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August 15, 1975

ABSTRACT

The nonlin=ar coupling of intense, monochromatic, electro-
mgnetic radistion with plasma {s considered in a number of special
cases. The first part of the thesis serves as an introduction to
three-wave interactions. A general formulation of the stimulated
scattering of transverse waves by longitudinel modes in a warm,
unmagnetized, uniform plasma is constructed. We derive a general
dispersion relation that describes Raman and Brillouin scatteriig,
modulational instability, and induced Thomson scattering.

In the gecond pert Ramar scattering (the scattering of a
photon intc another photvn and an electron plasma wave) is investigated
as & poagible plasma heating scheme. Analytic theory complemented
by computar simulation is presented descriting the nonlinear mode
coupling ~f laser light with small and large amplitude, resonantly
excited electron plasme waves, Trapping of electrons in the electron
plasma wave 18 found to ts an importunt nonlinear feature., We
formally analyze the nonlinear, timc-dependent response for a
resonantly excitec longitudinal wave and demonstrate our construction
in simulation. Trapping influences the nonlinear disversion relation

of the plasma wave, whose back-reaction ¢n the beating of the lasers
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plays a significant role in ixe transfer of energy frcm the transverse
waves to the plasma.

The third part investigates the stimulated scattering of a
coherent electromagnetic wave by low frequency density perturbations
in homogeneous plasma. A cotposite picture of the lineer dispersion
relutions for filamentation and Brillouin scattering is constructed.

Finally we descrive in detail the absolute instability of Brillouin

weak and strong coupling by analytic and numerical means.
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I. INTRODUCTION
A. Overview of Three-Wave Interactions

The processes considered in this thesis are representative
of a much more general class of phenomena, common to meny branches
of physics, deacribed ay thrse-wave interactions. We restrict con-
gideration here to those three-wave Interactions occurring in an
unmagnetized plasma involving the sgcattering of a transverse waye,
i.,e., a photen, into another transverse wave and a longitudinal wave,
i.e., a plasmon. When the longitudinal wave is an electron plasme
wave, the three-wave Interaction is called Raman scattering.l-" Ir
the longitudinal wave is an ion acoustic wave, the process is called
Brillouin scattering.s'9

All three waves in the interaction need not be normsl modes
however. We shall show how finite amplitude effects can lead to
the production of driven modez as deceay products in the three-wave
interaction. We shall also show how the simultaneous scattering of
monochromatic transverse waves into two other transverse waves
accompanied by a growing density disturbance can be viewed as two
three-wave interactions which are coupled by a virtual or nompropaga-
ting wave, These last two phenomens are described as modified

Brillouin or Raman scatteringlo (also known as strong couplingn’lz)

and modulational 1nstability12 (examples of which are 1‘1.1a:|1en't.aticm13

and aell‘-l‘ocusingl["ﬁ).

To make these ideas somewhat clearer we shall introduce
model equations that represent the three-wave intersction of three
normal modes in a homogeneous plasma, For the sake of simplicity we

consider the coupling of three waves all propegating in one dimension.
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The three interacting normal nodes arc each assumed to satisfy, in
the absence of coupling, a linear partial differential equation of the

form
2 2 2, 2
(3, - 2vg3, + 2" - v 3.°) aJ(x,t) = 0 (J =1,2,3)

(1)
where {vJ} represent dissipation, {aJ} represent field quantities,
and the normal mode frequencies satisfy (in the absence of dissipation)
the linear dispersion relations sz = ﬂJZ + szkJZ (k_; is the

wavenumber of the jth wave). If the wavee are allowed to couple,

then the set EQ. (1) becomes

(3,2 - 21w, + 27 - w5 2) o (xt) = ga(xnt) afx,n)

' 1
(3,2 - 2y, + 02 - v,20.%) ax,t) = B (xt) ay(xt)

(3t2 - 21u33t + 573‘ - vjzaxz) aj(x,t) Ssal(x,t) a;(x,t)

{2)

The constants B 5 are real coupling constants, and al( x,t) 1is
taken to be the pump wave. For specific three-wave interactions use
of Maxwell's equations, fluid or kinetic equations, and equations of
motion for ions and elecirons resuits in the set Eq. (2).16'17 We
shall explicitly derive the linearized coupled mode equations for the
Interaction of a transverse wave with another transverse wn.e and an
electron plasma wave in Section II.C.

We assume that the field quaniities aJ(x,t) can be writton

aJ(x,t) = aj(z,t) exp(-duyt + ika) +¢.c. (J =1,2,3), where
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the EJ(x,t) are gslowly varying quantities. If the three waves
satisfy the frequency and wavenurber matcning conditions,

w oy * g and ky * kz + k3, then Egs.(2) become
[a1ay3, + 2tvp + 2w, %0, Jay(e) = ByE(x0) ix0)

- N - ¥
[21m23t + 21v2w2 - 21\'22]:23:] az(x,t) = "2“1( x,t) ‘3( z,t)

& - - P
[21(.;33t * 2ivg, 21v3‘k33xj int) = BE(xt) Gxt) .

(3)
The terms involving Btzij and sziJ have been ignored. If we
divide each equation by 2iuJ respectively, and introduce the group
velocities V, = kaJZ/mJ and new coupling constants aJ = BJIZmJ,

J
then we obtain the linearized coupled mode equation:

[31. . ¢ '.'lax] &(x,1) -layd,(x,1) 35v,1)

fog + vp + v, ] Rylnt) = ladi(x,0) E)(x,0)  (4)

[, + v3 + v0,] G5xt) = -tagg(xt) x,t)

3 3x

We thus consider all three waves on an equel basis. Much
work has been done on these equations in various 11m1ts.18-21 In the
1imit that la2|,|33] << |all, the coupled set of equations reduces
to two eguations deseribing the evoiution in space and time of the
field quantities az(x,t) and aB(x,t) coupled by the pump whose

amplitude is assumed constant.ll' 12,22-24 The research .n varicus
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parametric instabilities induced by the coupling of two initially
small am,litude waves by a pump wave has been vigorous: the work ty

2
% has been especlally significant.

Rosenbluth?> and also by Nishikawa
In this thesis examples of three-wave interactions are considered both
where the pump-weve amplitude is held fixed, and where changes in the
pump-wave amplitude are essential.

The three-wave procecs deseribed by Eqs. (4) 1s 1llustrated
in Fig. la. The decay of a high frequency puup wave (wl) into two
lower frequency product waves (wz,wj) is plotured. Figure 1lb shows
two three-wave interactions coupled by 2 virtual wave; this could
represent filamentation for example. For the case of three-wave
Interactlions amony coherent, rormal modes, the coupied mode eguations
Eqs. (4) lead to certein conservation laws. If there is no dissipa-
tion, v = 0, then multiplication of Egqs. (4) by EJ*GJ-:L and

gddition of the equations taking the complex conjugete yleld

1]
o

[at N ax] oy P+ [at * v2"’::_] o, i, 2
{5)

(]
o

[+ 13, a7 12+ o, ¢ Vaax] “3_1'§3|2
The exprescions in Egs. {5) are statemer 5 of the well-known

Kanley-Rowe rella.‘tu'.om:.zs.29 Loosely speaking, the sum of the wave
actions of the pump with elther of the decay products is a constant
(wave action 105'1|E le)' Since we have assumed that frequency and
wavenumber matciing prevall and since the wave energy is equal to
the frequency titwes ihe action (as we shall explicitly show in Part II)
then “.:.: relative portion of energy transferred to the lecay products
is given by wz/u& for the wave with freguency m2 and ‘"3/”?'1 for

the wave with frequency m3. Similarly for the wave momentum,
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equal to the wavenumber tlimes the action, the relative momentum
tranafer goes as the ratio of wavenumbers. These results should not
be surprising; we know from quantum mechanies that the wave energy
is given by ‘mJNJ and the wave momentum by tnkJNJ, where NJ is
the number of quanta. Action conservation is just a statement of the
conservation of quanta.
B. Thesis Synopsis

This thesis presents studies of nonlinear wave-wave inter-
actions Involving intense, coherent radiation in an underdense plasma
(we < w). We examine the possibilities for heating plasma by
utilizing the resonance of the beat wave produced by two electro-
magnetic waves with an electron plasma wave. Thc excited plasma
wave Is allowed to be large in awplitude, and the nonilnear effects
of electron trapping are considered in detall. We further examine
the stimulated scattering of an intense, coherent electromagnetic
wave by longitudional plasma waves or driven plasma modes at iow
frequency involving both ions and electrons, which is of much interest
in laser-fusion applications. A unified picture of stimulated
Brillouin scatiering and modulaticnal instability (filamentation
or self-focusing) is described. We compare linear anc nonlinear
theory with computer simulation where possible,

In Part I we provide an overview of the basic plasma phenomena
of interest here, viz. three-wave interactions among coherent
normal modes or driven modes. If the waves can satisfy certain
resonance conditions and if their coupling is sufflciently large a
vigorous transfer of energy can occur. The resonance conditions
correspond classically to phase matching both in time and space.

Quantum mechanicelly, frequency and wavenumber matching correspond
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to energy and momentum conservation. These ideas are made explicit in
Section I. A and Section I.C. The mechanisms leading to the naonlinesr
energy transfer, or mode coupling, are provided by the nonlinear
medium, in this case the plusma, The specific nonlinearities respons-
ible for the mode coupling will be manifest in the general treatment
sppearing in Section I.C, which is concluded with the derivation of an
implicit dispersion relaiion describing the stimulated scattering of a
transverse wave by plasma.

Part IT of the thesis treats the scattering of light into a
longitudinal electron plasma wave and a scattered transverse wave
for the purpose of heating plasma., Section II.A begins t - specializing
our genersl formulation to the cese of beat heating, i.e., the resonant
excitation of an electron plasma wave by two electromagnetic waves
{of frequencies Wo sy with @y > “; and wavenumhers 1_:0,1_:1) whose
difference frequency (2 = Wy - ml) and wavenumber (¥ = k- 1:.1)
nearly satisfy the Bohr~Gross dispersion relation for an electron plavma
wave. This process is closely related to Raman scattering, but the
finite amplitude of the lower frequency electromagnetic wave requires
equal treatment of both the lower and the higher frequency electro-
magnetic wave, The excited plazma wave then Camps, either due to
collisions, Landau damping, or nonlinearly. The plasma heating is
provlided by the electron plasma wave.

In order to lay the proper groundwork for the subsequent,
extensive use of particle simulation, Section II.B describes a
relativistic, electromagnetic, particle code. The code was created in
ecollaboratio. with A, B. Langdon, Mike Mostrom, and Dwight

Nicholson, to study a varieiy of electromagnetic phenomena in linear
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and nonlinear ragimes. The code implements an efficient Maxwell's
equations solver for the one dimensional propagation of 1light,that 1s
quite free from numerical instability. Polsson's equation is solved
by Fourier transform., Langdon's electrostatic version of the code
utilizes the same fast Fourier transform of Polsson's equation and
was used to study some of the nonlinear aspects of beat heating.

Section II.C is devoted to the study of the beat heating of
opposed lasers. The nonlinear interaction may be considered as an
Induced decay ({wg + w * @), in vhich a fraction R of the incident
power at frequency g is converted to frequencies wy and @, with
the frection Rﬂ/wo appearing as a longitudinal plasma oscillation
and, because of damping, ultimately as heat. Theory and similations
are utilized in Section II.C.1 to determine the dependence of the
efficiency parameter R on the avallable parameters: laser intensi-
ties, density scale length, and temperature, We {ind that beat heating
in a nonuniform plasma with linear density gradient is largely
independent of the electron wave dissipation rate.

We describe the steady-stute energy transfer to the plasma, first
treating the small amplitude electron plasme wave as a quusi-steadily
driven disturbance ignoring convection. Subsection II.C.2 examines
the space-time interaction of the two lasers, again assuming that the
electron wave is quasi-steadily driven by the ponderomotivé force of
the two lasers. In Section II.C.3 we relax this assumption and inte-
grate (in space and time) the linearized coupled mode equations
describing all three waves on an equal basis.

We continue our study of beat heating in Section II.C.4 by in-
vestigating the influence of' electron trapping in the plasma wave. The

threshold and time scale for trapping are compared to those for the
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Raman bdackscatter, electran-ion decay, and ascillating two-stream
instabilities to determine for what parameters trapping is the
domlnent nonlinear feature in beat heating. In reviewing the beat
heating simulations exhibiting trapping, we find that certain
unphysical effects, caused by the comparatively short length of the
plasma, motivate the consiruction of a simplified mcdel problcm.

As 8 first step in determining the nonlinear plasma response
1o resonant excitation by the low frequency beat of two high frequency
waves, we solve a model problem. For the sake of simplicity, we
assume that the plasma is uniform, and that the excitation of the
longitudinal beat-wave Is provided by a f_o_rﬁt_a_nﬁ-a.mplitude pondero-
motive potential. In Section II.C.5, we formulate an expliciy theoret-
ical prescription for the time-dependent nonlinear plasma response to
resonant excitation within the context of our simplified model problem.
The time-dependence of this nonlinear response, and its approach
to equilibrium, are related to the behavior of a nonlinear normal mode,
and in particular to its time~dependent elgenfrequency. We determine
the equilibria possible for electron plasma wave- with trapping, and
the stability cf the equilibria. OQur analysis is demonstrated in
simulation, and comparison is made with *l;heory.

Our digcussion of the b2at heating of opposed lasers is con-
cluded in Section II.C.6, where we consider the back-reaction of the
nonlinear electron plasma wave on the evolution of the transverse
waves. We specifically investigate the influence of particle trapping
in the beat wave and how trapped particle effects can be removed by

plesma inhomogenelty.
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Section II.D reviews the idea of cascading: parallel
propagating electromagnetic waves can be mltiply scattered by an
electron plasma wave resonantly excited by the ponderomotive ! x _E_B
force of any two successive electrumegnetlc waves in the cascade.

We discuss the influence of plesma inhomogeneity on cascading and
how cascading might occur preferentially over Raman thackscatter.

When the induced scattering of light involves a beat wave
of low frequency o] << Wy, both electrons and ions can respond.
This occurs in many interesting situations, e.g., in astrophysieel
plasmas, the ionosphere, lsser fusion, and radio-frequency heating.
Incident rediaztion can backscatter from an ion acoustic wave or,
at higher intensitles, from a driven, low frequency densiiy perturba-
tion (strong coupling). These are both examples of stimulated
Brillouin backscattering. If the radimtion scatters from a growing
density perturbation intc two sidebands, mcdulatlonal instability is
oceurring. The incident raediation can then filcmer* or self-focus.
These scattering irstebilities involving ions pose a particular
threat to laser-pellet fusion. They have relatively low intensity
thresholds and can lead to considerable scattering of the laser liight
and deformation of th- target with perhaps deleterious effects on
absorption mechanisms requiring relatively uniform illumination of
highly sphericelly symmetric targets. Part III of the thesis is
devoted to an examination of stimulated Brillouin scattering and
filamentation in a homogeneous, unmagnetized plasma.

Section III.A presents an introduction to the stimulated
scattering of light by low frequency ion modes. We construct a
genersl dispersion relation describing Brillouin and filamentation
instabilities in Section II.B. The linear dispersion relation for
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filamentation is solved in Section III.C, while Brillouin is considered
in Section I1I.D. We examine Brillguin strong coupling and filamenta-
tion from a unified point of view., We conclude with a detailed study
of Brillouin absolute instability and the construction of its asymptotic
Greer.’s function.

C. Coupling of High Frequency Transverse Waves
to Unmagnetized Plasma

Of particular interest in leser fusion, radiation from pulsars,
radio frequency heating, and ionospheric scattering is the class of
perametric instabilities involving th: scatteringof 1ight from longi-
tudinal electron and ion waves. The instabilitles involving lons
characteristically exhibit lower thresholds for onset of instebility
and lower growth rates than their counterperts involving only
electrons.n’lz'zo Examination here will be restricted to just the
scattering of a monochromatic electromagnetic wave from longitudinal
density perturbations in unmagretized plasma. The formnlation will
be sufficiently general tu include induced Thomson scattering, but
evaluation of dispersion relations and partial differential equations
describing the scattering will be confined to situations where the
scattering involves collective plasma behavior: stimulated Raman
and Brillouln scattering and filementation.

The discussion beings with a qualitative plature of the
physicel mechaniem responsible for this class of parametric insta-
bpility. We assume that the clectron and fon motion is norrelativistiic
and for the esk%e of simplicity that radiation with frequency w, and
wavenumber 1_:0 1s incident upon a uniform, unmegnetized, warm

plasms, We relax the assumption of plesma uniformity in Section II.C.
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The electrons and iona scquire transverse "quiver" velocities
as their lowest order response to the radiation. Of course the
electron quiver velocity \_'re -1l be larger then the ion quiver
velocity by the mass ratio m,_/tne >> 1, If there ig an electron
density perturbation or fluctuation present Sne, e.g., due to noise,
then a coupling to the radiation can occur via the electron current
8o
perturbation: §&j = e6ne§e, where the electrc:. charge is defined

produced by the transverse quiver veiocity and the density

by e. This current will act as an antenna for scattered radiation
propagating at the sum and difference fiequencies end wavenumbers
of the density perturbation and the transverse oscillation velocity:
(g * %y + k) and (uwy - Q*,ljo - 5*), where the frequency and
wavenuzber of the density perturbation is given by (2,k).

The feedback necessary to produce parametrie instability is
provided by the coupling of the scattered radiation with the incident
radiation via the Lozentz force y x B. The Lorentz force is produced
by the cross-product of the transverse oscillation velocities with
the transverse memetlc flelds at the various existing frequencies
and wavenumbers of the transverse fields, namely the incident and
scattered radiation. The Lorentz force provides a driver fer high
frequency and high wavenumber demsity perturbaticns (2u°,21_¢0),

(2uy + 2,2k, + €), and (205 - 8,2k, - €") which contribute to
the lowest order nonlinear frequency shi!‘ts.31 In addition to the
high frequency density perturbations however, there will be the

low frequency ¥ X B beat at (Q,x) which serves %o reinforce the
original density perturbation and can give rise to instability.

The Lorentz force acts like an external, electrostatic

driving field in creating denslty perturbations. If the beat
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{requency and wavenumber nearly satisfy the Bohm-Gross dispersion law
for electiron plasma waves, l’l2 » mez(l. + 3<2Ae2) where W, 18 the
electron plasma frequency and Ae the electron Dabye length, then
Raman scettering can occur. If [a] < w; where w; is the ion plasma
frequency, both the ions and the electrons will respond to the Lorentz
force. Then Brillouin scattering and filamentation can occur. In
any case the Lorentz force depends bilinearly on the amplitudes of
the incident and scattered radiation. The current producing the
scattered radiation depends in turn on the amplitudes of the density
perturbation and again on the electromegnetic pump. Thus the
gcattered 1ight is shifted up and down from the pump frequency and
wavenumber by the beat frequency and wavenumber, (wo + R,k + k)
and (v - n*,l_:o - 5"‘ ), respectively and can grow exponentially.
If the depletion of the electromagnetic pump wave 1s 1gnored, then the
pump intensity becomes a parameter governing the "parametric"
instability.

No attempt at this point has been made to describe the
influence on the scattering of the relative polarization suad scatter-
ing angle of the scattered radiation and the pump. For particular
scattering configurations, e.g., forward, both scattered electro-
magnetic waves can grow exponentially with comparable amplitudes.n'lz
The incident laser light appears to develop a modul. ‘ion with
If] < w; and can eventually bresk up into many filaments or self-
focus, 13+34:3:33 por g w, ond K% (ue/c)fo multiple Raman
scatterings from a single electron plasma wave can m:cur.;u"35 It
instead rsdiation is cbserved to backscatter, it is sufficient to

convider only the scattered radlation shifted down by the bdeat
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frequency and wavenumber and describe 1t as stimulated Brillouin or
Raman backscatter.n'lz

Several authors have constructed general formalisms describing
parametric instabilities.n’lz'%'y The most complete work on the
normal mode structure is due to Drake, Kaw, Lee, Schmidt, Liu, and
Rasenbluth,lz whose analysis is three dimensional end nonrelativistic,
and assumes the plasma to be wniform, isotrople, and unmagnetized.

We adopt an approach similar to theirs here, but further simplify
by considering only the scattering of parallel, linearly polarized
1ight in two dimensions. Commer.ts on the generalization of this
formalism to three dimensions are found in Seetion III.D.

We formulate our description of the induced scattering of
radiation by density perturbations in terms of camplex vector
potentials. We assume that all radlaticn is linearly polarized in
the y direction and propagates in the x-z plane (see Fig. 2).

The real vector potential 1s written as & sum over the modes

present, omitting the multiplicative factor ¥,

Alr,t) = A exp(ikyer - lugt) + A exp[i(go - 5*)-5 - (uy - Q*)t]

s &, expfilky + €)o7 - Luy + AN] v e . (6)

In deriving the dispersion relations describing the verious parametric
instabilities that can arise here, we sssume that |4 [,|4 | << |4
and AO ie held constant, The vector potentisl represented in Eq.
{6) includes the pump wave end the radiation shifted up and down by
the beat (requency and wavenumber. If further scatiering occurs to

produce radiation at frequencies and wavenumbers (uo - 29*,1_50 - 25*)
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and (uo + zn,l_:o + 2¢) for example, then these modes must be explicitly
included in Eq.”( 6). The beat wavenumber x 1ig restricted to lie
in the x-z plane.

An examination of the equation of motion for the charges
quivering in the electromagnetic fields deseribed in Eq. (6) allows
the identification of an effective external potential. The equation
of motion for a charged particle of specles s in the field of an
electromagnetic wave and in an electrostatic field with potential

#(r,t) 1s given in the nonrelativistic limit by
mav/at = ey x [vx A§]/c - e/t - e . (7)

We solve Eq. (7) approximately, expanding in powers of the
emall parameter eBAo/mch. The Lorentz force term can be rewritten
1. approximate form as the gradient of an effective potential. From
the conservation of cancnical momentum in the y direction (due to
translational invariance), we have v.§ = —esA/msc + constant =
iv"s + constant. For a cold plasma the constant can be set equal to
gero for all charges, and the component of the Lorentz force term

in the scattering plane becomes
[63(3-9)5;" (v x A.v“)/c] = -erAZ/ZchZ . (s)

For a warm plasme canonical y momentum is still conserved.
However, the y velocities are given by !oﬁ = 'w?s + v!', where v;’
is the velocity of charge described by :n u:bitrary thermal distribu-
tion of velocities in the absence of external fields. The thermal

corrections chat result will be discussed when the nonlineasr current

is evaluated.
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From Eq. (8) we can define the effective or ponderomotive
poten’t.i.all'o'l’2 driving longitudinal electron density perturbaticns:

0 (zt) = efatr,0))/me? (9

The quiver velocity and the effective potential for the ions are

both smaller by the mass ratio me/mii and are ignored, \‘ri x ¢oi - 0.
The density perturbation is described by the self-consistent

Coulomb potential ¢(r,t) = & exp{ix-r - 12t) + c.c. We define the

total potential &5( r,t) as the sum of the Coulomb potentiel ¢

and the ponderomotive potentiasl ¢05 due to the Lorentz force

acecording to @s(s,t) H ¢(g,t) * ¢°s(:_'.t). The total and the ponderc-

motive potentials are represented with the same dominant phase

dependence as the Coulomb potential. Poisson's equation becomes
3 = amc? Ze n (10)
ss '
8

where t‘ia ig the amplitude of the number density for species s,
with phage dependence exp(ik.r - ifit) factored out. We introduce
the linear susceptibilities, Xsm'E) H -l.mc'zeaﬁa/'.bs, and the linear
dlelectric function, e(fl,x) =1+ r Xg{®k), in order to replace
#, in Eq. (10) by a linear ﬁmctio; of .

From Bqg. (10) and the definitions of the linear susceptibili-

ties, we obtain

R R N E A C SR

- oft + x (0,0 Az(n,5}42meoze(n.5)] , (11)
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where by A% Q,c) we mean the sum over all ccefficisnts of terms
in Aa varying with phase ex_?(iE._x_' - int). The linear electron
susceptibility describes the accompanying electron charge density

perturbetion:

ef, = X (1K) C¥Eur = Px (14 Xi)/eln,.c ea?(2,¢)/(8m o%)

(12}

The wave equation for the vector potential in Coulomb gauge ic
(v° - c-zatz)A S (13)

To evaluate the transverse current J( ;,1:) we adopt the simple fluid

model that the electromagnetic fields induce a linear elzetron

current and a lowest order nonlinear contribu‘t‘.icon]']"]'2

Xr,t) = ei’[no + {ﬁe exp(in_c-g - igt) + c.c.}]

&2
- o ing ¢+ ﬁe exp(ik-r - iQt) + c.c.

C
e

where 1, is the unperturbed number density. Equation (]?) is
employed to construct the perturbed eleciron number density. The
ion contribution to the current is down by the mass retlo and is
consequently” ignored.

A treatment including finite temperatuvre effects in tte
ponderomotlve potential and the nonlinear current, based on, for
example, an anclytic solution of the Vlasov-Poisson-wave equation
system expanding systematically in powers of Ier/meczl << 1,

shows that thermal correctionsj 1 arise of order Te/mecz, wnere Te
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18 the electron temperature. For plasmas with nonrelativistic
thermal velocities Yy H (Ts/ms )i << ¢, these ecrrections can be
safely ignored. This is not to say that the plaspa Is assumed cold
when the linear susceptibllities and the dielectric response are
evalueted; tempersture effects here can be very important.

We define TI(f,x) = {xe(l * X )/E]Q,K and postulate a
general kinetic deseription in order to evall—mte the linear plasma
response, say the Vliasov or Fokker-Planck equations. We can now
systematically manipulate Eqs. (12)and {13)to derive coupled mode
equations. We shall examine all couplings that lead to aonlinear
contributions to the current of order |Ao|3 .

First of all, for the nonlinear correction to the dispersion
relation for the pump wave due to the Lorentz force with phase
dependence exp(f&lso.g - iZmot), we obtain from Eqs. (12), (13),
and (14), considering only the terms with phase dependence
exp(ik .r - iwgt) in Eq. {13),

g2 = wgl e xffne 2 2ug, 2k Je?lag [Pm %4 L (1s)
The amplitude dependence of the electromagnetic wave dispersion
relation 1s, however, of the same order as relativistic effects. If
we include both the Lorentz force and relatlivity following Arons and
lhx3 1 and if we evaluate the susceptibilities in the high freauency
Umlt (20 > wyr wyfky > Vo) X{wk) = -wezlm‘? and x, = O,

we obtain

m02 . kozcz . “’e2 1. 4e2|A0l2(mec2)'2[3/4 _ k°2c2/(4w02 _ wez)] .
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We henceforth assume that the frequency wy and wavenumber 1_:0 of
the pump satisfy the nonlinear dispersiocn relation. In this way the
coupling to the high frequency density disturbance with phase depen-
dence exp(ial_co-g - :I.Zmot) has been absorbed into a nonlinear
frequency shift.

For the scattered radiation, we lock for couplings which
involve large I(Q, 5) and recall 1tz definition and the lineariz-
tim |A+i, ]A_l << IAOI . In addition to the density oscillation at
frequency 2m° there are density oseillations driven by the Lorentz
force at frequencies 2w0 +Q,0 Zwo - 9*, and 9.43 For the low
frequency beat (f), the near vanishing of €(R,k) at a rescnance,
which appears in the denominator of T(,x), characterizes the
scaitering by a longltudinal normal mcde. i £ = Keo where
ey = (Te/mi )é, then stimulated Brillouin scattering is sald to occur.

If Re Q= (wez + 3K2ve2)§ then stimulaied Raman scattering occurs.

The linear susea: ibilities Xg? from which ¢ and T are constructed,

are evaluated in .. uppendix from a Vlasov model for a Maxwelliai.
plasma, For high frequencies >> wg and phase velocltles » vy
I' 18 real. Consequently the couplings 2“’0 + 0 and Zmo - :’1* lead
to nonlinear frequency shifts which are of the same order as described
in Eq. (15), but only when the parametric instability enters the
nanlinear regime, i.e., {4.],]4_] - 6(1%1)_31,43

If we substitute Eq. (14) into Eq. (13) and use Egs. (11)

and (12), we sbtain
DAt = XAt agl? + a0 TR me? (160)

and
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D4, = -%(a,ia12 + ala2)EePra, e m 2 (160)

+ o+
where D, = D(m0 t ik, + x) = zZﬂwo - 2§ooscz + vczcz, end
Nw,k) = we2 + k2c2 - w2. We recognize Dw,k) = 0 as the linear
dispersion relation for an electromagnetic wave. Thus D: are
measures of the mismatch of the scattered waves A, and A_ from
their linear dispersion relations. In obtaining Eqs.(16), the high
frequency couplings at 2w°, 2w0 + R, and Zwo - n* are ignored,
since [1(9,6)| >> [T(2u, + 2,2k + x)], [M(2w) - 0, 2k - "),
|r( 2w0,21_<o)| = wezll.woz). These couplings lead to nonlinear
frequency shifts and not to ir.stability.43

Modulational instability is described by the eross~coupling

and sirultaneous growth of A, end A with comparable amplitudes
in Eqs. (16). Brillouln or Raman scattering is said to occur when
A_ grows with smplitude much larger than A, . The scattering of light
into two plasmons at the quarter-critical point (wo = 2we )12’44’45

and the parametric decay of light at the critical surface

("’O = me) 24 into an electron plasma wave and an ion acoustic wave,
or into two electron plasma waves and a purely growing ion density
perturbation, have been omitted from our description. This is
because we demanded that the incident light scatter into another
transverse wave and an electron plasma wave, i.e., wo > Zme, or
into another transverse wave and an ion wave, 1i.e., W >w e

To gilmplify the notation we. introduce the dimensionless

amplitudes aOE 0/(mec‘?) and a,,a_ simllarly. The maximum

transverse quiver velocity ?0 in the electric field of the incident
electromagnetic wave is determined by 'V'.'oz/cz = l.ao2 ( taking ag

to be real arbitrarily). We define u? s k%3 2N(R,)/4, which
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meagsures the coupling strength in units of frequency squared.

Fquations (16) can be rewritten

(17a)

“
o

[D_ - uZ]a: - u:a +

(17)

[}
o
.

[D+ - uz]a+ - uza:

Setting the determinant of the coefficients equal to zero, the general

dispersion relation describing modulation, induced Thomson scattering,

and stimulated Brillouin and Raman scattering is obtained:
p,D_- (D, + D W =
,D_ - (D,  W© = 0 . (18)

For stimulated Raman and Brillouin scattering, [D_| << |p |
and |s,| 1is consequently small compared to |a_|, so that Egs. (17)

can be reduced to
D -y = 0 . (19)

Equations {18) and (19) are implicit dispersion relations describing
the parametric instability of the stimulated scattering of light in
an unmagnetized, uniform plasma. We shall make use of various

agpects of this formalism in the subsequent calculations.

II. BEAT HEATING OF A PLASMA
A. Introduction to the Coupling of Transverse Waves
to Electron Plasma Waves
in this section we consider the rescnant interaction of two
lasers whoge difference frequency § and wavemumber K nearly
satisfy the linear dispersion relation for an electron plasma wave
2 2 2
e

2N = W + Jnczv This process 1s an example of stimulated Raman
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scattering. In as much as we begin with two electromagnetic waves of
frequency w, end w (mo > ul), corresponding to the vector poten-
tials with amplitudes A, and A in K. (6), we are not looking at
an example of parametric instability and must treat 4 and A_
equally. The three-wave interaction in this 1imit is called beat
heatinggl' or optical 111:1.;1::1'.1'1.9,'.1’6'5o The mechanism for the coupling of
the two high frequency waves (mo,ml > me) with the electron plasma
wave 1s, however, the same as for the paremetric instability of Raman
scattering and 1= described In the Introduction, Section I.C.

We are motivated to study this process by the fact that it
affords the opportunity to couple the very intense energy at high
frequency in lasers to lower frequency plasme modes where the energy
might be absorbed as heat. An important consideration that determines
the upper limit on the efficiency of this process is the fact that a
heating process meking use of three-wave interactions is subject to the
Manley-Rowe conditions Eqs. (5). If R 1s the relative efficlency of
the action transfer, then no more than the relative amount of energy
Rme/mo can be ultimately ebsorbed by the plasma.

The resonant interaction between two transverse waves snd one
longitudinal wave or mode for the purpose of plasma heating or as a di-
sgnostic has been Investigated by many. Kroll, Ron, and Rostoker (1964 )
first proposed opiical mixing as a diagnostic tool for determining
plasma density and calculated the enhanced scattering cross section due
to the induced density per*l',u:rba*l::l.on.l’6 Wolff (1971) theoretically stu-
died Raman scattering in semlconductors using cold fluid equations and
the conservation of transverse canonical momentum to formulate neatly

tae nonlinear density perturbation and the nonlinear transverse cu.rrent?

Wolff found that the scattering instsbllity could be saturated by a
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nonlinear Doppler shift in the electron plasmm wave produced by an
induced longitudinal drift.

James and Thompson (1967) and Capjack and James (1970)
applied the principle of optical mixing to the theoretical study of
the heating of ions in magnetized plasma by beating high frequency
transverse waves at the ion cyclotron resunance” or by mixing
Whistler waves at elther the ion cyclotror resonance or in the regime
of induced scattering by the icme."'s They found a marked sensitivity
of the resonant process to detuning influences: finite pump band-
width, variation in the magnetic field, and plasma inhomogeneity.
Because of the small ratio of the ion cyclotron frequency to the
pump frequencies, the ultimate efficlercy of these schemes suffers
greatly. Weyl (1970) considered optical mixing for diagnostie
applicatlon in cold, underdense, magnetized plasma at the cold electran
plasma frequency and the upper hybrid frequency."’9 Weyl further exam-
ined the effects of finite pump bandwidth and plasme inhomogeneity to
first approximation. Stansfield, Nodwell,.and Meyer (1971) mixed two
dye laser beamsatan angle of 45° in a plasma jet to observe the resonam
density fluctuation enhancement when the beat wave resonantly exclted
an electron plasma wave.5 0 In all the foregoing studies a low fre-
quency beat wave is driven by two high frequency waves in a uniform
plasma. If a magnetic field is present, it also is assumed uniform.

