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ABSTRACT 

The· purpose of this work is to develop a method for obtaining 

solutions to the time-independent Boltzmann neutron transport 

equation on triangular grids with. nonorthogonal boundaries and 

anisotropic scattering. A functional is developed from the canonical 

form of the multigroup transport equaticin. The angular variable is 

then removed by expanding the functional in spherical harmonics 

retaining only the first two moments and limiting the anisotropic 

scattering to be linear; The finite element method is then 

implemented using quadratic Lagrange-type interpolating polynomials 

to span the spatial domain. 

The resultant set of coupled .linear equations is then solved 

iteratively .. The applicability of convergence acceleration techniques 

developed for the finite difference method are tested and implemented 

where appropriate. 

Finally,. a number of numerical experiments are performed to 

· evaluate the performance of the proposed method. The results are 

compared to results obtained by various established methods. In all 

cases, agreement. is excellent. 
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CHAPTER I 

INTRODUCTION 

The objective of this dissertation is to develop a numerical 

technique for obtaining approximate solutions to the multigroup P1 

equations. Emphasis is placed on the ability of the method to 

accommodate nonorthogonal boundaries, triangular meshs, and linearly 

anisotropic scattering. The impetus for choosing these objectives 

is discussed in the remaining sections of this chapter. 

I. Reactor Physics Calculations 

Numerical methods for obtaining solutions to neutron transport 

problems have been widely used and have been shown to be more 

powerful and versatile than analytic methods. This is particularly 

true for advanced core designs in which the reactor's geometry and 

nuclear cross sections are extremely complex. The most widely used 

numerical method is ·the finite difference method. This method is 

quite simple, but suffers from a few important restrictions. Finite 

difference techniques require small mesh spacing and therefore a 

relatively lar~e number of unknowns are necessary to adequately 

describe the behavior of the neutron flux across the solution domain. 

This manifests itself in the fact that most finite difference computer 

codes, both those based on the diffusion approximation and the various 

transport approximations, are limited to two-dimensional calculations. 
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There are a few coarse mesh three~dimensional computer codes based 

on the diffusion approximation. (l , 2) 

The finite difference method has at least one further 

restriction. The implementation of the difference equations for mesh 

grids other than regular orthogonal coordinate systems is relatively 

complex. There are, however, a few computer codes than can perform 

calculations on triangular and hexagonal grids. (l, 2,3) This is of 

particular importance since current engineering designs for fast 

breeder reactors are based on arrays of hexagonal subassemblies. 

In addition to these geometric complications, there are further 

calculational difficulties introduced by the nuclear cross sections . 

. It has been shown, that for large fast reactors, the inclusion of 

only the isotropic component of the scattering cross section results 

in· errors in the calculation of keff and certain ex-core reaction 

rates. (4) For a one-dimensional model of the Fast Test Reactor, the 

use of classic P0 diffusion theory introduced errors of approximately 

2.0 percent in keff when compared to a s8P3 discrete ordinates 

transport calculation. These errors were reduced to approximately 

0.3 percent when the linearly anisotropic component of the scattering 

cross section was considered in the calculation. These results indicate 

that higher order scattering must be considered in a calculation if· 

high order accuracy is required., 

High order tran~port methods could be employed to remedy the 

scattering problem, however, the number of unknowns per spatial node 

increases rapidly with higher order approximations. This, in 

· ... ·.· 
~ . 

. ' 
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conjunction with the number of nodes necessary to describe the spatial 

variation of the neutron flux, makes many calculations intractable 

even on modern computers. 

II. The Finite Element Method 

Recently, the finite element method has been demonstrated to 

provide a high accuracy, coarse mesh method for obtaining solutions 

to the neutron diffusion equation. (5,6) The finite element method 

was originally developed in the area of structural analysis and has 

almost totally replaced the finite difference method in that area.{?) 

The popularity of this method can be attributed to its ability to be 

applied to almost any geometric configuration and the ease with which 

higher order approximation procedures can be implemented. 

The basis of the finite element method is to partition the 

solution domain into a number of subdomains or 11 finite elements. 11 

A piecewise continuous polynomial in each of the independent variables 

is used to approximate the behavior of the unknown functions and its 

derivatives within each element. The coefficients of these interpolating 

polynomials are determined·by evaluating the unknown function at 

specified points or nodes within each element. The coupling between 

elements is realized by requiring the unknown function to be single 

valued at nodes that are common to two or more adjacent elements. 

This also insures continuity of the function across the element 

boundaries. Unlike the synthesis method, the finite element method 

does not require a prior knowledge of the unknown functions behavior. 
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The finite element method is general'ly based on an integral. 

formulation rather than a oifferential formulation.like the finite 

difference method. This integral formulation can be obtained 

thr.ough a number of techniques. The two basic methods are the 

weighted residual method and the variational method.(?) 

. The weighted residual method consists of substituting the 

interpolating polynomials into the differential equation of interest. 

Since the interpolating polynomials only approximate the behavior of 

the unknown function there results a residual. A number of 

independent weight functions are then chosen. The humber of weight 

functions required is equal to the number of unknown· nodal values. 

The integral of the product of the residual and each weight function 

is then set to zero. This produces the set of algebraic equations 

to be solved. The weighted residual ·method can be subdivided into 

more specHic classes depending on the weight function employed. 

If a Dirac delta function is used as a weight function, the method 

is referred to as a collocation method, if the interpolating polynomial 

is used, the method is referred to as the·Galerken method, and if the 

algebraic equations are obtai~ed by differentiation of the square· of 

the residuals with respect to the unknowns it is referred to as the 

least squares method. 

The variational method is the most widely used method. This 

method consists of substituting the approximation for the unknown 

function into a functional whose Euler equation-is the differential 

equation of interest. The first variation of the functional with 

respect to the nodal unknowns is set equal to zero yielding a set 
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of coupled algebraic equations. This approach guarantees that the 

resulting coefficient matrix will be symmetric. This is an important 

property to consider for numerical computations where computer core 

storage requirements are important. 

III. Applications in Reactor Physics 

It is only recently that finite element methods have been 

investigated for use in the area of reactor physics calculations. 

Kang and Hansen(S) have applied the method to static neutron 

diffusion problems, neutron slowing-down problems, and point 

kinetics problems. Their study was limited to the consideration of 

rectangular elements in which Hermite polynomials were used as 

interpolating functions. 

Another choice of interpolating functions are the Lagrange 

polynomials. These polynomials are defined in terms of unknowns 

on the boundaries and on the interior of each element, thus preventing 

the imposition of derivative continuity across the element boundaries. 

The Hermite polynomials are defined in terms of function and its 

derivative values along the boundaries of each element and therefore 

derivative continuity can be imposed, but these polynomials become 

difficult to.generate for triangular elements. Semenza et al(g) have 

used linear Lagrange pblynomials with triangular elements and bil~near 

polynomials with rectangular elements to obtain solutions to the vari-

ational form of the multigroup diffusion equations. The results of their 

calculations for a two-dimensional slab reactor with a planar control 

rod demonstrate the flexibility of the finite element method to 
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describe the problem efficiently by allowing many elements to be used 

near the control rod where steep flux gradients would be expected to 

appear and relatively few elements in the remainder of the problem. 

The multigroup diffusjon equations have also been investigated 

by Kaper et al.( 6,lO) using higher order Lagrange polynomials. Their 

work indicated that higher order approximations could lead to 

substantial computational savings compared to low order finite 

difference methods. They also concluded that quadratic polynomials 

are probably the optimum based on the increased number of unknowns 

needed for higher order approximations versus the increased accuracy 

obtained by using higher order polynomials. 

A number of efforts have been made to apply the finite element 

method to the neutron transport problem in which both the spatial 

and angular domains must be considered. Miller et a1! 11 ,l 2) have 

applied the method to obtain solutions to the self adjoint, second­

order form of the transport equation using the variational method. 

They used both rectangular and triangular elements in the spatial 

domain and rectangular, 11 phase-space, 11 elements in the angular 

domain. They included linearly anisotropic scattering in their one­

dimensional studies, but considered only isotropic scattering in 

their two-dimensional studies because of the increased complexity. 

Kaper et al~ 13 ) have compiled the most significant body of 

work on the application of the finite element method to neutron trans­

port calculations. Their work contains a study of four different 

classes of finite element approximations based on: (1) a piecewise 

polynomial basis in the angular domain, (2) a bi-cubic spline basis 
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in the angular domain, (3) a surface harmonic approximation in the 

angular domain, and (4) ·cubature.formulae. The spatial domain is· 

spanned by piecewise continuous Lagrange interpolating polynomials 

on triangular elements. As in Miller•s work, this study was limited 

to isotropic scattering. 

