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ABSTRACT 
The nonlinear coupling of intense, monochromatic, electro­

magnetic radiation with plaana is considered in a number of special 
cases. The first part of the thesis serves as an introduction to 
three-wave interactions. A general formulation of the stimulated 
scattering of transverse waves by longitudinal modes in a warm, 
unnegnetized, uniform plasma la constructed. We derive a general 
dispersion relation that describes Raman and Brillouln scattering, 
modulational instability, and induced Thomson scattering. 

In the second part Raman scattering (the scattering of a 
photon into another photon and an electron plasma wave) is investigated 
as a possible plasma heating scheme. Analytic theory complemented 
by computer simulation is presented describing the nonlinear mode 
coupling "f laser light with small and large amplitude, resonantly 
excited electron plasma waves. Trapping of electrons In the electron 
plasma wave is found to b« an Important nonlinear feature. We 
formally analyze the nonlinear, tiae-dependent response for a 
resonantly excited longitudinal wave and demonstrate our construction 
In simulation, trapping Influences the nonlinear dispersion relation 
of the plasma wave, whose back-reaction on the beating of the lasers 
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playa a significant role In vie transfer of energy from the transverse 
waves to the plasma. 

The third part Investigates the stimulated scattering of a 
coherent electromagnetic wave by low frequency density perturbations 
In homogeneous plasma. A composite picture of the linear dispersion 
relations for fllaoentatlon and Brillouin scattering Is constructed. 
Finally we describe In detail the absolute Instability of Brillouin 
weak and strong coupling by analytic ?nd numerical means. 
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I. INTRODUCTION 
A. Overview of Three-Wave Interactions 

The processes considered In this thesis are representative 
of a much more general class of phenomena, common to many branches 
of physics, described as three-wave interactions. We restrict con­
sideration here to those three-wave interactions occurring in an 
unmagnetized plasma Involving the scattering of a transverse wave, 
i.e., a photon, into another transverse wave and a longitudinal wave, 
i.e., a plasoon. When the longitudinal wave is an electron plasma 
wave, the three-wave interaction is called Raman scattering. If 
the longitudinal wave Is an ion acoustic wave, the process is called 

5-9 Brillouln scattering. 
All three waves in the interaction need not be normal modes 

however. We shall show how finite amplitude effects can lead to 
the production of driven modes as decay products in the three-wave 
interaction. We shall also show how the simultaneous scattering of 
monochromatic transverse waves into two other transverse waves 
accompanied by a growing density disturbance can be viewed as two 
three-wave interactions which are coupled by a virtual or nonpropaga-
tlng wave. These last two phenomena are described as modified 
Brlllouin or Raman scattering (also known as strong coupling ' ) 
and modulational instability (examples of which are filamentation 
and self-focusing 1 4' 1 5). 

To make these ideas somewhat clearer we shall introduce 
model equations that represent the three-isave interaction of three 
normal modes in a homogeneous plasma. For the sake of simplicity we 
consider the coupling of three waves all propagating in one dimension. 
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The three interacting noixal Bodes arc each assumed to satisfy, In 
the absence of coupling, a linear partial differential equation of the 
form 

( 3 t
2 - 2iVj3t + O j 2 - y } \ 2 ) aj(x,t) » 0 (J = 1,2,3) 

(1) 
where {v,} represent dissipation, {a,} represent field quantities, 
and the normal mode frequencies satisfy (in the absence of dissipation) 

2 2 2. 2 

the linear dispersion relations u. » 0, + v.Tc, (k, is the 
wavenumber of the jth wave). If the wavee are allowed to couple, 
then the set Eq. (1) becomes 

( 3 t
2 - 21v 13 t • J^ 2 - rx

23x

2) a^x.t) = e ^ x . t ) a.j(x,t) 

O t
2 - 21v 23 t + Jl 2

2 - v 2
2 3 x

2 ) a 2(x,t) = B ^ x . t ) a*(x,t) 

( 3 t
2 - 2iv 33 t + SJ3

2 - v 3
2 3 x

2 ) a3(x,t) = S^Cx.t) a*(x,t) 

(2) 
The constants 6, are real coupling constants, and a,(x,t) is 
taken to be the pump wave. For specific three-wave interactions use 
of Jfexwell's equations, fluid or kinetic equations, and equations of 
motion for ions and electrons results in the set Eq. (2). ' We 
shall explicitly derive the linearized coupled mode equations for the 
interaction of a transverse wave with another transverse wiue and an 
electron plasma wave in Section II.C. 

We assume that the field quantities a,(x,t) can be written 
a,(x,t) = a,(x,t) exp(-i(o,t + ik.x) + c.c. (J = 1,2,3), where 



the a,(x,t) are slowly varying quantities. If the three waves 
satisfy the frequency and wavenuober matching conditions, 
u, • » , • u, and k, = k, * k,, then Eqs.(2) become 

[2i<o1Sl + Z l v ^ • a i v ^ a ^ j ^ ^ . t ) = B^Cx.t) a^x.t) 

[2iu23 t • 21v2u2 • 2U^Tt2*^ a 2(x,t) = d^Cx.t) a*(x,t) 

[2io.33t + 21v3u3 * 2iv 3

2k 33 xJ a 3(x,t) = b^x.t) a'fx.t) . 

(3) 
2- 2" 

The terms involving 3., a. and 3 a, have been ignored. If we 
divide each equation by 2io>. respectively, and introduce the group 
velocities V, = k.v, /a, and new coupling constants a. s B,/2ui., 
then we obtain the linearized coupled node equations 

[*t * v l * V x ] V x ' 1 , ) = -iOjS^x.t) a3v'",t) 

[ \ * v2 + V x ] S 2 ( x , t ) = -icija^x.t) a*( X ) t) (4) 

[3 t • v 3 • V 33 x] a3(x,t) = -io^Cx.t) a^x.t) 

We thus consider all three waves on an equal basis. Much 
work has been done on these equations in various limits.'' In the 
limit that |a2|,|a.| « |a.|, the coupled set of equations reduces 
to two equations describing the evolution in space and time of the 
field quantities a_(x,t) and a,(x,t) coupled by the pump w*ose 

11 12 22-24 amplitude is assumed constant. ' ' The research ,n various 



parametric instabilities induced by the coupling of two initially 

small amplitude waves by a pump wave has been vigorous: the work ty 
23 °JL 

Rosenbluth J and also by Nishikawa has been especially significant. 

In this thesis examples of three-wave interactions are considered both 

where the pump-wave amplitude is held fixed, and where changes in the 

pump-wave amplitude are essential. 

The three-wave process described by Eqs. ( O is illustrated 

in Fig. la. TL<e decay of a high frequency pimp wave (u. ) into two 

lower frequency product waves (a.,m-) is pictured. Figure lb shows 

two three-wave interactions coupled by a virtual wave; this could 

represent filamentation for example. For the case of three-wave 

interactions among coherent, rormal modes, toe coupled mode equations 

Eqs. (<0 lead to certain conservation laws. If there is no dissipa-
* —1 tion, v. = 0, then multiplication of Eqs. (4) by a, a, and 

addition of the equations taking the complex conjugate yield 

( 3 t + Vx] V 1 l=i I2 + [ 3 t + V j V 1 P*I2 • ° 
(5) 

K-VxK^'MvvJv 1'^ • ° • 
Toe expressions in Eqs. (5) are stateme- 3 of the well-known 

25-29 Manley-Howe relations. Loosely speaking, the sum of the wave 

actions of the pump with either of the decay products is a constant 

(wave action "Ot," |a,| ). Since we have assumed that frequency and 

wavenumber matching prevail and since the wave energy is equal to 

the frequency times \Aie action (as we shall explicitly show in Part H i 

then :.i.: relative portion of energy transferred to the Jecay products 

is given by " /UL for the wave with frequency <», and % / \ for 

the wave with frequency ui . Similarly for the wave momentum, 
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equal to the wavenumber times the action, the relative momentum 
transfer goes as the ratio of wavenumbers. these results should not 
be surprising; we know from quantum mechanics that the wave energy 
is given by -nio.N, and the wave momentum by *k.H,, where N. is 
the number of quanta. Action conservation is just a statement of the 
conservation of quanta. 

B. Thesis Synopsis 
Ihis thesis presents studies of nonlinear wave-wave inter­

actions Involving intense, coherent radiation in an underdense plasma 
(w < ID). We examine the possibilities for heating plasma by 
utilizing the resonance of the beat wave produced by two electro­
magnetic waves with an electron plasma wave. The excited plasma 
wave is allowed to be large in amplitude, and the noniinear effects 
of electron trapping are considered In detail. We further examine 
the stimulated scattering of an intense, coherent electromagnetic 
wave by longitudional plasma waves or driven plasma modes at low 
frequency involving both ions and electrons, which Is of much Interest 
in laser-fusion applications. A unified picture of stimulated 
Brillouin scattering and modulational instability (filamentstion 
or self-focusing) is described. We compare linear ami nonlinear 
theory with computer simulation where possible. 

In Part I we provide an overview of the basic plasma phenomena 
of interest here, viz. three-wave interactions among coherent 
normal modes or driven modes. If the waves can satisfy certain 
resonance conditions and if their coupling is sufficiently large, a 
vigorous transfer of energy can occur. The resonance conditions 
correspond classically to phase matching both in time and space. 
Quantum mechanically, frequency and wavenumber matching correspond 
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to energy and momentum conservation. These ideas are made explicit in 

Section I. A and Section I.C. The mechanisms leading to the nonlirear 

energy transfer, or mode coupling, are provided by the nonlinear 

medium, in this case the plasma. The specific nonlinearities respons­

ible for the mode coupling will be manifest in the general treatment 

appearing in Section I.C, which is concluded with the derivation of an 

implicit dispersion relation describing the stimulated scattering of a 

transverse wave by plasma. 