The physics of beat heating and parametric instability in
general in a nonuniform plasma 1s significantly different from the
case of uniform plasma. Three of the more significant papers
diecussing parametric instabilities in a nonuniform plasma are by
Perkins and Flick (1971 )23 and by Rosenbluth, Liu, and White
(1972).%1+%? Rogenbluth and Liu (1972) studled beat heating in a
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bosogeneous plasta considering the case where the beat frequency
equals twice the cold electron plesma l‘rcqucney.” They also consider
beat heating in a warm, inhomogensous plasma where the difference
frequency somewhere equals the Bohz-Gross frequency. However, in both
cases the high frequency transverss wvaves are assumed to have constant
amplitude. Bsaudry and Martineau (1973) extended Rosenbluth and Liu's
calculations to include collisional dissipation in the plasma wave.’”
Strel'tsov (1973) calculated the parametric amplification of the decay
products for Raman backscatter in & very sharp density gradicat
assuning the higher frequency transverse wave to have fixed mnplit.uc!e.55
Fuchs, Neufeld, Teichman, and Engelhardt (1973) studied beat
heating in a nonuniforz medium calculating the self-consistent ampli-
tudes of the high frequency pu.llpe.f'6 Their results for the dependence
of the action transfer upon pump strength, input ratio, and density
scale length agree with Ref. 59. However, Fuchs et al. erraneously
infer that the resonance region i1s proportional to the wavelength of
the plasma wave rather than the acale length of the plasma. Schmidt
(1973) described the excitation of eleciron orion waves due to the
beating of opposed transverse waves in homogeneous plasma including
the nonlinear electromagnetic frequency shifts due to the ponderomotive
force but neglecting the comparable shift due to relet:lvity.” He
obgerved that in order to deposit energy into the low frequency,
longitudinal wave, there must be a concomitant energy transfer from
the higher frequency transverse wave to the lower. Beaudry (1974)
investigated beat heating in the 1imit thet convection dominates
dissipation for an inhomogeneous medium finding agreement with Ref’. 59
which established that ection transfer wag insensitive to the details
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of the dissipation mechanism, be it Landau damping, collisions, or
ccmvu:'l’.:lcm.’8

In the remeining sections in Part II we will review in detail
and extend the results of Kaufman, Cohen, Watson, Mostrom, Nicholson,
Max, and Langdon, in chronological order Refs. 34, 59, 60, and 43. The
general aim of those papers 1s to consider the interaction of transverse
waves with longitudinal electron plasma waves in their linear regimes.
A1l wave amplitudes are treated equally. The best heating of two
electromagnetic pump waves propageting in opposed and parallel
directions in uniform plasma is examined in Refs. 60 and 34 respec-
tively. Beat heating of opposed lasers in a nonuniform plasma is
studied anslytically and in simulation in Refs. 59 and 43. In Section
I1.C we extend the study of beat heating of opposed lasers to the
regime of nonlinear electron waves. Our detailed examination of beat
heating begins with a review of the electromignetic code43 introduced
to study beat heating.

B. Electromagnetic Simulation Code

There 1s s considerable literature concerning electromagnetic
codes.61 Most algorithms for solution of Maxwell's equations require
solving a current-driven wave equation for the vector potential. In
our code, we solve for the electromagnetic fields explicitly by
integrating Maxwell's equations along their characteristics. Dawson
and Langdon62 first used thls method in 1966.

Charged particles are represented by clouds of infinite
aross-sectional erea in the plane transverse to the grid., In the one
dimension in which spatial variations are followed and particle posi-
tions are assigned, particles have finite-size. Charge densitles are

calculated by linear interpolation according. to the cloud-in-cell
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mm!el.é'3 In this same dimension, designated "longitudinal', there are
components of particle velocity and electric field, and all wave
proprgation occurs. The electromagnetic waves are linearly polarized
in the direction of the single transverse velocity component (see
Fig. 2). The self-consistent and external magnetic fields lie in the
transverse plane and are perpandicular to the polarization direction.
The equations of motion are relativistic. Thure are versions of the
code for which the plasma 1s assumed periodic or, alternatively,
finite.

For the particular configuration we describe (Fig. 3), the

two Maxwell curl equations take the form:

-3B_fox - o™ a8, /ot

lmJY/c

]
o
.

-1
BE’/ax +c aleat
By adding end subtracting these equatlons, we obtain

{o/3x) [Ey E3 Bz] + e‘l(a/at) [Ey + Bz] = ¥ 41:Jy/c . (20)

If we define the right- and left-going eleciromagnetic field quentities

respectively, as F, = Ey 2 Bz , the two Maxwell equations become

[(arox) £ T a/at)] R, o= Famse . (21)

Fquation (21) is integrated along the vacuum characteristics

x ¥ ¢t = const., the current Jy being given by the particle posi-
tions and velocities, Gridpoints in the space~time mesh are linked by
the vacuum characteristics. Then Ax/At = ¢, end there is no Courent

condition in the usual sense. A standard Courant condition for the
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stability of the finite-diffcirsnced wave equation is Ax/At 2 ¢
where Ax and At are otherwise independent. In our case
Ax = cAt, and stakility and accuracy depend only on how small At is.

Spurious numerical dispersion i: minimized because we solve
explicitly for the electromagnetic fields and introduce some smoothing
in caleulating the transverse current (Fig. 4). Transverse currents
J’; and J; are calculated fram the velocities at half time-step
intervels and charge positions at whole time-step intervals and then
averaged along the vacuum characteristics to obtain Jy = ( J; + J; ye.
Consequently, if we treat the particle motion relativistically there
ghould be no numerical Cerenkov inatability.“ Furthermore, the
parameters for which light waves in a drifting plasma can become
unstable, due to finite dif!‘erenc:lﬁg, are unphysical and can easily
be avoided #ith a reasonable choice of weAt. Only for weAt ~ 0(1)
does numerical instability occur for the largest wavenumbers character-
istic of the grid, i.e., 2n/Ax; and saturation of the instability
occeurs at low levels of the associated field amplitude.

The differential equations which the code solves can be
sumarized as follows: the equations for the fields, given the
sources, 1.e., charge density and current, are Eq. {21) and the

Poisson equa*ion
2 2 _
3“9/8x° = 4ne(n - no) (22)

where o, is the uniform neutralizing charge density. Electrons have
charge e. We aasume a single species here (with fixed neutralizing
background ), but generally the code deals with two. The equations

for the particle and current densitles (before linear interpolation)

are
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n(x) = z &x - 2*)
1

(23)
J'y(x) = z ev‘vi x - xi) .
i
The equation of moiton for the particles is
(d/dt)[mg(l-v/c Y ] = eE+yxB/) . (24)

The closed set of equations can be integrated forward in time
leap-frog style using a differencing scheme centered in space and time
(Fig. 4). The equation of motion (24) is integrated Corward in time
using e hybrid, fast half-acceleration and rotetion method.65 Becauge
we are interested in the Fourier trensform of the electrostetic
potential, we solve Poisson's equetion by means of fast Fourier
transforms. The differences between the bounded and periodic versions
of the code appear in the boundary conditions on the potential ¢, the
particles, and the electrostatic and electromagnetic fields at the
gsystem walls., Our simulation of a finite plasma assumes that the
walls are radiation transparent and.particle reflecting. In the
bounded version, the longitudinal field E:l vanishes at the system
walls. The magnetostatic, vacuum field contribution to Bz is an
arbitrary constant value throughoui, in either version of the code. We
have found the code quite inexper.sive to use; typical computer experi-
ments with 4000 particles have required 0.25 sec of central processing

unit time per time-step on the CDC 7600 atthe Lawrence Berkeley
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Laboratory (this includes all operations: field solving, particle
pushing, and diagnostics).
C. Beat Heating of Opposed Lasers

We examine here the nonlinear interaction of two oppositely
propagating, linearly polarized electromagnetic waves resonantly
exciting an electron plasme wave in an inhomogeneous plasme. Ye
review the work in our publications, Refs. 59 and 43 in Section II.C.1
and inzclude Ref. 60 in Section II.C.2. These papers consider primarily
the plasma response in the small amplitude limit. In Section II.C.3
we integrate in space and time the three linearized coupled-mode
equations Eqs. (4) end compare the results with those in the preceding
gection and with the Jiteratu.re.zo In the remaining sectlons of this
chapter nonlinear beat-wave effects are examined. A detailed study
of the resonant excitation of nonlinear plasmas oscillations appears in
Section II.C.5. Finally the back-reaction of electron wave trapping

on beat heating is considered in Section II.C.6.

1. Theory of Beat Heating for Small Amplitude Electron Pla.ma Waves

The theory of beat heating has been discussed at some length
in the literature, Refs. 34, 43, 53, 57-5C. For the sake of complete-
ness we include the derivation due mostly to Kaufman that appears in
Ref. 43, and for convenience we adopt the same notation. We shall,
however, make much use of the formalism presented in Section I.C.

We begin by recalling that the invarilance of the canonical y momentum
permits the identification of the electron transverse oscillation
velocity: we define u(x,t) = v = -eA(x,t)/mec. We assume that for
beat heating the ions form an immobile, charge neutralizing background

end drop the subscripts denoting electrons.
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We adopt & fluid model for the transverse current
Js ﬁ[no(!.) . Gn(E,t)], Eq. (14) generalized to a nenuniform medium.
Then use of the wave equation EQ.(13) for the vectdr potential aad

substitution for A(x,t) in terms of u(x,t) ylelds

[3,,2 * c».z(:_:) - csz] ux,t) = -wez(o)['Sn(;,t)/no(O)] u(x,t) .
(25)
To make the notation less cumberacme we adopt the ccnvention that
w, = w,(0) and n, = o{0). Corrections to the model for the
current and thus to Eq. (25) are of relative order u;"/c2 and
"02/02.3 1 We utilize a WKB representation for the transverse waves,
and express the vector potential or in this case the transverse

oseillation velocity as
x

u(x,t) = uo(_x_.t) exp -imot + iI- 50(5')-115’] + c.c.

p 4
+ u,(x,t) exp[-iwlt + ij gl(x')-dx’] + c.c. (26)

where Yy and u, are the slowly varying complex transverse velocity
amplitudes of the two electromagnetic waves. The wavenumbers of the
two transverse waves satisfy the local dispersion relatioms
1,25 = fu,? - 0 X0)]e2

The density perturbation is excited by the low frequency beat
of the two high frequency waves via the Lorentz force on the electrons.

The density perturbation is not assumed small:

X

én(x,t) = fi(x,t) expf-i0t + iJ’ 5(;')-dg'] + c.c. (27)
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where 0 2w, - w 1s the beat frequency, and x S ky -k, 18 the
local beat wavenumber, restricted to lie In the x-z plane perpendicu-
lar to the transverse electric fleld polarizations. The electran
plesma wave is resonantly excited if the beat frequency and wavenumber
nearly satisfy the Bohm-Gross linear dispersion relation,
2 2 2 2

e

] = w, + 3k

We can ignore the density perturbations at the sum frequencies
(mo *+ w, 2y, and z..,l) for the following reason. Since they
represent high frequency, high phase welocity, nonrescnant perturba-
tions, they can be only collisionally damped and are not normal modes.
However, if we consistently ignore collisional loss in the high
frequency perturbations, the coupling constent T = xe(l * X )e
15 real and small, T = 3(—ue2/4w02). Tten the density perturbations
at these sum frequencies simply couple back into the electromagnetic
waves to produce nonlinear frequency shifts as in Eq. (15). Further
consideration of these nonlinear frequency shitts Is deferred untii
later in the section.

We assume that fi(x,t) 1s slowly varying on the beat fre-
quencv and heat wavenumber time and space scales respectively. If we
substitute Eqs.(26) and (27) into Eq. (25) and keep only the resonant,
nonlinear coupling terms, i.e., only terms with slow temporal and

spatial variation, we cbtain

(3, * coV* go-vmkcé)uo x,t) -(1/2)(me2/ub)(ﬁ/no)u1

(28)

(3, + e + gy ovank huy(x,t) = (172X, %0 &gy
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Equations (28) describe the mode coupling of the transverse
wave arplitudes without any assumption on the amplitude of t:.. densitiy
perturbation H. The energy density of each transverse wave is given
=, =1 2 2 2 2 2 2
by W, 5w [a(m e)/%](wl/c) lAzl /4w = wy lAzl /2T
= (m/e )zwlzlullz/z'rr where €{w) =1 - mez/mz.:ﬂ“l"s9 The iransverse
wave sctions Wzml-l are then proportional to mllnzlz. Multiplying
Egqs. (28) by “’O“E and “I“I and thern adding the complex con-
Jugates of these e~uations, we obtain by analogy to Eq. {5) the conser-

vation law for transverse action (Manley-Rowe or photon conservation):

aluglugl? + wlwl?) + 9-leguplugl® + ejul1?) = 0. (29)

The Manley-Rowe relation is evidently quite generally true: it
requires only that the WKB analysis be valid. No assumption has been
made on the size of the density perturbation. We have assumed that
there is no collisionsl demping of the electromagnetic waves.
Transverse action Is ther..ore conserved for uniform or weakly
nonuniform plasma, and for a linear or nonlinear density perturba-
1’.i.on.26'29 The conservation of sction implies that transverse energy
is not conserved. A4s action is transferred from the higher frequency
wave (ub) to the lower frequency one (ml), the energy difference, of
relative size Q/“‘O’ 1s deposited in the plasma as a coherent oscilla-
tion or as heat. If the energy difference is absorbed as heat, the
energy transfer 1s irreversible. If a coherent oscillation persists,
however, the energy transfer can be reversed, and the transition
W) *uy can occur. This is observed in simulations and predicted
theoretically when the beat wave 1s small in amplitude and weaXly

demped, and when the beat w e Is large enough In amplitude to tra,

electrons.
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The rate of action transfer is, from Eqs.(28), gliven by
2 2 _ 2 * . *
uplupl™ « Vegguplupl™ = —o” Ilugui/m) . (30)

On using the Poisson equation for the density and scalar potential

amplitudes, ,<2$ = gmhe, the right side of Eq. (30) becomes
-2 1y l(ed"/m)] . (1)

The potential ¢ 13 the longitudinel rasponse to the ponderomotive
potential enaerg,')""()""2 Wxt) = ‘( % uru2 >( x,t) of the electrons;
the ergular brackets represent an average over the rapid temporal
variation at gty ylelding a beat variation

Wx,t) = Wx,t) exp(-10t + iIE'df) + ec.c., Rg,t) = muotq. From
Eqs. (9), (10}, and {11) we obtain for the linear longitudinel response

Hxt) = (1 + xi)e:'l% -8 = (el - 1%, = (el - 1)muou§/e

(32)
where e 18 the linear dielectric function, eveluated at Q,k. The
pomderomotive potential energy is evidently related to the effective,
external potential introduced iIn Eq. {9) by the expression b= 650'

If the space-time variation of (uo,ul) is not sufficiently
slow we should instead use Q + 13; and K - iV as the arguments of
€. To illu.‘:rate thils we undertake the followlng construction.
Suppose the electron plasma wave to be driven at frequency 9 and to
exhibit dissipation rate v. Define the real, linear normal mode
frequency f by BRe e(ﬂL,s) = 0. Then expanding sbout & we

obtain:
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e(n + 13,6 - 1V) = Re (@ ,x) + 1Im &(R;,%)

+efa+ 10, » Gua)1y - g ] -

Y

2
= (ZﬂL/mez)[ﬂ- o +i(a, +ve 3555; v ]

(33)
where ¢ = 3Re e/3w 1is evaluated at Q‘L and we have made use of
Re “:(Q‘L'E) =0, y=im ¢/, and for electron plasma waves
€= ZQL/“’eZ and /3% = 35ve2/9L' This construction requires chat
o - o+ :l[at +y+ js(vez/nL)-v]l <«<uw, to Justify tnméation of
the Taylor serles where shown in Eq. (33). In Section II.C.5 2
similar expansion is examined in m detall for the case of a non-
linear dielectric function where certaln of the nonlinear aspects
may be incorporated by modifying the form of ¢, 8o that ¢ depends
on ¢ implicitly.

In the case that Eq. (33) is applicable, i.e., if spatial and
temporal variations in the longitudional response are appreciable,
then the formulation making use of Eq. (32) is not the most expedient.
The three-wave analysis in Sectlon 1I.C.3 becomes preferable. The
opposite limit, where Eq. (32) is applicable, defines what we mean
by the "quasi-steady" longitudinal response.

We now usz Egs. (32) and(31) to express the right side of

£q.(30) as

Pluglhu1? m e a0 (34)
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¥e observe thet the action transfer depends upon the beat wavenumber
as xz, if the variation of Im e'l_(n,s) with « is neglec-ted. By
orienting the lasers oppositely to one another (k = ko + kl)' the
beat wavenumber and hence the coupling are maximized. All wave propa-
gation then occurs in one dimension, say x (see Fig. 5).

For a uniform medium, the nonlinear equations for Iuolz(x,t)
and [ullz(x,t) can be solved analytically, as discussed in Ref. 60
included here as Section II.C.2. Numerical solution of the action
transfer Equations (29) and (30) for the case of a nonuniform medium
using (31) is also discussed in Section II.C.2. For & nonuniform
medium, we limit our analytic study here to the steady state

(at“O =3y = 0), whence Eqs. (29) and (30) become

(a/ax)iglugl?) = (a/an)iw () = Pe2(uglPly | m et
(35)
where e(Q,x; x) has an explicit x variation through the plasms
parameters: density, temperature, possibly non-Maxwellian electron
distribution.
In order to understand Eq. (35), we introduce the mction flux
density, which iz merely the action density J 2 multiplied by the
group velocity 73 = _]52,"2/“’1,' We express the action flux density in

,2. Then Eq.
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natursl units as S, = (e/me™)" o W /u, = (k,/2m)|u,/c
(35) reads as in Eq. (3) of Ref. 59: dS,/dx = dS,/dx = 85,5,In € (x),
with 8= 2|c2/k0k1 =8 for @ <<uy Upon integrating over x, we
found the scrlution

b
Azn(so/sl) = &n 5[ dx Im e X(x) , (36)

a
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where Af S f{x=a)-f(x=b); a and b are any two x planes
(such as the boundaries of the plasma), and S =S, -5, is the
constant action density flux.

In the 1imit of weak damping (|Im d = je} << 1), the x
integial can be carried out exac'l'.]y.59 We write Im e-l(x) = -mS[e'(x)],

where €' = Re £. The integral on the right-hand side of Eq. (36) is

then
b
-1 _ R O R
dx Im ¢ (x) = -mw|ae'/ax g -nL_ , (37)
£'=0 n
a
defining the effective density scale length Ln' In this 1limit, the

action trransfer of Eq. (35) takes place over the infinitesimal region
where €'(Q,x; x) = 0, i.e., at that position x where the beat
frequency Q matches the Bohm-Gross frequency at the beat wavenumber
('IL(K; x).

More realistically with finite ", we have

1

me™ = -E"/('E'(x)lz + Ie"lz,. It cen be shown that Im €™~ has a

half-width of order E"Ln = 2VLn/we (see Fig. 5), where V is the
total damping rate of a Langmuir oscillation. Equation (37) remeins
unaltered, however, in the 1limit that the half-width is small compared
to the plasma length. In order that the WKB representation be valid,
the transfer zone width \JLn/we must exceed the wavelengths, i.e.,
(v/ug) >> (kELn)'l. {Typical parameters for a 8-pinch, n, - 10%7 em™3,
Te ~ 100 eV, me/wo ~ 0.1, and Ln ~ 10 cm, satisfy this inequality,
since Vv/u, 2 1072 while (koLn)'l ~ 1074, For our simulations the
resonance zone wes of order ten wavelengths 1ong.] If the damping is
not weak (v ~ W ), then e(x) may not be considered small. However,
the integration in Eq. (37) can still be performed for known e(x).

Since strong damping implies Im el = A1), we obtain in place of (37)
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Idxlme-l(x) = -g() , (38)

where L is the length of the plasma. In a real plasma, when

L~ G(Ln), we have the important result that the action transfer is,
in order of magnitude, the same for strong as for weak damping of
the longitudinal response. This is true provided Ie"Lnl << L, other-
wise the action transfer, proporticnal to the integral in Eq. (38),

ie incompleie. Thus, for given «, the dependence on "Ae is weak;
and for kA o << 1, the dependence vaishes, since the integral is truly
independent ¢f v for the model of a linear gradient.

At this point we return to our earlier examination of the
nonresonant [Iel ~ d(l)] high-frequency density oscillations, which
give rise to nonlinear frequency shifts in the two electromagnetic
pumps. Arons and Male have derived the f{requency shift for a single,
linearly polarized electromagnetic wave: we recall from Section I.C
thelr result

mz = kzcz + mez 1- % (vy/c)z[l% - (m2 - mez)/(.l,m2 - mez)J ,

where v_ 1is the amplitude of the transverse electron velocity,

vy H eEy/(m). The fiequency shift due to relativity only is
- T36 w( mp/'m )z(vy/c )2, while that due to efy x Ez/e (the Lorentz or

"ponderomotive” force) is % m(mp/w)z( v y/<: )2((4)2 - mp2 ( 4m2 - mpz)
using Eq.(15). The ponderomotive frequency shift describes the effects
of density perturbations at the frequencies Zwo and 2w1. There 1s
an additional ponderomotive frequency shift due to the !y x §z

coupling at wy + wy.
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In the steady-state, there can be considerable spatial varia-
ticn of the amplitude of each of the electromagnetic waves., We can
nevertheless set an upper bound on the relative frequency ahifts, viz.
|dw/u] < c{% (we/w)z( vyin/c )2]. To estimate their effect on the
action transfer, they should be compared to the quentity
]e(x)]/lac'(x)/am]ﬂm 2 0.02 w, which represents both the linear
dissipation and the mismatch of the electvon plasma wave. Since that
quantity is more than an order of magnitude larger than the electro-
magnetic frequency shifts |Aw| < 0.001 we (for typicel simulations
wghg ~ &(5) and 2]v.|0/t:|in = 2|u1/c|j_n € 0.1), we have neglected
those shif4s inm E3. (35). An investigation of the nonlinear frequency
shift and dissipation of the drivenelectron plasme wave, and of their
influences upon beat heating., is considered in subsequent sections.

In 8 simulation model, for reasons of econuwy the slab
thickness L may be smaller than Ln’ and even smaller than the
resonancs width (\"/h!e )Ln. In that case appropriate corrections must
be made in comparing theory and simulation. A typical simulation for
beat heating when the density perturbatlons are linear is shown in
Fig. 6.

Insexting (37) into (36), we have the result (Eq. (5) of

Ref. 59) :

% B koLnluo/clfn = (1-R-p)? 2~n[(1 - R)Xp + R)/p] ,
()
aen implicit equation for the relative action transfer R = AS/Soin,
in terms of the input ratio p = slin/soin and the input amplitude
|u°|1n. (See Flg. 2 of Ref. 59 for a plot, also Fig. 7 here.) This

result is remarkable not only in its independence of the damping rate
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v (and thus of the temperature, the collision rate, and the damping
mechanism), but also in that its dependence on the power parameter
luolfn and the scale length I'n is only through their product.
To test relation (39), r set of simulation runs was made for
the case of equal input actlons (p = 1), corresponding to approxi-
mately maximum transfer for a given total power input. For the set
reported here, the power was kept sufficlently low that fhe longitud-
inal response could be treated as lineer. Tre dependence of action
transfer R on the product of scale length and input power is shomm
in Fig. 7; the simulations and the theory are seen to be in excellent
agreement. The action transfer was measured by averaging in time over
the decaying oscillations of the instantaneous action transfer rate,
which approaches a steady state. The error bars represent the
statistically welghted magnitudes of these oscillations.

To verify the theoretical prediction that the dependence on
scale lergth and input power is only through their product, three runs
were made, with differant scale lengths and powers, but constant
product. The actlon transfers (also shown in Fig. 7) were found to
agree, within statistical error.

The damping of the longltudinal response in these simulations
was due to resonany particles, i.e., Landau demping. With KAE chosen
between 0.30 and 0.45, the damping rate v lay between 1072 R
and 10-1 W, The v-irdependence of the action transfer was tested
12

by varying ncxe, holding kOLnIuo fixed. The simulations corrobor-

ated this independence.
We have thus used the electromagnetic simulation code to study

beat heating of a plasma in the linear regime of the driven density
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dilsturbance. Steady-state theory was found to be useful in under-
standing the actlon transfer and plasma heatirg for small amplitude
electron waves. There was good quantitative agreement beiween

simulation and theory.
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3. Three-wave Analysis of Beat Heating Coupled Mode Equations

This section will describe the three-wave analysis that becomes
necessary when in Eq. (32) the space~time variation of ¢ uo,ul) is
sufficient to demand the inclusion of space and time derivatives in €.
The arguments of the warm plasma & become § + 13 N and Kk - 1ax in
one dimensfon, Eq. (33). If we assume [€| << 1 and meke use of Eq.

(33), then instead of Eq. {32) we obtain

20,20 - g+ 100, ¢ v+ 3 i) = myulve
(40)

where nL 1s the Bohm-Cross frequency QLZ = wez + Jnczvez. Poigson's
equation allows us to replace § by I.‘mt-zeﬁ. Then Eqs. (28) and (40)
form a complete set of first order partial differential equations
deseribing the three-wave interaction.

In the 1imit that the temporal or spatial rate of action
transfer dominates dissipation and mismateh, then the three linearized
coupled mode equations in a homogeneous, underdense ( wy << wl.wo)

plasma can be written

(3, + egdy) ug(x,t) = B(EFhy

(3, - 03,) wixt) = -B(1§)%, (41)

(3, + zxvean'lax) 1§(x,t) = aug)

where B = Kze/( 2mwo) and a = muez/( 2el). Analytic solutions for

18-21

the coupled mode equations in this form have been found. Nozaki

and Taniuti obtain a special class of solutions corresponding to the
steady propagation of solitary pulses.zo The solutions for the three

waves are functions of only x - At where A is the constant
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propegation speed and is smplitude dependent. Nozaki and Taniuti
find solutions whose forms are hyperbolic secents for ul(x - At)
and ;(x - At), and hyperbolic tangent for uo(x - At) with only two
of the three amplitudes as free parameters. Sinece the system of
equations (41) in general posgesses un arbitrary initial configuraticn
uo(x,O), ul(x,o), and ¢(x,0), there is no guarantee that the inter-
action will alweys evolve into a solitary pulse or pulses (see Fig. 10
and discussion below).

To examine Nozekl and Teniuti's solitary pulses we have recast

Egs. (41) in the form

(Bt + Vlax)al --1.032033
(3t + Vzax)oa2 = -1;;31
(3, + V.2 )a, = -ia*a
t 3'x73 271
and set Vl = —V2 = V3 =1 arbitrarily. A right-going solitary pulse
solution is illustrated in Fig. 8, where we directly numerically
integrate the coupled mode equatlons. In performing the numerical
integration we employ the space-time characteristlcs of the linear,
partial differential operators to reduce the dif!ferent:lal operators
to ordinary, first derivatives which are straightforwardly finite-
differenced and integrated by a first order predictor-corrector
method.67 The steady propagation of pulses conforming to the solu-
tions of Nozeki and Taniuti is verified and pictured in Fig. 8 for
value of A = 1,01, '
If we consider perturbations to the solitary pulse solution

corresponding to an excess of energy in one or more of the three waves,
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a solitery pulse can evolve if normal convection can carry the excess
energy uway from the solitary pulse interaction region. In Fig. 9 the
initisl pulse profile for a, corresponds to ten times the solitery
pulse amplitude in Fig. 8. The excess energy is convected to the left
and out of the system. The residual propagates tc cthe right as part of
a éolitary pulse in & direction counter to normal convection resembling
the solitery pulse in Fig. 8. For the case of superposed, counter-
streaming (colliding ) solitary pulses with propagation velocities
nearly equal and opposite A = 11,0, no return to steady propagation
of solitary pulses is observed within the duration of the integration
(see Fig. 10). 1In fact lall and IaB] in Fig. 10 appear to fraguent
into three locellzed components.

In interpreting these numerical experiments we empbasize thut
in all cases the three-wave Interactions are initially localized; but,
while some of the wave ggglitude§ svre loecalized, others are not. The
pump wave is present everywhere baing proportional to tanh{x - Ait).

If there 1s steady propagation of the inter-.ticn as a solitary pulse,
then the interaction remains localized in the frame x - At = constant.

Zakharov and Manok v use the inverse scattering method to
construct a prescription for the general solution of Fq. (41) to
describe the resonant three-wave interaction of wave packets.21 They
construct the nec 3sary nonlinear operators in matrix form that render
Eq. (41) equivalent to the solutlion of linear integral and differential -
equations. For the case of three-wave decay certaln general classes

of solutions are discussed; however, for specific initial conditions no

explicit solutions are constructed in Ref. 21.
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Zakharov and Manokov claim that if the pump velocity Vl
satisfies either the condition Vj < Vl < vz or Vz < Vl < v3, then
the wave envelopes can siffer large changes in their shape snd incur
spectral broadening due to the nonlinear interaction {nonlinear
collizion of the three interacting wave packets ). However, no signifi-
oant energy exchange occurs asymptotically at t = «», They further
claim that if the pump velocity satiafies the condition ‘.f3 < V2 < Vl
and one considers collisions of wave packets # with a, where
initially (t = =) lall,[az[ >> la3]. then complete transfer can
occur subject to a threshold condition on the energy in the inter-
acting wave packets. If instead 8 colliies with 8y where
initially lall,|a3| >> Iazl or if e, colildes with e, where
initially |a2[,|a3[ >> [all, no final (t = =) redistribution of
energy results.

If we include finite dissipation in Eq. (41) and generalize

to a nonuniform medium, then following Rosenbln.ﬂ:hl""23 152 we obtain the

coupled equations Ll

(at e V]_a:‘)a1 = -:l.azaJ erp(-in'zz/z)
(a,c + v, - Vzax)az = -13;%' exp(ik'xZ/Z) (42)
(at *vg e VBax)aB = -ia;&l exp(i-c'xz/z) .

The unit of time has been scaled so that the characteristic growth
rate Yo of Reman backscatter instability in e uniform medium
(|al| > 152|""3] and k' =0) 1is given by
2 2 - 2
Yo = |2uD/c| Wty = la;|“. The complex emplitudes a,, a,, and 2,

correspond to Ugs Vg, and 3 respectively.
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The quentity ky(x) - k(x) - [02 - wez( x)]i/( B\rez)é is the
difference between the spat’ally dependert beat wavenumber k(x) =
ko(x) - kl(x) and the wavenumber kp( x) satisfying the local disper-
sion relation for a Langmuir wave: ,Qz = wez(x) + jkpz(x)vez. If we de-
fine k' = @) - o) - [a - o X ow, D hrtere 3 0
is the position of exact frequency and wavenumber matching, then the
quantity K'xz/? measures the spatially aependent phase mismatch of
the three-wave coupling, produced by the plasma nonuniformity. The
linear dissipation rates of the three waves are given by Vys Vs
~and v3 respectively. The group velocities are denocted by Vl, 5
and V3 which are all positive quantities, whose WKB variaticas are
ignored.

For initial conditions corresponding to | 92|,|33| << Iall,
integration of Eq. (42) verified the linear parametric backscatter
instability growth rate for a uniform plasma (k' = Q), which in our
units is Yo © Iall. For a nonuniform plasma assuming a linear density
profile (k' = constant), we obtain convective saturation with a net
amplification factor exp( 11702/ ]z'vlvzi) for the backscattered ampli-
tude provided negligible pump depletion occurs:

2,01 > exp(myp7|€V,V,])a,|. A detatled exanination of the
influence of plasma nonuniformity on paiametric instebility appears

in Ref. 22, In the limit of significant pump depletion, characteristic
reversible oseillations of energy from the decay products az,a3 to
the pump wave a, were observed. We shall refer to 'i;lﬁs phenomencn
as nonlinear oscillations.66

The numerical integration of the system of Eqs. (42) corres-

ponling to beat heating is shown in Flgs. 11 and 12, In both the warm
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and cold plasma cases we have set the input ratio equa? to unity,
feg] = lay] =1, and chosea [a,] = 0 inftfelly. InFig. 11 we
sssume a cold plasma with dissipation of the Langmulr wave assumed due
to Coulomb collisions. The group velocity for the Langmuir wave
vanighes, V3 = 0; and we ignore the dissipation of the high frequency
waves, v; =V, = 0. We select parameters vy = 0.2, V; =V, =1,
end «' = 0. The results (Fig. 11) are reminiscent of those pictured in
Fig. 1 of Section II.C.2, if we average over the nonlinear oscilla-
tions.

In our golutiors for beat heating 11 Sections II.C.l and
11.C.2, we assumed that the density perturbation could be expressed
in terms of the ponderomotive potential and the linear dielectric
function. Our integrations here retain the time derivaetive and, in
subsequent cases, the spatial rerivative in the equation for the
longitudinal response, Eq. (40). Numerical integrations of the coupled
mode equations, retaining 31: and 3x in the equations for all three
modes, Eq. (42), were performed with various dissipation rates. In
the 1imit of rather large dissipation, l\’3| >> lat 2n &, |V33x P.nﬂ,
the results of the integrations here conform with those in Section
IT.C.2. This regime of the nonlinear interaction corresponds to the
plasma wave being overdamped on thé slow, nonlinear time scale.
With increasing plasma wave dissipation, the nonlineer oscillations
diminish, and there is improved quantitative agreement with solutions
where the small ampiitude plasma wave 1s treated as being quasi-
steadily driven.

The results of the integration of Eq. (42) in the warm plasma
case are shown in Fig. 12 for paramcters Vl = V2 = 5, V.)l =1,

v, EV, = 0, v, =0.2, and x' = 0, The convectlon of the Tangmuir

1 3



-48-

wave appears as an asymmeiric distortion in space of its amplitude,
uz(x,t) in Fig. 12. The effect of convection can be viewed as a
spatielly dependent dissipative term Veﬂ‘( x) = V331. Then increasing
V3 is similar to increasing the dissipation \JJ. Nonllinear oseilla-
tions decrease; however, there is a pulse asymmetry or distortion
produced by the sign chenge in ‘IBB . operating on the front as
compared to the back of the plasma wave envelope ag(x,t) (see Fig.
12). The three-wave interaction dominated by convection (Fig. 12) is
otherwise qualitatively similar to tbrt dominated by dissipation
(Fig. 11),vhich agrees with the conclusion of Ref. 58.

~In this sectlon we have geen how beat heating is influenced
by relaxing the assumption that § = [e-](ﬂ,aé )- 1] muouI/e, and by
replacing it with a linearized wave equation for § where 3 tdﬁ and
) . appear. We have reviewed the csse of parametric instability.
For the case of mode coupling when there is appreciable energy
transfer from the pump to the decay products we have found two
phenamena which can occur only when we retain Bt and Bx in our

equations for all three modes: reversible nonlinear oscillations66

and the propagation of solitary pulses.20’21 We have concluded this
gection by demonstrating under what circumstances solutions for the
three-wave intersction with the terms 8t$ and 6x$ present are

similar to those considered earlier without them, i.e., Stiﬁ = ax$ = 0.

4. Introduction to Nonlinear Beat-Wave Effects

In this section we begin conslderation of beat heating in the
nonlinear beat-wave regime. We survey competing nonlinear phenomens
and establish for what parameters electron trapping is th. dominant

nonlin.ar effect.
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a, Onset of trapping in beat heeting simulations

We have used simulations to investigate beat heating when the
electrostatic wave becomes of sufficiently large amplitude to trap
electrons. Trapping can cause rescnant particles to act as an energy
source or sink for the longitudinal wave which is scattering the
photons. Consequently the overall efficlency of action transfer, and
hence heating, can significently decrease after the cmset of trapping.

Once a large amplitude beat wave is excited, after an interval

of time of the order

Ty = Zn/u.\B = Zﬁ(ZKZEIEI/m)-! (43)

the "bounce period", the trapped particles can return energy and
momentum to the longitudinel wave. 68-75 If the orbit modification due to
the trapping is included in the dielectric function, the dielectric
function becomes time dependent; and its imaginary part changes sign

on the time scale of the bounce 1>¢al'i.od.73 From Ea. (34), we see that
the direction of action transfer cogeequently reverses (Fig., 13b):
energy flows from the lower frequency electromagnetic wave and the
electron plasma wave back to the higher frequency electromagnetic

wave. This is obgerved in simulation whenever a significant fraction
(210%) of the particles is trapped.