·Recently, Lillie(l 4) has developed a method that accommodates 

anisotropic scattering and anisotropic neutron flux. The method is 

based on a variational form of the·canonical discrete ordinates 

equations and employs linear Lagrange interpolating polynomials over 

triangular elements. The method performs well, but with significant 

increases in computatiohal time as the order of anisotropy increases. 

At present, the only production oriented approach was investigated 

by Reed et al.(lS) and is incorporated into the computer code TRIPLET. (lS) 

This code solves· the multigroup discrete ordinates form of the 

·transport equation in triangular geometry. The angular flux is 

approximated by a -Lagrange polynomial over each element. A weighted 

residual approach is used to generate the necessary algebraic 

equations~ This set of equations is then solved it~ratively rather 

than directly which is the traditional method employed in the finite 

element method .. 

The iterative process for solving the finite element equations 

has also been investigated by Yuan et .al. (l 6) They applied various 

iterative techniques ·to the one group, second-order form of the 

transport equation. Included in their study were the point and 

block overrelaxation techniques.and accelerated block overrelaxation 
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techniques. They concluded that iterative methods for finite element 

calculations are as efficient as iterative methods for discrete 

ordinates calculations .. 

IV. Scope and Organization 

As stated earlier, the objective of this work is to develop a 

technique for obtaining approximate numerical solutions to the multi­

group P1 equations with particular emphasis on nonorthogonal boundaries, 

triangular meshes, and linearly anisotropic scattering. To attain 

these objectives, triangular finite elements are used to span the 

spatial domain. The neutron flux is allowed to vary quadraticaly 

over each element. The set of algebraic equations to be solved are 

·obtained through a vari-ational formulation of the P1 equations. The 

resultant set of algebraic equations is then solved iteratively. 

The development of the mathematical and finite element models 

are presented in Chapter II. Chapter III presents the development 

of the numerical techniques employed in this work. The results of 

a few numerical experiments are presented in Chapter IV. The 

results of a fixed source problem calculation are compared to a 

discrete ordinates calculation. A comparison with diffusion theory 

on a thermal reactor calculation is discussed in this chapter. A 

comparison with transport theory is also included on a fast reactor 

calculation to demonstrate the ability of the method to accommodate 

linearly anisotropic scattering. Chapter V presents the conclusions 

and a number of recommendations for future efforts. 
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CHAPTER II 

DEVELOPMENT OF THE THEORETICAL MODEL 

The derivation of the canonical P1 equations is presented in 

the first section of this chapter. The second section contains the 

develo~ment of the finite element equations. 

I. The Mathematical Model 

The transport of neutrons in a medium can be described by the 

Boltzmann neutron transport equation~ The time independent form of 

this equation in cartesean coordinates is 

where 

f f 

-+-+ .-+ ( -+ 
n·v~(X,Y,E,n) + E(X,Y,E) ~ X,Y,E,rr) = 

-+ E (X,Y,E .. ,n .. -+ s . 

f(E) f f -+ -+ -
4
- v~r(X,Y,E .. ). cp(X~Y,E .. ~r~ .. ) dr~ ... dE .. + 

1T E .. "Q.-

Q(X,Y,E,"Q), 

X,Y =position variables, 

E =the particle's kinetic energy 
-+ n =a unit vector which describes the particle's direction 

of motion, 

( 2. 1 ) 



10 

~(X,Y,E,Q) =the time independent angular flux, 

Q(X,Y,E,Q) = the source of particles emitted per unit volume 

and time at position X, Y in direction Q with 

·energy E, 

~(X,Y;E'Q'+E,Q) = the scattering cross section which describes the 

probability that a particle with an initial 

energy E' and direction n' undergoes a scattering 

collision at position X,Y which places it into a 

direction Q with energy E, 

Q·~~(X,Y,E,Q) = the net convective loss per unit volume and time 

at position X,Y with direction Q and energy E, 

v~f(X,Y,E) = the neutron production cross section at position 

X,Y for particles with energy E, 

f(E) = the fraction of the total number of particles 

produced with energy E, and 

~(X,Y,E) =the total cross section at position X,Y for 

particles with energy E. 

The multigroup form ~f Equation (2.1) is 

where g = 1, ... , G and G is the total number of energy groups. 

The definitions of the variables appearing in Equation (2.2) are 

(2.2) 
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standard and can be found elsewhere. (ll) The X,Y variables have also 

been removed from the equation for simplicity. 

If the possibility that a neutron can gain energy through a 

scattering interaction is neglected, the scattering source term can 

be simplified to 

where 

G f 
I -7 

g .. =l n .. 

f g-Tg -7 -7 -7 g-1 f 
-+ E ( n .. · n) <1> ( n .. ) dti.. + I -+ 
n s g g .. =l n .. 

Rewriting Equation (2.2) for the gth energy group gives 

g-1 f· g .. -Tg -7 -7 -7 -7 

= I ± .. Es (n .. ·n) <Pg .. (n .. ) dn .. + 
g .. =l ~~ 

For further simplification, the subscript g is now dropped and the 

monoenergetic form of the Boltzmann equation is considered.· 

The Canonical Transport Equation 

(2.3) 

(2.5) 

-7 -7 -7 

Consider Equation (2.4) for n and for -n. For Q the result is 

(2.6a) 

-7 

and for -n 
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-Q·v ~(-Q) + L ~(-Q) = L L (Q~·-Q) ~(Q~) dQ~ + s(-Q). 
Q~ s 

Decompose the flux, ~(Q), into its even-parity component, 

~(Q), and its odd-parity .component, x(~), as follows 

where 
-+ 1 -+ -+ 

~ ( Q) = 2 [ ~ ( Q) + ~ ( -Q) J ' 

and 
-+ 1 . -+ -+ 

X ( Q) = 2 [ ~ ( Q) - ~ ( -Q) J . 

The following definitions are made 

e-+ 1 -+ -+ s ( Q) = 2 [ s ( Q) + s ( -Q ) J 

0-+ 1 -+ -+ s ( Q) = 2 [ s ( Q) - s ( -Q) J 

(2.6b) 

(2. 7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

where these quantities are the even-parity" scattering cross section, 

the odd-parity scattering cross section, the even-parity source and 

the odd-parity source respectively. 

The addition of Equations (2.6) and noting that 

(2.14) 

yields 

(2.15a) 
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Similarly, the subtraction of the same two equations yields 

This form of the neutron transport equation is referred to as the 

canonical transport equation. (l 8) 

The Even-Parity Form of the Transport Equation 

(2.15b) 

Equation (2.15) can now be combined to form two second order 

equations. The second order equation is the even-parity flux, which 

is of interest in this work, can be obtained in the following manner. 

Rewrite Equation (2.15b) as 

Hx (n) -+ -+ () = -~··vlji ~ + s0 (n) ; (2.16) 

where H is an operator defined as follows: 

Hx (n) LX(n) f L0 (n .. ·n) x (n .. ) -+ 
= - d~ ... 

-+ s 
~ .. (2.17) 

Therefore, 

-+ -1 -+-+-+ 0-+ 
x(~) = H [-~·VIji(~) + S (~)]. (2.18) 

. -1 
To obtain the operator, H , expand the scattering cross 

section, Ls' in Legendre Polynomials as follows, 

(2.19) 

where Ls,t is the tth term in the series expansion, 
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2 
P2(S1 ... "Q) = 2~: 1 I Y2 m(S1) v: m(S1 .. }*, (2.20) 

m=-2 ' ' 

and Y (S1) are surface harmonics which are defined elsewhere. (l 9) 
£ ,m 

Substitution of Equation (2.20) into Equation (2.19) yields 

00 2 
+ + \' \' + + (+ ~ (n .. •rl)= L ~ n L Yo .(Q) Yn Q .. ). 

s .2=0 s,"' m=- 2 "''m "''m 
( 2. 21 ) 

At this point, it should be noted that for even functions Equation 

(2.21) has nonzerb coefficients for only even values·of 2. It 

should also be remembered that 

(2.22) 

Noting these facts, the even and odd-parity scattering cross sections 

can be defined as 

2 + -+ ~e(ti ... S1) = I ~ I y (S1) y 2 ,m(n ... ) · s 2 even s,2 m=-2 2,m (2;23) 

and 
2 + -+ 0 + -+ I I Y2,m(S1) ~ (n .. ·n) = ~ Y2 (n .. ). s 2 odd s,2 m=-2 ,m (2.24) 

Substitution of these results into Equation (2. 17) gives 

H'x(iJ) = ~ x(il) - ' ~dd ~s ,< mj< Y <,m(iJ) ;. v; ,m(iJ•) x(iJ•) ctil• .(2.25) 

Equation (2.i5) is multiplied by v; .. ,m .. (~) and integrated over 
+ all n space. Noting that 

f .. v2,m(S1) v:,m(S1) dn = o~ .. o~ .. 