Part II of the thesis treats the scattering of light into a 

longitudinal electron plasma wave and a scattered transverse wave 

for the purpose of heating plasma. Section II.A begins t • specializing 

our general formulation to the ca&e of beat heating, i.e., the resonant 

excitation of an electron plasma wave by two electromagnetic waves 

(of frequencies ^,111. with «JQ > 'J>, and wavenuctbcrs tQ,k ) whose 

difference frequency (8 = <•> - u ) and wavenumber (< - k Q - k.) 

nearly satisfy the Bohnt-Gross dispersion relation for an electron platnia 

wave. This process is closely related to Raman scattering, but the 

finite amplitude of the lower frequency electromagnetic wave requires 

equel treatment of both the lower and the higher frequency electro­

magnetic wave. The excited plasma wave then iamps, either due to 

collisions, Landau damping, or nonlinearly. The plasma heating is 

provided by the electron plasma wave. 

In order to lay the proper groundwork for the subsequent, 

extensive use of particle simulation, Section II.B describes a 

relativistie, electromagnetic, particle code. The code was created in 

collaboration with A. B. Langdon, Mike Mostrom, and Dwight 

Nicholson, to study a variety of electromagnetic phenomena in linear 
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and nonlinear regimes. The code Implements an efficient Maxwell's 

equations solver for the one dimensional propagation of light,that is 

quite free from numerical instability. Poisson's equation is solved 

by Fourier transform. Langdon's electrostatic version of the code 

utilizes the same fast Fourier transform of Poisson's equation and 

was used to study some of the nonlinear aspects of beat heating. 

Section II.C is devoted to the study of the beat heating of 

opposed lasers. The nonlinear interaction may be considered as an 

induced decay (u>Q • u>, + n), in which a fraction R of the incident 

power at frequency u- is converted to frequencies u, and ft, with 

the fraction Rft/u. appearing as a longitudinal plasma oscillation 

and, because of damping, ultimately as heat. Theory and simulations 

are utilized in Section II.C.l to determine the dependence of the 

efficiency parameter R on the available parameters: laser intensi­

ties, density scale length, and temperature. We find that beat heating 

in a nonuniform plasma with linear density gradient is largely 

independent of the electron wave dissipation rate. 

We describe the steady-stute energy transfer to the plasira, first 

treating the small amplitude electron plasma wave as a quasi-steadily 

driven disturbance ignoring convection. Subsection II.C.2 examines 

the space-time interaction of the two lasers, again assuming that the 

electron wave is quasi-steadily driven by the ponderomotive force of 

the two lasers. In Section II.C.3 we relax this assumption and inte­

grate (in space and time) the linearized coupled mode equations 

describing all three waves on an equal basis. 

We continue our study of beat heating in Section II.C.4 by in­

vestigating the influence of electron trapping in the plasma wave. The 

threshold and time scale for trapping are compared to those for the 
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Raman backscatter, electron-ion decay, and oscillating two-etreaa 
instabilities to determine for what parameters trapping is the 
dominant nonlinear feature in beat heating. In reviewing the beat 
heating simulations exhibiting trapping, we find that certain 
unphysical effects, caused by the comparatively short length of the 
plasma, motivate the construction of a simplified model problem. 

As a first step in determining the nonlinear plasma response 
to resonant excitation by the low frequency beat of two high frequency 
waves, we solve a model problem. For the sake of simplicity, we 
assume that the plasma is uniform, and that the excitation of the 
longitudinal beat-wave is provided by a constant-amplitude pondero-
motive potential. In Section II.C.5, we formulate an explicit theoret­
ical prescription for the time-dependent nonlinear plasma response to 
resonant excitation within the context of our simplified model problem. 
The time-dependence of this nonlinear response, and its approach 
to equilibrium, are related to the behavior of a nonlinear normal mode, 
and in particular to its time-dependent eigenfrequency. We determine 
the equilibria possible for electron plasma wave-! with trapping, and 
the stability of the equilibria. Our analysis is demonstrated in 
simulation, and comparison is made with theory. 

Our discussion of the b^at heating of opposed lasers is con-
eluded in Section II.C.6, where we consider the back-reaction of the 
nonlinear electron plasma wave on the evolution of the transverse 
waves. We specifically investigate the influence of particle trapping 
in the beat wave and how trapped particle effects can be removed by 
piesua inhomogeneity. 
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Sectlon II.D reviews the Idea of cascading: parallel 
propagating electromagnetic waves can be multiply scattered by an 
electron plasma wave resonantly excited by the ponderomotive V x 3 
force of any two successive electromagnetic waves in the cascade. 
We discuss the influence of plasma lnhomogeneity on cascading and 
how cascading might occur preferentially over Raman fcackscatter. 

When the induced scattering of light involves a beat wave 
of low frequency |fl| « a., both electrons and ions can respond. 
This occurs in many interesting situations, e.g., in astrophysical 
plasmas, the ionosphere, laser fusion, and radio-frequency heating. 
Incident rediation can baclcscatter from an ion acoustic wave or, 
at higher intensities, from a driven, low frequency density perturba­
tion (strong coupling). These are both examples of stimulated 
Brillouin backscattering. If the radiation scatters from a growing 
density perturbation into two sidebands, modulational instability is 
occurring. The incident radiation can then filament or self-focus. 
These scattering iiistabilitles involving ions pose a particular 
threat to laser-pellet fusion. They have relatively low intensity 
thresholds and can lead to considerable scattering of the laser light 
and deformation of the target with perhaps deleterious effects on 
absorption mechanisms requiring relatively uniform illumination of 
highly spherically symmetric targets. Part III of the thesis is 
devoted to an examination of stimulated Brillouin scattering and 
filamentatlon in a homogeneous, unmagnetized plasma. 

Section III.A presents an introduction to the stimulated 
scattering of light by low frequency ion modes. We construct a 
general dispersion relation describing Brillouin and filamentatlon 
instabilities in Section II.B. The linear dispersion relation for 
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fllamentation Is solved In Section III.C, while Brillouln is considered 
in Section XII.D. We examine Brillouln strong coupling and filamenta­
tion from a unified point of view. We conclude with a detailed study 
of Brillouln absolute instability and the construction of its asymptotic 
Green's function. 

0. Coupling of High Frequency Transverse Waves 
to unmagnetized Plasma 

Of particular Interest in laser fusion, radiation from pulsars, 
radio frequency heating, and ionospheric scattering is the class of 
parametric instabilities involving ths scattering of light from longi­
tudinal electron and ion waves. The instabilities involving ions 
characteristically exhibit lower thresholds for onset of instability 
and lower growth rates than their counterparts involving only 

11 12 30 electrons. Examination here will be restricted to just the 
scattering of a monochromatic electromagnetic wave from longitudinal 
density perturbations in unmagnetized plasma. The formulation will 
be sufficiently general tu include induced Thomson scattering, but 
evaluation of dispersion relations and partial differential equations 
describing the scattering will be confined to situations where the 
scattering involves collective plasma behavior: stimulated Raman 
and Brillouin scattering and filamentation. 

The discussion beings with a qualitative picture of the 
physical mechanism responsible for this class of parametric insta­
bility. We assume that 'She electron and ion motion is norrelativistie 
and for the eaSe of simplicity that radiation with frequency ui- and 
wavenumber K. is incident upon a uniform, unmagnetized, warm 
plasma. We relax the assumption of plasma uniformity in Section II.C. 
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The electrons and lona acquire transverse "quiver" velocities 
as their lowest order response to the radiation. Of course the 
electron quiver velocity v rill be larger than the ion quiver 
velocity by the mass ratio mj/m » 1. If there is an electron 
density perturbation or fluctuation present ta , e.g., due to noise, 
then a coupling to the radiation can occur via the electron current 
61 produced by the transverse quiver velocity and the density 
perturbation: 6j • eon y , where the electros., charge is defined 
by e. This current will act as an antenna for scattered radiation 
propagating at the sum and difference frequencies end wavenumbers 
of the density perturbation and the transverse oscillation velocity: 
(civj + JJ,50 + K) and (u 0 - S3 ,&. - jc ), where the frequency and 
wavenumber of the density perturbation is given by (ft,*). 

The feedback necessary to produce parametric instability is 
provided by the coupling of the scattered radiation with the incident 
radiation via the Loientz force •, x B. The Lorentz force is produced 
by the cross-product of the transverse oscillation velocities with 
the transverse n^sretie fields at the various existing frequencies 
and wavenumbers of the transverse fields, namely the incident and 
scattered radiation. The Lorentz force provides a driver for high 
frequency and high wavenumber density perturbations (2uu.,2kQ), 

(2u). + ft,2k. + K ) , and (2a). - Q ,2k. - K ) which contribute to 
31 the lowest order nonlinear frequency shifts. In addition to the 

high frequency density perturbations however, there will be the 
low frequency y x B beat at (!J,K) which serves to reinforce the 
original density perturbation and can give rise to instability. 

The Lorentz force acts like an external, electrostatic 
driving field in creating density perturbations. If the beat 
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frequency and wavenumber nearly satisfy the Bohm-Gross dispersion law 
2 2 2 2 for electron plasma waves, 0 » oi (1 + 3* X ) where u is the e e e 

electron plasma frequency and X the electron Dabye length, then 
Raman scattering can occur. If jft| < u, where u. is the ion plasma 
frequency, both the ions and the electrons will respond to the Lorentz 
force. Then Brillouin scattering and filamentation can occur. In 
any case the Lorentz force depends bilinearly on the amplitudes of 
the incident and scattered radiation. The current producing the 
scattered radiation depends in turn on the amplitudes of the density 
perturbation and again on the electromagnetic pump. Thus the 
scattered light is shifted up and down from the pump frequency and 
wavenumber by the beat frequency and wavenumber, (<>>_ + n,k_ + K) 

and (u- - 0 ,k Q - K ), respectively and can grow exponentially. 
If the depletion of the electromagnetic pump wave is ignored, -then the 
pump intensity becomes a parameter governing this "parametric" 
instability. 

