7 group set using a

one-dimensional model of the problem in the discrete ordinate code

(32)

ANISN. * A transport corrected P, set and a P] set of cross

(33)

0

sections were then produced by the AXMIX code. 'The'transport
correction used to modify the total cross section was done uéing

the "inflow approximation" defined by the>f011owing equations -’

zrp(E) = Z(E) - uy (E) 2 (E) A , | (4.7)
where w.
| I7 5 () 9(E7) e
T oE) 5g(B) =3 E 3(E) ' (4.2)

ifR(E) is the transport cross section, and
J(E) is the neutron current.

A number of calculations were performed to assess the effects
of Tinearly anisotropic scatterihg."Inc1uded in the comparison are
the results obtaﬁned from the discrete ordinate code DOT3P5,(34)
which‘is an updated version of DLOT 111, the Monte Carlo code

keno, (35536).

and the finite element code FEP1. The KENO calculations
were“pérformed on the model shown in Figure 15 and followed some
20100 neutron histories. The discrete ordinates and diffusion
calculation performed using DOT3P5 were done on a 40 x 40 square
mesh. The fihite element solution.was done on a triangular mesh

which included only half the prob]ém model. " The triahgu1ar mesh

consists of 447 nodal points and 201 triangular elements. The
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convergence criteria for the two deterministic codes, DOT3P5 and
FEP1, was that the maximum fractional deviation in the eigenvalue
be less than 10'4. The results of these calculations and the
computation times are presented in Table V.

The percent differences iﬁ the kleigénVa1ue are calculated
assuming ‘thé value obtajned.frbm'the'KENO P] calculation is exact.
The exclusion of all the anisotropic effects of neutron scattering
leads to an error of approximately 2.627 percent in k. The use of
a transport corrected cross section set tends to reduce the error,
but the exclusion of the linearly anisotropic component of the
scattering cross section still results in an error of 0.044 percent
in k. The same trends are shown by the DOT3P5 and the FEPI]
calculations, | |

A second comparison can be made between the results obtained
from DOT3P5 and FEP1 as they both are deterministic méthods.

Table VI presents such a,Comparison.l‘The cbarse mesh ffnite :

. element method used 1n FEP1* gives re§u1ts that are in exce]]ent
agreement with the resu]ts obta1ned from the finite difference
method used in DOT3P5

A.;omp1ete reaCtor‘ana1ysjs is concerned with being able to
calculate néutron spectra in ex-core positions as.We11 as in-core
positions.:‘The eigenva1ug:tendslto reflect the abiiity of a<method

to predict in-core spectra. A'géod measure of the ability of a

*Meshes that are approx1mate1y three mean free paths between
nodes yield good resu]ts
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| TABLE V
* THE EIGENVALUES FOR THE TRANSPORT THEORY PROBLEM

‘CPU

~ | Keer 1 amk (MINS)
KENO P, C1.12413 +0.00323 0.0 15.04
KENO Pro* . - © 1.12364 40.00362 - -0.044  13.28
KENO P, 1.15366 £0.00338 2.627  -13.77
DOT S,Py S 102241 S -0.183  22.40
DOT S,P, 112609 - -0.004 158
0T ,P, . 1e782 o . 2.107 | 23.35
00T S,P 1.15006 2.307 16,45
DOT Prp DIFFUSION 1.12242 : -0.152 - 2.60
DOT P, DIFFUSION = 1.14811 2133 2.65
FEPT P, 1217 -0.227 5.54
FEPT Pro 1.12237 o -0.156 4.92
FEPL P, 1.14788 . - 2.113 5,12

*PTRfreferS‘to,transport corrected cross sections.
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TABLE VI
COMPARISON OF DOT AND -FEPT EIGENVALUES

FEP1 - DoT | qak

P . 102157 S, 1.12241 -0.07
S, 1.12409 - -0.224
Pre 12237 ox 1.12282 -0.004
P | 1.14788 5 A1.14782' 0.005
| | " s, 1.15006 -0.190

p 14811 -0.020

*D refers to the diffusion theory solution.