We offer a theory fo. beat heating when the electron wave is
no longer small in amplitude and when trapping 1s the principle
nonlinearity. For trapping to be important, the longitudinal wave
must be of sufficiently large emplitude to reach back into the distri-
bution function and trap an sppreciable fraction of particles. If

we define a veloeity characteristic of the trapping v, = (2e|$]/m)§,
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then the condition for trapping becomes v¢ -Vp s a’(2ve) where

v, 18 the phase velocity of the longitudinal wave and ve is the

¢
electron thermal velocity. Moreover the period over vhich trapping

occurs must be shorter than the lerngth of the experiment Texp or the
characteristic time for some ignored effect to become important Ty
(e.g., significant growth of modulational or parametric decay
instabilityZL). We can then observe trapping 1if T < Texp’TI' OQur
simulations typically last times T of order 100 S w,T £ 400,

The condition for there to be an appreciable number of trapped

particles can be rewritten as

v = (2eldlm? 2 v l2-wvagl . (44)

Further if we replace the left side of (44) VT by 21r/|<'rB, we can

neatly summarize all the above conditlons on trapping as follows:

g < (21r/o<ve)]2 - llnke[-l, Texp’TI'. . (45)

In practice, for parameters of a particular simulation, one
can use linear theory to predict (.?elq?;l/m)i v¢_1 or Iﬁl/no and
to check the criteria above, Eq. (45), to ascertein a priori whether

there will be much trapping. If we uss Eq. (32) and assume [e] << 1,

then we can evaluate the scalar potentlal and write the conditlion (44)
ag
* 2
gy | 2 (1/2)2v, - w/e)le] .

Motivated by Eq. (33), we propose that a sultable model for the linear

or nonlinear dielectric function evaluated near a resonance (& = 0)

1s glven by
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€ = 2(a+ V)R (46)

where A 1is the mismatch, vwis the dissipation rate, and the beat
frequency § satisfies 2~ w,. We shall construct the nonlinear
dielectric func+ion in the next section. We have defin=d the mismatch
&8 the difference between the beat frequency £ and the 3ohm-Groes
frequency QL: AEQ-QL, RLE +3.2 2)i
close to a resanance the frequency mismatch 1s small compared to the

If we assume that

dissipation rate (|Re g] << |Im €|), then the criterion for appreciable

trapping to ocour is
l“o";tl 2 (2v, - me/x)a(v/ue) . (47)

To evaluate the second criterion, thet trapping be observed

during the experiment, we use Eqs. (10) and (43) to obtain
- 2
zlnl/no = Sy . (48)

From Eqs. (43) and (32), and sgain evaluating the linear dielectric

function near resonance, we express the condition T < Texp as
lugyl > (o e Pvin, Xonfu T, ) (49)
uou1 w /x) (v , “erexp > 4

where we have made use of T H 211/% = 21r/|<v,1.. If the conditiom (47)
is marginally satisfied then (49) takes on the form

-1
WyTorp > 2|1 - 2a, |7
For realistic plasma parameters, e.g., & dense 0-pinch:
ng = 107 e, T < O(50 &V), wyv =100, Kke/w, = 10, and o,

lasers (9.6 um and 10.6 um wavelengths, setting luol = I“LI)’ one
obtains from (47)
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lv-lgl2 2 (v/we)"ez = O3 x10 cn/sec)? - (508)

and from Eq. (49)

(gTexp) > (2P lugt v/, Xup/e? (50)

If (50a) is marginally satisfied and we/K = J(Bve), then to observe
trapping we require Lue'texp > ér, which is quite easily satisfied in

all our simulations.

b. Simulations of nonlinear beat heating: electromagnetic code

We have employed our electromagnetic simulation code to study
beat heating when the electron wave traps particles. For the sake
of simplicity the plasma was taken to be homogeneous. The simulations
were severely limited however, by the finite plasma slab width being
only of order five beat wavelengths (see Fig. 14). This leads to a
certain number of unphysical effects which will be described in this

discussion,

In our comments and observatlons concerning the simulations,
some mention of temperature end heating is made. Temperature is eal-
culated in the code by subtracting the (relativistic) kinetic energy
density of the local sloshing motlon of the particles from the total
kinetic energy density, in the frame of the grid. Heating is defined
as the time rate of change of the average local temperature.

In Fig. 13 the temperature and the actlon flux transfer are
Plotted as functions of time for e simulation exhibiting trapping
(corresponding to Fig. 14). There is strong action transfer and
heating at early timns while the density disturbance and the distribu-
tion function modification are still 1linear. There then follows a

mirked decrease in the heating of the plasma at a time s after
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initiation of the beat disturbance, accompanying the reversal of
action transfer. Meanwhile the welocity distribution function has
evolved appreciably with a distended nonmaxwellian tail forming
beyond the phase velocity and a plateau eccurring near the beat-wave
phese velocity (Fig. 14b).

Scattering continues, however, and there is a return of the
heating and action transfer to somewhat diminished rates as compared
to the early astage of strong beat heating. Beat heating continues as
the three-wave Interaction evolves into a regime best described as
induced Thomson scattering, xxe > 0.35.11’12'76 Now the beat-wave
phase velocity falls much closer into the body of the veloeity distri-
bution function at a point where the distribution hes negative slope
(Fig. lic). By the comsiderable modification of the distribution
funtion and from the plot of the electron termperature, we observe
that there has been considerable electron heating over a relatively
short time: AT/T.(0) =5 over w.At = 40.

Figure 15 displays the results of several simulations of beat
heating in a uniform, finite plasms sleb where the increase in
effective thermal velocity squared over the bounce period Tp is
plotted against initial ponderomotive potential in natural units
[ucu; |c'2. We find empirically that vez( 13) - vez(O) is linearly
proportional to lucu;I . We would be motivated to seek an explanation
for this interesting result were it not for certain unphysical simula-
tion effects that occur.

When there is appreciable f.rnpping, particles absorb momentum
from the beat-wave and are more readily carried to the right end of

the system, wiere they are either electrostatically returned, or
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elagtically reflected if they reach the system wall. In a longer
system, trapped particles would have a longer time to bounce back and
forth in the potential well of the beat-wave, exchanging energy and
morentum, before encountering the edge of the plasma. In our simula-
tions after one or two bounce periods a significant fraction of the
particles has been reflected from the right wall of the systenm.

Onee reflected these particles no longer can resonantly interact with
the beat wave, and they artifically symmetrize the distribution
function and phase space (Fig. 14¢c). In a more realistic plasma model
atrong wave particle interaction persists for a much longer time. Then
additional dissipation mechanisms should be considered for finite
amplitude beat waves, e.g., the side-band instability.w In the next
subsection competing dissipation mechanisms, the electron-ion para-

24

metric Aecay and modulational instability,”' are considered.

e. fompetition of beat heating and beet-wave trapping with

other effects

We begin by examining under.what condition the two electro-
magnetic waves can propagate across the plasma to induce beat heating
without first suffering significant attenuation due to parametric
Raman backscatter instability. We shall subsequently investigate
nonlinear processes competing with particle trapping by the beat-wave.

In Section II.C.3 we reviewed the result due to Rosenbluth
ot 51.5 - d:scribing the parametric emplification of decay products due
10 Raman backscatter in an inhomogenecus medium, The condition that
appreciable pump attenuation occurs due to Reman backscatter in an
inhomogeneous medium of scale length L o is given by

L - Zwoz/ |n<'V1V2[ 5> 1.787 por the plasma parameters
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corresponding to a dense 6-pinch with I.n = &@(10 cm) and €0, lasers,
the condition becomss Iuolz » [I‘h( cn)]']'( 16° en/sec)? =
& 10%7 enPfsec?). Comparison with the threshold for trapping, given
by expression {50a), indicates that trapping can occur without there
being much attentuation due to Raman backscatter.

Because the ifons are fixed in our simulations, there is no
possibility for parametric decey, modulational instability,a or
nonlinear Landau damping by iona. In a real plasma these processes
will, however, compete with trapping. The thresholds for these pro-
cesses can be quite low compered to trapping. But since their growth
rates scale to a higher power in the smell perameter v,I./'qr‘p , there is
a regime of beat-wave strengths in which electron trapping occurs
first.

To illustrate this, we examine the possible parametric electron-
ion decay of the beat-wave. For purposes of discussion we quote the
threghold and growth rate derived by }J.'Ls.l'nl.ka'az4 for the decay of an
infinite wavelength Langmuir pump wave into finite wavelength Langmuir
and ion acoustic waves. For the actual case of a finite wavelength
beat wave acting as the pump, the thresholds for parametric decay or
modulational instability are reduced but the growth rates do not

change much.ao
Nishikawa found that the threshold for the decay instability
is glven by
Vv, = 4(v v /uw )’ (51)
. e 1 “e"a ’

where V 1s the magniiude of the longitudinal oscillation velocity,

Vg is the dissipation rate for the electron or ion acoustic wave,
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and wy i3 the ion acoustic frequency. For the growth rate Yei

of the decay instability, well above threshold, Nishikawa found
Yoty = (WA v X sy (52)

It will be useful in the following tc observe that from Eq.
(43) and the electron longitudinal equation of motion we obtain
V= vrz/v¢. From Eq. (32) end Eq. (43) we recell that
v:l.2 = Zluou::l/lsl. The threshold for trepping Eq. (44) can be

rewritten as
Wy, 2 a2 - (2. (53)

Comparison of Eq. (53) with Eq. (51) reveals that the threshold for
decay instability can be very much lower than that for trapping in

9=-pinches and laser-pellet plasmas, for example.
If we, however, compare the growth rate of parametric decay
Eq. (52) to the electron bounce frequency wy = sz S weTr/'vT, we find

that
Yer/vp = (1/4Xm/n R vy (54)

At threshold for trapping, described by an equality in (44), we

obtain by substituting for Vo
3 3 4 11
Yog/wg * (V4Xm/m V(A V|2 - (A0 .

For 0.2 <xkA, <0.4 and my 2 1836 m,, then Ye:l/‘"B < @7(0.1).
¥e conclude that trapping can occur before there is significant

growth of the decay instability.
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In our simulations trapping and the ensuing deormation of the
velocity distribution functionare the most important features affecting
beat heating. There is aleo convection in both the linear and nonlinear
regimes of beat heating which can produce effective loss and mismatch.
To test the importance of convection, we recall the formulation of the
ecoupled mode equations as considered in the previous section, Eqs.
(40)-(42). In Eq. (40) the Coulomb potential, or, using Polsson's
equation, the density perturbation satigfies a linearized wave equation
driven by the pendercmotive force whose left side becomee (in the

WKB 1imit)
(at v+ vg"ax - 14) 6(x,t)

where v gl i1s the group velocity for an electron plasma wave, V

ia the dissipation rate, end A 1s the frequency mismatch A = Q - 91.
We can estimate the effect of convection as being of order

ng/L = B(szezlncl.)ue = O‘(O.O:I.)me compared to v = O‘(O.l)me

for typical simulations, where we have estimated 9 - L™l using

the length of the plssma L.

We have therefore iynored convection end treat the beat distur-
bence as a wave driven near resonance with both damping snd misma*ch
functions of time and implicitly of "ave amplitude. We shsall incor-
porate these nonlinearities into the slowly time dependent dlelectric
response of the plasma C“L(ﬂ,lt; t) 2 ¢' + ic", The nonlinear
dielectric response 18 formulated by including the nonlinear, time
dependent, camplex frequency shift to the linear normal mode fre-
quency due to trapped particles. We construot the nonlinear dielectriec

function and the nonlinear normal mode frequency in Seetion II.C.5.
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d, Motivation for a model problem

The qualitative dependence of action *raivsfer upon €xL has
been verified in the fully electromagnetic simulations discussed so
far. The difficulty with a quantitative analysis of N in our
electromagnetic simulation derives from the finite length of the
plasma which is only of order five beat wavelengths (see Fig. 14).

In our simulations af'ter a time as short a3 one or two bounce periods
of a representative trapped electron, a large number of accelerated
electrons have elastically scattered off the right-hand system
boundary. The ensuing artificial symmetrization of the distribution
function and the sudden termination of strong wave-particle inter-
action after wall reflection of an individual electron distort the
evolution of nonlinear beat heating in an unphysical way. In addition
there is a nonlinear oscillation of the entire plasma slab because of
the accumulation of space charge at the slab edges due to the trapping.
We have therefore constructed a model problem wheve we consider the
ponderomotive force driving the beat wave as a fixed amplitude
external driver in a uniform, infinite, periodic plasma.

For purposes of simplification, we hold the driver steady and
simulate the electrostatic ponderomotive driver in a one dimensional,
electrostatic particle code describing a periodic, homogeneous, warm
electron plasma. Section II.C.5 takes up the theoretical analysis of
the model problem generalized to include a time dependent driver
amplitude and discusses the simuletions. Section II.C.6 considers
the consequent back-reaction of the nonlinesr dlelectric response
on beat heating, Flectrostatic simulations are performed with the
previously {ived amplitude ponderomotive potential $0 replaced by
m01{/'e, and we integrate the linearized coupled mode equations (28)
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describing uy, and U, in the temporal 1imit (3:l + 0). We emphasize
that, in the model electrostatic simulations to follow, connection
with our theory of beat heating is made by using the following expres-

sion for the ponderomotive potential:
$o(xst) = (m/e) uylx,t) ul(x.t)* . (55)

Equation (55) is obtal.ed from the relatiol between the vector
potential and 1"': transverse oscillation velocity, and from Egs. (9)
and (26).

5. Resonant Excitation of Nonlinear Plasma Waves

a, Introduction

There has been considerable expex~1.|ne.nt.al68'71 and theoreti-

ca172"7 gttention given the study of the damping and frequency shift
of freely propageting, large-amplitude, longitudinal electron plasma
oscillations. Relatively little work has been done concerning finite
emplitude waves resa...:tly excited by the modulation of a high
frequency wnver" 81,82 or by the low frequency beat of two high fre-
quency 'a"ets.y"l'3 In this section we study the propagation of
resonantly excited, longitudinal plasma waves. We formulate the
resonant plasma response from the point of view of considering the
approach to a self-consistent equilibriumdetermined by a nonlinearly
induced frequency shift. The formeilsm is based on the construction
of a nonlinear normal mode, allowing for the tire dependence of the

nonlinear eigenfreq.ency.
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b. General fcrmuletion of the model problem

For simplicity we eonqider an Inttial velue problem, and
aggume the plasma 1s infinite and wmiform. We begin by defining the
total potential ¢%(x,t) to be the sum of the external potential
@os(x,t) {possibly species-dependent, for example, a ponderomotive
po‘l:en‘l:i.al;I’O'l'2 or a true external potential supplied by a grid or a
slow-wave structure), and the self-consistent Coulomb potential
€x): 8%(xt) = alxt) + 0% (xn,t). (Litvex® 8 and 5. Jonston ©
have exploited the utility of the idea of a beat-wave potential to
high degree in describing induced scattering.) The unperturbed
plaema 15 assumed to be spatially uniform; all wave fourms and perturbed
quantities have ‘e same spatlal phase dependence:

#%(x,t) = 8%(t) exp ixx + c.c. Polsson's equation can be written
0%(t) - 9g%(t) = dmcZp(t) (56)

where p(t) is -the total clarge density summed over species and over

linear and nanlinear components, p(t) = Z o3(t)
T o) + s0%)]. °

° We postulate & relation for the nonlinear susceptibilities:
p%(t) = ~[n<2/l.1r] [m dt §°(t) ®{t - t), with the wavenumber and
smplitude dependenge implicit. The kernels for the linear suscepti-
bilities QLE(r) are obtained by replecing p°(t) with only its
lineer part pLE(t) on the - left side. If we separate the dominant
time dependence, pe(t) = Bs(t) exp[-iﬂt] + ¢.,c., and simllarly for

the potentials, we obtain
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B°(t) = _[,,2/4,,][ dr §%(7) exp[m'r] Wt-1) =
0

-[.,2/“][ ar §51) empftar - Wa/a)] &e) (57)
0

where we have used the propagator exp -'r(d/dt)] B(t) = 8(t - T).
The operator (d/dt) within the argument of the exporentisal in
Eq. (57) therefore cnly acts to the right. ,

Utilizing the definition of the Laplace transform of the
susceptibility xa(u) z f’ dr is('r) exp[:lur] , we sum Eq. (57) over
species and substitute fog o{t) from Eq. (56), which we have
rewritten in the forn #(t) = [4n/c®J5(t), to obtatn

€@+ 10/a) §(t) + ). X%+ 10/20) B%(6) = 0. (58)
a

We have defined the nonlinear dielsctric function
€(w)= ¥ 1 +x%w), with its wavenumber and amplitude dependence

[
implicit. For the frequency-like argument w, we use € + 1(d/dt).
The differential operator again acts only to the right on é(t)

)

and ¢, (t).

If the external ion potential is negligible, which is the
case for the v X B ponderomotive force (Eq. (8)) considered here,
and for the ponderomctive forces considerec in Refs. 12, 25, 40, 41,

and 42, then Eq. (58) becomes

«a + 1e/at) F(t) - [1 +xig » id/dt)] 85(2) .
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If the external potential acts equally on the apecies, e.g., the
potential due to a grid, or if the fon susceptibility is negligible,
Eq. (58) gives e(Q + 1d/dt) S’(i) - $oe(t).

At this polnt we digress brlefly to consider the concept of a
nonlinear normal mode. In the absence of the external potential
oos(t) + 0, and for slow time dependence n‘l( d/dt) -+ 0, Eq. (58)
defines a nonlinear normal mode: E(WNL; k%) =0, 1.e.,
e(wNL; k,§) = 0. If we express the nonlinear dielectric response as
e(w; k,8) = eL(w; «) + 8e(w; k,8), where 6c 1s the nonlinear
increment to the dielectric function, then we can determine the complex,
nonlinear normal mode frequency ""NL H mL + 6w, The complex, lini
normal mode frequency w = QL + iYL 1s determined by eL(wL,nt) =0,
and 6w 1s then the complex, nonlineaer requency shift. We can
Teylor series expand e(mNL; ®,¢) around w, to obtain
eluy s ©,8) = EL(Q{; k) + de(w; k,8) + &(ry Jw + -+ = O where

0
€ = 3c/3w. Assuming Iéw/mL] << 1 1in order to truncate the expansion,
we find

Sw = -ae/E,mL; s (59)

We return to Eq. (58) and now Teylor serles expand & around
oy to obtain E(“’NL + Q- Wy, * 1d/dt) = e‘(%{u‘) +

E(mNL)[Q - ot i(d/dt)] + +-+ , We consequently find that to lowest

order in |2 - wyr * i(d/dt)!/lmNLI << 1, and for |$0£| << ]aoel,

Eug )2 - g+ He/an)] 88e) = 1+ x¥@ + 107000 3%
(e0)
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Equation (60) describes the self-consistent evolution of the nonlinear
plasma response ${t) to the driver 30( t). The problem of explicitly
deducing the nonlinear normal mode frequency s and of evaluating
Eq. (59) from a calculation of the actual orbit modifications induced
by the finite wave amplitude, remains,

For §,%(t) =0 and |d tn §(t)/dt| + O, use of the Poissen
equation and Eqs. (57) and (59) leads to

sule) = [amacPitup)] [B0e) - By(e) ey (61)

From Eq. (61), we observe that it is the nonlinear increment to the
total charge density pertwbation that gives rise directly to the
camplex frequency shift. We can meke some progress in calculating the
particle orbit modifications if we can assume that the wave amplitude
is nearly constant, d3/dt = 0, L.e., |d tn §/dt| << |6u].7%73

c. Application to the excitation of electroh plasma waves

The separation of the linear and nonlinear plasma response is
the essence of the subtraction procedure of Morales and 0'Ne:ll.73
They appealed to a Vlasov analysis for a specific kinetic model from
which they derived the dielectric function ¢ and deduced the temporal
or spatial dependence of the free propagation of finite amplitude
electron plasma waves, We cean adopt for the driven-wave problem, the
results of any specific calculation of orbit modifications due to
finlte wave amplitude for the free-wave problem, provided that in the
kinetic description employed, the partlcle accelerastion depends on

the gradient of the total potential, -[es/ms]v #%(x,t). Thus

rosults derived for the complex frequency shift 8w, depending on 5

in the problem cf freely propagating waves, can be used to deseribe
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the driven-wave problem, if we replace ¢ by & in the particle
orbit calculations and in the nonlinear eigenfrequency relation.

To 1llustrate our theoretical construction, we consider
resonantly excited eleetron plasma waves in the case that trapping
constitutes the principel nonlinear effect. If the plasma response is
quasi-steady, i.e., if we can set d4/dt + O in Eq. (60), then we can
utilize the calculation of Morales and 0'Neil, for example, to deduce
oy, and ¢ self-consistently. (We have dropped the superscript
denoting that & is the total potential for electrons.) At this
point we emphasize the fact that Merales and O'Neil's theory is
analytic and perturbative, but not self-consistent. As in most of
the analytic theoriea 272 describing trapping, the potential &
is assumed constant.

épec:lt‘ic application of Morales and O'Neil's theory requires
that certain assumptions be valid to justify their perturbation
expansion. The perturbation anmlysis requires that VTﬂ/K << vez, i.e.,
weak nonlinearity, and in order that the wave amplitude be nearly
constant |YL|/uxB << 1, i.e., weak Landau growth or damping relative
to the bounce frequency. The two conditions require that §/x 2 l.ve.
We have defined the bounce frequency and the trapping velocity:
wy 2 Kvg = :[2|e5|/me]§. At this point it is convenient to introduce
the real and imaginary parts d&w(t) = 62(t) + 16y(t) of the complex
frequency shift,

To evaluate the right side of Eq. (61) we replace E(t) by
#(t) in Morales and O'Neil'scalculation. The unperturbed distribu-
tion function !‘o(v) is Taylor expanded to second order arcund Q/x
to find that &§ « d":"t‘o/d\r2 apd 8y « dt‘o/dv evaluated at the phase
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velocity §I/k. The time dependences of &0(t) and 48y(t) are shown
in Figs. 1 and 2 of Ref, 73. Morales and O'Neil find that the dissipe-
tion '[YL + Gy(t)] has a damped, .o-ciuatory time dependence with
frequency w, and phase-mires to gero aver a time @&(5 to 10X 21r/uB).
The frequency shifi oscillates et 2"‘5 and asymptotically approaches

a value,
st + =) = -1.63 60, (62)
where §Q, = Re EL'I(SZL )VT[weZ/kZ] dzfo/dvz. Asymptotically there is

no dissipation, but the resocnantly excited wave acquires a finite

negative frequency shift proportional to wg-

d. Equilibrium response

The vanishing of the total dissipation and the approach of
the frequency shift to a steady value determine en equilibrium, By
setting (d/dt) = 0 in Eq. (60) and defining the relative response
R= 5/$o, the normalized linear mismatch frequency
AL H E(mNL)[Q - ﬂL] , and the normalized nonlinear frequency shift

SA([R]) = ;(“'NI.) 8(t = =), we can describe the equilibrium by
[ - saCIRDJR = 1 . (63)

If we express the response as R = r exp{16) where r = |3/$o| and
8 1s the relative phase, then Eq. (63) becomes

[AL - GA(r)] r =81 . (64)

The sign of the right-hand side of Eq. (64) corresponds to a value of
8 = 0 or m, which is determined by the sign of 4, - SA(r).
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Equation (64) implicitly determines the magnitude r of the
response. If we attempt to prepare the linear mismatch and wave
amplitude in such a manner as to make AL - 8A(r) vanish, or a randow
fluctuation in the response occurs to effect the same, then according
to Eq. (64) the response r should diverge. Rather than diverge,
however, the response‘exhibits finite dissipation and time dependence
necessarily. The approach to a new equilibrium is then described once
agein by Eq. (60).

For the case of trapped electrons the nonlinear frequency shift
can be modeled &A(r) = -c:.t'i where Eq. (62) determines a. Then
Eq. {64) leads to a cublc equation in the variable ré describing the
possible equilibria. Presuming the plasma parameters tc be fixed,
the free parameter governing the nature of the equilibria is the
normalized linear mismatch AL. The driver amplitude has been
removed by scaling, r = |5/$0|.

Figure 16 illustrates graphically the nature of the possible
equilibria. For AL > 0 there is only one equilibrium possible.
Multiple equilibria oceur for 4; <0 and ( -AL )3 > (27/4 )012. We
conclude that at least one equilibrium solution always exists and is
described by Eq. (64) subject to Its consistency with earlier assump-
tions on the weakness of the nonlinearity. We defer discussion of
the stability of the equilibrium until after we consider momentum and

energy transfer.

e. FEnergy and momentum conservation laws

To understand the time dependence of the nonlinear frequency

ghift and dissipation, and consequently to appreciate some of the

detalls of the spproach to and departure from equilibrium, we calculate
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the energy and momentum exchange between the driving potential and
the nonlinear plasma response. The derivstion here assumes no particu-
lar kinetic model for the plasma. The momentum and energy balance
considerations of Morules and O'He:l.173 are generalized to the case of
an externally driven plasma wave,

For the momentum exchange, we express the time derivative of
the momentum density P averaged over the length A = 2mc L R

ar/at = f (ax/2) {p[-ax%(x,t) - 3x¢(x.t)]} .-

1cp(t) 97(2) + coc + A Jo]*) . (65)

We have used the identity O = fdxpw(x,t) in obtaining Eq. (65).
The higher order terms in Eq. (65) will be ignored. Using
) = -[:2/417 x(n + 1d/dt) §5(t), we sum over specles to obtain
at) = [Eran [ - ela + 1a7a0)] §2) - T %(a + 1a/at) $°°(t)} :
Appropriate to the electron wave case, we ignore ion contributions
and expand ¢(Q + 1d/d4t) around um:, as in Eq. (60), in order to
express the right side of Eq. (65) a. a function of é.

We can formally express the nonlinear contribution to € in
Eq. (60) as follows: E(uNL) s (B/M)(EL + 8¢) =

Elug ) + 355/3“’|um = [EL + §u(3e/0u) + “5/3“‘]@,_ =

EL[1 + 3(65/€L)/3u] z EL[1 +8], where we have used Eq. (59). We
evaluate EL and B = B(Gt-:/-eL)/au‘ 8t w. At this point we intro-
duce an explicit ordering scheme sugggested by theory and verified in
our simulations: We assume that 0,2 ~ O’(l)me;

wgsSR,ug Re 8,(R = 0),(/dt) ~ Slnlug; dnd uy Im B,y 6y ~ AHndu,,

where n << 1.
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From Eq. (65), we then find that to lowest order in n the

momentum exchange is given by
ar/at = x Re § {asat) - 2y, sy)] [<8|%74m . (66)

Transposing the time derivative of the linear wave momentum,
{a/dt) x Re EL|x5|2/I.ﬂ, to the left side of Eq. (66), ¥e can reduce
Eq. (66) to a statement desceribing the momentum in the resonent

particles:

(a/dt) [P -k Re EL'K;'Z/ATI’] = -2(yy + 6y) k Be EL|K5|2/41T .
(67)

The momentum P can be thought of as the sum over the linear and
nonlinear parts of the wave momentum, and the particle momentum in
reacnant and nonresonant particles exclusive of that attributed to the
wave momentum. Thus on the left side of Eq. (67) the linear wave
momentum has been subtracted, leaving to lowest order in n the
linear and nonlinear changes of the momentum in the resonant particles.
We have generalized to the nonlinear case the linesr concept that the
change in the momentum of the nonresonant particles, exclusive of the

wave momentum, is negligible.

For the energy exchange we -.construct the time derivative of
the average kinetic energy density KX, integrating by parts and using

the continuity equation and Parseval's equality,

aK/at = f(dx/x) J(— ax¢)= '-f(ax/x) (dp/dt) =

We?/un) #-10 + (a/at)) el + 107at) - Y8+ coe. + @[B4,
(68)
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wisre J 18 the lengitudinal current density. In the extensive
algebraic manipulation that Eq. (68) leads to, we assume the same
ordering scheme used earlier and calculate the kinetic energy in the
driven wave frame, i.e., £ = 0. If we substitute

e(1a/at) » Hupg )0 - qy + 2a/ae)] + (1/2) Euy )[R - g + 1a/a0))?
and define the linear wave action density J, (t) = Re ELIK';( t)lz/l.ﬂ,

we find that to OM(n°)
(a/at) {x - [ta- s, - Irsl"/z.n]} =

- [eatasat) + Aasnsar)] 3, + Re E (P um)[13*(e%/24%)8 + c.c]
(69)
In the plasma frame, the linear wave energy of a free wave
(¢ =¢) is given by [a(w Re eL)/aw]nL]n&(t)Iz/Aﬂ = @J, . Because
the driven wave is excited at frequency f rather than at nL, we
pust evaluate [3(01 Re eL)/Bw] at I, which gives [n + (R - S]L)}.T'<
for the linear waveenergy in the plagma frame (1:1 the driven wave
frame: (- )1 ). Since the field energy is given by 1§12 /4m,
 the left side of (69) is the time derivative of the total particle
kinetic energy with the kinetic part of the linear wave energy
subtracted away. We Interpret the residusl as the energy exchange
rate due to resonant particles, evaluated in the driven wave frame.

Then to lowest order in n, we have the expression

(a/at)” = -[2(asasat) + sacasar))s,

+ Re E(Pum 18P /0?N ¢ cc] (70)
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where we define KR' =K - [(n - nL)JK - [|<5[2/41r] as the average
Kdnetic energy density of the resonsnt particles in the driven wave
frame,

We now introduce a simple model which illustrates some of the
physics hidden in Eqs. (67)-(70). Our objective is to gain insight
into how the trapped particles can give rise to time dependence in
the dissipation and the frequency shift. The model crudely represents
the resonant, trapped particles by a clump of density Np oscillating
in the wave frame with velocity v = Vo sin th. Effects due to the
time dependence of the rescnant, but untrapped, particles and due to
nontinear orbit modification of the nonresonant particles are ignored.
Furthermore, we make no attempt to include phase-mixing.

Th~ momentum and kinetic energy of the rescnant, trapped
partic;es are given by PR =ng Y/ + TV, sin ""Bt and
KR' = (1/2 )n’l‘msz sin® wgt in the driven wave frame. Since tne depth
of the potential well seen by a trapped particle in the wave frame is
influenced by the presence of the other trapped particles via Poisson's
equation; the potential acquires a time dependence
s(t) - 0(0) + ®(l) exp - 1LuBt.

We substitute into Eqe. {(67) and (70) our model equations for
the momentum and kinetic energy of the trapped particles in the wave
frame and for the time dependent potential amplitude. We obtain to

®(n?) the momentum,

RV co8 wgt = ~2(yp + y)k Re ELIKQ(O)IZ/-’.W . (7)
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We deduce from Eq. (71) that the total dissipation has a

time dependence given by -(YL + 8y) = com uB_t‘. This is a lower irder
effect than the tire dependence of. the nonlinear frequency shift, which
iz A nj).72'73 To further examine the time dependence of the wave
amplitude, the dissipetion, and the frequency shift at frequency Was
we substitute the Fourler series 5(1;) = °(0) + Q(l) exp - ith + een
and fSw = Sm(o) + Gm(l) exp -:let + .o iInto Eq. (60). The lowest
order tir= independent part of Eq. (60) is given by
0000 o § | where 8% 2 a - - 6a{®. swtracting this
from Eq. (60) and collecting terms with exp - lugt time dependence,

we find to lowest order in n
2(00,,(005(1) _ ';(°)[6n(1) . iv‘”]ﬁ(o) . E(o)"’a"(l) =0 .(72)

Then both the dissipation and the component of the frequency shif't

oscillating at wg are related to the wave amplitude oscilletions:
R R "V L (73)

The time dependence of i. » frequency shift end the dissipation
in our simulation concurs with that deseribed in Eqgs. (71) and (73},
implying that the model time dependence of the velocity of the clump
of trapped particles and the potent al amplitude are consistent.
Furthermore, we can use the equation for the kinetlc energy to deduce
that the frequency shift can oscillate at ana as well as at wp.
Substitution of ocur models fox '-he‘ time-dependent wave amplitude and

the trapped particle velocitles *~to Eq. (70) ylelds
(172 h.rmszuﬂsin(ZuBt) = {-z( dsa/dt) + 2wplug - 6Q)

x ImII[o(l)/m(O)] exp - int]]}Re EL[KO(O)Izﬂ.ﬂ . (74)
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Equation (74)suggests that the frequency shift &% has time
dependence at both the bounce frequency g and twice the bounce
frequency ZmB. For the case of a free wave, Morales and O'Neil find
that for v,rv¢ << \re2 and v° > I.ve the time dependence at frequency
2wy dominates.”> In the work of O'Neil, Winfrey, and Malmberg’
however, the frequency shift of a large amplitude electrom plasma wave
excited by the weak beam-plesma instabllity varles zt both wy and
2‘"3’ with the former dominant.

We can Fourier analyze Eq. (74) to determine the relative
veriations of the frequency shift at the frequencies g and 2"’5'
In so doing we recall the assumptions that 10(1)/4‘0(0)] ~ &) end
that 50,u, ~ O’(n)me. Then from Eq. (74) we find thet to lowest order
in n

) - of[an(®) - up) o0 (75)

and
a2 . Olluy/B)eqav /o T, | - (76)

In our similatious we find thet the os.illetion in the frequency shift
at w; doninates that st 2up. The magnitude of 6a{1) in simula-
tion 1s consistent with Eq. (75) to within 25%, if we use o0’ from
the simulation directly or if we take &0 « _(3/4)v St /aR s

given by Morales and O'Neil's theory.

f. Stability of egquilibria

The stability of the nonlinear equilibrium Eq. {&4) can be
examined by employing Eq. (€0) and considering a camplex, infinitesi-

mal perturbation to the equilibrium plasma response of' the form
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SR = (r + 6r) exp(10 + 188) - r-exp(18). If we define the dimension-
less quantity T = 1t and derivative i = dx/dt and ignore the
nonlinear dissipation perturbed from its equilibrium value of zero,

then from Eqs. (60) and (64) we cbtain the coupled equaticns:

r28p - 6r(21 + ar?/?/2) = O (772)

frt80 = 0 . Gy

The + and - signs correspond to equilibrium phases ¢ =0 and T
respectively.
Differantiation of Eqs. {77) with respect to T and straight-
forwaré algebralc manipulation give
88 , l'se
r2( dz/d-rz) + (12 m-3/2)
ér ér

(78)

L]
o

The frequency of a stable oscillation or the growth rate of instabllity
is given by (1% or3 / 2/2)1/ lZ/Er. R‘ecalling that the equilibrium is
described by Eq. (64), ur}/ 2 can be replaced by $1 - ALr wherever
econvenient.

We observe from Bq. (78) that for © = 0 the eguilibrium
is obviously stable, 1 + cr3/2/2 >0. For 6 =7 and AL <Q,
miltiple equilibria can occur if (-AL)3 > 27&2/4. The condition for
gtability in this case, ars/ 22 or equivalently 0r1/2 < —ZAL/B
using Eq. (78), colncides with the equilibrium respanse r; lying
to the left of the mintmum of r[AL - 88(r)] in Fig. 16b, given by

url/ 2. L/au Thus we conclude that for a large response, in phase
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with the driver, the equilitrium is stable, correspending to ry or
r; nFig 16b.

For sufficiently large, negative linear frequency mismatch,
a pair of additicnal equilibria are possible, corresponding to T and

41
> Both Ty and T,

have relative phase 7 with respect to the driver. Our simulations

r, 1n Fig. 16b, of which only T, is stable.
correspond to a x 0.4 and AL w =0.33 which do not satisfy the
condition for multiple equilibria., We therefore expect the simulated
equilibrium to be stable as 1t corresponds to T, in Fig. 16b.