No attempt at this point has been made to describe th<s 
influence on the scattering of the relative polarization and scatter­
ing angle of the scattered radiation and the pump. For particular 
scattering configurations, e.g., forward, both scattered electro­

ll 12 
magnetic waves can grow exponentially with comparable amplitudes. ' 
The incident laser light appears to develop a modul. Ion with 
|n| < U4 and can eventually break up Into many filaments or self-
focus. 1 3' 1' 1' 3 2' 3 3 For ft « u>e and K » (we/c)Jc0 multiple Raman 

nj *JK 

scatterings from a single electron plasma wave oan occur. , J If 
Instead radiation is observed to backsaatter, it is sufficient to 
consider only the scattered radiation shifted down by the beat 
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frequency and wavenumber and describe it as stimulated Brillouin or 
11 12 Raman backscatter. ' 

Several authors have constructed general formalisms describing 
n 15 HA TO parametric instabilities. ' »•*'"•" jj,e most complete work on the 

normal mode structure is due to Drake, Kaw, Lee, Schmidt, Liu, and 
12 Rosenbluth, whose analysis is three dijnensional and nonrelativistic, 

and assumes the plasma to be uniform, isotropic, and unmagnetized. 
We adopt an approach similar to theirs here, but further simplify 
by considering only the scattering of parallel, linearly polarized 
light in two dimensions. Comments on the generalization of this 
formalism to three dimensions are found in Section III.D. 

We formulate our description of the induced scattering of 
radiation by density perturbations in terms of complex vector 
potentials. We assume that all radiation is linearly polarized in 
the y direction and propagates in the x-z plane (see Fig. 2). 
The real vector potential is written as a sum over the modes 
present, omitting the multiplicative factor y, 

A(r,t) = A Q expdkQ.r - i« 0t) + A_ exp[i(kQ - K*).r - (w 0 - fl*)t] 

• A + exp[i(k0 + ic)-r - i(aQ + fl)t] • c.e. . (6) 

In deriving the dispersion relations describing the various parametric 
instabilities that can arise here, we assume that |AV{,|A | « |AQ| 
and A- 1E held constant. The vector potential represented in Eq. 
(6) includes the pump wave and the radiation shifted up and down by 
the beat frequency and wavenumber. If further scattering occurs to 
produce radiation at frequencies and wavenumbers (uu - 2SJ ,k_ - 2 K ) 
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and (uu • 2ft>j£n * 2 £ 5 f o r e l a m P l e » t h e n these modes must be explicitly 
Included in Eq. (6). The beat wavenuober K is restricted to lis 
in the X-K plane. 

An examination of the equation of motion for the charges 
quivering in the electromagnetic fields described in Eq. (6) allows 
the identification of an effective external potential. The equation 
of motion for a charged particle of species s in the field of an 
electromagnetic wave and in an electrostatic field with potential 
$(r,t) is given in the nonrelativistic limit by 

msdv/dt = e gv x [v x Ay]/e - e^SA/cat - eVif . (7) 

We solve Eq. (7) approximately, expanding in powers of the 
2 small parameter esA-/m c . The Lorentz force term can be rewritten 

ia approximate form as the gradient of an effective potential. From 
the conservation of canonical momentum in the y direction (due to 
translational invariance), we have v.y1 - -e_A/m e + constant s 

— s s 
v + constant. For a cold plasma the constant can be set equal to 
zero for all charges, and the component of the Lorentz force term 
in the scattering plane becomes 

[e 8(v.y)yx(vx Ay)/c] = - e ^ V A 2 / ^ 2 . (S) 

For a warm plasma canonical y momentum is still conserved. 
However, the y velocities are given by v-y • v + v' where v' 

- s y y 
is the velocity of charge described by <ia arbitrary thermal distribu­
tion of velocities in the absence of external fields. The thermal 
corrections <;hat result will be discussed when the nonlinear current 
is evaluated. 
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From Eq. (8) we can define the effective or ponderomotive 

potential driving longitudinal electron density perturbations: 

4>0
e(r,t) = e[A(r,t)]2/2mec2 . (9) 

The quiver velocity and the effective potential for the ions are 
both smaller by the mass ratio m /my and are ignored, v. * $Q • 0. 

The density perturbation is described by the self-consistent 
Coulomb potential *(r,t) = 4 exp(iic-r - int) + c.c. We define the 
total potential • (r,t) as the sum of the Coulomb potential $ 
and the pondsromotive potential $- due to the Lorentz force 
according to #8(r,t) = (f>(r,t) • •- (r,t). The total and the ponderc-
ootive potentials are represented with the same dominant phase 
dependence as the Coulomb potential. Poisson's equation becomes 

_2 
£«s"s ' ( 1 0 ) 

where n is the amplitude of the number density for species s, 
with phase dependence exp(iK<r - lift) factored out. We introduce 
the linear susceptibilities, xJ-Qi*) - -4wie~ e."a/* > sni the linear 
dielectric function, e(f!,ic) s l * [ xJ.fl,K), in order to replace 

« 8 " 
£ in Eq. (10) by a linear function of * . 

From Eq. (10) and the definitions of the linear susceptxbili-
ties, we obtain 

•• * [I • X i(n.<)] 5 0
e / e ( n ' K ) * 

« e(l • x^n.ic)] A2(fl,!cy|2mee2e(S},!c)] , (11) 
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where by A (Q,<) we mean the sum over all coefficients of terms 
in A varying with phase expfiic.r - let). The linear electron 
susceptibility describes the accompanying electron charge density 
perturbation: 

«K e = -Xjtf.K) K 2§ eAir - - ^ f a d + Xi)/e] n j | c eA 2(n,K)/(8m ec 2X 

(12) 

The wave equation for the vector potential in Coulomb gauge Is 

(V 2 - c" 23 t
2)A = -4irJc_1 . (13) 

To evaluate the transverse current J(r,t) we adopt the simple fluid 
model that the electromagnetic fields induce a linear electron 

11 12 current and a lowest order nonlinear contribution * 

J(r,t) = ev n Q + /fle expfiK-r - ijjt) + c.c.) j 

(14) 
= " m^ k + (5e e xP ( 1*- r " iRt) + c - c ] 

where n Q is the unperturbed number density. Equation (12) is 
employed to construct the perturbed electron number density. The 
ion contribution to the current is down by the mas3 ratio and is 
consequently ignored. 

A treatment including finite temperatvre effects in tte 
ponderomotive potential and the nonlinear current, based on, for 
example, an analytic solution of the Vlasov-Poisson-wave equation 
system expanding systematically in powers of leAg/mc | « 1, 

31 2 shows that thermal corrections arise of order T An c , wiere T e e e 
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is the electron temperature. For plasmas with nonrelativistic 
thermal velocities v = (T /m ) « c, these ecrrections can be 
safely Ignored. This is not to say that the plasma is assumed cold 
when the linear susceptibilities and the dielectric response are 
evaluated; temperature effects here can be very important. 

We define r(fl,ic) = [xe(l + X^/EL K and postulate a 
general kinetic description in order to evaluate the linear plasma 
response, say the Vlaeov or Fokker-Planck equations. We can now 
systematically manipulate Eqs. (12)and (11)to derive coupled mode 
equations. We shall examine all couplings that lead to nonlinear 
contributions to the current of order |AQ| . 

First of all, for the nonlinear correction to the dispersion 
relation for the pump wave due to the Lorentz force with phase 
dependence expf'^k-.r - i2ti)Qt), we obtain from Eqs. (12), (13), 
and (14), considering only the terms with phase dependence 
expUkg-r - i^t) in Eq. U3)» 

2 
0>n 

u e 2 + V^t1 + ̂ ^^O^O^'V^] • (15) 

The amplitude dependence of the electromagnetic wave dispersion 
relation is, however, of the same order as relativistic effects. If 
we include both the Lorentz force and relativity following Arons and 

31 
Max and if we evaluate the susceptibilities in the high frequency 

2 o limit (2uiQ » u e, ( O Q A Q » \ ) , xjui.k) * -<ue Ao and X i = °> 
we obtain 

»o = k< : 0

2 c 2 * o, e

2{l • 4 a 2 | J 0 | 2 t V

2 ) " 2 [ 3 / * - i o 2 c 2 A V " u e 2 ) ] 
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We henceforth assume that the frequency u. and wavenunber k. of 

the pump satisfy the nonlinear dispersion relation. In this way the 

coupling to the Sigh frequency density disturbance with phase depen­

dence exp(i2k0-r - i2a)Qt) has been absorbed into a nonlinear 

frequency shift. 

For the scattered radiation, we look for couplings which 

involve large r(B,ic) and recall itn lefinition and the lineariz-

tim |A+j,|A_| « |AQ|. In addition to the density oscillation at 

frequency 2(u„ there are density oscillations driven by the Lorentz 

force at frequencies 2uiQ + £2,' 2o>0 - f! , and Q. For the low 

frequency beat (Si), the near vanishing of E(J2,K) at a resonance, 

which appears in the denominator of T(SI,K), characterizes the 

scattering by a longitudinal normal mode. If SI *> Kc where 

c = (T /m.) , then stimulated Brillouin scattering is said to occur. 
2 2 2 4 

If Re SI ~ (ui + 3< v )* then stimulated Raman scattering occurs. 