*The superscript 11 +11 denotes the complex conjugate of the 
function of interest. 

(2.26) 

'{.• 
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£"" m"" where o£ and om are the Kronecker delta function. The resultant 

equation is 

( 2. 27) 

where 

(
-+ -+ 

G n) = Hx(rl). 

-+ -+ 
Since n and Q"" are only variables of integration 

I + -+ -+ -+ I + -+ -+ -+ Y" (n) x(n) dn = Y" (n"") x(n"") dn"". n "''m Q"" "''m 
(2.29) 

Equation (2.27) can now be written as 

I 
£ odd 

(2.30) 

or upon rearrangement as 

5 + -+ -+ -+ Y (n"") x(n"") dn"" = 
~... t,m 

Now substitute Equation (2.31) into Equation (2.25) to obtain 

Hx(E) = G(~) = EX(~) -

(2.32) 
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Now substitute Equation (2.16) into the integral in Equation (2.25) 

and rearrange to obtain 

!1-

L 
m=-!1-

Using the expansions for the cross sections defined by 

Equations (2.23) and (2.24), Equation (2. 15a) can now be rewritten 

as 

(2.33) 

(2.34) 

Equation (2.33) can now be substituted into Equation (2.34) to 

yield the following second order form of the even-parity transport 

equation, 

ti. v[ti. -v 1/J ~tiD 
L: 

(2.35) 
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The Even-Parity Functional 

The advantages of using variational techniques to obtain the 

set of algebraic equations to be solved were discussed in Chapter 

I, page 4. It is of interest to construct a functional whose first 

variation with respect to the unknown function, w in this case, 

gives Equation (2.35) as its Euler Equation. To accomplish this, 

introduce the idea of the variational derivative,( 20) o, defined as 

oF(w) = ~im ~E F(w + Eow). 
E-+0 

(2.36) 

The equation for the first variation of the functional can be 

written as 

-+-+ L ~ f 
~-v [ \' s,~ \' (-+) + (-+) o(-+ ) -+ -+ (+) -+] L - L Y n ,m ~ "A. Y ~.. { S ~.. - ~ .. • 'ilw ~.. } d~.. -
· E ~ odd E-Es,~ m=-~ ~ ~,- ~,m 

~ 

y~ m(S1) L + (-+ -+ Ew(S1) + I I -+ e -+ 
L 
s,~ 

v ~ ~--) w(~--) d~"' + s (~)} 
~ even m=-~ ' ~--

,m 

...,. 
where r denotes the entire solution domain. 

Operating on Equation (2.37) with the following vector 

identities( 2l) 

and 
-+ -+ -+ -+ -+ -+ 
u~·Vf = V•[u~f] - [~·vu]f 

-+ -+ 
d~dr 

(2.37) 

(2.38) 

(2.39) 
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yields the following func~ional, 

+ + + 0 + 
2~·1Jijl(~) s (~) 

L: 

where 

The terms in brackets in the second integral over n in 

Equation (2.40) is equivalent to Equation (2.33). Therefore, 

Equation (2.40) can be written as 

(2.40) 

. (2.41) 
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f f v·[o~(n)nx(n)J ondr. 
-+ -+ 
r n 

Since ~(n) and x(n) are both continuous functions in phase­

space over the region r Green•s Theorem can be applied to the last 

integral in Equation (2.42) as follows, 

(2.42) 

(2.43) 

-+ where r represents all the external surfaces of the solution domain 

and n is a unit vector normal to r. 
At this point, it becomes necessary to examine the effects of 

some common boundary conditions on the form of the functional For 

the nonreturn boundary 
-+ -+ For n·n < 0, (2.44) 

which, in terms of the even and odd-parity fluxes can be written as 

-+ -+ 
For n • n < 0 (2.45a) 

and 
-+ -+ For n•n > J. (2.45b) 

Equation (2.43) can be rewritten as 

J f J f 
-+-·-+ -+ 
r n·n>O 

-+ -+ -+ -+ -+ -+ 
o~(n) n·n x(n) dndr. (2.46) 

-+-+-+ 
r n·n<O 
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Applying Equations (2.45) gives 

J J 

( 2. 47) 

as the appropriate term to be included in the functional for nonreturn 

boundaries. 

The second type of boundary condition considered is the 

symmetric boundary condition. 

For symmetric boundaries 

(2.48) 

+ 
where ~r is the reflected direction vector. This can be written as 

and 

x(~r) = x(~) 

in terms of the even and odd-parity fluxes. 

Equation (2.46) can be written as 

J J + ++ + ++ f J . + ++ + ++ 
ow(~) ~·n x(~) d~dr + oljl(~) ~·n x(~) d~dr. 

+-++ r ~·n<O 

It is also known that 
+ + + + 
~·n = -~ ·n r 

(2.49a) 

(2.49b) 

(2.50) 

(2.51) 
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which is evident from Figure 1. Therefore, 

= -r J 
-+ -+ -+ r Q ·n>O r 

(2.52) 

Substitution of this result into Equation (2.50) and using Equations 

(2.49) yields 

(2.53) 

The even-parity functional can ·now be written as 

Q_ 
\ \ -+ J + -+ -+ -+ 
L E L Yn (st) Y (st~) w(st~) dQ~ + 

Q_ even s,£ m=-£ ~.m a~ 9-,m 

(2.54) 

where 

y = 0 for symmetric boundaries 

for nonreturn boundaries. 

When applying the symmetric boundary condition to Equation (2.42) 

to obtain Equation (2.54), it is not necessary to use the w(0.) 

constraint equation, Equation (2.49a). Therefore, it is necessary to 

consider the variation of the odd-parity function to obtain the 
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essenti a 1 bounda·ry conditions, if any, that should be imposed on the 

even-parity functional. 

The odd-parity functional is obtained through a procedure 

similar to that used to obtain the even-parity functional or by 

envoking an involutory transformation. (18 •22 ) The odd-parity 

functional is 

F(x) J f [+ + + 2 
= _l { n-vx(n)J + Ex(n) 2 -

2 + + E r n 

:L f J ln~;l x(n) 2 dndr, 2 + .z r ~~ . 

where g(n~·n)* is defined in the same mann~r as g(n~·n) except the 

sum is over the odd values of 1 instead of the even values of 1. 

(2.55) 

The first variation of Equat1on (2.55) with· respect to (n)· is 

... oF( x) 
+ + e + 
n-v s (n) 

E 
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~ J J ox(Q) Q.n x(Q) dndr + { £.v·{ox(Q) Q[-Q·~x(Q) + 
r n r n 

The bracketed term in the third integral is w(Q). Using 

Green•s Theorem, Equation (2.56) can be written as 

Y I I -+ -+ -+ -+ -+ -+ 7 f -+ -+ -+ (-+) -+ -+ 

2 -+-+ ox{n)ln•nlx(n) dndr- ..... _,_ ox(n) n~n w n dndr. 
r n r n 

Consider the nonreturn boundary condition once again. Using 

( 2 0 56) 

( 2. 57) 

the same procedure used to obtain Equation (2.54) it can be shown 

that the second surface integra 1 is equa 1 to the first.. Therefore, 

their difference is equal to zero. Thus, the nonreturn boundary 

condition imposes no additional constraints on the even-parity 

functional. 

For the symmetric boundary condition, substitute Equation 

(2.49a) into the second surface integral. As in the even-parity 

functional, the result i? zero. It can therefore be concluded 

that both the non return and the symmetric boundary conditions are 

natural conditions arising from the functional. 'That ii, the 



25 

surface integral is incl~ded in the functional f6r nonreturn 

boundaries and deleted for symme.tric boundaries. 

The adjoint problem is ~ften of interest in reactor physics 

studies. A discussion of the formulation of the adjoint problem is 

presented in Appendix A. 

The Reduced Functional 

The even and odd-parity fluxes a~e now expanded in surface 

harmonics. 

The scope of the remaining derivation is limited to the 

consideration of linearly anisotropic scattering and linearly 

anisotropic fluxes. The expansions for the fluxes and sources 

now degenerates to the following set of polynomials, 

and 

x(X,Y,~) = x1 ,_ 1(X,Y) Yl,-l(~) + x1 ,0(X,Y) Y 1 , 0 (~) + 

x
1

,
1

(X,Y) Y
1

, 1n1), .. 

se(x,v.~) = s0 ,0(x,v) v0 , 0 (~). 

s0 (X,Y,~) = s1 .~ 1 (X,Y) Y1 ,-l(~) .+ s1 ,O(X,Y) Y1 ,O(~) + 

s1 , 1{x,v) v 1 , 1 (~)~ 

( 2 0 58) 

( 2 0 59) 

(2.60a) 

(2.60b) 

(2.60c) 

(2.60d) 
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The substitution of Equ~tions (2.60) into Equation (2.54) yield~ 

where 

"' csr.-v ljJ . v (n)J 2 
F(I)J) = l j f · 0,0· 0,0 + E[I)J y (n)]2 _ 

2-rn E o,o o,o 

y J J -+ -+ 2 . (-+ 2 -+ -+ 2 + + ln·nl I)Jo,o v0,0_ n) dndr, 
r n 

1 .. 
vo,o = 

2/; 

v1,_1 ~SINe e-i<t>, 

__ Q 
v1 ,o- ~4TI cos e, 

(2~61). 