We point out that cne cannot rigorously omit the perturbed
nonlinear dissipation. Without going into a deteiled derivation we,
however, caen make some qualitative remarks. From the conservation
laws we observe that the nonlinear dissipation is fundamentally
related to the nonlinear momentum. The trapped particles have no
momenta in the wave freme. The untrapped particles have either
positive or negative momenta in the wave frame depending on whether
they travel faster or slower than the wave. A perturbaticn to the
wave amplitude and its phase, will alter the separatrix, trapping or
de*vapping partic”. and consequently producing a small momentum
exchange. The momenta of the particles remaining trapped is still
zero. However, the momenta of the free particles and the wave itself
will be altered since they are wave amplitude dependent.

In conjunction with the momentum exchange there will be a
dissipation increment as deseribed by Eaq. (67). We expect the unstable
equilibrium to remain unstable, the growth rate acquiring a complex
increment perhaps, For the "stable" equilibria the influence of

positive or negetive dissipation mey cause the oscillations about the
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equilibrium to grow or relax. Our simulations indicate that for the
oquilibrium labeled T in Fig. 16 the dissipation increment is such
that perturbations relax, and the equilibrium ig stable.

g. Simuietions with constant-emplitude pondercmotive potential

To 11lustrate and apply our theoretical construction we
have performed computer similations. For the sake of simplicity we
have considered a model in which the plasma is unmegnetized, uniform,
and periodic. Electron plasma oscillations are excited with a fixed
ion background. The computer siruletior uses a finite-sized particle
code originally furnished by A. B, Langdon and extended by this eathor
and G. Smith. We simulate the entire Maxwellian velocity distribution
with a modest number of perticles (2500) and mesh points (64) in cne
dimension.

Meny researchers have investigated in simulation the free
propagation of electron plasma waves studylng the effects due to wave
particle resona.nce.sé'g2 Particular attention has been paid to the
case of finite yL/uB.86'89’92 Rescnantly excited ion waves have been
recently considered by Book and sl:\rv.ln'lgle.93 Tn our similetions we
resonantly excite an electron plasme wave of finite wavelength equal
to the system length.

We have attempted to simplify our simulation model as much
as possible. Because of the diecrete Fourler spectrum, excitation of
a large amplitude electron wave at the fundamental wave length cannot

7 the spacing of wavenumbers

give rise to the sidebend instability;
around the fundamental is much too broad to accommodate the spacing of
the sidebands #Ak = zwﬁme/kvez. Furthermore, since the lons are

held fixed, parametric decay and modulatidnal instability are
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axcluded.ﬂ' We measure directly in simulation th: amplitude and phase
of the total electric field amplitude -1-05 relative to the pondero-
motive force -1K50- Then use of Eq. (60) permits identification of
the nonlinear dissipation and frequency shift as functions of time
(Fig. 18). Comparison of the msymptotic frequency shift with theory,
Eq. (62), is made in Fig. 19.

Results of typical simuletions are shown in Figs. 17, 18,
and 19. For the set of simlations, the electron distribution was
initially Maxwellian with parameters n/xve = 3.0, ’de = 0,33, and
Q= o, Therefore the linear mismatch derived from the Bohm-Gross
dispersion relation is Q - ﬂL = «0,17 W, and the llnear dissipation
is - L/"’e = 0.03. In Figure 17 we observe the cheracteristics of the
large amplitvude response (shown here driven in phase with the pondero-
motive force), electron phase space, and the velocity distribution all
at met = 300, There is evidence of considerable trapping. Particles
are trapped much closer to the separatrix than to the bottom of the
potential well, however, The typlcal orbital peridd of these particles
in the wave frame is of order 61r/(uB and concurs with the observed
oscillation period of the nonlinear dissipation in Fig. 18b. We seem
t¢ have & preponderence of particles trapped fairly high in the
potentlal well and relatively few down at the bottom; this gives rise
%o the hole ohserved in phase space, Fig. 17b.

We recall that from Eqs. (71) and (76) we expect both the non-
1inear dissipation and the frequency shift to very at frequency wy
for our paremeters ( v¢ =3 ve). We observe in Fig. 18 that
—(YL + 8y), SR, and the amplitude and phase of the response all vary

at the bounce frequency, but not at the bounce frequenc& of the deeply
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trapped particles. Instead it is the average bounce frequercy of
the bulk of the particles trapped near the seperatrix that determines
the time dependence of -(yL + 8y) and &8Q. To understand this and
other features in our simulations, we must appreciste certaln condi-
tions of the simuletions not anticipated by existing ar_mlytic theory.
Rather large amplitude waves have been :Lnduce&-'in the simula-
tiomns, f.e., vTvd’ » vez. Since v¢ = 31!e initielly, the trapping

width v, is large enough to extend back into the main body of

T
the distribution function to do considerable trapping (Fig. 17c¢).

With only 2500 particles, we do not have good statistics for the
particles that become deeply trapped, i.e., the nearly, exsctly
resonant particles v = v¢. The trapping then of relatively many
particles near the separatrix and fewer deeper in the potential well
1s not so surprising.

The ponderomotive potential amplitude wss varied over a range
such that 0.2 g va/Q € 0.6 1n order to check the 4dependence of
the nonlinear frequency shift on the total potential amplitude (Fig.
19). The pondercmotive potential was swiiched on instantaneously and
also over rige-times met = 50% which was of order two or three
characteristic bounce periods of the simulated trapped electrons.
More rapid phase-mixing and relaxation to equilibrium (in terms of
the nunber of bounce periods 21r/mB) was observed for the slower
driver switch-cn and for weaker amplitudes, effects similar to those
in Kruer's simlations.’® The initial conditions and the rise-time
of the driver influence the detalls of the asymptotic state. However,
a8 the slower drive switch-on was not very long compared to a typleal
bounce perioc:, the asymptotic state was not significantly different

from the sudden switch-on case (Fig. 19).
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The power law dependence &t = ) « I;I* and magnitude of
the frequency shifts seem to rough:l;y agree with the nonlinear normel
mode calculation of Morales and O'Neil, although both the ratio
v¢/vre = 3.0 and megnitude of the wave amplitude vqpv, = ve2 lie
outside the regime where their theory is applicable. The nenlinear
frequency shifts are quite appreciable 60 = -&(0.10 to 0.25 )ue, and
the distribution functions are considerably perturbod.acquiring
distinct tails at v > @/k. The body of the distribution functions
remain approximately Maxwellian, however. Furthermore, the wave ampli-
tude and phase 1n simulation show appreciable variation, although the
relative changes are not large. Thus the particle trajectories have
slightly different histories as compared with Morales and O'Neil's
theoretical description. We therefore conclude that the quantitative
agreement of the simulated asymptotic frequency shift with theory
(Fig. 19) is quite remarkable.

For the case of resonantly excited, longitudinal waves in a
uniform, unmagnetized plasma, we have constructed the nonlinear
dielectric response. We have formulated the rescnant response in
terms of the mismatch between the driving frequency and the time-
dependent, complex, nonlinear eigenfrequency of a normal mode. We
have used simulations to illustrate our formalism and find that
simulations compare remaikably well with nonlinear normal-mode tueory
in a regime of parameters outside the range where analytic perturbatior
theory is valid. We have derived energy and momentum conservation laws
and used them to explain phenomena observed in the simulations, for

example the time dependence of the responr<.
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6. Beat Heating with Trapped Electrons

We retura to our discussion of beat heating for large amplitude
beat waves. Now that we understand tc some extent the role that finite
amplitude effects play in determining the resonantly excited response
of the plasma when the driving potential has a fixed amplitude, we
examine the back-reasction that the nonlinear, time-dependent response
has upon the ponderomotive potential. Specifically, we investigate
beat heating, relexing the constraint that the ponderomotive potential
bas a constant amplitude. We consider the entire system composed of
the coupled mode equations deseribing the transverse wave amplitudes
uy end u,, Egs. (28); the Poisson equation, Eq. (10); the equation
describing the nonlinear dielectric response, given in the temporal
mit (ax = 0) by Eq. (60); and th. :constitutive relation between
¢y and uou;, kq. (55). We shall also discuss further simulations and
meke some remarks on the influence of plasme inhomogeneity on trapping

and beat heating.

a. General consideration of the coupled mode equations

We recall Eq. (29) which expresses the conservation of trans-
verse wave action. The equation is rewritten here defining the
= - 2
operators Do,l £ at - 0,1 ax. where c, & kzc /"’2, are the group
velocities, and the transverse wave actions Jz H mzluglz-. then Eq.

(29) becomes

DOJO + DlJl =0 . (M)

in

Introdueing the phases 00’1, defined by U,1 ]“o,ll exp(-ieo,l),

we manipulate Eq. (28) o obtain the relation
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ToP% = 908, = © {80)
We can rew~ite Eq. (30) describing the rate of sction transfer as
Dyly * f = e, Mlugui/mc) (81)
end similarly for the phases

_ N 2 "ok
IPefy = Jlnlel = a, Re(uouln /2n°) . (82)

Equaticns (81) and (82) are quite general; the plasma is
allowed to be weakly nonuniform, and the density disturbance can have
quite arbitrary amplitude § excluding, however, higherorder couplings.

To understand the energy exchange between the plasma and the
transverse waves, we manipulate Eq. (81), recalling the definition of
the {ransverse wave energy density in terms of the wave action in CGS
wmits W, = w,J, = ( m/e‘2 )mlzluzlzlzﬂ'. We obtain the energy density

conservation law:
DoWo + DWy + (0/k) 2 ne[Eo('x,t) eﬁ*(x,t)] =0, (83)

where E‘O £ -1k§, = ~ix(n/e )uou;. This conservation law states that

the rate of energy loss or gain by the transverse waves must be equiva-

lent to the rate of work done on the plasma by the ponderomotive force.
We observe from Eq. (83) that no further work is done when

EO and 1l have a relative phase of n/2 or 3m/2, which is equiva-

lent to ¢ and $0 having relative phase Q0 or w. Then as des-

eribed by Eqs. (81) and (82) the.. 1s no action transfer, and the

transverse waves acquire nonlinear frequency shif'te as the only con-

sequence of the coupling:
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. 21 2 *
8uy,1(xt) = Do 80, = (ug o luy 1) 0° Re(ugwa'/eng) .
(83)

b. Quasi-steady nonlinear plasma response

When the temporal and spatial variation »f the amplitude of
the total potential & 13 sufficlently weak to permdt setting
3t = 3x = 0 in evaluating the dielectric function, i.e.,
e(f + 13,,¢ - 131)3 + e(f,x)8, then we describe the plasms response
a8 "quasi-steady". We cen then use Eq. (32), & = [e'l(n,x) - 1}$0e,

and Polsson's equation to algebraically solve for #i and express

Eqs. (81) and (82) as

Dguglugl® = Dy fw)? = Plugl?ley|? me™ - 1) (85)

wolugl Do = wyluy®ye; = wPlugl®juy|? Rete™ - 1)z .
(86)

The quasi-steady respomse approximffion requires |Q - "’NLI >> latl ,
(Jnvez/\'zL)Iaxl, if we use Eqs. (33) and (60) to determine the relative
importance of finite at and ax effects in the dielectric response.

In Section II.C.5 the nonlinear dielectric function was
evaluated by expanding about the nonlinear eigenfrequency, Eqs. (59)
and (60}, We find that in the quasi-steady limit the nanlinear

dielectric response evaluated near a rescnance 1s glven approximately

by

s(a) « Eugfn - ug] = EHug)s + 1) (a7)
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where the mismatch is defined 4 =0 - nL - &R, and the dissipation is
defined by Y = ~Im uy;. To lowest order of spproximation € can be
replaced by E(mNL) P EL = 2¢ue'1 for electron plasma waves assuming
kA, << 1. For [e™}] >> 1 and [a] >> [y| the right sides of Eas.
(85) and (286) can be re-expressed in terms of A and ' by use of
Eq. (87), obtaining respectively

-leuolzlullz 'yme/-‘!A2 (8g)

Clugl?lu |7 w e (89)

From Eq. (88) 1t is evident that action transfer requires
finite dissipation. Since for trapped particles the total dissipation
of the electron plasma wave oscillates around zero at the bounce
frequency (Fig. 18), the action transfer will also oscillate at the
bounece frequency. If tne disslpation asymptotically vanishes while the
frequency shift approaches a finite value, &5 wis the case for a
constan ponderomotive driver (Section II.C.5), then the acticu
transfer will ceace; and the transverse waves will acquire nonlinear

frequency shifts.

C. Simulatio_z}i with self-consistent ponderomotive potential

and coupled mode equations

To investigate the back-reaction of trapping on the transverse
wave action transfer and to determine the asctual usefulness of the
quasi-steady plasma response approximation, further simulations were
performed. The coupled mode equations for the transverse waves, Eqs.

(28) with ¥ = 0, an¢ the constitutive relation (55) 3§, = (m/e)il,
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were appended to the one dimensional, electrostatic, particle code
discussed in Section II.C.5.

Integration forward in time of the coupled mode equations
describing the beat heating of two transverse wavea in a uniform,
infinite, periodic plaema is performed as an initial value problem.

At each time-step, the transverse wave amplitudes are !ncfemented,

and the ponderomotive potential is comstructed. The particle velocities
and positions are then udvenced using the electric field constructed
from the gradient of the ponderomotive and self-conslstent plasma
potentinls, The self-consistent plasma poteniial Is obtained from the
solution of *he Poisson equation given the chargs density. Finally the
Fourier component of the density perturbation &t the beat wavenumber

is determined fram which the couriing of the transverse modes 1is
calculated in Eqs. (28). Simulations in much the same spirit as these
have been performed for the case of induced scattering by Litvek

et a1.53:84

One of the advantages of adding the coupled mode equations to
an elactrostatic simulation over the direct electromagnetic similation
ia that there is then no restriction cn the time-step of the integration
tion due to the high frequency waved, which would otherwise require
that wO,IAt << 1 in addition to meﬁt << 1, In practice the time-
step was restricted to e value eM' < 0.2. For ease in comparing
with earlier electrostatic simulations where the ponderomotive poten-
tiel wus held constant, the following plesme parsmeters were again
chosen: e/m»Q = Wy =K 1 and /¢ = 3v°. The range of transverse
wave anplitudes connidered was 0.1 g [95(0)] = [§,(0) < 0.3 which
induced ponderomotive eleotric fields 0.0l < |1‘°| < 0.09. The
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transverse wave frequénries were ;:hosen arbitrarily, wy = 5u)e and
s U me'

Results typical of simulations exhibiting considerable trapping
are displuyed in Figs. 20, 21, 22, and 23. The electric field response,
longitudinal phase space, and the longitvdinel velocity distribution
function are shown in Fig. 20 at wt = 431 and wet = 784, At the
earlier time the »esults are in many ways similar to simulations in
which the ponderomotive potential amplitude was fixed. There is &
large amplitude response driven nearly in phase with the pondercmotive
force (Fig. 20a); longitudinal phese space has a hole centered over
the bottom.of the total potential well (Fig. 20b); and the distribution
function has a distended, nonmaxwelliasn tail for v 2 Q/k (Fig. 20c).
At the later time the electric field response asnd the ponderomotive
force are both waeker than at the earlier time and not In phase. In
addition, there is considerable harmonic structure induced. The total
potential well being not so deep as before, the hole in phase space
(related closely to the separatrix) is reduced. The distribution
function is further perturbed by the scattering.

In Figs. 21a and 21b are plotted the historles of the pondero-
motive potentiel and response amplitudes % and ¢ and pheses 60
wad 6. The response amplitude and phase osclllate on the time scale
of the bouncing of the trapped electrons as In earlier simlations.

The ponderomotive potential amplitude and phase also oscillate on this
time scele due to the back-reaction of the trapping on the transverse
waves es illustrated by Eqe. (88) and (89); however, the oscillations
aere of lesser degree than for the response. The phase of the response
relative to the driver oscillates with a considerably larger excursion

around zero than was observed in our earlier sim.lations (Fig. 18).
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The generul decrease of the amplitude of the ponderomotive
potential is due to pump depletion of the higher frequency transverse
wave. The general increase of the nonlinear frequency shift and
dissipation (Figs. 22a end b) due o the continued deformation of the
distribution function fairly steadily reduces the relative amplitude
of the response. Beat heating enters the regime of induced
tmn.hxt.t.er:l.ng.83 »84 Many particles cen satisfy the condition  » kv,
and within a trapping width Vo of v = Q)/k the distribution function
has finite slope (Fig. 20c).

When the frequency shift and nonlinear dissipation become
appreciable compared to the plasma frequency Wy» We can no longer
make expansions which require |@ - g * i(d/dt)]/i%] << 1; then
Eq. (60) 1s no longer valid. Our construction of the nonlinear
frequency shif't and dissipation consequently fails when either of the
following are appreciable compered to unity: [ - ( o+ 8)l/w, or
fyp * oy - 1(a 4n §/at)|/uy.

Ir Fig. 23 the amplitude and phases of the three interacting
waves u,, W, and #i are plotted as functions of time. The amplitude
of the density perturbation 1 = (ncz/i.ne )¢ oscillates at the bounce
frequency and diminishes due to the increasing diesipation and fre-
quency shift and due to the decrease of the ponderomotive potential.
The wave energy in the higher frequency transverse wave depletes by
approximately 90%. With a relative action transfer efficiency then
of R = 0.9, the relative energy transfer to the plasma is given by
R/uy » (0.9)(0.2) = 0.18. On the trapped particle bounce time scale,
the amplitudes |uy| and lull vary slightly in accordance with the
sign of the dissipation (Fig. 22b) in Eq. (88). The siowly varying
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wave phase 01 does not significantly vary over the duration of the
simlation, but Bo varies and fluctuates much more since compara-
tively wuch less action is assoclated with it (see Egs. {82) and (86)).

The continued appreciable time dependence of the nonlipear
phenomena, the extensive trapping and deformation of the distribution
funetion, the relatively large nonlinear frequency shift and dissipation
aad the trancition of the scattering from rescnant (§ = W, and
Q/k = 3ve) to nonresonant (induced scattering) are all features not
anticipated in our discussion in Section II.C.5. Nevertheless the
simulationis seem to te self'-consistent using all qualitative and
quantitative considerations still at our disposal. Energy and trans-
verse wave action are conserved to within a few percent, Egs. (83)
and (81). Various effects due to perticle trapping are observed
consistenily in the longitudinal electric field response, the non-
linear frequency shift and dissipation, and the back-reaction of the
nonlinear response on the actlon transfer and the beat heating.

However, the phase-mixing and relaxation to a quasi-steady state,
wherein the longitudinal and transverse waves acquire frequency
shifts and no further changes in amplitudes occur, is not observed.

The supposition that beat heating approaches a nonlinear
equilibrium as described in Section II.C.5 1s predicated on the
assumption that the longitudinal plasma distribution function is
only weekly perturbed by a weakly nonlinear plasma wave. To .ompare
gimulation with an anslytic, perturbative, nonlinear theory, a
longitudinal plasma wae would have to be excited much farther out on
the tail of the distribution function Q/k 2 4V, with sufficient linear
mismatch to guarantee a weak plasma response. We have chosen here to

[N

simulate the physically more interesting case where an electron plasma
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wave is rescnantly excited (2 = w, and §/k = 3ve }, inducing a
lerge perturbation of the plasme, coasiderable depletiom of the higher
frequency laser, and consequently ;igniticant momentum and energy

transfer to the plasma.

d. Removel of trapping effects by plasma inhomogeneity

For the case of a nonuniform plasma, trapped r-rticles can
become untrapped In an electron plasma wave and finite dissipation
racovered.95’96 The degree of inhomogeneity is characterized by
(/g X ax/ax), where %=X and Kx) = [ - w20 A3 2R
Asseo et 31.95 consider a freely propagating wave. They show, in
the 1init of a very strong inhomogenelty (7%/uwy” Naf/dx) > 1, that
because of the effective acceleration in the wav. frame provided hy
the finite spatial density gradient and consequer+ spatial dependence
of the phase velocity, there are no trapped particles; and ilnear
Landau damping is recovered. They make the same assumption on the
weakness of the wave amplitude as do Moral- s and O'Neil, viz.

VTV¢ << Vez.

For weak inhomogeneity, (QZ/NBZ)( dX/dx) << 1, trapping occurs;
however, the free but nearly resonant pariicles can exchange energy
with the longitudinal wave ut a finite, ncnlinear rate proporiional
to the Landau damping or growth rate. Asseo et al. derive a spatial
damping coefficient &x(x), assuming that the number of trapped

particles is constant over the disteance the wave has traveled, 0 +to

x
x, and also assuming that |Ak/k| << 1, where Ak Ef dx'(dx/dx' ):
(6]
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2, 2 )
(R /up” M &X/ax vy /v, ) for |ak/k| < Q/uy
(90a)
§(x) =
(9% 2 YA /ax (v wpx/v v, ) for  |ax/k| >> o/
“p L™ VgV, #ig s
(90 )
where Vg the group veloeity, is given by 3ve2/v¢, and Ve = Q/k(x)
is the spatially dependent phase veloeity.
The eritical dimensionless parameter ( QZ/wBZ)( dx/dx) can
be recast for purposes of comparison with typlcal parameters character-
i1zing beat heating. Assuming a linear density gradient, we define the

polnt of exact frequency and wavemmber matching by

¥(x =0) = [woz - wea(o)}ic'l + [m12 - wez(O)]kc‘l = k(o) .
We obtain at the poiat x =0

(P rupdarsax) = (v 2 X6A 2 e (91)

where v, = ap/k = (2e|$|/m)é and }'n = [d fn no(x)/dx];i'o .
Expressions equivalent to (91) can be written, recalling from Eq. (48)
the reletiuu sz/v¢2 s mBZ/aue2 = 2]5[/!10.

We emphasize that in either the case of weak or strong
plasma inhonogeneity ihere is finite dissipation within the scope of
the theory of Asseo et al. Therefore action transfer end heating
should persist. The relative action transfer R remains parametrized
by kOI.nluO/ci2 and the input ratic p of the electromagnetic wave
intensities in Eq. (39). On the other hand, the plasma response and

hence Vi, Wp) and the nonlinear dissipation ere determined
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self-consistently by the relstion &% o 509/[5(9 - "'NI.:}’ Eq. (63).
This relation is parametrized by the ratio vcp/ve through the non-
linear frequensy shift and by the pondercmotive potential amplitude
;oe = (mn/e )uou; . There are & sufficient number of independent
parameters to allow, in principle, the achieving of efficient transfer
of action and heating of inhomogeneous plasma in a regime where the
beat wave 1s rescnantly excited to moderately large ampliitude, while
dissipation persists.
D. Cascading

We conclude our discussion of the beat heating of plasma by
briefly reviewing rer-urch on the beat heating and induced cascading
of a set of parallel propagating transverse waves all coupled by a
single resonantly excited electron plasme wnv:'e.34 135,97 This heating
scheme is another example of stimulated Raman scattering. The mode
coupling relies on the same physical mechanisms described in
Section I.C.

The cascade is initiated by two lasers propagating parallel to
cne another, for example, two 002 lasers wlth wavelengths 9.6 um
and 10.6 um. The cross-coupling of the two lasers to produce a ¥ % B
ponderomotive force resonantly excltes a longitudinal electron plasma
wave, The density perturbaticm cen then couple to the transverse
oscillation velocity of elther of the two lasers producing transverse
currents. The transverse currents act as antennas to rescnanily excite
transverse waves shifted up and down in frequency and wavenumber from
the ineident laser frequencies and wavenumbers by the beat frequency
and wavenumb.r, The coupling thus induces new transverse waves as

well as amplifying or attenuating the pre-existing lasers. The 1nduced
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transverse waves can then couple .':lth the existing transverse waves to
stimulate further transitions. Thus the stimulated scattering can lead
to a transfer of the incldent lasex: energy into the electron plasma
wave and into transverse waves at lower and higher frequencies.

We shall be more explicit in our description of cascading ard
in agqdition provide a quantum mechenical picture. In this heating
scheme the energy is supplied by the two ‘asers with frequencies
ey and @ 1 differing by approximately the plasma frequency:

Zw_ + A where the mismatch A 1s assumed small. The

Qe -w e

transverse waves couple via the Lorentz force ¥ x B to excite a

longitudinal wave with wavenumber Ep = _l_:_L - !'L-l' For efficient
coupling there must be nearly exact phase matching which implies fre-

quency and wavenumber resnmance conditions. Fer w, << uw,wp_, the

beat wavenumber is relatively small, kp = me/c. Since the longi-

tudinal wave i- a very long wavelength disturbance, "’e/kp e > v,
there is no Landau damping. In practice collisional demping is too

weak to effect efficient plasma heating. Nonlinear dissipation is

presumed and verified a posteriori.y’
The longitudinal wave in turn interacts with each of the two

transverse waves (L,L-1) to induce nonlinear currents and produce two

more waves at k =k , - Ep end ¥ =k, * l_tp with frequencies
W oo =y - 22 and W Tt 2. The new transverse waves interact
to produce further scattering. The new frequency mismatches

Ay Fwy - (uez + k’;‘?c2 )* are given by the difference of the frequen-
cies of the induced transverse waves Wropn Ty 2 M and thelir
2)!

corresponding normal mode frequencies giv.n by (wez + klzc where

5l.:r_ = EL tn Ep ¥hen EL and 51.-1 are nearly parallel, the new
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y AT® lso spall coopared to the plasma freguency w,.

Otherwise the pew micmstches becowe appreciable, and pultiple scattering

mismatches &

from the same plasmm is inhibited by progressively larger mismatches
4,.
In Fig. 24 cascading is dlagrammed schematically. In quantum
language, a ccherent set of photons 1 undergo stimulated decay into
photons L-. already present and plasmons, The plasmons stimulate
further transitions upward and downward in frequency by converting
photons L into 141 and so on, and by inducing the ccherent cascade
of photone L-1 1into I~2 and so on to lower frequency. The damping
of the plasmone deposits energy irreversidly into the plasma.
Becauae energy and alsc the number of photons are conserved in thess
interactions (Manley-Rowe), the process must be preferentially down-
ward, to allow for the plasma heating. In quantum language the
heating is described as the irreversible absorption of plasmons by
the {lasw~..

The rate of photon conversion downward in frequency competes
with upward spreading. Kaufman, Wetson, and (.'»:hen34 have considered
under what circumstances the downward cascade rate can be maximlzed as
s function of the irput ratio of laser intensities and initisl mis-
match., For sake of gimplicity they assumed the plasm to be uniform
and nonrelativistic, Ve << ¢, l(an.t!h:st!.r:a34 obtainsd an analytic solution
describing the cagcade of the transverse modee in the limit of a
steady state, He solved the boundary value problem in which two
laser beams with steady intensities are incident on a semi-infinite
plasma. His solution, however, required the assumption that all the
transverse waves suffered an equal mismatch, Az = comstant. The

neglect of variable mismatch, 1.e., the ignoring of the diapersidn
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of the electromagnetic waves, requires that “q << Wy which limits the
ultizate hesting efficiency of the cascade because of the Manley-Rowe
relations.

Oohlnw and 'tt.on" independently exaxined the influence of
variable mismatch numerically. Caohen solved the coupled mode equations
describing the steady-state cascede as & boundary value problem.
Watson investigated the temporal development of the initial value
problen in which all transverse wave amplitudes are considered to be
uniform in space. For paraseters corresponding to €0, lasers and
a dense 0-pinch, ""l./"'e = 10, the cascade was found to proceed in
accordance with Kaufman's theory for the modes separated in frequency
by o more than :30 from the incident laser frequencies. Cascading
to much lower frequencies was found to be sansitive to the initial
choice of A. Watson determined that one could choose 4 in such a
way a8 to cause A,_ to pess through zero ut lower frequencles
Wy <uy and monotonically increase for the higher frequency modes
optimizing the domward cescade rate, kima and N!shikua” studied
the forward Raman scattering and cascading of a single electromagnetic
wave in a very underdense plasm w, << s

By analogy to the earlier derivation of the beat heating by
two opposed tranaverse waves, Eqa. (25)-(28), the equations describing
the caacade of parallel propagating transverse waves in inhomogeneous
plasma can be derived. For the transverse oscillation velocity one

obtains instead of Eq.(26)

u(x,t} = Z u,_(x,t) exp[-im,_z 01!! k'_(x')dx'] + c.c. , (92)
)
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vhere w, fu o, Kx)Ik(x)sn kp(:),

kL(xl - [uLz - uf(l)]’ e"l, and kp(x) = [uhz - uez(z)]ic’l -
(“‘:—1 - uez( :)]*c'l. The density perturdation {s giver: similarly to
Bq. (27) by

én(x,t) = n{x,t) expl-ifit + ir kp(x')dx'] +ec.e. . (93)

Use of the wave equation,(25), gives the equation deseribing

the coupling of the transverse waves

{3 - 18,(2) + cpa Julmit) =

(17200, 20y uy ey (B%/2g) + u_y (W) (%)
whers c,(x) = kl(:)czlu ’ u.z = u.z(x = 0), and ng = nolx = 0).

We have ignored the WKB variations in kl(x) compared to the spatial
variation of the smplitudes. From argurents similar to those employad
in deriving Eqs. (32) and (33) we obtair the equation deseribing the
coupling of the demsity perturbation to the ponderomotive potential

[at + v - 15(x)+ J(W.ZA’:L)E,:](E/nO) - -i(kpz/me) Zu',“;-l s
* {95)
where the dissipation rate of the plasma wave is given by v and
8 18 the Bohm-Gross frequency ;% = w (1 + npzxez).

Equation (94) describes explicitly the coupling by the density
perturbation of any particular transverse wave to both the higher and
lower frequency adjacent transverse modes. Adjacent traneverse moldes
in the cascade then beat together to drive the density oscillation in
£q.(95), thus supplying the necessary feedback for the stimulated
scattering. Kaufwan's analytic solution of Eqs. (94) and (95) in the
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steady-state limit (3t = 0) describes cascading in a uniform plasma
assuming that variable mismatch can be ignored and that the dissipation
and mismatch of the plasma wave dominate convection:

jv - :lALl >> |(3.<vez/n)ax|. Kaufman obtains a formula for the cascade
rate from which the dependence of csccading on the input ratio of the
laser intensities and on the plasma wave dissipation rate and mismatch
is explicit (Eq. (5) of Ref. 34).

As compared to the case of opposed lasers the coupling to the
longitudinal density perturbation {righ: side of Eq. (95)) is reduced
by the factor kpz/(kL + kg )2 = wez/t.utz for w, << w. Thus the
intensity threshold for effective forward scatter is likely to be much
higher than for backscatter. However, for backscatter there can be
no further photon transitions, as the beat wavenumber
K E EL - 51’1 - 251, couyples with the lasers to give
&_2 = EL-l -K= '351, and l‘-lﬂl = EL K= 3& Since bcth these
wavenunbers viclate the electromagnetic dispersion relation, large
mismatches A’_ arise terminating both the cascade of energy to lower
frequency and upward spreading as well. The implication 1s that
further decay due to backscatter requires seeding by a third laser
beam L-2 exciting a new longitudinal wave with wavenumber
_K_' .. l-‘I.-l - &_2 ¥ K. No energy need be lost on conversion to higher
frequency transverse waves, sinece each transition requires seeding by
$ts own laser beam. This heating mechanism was studied in detail in
Ref. 59 and reviewed in Section II.C.1.

We conclude this review of cascading by describing en innovative
idea due to W. Kunkel. In Ref. 59 Xaufman and Cohen compare the laser

intensity threshold for efftctive caacading' with that for significant
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Raman backseatter, finding that in a uniform plasms backscatter has
a lower threshold. The hackscattei: of the two laser beams that act as
pumps would of course prohibit efficient cascading. As is reviewed in
Section II.C.1, Kaufman and Cchen' further determine that beat heating
of opposed lasersg in a linear density gradient and Reman backscatter
oceur effectively in a finite length resonance zone proportional to
(v/wg )L where the density scale length is defined by
Ln =z [’d!.n no(x)/dx].]‘. If the plesma is much larger than the resonance
zone, the actlion transfer is independent of the dissipation mechanism,
Eqs. (36) and (37). As 1s evident from the structure of Eqs. (94)
snd (95) the same arguments are basically true for cascading as well.
Kunkel points out that in the limit of very large dissipation
of the electron plasma wave concomitant with backscatter, the plasma may
possibly not contain the entire resonance zone or the electronplasma wave
may be nowhere close to rescnance within the plasma. The reduction in
action transfer or in attentuation of the laserbeams due to stim:lated
backscatter can be exactly caleculated from Eq. (36), an estimate of
which appears in E3. (38). The reductlon of backscatter when the
electron plasme wave is strongly damped, e.g., when ZkLAe 2 0.4,
effectively raises the threshold for appreciable Raman backscatter.
However, since the beat wave in cascading is almost always weakly
linearly damped kpk e ve/c << 1, the plasma might quite easily contain
the entire resonance zone for casceding. Cascading could then occur
at lower laser intensitles than the intensity threshold for appreciable
backocatter, The question of under what realistic experimental
eircumstances cascading can preferentially occur over Ramen backscatter

and effectively heat plasma remains open.



-96~

III. FILAMENTATION AND STIMULATED BRILIOUIN SCATTERING

This part of the thesis describes in detail perametric insta-
bilities involving the induced scattering of electromagnetic waves by
low frequency ion modes (<w1 ). The theory constructed in Section I.C
is sufficiently general to deascribe both collective phenomenz, e.g.,
stimilated Raman and Brillouin scattering and modulational instabili-
ties, and induced Thomson scattering from electrons and lons. We shall
1imit our discussion here to only the scattering from collective ion
modes: Brillouin and filamentation instabilities.

We shall describe Brillouin scattering end fllamentation from
s unified point of view. The distinction between Brillouin strong
coupling and filamentetion is examined. We construct in detall the
dispersion relations for filamentation and Brillouln. We also consider
the absolute instability of Brillouin strong coupling, demonstrating
that the asymptotic Green's function for Brillouwin instability is
described by analytic weak coupling theory derived for all pump inten-
sities within the Brillouin regime., We further show that very strong
puro waves can induce growth of the scattered iransverse wave at
(wo + 9;}_:0 + k) comparsble to that si (ub - Q*,go -~ 5_‘). We shall

not discuss the nonlinear saturation of Brillouin38 or l‘i.lxm\em.a’t,ion.'98

A. Introduction to the foupling of
Transve~se Waves to Ion Modes
An ion acoustic wave can be weakly coupled to transverse
waves by means of the ponderomotive force, corresponding to Brillouin
weak coupling. The freque.acy of the lon acoustic wave iz given by
Q=ke_ + 86 where ey = ('l‘e/mi)i and 6 1s a small (<< nccs)

8
complex~valued frequency shift dependent on the pump wave emplitude.
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For a more intense punp wave the ponderomotive force and consequently
the coupling to the density perturbation increase. In the limit that
the oscillation frequency of the density perturbation is significantly
perturbed by the pump, the scattering is defined as Brillouin strong
coupling. ’

Brillouin strong coupling is an example of the stimulated
scattering of the pump wave into a transverse wave shifted to lower
frequency Wy - n’ with wevenumber 50 - 5'. Bo*th the scattered
transverse wave and the concomitant driven ion mode, or "quhsi-mode",
grow exponentially in the linsar regime of the parametric instability.
When the pump wave scatters off a driven ifon mode into transverse
waves shifted in wavenumber yp and down by the wavenumber of the density
perturbation, l_:o + x and _k_o - 5*, with resulting exponential growth
of the scattered transverse waves and the density perturbation, the
instability is described as filamentation. The density perturbation
excited by the scattering is typlcaily a purely growing mode not
otherwise present. We consider thie.-as another example of the stimu-

lated scattering of light by a quasi-mode,

B. General Formulation of Brillovin and Filamentation

In Section I.C we derived a very general dispersion relation
(18) which implicitly includes Brillouin and filamentation. Equation
(18) requires the evaluation of r(n,g = [xe(l + xi)/c]n, © for complex
beat frequencies R and beat wevenumbers K. In Appendix 1 we

show that for Maxwellian velocity distribution functions the electron

2

and lon susceptibilities are given by xe( 2,x) = l/nezke and

xi(ﬂ,_og_ K] -wizlﬁz where A, = ve/me. ¥e have assumed that
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vy << ,ﬂ/KI << Vs and that linear lLandau damping and collisions are
negligitle. Then for [(R,k} we obtain

M) = (- o2y s A2 - A ?)