The linear susrw • '.billties xs» l"10™ which e and r are constructed, 

are evaluated in •». appendix from a Vlasov model for a J&xwelliai. 

plasma. For high frequencies >> ID ana phase velocities » v 

T is real. Consequently the couplings 2u Q + £3 and 2coQ - D lead 

to nonlinear frequency shifts which are of the same order as described 

in Eq. (15), but only when the parametric instability enters the 

nonlinear regime, i.e., |A+|,|A_|- ff( (AQI J.31'"43 

If we substitute Eq. (14) into Eq. (13) and use Eqs. (11) 

and (12), we obtain 

D_A* = - ^ ( A ' I A Q I * + A ^ J / c ' T t B . K M B / f (16a) 

and 



-19-

D +A + = -e 2(A +|A Q| 2 * A*A 0
2) K

2c 2r(fl, !c)Am ec 2) 2 , (16b) 

where D + s D((^ ± Q,kQ ± K) = +2fiuQ - « 2 ± 2*Q-*e2 * <2c2, and 
2 2 2 2 

D((i»,k) = u + k c - to . We recognize D(u,k) = 0 as the linear 
dispersion relation for an electromagnetic wave. Thus D + are 
measures of the mismatch of the scattered waves A + and A from 
their linear dispersion relations. In obtaining Eqs.(16), the high 

# frequency couplings at 2<uQ, 2cnu + SI, and 2ID_ - $2 are ignored, 
since |r(n,K)| » |r (2« 0 + £2,2^ + <)\, fr(2o>0 - a*, 2kQ - E * ) | , 
|r(2u0,2k.)| = <?(<!) /AU>Q ). Thfise couplings lead to nonlinear 
frequency shifts and not to instability. 

Ifodulational instability is described by the cross-coupling 
and simultaneous growth of A + and A with comparable amplitudes 
in Eqs. (16). Brillouin or Raman scattering is said to occur when 
A grows with amplitude much larger than A +. The scattering of light 
into two plasmons at the quarter-critical point (u. = 2w )12>**>^5 

and the parametric decay of light at the critical surface 
. . 24 
(G>Q = toe/ into an electron plasma wave and an ion acoustic! wave, 
or into two electron plasma waves and a purely growing ion density 
perturbation, have been omitted from our description. This is 
because we demanded that the incident light scatter into another 
transverse wave and an electron plasma wave, i.e., u > 2tu , or 
into another transverse wave and an ion wave, i.e., 0) Q > to , 

To simplify the notation we.introduce the dimensionless 
amplitudes a- = eA_/(m c ) and a+,a_ similarly. The maximum 
transverse quiver velocity v Q in the electric field of the incident 

••2 2 2 
electromagnetic wave is determined by v_ /c = 4a Q (taking a~ 
to be real arbitrarily). We define u 2 £ ie v_2T(n,* )/4, which 
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measures the coupling strength in units of frequency squared. 

Equations (16) can be rewritten 

[D_ - u 2]a* - u-a+ = 0 (17a) 

[D+ - p2]a+ - u V = 0 . (17b) 

Setting the determinant of the coefficients equal to zero, the general 

dispersion relation describing modulation, induced Thomson scattering, 

and stimulated Brillouin and Raman scattering is obtained: 

D+D_ - (D + + D_)u2 = 0 . (18) 

For stimulated Raman and Brillouin scattering, |D | « |l> | 

and |a+1 is consequently small compared to |a_|, so that Eqs. (17) 

can be reduced to 

D_ - u 2 = 0 . (19) 

Equations (18) and (19) are implicit dispersion relations describing 

the parametric instability of the stimulated scattering of light in 

an unmagnetized, uniform plasma. We shall make use of various 

aspects of this formalism in the subsequent calculations. 

II. BEAT HEATING OF A PLASMA 

A. Introduction to the Coupling of Transverse Waves 

to Electron Plasma Waves 

In this section we consider the resonant interaction of two 

lasers whose difference frequency fl and wavenumber jc nearly 

satisfy the linear dispersion relation for an electron plasma wave 
2 2 2 2 

R a ui + 3K v . This process is an example of stimulated Raman 
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scattering. In as much, as we begin with two electromagnetic waves of 
frequency uu and (U, (<JQ > u, ), corresponding to the vector poten­
tials with amplitudes A. and A in Eq. (6), we are not looking at 
an example of parametric instability and must treat A- and A 
equally. The three-wave interaction in this limit is called beat 
heating or optical mixing. The mechanism for the coupling of 
the two high frequency waves (i*j,U4 > w.) with the electron plasma 
wave is, however, the same as for the parametric instability of Raman 
scattering and is described in the Introduction, Section I.C. 

We are motivated to study this process by the fact that it 
affords the opportunity to couple the very intense energy at high 
frequency in lasers to lower frequency plasma modes where the energy 
might be absorbed as heat. An important consideration that determines 
the upper limit on the efficiency of this process is the fact that a 
heating process making use of three-wave interactions is subject to the 
Manley-Rowe conditions Eqs. (5). If R is the relative efficiency of 
the action transfer, then no more than the relative amount of energy 
Rui/taQ can be ultimately absorbed by the plasma. 

The resonant interaction between two transverse waves and one 
longitudinal wave or mode for the purpose of plasma heating or as a di­
agnostic has been investigated by many. Kroll, Ron, and Rostoker (1964) 
first proposed optical miring as a diagnostic tool for determining 
plasma density and calculated the enhanced scattering cross section due 
to the induced density perturbation. Wolff (1971) theoretically stu­
died Raman scattering in semiconductors using cold fluid equations and 
the conservation of transverse canonical momentum to formulate neatly 
the nonlinear density perturbation and the nonlinear transverse current. 
Wolff found that the scattering instability could be saturated by a 
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nonllnear Ooppler shift in the electron plasma wave produced by an 
Induced longitudinal drift. 

James and Thompson (1967) and Capjack and James (1970) 
applied the principle of optical mixing to the theoretical study of 
the heating of Ions in magnetized plasma by beating high frequency 
transverse waves at the ion cyclotron resonance or by miring 
Ihistler waves at either the ion eyclotror- resonance or in the regime 

to 

of induced scattering by the ions. lhey found a marked sensitivity 
of the resonant process to detuning Influences: finite pump band­
width, variation in the magnetic field, and plasma inhomogeneity. 
Because of the small ratio of the ion cyclotron frequency to the 
pump frequencies, the ultimate efficiency of these schemes suffers 
greatly. Weyl (1970) considered optical miring for diagnostic 
application in cold, underdense, magnetized plasma at the cold electron 
plasma frequency and the upper hybrid frequency. Weyl further exam­
ined the effects of finite pump bandwidth and plasma inhomogeneity to 
first approrimation. Stansfield, Modw«ll,.and Meyer (1971) mixed two 
dye laser beams at an angle of 45° in a plasma Jet to observe the resonant 
density fluctuation enhancement when the beat wave resonantly excited 

50 
an electron plasma wave. In all the foregoing studies a low fre­
quency beat wave is driven by two high frequency waves in a uniform 
plasma. If a magnetic field is present, it also is assumed uniform. 

The physics of beat heating and parametric Instability in 
general in a nonuniform plasma is significantly different from the 
case of uniform plasma. Three of the more significant papers 
discussing parametric instabilities in a nonuniform plasma are by 
Perkins and Flick (1971) 2 3 and by Roseribluth, Liu, and white 
(1972). 5 1' 5 2 Rosenbluth and Liu (1972) studied beat heating in a 
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homogcneous plaasa considering the caae where the beat frequency 
equals twice the cold electron plasm frequency." They also consider 
beat heating in a warn, lnboaogeneous plaaaa where the difference 
frequency somewhere equals the Boha-Gross frequency. However, in both 
eases the high frequency transverse waves are assumed to have constant 
amplitude. Beaudry and Ifartineau (1973} extended Rosenbluth and Liu's 

5/ calculations to Include collisions! dissipation in the plasma wave. 
Strel'tsov (1973) calculated the parametric amplification of the decay 
products for Raman backscatter in a very sharp density gradient 

5' assuming the higher frequency transverse wave to have fixed amplitude. 
Kucha, Neufeld, Teichman, and Engelhardt (1973) studied beat 

heating In a nonuniform medium calculating the self-consistent ampli-
tudes of the high frequency pumps. Their results for the dependence 
of the action transfer upon pump strength, input retio, and density 
scale length agree with Ref. 99. However, Fuchs et al. erroneously 
Infer that the resonance region is proportional to the wavelength of 
the plasma wave rather than the scale length of the plasma. Schmidt 
(1973) described the excitation of electron or ion waves due to the 
beating of opposed transverse waves in homogeneous plasma including 
the nonlinear electromagnetic frequency shifts due to the ponderomotive 

57 force but neglecting the comparable shift due to relativity. He 
observed that in order to deposit energy Into the low frequency, 
longitudinal wave, there must be a concomitant energy transfer from 
the higher frequency transverse wave to the lower. Beaudry (1974) 
Investigated beat heating in the limit that convection dominates 
dissipation for an inhomogeneous medium finding agreement with Ref. $9 
which established that action transfer was insensitive to the details 
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of the dissipation mechanism, be it Landau damping, collisions, or 

connection. 

In the remaining sections In Part II we will review in detail 

and extend the results of Kaufman, Cohen, Watson, Ifastrom, Nicholson, 

liuc, and Langdon, in chronological order Refs. 34, 59, 60, and 43. The 

general aim of those papers la to consider the interaction of transverse 

waves with longitudinal electron plasma waves in their linear regimes. 

All wave amplitudes are treated equally. The beat heating of two 

electromagnetic pump waves propagating In opposed and parallel 

directions in uniform plasma is examined in Refs. 60 and 34 respec­

tively. Beat heating of opposed lasers in a nonuniform plasma is 

studied analytically and in simulation in Hefs. 59 and 43. In Section 

II.C we extend the study of beat heating of opposed lasers to the 

regime of nonlinear electron waves. Our detailed examination of beat 

heating begins with a review of the electromagnetic code introduced 

to study beat heating. 

B. Electromagnetic Simulation Code 

There is a considerable literature concerning electromagnetic 

codes. Jtost algorithms for solution of Maxwell's equations require 

solving a current-driven wave equation for the vector potential. In 

our code, we solve for the electromagnetic fields explicitly by 

integrating tfaxwell's equations along their characteristics. Dawson 

and Langdon first used this method in 1966. 