(2.62a) 

(2.62b) 

(2.62c) 

( 2 .62d) 
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and 

The.angles e and~ are defined in Figure 2, 

Equations (2.62) and Equation (2.63) are substituted into 

Equation (2.61) and the indicated integrations over nand n~ are 

performed. The resultant functional is 

[~ W J2 [~ W J2 
L 

F($) = _21 1 { 3~,o . + L wo.o2 L w 2 + o,o s,l r , - s,O 0,0 3L(L-Ls,l) 

2 1 awo o + _1 awo ,o 1 awo o 
- [- , s sl .0 - - , s J -
L. 16 a v 1 , -1 13 ax , 16 a Y 1 , 1 

2 L 1 1 awo o 1 awo o 2 w s s , [- , s + - , s 
o ,o o ,o - L( Lo:-Ls, 1) 16 aY 1 ,-1 13 ax 1 ,o 

_1 . aw~,o sl lJ} dr + 1..4 J wo o2 d.f. 
/6 a , r , 

Rearrangement yields the following form of the reduced functional 
. . -+ 2 

- · = l I [vwo,oJ 2 
F(w) 2 + {3(L-L ) + (L-Ls,o) wo,o - 2 wo,o5o,o -

r s,l 

y r 2 -+ 
+ 4. ~ wo ,o dr. 

r 

( 2 .63) 

(2.64) 

(2.65) 

Equation (2.65) can now be minimized and the even-parity flux 

calculated. 
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The odd-parity flux can be obtained from Equation (2.33) once 

its reduced form is derived. For a P1 expansion, Equation .(2.33) 

takes the following form; 

(2.66) 

Once again the fluxes and sources are expanded in surface 

harmonics as per Equations (2.60). These expansions are then sub­

stituted into Equation (2.66). The result is then multiplied through 
+ -+ -+ 

by Yn, ,{~) and then integrated over all ~. Using the orthogonal 
'" ,m 

properties of the surface harmonics results in the following set 

of equations; 

1 Cltj; 

= [ __ 1 0,0 + s J' 
xl '-1 2:-2: s,l 16 av 1,-1 (2.67a) 

Cltj; 
X = [~ 0,0 

+ sl ,0], 1 ,0 2:-2: 1 13 ax 
s' 

(2.67b) 

and 

x1 '1 = [-1 
01Po,o 

+ sl,1J. 2:-2: 
s '1 16 av (2.67c) 
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Now that all the components of the real flux are known, it can. 

be reconstructed in thefollowing form;· 

~(n) = ~O,O + x -~OS e + x1 .~l -~81T3 SIN e e-i~ -
2h 1,0 "4; L -,a;.) 

i~ e . (2.68) 

This can be rewritten as 

(2.69) 

Since the flux is a real valued function 

xl,l = -xl,-:-1· (2.70) 

Equation (2.69) can now be written as 

~(n) = ~o.o + x 
2/IT 1 ,0 ~cos e + 

xl ,-1 a SIN e cos ~. (2.71) 

The scalar flux is 

(2. 72) 
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The substitution of Equation (2.70) into Equation (2.65) yields 

the final form of the reduced functional. 

l.. J ljJ 2 dr 
4 1 o ,o . · (2.73) 

The multigroup even and odd-parity sources are now considered. 

Their derivation follows the same strategy used in the derivation 

of the canonical transport equations. For brevity, only the results 

are presented here. 

(2.74) 

and 

(2.75a) 

where 

Qe = l [Q (~) + Q (-~)] g 2 g g (2.75b) 

and 

Qo = l [Q (~) - Q (-~)] g 2 g g 
(2. 75c) 
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Equations (2.60) are substituted into Equations (2.74) and 

(2.75a). Then the indicated integrations are performed resulting 

in the following set of equations; 

G ljJg... + g 
z: 5o,o = f vl:fg ... 0,0 g g ... =, 

g g-1 
s, ,-1 = I 

g ... =, 

g-1 
sg = I 

l,O . l g-= 

and by envoking Equation (2.70) 

l: 

g-1 g ... +g 
z: l: 

g ... =, s,O 

g ... +g g ... 
x, '-1 s '1 

= sg - ,~_,. 

g ... 
tjlo,o + 

g 
Qo,o 

The odd-parity fixed source is set to zero for simplicity. 

' 
(2.76) 

(2.77a) 

(2.77b) 

(2.77c) 

This completes the so-called 11 Weak 11 formulation of the transport 

problem. It is termed weak because the family of functions that 

satisfy the functional must be continuous functions in the spatial 

domain and the first derivative must be square integrable,while the 

family of functions that satisfy the diffusion equation must be 

continuous and all the derivatives through the second must exist. 

This is a more stringent restriction on the even-parity flux 

than that imposed by the functional. However, this has been shown 

to have a minimal influence on the accuracy of the solution. (B) 



33 

II. The Finite Element f,1odel 

The solution domain is now divided into a number of smaller 

subdomains. Equation (2.65) is now approximated by a sum of 

integrals. The functional is now written as 

a~ a~ 
-.-----2 ___.,.... c _1_ o ,o s + _1 o ,o s J} dr + 
(E-Es,l) 16 aY 1,-1 13 ax 1,0 n 

-+ -+ 
where r and r are the areas and external surfaces, respectively, n n 

of each of the NE elements. 

The subdomains are taken to be triangular in shape. A 

(2.78) 

quadratic polynomial is used to describe the spatial variation of 

the even-parity flux over each triangular element. The reason for 

this choice of polynomial is discussed in Chapter I, page 6. 
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Therefore, 

~n(X,Y) = a, ,n + a2,n X + a3,n y + a4,n x2 + a5,n XV+ a6sn y2 

or 

~n(X,Y) = [1 X 

or 

y XY 

T 
~n( X, Y) = f a 

- -fl 

The double zero subscript has been deleted for simplicity. 

For quadratic interpolating functions, it is necessary to 

describe the function in terms of six nodal points on the edges of 

each element. Three of these points, 11 nodes, 11 are located at the 

vertices of the triangle and the remaining three are located at 

the mid-point of each side as illustrated iri Figure 3. The 

variation of the flux is now expressed in terms of these nodal 

values as follows, 

= 

y 1 X~ 
y2 X~ 
y3 X~ 
y4 X~ 
v . x2 

5 5 

y6 X~ 

xlvl 

x2 v 2 

X3Y3 

X4Y4 

X5Y5 

X6Y6 

*Single underlined term denotes a vector and a doubly under­
lined term denotes a matrix. 

(2 .. 79a) 

(2.79b) 

( 2. 79c) 

(2.80) ·. 
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or symbolically 

,,, = M a . 
.!.n =---fl 

(2.81) 

Therefore, 
-1 -

~ = !i !l!.n • ( 2 . 82 ) 

Equation (Z.82) is now substituted into Equation (2.79c). The 

results are 

This is now reduced to 

( T-
I)J X,Y) = N 1jJ , n - -'-f1 

where~ is the element flux vector, the jth element of which is 

the even-parity flux evaluated at the jth node of the. triangle and 

NT = [N - . 1 

The elements of the N vector are defined as follows; 

N1 = (2 L1 - 1) L1, etc~ 

for elements 1 through 3 and 

for elements 4 through 6, where 

L. = {a. + b. X + c. Y)/2~, 
1 . 1' 1 1 

i=l,2,3, 

and 

(2.83) 

(2.84) 

(2.85) 

(2.86a) 

(2.86b) 

( 2. 87) 

(2.88a) 

(2. 88b) 

(2.88c) 
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and the remaining coefficients afe permutations of these equations, 

i.e., 1 goes to 2, 2 to 3, and 3 to 1, and 6 is the area of the 

t ri angle. 

I t d 1 b 1 fl t h . . th t . th n ro uce a g o a . ux vee or, ~' w ose J componen 1s e 

even-parity flux evaluated at the jth node in the entire system. A 

Boolean matrix is used to relate the components in the element flux 

vector~. to their corresponding components in the global flux 

vector!· This Boolean matrix is defined as follows 

n for Q_ = 1, 2, ••• , 6; k = 1, 2, ••• , NDF, and where Bi ... is a 

vector containing the global node number associated with node Q_ 

of element n, and NDF is the total number of nodes in the system. 