If we substitute this form of [ into Eq. (18) and multiply by
[02(1 + leez) - xzcszl » Eq. (18) beccmes

[P+ A2 - e 2] [0? - 2P - iy - ek
s (22 FF PP -9 = 0 . (96)

Equation {96) describes both rilamentation and Brillouin
soeattering. Aralytic solution of (96) for various speclal cases and
numerical solution of the general dispersion relation will be presunted.

If we define cos @ = E-Eo, then Eq.(9) cen be rewritten as
[02(1 + Kzlez) «2e 2][(0 - rczcz)2 - I.(ﬂmo - xkq cos @ c2)2]

-%) =0 . (97}

o (1720, 2~d2 2.2

We note that in Eq. (97) changing both the signs of cos 6 and Q,
viz. Q+ -0 and cos 8 + -cos O = cos(m - 8), leaves Eq. (97)
invariant. We shall therefore solve Eqs. (96) end (97) for

0 < 0 < n/2 realizing that Q(x,m-8) = -f(x,8).

C. Fllamentation Dispersion Relation

We first consider Eq. (96) in the special case wiere 1t
describes filamentatlon. In the limit that [kA | << 1 and

|| << |ke|, Eq. (96) can be somewhat simplified to give



-39-

(nz - chlz)[(ﬂ - 5-3‘)2 - l’cl’l'Awoz} - ulz(?o/c )zrl'cl'/!!uoz 2~ 0
(98)
where !‘ H lrocz/mo i1s the group velocity of the pump wave. Drake
ot 31.12 derive the same dispersion relation. Since this equation is
quertic in Q and sirth order In «, ws must further simplify the dis-
persion relstion to meke analytic progrese.

For the formation of filaments whose dimension (sce Fig. ')
transverse to the pump propagation direction fo is quite small
compared to its characteristic length of variation in the x rirecticn
parallel to £y, |k /x| << 1, we obtein @ = ¥yt v = kv ¢ iy
The temporal growth rate y then satisfies the equation

(F + %0, 0N % v 4Pu,?) - w2 Bk = o . (99)

The expressions Q = ‘xvg + 1y and Eq. (99) are equivalent to Eq.
(98) to lowest order in i /x | and lrxvg/ﬂ, both of which are
assumed smill. This biquadratic dispersion relation has beer obtained

also by Dreke et al.)? and Langdon and Lesinski.3? The biquadratic

is readily solved giving
LIRS S St A R CW 5 EN R o (100}

where 625 (1/2) ui"( Volc )2. The following limiting forms are
obteined from Eq. (100): for Ixzc/&.,b] << ca/c,
¥ = #yglk,e/2m5)e/e,); and for |« e/2uy| >> e /e,

Y = :(702 - gz"csz)é. For K = 0, @ =1y which is schematically

diagrammed as e function of L in Fig. 25.
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Further discussion of fllamentation is relegated to the
existi-g literature and to a for.hcoming paper, by C. Msx enf this
author, wherein the Green's function describing the linear, convective

_growth of filamentation is constructed. Drake et 31.12

and Manheizer
and 0tt39 consider the temporal problem, whereas Kaw et 31.13 investi-
gate spatial growth of filamentation. The extensive literature due
to researchers in the nonlinear opties field is in general more
directed at the nonlinear structure of sieady-state or quasi-steady

state filamentation or selr-focusing.l4’15’ 20

D. Brillouin Scattering

1. Introductior to Brillouir Weak and Strong Coupling

We present a detailed examination of Brillouin weak and strong
coupling._ Assuming that the scattered wave a_ suffers e much smaller
rismatch from its linear dispersion relation than the a, scattered
wave, i.e., |D_/D,| << 1, the Brillouin dispersicn relation can be
immediately obtained from Eq. (19). We evaluate the linear suscepti-
bilities in the limit v; << [@/k| << v,. If we further assume that

Kzl\ez, lnl/wo << 1 then Eq. (19) becomes a dispersion relation

describing stimilated Brillouin scatterii;:

(02 - chsz){n + c2(|<2 - 25-1_:0)/2%]

DB(nnﬁ)

+

per 2 2/8u) =0 . (101)

To justify the tssumption that |D_| << D[, we require that
[ - ekg| << 1@ + 2 x'ky|. We continue to assume that the plasma
is underdense, W, < e The dispersion relation Eq. (101) was also

obtained by Bodner and Eddleman37 using a fluid equations approach.
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In the absence of the electromegnetic pump, 702 = 0, there
are only free oscillations: 1on acoustic waves I = e, and freely
propagating electromagnetic waves D_( 9,5) = 0. In the presence of the
pump, the two waves are coupled. The dispersicn relation of each wave is
altered by the scattering of the radiation by the densiiy perturba-
tion and the accompanying ponderomotive force driving the low frequency
density perturbation. In the absence of dissipation, an Infinitesimal
putp gives rise to a growing ion acoustic oscillation and scattered
electromagnetic wave, 1.e., Jmf1 << Re 2 = Keg for real k. This
constitutes Brillouin weak coupling.

For stronger pump-wave amplitudes the growth rate of the
ingtability and modifications to th;: vselllation frequency increase.
The ponderomotive force becomes comparsble to the normal fluid restoring
force of &n ion acoustic wave. In the strong coupling limit the
ponderomotive force 1s dominant: the oscillation frequency is signifi-
cantly modified. For [R] >> lce | we obtain e ~K2?02w12/8m0
from Eq. (101). This is similar to-filamentation in that the density
perturbation is a driven mode, or quasi-mode,ll whose pump-dependent

dispersion relation differs dramatically from a plasma normal mode.

2. Generalization of Brillouin Analysis to Three Dimensions

Before proceeding with a ¢:talled, quantitative discussion of
two dimensional 8rillouin, some comments cox the generalization of our
theoretical description to include scattering in three dimensions are
appropriate. If the scattered radiatlion propagaties in a direction
having a component parallel to the pump-wave polarization, then trans-
verse canonical momentum is no longer conserved; our fomlism then
bresks down. To describe three dlmensional Brillouin, Drake et lal.,]‘2

11 37

Rosenbluth et al.,” and Bodner and Eddelman”’ consider Maxwell's
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equstions and fluid equsations. They all employ the simple fluid

model for the nonlinear current Eq. (14), however, allowing the polari-
zation of the scattered radiation to make an arbitrary angle Y with
the polarization of the incident electrocmagnetic wave,

In calculating the ponderomotive potential driving the low
frequency longitudinal oscillation, the generalization of Eq. (8), one
factor of cos ¢ enters due to the v x B Lorentz force of the pump
and scattered waves. For the component of the total current in the
direction parallel to the polarization of the scattered radiation
driving the nonlinear wave equation, a second factor of cos y occurs
due to the Inner product of the pump quiver velocity with -ae
scattered wave polarization directiom.

) The result then of including the angle of relative polarlzation
is to alter the Brillouin dispersion relation by the replacement of
i"oz with 502 cos? ¢ in Eq. (101). By requiring the pump and the
scattered radiation to be polarized perpendicular to the plane defined
by their propagation directions, the coupling term in Eq. (1CL) is
maximized \702 cos? ¢+ v 2 For scattering angles such that ¢ # O

0
the effective pump strength 'ﬁoz c082 ¢ 1s redunced.

3. Brillouin Dispersion Relaticns )

We consider first the weak coupling limit of Eq. (101) and

define the following veriables: cos @ = 2.20; Ty = “O/wo; the group
- , : 2 k)62 :

velocity vg = czkolwo, and A = ke + (x 2k l_:o)c /Zmo, the fre
quency mismatch of the scattered electromagnetic wave., (The frequency
mismatch 1s obtained from the electromagnetic dispersion relation:
A= (2)7D, with Q= ke, << wy. If we define 6w = Q -xc, end
assume |6w/R| << 1, then from Eq. (101) we obtain
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(1/2) D(8,k) = &(xe, « 8/2) + Gu ke A + e 2 ug(ro/ar .
(102)

The solution of Eq. (102) 1= given by

ﬁm(ncca + 8/2) = -re 0/2 & [( Kca£/2)2 - chszwo( rO/l.AE)Z(Kcs + A/Z)] L
(103)
The growth rate, Im Sw, i3 a maximum, with respect to wavenumber
(taken here to be real) for fixed angle, at A = 0. This determines
the wavenumber k = 2k0(cos 0 - ca/vg), for which A = 0, and thus
corresponds to exact wavenumber and frequency matching for the inter-
action of the three normal modes. From Eq. (103) the maximum growth

rate 1s given by
ImQ IZkoc mo(cos 8 - cg /v )] (r /l.A ) (104)

in agreement with Refs. 11, 12, 36, and 37.

Flgure 26 schemstically displays the dispersion relation
Dg(@,x) = 0 in the weak coupling regime, plotting the normalized
frequency Q/Zkocs ag a function of K/Zko for fixed eangle 6 and
pump strength. The width of the umstable « region is found from
Eg. (103) to be 2k, (e, /v Arg/da )[(wolkoc M(cos @ - e_/v )J
(ro/l,xe) (ug/¥gey) << [coa 8 - cs/vgl. In the unstable «k region
there are complex conjugate solutioms for &w. Both solutions
correspond to the three waves being effectiveli phase-locked at a
reletive phase 1m/2 or 3m/2! in Eo. (3). One value of the relative
phase leadas to instability and the other to decay. In the gtable K

reglon, |A] >> 25 ro/4>‘e)2, the three-wave coupling induces a

frequency shift which again, depending on the relative phasing of the
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three waves, can be either positive or negative. This accounts for the
gplitting of the oscillation frequency whose dependence on pump-wave
intensity, wavenumber, and scattering angle is given by Eq. (103).
To consider the strong coupling limit of Eq. (101) we do not
make the assumption that the density perturbation 1. a weakly growing

ion acoustic wave. FEquation (101) is a cubic equation in Q:

DB(Q,K,cos g) = n3 + ﬂz(xz - 2n<k0cos e)c2/2u0 - mczcsz

e~ 2 2 2 2,2 2 -
- [K Ty uy - 4x%cg (x -chkocos 8)e ]/Su)o = 0 . (105)

The colutlon for the roots of a cubic equation is standard. Results
for Q as a function of g for fixed cos 8 and pump strength
iIn the strong coupling regime are shown in Fig., 27a. For fixed ¢ the
- reglon of ¢ around 2k0cos 9 1s restricted in order that we main-
tain the condition |[D_/D,| << 1, which is reguired in the derivation
of the Brillouin dispersion relation Eq. (101).

wWhen the ponderomotive force"very much dowinates the restoring
force associated with a free ion acoustic oscillation (in terms of
characteristic frequencies (wizkozvoz/zwo )1/3 . "cs) the following

simplification results. We set kocs/“’o + 0 1in Eq. (105) to obtain

DB(f ,¥ycos B) = @+ 92( K2 - 2|<k0cos 9)c2/2w0 + szozmiz/awo = Q
(106)
The complex frequency of the density perturbation is then completely
determined by the scattering of the radiation and the degree of mis-
match of the scattered wave from a normal mode, represented by the

term involving KZ - Zxkocos 8.
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For x and cos 6 such that [D_| << [D,], growth 1s
maximized by ‘2 = 2|<kocoa 8 = 0 giving the standard result for strong

eouplingn »12,37
a = [(2) + €V372)] (cos 0)2/3(u %75 22002 . (107)

For fcos 8] = k-ky| << 1, the Brillouin enalysis breaks down, and
Eq. (96) must be solved. We note that the largest growth rates for
weak and strong coupling Brillouin occur for exmct backscatter,
_i:/Zk0 = cos 8 =1, Figure  27a shows a plot of the normalized fre-
quency §/w., using Eq. (106), as & function of the normalized real
wavenumbers K/?ko for various fixed values of cos € and fixed
perameters ( uizkoziiozlmo4 )1,3 = 0.04 and koke = 0.02.

Wr emphasize that Eqs. (101) and (106) give a general descrip-
tion of Brillouin weak and strong coupling. The two regimes of
scattering are distinguished by (rO/Xe )z{mOIZkoca) compared to unity.
This is obtained by taking the ratio of the strong coupling frequency
in Eq. (107) to Zkot:s , and then cuting the result, ignoring numerical
factors of ordsr unity and the dependence on cos ©. Strong coupling
corresponds to (x-o/ke )z(uO/Zkocs) 2 1; weak coupling occurs for
( rc‘/ke )2( wo/Zkocs) << 1, However, to correctly extract weak coupling,
one must carefully insure frequency end wavenumber matching, i.e.,

A =0.

Brillouin strong coupling can exhlbit a regime of nearly
nonoscillatory growth whose parameter dependence closely resembles
the zrowth rate of filamentation in the limit V(._‘Z/e2
x 2 2kq cos 6 and wilu , (nc‘2 - 2rkgcos e)/zk°2 >> l’l/(.u0 >> -<cs/wo,
Eq. (105) becames Dy(f,x,co8 8) = 0% « 2ekyp08 8)c%/ 2,

+ -tz;ozuiz/&no = 0, W must, however, continue to maintain the

>> nzkez. For
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tnequality [D_| << D], which requires x? - 2ui;cos 6 = 0, to
Justify the neglect of a, conpared to & and fdentifies the
instability as Brillouin. Solution of the quadratic dispersion relation
is readily obtained, 0 = :1[-:/(: - Zkocos B)P ”1k0‘70/"’0’ When the
right side of the preceding expressicn becomes compareble to
(c0s® 8wy k°v2/2m )1/3 the £° termin Dy(9,x,c08 @) must be
retalined.

Bicept for the geometrical cosfficient fi/(k - 2kqcos e)P,
the growth rate for nearly purely growing Brillouln strong coupling
18 identical in its parameter dependence tc that for filamentatlon
in the limit ¥ /c > xx “’oﬂ‘o s ¢ x.e/zuo » ¢ /c, end
lcos @] < 1, viz. from Eq. (100) @ = #ly, = ¥, /V"c. Although
strong coupling and filamentation have simllar growth rates and both
are characterized by the coupling of t.ansverse normal modes to a
strongly driven longitudinal mode, they differ radically in that for
gtrong coupling the growth of the a_ sideband 1s dominant end is a
maximm for k = Zkycos . For filementstion the two sidebands
a_,a, have comparsble amplitudes; and for the regime of filamentation
of interest here, we have the condition |cos §] << 1.

48 the a_ sldeband acquires a larger mlsmatch D_, Brillouin
strong coupling exhibits a smooth transition into modulational
instability. The transition is complete for [D /.| = &1). Imn
Figure 27b, the numerical solution of Eq. (96) is exhibited plotting
f/uwy vs k/2k, for various values of 8. For « = Zkjcos & there is
good agreement with the Briliouin strong coupling solutions shewn in

Flg. 27a. For k > 2k°cos g, filamentation occurs with growth rate
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Q= 170 corresponding to the limit of Zuoc '/cz << g << ( Ae )'liolc
in Eq. (100) and Fig. 25.

We would like to include the Influence of the comcomitant
growth of the a, sideband on Brillouin in such a way as to permit
further analysis without resorting to the numerical sclution of the
complete dispersion relation (96) displayed in Fig. 27b. We can
rewrite Eqs. (17) without approximation

D_ - % 2r/4 - (P IT/APAD, - R FT/4) = 0 . (108)

Then defining 6(R,c) = D_(R,x)/D,(R,k) whaze (2,c) satisfy the
Brillouin dispersion relation Eq. (19), b - xzﬁozr/!. = 0, the first
correction t5 the Brillouin dispersion relation &ue to findte § 1is

included as follows:
b -c%F[1+6/1-6)]nm = o (109)

If the solution (Rx) cf Eq, (102) 1~ iterated back into §, then
Eq. (109) canstitutes a recursive dispersion rslation equivalent to
the branches of Zg. (13) which correspond to Brillouin.

The dimensionless quantity § thus chsracterizes the condi-
tion for the existence of the Brillouin instability and the validity
snu accuracy of its dispersion rela'tion. The mismatch D relative
to D+ can increase for a variety of reasomns: D_ can cease to be
nearly zero because of 1ts dependence on x and 6, and because of
1ts dependence on pump strength through f. As |§| approaches order
unity filamentation smoothly supercedes Brillouin strong coupling.

By way of an illustration of Brillouin backscattering, a
numerical similation was performed. The electromagnetlc code dis-

cussed in Section II.B was employed to study Brillouin gcattering in



-108-

one dimension., A linearly polu'fzed monochramatic wave,

uy " 1.414 Wy irpinged upon an unmagnetized, At‘inite, warm plasea
slab. FElectrons were warm ( 'l'elmeé2 = 0.01) and singly charged ions
cold. There were a modest number of partlcles, 2000 of esch species
with m:l/me = 25, In terms of the parsmeters used in Eqs. (105)

and (106), the dimensionless pump strength was chosen to be

[C0y /) ,2rg2072] M2 = 1.26 % 1072 ane. the atmenstonless sound
speed kyc /uy = 1.414 X 1072, mie corresponds to a regime marginally
between weak and strong coupling.

- Because of the discrete Fourier spectrum of wavenumbers in
the simlation, only one backscatter mnde was excited from noise,

(3 2.1_:0 Figureas 28 and 29 show the growt.h of a large amplitude
density perturkation in electron and ion phase spaces, From the ion
phase space plots a phase velocity nearly equal to the ion sound
speed was observed, Re Q/x = Cq = 0.02¢c. An accurate measurement of
a growth rate was somewhat hopeless because of the very weak growth
rate, the early onset of nonlinear features (ion wave breaking) the
reflection of particles and waves in our rather short system, ani the
relatively large noise levels present in the simulation (see Fig. 30).
A detailed simulation study of Brillouin instability has been made by
Foralund et al.38 in which linear growth rates are caref1ly measured
and the importance of competing nonlinear features are assessed.

4. Absoluts Instebility of Brillouin

We next conaider the asymptotic Green's function analysis for

Brillouin. We follow the procedure of Bers and Briggs to escertain

»100

the existence of sbaolute linear instability as applied to

Brillouin weak and strong coupling and extend the work of Jomay’
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and Chambers, Bers, and Watson.m'ml A &-function perturbation in
space and time ia asgumed for. the space-~time dependence of the source in
the Laplace-transformed initial-value problem for the linearly
unstable coupled modes a_ and &én,. For the source term we follow
Oberman and Auer,mz allowlng dlscrete particles in a collisionless
plasma to produce longitudinal noise. We then comstruct the Green's
functions fur the scattered electromagnetic wave and for the electron
and lon density perturbations, and anslyze the Green's functions
asymptotically.

The noise enters the charge density as follows. Polsscn's
equation is
-V2~¢(§_.t) = 4n Z eon(x,t) . (110)

8
The charge density of specles s, 6n5(§,t ), includes the charge
density due to noise and the perturbed charge density induced by the
longitudinal electric field and the longitudinel component of the
ponderomotive force. From Cberman and Auer,loz the Fourler and

Laplace-transformed charge densitles are given by

G = X<, e)ame, ¢ 820,00 (111)

where X, = xs(n,_f) is the 1l.near susceptibility and Sne( x,t)
is the longitudinal charge density due to noise, whose Laplace-
transforms in time and Fourier transforms in two spetial dimensions

are glven by

én'(n.g) f at'fdzg exp(1at - 1c-x') S %12
0
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Substitution of Eq. (111) for ﬁa into the Fourler and
I.nplaee—transfomd Eg. (110) and use of e(Q,x) =1 ¢ Z PRGN
=¢*¢°,a.nd |¢o| << ho[ yield

C(ﬂj_.s) ae(ﬂ:_'s) = [1 + xi(ﬂaﬁ)] $oe(n:£)

+ dmc e[S “(ag) - S (n.x)] . (112)

In Eq. {112) we solve for & and substitute the result into Eq. (111)

Ato obtain

6, = -sze(l + xi) 5'1509/4“! +(1+ X )e:-‘.l'sne + )fee-ls ni ,(113)

where the frequency and wavenumber dependence (Q,k) in the suscepti-
bilities and the ‘ransformed amplitudes is implicit.
Substituting the electron charge density into the fluid model

for the nonlinear transverse current J = eVe[no + 5ne(§,1:)] )

Eq. (14 ) and Fourler and Laplace-transforming give

~it #* * o .
J (mo -2,k - K) = -engei_ - ecdy Gne(w,_ls)

» »
-ceaGn(zu -9,2!;0-5) .

2,018 = 2 *
where (mc“/e)d_ = (me /e)‘(uo - kg - K} and
(necale )io = (meczle} s(mo,k ) are the Fourier and Laplace-transformed
amplitudes of the perturbed and pump-wave vector potentials, respec-
tively. The term -eci_c'x':: (2w - :m',z:_:o - 25?) is higher order
in 8,
the longitv.inal noise §n’( 2, - @') does not incur the increased

and Sn’ and has been ignored. For Re(Zmo -n*) > wg,

plasma shielding that low frequency nolse 5:(9) can, and therufore
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its contribution is igmred.mz The electron charge demsity induced
by the ponderomotive potential 'iﬂ.l phase dependence (zwo - ﬂ*,

- 5*) 1s proporticnal to |2|_:0 - 5']2 X (1 + )(l)t:‘1 and 1is

%y

1likewise small compared to the low frequency induced charge density:
*
Ixe/el ~ mez/l,woz <<1 and for backscatter IZI_:O -X 12 << lﬁlz.
The ponderomotive potential given by Eq. (9) can be Fourier

and Laplace~transformed to give
~ e - 2, \~ ~*
¢, (8,%) (mc/e)aa_ .

Substitution of the above expressicn into Eq. (11:3) determines
ﬁe(ﬂ,l_t_) as a function of EOE; and 5:. We then substitute for
the charge density in Bq. (114) to express the nonlinear current
1ikewise as a function of El, a, and § na_ We Fourier and Laplace-
transform the electromagnetic wave equation, Eq. (13), to close the
set of equations. Recalling the definitions D_ = |<2c2 - 2_150~£c2 -
0 + 200 and T(2,k) = x (R)[1 + X,(7,%)]/6(R,5), the transformed
wave equation including the effects due to longitudinal nofse is

[D_ - nczczlaolzl‘(ﬂ,s_)]a: -
- w2 Ha) B {[1 * xg(2,0] 8, %0.)/ng + xy(Rk) sn‘(n,ﬁ)/no} .

(115)

For |kA | << 1, vy << Ia/| << v,, and lnz/wizl << 1, the
linear susceptibilitiea are Xy b 1/-:2)02 and X ¥ -wiz/'nz. Then the

dielectric response T(Q,x) can be expressed as

% .

rax) = -mi;"/(ﬂ2 - xzos
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Fquation (115) becomes

[(2® - e 2D+ R[5 )7 - a.,oba(n,g)af =

%[ 2= - 1
mezﬁolﬂzsni(ﬂ,ﬁ)/no - chszsne(ﬂ,f_)/noj )

where DB( ?,k) 1s defined in Eq. (101). The dispersion relation for
Brillouin scattering is determined by DB( 2,K) = 0.
We can now exhibit equations for E:, Gﬁe, and Gﬁi. From

Eq. (116) we find that

E*(u-o - Q*,ko - 5*) z E: =
I e e -
0,2 [2agP5(2,6)] 235 [0%8 o,k )y - k%, %5 (2,0, | (117a)

and from Eq. (113)

6 (2,) = chzwiz( 22 - chaz )°:L IZI”Q_EB(Q’E)]-l
x I.Zlo | 2[925111( Q ,D_C_)/no - chszéne( R, )/no ]

- e A0 - P By B a0, . (117)

Use of Eqs. {110) und (111) with cboi = C gives an expression for
6?:1(9,5_) of form similar to Eq. {117b).

To construct the Green's functions for the scattered electro-
magnetic wave a__( E't) and for the perturbed electron charge density
6ne(_z_,t), we multiply Eq. (117a) by exp[i(mo -t - i(.lfo - 5)._)51
and Eq. (117b) by exp(-1Qt + ik-x) and perform the inverse Laplace
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and Fourler transforms. We consider the Green's functions with sources
due to ion or electron noise separately, asserting that the ion noise
and electron noise due tc discreteness are independent. We replace
.’:ns_( X,t) by a Dirac §-function In space and time whose Fourfer and
Laplace transform is uniiy. The Green's functioms Gas(_x_,t) for
&_(x,t), due to initiation by lougitudinal electron or ion noise

respectively, erc

[65x ) AN
= (2m)3 [ a j- % 2
¢, “c 5

Gai(£: t ) {13 5

% exp[L(ug -t - gy - x)-x] (118)
@ ]

where C, 1s tke Laplace or Bromwich contour and cK, before deforma-

Q
tior, Is the real vcx—n:z plane. The corresponding Green's functions
for the electron and ion density perturbations can be similarly
canstructed.

The Green's functions for a_(x,t), Eq. (218}, and also for
the density perturbations can be writien as follows, where we have

performed the ﬂ-integration by depreasing the C‘z contnur down as far

as possible and deforming the contour around the highest poles of the
Integrand:

. 158, K)
G S(X,t) = -i Z (ZW)‘ZI de A K3 J* =
a = -a%UZKW
3 ¢ = I%J

|- 5 -

x exp[i(mo - ﬂ_'sid)t - 1(1_:0 - 5_)-5_] + c.c. {119)
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I:(R - ,5) absorbs all the constent coefficients and the remaining
2 an: k dependence of the integrand. The superscripts s denote
the species of the noise source. ﬂ“J is determined by DB(Q'E) =Q,
and Zj denotes the sum over the :e.rious branches of the dispersiun
relation DB(Q,E_) = 0. We take only the roots for which Re RK;J > 0,
afnce we add the complex conJugate on tne right side of Eg. (1:9).
In caleulating the Green's functions for én s( E’t)' there are additional
poles of the integrand due to terms appearing in the denominator like
92 - chsz, for example. Since for these poles Im Q = Im(:ncs) =Q,
shey do not lead to instalility; however, they remind us of the
presence of the low frequency normal modes that can also be initiated
ty longitudinal noise, i.'e., ion acoustic waves.

In performing ‘the remaining k-integration in Eq. (119), the
Gy contour can be deformed as iong as the zeroes K, of DB( QK) =0
remain on their r . :tive sides of the contours C'< in the complex
x - &nd Kz—planes.‘ 0 Since Q. will lead to a r;pid phase variation
exp(~! Re ant) and perhaps to ;n exponential growth exp(Im QKt),
the dominan: contribution to the integral in the complex K-spa:e will
arfse from the saddle or stationary phase polnts described by
BSZK/BE = 0, Provided that 3DB( 9,5)/3!2 ﬂnc # 0, the saddle point
co;ditiou is equivalent to the simultaneoE; conditions DB(Q,E) =0
and BDB(Q,_E)/BI_(_ = 0. This corresponds to two roots of the dispersion
relation pinching together.

If the pinching roots come from opposiie sides of the Ce
eontours, then no further contour deformations cén be performed a;,

the pinch point. The cn contour can be depressed elsewhere in the

complex {I-plane tut cn is trapped at £ by causality requirements
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between the pinching roots ¥ = K. If mQ >0 .8t the
pinch point, then the instablility grows in time everywhere in space
{ebaclute instabil:ltymo) with asymptotic Green's functions:

6 (x,t) =

I:(fzp,fp;i,t) exp[:l(wo -0 ) -~ i(l_:o - Ex,)"‘]

+ c. C.
R

K.

-?
and similarly
8
G s(x t) « In (R0 ’E't) exp(-mpt * i 5) + ¢.C
n '~ b, (R, )/a0 K e
%ok
where Qp and Ep are the pinch-point frequency and wavenumber with

largest positive Imﬂp. The functions I: and Ins

incorporate
the different freque:icy- and wavenuuber-dependent factors remaining
in polynomial form in the numerators and denominators of the respective
Green's functlons' integrands. I'Ize;also Inelude the dependence on

ﬂp, 5p » X, and t; as the result of the saddle-point integration:
fdzg' exp[-1g": k'k't + 1k x|
where Q" = a"’n/akaklQ
i =

To analyze the nature of the absolute instability of stimulated

Brillouin scattering in all regimes of pump strength, the pinch
conditions can be directly applied to Eq. (101) or (105). The pinch

eonditions become
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Dy(8,k,c08 8) = O (120a)
BDB(SZ,K,cos 8) = 0O . (120b)
«Ltgine BDB(Q,K,cos 0)/dcos 6= 0 . (120¢)

Equation (120c) gives 2« sin 8(x%,? - 9%) = 0, which has mon-
trivial solutions for 6 = 0,7 and k # 0. The other solutions to
Eq. (112c), Q@ = .*.Kcs, merely describe free ion acoustic oscillations
and are inconsistent with Eq. (120a). The © = Q0 solution corresponds
to Brillouin backscatter. Setting cos @ = 1 reduces Eqs. (120a)
and (120b) to a one dimensional deseription.

The asymptotic behavior for modes where 6 # 0 is constructed
from the simultaneous solution of Egs. {120a) and {120b) as functiors
of 2 and x and with fixed parameter cos 6. These modes can grow
in time as well. However, as they do not represent simultaneous
solution of the entire set of Eqs. (120), these modes will have weaker
growth rates; i.e., thelr growth rates have not been maximized with
respect to seattering angle ©. This is corroborated by Egs. (104)
and (107) which show that the growth rates of Brillouin weak and
strong coupling are maximized for exact backscatter, € = Q.

The plach-point solutions for complex 2 describe the temporal
growth, if Im Q > O, and oscillation, if E: Q # O, of the low
frequency denslty perturbation. The scattered electromagnetic wave
has shifted complex frequency Gy = ﬂ'*. A finite imaginary part of «
will produce a spatial growth or attenustion of the amplitudes of the
density perturbation end the scattered electromagnetic wave: in fact,

both grow in space in the direction of the backseatter.
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To explicitly determine the pinch-point frequencies and wave-
numbers for Brillouin, Eq. (105) 1s substituted into Eqs. (120a)
and (120b) with cos 8 = 1. We then solve numerically. Since the
ratio [(mi/mo)z( koro)zlzll/ 3/(k0°s/wo) determines the distinction
between the week and strong coupling regimes of the Brillouin disper-
sion relation, we set kocﬂlm0 = 0.01 for convenience and vary
Pz [(mi/ub )2( koro)z/zll/ 3 as @ free parameter. Figure 30 shows a
Plot of Re fi/u, and Im Q/u, ve (ui/mo)z(koro)z/z, while Fig. 31
plots Re «/2k;, In /2y, end Re 9/Re xey vs (wy/ug)(k,g)?/2.
By slowly increasing the pump strength from PP <« (kocs/mo)3 = 10_6
to P2 » (kqe s/mo)3 = 10'6, the continuous transition from weak to
strong couvpling should be exhibited,if' it exists. Before commenting
on the results, we digress to sulve Eas. (120a) and (120b) algebraically
for weak coupling.

We can write Eq. (101) as

DB(Q,K,COS 8) = [Q + cz(xz - 2kk,cos e)/Zmo](Q2 - xzcsz)
222 -
+ w K, /awo o . (121)

If we make en expansion 1 = KoCs * Sw and Kk = Ko * 8k, where
K0/2ko = cos 6 - cs/vg is the wavenumber for exact frequency and
wavenumber matching, and assume that appropriate for wesk coupling
la.c/.cof, fé‘m/KocBI << 1, then from Eq. (121) we find that

DB(Gm,GK,cos g) « [Gu + czdx(lclo - k,cos e)/wo](ﬁm - chs)

2 2~ 2 -1
*+ w Ty (16|cocawo) = 0 . (122)
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To cbtain the pinch point describing the absoclute instability
of weak coupling Brillouin, we set © = 0 in accordance with Eq.
(220c) to obtain Kg = Zko(l - cs/"g) and

Dy(8w,6x) = [Gm + 8e(Ky = ko)ez/mo (80 - c 8c) + 702 (123)

= 2 ~1 - .
where 702 z "'1“0( noro) (16|<ole) and o, = Zkocs. Then Eq. (120b)

becomes

3Dy 6u, 61738 = (kg = Kg)eZ/ug J(6u -~ e 86)
- cB{Gm + c2(|<° - k0)6n</m0] . (124)

If we define ¢, = cz( o = ko)/wo, the magnitude of the group veloecity
of the backscattered electromagnetic wave, then the simultaneous
solutions of Eqs. (123) and (124), determining the pinch point, are

5w,

. = ti2vg(ee Wiey v e)) & 22y (e so (1258)

and
ok, = .‘(xs—nl)/z = ﬂ%)/(clcs)! R (125b)

where Y = GwE/cl and K, = 15w$/<25.:"°3 The ratio kocs/w() has
been assumed small throughout., The generalization of these results
to include dfssipation is found in the uterature.ll’103
The week coupling pinch-point solutions Eas. (125 ) are plotted
for purposea of reference In Figsg, 30 and 31 as dashed lines. The
_]_..oﬂ_ 1imit of pump stremgth in these figures corresponds to
(mi/mo)z( k4T )2/2 = (kOcE/mo )J = 10-6, which, according‘ to the normal
mode analysis, 18 the upper limit of the weak coupling regime. One
observes that the weak coupling analytic formulae describe Brillouin
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absolute instebility to an excellent approximation over a broad range
of pump strengths (q/wo)z(koro )212 > (kots'/mo)J well into the strong
coupling regime of normal modes. The week coupling formulse represent
valid pinch-point solutions for the genersl Brililouin dispersion
relation, Eq. (101) or (105) provided lcu‘/:csl << 1. The conditicn
(q/ab)z(koro)zlz << (koc./uo)’ applies to the linear dispersion
relation describing the normel mode spectrum, 1.e., the complex
frequency f, as & function of real x. In terms of & conditim on
the pump strength 7,2/c2, the weak coupling pinch point formulae

require that
(Volc)z(uilaooa 2 <« 1,

while the weak coupling linear normal mode diopersion relation
demands that ’

(Tofe Puy/2ge, v se,) << 1,

where numerical factors of order unity end dependence on x/2k° have
been dropped. Comparison of the two conditions demonstrﬁtes that
the weak coupling formulae describe absoclute Brillouin instability for
pump-wave amplitudes ( 70/0 )2 allowed to be larger by
v g/::a = ¢ 0/“’0% than those for which the linear dispersion relation
of Brillouin QK becomes strongly modified.