Charged particles are represented by clouds of infinite 

cross-sectional area in the plane transverse to the grid. In the one 

dimension in which spatial variations are followed and particle posi­

tions are assigned, particles have finite-size. Charge densities are 

calculated by linear interpolation according to the cloud-in-cell 
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model. In this same dimension, designated "longitudinal", there are 
components of particle velocity and electric field, and all wave 
propagation occurs. The electromagnetic waves are linearly polarized 
in the direction of the single transverse velocity component (see 
Fig. 2). The self-consistent and external magnetic fields lie in the 
transverse plane ana are perpendicular to the polarization direction. 
The equations of motion are relativistic. There are versions of the 
code for which the plasma is assumed periodic or, alternatively, 
finite. 

For the particular configuration we describe (Fig. 3), the 
two Ifaxwell curl equations take the form: 

-3Bz/3i - c" 1 3E/3t = 4irJ_/c 

3E/3x + c" 1 3B /3t = 0 . 

By adding and subtracting these equations, we obtain 

(3/3x/ [Ey i B J l e-1(3/3t) [^ ± B J = + 41^0 . (20) 
If we define the right- and left-going electromagnetic field quantities 
respectively, as F t = E ± B , the two Maxwell equations become 

[(3/3x) ± c _ 1(3/3t)] F ± = • AirJy/c . (21) 

Equation (21) is integrated along the vacuum characteristics 
x + ot = const., the current J being given by the particle posi­
tions and velocities, Gridpoints in the space-time mesh are linked by 
the vacuum characteristics. Then Ax/At = c, and there is no Courant 
condition in the usual sense. A standard Courant condition for the 
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•t ability of the flnite-dlffersneed wave equation Is Ax/At > c 
where As and At are otherwise independent. In our ease 
Ax • cAt, and stability and accuracy depend only on how small At is. 

Spurious numerical dispersion is minimized because we solve 
explicitly for the electromagnetic fields and Introduce some smoothing 
In calculating the transverse current (Fig. 4). Transverse currents 
J and J~ are calculated from the velocities at half time-step 
Intervals and charge positions at whole time-step intervals and then 
averaged along the vacuum characteristics to obtain J = (J + J~)/2. 
Consequently, if we treat the particle motion relativistically there 

64 

should be no numerical Cerenkov instability. Furthermore, the 
parameters for which light waves in a drifting plasma can become 
unstable, due to finite differencing, are unphysical and can easily 
be avoided nf.ih a reasonable choice of u At. Only for u At ~ &{l) 

does numerical instability occur for the largest wavenumbers character­
istic of the grid, i.e., 2ir/Ax; and saturation of the instability 
occurs at low levels of the associated field amplitude. 

The differential equations which the code solves can be 
summarized as follows: the equations for the fields, given the 
sources, i.e., charge density and current, are Eq. (21) and the 
Poisson equation 

-324>/3x2 = 4ire(n - i^) (22) 

where n_ is the uniform neutralizing charge density. Electrons have 
charge e. We assume a single species here (with fixed neutralizing 
background), but generally the code deals with two. The equations 
for the particle and current densities (before linear interpolation) 
are 



-27-

n(x) • Y. <** - x l > 
1 

(23) 

J y(x) • £ evy1 6(x - x 1 ) . 
1 

Hie equation of moiton for the particles Is 

(d/dt)[mj(l - vW)"*] • e(f • x x S / e ) • (24) 

The closed set of equations can be integrated forward In time 
leap-frog style using a differencing scheme centered in space and time 
(Fig. 4). The equation of motion (24) is integrated forward In time 
using a hybrid, fast half-acceleration and rotation method. Because 
we are interested in the Fourier transform of the electrostatic 
potential, we solve Poisson's equation by means of fast Fourier 
transforms. The differences between the bounded and periodic versions 
of the code appear in the boundary conditions an the potential <t>, the 
particles, and the electrostatic and electromagnetic fields at the 
system walls. Our simulation of a finite plasma assumes that the 
walls are radiation transparent and-particle reflecting. In the 
bounded version, the longitudinal field E vanishes at the system 
walls. The magnetostatic, vacuum field contribution to B is an 
arbitrary constant value throughout, in either version of the oode. We 
have found the code quite inexpensive to use; typical computer experi­
ments with 4000 particles have required 0.2$ sec of central processing 
unit time per time-step on the CDC 7600 at the Lawrence Berkeley 
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Laboratory (thla Include* all operations: field solving, particle 
pushing, and diagnostic!). 

C. Beat Heating of Opposed Lasers 
We examine here the nonlinear Interaction of tiro oppositely 

propagating, linearly polarized electromagnetic waves resonantly 
exciting an electron plasma wave in an inhomogeneous plasma. 'Ve 
review the work in our publications, fiefs. 59 and 43, in Section II.C.I 
and include Ref. 60 in Section II.C.2. these papers consider primarily 
the plasma response in the small amplitude limit. In Section II.C.3 
we integrate in space and time the three linearized coupled-mode 
equations Eqs. (4) and compare the results with those In the preceding 

20 section and with the literature. In the remaining sections of this 
chapter nonlinear beat-wave effects are examined. A detailed study 
of the resonant excitation of nonlinear plasma oscillations appears in 
Section II.C.5. Finally the back-reaction of electron wave trapping 
on beat heating is considered in Section II.C.6. 

1. Theory of Beat Heating for Small Amplitude Electron Pla-Ta Waves 
The theory of beat heating has been discussed at some length 

in the literature, Refs. 34, 43, 53, 57-6C. For the sake of complete­
ness we include the derivation due mostly to Kaufman that appears in 
Ref. 43, and for convenience we adopt the same notation. We shall, 
however, make much use of the formalism presented in Section I.C. 
We begin by recalling that the invariance of the canonical y momentum 
permits the identification of the electron transverse oscillation 
velocity: we define u(x,t) = v = -eA(x,t)/mc. We assume that for 
beat heating the ions form an immobile, charge neutralizing background 
and drop the subscripts denoting electrons. 



Vt adopt a fluid model for the transverse currant 
3 • •vfn0(x) * 6n(x,t)J, Eq. (.14) generalised to a nonuniform medium. 
Then use of the wave equation Eq.(13) for the vector potential and 
substitution for A(x,t) In tern* of u(x,t) yields 

[9 t
2 • <>e

2(x) - c V ] u(x,t) - -u^O^nfr.tVnoCOjjuCx.t) . 

(25) 
To stake the notation less cumbersome we adopt the convention that 
u = u (0) and iu = n.(0). Corrections to the model for the 

2 2 current and thus to Eq. (25) are of relative order u /c and 
2 2 31 

v /e . We utilize a WKB representation for the transverse waves, 
and express the vector potential or in this case the transverse 
oscillation velocity as 

u(x,t) » UgU.t) expl-iwgt + ij k Q(x' )-dx' + c.c. 

+ u^x.t) expl-iu^t + if k^x'J.dx'J + c.c. (26) 

where u. and u. are the slowly varying complex transverse velocity 
amplitudes of the two electromagnetic waves. The wavenumbers of the 
two transverse waves satisfy the local dispersion relations 
k4

2(x) . [»* - «e

2(x)]c-2. 
The density perturbation is excited by the low frequency beat 

of the two high frequency waves via the Lorentz force on the electrons. 
The density perturbation is not assumed small: 

6n(;,t) « n(x,t) exp j-iJlt + i j " Kfx'J-dx'J + c.c. (27) 
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where f! = u. - ot. Is the beat frequency, and K = k_ - k. Is the 

local beat wavenumber, restricted to lie in the x-z plane perpendicu­

lar to the transverse electric field polarizations. The electron 

plasma wave is resonantly excited If the beat frequency and wavenumber 

nearly satisfy the Bohm-Gross linear dispersion relation. 

We can ignore the density perturbations at the sum frequencies 

(dV) + uht 2uu, and 2m,) for the following reason. Since they 

represent high frequency, high phase velocity, nonresonant perturba­

tions, they can be only colllsionally damped and are not normal modes. 

However, if we consistently ignore collisional loss in the high 

frequency perturbations, the coupling constant r = x_(l + X* ) / £ 

is real and small, T * &(-ia.Aw- )• Hen the density perturbations 

at these sum frequencies simply couple bad- into the electromagnetic 

waves to produce nonlinear frequency shifts as in Eq. (15). Further 

consideration of these nonlinear frequency shilts is deferred until 

later in the section. 

We assume that n(x,t) is slowly varying on the beat fre-

qjenc'1' and beat wavenumber time and space scales respectively. If we 

substitute Eqs.(26) and (27) into Eq. (25) and keep only the resonant, 

nonlinear coupling terms, i.e., only terms with slow temporal and 

spatial variation, we obtain 

(3 t • o0-7+ CQ.Vtak^togU.t) = -<i/2)(l^2/ub)(iv'n0)u1 

(28) 

O t + cxV + c^vank^UjU.t) = -(i/2)(a)e
2/(01Kn*/n0)u0 
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Equations (28) describe the mode coupling of the transverse 

wave amplitudes without any assumption on the amplitude of t.j density 

perturbation S. The energy density of each transverse wave is given 

by Wj s ^ [ a f ^ e V a u J c u j / e ) 2 ! ^ ! 2 / ^ - U ^ I A J ^ I T C 2 

= (m/e) UJJ (ujjl /2ir where e(u) = 1 - (ufi /u .-*»" The transverse 

wave actions W.u,~ a r e t h e n proportional to u,|u,| . Multiplying 

Eqs. (28) by uQu? and u,u? and then adding the complex con­

jugates of these "-uations, we obtain by analogy to Eq. (5) the conser­

vation law for transverse action (Manley-Rowe or photon conservation): 

8t< uol uol 2 + ^Kl 2) + '•(s^oKI2 + 5i u >i! ui! 2 ) = °- ( 2 9 ) 

The Manley-Rowe relation is evidently quite generally true: it 

requires only that the WKB analysis be valid. No assumption lias been 

made on the size of the density perturbation. We have assumed that 

there is no collisional damping of the electromagnetic waves. 