Therefore 

and 

Similar arguments are advanced for the spatial variation of 

the sources and the results are 
~ n A 

~·,o = d, ~ ,o' 

sn ~n 
A 

= ~1 '-1 ' -1,-1 

and 
~ d,n 

A 

~1 ,0 = ~1 ,0. 

(2.89) 

(2.90) 

(2.91) 

(2.92a) 

(2.92b) 

(2.92c) 
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Equation ( 2.91) and Equations (2.92) are now subs~ituted 

into Equation (2.78). The result is 

, 1 "T NE n T { _f d-+r [v!iCv!iJ T T F(d·) --d. ~ [J + (E-Es,O) _N. _N ].+ 
o/ - 2 L L = -+ · n 3(E-Es,l) 

n=l rn 

y n f dr N NT} Jn ~ - f dr { 2 [ ___?_ a!i_ NT Jn S + 
4 r n n -- = - ~ n n . ( E-Es, l) /6 aY - = -1 ,-1 

- 1 aN NT Jn S ] - 2 _N _N_T __ Jn Sn,ol]. 
13 ax - = -1 ,o --v 

(2.93) 

The first variation of Equation (2.93) with respect to ~is 

taken and set equal to zero to obtain the stationary conditions of 

the functional. The resulting set of algebraic equations can be 

written symbolically as 

where 

f -+N (-+N 'T T y f T 
An = d-+ ['il 'il~ + ( E-Es 

0
) !i_ !i_ ] + -

2
n ... dr N N , -+ rn 3(E-E 1) , -.-r n ,...--r s, . n n 

and 

The odd-parity element flux vectors are obtained by the 

substitution of Equation (2.91) and Equations (2.92) into Equation 

(2.94) 

(2.95) 

(2.96) 
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(2.67). The resulting finite element form of the odd-parity 

equations is 

(2.97a) 

and 

(2.97b) 

The derivative· vectors are denoted as matrices because the term is a 

matrix with the derivative vector evaluated at node j in row j of the 

·matrix. 

A similar procedure is performed to obtain the multigroup 

sources. For brevity, only the ·results are presented. The even­

parity source equation is 

"g 
~,0 

"g 
-%,o 

NE 
= I 

n=l 

+ Jn n9 ] 
= ..:l{) ,0 ' (2.98) 

(2.99) 
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and 

0 for corner nodes 
Cl. = 

.1 for side nodes. 

The fixed source, Q, ·is assumed to be isotropic, therefore, the 

odd-parity component is zero. The odd-parity sources can now be 

written as 

"'g NE n T .g-·1 g .. +gn -n s = I g, I Es 1 Xl -1 -1 ,-1 n=l g .. =l ' - . ' (2.100a) 

and 

"'g . NE T g-1 g .. +gn -n. 
il ,0 = I t I Es, l X1 ,0 · 

n=l g .. =l 
(2.100b) 

This concludes the deriva~ion of the theoretical model. The 

following chapter is concerned with th~ development of the numerical 

model employed to obtain solutions to Equation (2.94). 
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CHAPTER III 

DEVELOPMENT OF THE NUMERICAL METHOD 

. This chapter presents the development of the numerical 

techniques employed in obtaining solutions to the· set of coupled . 

algebraic equations that were derived in the previous chapter. 

The first section of this chapter d~als with the n~merical integration 

of the terms in the functional over each element. The iterative 

strategy and problem termination criteria are discussed in the 

remaining section. 

. I. Numeri~al Integration 

The integrals indicated .in Equation (2.95) ~re not si~ply 

obtained in closed form. This can be attributed to the higher order 

approximation used to describe the spatial variation of the flux 

and the fact that the integral~ of the g~adient terms depend on 

the lotation of the particular element in the mesh. For these 

reasons, a numerical integration scheme is employed to evaluate 

the necessary coeffi.cfents in the integral matrices. 
. (23) . 

A nine point quadrature set, Table I , is used to perform 

the integrations o~er the area of th~ triangles. The integration 

Points, R. and S.) and the weights, w., are defined in a transformed 
1 . 1 1 

coordinate system in which all triangles are mapped as the triangle 

illustrated in Figure 4. To perform the integrations in the global, 

X-Y, coordinate system, it is necessary to map the integration 
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TABLE I 

NINE POINT QUADRATURE SET FOR TRIANGLES 

R. s. w. 
1 1 1 

o. 10271765483 0. 80869438567 0. 05581442049 

0. 45570602025 0.45570602025 0. 08930307278 

0. 80869438567 o. 10271765483 0.05581442049 

0.06655406786 0.52397906774 0. 06367808510 

0.29526656780 0. 29526656 780 0.10188493615 

0. 52397906774 0.06655406786 0.06367808510 

0. 02303113229 o. 18840940591 0. 05581442049 

0. 1 061 70 2691 0 0. 1 061 70 2691 0 0.08930307278 

0.18840940591 0.02393113229 0.05581442049. 
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points into the global system. This is accomplished by envoking 

the following transformations; 

x. = ( x3 -. x1) R. + (x2 - x1) s. + xl , (3.la) 
- 1 1 1 

v. = (v3 - v1) R. + (v2 - v1) s. + y 1 , (3.lb) 
1 1 1 

and ·-
- = 2 (3.lc) w. w. ~::,.; 

1 1 

where x1, v1, x2, etc. are the coordinates of the corner nodes of 

the triangle tn the global system and ~::,. is the area of the 

triangle. The integral of the function of interest, f(x,y), ·over 

the tr.iangle is then approximated as 

i 9 
f(X,Y) dr "' z: f(Xi,Y.)·w .. (3.2) -+ n i =1 1 1 

rn 

The surface integral for th"e nonreturn boundary condition is 

also calculated numerically. A five point Gaussian integration 

quadrature set is used. The integration points and weights ~re 

presented in Table II( 24 ) and are defined on the interval from -1.0 

to 1.0. The transformation equations for the surface integral are 

x. ··- [(X2 xl) R. + (x1 + x2)]/2, 
1 1 

(3.3a) 

y. = [ ( y 2 vl) R. + (v1 + v2)J/2, 
1 1 

(3.3b) 

and 

wt = wi[(Xl - X2)
2 

+ (Yl 
2 l/2 

- Yz) J /2, (3.3c) 
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TABLE II 

FIVE POINT QUADRATURE SET FOR LINES 

R. w. 
1 1 

-0.90617985938 0. 23692688505 

-0.53846931010 0. 4 786286 7050 

0.0 0.56888888889 

0.53846931010 0. 4 7862867050 

0.90617985938 0. 23692688505 



46 

where Xj and Yj are the coordinates of the end points of the surface 

to be integrated over. The surface integral is then approximated by 

f 
5 

f(X,Y) dr I f(x., ?.). - ( 3.4) "' w .. 
-+ n 1 1 1 r i =1 n 

II. The Iterative Procedure 

This section presents the development of the iterative strategy. 

The overall procedure consists of inner iterations with optimum 

overrelaxation on the spatial mesh at each energy group and outer 

iterations with acceleration for eigenvalue problems. 

Inner Iterations 

Inner iterations consists of successive recalculation of the 

flux values at a given energy, given the inscatter, fission, and 

distributed sources. For a single energy group, the set of 

algebraic equations derived in the previous chapter can be 

represented symbolically by the following matrix equation 

'M th = S 
= L -' 

(3.5) 

where M is simply the coefficient matrix obtained from the spatial 

operators and the boundary conditions, ~ is the vector of unknown 

even-parity fluxes for the group being considered, and S is the 

source vector for that group. 

The matrix, M, is now decomposed as follows 

!i = !l - !!,. ( 3.6) 
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Equation (3.5) is now rewritten as 

· If ~ set of fluxes is available for iteration, n, namely, ~n' 

then an iterat1ve scheme such as the following could be 

.i nit i atei:l'. 

-1 -1 .2n+ 1 = !l ~ + !l ~ .P.n. 

(3. 7) 

(3.8) 

This iteration scheme can be sl6wly converging depending on the 

magnitude of the eig~nvalues of the iteration matrix, -A-l B, all 

of which are less than unity for a convergent process. 

Consider Equation (3.8) where the calculation of the new 

·.flux values is based only on the values from the previous iteration. 