In Figs: 30 end 31, only for pump strengths
(milm0 )2( kozrozlz) 21073 do the pineh-point sclutions diverge from
the weak coupling formulae, In this regime of pump strengths finite
§ =D /D, corrections to the Brillouin disporsion relation becoms
necessary. We recall from Eq. (109) that replacement of (Trojc )2
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4 ("ro/c )2[1 +8/Q0 - 6)], in the Brillouin dispersion relation where
§ 1s to be evaluated for complex 2 and K, provides an implied
recursion relation for incluling the effects of the {l+ sideband in
Brillouin. In Fig. 32 || evaluated at the pinch-point frequency
end wavenumber is plotted as a function of (‘"1/“’0 )2(k°2r02/2 ). We
conclude from Figs. 30, 31, and 32 that the absolute instability of
Brillouin is adequately described by the weak coupling formulae for all
pump strengths, except for those so Intense as to drive both A,
and A_ sidebands to comparable smplitude and therefore necessitate
solution for the general filsmentation and Brillouin pinch-point
frequencies and wavenumbers using Eq. (96).

A final but necessary demmmstration of the Brillouin pinch~
point behavior for large and small pump strengths is furnished in
Figs. 33 and 34. Level contours of !DB(Q. 0 2 0)] 4in the complex «
Plane for parameter { are plotted using Eq. (105). Re Q is held
constant at its pinch-point value for given pump strength, and Im @
1is varied from slightly below the pinch point, through it, and then
above. Roots of the dispersion relation appear as a nesting of con-
centric contours. Figure 34 shows the coalescing and retreat of
pinching roots for weak coupling (mi‘?/moz)(kozrozlz) = 1077 <<
(kocs/mc )3 = 10'6. The identical topological behavior occurs in

2 55 (I:Ocslmo)3 = 1076,

Fig. 34 for (wiz/woz)(kozl‘ozﬂ )=10

5. Plasma and Laser Parameters for Brillouln Strong Coupling

and Filamentation
For exlsting laser-plasme experiments, e.g., laser-pellet
experiments using neodymium glass lasers and laser heated 8-pirch

experimer.ts using 002 gas laasers, we consider what pump intensities
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are necsssary to induce strong coupling and filementation. Table I
exhibits parameters typical of these experiments, Po 1s the laser
power L ‘ensity in vatts/cmz. For strong coupling we use Eq. (107)
to obtain

. . 22, \1/3
05(5 %,) = (-wi%o Vo /2u,)

0.3 x 1043 P°/1016 W/cm2 )1/ 3 gect €0,-~gas

0.5 x 101‘( 1’0/10]'8 W/(:m2 )1/ 3 secl Nd-glass

Using Teble I and comparing 95(5 = 21_:0) to @ = 2kocs, we
determine the effective power densities for the occurrence of strong
coupling Brillouin scattering in a homogeneous plesma. For
017

QK > w we find that Po 2 1013 Wcm2 for 002 and 1 W/c.m2

f;r Nd.

In the limit (Kc/Zwo) >> (cs/c), and |cos 8] << 1,
filamentation occurs for ( Go/c) > Kle eorresponding to
P> 2 % x (10 w/en® for co,, 10" Wen® for Na). In the
absence of dissipation, the thresholds for the growth of long wave-
length filcments therefore can be quite low. Of course the size
of the laser beam and the plasme ta'rget determine 1imits on the
wavelengths. The lifetimes of the laser pulse and the plasma target
set further limitations on how strong the filamentation growth rates

must be to be significant.



Table I. Laser-plasma Experimental Parameters

no( a3 ) w e( sec™! ) "’:l( sea™! ) uo( sec~1) ke ?02/02
00,-gas 107 3x10td s x10 2x10 0a03 /1.2 10' wes?
Na-glass 10%° 6x10% 1x100 | 2x10* 0.1-0.3  %1.2 x 10'% wem?
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APPENDIX I: LINEAR SUSCEPTIBILITIES
To derive the limiting form: for the linear susceptibilities

we consider the Vlasov equation as & model kdnetic equation:
atts(”" t) + vaxt'(x,v; t) - (c./m.)axoavf.(x.v; t) = 0 (A.1)

where f.(x,v; t) is the normalized distribution function. Then use

of n, = n, d'.rfs( x,v; t), the Poisson equution -32¢/3x2 =4 Znses,
and the definitions of the Fourier transformed linear ausceptib;nties
xglwsk) = -41rk'2enﬂ’/$ in terms of the Fourier amplitudes i, and 3

vields
xg(wk) = 5,208 [ aveyese - w (r.2)

where wsz = I.moez/ms, f;(v) = ars°(v)/av, u £ w'k, and !‘so
is the velocity-dependent, time and space-independent, unperturbed
distribution function.

There are two ceses of particular interest when evaluating
Eq. (A.2). For |Im{w/k)] << |Re(w/k)| we utilize the Landau

prescription in evaluating the Hilbert transform:

Ll Lo = Py - W] 7 (v - w) (4.3)
where P( ) indicates the principal value of the implied integral.
For the case that |Im(w/k)| 2 [Re w/] and |Im{w/k)] > O, there
is no difficulty in evaluating Eq.(IA.Z) directly; there is no
singularity on or near the contour of integration.

If we coneider Maxwellian veloci.ty distribution functions for
-1/2

the separate specles !‘so(v) = (arvsz) exp(-v2/2v82) where

Vg = (Ts/ms )1/ 2 is the species thermel velocity, then asymptotic
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forms for the susceptidilities cu..n be straightforwardly derived.
Numerical tables have alao been canpuod.ml’ If we define
nEvVZv, wmt £/ Vi, then the Fried-Conte functloni®*

z,(u/x) can be defined es follows:

Z,(wk)

b hi
Yz, [ﬂ"f an exp(-n?)(n - r.)J'

(A.4)

5(E)/ V2 v, .

In evaluating the suszeptibilitiea, the follewing identity is useful:
b [ ant-2n) expt-n?)/in - €) = ds /08 = 2(E). e suscepti-
bilities take the form x(w,k) * —u,> Z'(wk)A° where
Z(wk) = dzs(w/k)/d(u/k).

For the case that m/kva = 'V; £ 1is nearly real,then using

Eqs. (A.2), (A.3), and (A.4) one obtains

Iz, = vep(-?), Wz = -2r § exp(-£%) (A.58)

(]
and asymptotically

Mo Re 3, = -26(1 - /362 + ...),
£+0
(A.5b)

1im Re zg = -5'1(1 + €-2/2 + .es) ,

E-ow
and

lmmz; = _24-4524- e,
£+0
(A.5¢)

UmRe z!) = E2(1+ 3892+ ) .

£
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Yor w/v, = V2 € complex then the results (A.%b) and
(A.5¢) describe the cumplex asymptotic forms of the Fried-Conte
functions if ‘one drops the du:l.gmt'ion "Re" on the left sides of
the equations. Weakly damped electron pimsma oscillations correspond
to waw >>w end fuk| > v . Then the ior susceptidility is
negligible, ond the electron susceptibility is given by
Xe ¢ -wezl(mz - 3k2'v'.2) + 1(1/2)*(w.lkv. ) exp( -u2/2k2v92). For ion
modes in the 1imit that w >> lo| and Yy >> (aw/k) >> v,, then to
lowest order of approximation the susceptibilities are given by

Xg * 1/1:2xe2 and x = -uizluz.
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APPENDIX 2: ELECTROMAGNETIC CODE

POOGRAN EML(INFUT ;OLTPUT,,TAPE2sINOUT,TAPE3,TAPEL)

C  OME=NIMTHSTIONAL ELECTRAVNAGHFT IS PLASMA STMULATION CNDE.

c

RELATIVISTIC SLECTRCMS, HCH-RSLATIVISTIC 1248,

T C WRITTEN BY A, BIUCE LAMGOGMs LIVEF“ICE, 1972,

[
c

BEAUTIFIED BY B, CCHEM, M, MOSTOCY, AMD 0. NICHCLSON

COMBON/CFIELD/NG YL o AEL o CXs LGSHL JYN(257Y,P214257),PHOD(257),

REAL Ly JYM, JYP

CCUNIN/L/X{Z20C0) ,¥X(2007),VV({2000}
COMNON/ZLHTRLZ ET o CT o TIME ) IEXa TIY G LEYLLIEYR,

sPLOTSyNTH ITHL, LEY,IRZ,

°

P
c DEFA\LT INPUT PnnnHETEFS-

T DX=L/NG

IRHO, TRHIS ¢ 1PH T, LXVX, TUXVY

COMMON/SAVE/ HI8+301)LHE301) 4 KAYIR) JHKAYS o ITH BT NFyhL

LOGICAL PLITSHIFT
COMMOM/THERMAL / ITHERM
COMMAN/UNTTS/ENNLC2E,
CCMNON/BURY/MCATy ILOLL
COMM N /PLMP/ WPHPR WPMPLyERPMPRyEFMPL
REAL LPy V2 1{2}44102,02C2
INTEGER TITLE{(5}

2C2140M1C2TFM2C 21 yN2C2EY
AMeEYLPFYRC) EYRMGEYLC,EVLN

RHNC25T) JFHIN25T) 4EL1257) 0 IYP(25TViEVLI2ST Y EYR(25T14EYL257)

COMMIN/2/EXELIQ YL EVEI2DLDEYLELIDL)eE RELIDL) ,NELINOL),
KE2(30L},F1X{302),PL7(302)+P2X({202]1,P2Y(302) ML NH2

REAL KEL, KE2, MML, MM2
REAL Pl, ¥2, KE, X0

TNAMELISY ZIN/ RLyN2,WT,NG, MGDE,V10,¥20,XL1,X21,

HlpHZvHCvaFl'QWZ'KO'DTvPLUTS.K"HJ-IFHDS-IPHl-

CATA W1eWZeMCLoQM1yCM2/LarlasDar=ter~1e/

CATA V10,920,411 9X2L ¢MCOE 1 KO/ D0 3049290.0 51,17 7

»DT/32,128,128;400401/

CATA NC,NLsN2.

3CALE,SCALL
¢MOAT, ITHERM,

DATA PLCTS s IRHC ¢ 1OHCS y IPHT + IXY X0 [VXVY/ 2 TRUES 140,90+ 40+ 20,20/

DATA LEX,[EY JRZ o0 JY,[EYL, FEYR, [FT/6¥40,,TRUE,/
CATA SCALE,SCAL2+HK/0s LF+50,0a17450,0./ -
CATA TEMPL,TEMP2/0, 4007

DATA UPMPR \Wr#PLyTPMOR,,EPMPL,MRAT/ 420,043/ 7
CATA ITHERMyWF ¢ NL/ 20,064,247

DATA NKAYS,KAY/B42,3,6450607+8:57

OATA [T TIFE ITHyITHL MTH/04D0 5049043007

CATA TITLE/9w0/
READ{2,IN)

WRITE(3,1N)

CALL HISTRY

ICCLL=0

ITTH=]

EYRLaEYRN=EYLC=CYLN=EYFM=EYLMN=0. T
ENMAY20,0

T EAMAXR=].0

ENMAXL=D,0

ELLSS=0.

TWCPT=8,#ATANIL.)

CGSHLSL=TWCP /KO T
MUAT INTROCUCED

T1=WC1#DT/2,

NPaNL+N2 X
Ol=W1l3W2* (NG=MCAT) Z{NLTQHLeNG}

QERXELEY MNARACH,1973
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M1sQL/CHL -
AMLaN1eM)
IF(NZ.EU ")0220.0
IF (N2 .NELO) oz-u2n~z~(nc-nnATl/(vzonnz-ntv
M22C2/CM2
T2=0,
IF(M2.5T.04) T2:PLSTIIN2
AM22N2ep2
mices -.5!!304!‘06 LLE(T?CN VLTSe
M2C23VaN2/F1®,SLIOG4LEQD
SCALING 1IN UAITS ‘or FEST MASS ENESGY DENSITY ~ ~ — " TTTTY
MLC2=ML*(CX/CT)en2
P2C2=F2(0DX/CT)e92
RPLC2I=1.7/({M1C2)
PNMICZ2I=1a/(NTSMIC )
IFINZ.NE,O) RF2C2[=1,/(v2C2)
TTTF{NZJNELO) RAM2C2I=1./71N29M2C2)

® & w Kk £ 3 ® & & % £ & ® &5 & ¥ & & & & 3 ®
ENSTITY AMD VELCCITY LCADING

MOAT INTRCOUCED
MOAT MUST oE AN [NTEGFR GREATER THAN 2 o
DPOATaNCAT *DX
TLPeL-ONCAT
Nit=Nl+1
QUIET START FCR CENSITY -

C  SCALE [$S IMN UNITS QF LPw—=~-=~CENVERT TN ABSOLUTE UNITS OF LENGTH

€ DENSITY PRCFILE
c_

SCALE MUST EXCEFD 5
SCALE=SCALE*LP/DX
SCAL23,9¢{0X/SCEL21¢62/ L Pwe2
8B= SCALE
XMIN=FLUAT(MOAT) /2.0
AMAXaNG=FLCAT(FIATI/240
CaLL DENSE(EB.SCALZ,HH.X.NI.VZ.KM!N.XHAX)
T CO 10 f=1.Nt T
VY{11=0.
VX{I1)=v10
10 CGNTINUE
CALL CRZATCR{VX,VY Y101 sNl» TEFPL, ISHLONG ITUDI{IAL VELOCITY DIST
«RIBUTICN 1 ,34HTRANSVERSE VttUClTY D!ST&IEUT[ON l)

T 7T 7T CALL SMEAR(X,1.NL)

IF(NLL-GT.NPIGC TO 17
00 11 1=N11l.HP
vY(I}=0.0 -

11 vxtry=vao -
CALL CREATOR(VX,VYsV20,H11sNP, TE%P2,3EHLONGITUDTNAL VELOC]TY DI

WITTTTTTITTUSTRIAUT TGN 2,34HTRANSVERSE VELOCITY DISTRIBUTION 2)
CALL SYEAR(KsRLL,NP} .
17 CONTINUE ot o : -
NG1=NG+1

[
4

0o 12 J=1,AG1

12 EYLGJI=EYR{1)=IYPI1aJyP LI }=RHECIT}=0.0
THIS WILL ZERC RADIATICN FIELOS AT Ta@y —~ """ — " 7777~
DC NQT NEEC LURRENT AT Fz=Ni/2 NSWe
CALL SETRAC{L.NL,91)
CALL SETRHCINLL4APsQ2)
AT THIS POINT THE NET DENSTTY IS EXACTLY ZEROD, IF YOU WANT TO
TRIDOLE THE DENSITY, YOU MLST 07 (T AFTEP THIS PJINT- Rtdvbadddd

- ‘D0 13 I=l4N1

c

XT)=X{1)¢X11#CGSCTHOP I#MODE*A( 1)/ XG)

13 CONTINUE
£ & & & 2 & T X ®k ¥ F 5 £ 5 5 5 2 & s s s
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CALL FTELOS(EXE(LY »FvLEL1) EVPELL) EYE(L),82E)
CALL SETV(LoLeQLeHt, 07 -T14PLXCLD,PLYLL))
CALL SETV(ALLGNY 402,M2,0T,T2,P2X(L1,P2Y(1))

WRITE(44F0°7)

969  FORMAT(4X,# TIME®,5X. % EXEa,13X,% EVLE* 912K *EYREW, L3N, & EYES,

c

___C PARTICLE DEMSITY AND VELACITY DISTRTPYTION PLCTS

ry———

e laXy® KE®,*

BEGIN TIME STEP {CZF,
100 CONT[HUE

CALL ACCEL(LyN1 CLeMI, 0Ty TLyPIX(ITHeZ) PLY(ITHIZ) 4 KELIITTH FoKE,
oI7)
CALL ACCEL(NLL(NPsQ2,M2,0ToT2,P2XITTH42),P2Y(TTH2},KEZ(ITTH ),
oKELIT)

es ICILLEYLML,EYRM
TTTTT 950 FCRMAT(FUL2,5510e8415,251648)

KEKEINML

ICOLL®,9Xs® EYLMIL1)=,7X,® EYPMINGLI®/}

WRITEL44950) TIME,EXE(ITH®L},EYLECITH LI, EYRECITH+ LI EYECITH+LIKE

ACCUMULATES NADIATED ENERGY LOSS

Tes1

ELOSS=EY(NGLISEZIMGL)-EY(1}2B2Z{1)*ELOSS
TOTALSEXE(ITH+1) ¢EVEL[THe LI ¢KE+RZE
TOTAL=TGTAL+ELCSS*DX*FN1C2T/CGSHL
WRITE(4,951) TCTAL

FOPMAT(» TCTAL ENERGY(FIELE+KINSTIC+LOSS) NORMALIZED TO Nuc2 -,

«E1648)

VL=Vt}=0, ’ o
CALL PLCTXVIL,NL,VL,VU,L,  GHELECTRNNS,L)

VL=VU20.0 ’ -
CALL PLOTXVI1,Nl,VL, VL, _ SHELECTRCNS,2)

T wPUs0,.

CALL PLTVXY{1,NLl,VMUy, SHELECTRCNS)

VL =VUya0.

CALL PLCTXV(ALLSRPsVLoVUsL HGHICKNS,11)
VL=yyya 0,0

__“ALL PLOTXVINLLINP VL Vil0L o _ GHEGNS, 21
- VBU0, -t 4
CALL PLYVXYINLLSNP Vo, 4HICNS)
i-{ {T.EQ.NT } GC TD 191

IF¢ JTH.ECQaNTH } CALL HISTRY
IT=lT+1

IFUUITZITRERM) S ITHERMLNELIT) GO TO 99
ITTHa[TTH el

GA=FLOATING)

ENCCNE({9C,500,TITLE) TIME

500 FORNAT{+#ELECTRCN DENSITY (AU. CF PTCLSs, VS. X/DX} AT TIMEss,

9

«FlO4%)

T CALL FCFVI1,N140esGMyX,10H POSITION HTITLE) ™

T CALL RANGEY(VX,VR,NL}

<

TIT+TIME+. 5207
ENCODE (90,8, TIILE) TTT

FORMAT (ELECTRCN VELDCITY OISTRTIBUTICM {NO. OF PTCLS. VS,

o AT TINS=2.710,4)
VE({1)=VRI2)=0.

VM=AALX LIABS (VR 1)), 43SLVRE21))

CALL FUFV(L,NL¢=VM Vi, VX, LOHK=VELOCITY TITLE)
VRl}IsyR{2)=0,

CALL RAMGEY (VY VR,A1)
VM=AMAXL(ABS(VREL) ), ABSIVREZN))

CALL FOFV(L¢NLy=VM,V¥, VY, LOHY=VELOCTTV(VITLE}
CONTINUE

TIME=[T*0T

ITHe [ T-1THL

v/C)
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CaLt MCVE(1,N1,CQ1)
CALL MCVE(RLL.7002)
CALL FIELOSE EXCUITHeL)oFYLECITH LD EYPELTTH+) ,EYE(ITH?L) (S2ZE)
60 TH 160 ) L L
ENDO CF PUN,
191 CONTINUE
C'LL HISTRY
CALL EXIT
END
SUBKOQUTINE SMEAR(X.IL, TU) ”

THES SURROUTINE RENLOMIZES A VECTOP ARPAY AY RANDOM PALR EXCHANGE
OIMENSICH Xx(1)
NUM=Jy=TL+]

DG 70 I=IL,IU

TI=NUMSRANF{O}+IL
XX=X(1} .
Xtllax¢in
X{11)=xx
70 CCONTINUE -

RETURN
ERD o

TTTT TTTT SUBROUTINE DENSE(SCALE (CoHWeXoNENZoXMIN)XMAX)

OIMENSICN X{(1)
INTEGER TITLE(S)
COMMON/BURY/NFCATy TCOLL 4 YRV GEYLM,EYRC,EYFN JEYLC,EYLN
COPMON/CFTLLN/PC oL AEL v CXy CGSHL JYMI25T) ,BTL25T) +RHN0(25T7) .
. RHU(257I-DH1I257)pﬁxl257lpJVP5257);EVLl257)oEVRI257J,EY(ZS])
TFDENSIX)= (N Z{RMAR-AMINII®( lav [ X-0u FOXMAX+0,5#XHIN}/SCALE
o =CEIX=uSPXMAX ¢4 SEXMIM 202 ) ANDRY

ANCRA=L. 7/ {1a~{RMAX-MIN)*"20C/22,)

DATA TITLE/G%0/
K=NNaN}

Jsl

T T TTT T NSTEPS=100G00

TTTTTTTTTUOIF(AINTLGTLFLOATIINIX(JI=XMIN + DELTAS]

OFLTAa (XMAX=XMIN)/NSTEPS
AINT=0.5
50 CCNTINUE
00 100 1=1,%NSTEPS
AINT=AINT # FULNS( OELTA®I} * DELTA
IFC(ATNT, GV FLCAT LI J=dsL
IF{J.GT.HH) GC TC 250
100 CORTINUE
DO 150 I=J,NN . T oot ot
x{i=xtl-1) + 10.0* DELTA

777150 CONTINUE

250 IF{M2.EQ.0) GC TC 350
LF(MYN.GTML) GO TN 350
AINTSFLOAT(NL)#0.5
JaNl+l
N=N2

RS RN L #N2

350 CONTINUE

IF(N1.£Q.N2) GC TO 60
G0 70 50

60 DO 65 [=3.Mh4

65 X{I)=Xxtl-nl)

GA=FLOAT{NG)
ENCONE (90,400, TITLE)

400 FORMAT ($#DENSITY PROFILE (NQs OF PTCLSe VS. X} AT TeQs)
CALL FCFV(LyNLlyVesCNeXp1OH POSITICN LTITLE)
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RETURN
END
SUBPUUTINE FREATCRIVI, VY,V TLy 1U, TEWP TITLEL, TITLE2Y

WE USE THE VX SRRRY A§ & CUYMY APYAY FOR TOTAL P AY) TNTAL V
NSTEPS 1S THE AVEPACLE AUMREP UF INTEGRATION STEPS PER PERTICLE
DIME4SICN  vX{l).vYLl)
INTEGER TITLEL(4)oVITLE2(4Y
INTEGER TITLE(9},XLeB
FLI=EXP(-502T{LaDe0P2036021/TIONPVe26(
GUJII=EXP(=,54002932J/T)sP*e2e(
TFCILWGELJUGR.TENPEN.0.) RETURN '
TaTEMP
NFCUR={[U-IL+1}/4
AFCUR=LFUOUR®S
AN1=NECURS]
K=Tu=tL¢l
PIaATAM(Lo)¥4.
KSTEPS = 200
VELGCITIES ARE IN UMITS OF C AND MCMENTA IN NG
FMAX36 ,0*SCRT [ T+4aUeTee2)
DPaPHMAX/{NHISTEPS)

CP2eppaez [, ————

IFIT:GTa04002) Cx, 250N 2EXP{1,0/T)/(TeTeT)
IFITLLEL0.002) C=, 258N/(T+TeT)

=t

1st
AINT=0,0
CONTINUE
IF(To6Ta0,002) AINT=AINTHISFLIY T
TF(T.LEL0.002) AINT=AINT+JI®G(J}
T4maslsll—g

IFLAINT.OT.8) VX 14)=)eDP
IFLAINTGTol b ln]+) -

IF(4%] ,GT NFCUF .CR,J%DP, GT.PNAX)Gﬂ TO lDO
J=Jgel

GQ TO S0

CONTINUE

IF(4*1.GTaN} GC T 170
Taabelelt~4

06 150 KaliqslU

VX{K)=0,0 - o Tt
CINTINGE

NO 180 1=1L,1IU
VX(I)=YX{1}/SQRT(1.0+VX{I 902}
KNFLeNFCUR~4

€O 200 J=1,NFL,%

fajelell ToTmre -
THETAwRANF (D} 2P o, 5
PX=VX(I)

V(T )aPX&COSITHETA}
VY(ImPX*SIHITFETA)
VX{T+1)==yX (]}
VYirel)a-vyild)
VXile2)=—vy(l)

VY (1+2)=vx (1)
VY(Te3)a=-yvX(I}
VX{T+3)svy (L}

IF (KFOUR. EC. NG T 202
TULNFa[L+NFCUR

OC 201 J=IlLWFsIU
VILI)=VYiL=0a0

CONTENUE
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VYMAK=PuaAX/SCRT{1.04PMA OS2}
VXMAX=(VOSVYMAX) /Lot VARYYHAX)
CMaSURT(1,~Vv0*VO)
00 300 I[=1t,1U
T NV aGHeYY (/7 (Lo avIeuXI L))
VAT In(VX(Fp*VOI/{NaeVORYX(T))
300 CONTIRME
XLAA=LOMX-VELCCITY
ENCUODE(S0, 8, TITLE) TITLE],XLAS
FORMAT (4A410,#({10s CF PTCLS, V5. #,A10,%/C) AT TIME = Q®)
o T CALL FOFVEIL»TL,=VXMAX s VAMAX s VX XLABSTITLE} o
XLAR= LOHY-VELUCITY
ENCODE (90,8, TITLE) TITLE2,XLAS
CALL FCFV(IL,IL,-VYMAX ,NYHAX VY XLAB,TITLE])
RETURN .
END
SUBROUTIME FOFV{IL,fUsVXHIN,VAMAX, VY, XLAQ,TITLE) ~~ 7 "7 7w =ms == =+~
€ RUNCHES PTCLS. INTG BENS QF WIOTH (VXMAX~YXMIK)/NEINS
C ANO PLCTS NO. OF PTCLS, vSe PCSITICN CF SIN CENTER,
DIFENSION BIN(1ODL) ,vXBIN[LIOL)
° " DEMENSICN wVil:
INTESER TerE(q).xtAa
T T NAENS=100
BINMAX=0,0
o : 09 100 J=L,NBINS
BINIJ) =0,
T szlnlJ)=vxnlk4(vxhnx-vxnluvtlFLaATtJl-o 5 )/FLOAT (MBINSY
100 COMTINUE
00 200 IaTL,IV
XAXeNBINSO{VVI[)=VXMINI/{VXMAX-YXMIN)
Jdaxnnel
TF(JJaGTaNBINS«CFeJJal T, 1)GC TQ 200
LRGIRRIES: ETREIRES IS
EFIBINCII) LCTBIAMAXIBILMAX=BIN (IS
" 200 COMTINUE T
CALL PPLT(VXBIN,BIN,VXMIN, VABAX 105 9 BENMAX o NBINS ,XLAB,TITLE)
RETURN

SUBROUTINE PPLT (X Yo XMINy XMAX, YHTN s YMA X, NUM. XLAB, TITLE)

c . ALY 0029
e T N cTm Tt me T PPLT003)

[4 THIS SUBRCUTINE, GIVEN 4 SST OF M X=¥ COORDINATES, WILL PLIT THEM PPLT004D

c CN A 51 8Y 101l XY GRID-—-———==w=cTHE X ANY Y ARIAYS ARE UNAFFECTEO

4 BY THIS ROUTIME AND BUT OF RANGS POINTS ARE [GNURED

c PPLTO090

c PPLTOL00

RETTTTTTTTINTEGER TYTLELS) ,XLAB
DIPENSION X(1}, Y(L}y XGRIC{LL), YGR[D(lllv GRIOI101} PPLTOLL10
DIMENSICN SLA(37) !
DATA (BLAGE}Tal,371/1H 4 1Ha 143 1H3 4 1H4, 1H3 s 1HG ) LHT4 1O 119,
*  1HA¢LHB, LHC s LFO, 1FFe LHE o LGy LPH, LHT ¢ 1HIp KHK, LHL 9 LHM, LHN, LHO, LHP,
*  JHQ, LlHP, lHSvlHTolHU-lHV'IHHleXulPVvlHZolﬂ!l
77T INTEGER BLA,GRID
WRITE{3,10) TITLE
10 FORMAT{1H1,2X:5A10)

20 71 = {XMAX ~ XFIN) / 10, PPLTO280

T2 = {YMAX - YHIN) /7 10, ) . ) PPLTO290

XGRID(1) = XMIN PPLTU300

T UUTT T VGRID(L) = YMAX e PPLTIIWD
ac 25 1 = 2, 1L . PPLTO320

XGRID([) = XGRID(I ~ 13 & T1 : N PPLTD330

25 YGRID(I) = YGRIL{(f - 1) - T2 PPLTO340
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56
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59
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65
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T 69
70

71

75
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IF{YRAXLEC.O) YMAX 1 NE-D8
T1F{ ABS(YGRIOILL) /YMAX).LT41.0E-10) YCRIO(111=0,0

Lt =1 PALTO%10
LI ) : PPLTOX20)
0O 65 Kk = 1, 10 T e . PPLYOWD
Co0 501 =31, 101 PPLTO44O
GRINtL)=2

AN

Q = (YMAX @ (Sl = 8} » YHIN * {3 =~ la))7 50 PPLYO470
00 $3 1L = 1s AUM PPLTN&UD
IF (ASS{Q ~ Y(IL)} = [YMAX = YHIN} / 100,) 41, S3, 52 POLTI49D
IXP 3 100s * (X(IL) ~ X4IN) /7 (XPAX = XMIN! + l.5 PPLTO500
IF(TIXP.CEal +ANO. IXPLLE.101) GRIDCUIXP}=GRID(IXP)+1

CONTINUE PPLTN520

0Q 54 Jl=1,101

JZENINOIGRIO(JL) »37) ———

GRIC{S1)aBLALI2) - TreTTTT o oS TmEmTmE T o 7o

WRITE {3,75) YCRID(L), (GRID(I), 1 = 1, 101)

N=HM4+) _PPLT0540
NeNG3 POLTVS50
00 60 J = N, M : oo e T PPLT 0560
Do 551 = 1, 101 . PPLTOST0
CGRID(I )=} T - T

A=

Q = {YMAX ¢ (51, = A} + V1IN ® (A = 1,})7 50, o PPLTI600
00 57 IL = 1, NUM PPLTOG1O
IF [ABS(® = Y(IL)}) = (YMAX - YMIN! /7 100.) 48, ST, 57 ) PPLT062Q
IAP = 10D, *® {X(IL) = XMINY /7 (XPAX = XHIN) + Ll.5 PPLT0630
IF{IXPaGE.l «£NDs IXPJLEWL101) GRIN{IXPIWGRID(IXP)eL ~— =7 7 ~ 77~
CENTINUE PPLTO650
o 53 Jrai,101 o R T

J2=HINOIGRICIIL),3T7)

GRID{JLY=ALALJ2) -

WRITE (3,75) GRID _

HeH e+ ” - TTTT T PRLTO670
L=L 2+ 1 PPLTD580
ca 65 [ = 1, 10L T T T PPLTV6SD
GRIO(T) =1

00 72 1L = 1, AUN PALTOT10
IF {ABSIYMIN = Y(IL}) - (YMAX = YVIN) / 100-) &% T2y T2 PPLTOT2D
IXP = 100, * UXx(IL} -~ XMIN) /7 (XMAX = XMIN) *+ 1,5 cT T PPLTO730
IF(IXP.GEsl «ANDe IXPoLEL101) GREINCIXP)=GRID(EAP)I+L

CONT[NUE PPLTOT7S0
€0 73 Ji=1,101 B 3

J2sEINO(GRIDIILY,37Y

GRIC(JL)=HLA{I2)

WRITE (3,735) YGRID(LL),(GRIC(I}, I =717 102}
FORPAT (10X, €5.2, 1X, 10141}

FORMAT (20X, 10141) ) e e PPLTO780
WRITE {3485) (AGRIC{I), [ = Ly 11) PPLTOS10

FORMAT 116X, 11& E9.2, 1X))
WRITE(3,90) XLAR

FORMAT (/60X,AL0) S e s s o s - :
RETURN PPLT0330
END e : PPLTO840

SUARCUTINE HISTAY

€ PLOT ENERGIES ETC. VS, TIME,

COHFUNICNTRLIIT.C?.TIME-!EX-lJV-!EYLnlEYR- o

T T T PLOTS s K¥H ITHLL TEY 4 TRZ,

]

¢ ERHOY IRHOS ¢ 1PHI p I XVXy [V XVY
CCMMON/SAVE/ h{B8,301), kH{301),KAY[8),MKAYS, [TH,NT+NFNL
LOGICAL PLCTS,IFT
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CCPMON/THERMAL /1 THERM

COMMON/2/FXE (301 ), EYELDGL) 4EVLELISL),RYRECSOLI.ELLIOLY,
o KE2(30L),PLIXCI02),P1Y{3N29,P2X(302),F2Y(I02) ¢ N4l 4AM2
REAL KEL, KEZy MFl, MAN2

DIMENSION TIM(3011,FINTH(100)

IF( [T.EQ.0 ) CO TO 10
TL=ITHL®OT
MTH=IT=(THLe]l

CO 1 Is1,MTH

Y TIM{I)=(I-L)0TeTL
PLCY FIELD SNERGIES.
CALL PLTHSTIZ2FFIZLO ENERGY EXE(MUC2),EXE,TIMHTH, TL,TIFE,1,0)
CALL PLTHSTU23INFIELD ZNSPGY EYLTI(MMCZ)eYLE»TINyMTH,TL,TIMF, 1,0}
CALL PLTHST(23FFISLD SNERGY EYPE(NC2) sEYREs TIMsMTH,TL TIME( 1,2}
T TCALL PLTHSTI22FFIZLO ENSAGY EYE[H"C2),EYE TIMyMTH, TLsTINE,1,0)
PLOT AVERAGE CRIFT MOMFMTUM PER PTCIL L) UNITS OF MC LE PLOT GAMMA®SV/C
PLOT IS LAGELED TL TO TIME WHEREAS MNVENTUM VALUES
ARE ACTUALLY KMOWM FRCH FL=OT/2 TO TIPE-DT/2.
PIXL=PIX(MTH) .
« PLYL=PLY{MTH} ~ . T omrmT T T T T T T ot
IF{NM2.NE, 34 0) P2XL=P2X(MTH)
EF{NM2 JNE2Q.0) P2YL=P2Y(MTH) T
CALL PLTHSTI2THAVERAGE PTCLL XMCMEMTUMIMC)PLX,TIM,MTH,TL,TIME
+0,0)
tALL PLTHST{27FAVERAGE PTCLI YHOHMENTUMIMC) o RLY (TIM o MTH,TL, TIME
-070,0 e A A R e o e
TF{NN2.NC.0.,0)
+CALL PLTHSTI2THAYEPAGE PTCL2 XMONENTUNIMC) oP2X s TIM ¢MTH,TLoTIME
«3s0,0)
IF(NM2.NCo G0} -
«CALL PLTHST(ZTFAVERAGE PYCLZ VﬂCHEN U“(NC).PZV-YIH-HTH.Tl-TIHE
Tev0,0)
PLOF €S MUNE ENERGIES
PO 499 K=1;AKAYS T -t T
00 SO0 [=)MTH
HHLT)3h(K, 1} - ot -
500 CCATIMUE .
KAY1=KAY(K)-1 ST e TTTm T e e
CALL PLTHST{20“ES MODE EMERGY(MMC?)oHH,TIMoMTH,TL, TIME, 1 ,XAY1)
499 CONTINUE
IFCLIT.NELNTIGO TO 700
PLOT THERMAL ENEFGIES.