Transverse action is theix J"ore conserved for uniform or weakly 

nonuniform plasma, and for a linear <jr nonlinear density perturba-
26-29 tion. The conservation of action implies that transverse energy 

is not conserved. As action is transferred from the higher frequency 

wave (ou) to the lower frequency one (u.), the energy difference, of 

relative size fi/io0, is deposited in the plasma as a coherent oscilla­

tion or as heat. If the energy difference is absorbed as heat, the 

energy transfer is irreversible. If a coherent oscillation persists, 

however, the energy transfer can be reversed, and the transition 

(̂  * oi. can occur. This is observed in simulations and predicted 

theoretically when the beat wave Is small in amplitude and weaily 

damped, and when the beat w'e is large enough in amplitude to tra. 

electrons. 
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The rate of action transfer is, from Eqs.(28), given by 

V o K ' 2 * v-£ouo'uol2 = "V ^ w X 1 • ( 3 0 ) 

On using the Poisson equation for the density and scalar potential 

amplitudes, K $ * 4ime, the right side of Eq. (30) becomes 

-•c2 Im[u0u![(e$*/o)] . (31) 

The potential $ is the longitudinal response to the ponderomotive 

pcj*ential energy* ^ Wj.t) = '(5 mu /(x»t) of the electrons; 

the ei-.gular brackets represent an average over the rapid temporal 

variation at iAyWi yielding a beat variation 

V<x,t) = J(x,x) exp(-iftt + ifs-dx) * c.c, J(j,t) = "MQU^. From 

Eqs. (9), (10), and (11) we obtain for the linear longitudinal response 

$(x,t) = (1 + X i ) c - \ - ? 0 = ( E _ 1 - 1 ) $ 0 = (e - 1 - Dmuouye 

(32) 

where e is the linear dielectric function, evaluated at fi,K. The 

pomderomotive potential energy is evidently related to the effective, 

external potential introduced in Eq. (9) by the expression ^ = e<t>„. 

If the space-time variation of (uQ,u., ) is not sufficiently 

slow ire should instead use J2 + 13. and K - iV as the arguments of 

e. To Illiterate this we undertake the following construction. 

Suppose the electron plasma wave to be driven at frequency ft and to 

exhibit dissipation rate v. Define the real, linear normal mode 

frequency S, by He E(2T,K) = 0. Then expanding about $2. we 

obtain: 
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e(fl • iSt,< - 17) * He tfn^K) + ilm effi^s) 

• e[fl + i 3 t + (3u/3k)-iv - aA* ••• 

* ( a n ^ 2 ) ^ - «t * i(j. • v * 35 JL. .v) 

(33) 
where t = 3Re e/3u is evaluated at O. and we have made use of 
Re e(BT»<) = "» v = JJ" e/c, and for electron plasma waves 
- 2 2 
e = 2Rr/uu ^ d 3u/3!j = 3gv e /n,. This construction requires ohat 
\a - 0L* i[st

 + v + 3<(ve /n^J-vlf « u e to justify truncation of 
the Taylor series where shown In Eq. (33). In Section II.C.5 a 
similar expansion is examined in m detail for the cast of a non­
linear dielectric function where certain of the nonlinear aspects 
may be incorporated by modifying the form of g, so that e depends 
on <f> implicitly. 

In the case that Eq. (33) is applicable, i.e., if spatial and 
temporal variations in the longitudional response are appreciable, 
then the formulation making use of Eq. (32) is not the most expedient. 
The three-wave analysis in Section II.C.3 becomes preferable. The 
opposite limit, where Eq. (32) Is applicable, defines what we mean 
by the "quasi-steady" longitudinal response. 

We now us 2 Eqs. (32) and(3l) to express the right side of 
Eq.(30) as 

K 2!^! 2!^! 2 Im e'Hsi.K) . (34) 
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Ye observe that the action transfer depends upon the beat wavenumber 

as K , if the variation of In e (Sl,ic) with ic ia neglected. By 

orienting the lasers oppositely to one another (ic = k Q • k,), the 

beat wavenumber and hence the coupling are maximized. All wave propa­

gation then occurs in one dimension, say x (see Fig. 5). 

For a uniform medium, the nonlinear equations for |u_| (x,t) 

and |u. |*"(x,t) can be solved analytically, as discussed in Ref. 60 

included here as Section II.C.2. Numerical solution of the action 

transfer Equations (29) and (30) for the case of a nonuniform medium 

using (31) is also discussed in Section II.C.2. For a nonuniform 

medium, we limit our analytic study here to the steady state 

(3 u_ = 9.U. = 0), whence Eqs. (29) and (30) become 

(d/dxXkQluQl2) = (d/dxXkJiijI2) = K V 2 ! ^ ! 2 ! ^ ! 2 Im e - 1 

(35) 

where e(fl,Kj x) has an explicit x variation through the plasma 

parameters: density, temperature, possibly non-Maxwellian electron 

distribution. 

In order to understand Eq. (35), we introduce the action flux 

density, which is merely the action density J, multiplied by the 
2 group velocity c, = k„e /u.. We express the action flux density in 

2 2 2 
natural units as S^ = (e/mc ) Sjff/^i = (k^iOluj/cl . Then Eq. 

(35) reads as In Eq. (3) of Ref. 59: dSQ/dx = dSj/dx = Ss^Im e _ 1(x), 

with 3 = 2K A^k, * 8 for Q « u - Upon integrating over x, we 

found the solution 

A JtafSg/S^ = Sir S I dx Im E - 1 ( X ) , (36) 
J a 
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where Af = f(x " a ) - f(x » b)> a and b are any two x planes 

(such as the boundaries of the plasma), and S = S_ - S is the 

constant action density flux. 

In the limit of weak damping (|lm EJ = |e'1 « 1), the x 

integral can be carried out exactly. We write In e~ (x) = -ir6[e'(x)j, 

where E' = Re E. The integral on the right-hand side of Eq. (36) is 

then 
-b 

dx La e _ 1(x) = -dae'/axl"1 = -irL , (37) 
e'=0 n / 

defining the effective density scale length L . In this limit, the 

action transfer of Eq. (35) takes place over the infinitesimal region 

where E'(n,»:; x) = 0, i.e., at that position x where the beat 

frequency fl matches the Bohm-Gross frequency at the beat wavenumber 

O^K; x). 
Ifore realistically with finite e", we have 

En E - 1 = -E"/(|e'(x)|2 + |E"| 2J. It can be shown that Im e - 1 has a 

half-width of order e"L = 2vL /u (see Fig. 5), where v is the n n e 
total damping rate of a langnwir oscillation. Equation (37) remains 

unaltered, however, in the limit that the half-width is small compared 

to the plasma length. In order that the WKB representation be valid, 

the transfer zone width vL nA> must exceed the wavelengths, i.e., 

(v/u>e) » (k^L )" . (lypical parameters for a 8-pinch, n. - 10 cm-^, 

T - 100 eV, a) /(0Q - 0.1, and L - 10 cm, satisfy this inequality, 
-2 -1 -i 

since v/iue J 10 while (k QL n) - 10 . For our simulations the 

resonance zone was of order ten wavelengths long.) If the damping is 

not weak (v - <ue), then E(X) may not be considered small. However, 

the integration in Eq. (37) can still be performed for known e(x). 

Since strong damping implies Im E" = -Sll), we obtain In place of (37) 
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dz Im e~\x) • -CM.) , (38) 

where L is the length of the plasma. In a real plasm, when 
I> - C f l )> ** n a v e th* important result that the action transfer is, 
in order of magnitude, the same for strong as for weak damping of 
the longitudinal response. This is true provided fe"I- I « L» other­
wise the action transfer, proportional to the integral in Eq. (33), 
la incomplete. Thus, for given ic, the dependence on KX is weak; 
and for KX •:< 1, the dependence valshes, since the integral is truly 
Independent cf v for the model of a linear gradient. 

At this point we return to our earlier examination of the 
nonresonant ||e| - tjf(l)j high-frequency density oscillations, which 
give rise to nonlinear frequency shifts in the two electromagnetic 

31 
pumps. Arons and Max have derived the frequency shift for a single, 
linearly polarized electromagnetic wave: we recall from Section I.C 
their result 

k 2c 2 • *f jl - \ (v/c) 2[| - (<o2 - u e
2)/Ua» 2 - ».2)]> , 

where v is the amplitude of the transverse electron velocity, 
v = eE/(mu). The frequency shift due to relativity only is y y 

3 2 2 
- ^ « ( I I /a)) ( V /c) , while that due to ey * B /c (the Lorentz or 1 2 2 2 2 2 2 "ponderomotive" force) is ± <o(<o /<o) (v /c) (cu - to )/(4u - <i> ) 
using Eq.(l5). The ponderomotive frequency shift describes the effects 
of density perturbations at the frequencies 2u Q and 2d).. There is 
an additional ponderomotive frequency shift due to the v x B 

-y ~z 
coupling at (i)Q + UL. 
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In the steady-state, there ran be considerable spatial varia­
tion of the amplitude of each of the electromagnetic waves. We can 
nevertheless set an upper bound on the relative frequency shifts, viz. 
|Au/u| i <3U (aie/u)2(v fa/c)2 . To estimate their effect on the 
action transfer, they should be compared to the quantity 
|e(x)|/|3c{x)/3<i)|a i 0.02 to which represents both the linear 
dissipation and the mismatch of the electron plasma wave. Since that 
quantity is more than an order of magnitude larger than the electro­
magnetic frequency shifts |iu| < 0.001 u (for typical simulations 
0)-/(i) - C{5) and 2|u_/cL • 2|u./c|. < 0.1), we have neglected 
those shifts in Eq. (55/. An investigation of the nonlinear frequency 
shift and dissipation of the driven electron plasma wave, and of their 
Influences upon beat heating, is considered in subsequent sections. 

In a simulation model, for reasons of economy the slab 

thickness L may be smaller than L , and even smaller than the 
n resonance width (v/Ui ) L . In that case appropriate corrections must e n 

be made In comparing theory and simulation. A typical simulation for 
beat heating when the density perturbations are linear is shown in 
Fig. 6. 