Ty = - ’
ok = [Reppy kpod/kpg * 100.
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method to accuf&fély caicu]éte’ex-core spectra is to calculate a
reaction raté just outside the core-reflector interface. Table VII
presents the reaction rates calculated at such a position using
each'of’the previous]& discussed‘methods. As before, the FEP1 and
the DOT3P5 results are invexce11ent agreement. |

This concludes the analysis of the;test problem, ‘The next
‘chabtér presents the conclusions drawn from this study and some

recOmmendations for future study.
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TABLE VII

_ COMPARISON OF EX-CORE 23°y REACTION RATES

“FEPL DOT %aR.R. T
: 9.7800-2 'S, 9.7638-2 "~ 0.166
s, 9.7537-2 0.270°
In 9.7579-2 D 9.8991-2 -1.426
. 9.2797-2 S, 9.2811-2 -0.015
s, 9.2613-2 0.199
D 9.4050-2 -1.332

*R.R. denotes reaction rate.

ty n-p =
%0R.R. = [R.R. - R.R.DOT]/R.R.DOT x 100.

FEP1
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CHAPTER V
SUMMARY
I. Conclusions

It has been demonstrated that the finite element method
developed and tested in this dissertation is capable of performing
a variety of reactor physics calculations using a coarse (relative
to finite difference) triangular grids with nonorthogonal
boundaries.' The method is able to span the gap between
diffusion theory and full fransport theory while still containing
diffusion theory as a viable subset. |

Thé propert{es of the system matrix generated by the
implementation of the finife element method posses properties
that a11owlthe convergence acceleration techniques developed for
the finite differénce form of the mu]tigrouﬁ diffusion equations
to be utf]ized and optimized. The apb]ication of these acceleration
devices make cohputation tfmes for the FEP1 method competitive
with mefhods already in wide.use.

The validity of the So1utioh§ were evaluated by comparison
of the FEP1 solutions with solutions obtained Qsing various other

methods. In all cases, the agreement was excellent.
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II. Recommendations

This section presents a few recommendations for future efforts.

1.

The further development of the code FEP1 into a production
oriented code would necessitate the development and
imp1ementatf0n of an automated mesh generator. The
calculational capabilities of the code need be extended
to include search-type problems and upscatter problems.
The extension of the algorithm to accommodate three
dimensional problems, either by using three-dimensional
finite elements or a finite difference formulation,
would greatly enhance the versatility of the method.
The implementation of isoparametric elements, either in
two or three-dimensional calculations would allow the
neutronics problems to be so1ved_on deformed meshes.
The coupling of the FEPT neutronics packagé, with the
deformed mesh capability, to a structural mechanics
code, where deformation calculations are routinely done
using finite elements, would provide a tool capable of
generating valuable information on the interaction of
the neutronic and mechanical behavior of reactor cores.
In the author's opinion, this is the area of greatest
potential for the method.

FEP1, as presently written, is I/0 (input-output) bound.
There are any number of remedies for this problem. Two

of particular importance are, first, the reblocking of
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the data stored on périphera] data sets and second, the
performance of mu1t1p1e inner iterations on each matrix
block while it is resident in core. The use of non-
FORTRAN I/0 subroutines would also decrease the I/0
time, HoweQer, they would make the running of the code
installation dependent and therefore the benefits gained

by their use is questionable.
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_APPENDIX A -
 THE “ADJOINT PROBLEM

Thfs appendfoprésehfs'a'brief defivation’and dj;cussion of
the.adjoint form of the éVen—parity functjona]i | |

THe adjoint(fokm‘of the Boltzmann neutrén tréhspokt eqﬁation
is |

e

8 6% (XLY,E58) + E(X,Y,E) o* (X,Y,E,0) =

o 2 OGY, BR » E2,87) 0% (X,Y,E\8%) didE” +
E- & o | /

-

4 f [ F(E-) #*(X,Y,E-,8) do-dE- + Q*(X,Y,E,9) (A.1)
ANk R IR /

where'¢* and Q* are thé‘adjbint flux and adjOint source respectively.
~ The remaining terms are;defineq in Chapter II, page 9.
" The mbnqehergetic'form of the adjoint equation can be

wkﬁtten as follows for 5,

A @) v ror®) = ) @8 @) &+ 0®), (h2)
Q7
and for -@,
85 o%(B) + 1 0% () = L 5 (BeR) o*(@) @+ 0%(R). (A3)
.
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The adjoint flux is then decomposed as follows
o*(2) = yH8) - x*(%)
whe?e

ORI OREEEN]

xx(8) =L o*(-8) - ox(@)].