T T NPTHeIT/ZITHEAM+1
CO 200 [=1.NPTh
TINTHOI) s {([~1) % [THERM®DT
200 CONTINUE
CALL PLTHST{2LHTHERMAL ENEAGY{EVe) 1 KELeTIMTHNPTH Do oTINE,140)
{F {NM24NE. 0.0}
“TeCALL PLTHST(ZLIHTHERMAL ENEPGY({EVe} 24KE2,TIMTH,NPTHeO0 ¢ TINE1,0)

700 CONTINUE
ITHL=1T

LAST VALUES NOW ARE FIRST VALUES FOR NEXT TIME INTERVAL.
PLX{1l}aPLXL
PiY(l)=PLYL
TF{NM2,NEadeQIP2X{ 1} =P2XL
TFENM2 . NE0a0}P2Y(1)mP2VL
PLX(2)3PLX{MTHe¢L)




s

3

22

N
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PLY{2)3plY({MTRsL) _ °

EFENM2 ME o0 NIPIX(2I2P2X(MTH L)
TF{NME oNELULUIPZY(2) 2P ZY{NTHIL)
BC 33 Xzl ,AKAYS

LICTRSEL IS A0

EXE(LI=EXE(MTH)
EYLE(L)aEYLE(MTH)
EYRE{1}=EYRE(MTH)
EYE{1)aEYE(MTE)

00 2 132,NTH
PLX{Tel)=zPLY (e }=P2X{T+1}2P2Y(I+1)=0.0
€0 22 K=l,NKAYS

HiK,1} 30,
EXE(L}EYLE(L)=EYREII)SEYE(T)}20.

RETURN

C AT T=Q JUST ZERQ ARRAYS.
10 MTHaMTHe)

1

00 L1 I=1,MTH

KEL{LI=KE2LI 1P LX{Te ) aPIY LI+ L) =P2X{T+1}aP2¥(] . 1}=0s

1 EXECT)=6YLECT)=EYRF(1)=EYE(1)=0,
FIX(L)=PLY(1)=p2XC1)=P2Y(1}=0,

" RETURN

ERD
SUBRNUTINE FEELOS(EXE,EYLE,EYRF,EVYE,BZE)

€ SOLVES FOR PHL ANC EX, COMPUTES FIELD EMSRGY, €TC.
o COMMON/CFIELD/NG L s AEL 4 OX» CGSHL JYM(25T),820257) 4RHNOC257),

T T T W IRPO [RHOS y [PHI L IXYX IVXVY

[+
C _FIRST TIMZ STEP DUTIES, _

TTTTT oL1=1.0/L

C SET UP RATIO PHIK/FHOK.

-

COMMON /PUMP/ nFMPR,WPMPL, EPMPR, EPMPL
TREAL L. JYl, JY2

RHO1257) yPRITZ57),EXE257),3YPI257),EYLI257),EYR(257),&EY(237)
T COMMIN/BORYZMCAT y TCCLL » SYRPSEYLF,EYRC, EVYRMEYLC,EYLN :

COMRON/SAYES KH{3200) s HHI301) 4XKAVIB] o MKLYS oI THNT , NF o NL

COMMON/CNTRUZIT o U7 o TIME, TEX ISV IEYL o LEYR,
oPLOTS yNTH ITHL 1EY 182,

LCGICAL PLOTS,IFT

COPMINZUNTTS/ENMLCZE »ANU2C2T,RMLIC2 TS RM2C 2T 4 M2C228Y

INTEGER TITLE{IS) xLA3

OIMENSION EYKK(2571,EYLK(2571,XJI110L),GIVENIZ)

"REAL RHDK[L)e FHIK{1), SCRACH(L)

ECUIVALEMCE (RFLHRFCKD)y (PEL.PHIK)y (£X,SCRACH}

REAL KDX2, KSQ(123), L1, S(128)
CATA TITLE/9*0/

0aTaA NG2/0/

1Ja1TH+L

IFl NG2,ME.Q } 6O TQO 2
NG23NG/2

AGL=NG+l

FQ¥c0,. 520X

HDXI=.5/0%
TEMa2.250CGSHLCT

Pl=24sCFATAN(L1.C)
00 1 K21,NG2

KDBX2Z= (P1/RG) ¢K
S{ui=l.0

1 KSOIK)=#CGSHL/ 1{ 2. 04SINIKDX2}/DX)}$#2)eS(K)+22

1F(NF.LE.O) GO TC 2
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ITEML20
HOT=0, 50T
NF2=NF/2
KPTSaNL
- - NPTSaMINO(NPTS, 100}~ "~~~ .
0O 77 J=1,NPTS -
77 2JLJII=FLOAT{I}-]
XLAR=10H PCDE NC.
XRIGHTaNPTS " .

c .
C TRANSFNRM CHARGE CENSITY.
APERODIC BOUNDARY CCNOITIONS
FHCULIaRHCING1 )30,
CALL FLCTFURHC,16HCPARGE DENSITY, IRHO}
0O 10 J=1,N5
I RHCK(J }=RECLJY4FCX
10 SCRACHIJ)=0,
CALL CPFT (RHGK,SCRACH NGy o1} T -
CALL RPFTZ(RHLK,SCRACHNGel)
. RHOK(1}=0.

[ . .
"~ C~ CALCULATE PHIK ARC FIELD ENERGYe ~ == == —==—s= - =i omme e
ESES=).
PHIKLL120. . - e e -
[

¢ . - - .. .
[ COMPUTE THE ENERCY IN A PARTICULAR FOURIER MDDE
T 77T TD0 15 KN=LGAKAYS ) T T T s =
K=KRAY(KN)
— TE(KAY (KNI EG.1) HIKN,131=0.0
TF{KAY(KM}aEDHL) GO TD 15
T ITF{KAY (KK)EQ,HG2+1) GO TD 13
KKENG ¢ 2-K
T T T FR=KRSQUK~-1 bHRRCK(K)
FUK=KSQ{K=1)*FHCKIXKK)
HIKNG T J) = (RHOKANISFK ¢ RHOKIKK)SFRK) JLORNN1IC 2]
GO TN 15
13 HIKN {J)e s 5*KSQIR-1} *RHOK {K}* 32 /L *RNHLC2T T
15 CCNTIMUE

c
- DO 20 K=22,NG2
KK=NG+2-K
PHIK(K J=XSQ{K=1}®RHOK (K )
PHIK{KK)=KSC(K=L)aRHOK [XK)
T T T T ESESAESES*RHCOK (K Y HPHIK(K) +AHCK (KK} #RHT K {KK) ™
RHCKIK )aS(K=~1)*RHMLIK )
20 RHCK(KK)aS(K-1}#RHCK (KK} ’
) PHIK(NG2+11=KSCUING2) SRHIK{NG2+1) ~
* EXE={2.0%ESESHFHCK (MR2 1) *PHIKING2Z#1)) /(2. 0%L ) *ANNIC2T
, RHOK{NG2+1)=S(NG2) *RHOKING2+L)
€ INVERSE TRANSFOFM PHI.
b DO 30 K=l,AG
RHO K ) sRHCK(KI®LT
v 30 PHIIX }=PHIK(K)OL] T
CALL RPFTI2(PHIFHCyNGsL)
TTTITITTTCALL CPFT UPHIGFHO, NGl e=1)
c PERICOIC EIGENFUNCTIONS
RHCUL) =RHO(NG1)=Cy
PHLING1)=PHItL)

2 CONTINUE e e e e e e e
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IMPCSE aOUNDARY CONDTICN cF TE*N ES FIELD AT Jsl ANO JaliGl
DELPHIHDXT® (PHE(NCI-PHTE2

0 3L Jsl,nGl

PHIISIwPHI L)) eCELPRI*TJ=1)

CALL PLOTFURHG LEHIMCOTHED NENSITY, IPHOS)
CALL PLOTF{PHI,LBHELECTRIC PITENTIAL,IPHI}

[ 4 .
€ CENTERED DIFFEREACE ACROSS 2 CELLS.

101

+

i
“
>

52

T e w
__..C CALCULATE PUMP TRANSMISSION

c BOUNDERY CONDITICHE EX{LIwEX{NGL)~D

00 101 J=2,H6
EX1J)=| Pri{J-1)=-PHI(JI+1} DennXl

EXtL1I=EXINGL)=CoY
CALL PLCTF(EX,LLHEX » FEX)

PAXWELL EQUATICN SOLVER FOR AACIATION FLELDS

CALL PLGTFLIYP LLMIYP v 13Y)
INPUT EXTERNAL FACIATICN Fl:LDS HERE

EYLINGLYISEPMPLASINITIME Y IPNPL Y

EYRIL) wEPHPROSIN{TINE*WFIPR)

ADD MALF GF CURRENT, FORMED FROM X(T) AND VY{TeDT/2).

CC 50 Ja1,NGL

EYL(JI=EYL(JI-TEFEJYRLY)

EYUIIAEVR(J)=TEVOIYR(J)Y T - T
LET C=0X/DT. THEA EVL IS JUST MOVED ONE CELL TO LEFT
AND EYR ONE CELL TC RTGHT,
00 51 Jo1,NG
EYL{J)=EYL(J¢1}

JJabGl-d

EYRIJI*L) oEYRIIIY '
AGAIN INPUT CGXTEFNAL RADIATICM FIELDS
EYR(L) =EPMPR3SINI(TIME+DT)suPNPQ)
EYLINGL)=EPMPLES ING( TIAS+DT I *RPNPLY
ADD CTHER HALF CF CUPRENT, FORFMED FROM x(Taofi AMD VY(T+0T/2).
00 52 J=1,NGl o
EYLIJI2EYLIJI-TEN®JYP(I) .
EYRLJ)=EYRIJI=TER®IYP{I}
CALL PLOTF(EYL +LOHLEFT~GOIAG FISLD,IEYL)

CALL PLGTFUEYR, 1THRIGHT-GOING FISLOJIEYR]
€ & ¢ 4 5 5 ¢ 8 3 % & 4 @ B B FE S 4 s e

LYRCSEYRC — e
EYLOsEYLC
EYRCTEYRN )
EYLC=EYLN
EYRN=ABSIEYRING))
EYLN=ABSIEYL{L))

" IF{EYRC.GE E VAL AND,EYRCLGE. ZYRN) EYRMSEYRC
xsrev;c.ce tYLC.AhO EYLCJGELEYLN) EYLMmEYLC

T C e & » - L] * a L] L L] » » « * » ? & &£ s 9
00 60 yo1,M01
EY(J}=EYR{JI+EYL(J) meee s -
60 BZUJ)=EYR(JI-EYL{J) - .
T CALL PLATFLEY,LIHEY  © 77 L IEY) -
CALL PLOTF(BZ,11+82 ,182)
S . e am - .
C CALCULATE RADIATICN FIELD ENERGIES,
EYLES= EYKES=EYESH0, - - -
FIFS=0, ;

1

CO 73 J22.MG
EYLESsEYLES+EVL (1) 042
EYRES=EYRES+EYR(JIvo2
BZESIBLES+DZ(I1we2
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0 EVYES =EYES ¢Ey (Jles2

o

aXalsXa)

75

EVLES=EYLESPA, SPEYLILI®®20EYL(ARL)0e2)
EYFES=EYRESHO,50{ YTI1)0829EYF (LGL)002)
EYFSHEYES#0.5 P (FYLLI002eCY (NGl I002)

LEFT 2NC RIGHT CTIPA FIZLD CAEPRIGS, ’ T o :
EYLE=E YL ESODX/CCSHL #9541C 21
EYREZLYRAES®OX/COSHL*2AMIC2T

- EY ENERGY,

-BZE2ILESHLN/ 2. *COSnLIORAMIC2]

FOURITEP ANALYZE EYR(X=L) AND EYLIX2D) DVER ANF VALUES OF TIMS (O TO
NE-1, NF TD 2NF-1, FTC,}. SUM DVER FREQ. MCDES GIVES ENERGY DENSITY
{IN UNITS OF NMLC2/L) AVERAGED QVZR AN INTERVAL NFsOT

C
‘7 €T ELECTRIC FLELC .HAS NOT BEEN RENCRMALTZED YET.

78

hid

EYESFEYES*CX/{2.2CGTHL ) SRNNIC2T

IF{NFLLELD) GC TD 8
ITEF=IT=ITEFLSL

TEYMK{ ITEMI=EYR(NGL }#HOT

EVLKCTTERI=EYL (1 1ak0Y
IFCITEF.LT.HE) GC To 80 .
CALL CPFTU{EYRK/EYLK(NFy1y1) i . o
CALL RPETZ(EYRKZETLN NF,1"
EVRK{1)<EYLK(1]aCe0

TCO TS5 M=2yNF2

PUYNFe2-N
EYRK{H)=(EYRK{PI®S21EYRRIMMISN2)(2,.0/CGSHL ) SLSRN1C2T/ (NFADT) #22
EYLK{M)=(EYLK (M} #n20RYLK{UM) &2} 9(2,0/CGSHL) SLORNMLICZ T/ (NFPOT) #e2
EYRK(MF2o L) 2EYRKINF24L o024 (1, 0/COSHL ) SLOE NALC2L/ (HF$OT)E22
EYLKUKF 20l bmEYLK(NF2oLI##24(100/CGSHLEPLIRNMLCZL/ (NFoOT VRS2

0C 77 M=1,NPTS
EYRK(MI=ALNGLO(EYRK (M) #1,0E-20)
EYLK(M)=ALGGLO{EYLX{M) +1,0E=20])
CALL RANG :V(Evpn.uivéH.NPTSI
YBCTaGIVEN{L) =%,

GIVEM{2)= AMAA:(G(VEN(Z!.VBCT)

TOC TS UalMPTS

}
T CALL PPLT(AJ,EYRK 1 oo XRIGHTGIVEINLZ) )GIVEN( LI RPTSXLAB,TITLE)

EYRK{PI=AMAXL(EYRK(MDGIVEN(2))
TEML=[TEML*OT
ENCMWE(50, 78y TITLE) TEML,TINE
FORPAT(*RIGUT~GOING FIELD MODE ENERGY DENSITV(NWICZILD' X=t, FFT
QVER Tue, Fl0.44% TO *,Fl064
CALL FANGEYLEYLN GIVEN,NPTS)
YBOT=GIVEN{(1)=-5.
GIVENI2)=2MAXI(GIVEN{2),YBOT)
00 97 H=L.NPTS
EVLK(MI-\NAXI(‘VLK(“I.G!VEN(Z))
TTTITLE(11=10HLEFT ~GGIN
TITLE(6)=10HXaCy FFT U

CALL PPLT(XJ.EYLK.[..XRIGHT-G!VEN(Z).GIVEV([)vN?TS'XLAB.TlTLEI
ITEML=IT+]}

80 CONTINUE

AEL=l,

RETUKN

END

SUBROUTINE ACCEL{IL,IU«QeM,DT,TT,2X,PY,THERUT,KE,[T)

_C_ ADVANCES VELUCITY CLE TIME STEP, CUNPUT=$ MCMENTUM AND KINETIC ENERGY

REAL KEs M

COMMUN/CFIELD/NG oL 9 ACL o DX, CGSHL, JYMIZ5T) o BLI257),REDIL25T Y,
RHOL25T)oPHILZST) SX(2571eJYPI25TY2EYLL25T) eEYRLI25T) 1EY(257)

REAL LyJdYNM JYF,HC2,NRKE(NINREL
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COMNN/LZX (20101 ¥ X[ 20001 ,¥V12000)
COAMINZREL 7GAMMA( 2C00 )
CCMMINZTIERMAL 71 THEFN
. . CORMAL ZUNETS/SLMIL2T fANM2C 21 (P HIC21,8M2021 4H2C2SY
T TOREAL AXULYpAYURDeTZE1 1 e THESMXLE2%T) o THFINXZI29T) s VXOSC L2570
sW2SNE25TI s N(29T14VYNSCI25T)
EQUIVALENCE (AX,EX3,y LAYE¥), (TZ,02) {THERMXL, THEFMX2.V2SX,PHI)
EQUIVALENCE (VXOSCoJYMbe (VYASCodYP), N,RHOD
REAL M202€EV

[4
T 77T T IFCILGT < IUIRETURN
ANGi=NG+1
CO 100 J=1,NG)
THERMX L(J }=N(J 2V XOSCLJPaVYOSCIJ)=06D
100 CONTINUE
__ C_ RENCRMZL[ZE ACCELERATION TF NEED BE,
AE={Q/7M) ¢ (CTHDT /DX )/ 20 .
IFt AELEQ.AEL ) €0 TO 2
TEM=AE FAGL
. or 1 J=leNGY
T AX(J)mAXL SIS TEM
AY(S)mAY(J )STEN R .
T L TUDeTEI)eTER T T T CoTrrmmeems
AEL=A€
2 CONTINUE
IF{IL.£Qs1) KEwO.
1F(ABS(Q/P),LT.0.1) GO TO 5

TTCT T ULINEAR, MCMENTUM CCASERVINGy INCLUDING ALL MAGNETIC FIELDS, ™
[+ RELATIVISTIC ELECTRCNS.

RELKEwNPKE 0.0 o o

00 250 I=IL. iV

Jaxti}

XX=X¢)-J §

T TaTTeTI(Jeldedded TZLJL2I-TILALY B TTOOTIIT T s T o ot rTrrm

AAXZAXLSELIPXXSEL AX(Je2D=AXT{I*+L) )
T MAY=AY{JeLl)eXXS( AY(J+2)-AY{JS*1) }
c HALF ACCELe TWO-STEP ROT, METHOD WITH QUICK ROT. SCHENE.
T GYXXsvX({l}eGarMALI}+ALX .
GVYY=VY (1 )4GAMPA(T ) +AAY
T T GVZaGVXXPGYXKSGVYY SGYYY
GANMA22], +GV2
0T GAMMAL=SQRTIGANMAZ)
TeTAN(T/GAMMAL Y
T Sa{TeTI/LaeTAT)
RELKE=RELKE+{GAMFAL=1, )?M
T TTTT NAKE sNRKE ). 548 aGV2/GAMMAZ
GVXXaGVXX+ToGVYY
GVYYsGVYY=SeGVXX
GVXaGVIX ¢ TRGVYY+AAX .
GVY=GVYY+AAY
GV2uGVXeGYX+GVYIGYY
T T CAMMA(T)sSQRTILL. ¢GV2) T T T
VX I} aGVR/LAFNA(TL)
VYL IsGYY/GAMMACT)
PX=PX+GVX
PY=PYSGVY
KoX(T1)4e5 .

FTTTTTTT ON(Keldsti(Ke L oL, oo i oo T
YXDSCIKe L) wVXASCIN+L) oYX T)
VYOSC(Kel 3 mVYCSCIKLIeVY(L)

- 250 CONTINUE




VETTTTTTT AAYRAY{ e L) e XXl AY(IeZ)=AYIILY 3

. €

c

c

—c-
c
[

-1%9-

KE=AMAXL{REL € ,NRRED
DPIFT MOM./UNIT 4ASS iv uNiTS OF C.
PX2PX/(1U=TL+1)
PY=PY/(fU=IL¢1}
JFUITHERM.LELC) GO TO 3
IF(CITZITEERMN)OITREFMAELIT) GI TO 2
on 300 Jst,nu6l
IFINEII.LEwdsd GC T 30D
VXCSC (J)avaISCLJI/NE D)
VYOSCIJ)avYOSCIII/NLY)
300 CONTINUE
€O 350 I=IL,iU
KuX(l}+e5
GC=la/SURT(2o=¥ACSCIK+ LI OWXOSC KL )-VYOSCIKSL)WYOSCIK®1D)

RELATIVISTIC CALCULATICN
PXTHERMaVX{I }eGarMa{[)

" PYTHERMaVY([}#CAMMACL}
PXSA=GGEVXGSC (Ko 1) eiGayXOSCIKeL)
PYS5QaGGoVY)SC{K+1] GG v rOSCIKel) -

AELATIVE KE DEFINED AS KE{AVG. MOTICN+JIGGLE)-KE(AVG. MOTION)

RELY=SORT (1o #PXTHEPMPXTHERM+PYTHERHSP YTHERM ) ~SQRT (14 +PXSQ+PYSQ)
FELT=,511INC41ECEH2AELT
NCHRFLATIVISTICALLY CORRECT

NONRELATEVISY IS CALCULATICR
VXTHERMaVX (I J~VXCSCIKFL)
VYTHERMaVY ([ )-V¥YYCSCLK+1)
NﬂNP‘LIO.5'-51100&1'0:‘(VXrH:RH'VlTM‘ﬂPOVVTHERF'VYIHERH)

_______ TEMPP3ANAXL(RELT (HCHREL)

T8 7 CONTINUE

[«
c
[+

TTTTTTTTT e

c

- T ONYYaVYY=5¥VXX

THERMT sTHEPMT+TEFPP/(TU-TL+L)
THERPA LK #1) = AXLAK=1) e TLOPPLUIK4L)
35D CONTINUE
CALL PLCTF(THEFHXI'IBHREL- TELEVS) ¥Se Xy [THERH)
G0 T0 3

LINEAR, MCMENTUM CCNSERVING, TNCLUDING ALL MAGNETIC FIELDS,
MON~RELATIVISTIC [CMS.

VIXSaV1YS=v25=0,

DO 251 I3IL,IU .

EEELER R AN
TaTTeTZCIrLI4XX ST Z(I+2)~TZITI*1))
T=TANIT)

Sw(T+T1/(1.+Te7)

PAXSAX(JI#L eXX®{ AX{J+2)=-AK{JeL)} )
HALF ACCEL, TWO-STEP ROT, METHDD dl*H(aUNEHAHI QUICK RQT. SCHEHE.
VXX=VX{ 1) #AAX

VYYaVY () +5AY

V2S*VZS +VXXAVAXFVYYSVYY

YXXBVEX+TIVYY

VXUT}=VXX+TeVYYAAX

VY (1) =vYY+AAY

KaX{T)+e5

N{K+L)I=N{K+1)+), o .

VXOSCEK+#1) =VXNSC(K+1}+VXI(])
T VYOSCUR+Y)I=VYCSCIK LI+ VYT
V2SX{K&1)=VZSX(K+1)oVXIIDOeyXTI)ovY(TYoVY(I)
VIXS=VIXStVX (L)

251 VIYSaVLIVSeAwY (L)
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IFU{ITHERNGLELO) €1 7O 4
IF(LIT/ITREAM) *LTBEAM N2 IT) GO TO &
THEPNT =0,

° 0T <0V J=1,NG)
SEINCS1aLELOu ) 6C TC 407
V2SOSCo{VXOSCIJPsYATST (DD sV, CSCLINSYYOSCIINI/NILD)
THEEMX2(J) =0, 5420 2EVe (Y25 KL IP=-V2SNSC)
THER AT = THERMT o THE Rwx2{ J)/ LIU=TL #1)
THERMX2(J)=THEPYX213I/KR(J)

" 400 CONTINUS
CALL PLOTF(THEPMX2,13HTILEV.) VS, X,ITHERM)

& CONTINUE
KE=KE ¢0,59M0v2§

C DOPIFT MOM,/UNIT HMASS  IN UNLTS OF Co
PXavLAS/(IU~IL+1)
PYaviYS/LIL=-1L*1)

3 CONTINUE
RETURN
END
SUBRCUTINE SETVIIL yl1eQoM4DT,T™,PX,ZY3
€ CCNVEPTS PARTICLE VELCt!-!ES AT T=0_T0 COMPUTCR NORMALIZATICY AT

¢ T==DT72.

CGHP"NICFIzLoING.L.ASLeDX-CGSNL. JYML257).R2L257),RHOGI257 )
RHOIL257D 4 PHEL25T )9 FXL2570,JYPI23T)oRYLI25T) LEYPL25T),EYI25T)

REAL Ly 3YP, JYPy N

CORMIN/ L/ X (20C0) »VX{2000) , VY {200D) )

COPMON/REL/GAYEAL2OGG) . VO

IF{ILoGT« TUIRETUPN
TeTTY Tt oo °
OI0x=DT /DX
c ROTIATE V THRU ANGLE +0,5%4C*DT, NON-RELATIVISTIC.
TIFIT5EQe0e) GO TO 2 e

ST T TaTANIT)

C2L. 0/S5Q0RT(1.00TsY
SaCeT
00 1 1=lLslU
VXA=VX{])
VX{T)2CeyXI-58vY (1)
VY(I)=SevXXsCoNY()
CUNT(NUE
¢ RORMALIZE VX ANC VY,
00 3 I=IL,Iu
vY{i)avy{1)enTDx -7
VX(LI=vX{[)*0TDX
T €6 T CNLY SLECTACNS RELATIVISTIC,
IF(aBSLQ/M).LT.0.2) GO TO 4
00 99 [=[L.{U ° -
V2u¥X( L rvX{I) ey Y i) ovYL])
GANMA{[)=l,./SQRT(L.~V2}
99 CGNRTINUE
T CONTTNUE
c ELECTRIC IMPULSE TD GO 3ACK L/2 TIME STEP.
DATA OUML,OU'¥2,0U13/04+3.517
CALL ACCEL{I sIUs=0uE*QsMe0T,349PX,PY,DUML sDUMZ,DU43)
FETURN -
EAD
T 7T SUBRAUTIHE MOVELIL,1U,Q) T omTT T T s
ADVANCES POSITICA CME TIME STEP AND
ECCUMULATES CHARGE AND CURPENT DERSITYES.
COMMON/CNTAL/TT LT TIMS s IFX, TIY 9 IEYLLIEYP,

B
1
N

w

1
'S

EaXal



o0

41

PLETS NTH, ITHL . 1EY, 102,

o IRKC [FHOS, [P, XV, [VAVY
COMHN/CFIFLC/ NGt s AEL 4 DX CGSHL e JYNI23T1.82L257) RHIVL25T),
FHNU257) oPAT(25 71, SXU25T D, J¥2125T)sEVLERSTE, EYSL257),4E6VEI25T)

LAGICAL PLOTS

REAL Ly JY¥, J¥Py3f -
COMMDNZLS X T280C) o% 2420005, VYE2900)
COMMIN/ADKY/NCET o 1CCLL o EYRPSEYLY  SYPC EYONK EYLLCEVLN
IFITL GTLTIIRETURN

COX=0s0x

COT=0sDT

IF 1S FIQST GRCUP PF PARTICLES, YHFN

CLEAR CUT OLD Cr2PGE AND CURRENT DENSITIES.
IFtIL.HE.1) GC TC 1

AGl=NGel

XNaNG . ) i o

00 41 J=21,NG1
RHI(JI=RHUOLJ)
JYN(J)eJYP(J)aq,

10 CONTINUE .

C
C  LINEAR

20

™1

[

TIYPLILL YRS+ -DIVHIY

DC 201 IalL,1Y T rTT T omEmmmem s oo
LIMEAR WEIGHTIAG USING ALD POSITIONS,.
Jax{l}
XXeX{1}=d
JY=QDTsvyY ()
DJYsXXe )Y

SYMII*L)I=dYrd(J el )=0JVe Y
SYNPUIe2)mIYM(I22)+03Y
X{TdaXUE)ovR(l}

APERODIC SMNUNCARY CCNNYITIONS
IF{X{1}eGEala) GO TO 202
lCCLL=ICOLL)
XCIdmR(T)e2000a-X{10) "~
V(1) e=vXil)

CONTUNUE
TFIXUI)aLEL{AN=[,)) GO TO 203
ICCLLaJCCLLe])
X{1)axXUI e (XN=1,-%(13)82
VX{1)==ux¢ 12

CCRTINUE

LINEAR AEIGHTING USING NSW POSTTIDNS,
J=X([)

AX=XLT )-d .

0JY=sxX®)Y

JYP(Je212IVP(Ie2) DY

CRHO=QOX XX

REG{J+1)aRHD(S+1)-CRF0+QDX

RHO{J*2) =R1D{J+2}+CRFO -
CONTINUE

RETURN

END
SUSROUTEINE SETPHCLIL,1U.Q}
ACCLmy

LYZS CHSRGE DENSITY, POSITIONS NCRMALIZED IN OENSE

COMMCN/CFLELD/NG =L, ATL 4 OX»CGSHL, JYMI2571,821257) ,SHUOLE5T ).
RHD(257) +PHILZ5T I, EXL25T 1, YPL2STIFYLE2STI EVRI25T) 4EYL25T)

REAL Ly J¥P, JYP
CCMMUN/L/X(2C00),¥yX{2000),VY(2000)



IFCILGToILIRETLRN
Crx=J/0X
XNSAG
€ IF IS FIAST GROUP IF SARTICLES, THEN CLEAR CUT RHO.
- IFt IL.HE.1 ) €O TO 2
© BC 1 Jal.NKG
1 RHO(J=RMPO(J) =5,
RHO(NG ¢ 1) =QHCOLNG » " 150 ,0

2 COATINUE
4
T € LInEAR E .
00 20t lefL,IU
[ APERCDIC .'CLNFARY CONDTTIOHS

IF(X{1).GEdla) GG TQ 202
XUTI=X(1}+28(la=XL1D)
202 COMTINUE
IF(X{I).LE.{Xt~1.)) GO TQ 203 T e - T
X{T)Imx{[)+IXN-1a=X{1})®2
203 CONTINUE
J3x([)
DAHO=QDAFL X(1)=J ) . N
RHD(J+1)=RHO{J¢) ) ~ORHD +QOX
7 77201 PHC{J#2)=RHOLI #2) ¢OF MY
KG12NG+1
CN 330 Jel,NGL : . oo
RECALJI)=RHLO{I) - RHO{I? -
RHOCY) = 0.0 Tttt ot : -
300 CONTINUE
T 7T RETURN
END
T 7T SUBRDUTINE PLDTF(F,LABEL,INTRVL) 0T
C PLGY FIELD AT CERYALM TIMES,
DIMEMSTION LABEL(2) oGIVEN(2).XJ25T)
COMMINZCFLELD/MG oL ¢ AEL 4 OX o CLSHL JYHI2577,82{257)«PHOO(257),
T RHO(25T) oPHILZ25T1,EXC25T ) JYPLR2ST)2EVLIZOTILEYR{257) EYE 25T} o7
REAL L, JYNMy 2YP ,FI1)
COMMON/CHTAL/LT4CT o TIME, 1EX, TSV TSYL I EYR, -
«PLOTS yNTH, IThL,JEY 182,
o IRHY IRHOS ¢ IPHE 4 IXVX, [VXYY
LOGICAL FLCTS
TTTTTTT T INTEGER TIFLE(9),xLAR T T T T T T
OATA XJ{2)/0/
CATA TITLE/9%0/ T o

e e —

IFL INTRVL.LE.O ) RETURN

IFL (1T/INTRVLI®INTRVL oNELIT } RETURN cm e e

TTUUTTTTTIFL «NQTLPLOTS ! RETURN

IFt XJ{2).EQ0.0X } GO TO 2
APTS=NG L
XLEFT=0,
. XRIGHT=L
T TTT U XLAB=LOW PGSITICK
DD 1 J=1,HPTS
1 XJ0J)={J=1I%0X
2 CONTINUE

CALL RANGEY(F,GIVEN,NPTS])
TT 7T T ENCNDE{904+3,TITLE} LAREL,TINE
3 FORMAT(2A10¢* AT TIME=®,FC.%)
CALL PPIT{XJ¢FoXLEFT»XRIGHT,GIVEHT2) ;GIVENIT) 4NPTS,XLAB,TITLE}
RETURN




ENC

SUAPQUTIHE PLCTXVITL, IU.VL,VU,L¢LIDEL,MAPXER)
C PLOT X=VX SPACE AT CERTA[4 TISES IF WAPKFR 15 1 ar PLOT X-VY SPACE
c AT CFATAIN TIMES If MA-KER IS 2,

h FEAL Ly JYF, JYP
COMNON/I/XA20CG) »VRL2000 ), vy 2000)
COMMON/CNTRLZET 0T, TIME, [EX, LAY, IEYL,TEY?,

o PLOTS ,NTH, ITHRL [[Y 182,
o IRMC, [RHOS s (PHI 1 X VX, I VXVY
LOGICAL PLOTS

T INTEGER TITLE(S),XLAB

OIMEHSION GIVEN 2),LABEL(2)
- - PATA TITLE/9%0/

IF{ILLGTL IL)RETURN

IF{ IXVX.LE.0 ) RETURN
TTTTCTTUIRL AITAIXuX) S EXVXGHNEL IT 3 RETURN

1Pl oNOT.PLOTS ) PETURN

TFIILLGTal) CALL SHAPIX VX VY, ILY
NPTS=[U-fLel
GIVEN(Z2) =L
TTTTT T TT GIVEN(L Y=V B )
[+ SET VELOCITY RANGE ETC, IF MEED BE
1E(VL.LT.VU) GC TO 1
CALL RANGEYIVXGIVEN,NPTS)
T 1 CONTINUE
XRIGHT=L
ST OXLAB=10H PGSITICN
TIMaT[NZ¢0,5%0T
N IF(MARAER.EQ.2}GC TO 10
ENZONDE(90,3, TITLE} TIN,LABEL
FORMAT(* VX ¥S. Xy TIMZa®,F10.%4¢5X,2A10)
CALL PPLT(XyVXs00 s XRIGHT,GLVEN{2),GIVFNI1),NPTS,XLAB,TITLE)
=TT T 60 TO 11 : : -
10 CALL RANGEYIVY(GIVEN,NPTS)
ENCCDE (90,5, TITLE) TIM,LABEL
5 FORMAT(® VY VS. Xy TIME=®,F10.4,5X,7A10)
CALL PPLTIX,VY 04y XRIGHT,GIVER(2),GIVENCL) 4NPTS,XLAB,TITLE}
11 IFLILLGTLLICALL SHAPLIA.VR,¥Y,1L)
"""" © FETURN o
END
o © SUBROUTEINE PLTVXY(IL, 1U.VAU, LABELY
[ PLOT V¥X-VY¥ PHASE SPAC: AT CERTAIN TIMES,
COHMIN/L/X (20GC) 4 VXI 23991 ,VY(2000)
COMMONZCNTRLZETCT,TEME, TEX, [JY4 IEYL,IEYR,
T T T UPLOTS o NTH, ITHL B IEY, [RZ Tor T
o IRHCy 1RHIS , IPHT ¢ IXVY, TVXVY
- LOGECAL PLOTS
INTEGER TITLE(9),XLAR
CTMENSION GIVEM({ 2),LABEL(2}
0ATA TITLE/9~0/
e
IFLILGTLTUIRETURN
TF{IVXVY.LELO) NETURN
IFC (IT/IVXYY IS VXVY.NELIT) RETURN
IF(NOT.PLOTS) WTUSN

f
"]

TTTTTTT IF(ILeGTe L) CALL SWAPIX,YX.VY,IL)
APTS=IU=-1L+L
c SET VELGCITY RANGE £C., IF AEED RE
) IF(VMU.NELDa) GO TO &


http://IFIVL.LT.VU

CALL RASGEY(VX ,SIVEN,NPTS)
VHU=AMAXLL AAS(SIVFNEL) ), ADSIGIVENI2)) )
XP JCHTaGIVEN( L) =¥y
XLEFT=GIVEN(2) s=yMY

" CALL WAAGEY(VY ,SIVEN,NPTS)
VHUTAMAX LT ABS(GIVEMNI{L1¥),ABSIGIVENL2)))
YTOP=GIVEH{LIavhL
YBOT=CIVEN(2} a=VMY

L CONFINUE
TIV¥aTIFELQ.540T
- XLAB=10H vX - - oo
ENCODE (90,3, VITLE) TIM,LAIEL
3 FORPAT(* VY VS8, VX, TIMEa®#,FL05%,5%,2410)

CALL PPLYIVXVUY XLEFT, XRIGHT ,Y3CT, YIOPyNPTS,XLAB, TITLE)
TFOILLGTal ) CALL SWAPLX,VXeVY,IL)
RETURAN
T 7T END
SURROUTINE SWAP{XX,V1,V2,NN)
DIPENSICN XX(1),Vvl(1),V2(1) -
INTEGER KN .
ANEkN-1
_DC 10 I=1,NN
SL=xx(1}
S2=v1([) R
S3=y2{I} ) ) t o
XX{T12XX¢T+AN) *
= VLT =VI{I+4N) o
V21D =v2{ T+NN)
T 7T XX TeNNY=SL
VI(I+NN)a52
- V2(1+NN) 2§53 . oot oo
20 CONTINUE

" AN=NNFL : o ) .
RETURN .