Inseiting (37) into (36), we have the result (Eq. (5) of 
Ref. 59) : 

i Sir k0Lnl V c , i n = ( 1 " R " " ^ * n ( ( 1 " R ) ( p + R ) / P^ ' 
(39) 

an implicit equation for the relative action transfer R = AS / S Q n, 
in terms of the input ratio p = S 1

 n/S- n and the input amplitude 
|ujj|. . (See Fig. 2 of Ref. 59 for a plot, also Fig. 7 here.) This 
result is remarkable not only in its independence of the damping rate 
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v (and thus of the temperature, the collision rate, and the damping 

mechanism), but also in that its dependence on the power parameter 

|u„|. and the scale length L is only through their product. 

To test relation (39), a set of simulation runs was made for 

the case of equal input actions (p = 1), corresponding to approxi­

mately maximum transfer for a given total power input. For the set 

reported here, the power was kept sufficiently low that the longitud­

inal response could be treated as linear. The dependence of action 

transfer R on the product of scale length and input power is shown 

in Fig. 7; the simulations and the theory are seen to be in excellent 

agreement. The action transfer was measured by averaging in time over 

the decaying oscillations of the instantaneous action transfer rate, 

which approaches a steady state. The error bars represent the 

statistically weighted magnitudes of these oscillations. 

To verify the theoretical prediction that the dependence on 

scale length and input power is only through their product, three runs 

were made, with differant scale lengths and powers, but constant 

product. The action transfers (also shown in Fig. 7) were found to 

agree, within statistical error. 

The damping of the longitudinal response in these simulations 

was due to resonanx particles, i.e.. Landau damping. With KX chosen 
_2 

between 0.30 and 0.45, the damping rate v lay between 10 a 

and 10 a) . The v-ir.dependence of the action transfer was tested 

by varying K\ , holding k QL |uQ|. fixed. The simulations corrobor­

ated this independence. 

We have thus used the electromagnetic simulation code to study 

beat heating of a plasma in the linear regime of the driven density 
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disturbance. Steady-state theory was found to be useful In under­
standing the action transfer and plasma heating for small amplitude 
electron waves. There was good quantitative agreement between 
simulation and theory. 



Space-time Interaction of opposed transverse waves in a plasma 

Bruce I. Cohen 

Department of Physics and Lawrence Berkeley Laboratory, Univ. of California 

(Received 17 Aug 1973) 

Physics of Fluids 17, 496 (1974) 

The interaction of two opposed, intense electromagnetic waves, whose difference 

frequency approximates the plasma frequency, is studied. Plasma heating ensues. 

Energy is transferred to the lower-frequency wave throughout a uniform plasma, but 

only in a resonance zone in a non-uniform plasma 

The full text may be viewable from the following doi: 

 

http://dx.doi.org/10.1063/1.1694742 

 

The article was removed due to copyright. 

http://dx.doi.org/10.1063/1.1694742


-42-

J. Three-wave Analysis of Beat Heating Coupled Mode Equations 

This section will describe the three-wave analysis that becomes 

necessary when in Eq. (32) the space-time variation of (u_>u1) is 

sufficient to demand the inclusion of space and time derivatives in e. 

The arguments of the warm plasma e become f! + 13 and K - i3 in 
t x 

one dimension, Eq. (33). If we assume |e| « 1 and make use of Eq. 

(33), then instead of Eq. (32) we obtain 

2nL ue~ 2( a - flj, + i(3t + v + 3Kve\~\)]$(x,t) = m u ^ / e 

(40) 
2 2 2 2 where fi. is the Bohm-Gross frequency fl. = ui • Jc v . Poisson's 

equation allows us to replace $ by 4mc~ eS. Then Eqs. (28) and (40) 

form a complete set of first order partial differential equations 

describing the three-wave interaction. 

In the limit that the temporal or spatial rate of action 

transfer dominates dissipation and mismatch, then the three linearized 

coupled mode equations in a homogeneous, underdense (w «u 1,m ) 

plasma can be written 

(\ * c 03 x) u^x.t) ' B(il\ 

( 3 t - °iV V*'*5 = -^l^\ U l ) 

( 3 t + 3 i c v e \ " l 3 x ) i ^ x ' t ^ = ""(A 

2 2 
where B = < e/(2m<i>0) and a H mu e /(2efl). Analytic solutions for 

18—21 the coupled mode equations in this form have been found. Nozaki 

and Taniuti obtain a special class of solutions corresponding to the 
20 steady propagation of solitary pulses. The solutions for the three 

waves are functions of only x - Xt where X Is the constant 
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propagation speed and is amplitude dependent. Nozald and Taniuti 
find solutions whose forms are hyperbolic secants for uu(z - At) 
and $(x - At), and hyperbolic tangent for u Q(x - At) with only two 
of the three amplitudes as free parameters. Since the system of 
equations (41) in general possesses un arbitrary initial configuraticn 
UQ( X , 0 ) , I L ( X , 0 ) , and $(x,0), there if no guarantee that the inter­
action will always evolve into a solitary pulse or pulses (see Fig. 10 
and discussion below). 

To examine Nozaki and Taniuti's solitary pulses we have recast 
Eqs. (41) in the form 

< 3t +Vx> al " "la2a3 
« < 9t + W a 2 " "Vl 

< W x ) a 3 " "*a2al 
and set Y 1 = -V, = V, = 1 arbitrarily. A right-going solitary pulse 
solution is illustrated in Fig. 8, where we directly numerically 
integrate the coupled mode equations. In performing the numerical 
integration we employ the space-time characteristics of the linear, 
partial differential operators to reduce the differential operators 
to ordinary, first derivatives which are straightforwardly finite-
differenced and integrated by a first order predictor-corrector 

67 
method. The steady propagation of pulses conforming to the solu­
tions of Nozaki and Taniuti is verified and pictured In Fig. 3 for 
value of A •= 1.01. 

If we consider perturbations to the solitary pulse solution 
corresponding to an excess of energy in one or more of the three waves, 
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a solitary pulse can evolve if normal convection can carry the excess 

energy away from the solitary pulse interaction region. In Fig. 9 the 

initial pulse profile for a, corresponds to ten times the solitary 

pulse amplitude in Fig. 8. The excess energy is conveeted to the left 

and out of the system. The residual propagates tr che right as part of 

a solitary pulse in a direction counter to normal convection, resembling 

the solitary pulse in Fig. 8. For the case of superposed, counter-

streaming (colliding ) solitary pulses with propagation velocities 

nearly equal and opposite X = ±1.0, no return to steady propagation 

of solitary pulses is observed within the duration of the Integration 

(see Fig. 10). In fact la-| and |a,| in Fig. 10 appear to fragment 

into three localized components. 

in interpreting these numerical experiments we emphasize that 

in all cases the three-wave Interactions are initially localized; but, 

while some of the T/ave amplitudes " e localized, others are not. The 

pump wave Is present everywhere b^ing proportional to tarih(x - Xt). 

If there is steady propagation of the Interaction a3 a solitary pulse, 

then the interaction remains localized in the frame x - Xt = constant. 

Zakharov and Manol v usa the inverse scattering method to 

construct a prescription for the general solution of Eq. (41) to 
21 describe the resonant three-wave Interaction of wave packets. They 

construct the nee ssary nonlinear operators in matrix form that render 

Eq. (41) equivalent to the solution of linear integral and differential 

equations. For the case of three-wave decay certain general classes 

of solutions are discussed; however, for specific initial conditions no 

explicit solutions are constructed in Ref. 21. 
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Zakharov and Ibnokov claim that if the pump velocity V. 

satisfies either the condition V. < V, < V, or V < V < v,, then 
the wave envelopes can suffer large changes in their shape and Incur 
spectral broadening due to the nonlinear interaction (nonlinear 
collision of the three interacting wave packets I. However, no signifi­
cant energy exchange occurs asymptotically at t * «. They further 
claim that If the pump velocity satisfies tha condition V. < V. < V 
and one considers collisions of wave packets t- with a, where 
initially (t = -") |d 1|,[a 2| » |a,|, then complete transfer can 
occur subject to a threshold condition on the energy in the inter­
acting wave packets. If Instead a. colli'ies with a, where 
Initially |a.|,|a,| » |a 2| or if a, collides with a, where 
initially |a2|,|a,| » \ & . \ , no final (t = «•) redistribution of 
energy results. 

If we include finite dissipation in Eq. (41) and generalise 
lx 23 52 to a nonuniform medium, then following Rosenbluth ' •" we obtain the 

coupled equations . , 

( 3 t * v l * V x ) a l = "la2a3 e*B(.-iK'*2/2) 

(\ * v2 - V23x)*2 = - i a ^ exp(iK'x2/2) (42) 

O t + v 3 • V 33 x)a 3 = - U * ^ exp(iK'x2/2) . 

The unit of time has been scaled so that the characteristic growth 
rate Y Q of Raman backseatter Instability in a uniform medium 
(|a,| » |a2|,|a,| and K' = 0) is given by 
? 2 2 

y 0 » |2u-/e| toa)., 2 ja11 . The complex amplitudes a ^ a 2, and a, 
correspond to u~, u,, and # respectively. 
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The quantity k Q(x) - k^x) - [tJ2 - «*e
2( *)]*/( 3 ^ ) * i s tn e 

difference between the spatially dependnrt beat wavenumber <(x) = 

k_(x) - k.(i) and the wavenumber k(x) satisfying the local disper-
2 2 2 2 

sion relation for a Langmuir wave: Jl = « (x) + 33s (x)v . If we de­
fine K' H (d/d^ Q(x) - k^x) - [i72 - u ^ x J j V O v ^ A . w h e r e x = 0 
is the position of exact frequency and wavenumber matching, then the 

2 quantity KT'X /I measures the spatially aependent phase mismatch of 

the three-wave coupling, produced by the plasma nonuniformity. The 

linear dissipation rates of the three waves are given by v,, v 2, 

and v, respectively. The group velocities are denoted by V , V , 

and V, which are all positive quantities, whose WKB variations are 

ignored. 