The eigenvalues of the iteration matrix c6ntribute to the error in 

the current value of the flux according to the following equation, 

~i.oo- ~i.n =I c .. A~. , , j 1 ,J J 

Therefore, there is a contribution to the error from each error 

vector having an associated eigenvalue A. which depends on the 
J 

(3.9) 

. value c .. and the iteration number. The value of the eigenvalue 
1 ,J 

A· depends only on the matrix constants and not the source values. 
. J 

The value of c .. depends on the initial flux values. (2) As the 
1.,J 

number of iterations is increased, the largest eigenvalue dominates 

the rate of error decay. The ratio of two successive values of 

Equation (3.9) indicates that the error is reduced by a factor of 

A each iteration. 
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<J>i oo- <l>i,n 

<1> i ,oo - <1> i , n- 1 
= A. (3.10) 

The use of the latest values of the flux as they become 

available has the effect of accelerating the rate of convergence. 

The effect is that of squaring the eigenvalues giving the asymptotic 

behavi or( 2) 

Equation (3.8) becomes 

<1>i,oo-<j>.i2n 

<l>i,oo- <l>i,n-1 
2 = A • (3.11) 

(3.12) 

when the latest values of the flux are used •. The matrix I is the 

identity matrix which is. defined elsewhere. (2S) This is a 

significant improvement over simple point relaxation. 

The iterative fluxes can also be driven with overrelaxation 

using the following relationship 

(3.13) 

where <1>~ is the newly calculated flux value and 8 is the over-, ,n n 

relaxation coefficient for iteration n. The overrelaxation 

coefficient can be optimized as follows 

2 (3.14) 
1 + ;;--:-; 



where 
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2 
= l [A+s-1] 

a A S 

using the following definitions: 

A is the dominate eigenvalue of the iterative process, 

s is the current overrelaxation coefficient, and 

a
112 is the spectral radius. 

(3.15) 

The discussion of acce1eration techniques has, to this point, 

been based on the theory developed for p-cyclic matrices( 26) which 

arise from the finite differencing of elliptic differential 

equations. To test the applicability of these techniques to the 

finite element equations, a numerical experiment was performed. 

Estimates of the dominate eigenvalue were obtained from successive 

ratios of the L
1 

norm which is defined as follows, (2) 

NDF 
.I 
1 =1 

A "' n . (3.16) NDF 
I 

i =1 

where ND~ is the number of space points. The equation~ were then 

iterated with a fixed value of s until the dominate eigenvalue 

was identified. This was done for various values of s. 

The results for a one group homogeneous problem are shown 

in Figure 5. The theory using the calculated value of a predicts 

that the optimum value of the overrelaxation coefficient should be 

1.385. The numerical results confirm that this is the optimum. 
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The importance of the use of an overrelaxation coefficient 

near the optimum is evident from Figure 5. This figure indicates that 

the error reduction is a factor of 0.38 for each iteration with over­

relaxation as compared t0 0.80 without overrelaxation. Therefore, 

for this problem, each iteration performed with the optimum coefficient 

·is equivalent to five iterations done without it. 

New values can be obtained for a block of points simultaneously. 

When this block relaxation method is used, the new values are over­

relaxed simultaneously. The block relaxation method is the method 

used in this work! The overrelaxation coefficients are calculated 

in the same manner as for the point relaxation method. 

The overrelaxation coefficients are also allowed to vary from 

one energy group to the next. This allows a more efficient use of 

the procedure by permitting the optimum coefficient to be used in 

each group. 

A further discussion of the matrix splitting and its effect 

on the convergence of the iterative process is presented in 

Appendix B. 

Outer Iterat1ons 

Each outer iteration consists of a full sweep through the 

energy groups to obtain new estimates of the point flux values. 

The calculation begins in the first or highest energy group and 

proceeds downward. For adjoint problems, the sweep is reversed. 
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The iterative procedure for k eigenvalue problems is 

relatively simple •. The total fission source is calculated after 

each outer iteration using the following relationship 

G NE 
FS = I I vl::f . ct> . {). •• 

n g=l i=l g,l g,l ,n 1 

The nth estimate of the eigenvalue is then calculated from the 

following equation 

k = FS /FS l. · n n n-

Once an estimate of the eigenvalue is obtained, the fission 

source is renormalized and the iterative process if repeated. 

The iterative p·rocedure for problems in which there is a 

fixed source present in a multiplying media is somewhat ~ore 

(3.17) 

(3.18) 

complicated. This can be attributed to two effects in particular. 

First, the presence of the constant source term tends to.perturb 

the solutions approach to an asymptotic distribution. Second, 

after the convergence to an asymptotic distribution i~ obtained, 

each iteration contributes approximately (k)n Q new fission 

neutrons. Thus, for problems that are only slightly subcritical, 

a large number of iterations are required to generate the ~otal 

fission source. In order to expedite the calculation, an 

asymptotic extrapolation pro~edure( 2 ) is employed~ 

It is assumed that the error in the outer iteration flux 

vector can be expan.ded into a set of 1 inearly independent error 

vectors, 
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n 
<P - <P =I [ n ll .] B.+ o. 
-'-<X) -'-f1 j Q,=l Q,,J J ·1 ,n. 

(3.19) 

where 0. is a residual error, associ'ated with the eigenvalue 
1 , n 

estimate. whic~ hopefully small and decreasing with increasing 

n. The Bj is diagonal, coristant -fbr each component of <P associated 

with some previous .st~te df the probl~m, and llt,j represents the 

eigenvalues of the error vectors. 

The .single error mode extrapolation procedure is based on 

the assumption that one error vector dominates asymptotically-, 

<jJ. - <jJ. =b. )1, 1,oo 1,n 1 .· 

where b. is a constant and !1. is the dominatin~ eigenvalue. As 
1 

in the inner iteration process, estimates of the dominating 

eigenvalue are obtained from ratios of successive value of th~ 

L1 norm which, for outer iterations, is defined as 

G NE 
I· I I<Pg.,i,n- <Pg,i,n-11 g=l i =1 

ll = G NE n 
I I I<Pg,i,n-1 - <Pg,i,n-21 g=l i =1 

( 3 0 20) 

(3.21) 

Once the iteration procedure stablizes and the dominate eigenvalue 

is identified, thegroupfluxes can be extrapolated using 

where 

.p 0 =<jJ 0 +d(<P 0 -<P 0 1), g,1,oo g,1,n g,1,n g,1,n-

d = _ll_ 
1-)1 

and ll is the dominate eigenvalue. 

(3.22) 

(3.23) 
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The powerfulness of this method is illustrated by this simple 

example. The two group problem shown in Figure 6 was calculated 

with and without asymptotic extrapolations. The fixed source is 

in the highest energy group and the k eigenvalue is 0.8715. When 

the extrapolation procedure was not U§ed, 81 outer iterations were 

required tq calculate the total fission source. The use of the 

extrapolations reduced the number of outer iterations required to 

reach the same degree of ~onvergence to 10. Clearly, the amount 

of calculational time saved by using the extrapolations is well 

worth the minimal effort required to implement the method. 

Once a calculation is underway, it. is necessary to measure the 

degree of convergence of the solution. Two quantities are checked 

to measure convergence. The first is the maximum relative flux 

change between two successive inner iterations. The second is 

the fractional deviation of the eigenvalue between two successive 

outer iterations. When both of these quantities are less than some 

prespecified value, the problem is considered converged and then 

terminated. 
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CHAPTER IV 

NUMERICAL RESULTS 

This chapter presents the results of three numerical experiments. 

The solutions obtained from the computer code FEPl, which was 

developed for this dissertation, are compared with the solutions 

obtained from various established computer codes. All calculations 

were performed using the IBM 360/91 computer. 

Ii The Fixed Source Problem 

The purpose of this problem is to demonstrate the behavior 

of the solution ~ethod in a scatteri~g material. The calculational 

model consists of a 6 x 10 em. rectangle with vacuum boundaries 

on all four sides. The fixed source is located in the last 

centimeter along the em. side. The model is illustrated in 

l;igure 7. 

FEPl and the discrete ordinates transport code DOT III( 27 ) 

were used to obtain solutions to the. prqblem. The diffusion theory 

mode was used in DOT III as well as.the tr~nsport mode. The 

results of the calculations are shown in Figures 7 and 8. 

Figure 7 is a plot of a flux traverse in th~.X-direction 

at Y = 2.5 em. The DOT III diffusion theory solut'ion and.the 

FEPl solution are in excellent agreement. The s2 transport 

solution exhibits nonphysical ripples which are commonly referred 

to as ray effects and often arise in problems that have low 
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scattering ratios. Now shown arethe 54 results. The increase in 

quadrature mitigates these ray ~ffects and then this solution is 

also in excellent agreement with the FEPl and diffusion theory 

results. 

Figure 8 is a plot of a flui traverse in the Y-direction a 

X = 5.0 em. As before, the FEPl and diffusion theory solutions 

are in excellent agreement. The ray effects are apparent in the 

52 solution, but are mitigated by the increase in quadrature to 54 ~ 

The overall agreement of the solutions is excellent. 