— - R .- VY U
SUBROUTENE PLTHST(LABEL yREC,TTRHTH, TLs T, LINLCG,MODEM)

“c PLOT TIME HISTIAY, LINFAR CR LEG.
DIMENSTCK GIVENT 21,LABELL3),RECIMTH), TIM(HTH)

- INTEGER TITLE(S),XLAR o
CATA TITLE/9%0/

7T T NPTS=MTH - T T T T e e - -

XLAB21 0K TIME
- CALl RANGEY{PEC,GIVEN,NPTS)
IFCLINLCG.ER.D) GO TD 2
YBOT=1.0E-5*GIVEA{L}
CUM=REC(MTH)
TTTTTTI00 3 1=1,MTH
RECUI)=AMAXL(REC(I),¥YBOT?
- REC(I)=ALOGLO(REC(L})
CONTIMUE
CALL RAMRGEY{REC,GIVEN,NPTS) N
IF{MIDEN.NE,0) GG TO 5
""" © ENCODE({20+2U0,TITLE} LAIELTL, TV
200 FOPMAT(2 LCGLO OF #,3410.% TIMEa#.F1l0a4e® T2 *,F10.4)
° GO TO &
5 EANCODE(90,300,TITLE) LAAELKCOENSTLSTU
300 FORMAT(® LGGLO OF $,3313,%, MODE NO.*,13,¢ TIME=*,Fl0.4y* TO ¢
esFlBa%)
TTTTT & CALL PPLTUTIMREC, TLyVU,GIVEN(2},GTVENILI4NPTS,XLAB,TITLE] : o
REC(MTH) =DUM
G0 TO0 102
2 CCNTINUE

w



IFCPODEN.NE.O) £O TN T

ENCUPELF0, 100, TITLED LABEL,TL,TY

*y Fl0e &}

100 FORMLT(3A10,%  TiME=s,Fl0.4e% TO
i G To 8
T ENCTIDE (50,400, TITLES LABEL +PODEMSTL(TU

400 FGOMAT(3A10,0y MMIE NDL®y (3,
CALL PPLTITINM, RECy?l,TU.GIV‘h(’I.ulVEN(ll-NFTS.!LA!.TITLE)

102

-

TTTTTTT ENe

CONTINUE
RFTURN

END
SURRCUTINE RANGEY{Y»GIVEN:NP)

FEAL Y{11,GIVEANL2)
YMNaY{1)

YMNsY (1]

INCY=)

00 1 IPal,NPyINCY

T YRXsAMAXLIYNX,Y(IP D)

YMN=AMINL (YMN, YCIP )
IFLYMXLLE YHN) YMX=YHN® Lo
GIVEN{L)2YMX
GIVEN(Z)=YMN
KETURN

SUBROUTINE RPETZ2UA Do, INCP)

REAL A{(1)}, B(1)

TIVFee,FlC 6o

T3 9, Fl0.4)

C REAL ufTA, PERIODIC, FCURIER TRANSFORM, TWO AT A TINE,

C INTERFACE TO COMPLEX PERICOIC FOURISA TRARSFORM, 1

“TTCTVRANSFORMS OF REAL SEQUENCES.

TC DO _PAIRS OF

RPFT2
APFT2
RPFT2
ROFT2
APFT2

" APFT2

RPFT2

[
€ THE TWO SEQUENC S ARC ELEMEATS Gy INC,2¢IN%Caee (N-LIOINC OF SRRAYS A,A.APFT2

¢ .
C AFTER A CCMPLEX PERINDIC FOURIER TRANSFORM, WITH A AND B AS THE

€ REAL AND IMAGINSPY PARTS, RPFT2 SEPARATES THC TRANSFGRMS (OF A AND B

T TC T AND PACKS THEM, TIMES 2, BACK INTQ ARRAYS & AND B.

C THuS,

[ ) 4
c
c

THE CALLS }
CPFT (A, B+ Ns INCy SIGN)
RPFT2{As Bes N» INC)

THE CONTENTS UF A AND 8 ARE 9EPLACSD @Y TWICE THEIR TRANSFORMS

€ THWICE THE REAL PARTS GF YHE FIPST HALF OF THE COMPLEX FOURIER

“C "COEFFICIENTS OF & (COSINE COEF.} APE [N AlO). AlL)assAINI2), IF
C INCa=l. TWICE THE TMAGINAWNY PARTS [SINE CJ€F,) ARE STNRED IN

€ RE

c
C ND PARAMETER #SIGA# IS PROVIDSD FOR -HME PURPCSE OF CHANGING THE SIGN
THE SINE COEFFICLIENTS. THIS MAY BE DOHE KITH FIRIFETEH #SIGN* CF

c OF

VERSE UROERe [N AiN=1)y A{N-2)...A(N/2+1}.

WETUC"THE FOURTER TRANSFOFM, CPFT,

14
€ TIME REQUIRED IS LESS THAN 1/1) OF THAT FCR CPFY.

c
- C SHIULD OE RE-~CIDELC

e
T ETUHR
c

ITTEM 8Y A. BRUCE LANGDCN,

REAL 1P, 1IN
INC=INCP
NIKNCaN®INC
A{1InALL)+ALL)

LRL LIVERFOPE, NAY 1971.°

IN ASSEMBLY LAMNGUAGE.

LEIKEWISE FuR Be

B 11=3(2)+ELL)
LP=INC
L¥=NINC-LP

IF{ LP.GE.LM ) GC TO 2

APFT2
APFT2
RPET2
RPET2
RPFT2
RPFT2
RPFTZ
RPFT2
RPFI2
ROFT2
arkET2
ROFT2
RPET2
RPFT2
RPFT2
RPFT2
RPFT2
RPFTZ
RPF72
RPFT2
RPFT2
]PFT2
RPFT2
APFTZ
RPFT2
RPET2
RPFT2
RPET2
RPFT2
RPFT2
RPFTZ


http://A8El.TL.TU
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1 FPaA(LPel)
RMmE(LYP )
IPap{LP*1}
IPaB(LPrL)

AfLPPL}anMerp Tt omT T T
B(LMe])sRHRP
BILPHLY~1P¢]M
AlLHsY)mIP-1IN
LPaLP+INC
LPaNINC-LP

TTTTTTT IR LPLLTLM ) GC TE

2 IF( LP.GTLNINC )} PETURN
ALLP+LYI=ALLP+L)+A(LP+L)
BILP#1)=3(LP*1)¢E(LP+]1)
RETURN

EHD = A v —am o e e

TTITT SUBROUTINE RPFTIZUA (BN, THCPY

FEAL A{1)., B{1)
€ REAL DATA, PFRICDIC, FCURIER TRANSFGRM INVERSEs, TWO AT A TIME.

c
"7 C INTEQFACE TO COMPLEX PESIODIC FOURIER TRANSFORM, T2 0O PAIRS CF

C _TRANSFORMS OF REAL SECUENCES-
e

€ UNPACKS THE COSINE ANO SINE COEFFICIENTS OF A AND B AND COMIINES
C THEM SO THAT A + [ B IS THE CCMPLEX PERIOODIC PIU2IER TRANSFOPM NF

C THE OPIGINAL SEQUENCES. RPFTI2 SEVERSES THE EFFECT OF FPFT2, EXCEPT

"7 C THAT A AND B ARE COUBLED.

C_ THE CALLS e e et e e e =

TTTCTT APFTI2MA, €4 Ky INC)

[ CPFT (A, 8y He IACy» ~SIGN}

RPFT2 41
OPFT2 42
QRPFT2Z 43
RPFT2 &4
RPET2 45
RPFT2 46
APFT2 47
RPFT2 48
RPFTZ 59
RPFT2 50
RPFT2 51
RPFT2 S2
RPFTZ 53
RPFT2 S4¢
RPFT2 55
RPFT2 56
REFTI2

APFT ]2

-RPFT12

2
3
4
]PFTI2 S
RPFTI2 6
RPFTL2 7
RPFTI2 B
APFTI2 9
ePFTI210
RPFTI211L
RPFTI212
RPFTI213
RPFTE21
RPFTIL21S

€ INVEAT THE TRANSTCRM OCNE EAPLIED, EXCEPT THAT THE ARRAYS HAVE BEEM RPFTI216

C MULTIPLIED BY 2eN.

c
C_SHOULD BE RE-CODEC TN ASSENZLY LANGUAGE.

[
C WRITTEN BY A. BRUCE LANGDOM, LRL LIVERFOPE, MAY 1971.
C ° B

INCsINCP
NINC=N®INC
LP=INC R

TTTTT T LMaNIHC-LP

IF( LP.GELLH ) RETURN
I CAsAtLP+L)
SBaB(LN#1}
T CBaBILP+L)
SAsA(LFel)

TTTTTTTTA(LPel ) =CA-58

A{LP+1)=CASSB
B{LPtL)=CB+SA P .
A(LM+1)=CR=SA
LP=LP+INC
L¥aNINC-LP
TTIFC LPLLT.LM ) GO TO 3
RETURN
END
SUPROUTINE CFFTIR, I, N, INCPy SIGNP)
€ FORTRAM TRAMSLITERATICN OF SIANGLETON*S 5600 ASSEMSLY CODED FFT.
€ DIFFERS FRUM SINGLETIM2S ORIGINAL M THAT THERE IS A SPECIAL LOOP
€ FCOR ANGLE=PY/2s THIS SHOULD RE FASTER CN MACHINES WHNSE FLOATING

RPFT 1217
APFTIZ18
RPFTI219
RPFT 1220
RPFYL221
RPFT1222
RPFT[22]
RPFT 1225
RPFTI225
RPFT1226
RPFT1227
RPFTI228
RPFTI229
RPFTI230
RPFTI23L
RPFTI232
RPFT1233
RPFTI234
RPFT[235
RPFTI236
RPFETI23T
RPFT1238
RPFT 239
RPFT1250
CPFTP22
CPFTPI23
CPFIPI 25
CPFTPI25

€ POINT ARITHMETIC IS MUCH SLOWFER THAN INDEXING (NQT TRUE ON CDC 65003 .CPFTPI26

G SEE COMMENTS IN OTFER VEPSICN,.
€ A. BRUCE LANGDON, M OIVISIOMN, Lelelase 1971e

CPFTPIZT
CPFIPI28
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REAL REL}, 1€2)

INTEGER SIGHP, SPAN, RC

REAL SINES(15), 10, 1D

DATA SINESE13,0.7

1F( SINESIL)aEC.ls ) GO TD
SIKES(1)+1.

TuATaN(Ll.}

DC 2 IS=2.15
SINESTISI=SINIT)
YaT/2.

CCNTINUE

1Ft H.EQ.1 } SETURN
INC=INCP
SGA=ISIGN{1l,SIGNP)
SPAM=NINC3N® [KC

ITaN/2

€0 3 IS=l.15

IFL 1T4EQ.1 1 CO TO 12
1telvr/2

TuS+{S0sC~CO*S)
CuC=CQ%C+5085)
Sat

K1=K)#SPAN
RO=9(XK0D+1)
RlsPiK1l+1)
10ef{X0+1)
TLaftilel)

R(K(+1)=R0+R]
1{KO+1}=10+]1
RG=R0=-R1
10atu-11
RIKL+1}=Co*RO=5#10
I{Kl+Ll)=S*RQ¢Ce 10
KQ=K1+SPAN

IF{ KOLLT.NINC ) GC TO L1
K1=KD=NINC

Ce=C

RO=5PAN-K1

IF( XLl.LT.XU } GO YO ll

T KO=KO+ INC

K1sSPAN-KO

TF{ X0.LT.K1l ) GO YO 10
conuttiue

SPAN=SPAN/2

KQa(

'

K1=KQ+SPAN ~
RO=2(KQ¢ 1)
Rl=R{KLlel)
1Cal(KCeL)
Tlal(Kisl)
RIRO+L }=RORL
T{KO+1}=10+I1
AIKI+1)apO-RY
T{KLI+1 =101
KDaK1+SPAN
1Ft KOLLT.NIKG ) GO TO 13
IFt SPAN. EC.INC )} GO TO 22

T KQOnSPANS2

K1aKO+SPAN
FO=R(KO#+1)
R1aR{K1+1)

CPeTP129
CPETOI D
CPFTPI]Y
CPFIPLL2
CPFTPIL)
CorTIRILS
CPFTPILS
CPFIPI 1S
CPETIPILY
CPFIP[1A
CPETPILY
CPFTPIZ20
CrrTPI21
CPFIFPI22
CPFTPIZ3
CPFTPI24
CPFTP125
CPFTPI28
CPFYPI2?
CPFTPI2a
CPFTPI29
CPFTPL 30
CPFTP[3]
CPFTPI32
CPFTPI33
CPFTPIVS
CPFTPL35
CPFTPI 38
CPFTPI3Y
CPETPI38
CPFTP139
CPFTPI4D
CPFTPIAL
CPFTPI 42
CPFTRI.3
CPFTPLAL
CPFTPI4S
CPFTPL4S
CPFTPI4Y
CPFTPI4S
CPFTPI49
CPFTPISO
CPFTPISL
CPFTP[52
CPFTPL53
CPFTPIS4
CPFTPISS
CPFYPI5S
CPETPIST
CPETPIS8
CPFTPLST
CPRTIPISO
CPFTPIGY
CPFTPI62
CPFTPIS3
CPFTP b4
CPFTPILS
CPETPIS6
CPETPLOT
CPFTP[68
CPFTIPL69
CPFTPITO



10=1(KO0sL }
TialiKlel)
R(KQ+1)2R0+R1
1{KOel )nl3+11
T RIKLe)aSONe T 1-19)
T(R1+L)asSONS(AD-RL)
KO=KLl+SPAH
IFl KQJLT.NINC ) GC TO 14
Ki=INC+INC
1F{ SPANLEC.KL ) GC TC 12
) T CQa2. *SINES(IS)0e2
1Sa[S=1 B
SO=5=SIGN( SINES(IS),SCN )
C=1,-CO . e e
KOwINC
_eeTo ) S

20 KLsNINC-INC
o N2=NINC/2
1J=JI=RC20
TTT T I _NZ.EQ.INC ) RETURN
G110 22 R -

2177 19=K2-1J
JIsN1=J1
- T TaRtLJ+1)
ACLJeL)aR CST+LY
- - REJI+L)=T

Tel(lJel} L

TTTTTTTUH(LIRL)a(gleli T
111 1aT
Tt IR 14.CTWn2 B o6C TC 21
22 lJslaelnc ) o
R T PN TPV - -
T=R(TJ¢1) ) o
— T RAIGeL)sRGIIAL T T
. R(JI#L)=T
T T Tal(1deL)
I(TJ4eL =L (441D L .
- ©I{StelisT . - -

[T=N2 N e

TTUa3 T T 1T=IT/2 ST
RC=RC~IT
A IF{ RC.GE.D } GO TO 23
JI2RC=RC+Z*IT
e 14=1J+INC
IFt 1J.LT.J1 } GO TQ 21
BETTUTTTTIRC BdWLTWN2 ) GG TC 22

T 7T RETURN
END

CPFTPITL
CPFTPI 72
CPFIPI?3
CPFTPL 74

TCPFTRITS

CPFTPL I8
CPFTPLTT
CPFTPI78
CPFTPIT9
CPFTIP1 8O
CPFTPI3L
CPFTPIB2
CPFTPIA3
CPFTPISS
CPFTPIOS
CPFTR[35

"CPETFLAT

CPFTPI3B

“CPFTPLBO

CPFTPI90
CPFTPI9L
CPFTPLIO2

T CPFTPI93

CPETPIO%
CPFTPL9S
CPFTPIOS

" CPFTP197

CPFTPL98

T CPFTPI99

CPETP1O0
CPFTPiOL
CPFIPL02
CPFTPLOI
CPFTPLOSG

T CPFTPIOS

CPFTCL06
CPFTP107
CPFTIPLIO8
CPFTPLO9
CPFTPL1O

" CPFTPL1L

CPFTPLI12
CPFTPLL]
CPFIPLLY
CPFTPLLS
CPFTIPLI6

T CPFIPLLY

CPFTPi18
CPFTP119
CPFTPL20


http://SP4N.EC.Kl

LIST OF SYMBOLS
Page where
defined on
Symbol Description first use
Latin Alphabet
a“I Complex field quentities 2
85:8,,8_ Dimensionless vector potentials 19
Ej Slowly varying or Fourler amplitudes 2,110
A,AO,A+,L,AE Vector potentials 13,31
B Magnetic field g
EO External megnetic field 25
c Speed of light 12
(9 Group veloclties 34
g Sound speed 18
cK K-gpace contour 113
c; Bromwich or Laplace contour 113
e.c. Complex conjugate
Dw,k) Dispersion relation for electromagnetic 19
weves
D+ D Dispersion relation for electromagnetic 19
sidebands
DB( ﬁ, ) Brillouln dispersion relation 100
DO’Dl Partlel differential operators 79
e,e, Electron charge, specles charge 11,14
E Electric field 25
fo(v) ,E(v) Petrurbed and unperturbed veloeity 64,123
distribution functlons
Ft Electromagnetic field quantities: 25

F:t EEthz
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Page where
-defined on
‘Symbol Description first use
G:(;,t) Green's function for a (x,t) due to 113
density noise in species s
Gna( x,t) Green's function for number density due 113
to density nolse in species s
h Rescnance zone 40
an Planck's constant modulo 2w 5
I:(m,]_f) Multiplicative factors in Green’s function 113
integrand
Ins(m,l_:) Multiplicative factors in Green's function 115
integrand
in Subscript or superscript demoting input or 37
boundary value
J ,J’(E,t),f Transverse current and amplitude 16,110
J Longitudinal current 69
J’y; J’;,J’; Sim.lation transverse currents 26
‘Tk Transverse wave action density 80
.TL 1 ’JL’ Input action density and spatial derivative 40
k Wevenumber 19
k‘1 Wavenurher mode J 2
]-‘0'51 Electromagnetic pump-wave wavenumbers 6
kp(z) WKB wavenumber for electron plasma wave 93
K Kinetic energy density 68
KR' Kinetic energy density of rescnant particles 70
in waveframe
L Plasmu system length 16

I.n Plasma density scale length 35
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Page where
defined on
‘Symbol Déscription “'first use
m,me Electron mass 11
m, Ion mass 11
B, Unperturbed number density 16
ns,i‘ls Number density in specles 8 and 123,15
1ts amplitude
NJ Number of quanta in mode J 5
P Average momentum density 67
P Pump parameter 117
P Laser power (watts/cmz) 121
P( ) Principal value integral 123
PR Momentum density in resonant particles 70
r Fleld position 15
b Magnitude of response: r = |5°/$°e| 66
r 3 Equilibrium response magnitude 66
R Relative action transfer 7
R Complex response a.mpiitude, R= 3°/$0e 65
s Species index 14
§,',sz Action flux density, input action 34,37
8 Action flux density difference:
§z5,-8 35
sns,éns Number density source term for species s 109
and Fourler-Laplace transform
t Time 2
T, Temperature of species & 16
u(x,t) Transverse electron fluid velocity 28
uy Transverse electron fluid velocity for 31

mode 2
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Page where
defined on
‘Symbol . Description first use
v Particle velocity 9
!g Flectromagnetic wave group velocity 99
vg",vg Longitudinal wave group velocity 57,88
VJ Characteristic wave velocity 2
\A Thermal velocity species s 17
Vo Trapping velocity 49
v‘» Phase velocity 76
v Oscillation velocity 55
fa Transverse oscillation velocity for 11,14
gpecles 8
30 Maximum electron transverse velocity in 19
pump wave field
VJ Mode J group velocity 3
W,’ Wave energy density in mode J 31
x,x Field or particle position coordinate 2
¥ Position coordinate 13
2 Position coordinate 13
2g Related plasma dispersian function:
2, 2 V2 v 2, . 124
Z Plasma dispersion function 124

ZE" Derivetive of plasma dispersion function 124
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Page where
defined on
Symbol Des::ription first use
Greek Alphebet

[+ Coupling constent 42,66
aj Coupling ccnstant mode § 3
[} Coupling constant 42
] 3 Coupling constent mode J 2
Y Dissipation or growth rate 82
Yot Flectron-ion parametric decay growth rate 56
v, Linear growth or demping rate 62
Yo Growth rates for Raman, filamentation,

or Briliouin 45,99,118
Tw,k) Coupling strength:

Ta,k) = xg(1 + xg )€™ 17
T Coupling constant: T = =47 Im e'l(n,_ng) 40
G(m,g) Msmatch ratio: § £ D /D, 107
6J,6Je Transverse electron current perturbation 1
GnE Number density perturbation 11
653 Llaplace and Fourier tramsformed Gns 109
é(x) Dirae &-function 27
Se ‘ Nonlinear dielectric function perturbation 62
3 Attenuation length 88
Gps,GBE Nanlinear charge density by species

and amplitude 60
Suw Complex, nonlinear frequency nhift 62

60,690 Real part of 6w and related function 65
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Page where

. defined on
—Symbol mlef'iution first use
s(w,X) Dielectric functian 15
e' Real part of ¢ 35
c” Iraginary part of ¢ 35
3 Linear part of ¢ 62
N Nonlinear dielectric fimection 57
£,€ First and second frequency derivatives of € 33,69
» Characteristic, n = (ct - z)l‘.'l’oi 40
¥ Saall quantity 67
(] Relative phase of response w.r.t. driver 65
e Angle of k w.r.t. to Kk 98
02 Phase of mode £ ”
-} Heaviside unit-step function 40
4 Wavenumber for density perturbation 6
‘p Pinch-point wavenumber 115
Kor*y +%g Charecteristic wavenuzbers related to 117,118

Brillouin
k! Spatiel derivative of wavenumber miematch 46
A' Debye length for species s 12
x . Inverse wavenumber 87
y Coupling strength: 1 = Vo r{R,g)/4 19
v " Dissipetion rate 33
Vst Eftective dissipaticn rate 48
Vot Elsctron-ion collisicn frequency 40
vj Dissipation rate for mede J 2
v Disaipation rate for electron wave or

8
ion sound wave 35



Page where
defined on
Synbol Description first use

£ Characteristic, £ = {ct ¢ z)l’.‘IQ:l 40
E Dimensionless phase velocity:

£z V2 iy, 124
[] Wave sct.on flux density input ratio 37
plt) Total _harge density &0
;:3(1'.),5s “harge density species s and Fourier 60

amplitude
pLB,BLs Linear pert of species charge demsity and 60

Fourier amplitude
o Characteristic, o = (et - z){T J&)llz 40
T Characteristic, t = (ot + s)(l'.‘lt'))ll2 40
T Time 50
Tp Bounce period 49
Texp Duration of experiment (secs.) 50
Tr Characteristic time for fgnored effect 50
¢, Coulomb potential and Fourier amplitude 15
cbo”,aos Effective, ponderomotive potential and

Fourier amplitude, species s 15
5,88 Total potential and Fourler trensform,

species s 15
xs(m,lf) Susceptibllity for species s 15
x%(w,x) Susceptibility kernel and nonlinear

susceptibility 60,61
w.iﬁ Ponderomotive potential energy and amplitude 32

102

v

Polarization angle
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Page where
defined on
Symbol Description first use
w Frequency 5
w, Ion acoustic frequency 1
wy Bounce frequency 49
“’J Mode frequency 2
wp sy Linear and nonlinear elgenmode frequencies &2
mp Plasme frequency 40
wy Plasma frequency for species s 12
wy 1 Transverse wave frequencies <
r
Q Beat { ‘:quency ©
QJ. Characteristic frequeney in normal mode
dispersion relation 2
ﬂL Real part of oy 32
Q Pinch-point fraquency 115
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FIGURE CAPTIONS

(a) Stimulated scattering of a higher frequency transverse wave
occurs into a lower frequency transverse wave and a langi-
tudinal plasma oscillation.
(b) Simultanecus three-wave interactions occur coupled by
a common driven longltudinal density perturbation. The
process is generally described as modulation.
Coordinate system for two dimensional scattering in the x-z
plane with electric field polarizations in the y-direction.
6 is defined as the angle between real wavenumbers k and
l_:o.
(a) Three-wave coupling, e.g., Raman or Brillouin scattering.
(b) Forward scattering or four-wave coupling, e.g.,
filementation.
The one and one-half dimensions ( x,vx,vy) of the code are
pictured schematicaliy. Wave nropagation and density variation
occur parallel to x. Transverse waves are linearly polarized
in the y-direction. Magnetic fields are parallel to z. The
three-wave interaction is diagrammed.
The equations deseribing transverse waves and particle dynamics
are integrated forward in time using a time-centered, leap-
frog technique. Currents are calculated from charge locations
measured over consecutive time-steps and from velocities at the
half time-steps [1, = (I} + J;)/Z].
Beat heating in en inhomogeneous medium. Because of the
resonance conditior, there arises a resonance reglon h. The

density gradien’, described by the scale length
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Fig. 7.
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L, = (dtnny/dz)™), 1s parallel to the propagation directin
of waves.

Beat heating in a finite, inhomogeneous medium:

(a) the right- and left-going electromagnetic waves before
onset of beating;

(b) (x,vx) phase space after a fairly large amplitude
electron plasma wave has been established.

Relative energy or action depletion R of the high frequency
wave v8 dimenaionless parameter (scale length x pump strength)
41rkoLn[ uolzlcz for beat heating in an inhomogeneous medium
with input ratio .Tl:"n/Jc)"n =1, The data points for

4micgL Jup | 2/6? = 0.5 represent three parauster choices:

V : 4lug/el? = 0.008 end kL =18.3; O : 4lug/el? = 0.010

and kgL =15.2; and A : 4fug/el® = 0.012 and kL = 13.7.

Fig. 8.

Fig. 9.

Fig. 10.

Steady propagation of a stationary pulse~like three-wave inter-
action for perameters V) = VB = -V, =1: al(x,t) = -0.1
tanh(0.1£ ), az(x,t) = 0.00499 sech(0.1E), and

a4(x,t) = 0.1 sech(0.1§) where £ = x - 1.0Lt.

Perturbed puise propasgation for parameters Vl = V3 = -Vz =1,
and initial conditions aqu,o) = -0.1 tanh(0.1lx},

az(x,O) = 0.0499 sech(0.1x), and aj(x,o) = 0.1 sech(D.1x).
Propagation of superposed right- and left-going solitary

pulse solutions showing break-up for parameters

V, =V, =<V, =1, and initial conditions: al(x,.O) =

1" ¥37
-0.1{tanh(0.1£) + tann(0.1n)], 8,(x,0) = 0.00499 secn(0.1£) -
2.01 seat(0.1n), and af(x,0) = 0.1[sech(o.1g) + gech(0.1n)}
where § = x ¢ X, and n = x - Xy Xy denote the initial

locations of the left- and right-going pulses respectively.



Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.
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Beat heating in a cold, uniform pleasma with initial condl-
tions altx,o) = 6{-x), -az(x,O) = 8(x), and aJ(x,G) =0,

where 8 1is the unlit-step function. We have chosen

parameters Vl = Vz =1, \)3 = 0.2, and V3 = vl v,

v3 =k' =0.
Beat heating in a warm, uniform pilasma, with initial condi-
tions al(x,O) = 8(-x), az(x,o) = 9(x), and aj(x,o) = Q.

We have chosen parameters Vl = Vz =5, V3 =1, \)3 = 0.2,

= = L
and v v, = K 0.

1
(a) Temperature (eV) is plotted as a funciton of time.
There 1s a temporary halt in the heating at around the first
fbounce period" Ta after the onset of beat heating.

(b) The relative action transfer is plotted as a function
of time for a simlation exhibiiing +w=y-i-z {~orresponding
to Flg. 14). .

Phase space ( x,vx) and the velocity distribution funection
f(vx), for beat heating in a finite homogeneous plasma with
trepping, for parameters: |u1[ ~- |u°‘= 0.03c,

ve(O) = 0.042¢, and ) = 5.0 -

(a) at wt=6; l&m)l=0.3 &&/5;=0.25 and

‘l‘e/'l‘e( 0) = 1.0. The action transfer rate is large, since
the beat wave 1s still in a linear regime.

(b) At wt =25 lén/ngl = 0.7, As/s, = 0.11, and
Te/‘l‘e(o) = 3.3. The density disturbance has become large in
amplitude. Trapping has significently reduced the action
transfer rate.

(c) At wt = 40; lén/nol = 0.4, 85/5,=0.1, and
‘l‘e/‘l‘e(o) = 4.7. There has been significant plasma heating.



Fig. 15.

Fig. 16.

Fig. 17.

Fig. 18.

Fig. 19.
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Beat heating is no longer resonant but continues in a regime
described as induced Thomson scattering.

Heating vez( tB) - vez(o) is plotted against input laser

intensity "r'oo?lo (we have chosen equal intensities

~0
Vo ‘Vl

o). The period of time over which the heating is
measured is defined as the average "bounce period” 15
after the onset of beating. The fixed parameters and initial
conditions for these simulatioms are l<<:/me = 8.36,

wylw, = 5.0, and n..e'(wo) = 0.35.

Plotted 1s [AL - GA(r)]r, for 6A = -m", with AL as

a pavameter. Equilibriz described by Eq. {64) occur at
intersections with 31,

(a) Equilitrium occurs only et ry for AL > 0.

(b) For A= Al,Az, where 4, < Al < 0, mltiple
equilibria occur for A2 but not for A1

(a) Total electric field E and driving electric rield EO’
in natural units wvs «kx;-

{b) Longitudinal phase dacsz, nr/me vs Kx;

(¢} Electron velor?iy distribution function f{v) in
arbitrary units vs ncv/we; all at met = 300.

(a) Relative response mag [tude r and relative phuze 0,
rexp 10 = 5/30 vs me?:.

(b) Frequency shift and nonlinear dissipation normalized to
W, Vs "’et‘

Asymptotic frequency shift normalized to w, v8 normalized
wave amplitude |ed(t = w)]/(mulez/ZKz) = (»Bz/me2 for slow

driver switch-on over met = 50m {0) ~and for sudden switch-on



Fig. 20.

Fig. 21,

Fig. 22.
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(®). The solid line indicates the theoretical result of
Morales and 0'Neil.
Simulation of resonsnt response of a Maxwellian electron
plasma (thermal speed \re) to a pondercmotive plane wave
driving force, of frequency R (chos?n to equal me) and
phase velocity v » 2 Q/x (chosen to equal 3ve), induced
by the v x B coupling of two opposed lasers with oscilla-
tion velocity amplitudes u, end vy {choser. initially
equal to 0'2"0)' Initialiy the linear normal mode frequency
is ﬂL = 1.17%, and the linear Landau damping 1 is
O.ije. The frequencies of the transverse waves are chosen
to be Wy = 5"’3 and W ey -0= l’“‘c' For a typical
simulation, we exhibit at w,t = 431, 784:
{a) The driving field Eo and the total field E as
functicns of 1z, in natural unlts;
{b) Longitudinal electron phase space;
(c) The velocity distrbution, in arbitrary units.
For the seme simnlationasin Fig. 20, we show, as functions
of time:
(a) The magnitude ¢5(t) end ¢,°(t) of the total and
ponderumotive potentials;'
(o) Thelr respective phases @ and eo:
¢%(x,t) = 0%(t) cos(t - kx + 6) end
tboe(z,t) = ¢oe(t) cos{Rt ~ xx + eo).
For the seme simulation as in Fig. 20, we show, as functions

of time:



Fig. 23.

Fig. 24.

Fig. 25,

Fig. 26,
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(a) The deduced frequency shift 6R;

(b) The nonlinear damp‘mg—yn.

For the same simulation as in Fig. 20, we skow, as functions
of time:

{a) Coupled mode amplitudes |uo[/v , |u1[/v , and

|8l /ng;

{b) Their respective phases 9y °1' and -

Two lasers in channels L eand I~1 initiate the multiple
scattering of photons (ul,gl) by a single plasmon
(ﬂ,l_:p). leading io the generation of photons in both lower
and higher fre, ancy channels.

A schematic sketch of Re Wmi — and Im ﬂ/mi -— ¥8 ncxe
for filamentation, with 5-30 = 0.

Weak -coupling Brillouin scattering: Re ﬂ/Z'kDf.:s ~—— and
Im Woce = v8 x/2k,.

Fig. 7. (a) Strung coupling Brillouin dispersion relatiom:

Fig. 28.

Re .z/uo = and Im r;/uo -~ v3 uc/Zko, for cos 6 = 0.25,
0.50, 0.75, and 1.0, vith parameters kole = 0,02,

¥./c = 0.2, me/uo = 0.2, and mi/me = 25,

(b) Combined filamentation and strong coupling Brillouin
dispersion relations: Re.ﬂ/uo = and Im 1’2/«;0 ~-—— Vs
lc/2ko for cos 6 = 0.0, 0.25, 0.50, 0.75, and 1.0 and
same parameters.

Longitudinal phase space (x,vx) for Brillouin backscatter:
electrons at

(a) w,t

(v) w t

47.5 und

90.0;



Fig. 29.

Fig. 30.

Fig. 3.

Fig. 32.

-ig. 33.
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ioms at

(c) @t = 47.5 and

(a) u)et = 90.0

Electrostatic energy density, l/nomecz va time, met,

for the x = 2!0 mode.

Brillouin pinch-point frequency, Re ﬂp/uo -, and growth
rate Im ﬂp/wo -=< vs. dimensionlens pump strength
(wi/mo)z(koro)zlz. The pump strengths exceed ( kqeg/ug )3 =
10'6, and thus are in the regime of stromg coupling normal
modes. Results derived using the weak coupling approximation
ere shown by =——,,—.

Brillouin pinch-point solutions for Re <p/2k° —_—

Im "p/ZkO ---, and Re $/Re KpCg = V8 (m:'./z.l.vo)z(kor0 )2/2.
Annlytic approximation for weak coupling is shown by

The ratio of mismatches |D_/D,| ¥= pump strength

{ “‘1/‘“0 )“:!(kor° )2/2 , evaluated at the pinch-point freguency
and wavenumber for Brillouin backscatter (8 = 0) and for
parameters u, << u, and ke /u, = 1072,
Contor .. f equal IDBI vs Re «/2k, (ebscissa) and

In nc/Zl':° (ordinate) for a strong pump, (wi/mo )z(koro )2/2 =
10.7,(k°c8/u0_)3 =1C-.6, and w, << wy- Re 2 1s set equal
to the pincih-point frequency.

(a) ImQ 1less than the pinch-point growth rate.

(b) Imf equal to the pinch-point growth rate.

(c) ImQ greater than the pinch-point growth rate.
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Fig. 3,. Contours of equal Inal va Re x/2k, (abscissa) and
In /2, (ordinate) for a wesk pusp, (v, /ug)(k,r )72 =
m'3,(koce/mo)3- 10'6, ard @, << ;. Be B 1a set equal
to the pinch-point frequency.
(a) ImQ less than the pinch-point growth rate.
(b) Im 9 equal to the pinch-point growth rate.
(c) ImQ greater than the pinch-point growth rate.
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