Using the definitions presented in Chapter 11, page 12, for the

even and odd-parity parameters allows the canonical form of the

adjoint transport equation

30 x*(8) + zp*(3)

to be written as

]

(A.7)

(A.8)

and L
B3 @ + 2@ = @ o@) 6 v sT)
Q‘
The odd-parity adjdint flux can now be obtained from Equation
(A.8). |
0
X*(a) _ S ?5) - 52‘ v w*(a) +
z 2
1 S, = [ oyt (2.
z 22 It mZ . Yo,m(®) 5, Vo m87)
odd T
[s° (&) - &3 o (@)] -
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Equation (A.9) is now substituted into Equation (A.7) to give the

even-parity form of.the adjoint transport equation

§-V(8:7) v*(@) _ 8-v s$°*(3)
L

> > T 2 .
-Q-V z S, z y (6)
I, PR N
odd *
' I + - o *,> >, > >
(Y (Q7)[ST (27) - @7V y*(Q7)1da” +
2. A,m
)z § Y, (&) I oyt (@) y*(8°) da- +
. s, Lo Tem™ s Teum pHes) de
even |
ser() + SS(R) = o. (A.10)

The even-parity functional for the adjoint problem can now

be written as follows.

o - 31 BHOE
ra
> % > I + > > >
vR@) g, DY, (@) 5 v (@) wR@) i
even ==4 o

|2-n] p*(R)° dddT (A.11)
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The form of the adjoint odd-parity flux, Equatioﬁ (A.9), is
’the same as the equafioh for the forward odd-parityAf1ux, Equétion
(2.33). The same is true fdr the adjoint functional, Equation
(A.11), and the forward:functiona1, Equation (2.54). Therefore,
the only change in the computer code needed to perform adjoint
calculations is to correctly define the adjoint scattering
matrices and the adjoint fission source. If the angular adjoint
flux is to be reconstructed, thé difference of the even and
odd-parity f]uxe§ is required rather than the sum 6f the fluxes

which is required for reconstruction of the forward angular flux,
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APPENDIX B
CONVERGENCE

This appendix presents a brief di;cussioh of the convergence
behavior of the inner iteration process as a function of the manner
fn which the system matrix is split.

The splitting used in Chapter III, page 46, is essentially

of the following form:

M=A-B

By - B | (B.1)

=L,
where A consists of square blocks along the diagoné] and EU and QL
are of the form shown in Figure 16.

_'Accbrding.to Vargé,(26) Theorem 3.6, Corallary 2, if M is

a Hefmifiah matrix partition as shown in Equation (B.1), and A is
positive definité, then the block successive overrelaxation method
is convergent for all initial conditions if and only if the over-
relaxation coefficient, g, has values between zero and two and M
is positive definite.

An investigation of the system matrix for this work reveals
that, since the set of algebraic equations was obtained through
the variational finite element formulation, the system matrix
is guaranteed to be symmetric. The variables in the functional

are all real valued, therefore, the elements of the system matrix

are also real valued.



N

N

1O

2
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20,
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Figure 16. Typical Matrix Splitting.
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NOTE: ZERO DIAGONAL
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Further investigation shows that the system matrix is also
positive definite. This is because the functional is a quadratic
functional and therefore positive definite.

For this work, the value of the overrelaxation coefficient
is limited to vary between one and two.

Incorporating these facts concerning the problem of interest
with Theorem 3.6, it can be shown that the inner iteration process
is convergent as long as the matrix A is chosen to be positive
definite.

A number of numerical tests were performed to show the
applicability of this proof. It was found that ‘these represent

sufficient, but not necessary conditions for convergence.
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