I l. . The Di ffus ion Thea ry P rob 1 em 

The purpose of this problem is to demonstrate various features 

of the finite element method that are incorporated in this study. 

In particular, the ability to calculate keff eigenvalues for few 

group problems, the ability to calculate forward and adjoint flux 

distributions, and the ability to perform these calculations 

using meshes composed for irregular triangles of various sizes. 

The capability of ~sing nonorthogonal boundaries is also 

illustrated. 

The problem model suggested by Yang and Henry( 2B) consists 

of a highly heterogeneous thermal reactor core, Figure 9. The 

right and diagonal boundaries are reflected boundaries and the 

1 ower boundary is a nonreturn (vacuum) surface. The two group 

nuclear data is presented in Table III. 

A number of calculations were performed using the finite 

difference diffusion theory computer code VENTURE( 2 ,29 ) to provide 
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TABLE III 

NUCLEAR DATA FOR THE DIFFUSION 
THEORY PROBLEt~ 

Fission Absorber 
Materia 1 Material 

1. 436 1.092 

0.02647 0.003185 

0.007293 0.0 

0.01596 0.0 

1.0 0.0 

0.3868 0. 3507 
.. 

0.1018 0. 4021 

0.1531 0.0 

0.0 0.0 

Moderator 
Material 

1. 545 

0.028824 

0.0 

0.()2838 

0.0 

0.3126 

0.008736 

0.0 

0.0 

*x refer to the fission spectrum, not the odd-parity flux. 
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a basis for comparison. Since VENTURE was unable to calculate the 

nonorthogonal boundary, it was necessary to use a square model of 

the problem rather than a triangular model. Two calculations were 

performed using this model. The first was done· on a 58 x 58 mesh 

and the second on a 116 x 116 mesh. The keff eigenvalues from these 

calculations are presented in Table IV including the calculation 

times. The eigenvalue reported for the infinite number of mesh 

points is an extrapolated value based on the two solutions already 

discussed. 

A single calculation was performed using the FEPl computer 

code. The mesh employed in the calculation is shown in Figure 10. 

Triangles of arbitrary size and orientation were used to illustrate 

the variety of types of triangles that can be employed in 

describing the problems geometry. A relatively coarse mesh (337 

nodes, 150 triangles) was used to describe the problem. The. keff 

eigenvalue results for this calculation are also presented in 

Table IV along with the computation time. 

The eigenvalues obtained from both methods are in excellent 

agreement. The computation time per unkno~n flux is significantly 

shorter for the finite difference calculation than it is for the 

finite element calculation. This is more than offset by the 

ability of the finite element method to use a coarser mesh and non­

orthogonal boundaries making computation times competitive. 

The eigenvalue is not the only item of interest in most 

reactor physics calculations. The forward and adjoint flux 
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TABLE IV 

DIFFUSION THEORY PROBLEM RESULTS 

·.No. of Nodes keff %t~k CPU(MINS) 

VENTURE 
(Extrapolated) co 1.03911 0.0 

VENTURE il6 X 116 1 . 0405 0.067 5.334 

VENTURE 58 X 58 1. 0426 0.269 1.113 

FEPl 337 1.0391 -0.067 0. 720 
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distributions are also of interest to analysts. For this reason, 

a comparison of flux shape is also presented. 

A plot of the first and second group scalar fluxes are shown 

in Figures 11 and 12 respectively. The traverse is in theY-direction 

at X = 63.0 em. The agreement with VENTURE is excellent except near 

the vacuum boundary. The reason for the discrepancy is the type of 

boundary condition used in each calculati.on. The VENTURE calculations 

used a zero flux boundary condition, i.e., the scalar flux is zero 

at the boundary, while the FEPl calculation used a nonreturn boundary 

condition, i.e., the inward directed partial current is zero. 

A plot of the first and second group scalar adjoint fluxes are 

shown in Figures 13 and 14 respectively. The traverse is at the 

same section as the forward flux traverse. As before, the agreement 

with the finite difference solution is excellent. 

The results of this problem indicate that the proposed method 

provide a viable tool for obtaining coarse mesh solutions to the 

neutron diffusion equations on an irregular triangular mesh with 

nonorthogonal boundaries. 

III. ·The Transport Theory Problem 

The purpose of the third and final test problem is to 

demonstrate the ability of the proposed method to calculate the 

keff eigenvalue and ex-core reaction rates for fast reactor problems 

in which the effects of linearly anisotropic scattering are important. 

The model is a modified version of the X-Y model suggested for the 

FTR (Fast Test Reactor)( 30) and is shown in Figure 15. 
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·T~e original 51 group cr6ss ~~ction ·set with a P3 expansion 

of the scatterin~ cross section was prod~ced by the AMPX( 3l) system. 

The cross sections were then collapsed to a ·7 ~roup set using a 

one-dimensional model of the problem in the discrete ordinate code 

ANISN.( 32 ~ A transport corrected P0 set and a P1 ~et of cross 

sections were then produced by the AXMIX( 33 ) code. The ·transport 

correction used to modify the total cross section was done using 

the 11 inflow approximation 11 defined by the following equations·· 

where 

J(E) 

E~R(t) is the trarisport cro~s section, and 

J(E) is the neutron current. 

( 4. 1) 

(4.2) 

A nu~b~r of c~lc~~ation~ were performed to asse~s th~ effects 

of linearly anisotropic scattering. Included in the comparison are 

the res·ults obtai ned from the discrete ordinate code DOT3P5, ( 34 ) 

which ·is an updated vers1oh of DOT 111, the Monte Carlo code 

KEN0,( 35 , 361 and the finite element code FEPl. The KENO calculations 

wer~performed on the mod~l shown in Figure 15 and followed some 

20160 n~~tron hi~tories. The discrete ordihates arid diffusion 

calculation performed using DOT3P5 were done on a 40 X 40 square 

mesh. The finite element solution was done on a triangular mesh 

which included onl~ half the problem model.·· Th~ triangular mesh 

consists of 447 nodal points and 201 triangular elements. The 
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convergence criteria for the two deterministic codes, DOT3P5 and 

FEPl, was that the maximum fractional deviation in the eigenvalue 
-4 be less than 10 . The .results of these calculations and the 

computation times are presented in Table V. 

The percent differences in the k eigenvalue are calculated 

assuming th~ value obtained from·the KENO P1 calculation is exact. 

The exclusion of all the anisotropic effects of neutron scattering 

leads to an error of approximately 2.627 percent in k. The use of 

a transport corrected cross section set tends to reduce the error, 

but the exclusion of the linearly anisotropic component of the 

scattering cross section still results in an error of 0.044 percent 

in k. The same trends are shown by the DOT3P5 and the FEPl 

calculations, 

A second comparison can be made between the results obtained 

from DOT3P5 and FEPl as they both are deterministic methods. 

Table VI presents such a comparison. The coarse mesh finite 

element method used in FEPl* gives results that are in excellent 

agreement with the results obtai ned from the finite difference 

method used in DOT3P5. 

A complete reattor analysis is concerned with being able to 

calculate neutron spectra in ex-core positions as well as in-core 

positions .. The eigenvalu~.tends to reflec:t the ability of a method 

to predict in-core spectra. A good measure of the ability of a 

*Meshes that are approximately three mean free ~aths bet~een 
nodes yield good results. 
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TABLE V · 

THE EIGENVALUES FOR THE TRANSPORT THEORY PROBLEM 

keff 
·cpu 

%t,k (MINS) 

KENO P
1 

1.12413 ±0.00323 0.0 15.04 

KENO PTR* 1. 12364 ±0. 00362 -0.044 13.28 

KENO _P
0 1.15366 ±0.00338 2.627 -13.77 

DOT Sl1 
L 12·241 -0.153 2~.4') 

DOT Sl1 
J. 12409 -0.004 15.81 

DOT s4P O 1. 14 782 2.107 23.35 

DOT S/o 1.15006 2. 307 16.45 

DOT PTR DIFFUSION 1 • 12242 -0.152 2.60 

DOT PO DIFFUSION 1 • 14811 2.133 2.65 

FEP1 p1 1.12157 -0.227 5.54 

FEP1 PTR 1.12237 -0.156 4. 92 

. FEP1 p 
0 

1.14788 2.113 5.12 

*PTR refers to ti~nsport corrected cross sections. 



pl 

PTR 

Po 

74 

TABLE VI 

COMPARISON OF DOT AND ·FEPl EIGENVALUES 

FEPl DOT 

1.12157 s4 1.12241 

s2 1.12409 

1.12237 D* 1.12242 

1.14788 s4 1.14782 

s2 1.15006 

D ·1. 14811 

*D refers to the diffusion theory solution. 

t%l\k = [kFEPl - kDOT]/kDOT X 100 · 

%l\k t. 

-0.07 

-0.224 

-').004 

0.005 

.-0.190 

-0.020 
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method to accu~it~ly calculate ex-core spectra is to calculate a 

reaction rat~ just ciutside the ~ore~reflector i~terface. Table VII 

presents the reaction rates calculated at such a position using 

each of the previously discussed methods. As before, the FEPl and 

the DOT3P5 results are in excellent agreement. 

This concludes the analysis of the test problem. The next 

chapter presents the conclusions drawn from this study and some 

recommendations for future study. 
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TABLE VI I 

· COMPARISON. OF EX-CORE 235u REACTION RATES . 

.: FEP1 oar· % R R ~t o!J. • • 

p1 9 ."7800-2" s4 "9.7638-2 o. 1 n6 

s2 9". 7537-2 "0.270 

PTR 9.7579-2 D 9;8991-2 -1.426 

Po 9. 2797-2 s4 9.2811-2 -0 .()15 

s2 9.2613-2 0.199 

D 9.4050-2 -1.332 

*R.R. denotes reaction rate. 

t%/J.R;R. = [R.R.FEP1 - R.R.DOT]/R.R.DOT X 100. 
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CHAPTER V 

SUMMARY 

I~ Conclusions 

It has been demonstrated that the finite element method 

developed and tested in this dissertation is capable of performing 

a variety of reactor physics calculations using a coarse (relative 

to finite difference) triangular grids with nonorthogonal 

boundaries. The method is able to span the gap between 

diffusion theory and full transport theory while still containing 

diffusion theory as a viable subset. 

The properties of the system matrix generated by the 

implementation of the finite element method posses properties 

that allow the convergence acceleration techniques developed for 

the finite difference ~arm of the multigroup diffusion equations 

to be utilized and optimized.· The application of these acceleration 

devices make computation times for t~e FEPl method competitive 

with methods already in wide use. 

The validity of the solutions were evaluated by comparison 

of the FEPl solutions with solutions obtained using various other 

methods. In all cases, the agreement was excellent. 
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II. Recommendations 

This section presents a few recommendations for future efforts. 

1. The further development of the code FEPl into a production 

oriented code would necessitate the development and 

implementation of an automated mesh generator. The 

calculational capabilities of the code need be extended 

to include search-type problems and upscatter problems. 

2. The extension of the algorithm to accommodate three 

dimensional problems, either by using three-dimensional 

finite elements or a finite difference formulation, 

would greatly enhance the versatility of the method. 

3. The implementation of isoparametric elements, either in 

two or three-dimensional calculations would allow the 

neutronics problems to be solved on deformed meshes. 

The coupling of the FEPl neutronics package, with the 

deformed mesh capability, to a structural mechanics 

code, where deformation calculations are routinely done 

using finite elements, would provide a tool capable of 

generating valuable information on the interaction of 

the neutronic and mechanical behavior of reactor cores. 

In the author's opinion, this is the area of greatest 

potential for the method. 

4. FEPl, as presently written, is I/0 (input-output) bound. 

There are any number of remedies for this problem. Two 

of particular importance are, first, the reblocking of 
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the data stored on peripheral data sets and second, the 

performance of multiple inner iterations on each matrix 

block while it is resident in core. The use of non­

FORTRAN l/0 subroutines would also decrease the l/0 

time. However, they would make the running of the code 

installation dependent and therefore the benefits gained 

by their use is questionable. 
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·APPENDIX A 

THE·ADJOINT PROBLEM 

This appendix pre·sents a brief derivation and discussion of 

the adjoint form of the even-parity functional. 

The adjoint form of the Boltzmann neutron transport equation 

is 

-fi·~ <t>* (X,Y,E;~) + E(X,Y,E) cp* (X,Y,E,~) = 

vEf(E) ·f· J .f·( .. E") . ·. -+ . -+ 

41T -+ <ti*(X,Y,E",S'?:") d~YdE" + Q*(X,Y,E,~) (A.l) 
E" ~ .. 

where cp* and Q* are the adjoint flux and adjbint source respectively. 

The remaining terms are defined in Chapter II, page 9. 

The monoenergetic form of the adjoint equation can be 

wr.itten as follows for 0:, 

-S'?:·v <P*(~) + 2: </>~(~) = 1 Es(~".~) cp*(~") d~" + Q*(~), (A.2) 
. ~ .. 

-+ and for -~, 
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The adjoint flux is then decomposed as follows 

(A.4) 

where 

I)J*(Q) =·~cp*(Q) ~ ¢*(-S1)]. (A.5) 
.. 

(A.n) 

Using the definitions presented in Chapter II, page 12, for the 
. . 

even and odd-parity parameters allows the canonical form of the 

adjoint transport equation to be written as 
: 

S1.v x*(S1) + L\jJ*(Q) = f Le(S1 ... S1) I)J*(Q .. ) -+ se(n) dsY + ti.. s 
(A. 7) 

and 

-+ -+ () + LX*(Q) = f L0 (ti ... S1) x*(Q .. ) -+ ·so(S1). rl•'il I)J* rl d0. .. + 
ti.. s 

(A.8) 

The odd-parity adjoint flux can now be obtained from Equation . . . . . . . .. ' 

(A. 8). · 

= s0 (S1) - S1 • v 1)J*(S1) + 
L 

£,· 

I 
m=-t 

v (S1) f v+ (n .. ) x 
n m -+ n m 
"'' rl.. "'' 

(A.9) 
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Equation (A.9) is now substituted into Equation (A.7) to give the 

even-parity form of the adjoint transport equation 

~·~(~·;) ~*(~) _ a.; S0 *(~) 
E E 

\ ~ (
7

) f y+ (A") (-+ ) -+ 
L E s ' 9- m;- n y 9- 'm n A. .. t 'm " ~ * Q.. dn.. + 

teven x- " 

* 
E~*(~) + Se(~) .=z 0. 

The even-parity functional for the adjoint problem can now 

be written as follows. 

Sf -+-+-+ 2 
F(~*) :z l. {[n·v~*(n)] 

2 -+ -+ E r n 

-+ \ ~ -+ f + (-+ ) -+ -+ ~*(n) L E L Y",m(n) -+. Y Q" ~*(n") dQ" + 
teven s,t m=z-£ x- n- £,m 

y f f 1-+ -+1 -+ 2 -+ -+ 
2 -+-+ Q•n ~*(n) dndr 

r n 
where g(~--.a) is defined by Equation (2.41). 

(A.lr:J) 

(A.ll) 



92 

The form of the adjoint odd-parity flux, Equation (A.9), is 

the same as the equation for the forward odd-parity flux, Equation 

(2.33). The same is true for the adjoint functional, Equation 

(A.ll), and the forward functional, Equation (2.54). Therefore, 

the only change in the computer code needed to perform adjoint 

calculations is to correctly define the adjoint scattering 

matrices and the adjoint fission source. !f the angular adjoint 

flux is to be reconstructed~ the difference of the even and 

odd-parity fluxes is required rather than the sum of the fluxes 

which is required for reconstruction of the forward angular flux. 
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APPENDIX B 

CONVERGENCE 

This appendix presents a brief discussion of the convergence 

behavior of the inner iteration process as a function of the manner 

in which the system matrix is split. 

The splitting used in Chapter III, page 46, is essentially 

of the following form: 

M = A - B - B = = 9J 9..' 

where A consists of square blocks along the diago.nal and !4J and !4_ 

are of the form shown in Figure 16. 

According to Varga,( 26 ) Theorem 3.6, Corallary 2, if t1 is 

a Hermitian matrix partition as shown in Eq~ation (B.l), and A is 

positive definite, then the block successive overrelaxation method 

is convergent for all initial conditions if and only if the over-

relaxation coefficient, 8, has values between zero and two and M 

is positive definite. 

An investigation of the system matrix for this work reveals 

that, since the set of algebraic equations was obtained through 

the variational finite element formulation, the system matrix 

is guaranteed to be symmetric. The vnriables in the functional 

ctn:! all real valued, therefore, the elements of the system matrix 

are also real valued. 

(B. 1 ) 



A= 

B = u 
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Figure 16. Typical Matrix Splitting. 

ORNL-DWG 75-13239 

NOTE: ZERO DIAGONAL 

ELEMENTS IN 
B MATRICES 
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Further investigation shows that the system matrix is also 

positive definite. This is because the functional is a quadratic 

functional and therefore positive definite. 

For this work, the value of the overrelaxation coefficient 

is limited to vary between one and two. 

Incorporating these facts concerning the problem of interest 

with Theorem 3.6, it can be shown that the inner iteration process 

is convergent as long as the matrix A is chosen to be positive 

definite. 

A number of numerical tests were performed to show the 

applicability of. this proof. It was found that-these represent 

s uffi ci ent, but not necessary conditions for convergence. 
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