For initial conditions corresponding to |a2|,|a.| « |a |, 

integration of Eq. (42) verified the linear parametric backscatter 

instability growth rate for a uniform plasma (K' = 0), which in our 

units is Y 0
 = I a-i 1 • For a nonuniform plasma assuming a linear density 

profile (<' = constant), we obtain convective saturation with a net 

amplification factor exp(irYQ /jic'V.jV.j) for the backscattered ampli­

tude provided negligible pump depletion occurs: 

[a^l » exp(n 0
2/|K'v 1v 2|)|a 2

0|. A detailed examination of the 

influence of plasma nonuniformity on paiametric instability appears 

in Ref. 22. In the limit of significant pump depletion, characteristic 

reversible oscillations of energy from the decay products a_,a, to 

the pump wave a. were observed. We shall refer to this phenomenon 

as nonlinear oscillations. 

The numerical integration of the system of Eqs. (42) corres­

ponding to beat heating is shown in Figs. 11 and 12. In both the warm 
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and cold plasma cases we have set the input ratio equal to unity, 
lâ f » |a 2| ' l, and chost.! |a,| * 0 initially. In Fig. 11 we 
assume a cold plasma with dissipation of the Langmuir wave assumed due 
to Coulomb collisions. The group velocity for the Langmuir wave 
vanishes, V. = 0; and we Ignore the dissipation of the high frequency 
waves, v. = v 2 * 0. We select parameters v, = 0.2, V = V. = 1, 
end K' = 0. The results (Fig. 11) are reminiscent of those pictured In 
Fig. 1 of Section II.C.2, if we average over the nonlinear oscilla­
tions. 

In our solutions for beat heating ix. Sections II.C.l and 
II.C.2, we assumed that the density perturbation could be expressed 
in terms of the ponderomotive potential and the linear dielectric 
function. Our integrations here retain the time derivative and, in 
subsequent cases, the spatial derivative in the equation for the 
longitudinal response, Eq. (40). Numerical integrations of the coupled 

mode equations, retaining 3 and 3_ In the equations for all three 
t * 

modes, Eq. (42), were performed with various dissipation Kites. In 
the limit of rather large dissipation, |v | » |3. la ?j, |V,3 £n$|, 

j t j x 

the results of the Integrations here conform with those in Section 
II.C.2. This regime of the nonlinear interaction corresponds to the 
plasma wave being overdamped on the slow, nonlinear time scale. 
With increasing plasma wave dissipation, the nonlinear oscillations 
diminish, and there is improved quantitative agreement with solutions 
where the small ampxitude plasma wave is treated as being quasi-
steadily driven. 

The results of the Integration of Eq. (42) in the warm plasma 
case are shown in Fig. 12 for parameters V. • V 2 » 5, V, = 1, 
v = v = 0, v « 0.2, and <' = 0. The convection of the TangiTiulr 
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wave appears as an asynmetric distortion in space of its amplitude, 

a-(x,t) in Fig. 12. The effect of convection can be viewed as a 

spatially dependent disslpative term v_*•<•(*) = V_3 • Then increasing 

V, is similar to increasing the dissipation v . Nonlinear oscilla­

tions decrease; however, there is a pulse asymmetry or distortion 

produced by the sign change in V,3 operating on the front as 

compared to the back of the plasma wave envelope a,(x,t) (see Fig. 

12). The three-wave interaction dominated by convection (Fig. 12) is 

otherwise qualitatively similar to tb«t dominated by dissipation 

(Fig. ll),iiiich agrees with the conclusion of Ref. 58. 

In this section we have seen how beat heating is influenced 

by relaxing the assumption that 9 = [e'W)- l] mugU./e, and by 
replacing It with a linearized wave equation for $ where 3.$ and 

3 5 appear. We have reviewed the case of parametric instability. 

For the case of mode coupling when there is appreciable energy 

transfer from the pump to the decay products we have found two 

phenomena which can occur only when we retain 3 and 3 in our 

equations for all three modes: reversible nonlinear oscillations 
20 21 and the propagation of solitary pulses. ' We have concluded this 

section by demonstrating under what circumstances solutions for the 

three-wave interaction with the terms 3.$ and 3 5 present are 

similar to those considered earlier without them, I.e., 3 +I = 3„$ = 0. 

4. Introduction to Nonlinear Beat-Wave Effects 

In this section we begin consideration of beat heating in the 

nonlinear beat-wave regime. We survey competing nonlinear phenomena 

and establish for what parameters electron trapping is th_- dominant 

nonlin--ir effect. 
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a. Onset of trapping In beat heating simulations 
We have used simulations to investigate beat heating when the 

electrostatic wave becomes of sufficiently large amplitude to trap 
electrons. Trapping can cause resonant particles to act as an energy 
source or sink for the longitudinal wave which is scattering the 
photons. Consequently the overall efficiency of action transfer, and 
hence heating, can significantly decrease after the onset of trapping. 

Once a large amplitude beat wave is excited, after an interval 
of time of the order 

T B 5 211/103 = 2iK2K2e|5|/m)"* (43) 

the "bounce period", the trapped particles can return energy and 
68—75 momentum to the longitudinal wave. If the orbit modification due to 

the trapping is included in the dielectric function, the dielectric 
function becomes time dependent; and its imaginary part changes sign 
on the time scale of the bounce period. From Eq. (34), we see that 
the direction of action transfer consequently reverses (Fig. 13b): 
energy flows from the lower frequency electromagnetic wave and the 
electron plasma wave back to the higher frequency electromagnetic 
wave. This is observed in simulation whenever a significant fraction 
(ZLOt) of the particles Is trapped. 

We offer a theory fo. beat heating when the electron wave is 
no longer small in amplitude and when trapping is the principle 
nonlinearity. For trapping to be important, the longitudinal wave 
must, be of sufficiently large amplitude to reach back into the distri­
bution function and trap an appreciable fraction of particles. If 
we define a velocity characteristic of the. trapping v_ = (2e|$|/m) , 
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then the condition for trapping becomes v. - v„ * flf(2v ) where 
v. is the phase velocity of the longitudinal wave and v is the $ e 
electron thermal velocity. Moreover the period over iliich trapping 
occurs must be shorter than the length of the experiment T or the 

exp 
ehaT-acteristic time for some ignored effect to become important T T 

(e.g., significant growth of modulational or parametric decay 
Instability ). We can then observe trapping if x_ < T , T T . Our 
simulations typically last times x of order 100 S u x £ 400. 

The condition for there to be an appreciable number of trapped 
particles can be rewritten as 

v T = (2e|*|/m)* > v e|2 - 1 / K X J . (44) 

Further if we replace the left side of (44) v_ by 2IT/KT B, we can 
neatly summarize all the above conditions on trapping as follows: 

x B < (2ir/tcve)|2 - l/KXe|"1, T e l p , x r . (45) 

In practice, for parameters of a particular simulation, one 
can use linear theory to predict (2e|i|/m) v ~ or |n|/n0 and 
to check the criteria above, Eq. (45), to ascertain a priori whether 
there will be much trapping. If we use Eq. (32) and assume |e| « 1, 
then we can evaluate the scalar potential and write the condition (44) 

l u ^ I 2 (l/2)(2ve - U e/<) 2|e| . . 

Motivated by Eq. (33), we propose that a suitable model for the linear 
or nonlinear dielectric function evaluated near a resonance (e = 0) 
Is given by 
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e - 2(A • lv)/n (46) 

where A Is the mismatch, vis the dissipation rate, and the beat 
frequency 0 satisfies ft « u1 . We shall construct the nonlinear 
dielectric function in the next section. We hare defined the mismatch 
as the difference between the beat frequency 8 and the 3ohm-Gross 

2 2 2 4 frequency ft,: A = (1 - JL, ft. = (u + 3<* v ) . If we assume that 
close to a resonance the frequency mismatch is small ecmpared to the 
dissipation rate (|Re e| « |Im e|), then the criterion for appreciable 
trapping to oeour is 

IUQU^I > (*re - ae/K)2(Wue) . (47) 

To evaluate the second criterion, that trapping be observed 
during the experiment, we use Eqe. (10) and (43) to obtain 

2\n\/nQ = u.?/iae
2 . (48) 

From Eqs. (43) and (32), and again evaluating the linear dielectric 
function near resonance, we express the condition T B < T as 

|iyj£| > Ue/Kfyv/meX2^erexp)2 , (49) 

where we have made use of T „ = 2ir/u- = 2TT/KV_. If the condition (47) 
is marginally satisfied then (49) takes on the form 

Vexp > ̂ l 1 " a*.!"1-
For real i s t ic plasma parameters, e .g . , a dense 6-pinch: 

n Q - 10 cm"3, T e « 0 ( 5 0 eV), G>e/v • 100, iec/a>e = 10, and C02 

lasers (9.6 urn and 10.6 urn wavelengths, setting |u_| * |u, | ) , one 

obtains from (47) 
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l« 0| 2 i ( v / w ^ 2 * &(3 * 10 7 em/sec)2 (50a) 

and from Eg.. (49) 

(Vexp ) 2 > df\"0r2(v/>*e)(<»eM2 • (50b) 

If (50a) is marginally satisfied and u l< = &(3v ), then to observe 
e e 

trapping we require u_T > 6TT, which is quite easily satisfied in 

all our simulations. 

b. Simulations of nonlinear beat heating: electromagnetic code 

We have employed our electromagnetic simulation code to study 

beat heating when the electron wave traps particles. For the sake 

of simplicity the plasma was taken to be homogeneous. The simulations 

were severely limited however, by the finite plasma slab width being 

only of order five beat wavelengths (see Fig. 14). This leads to a 

certain number of unphysical effects which will be described in this 

discussion. 

In our comments and observations concerning the simulations, 

some mention of temperature and heating is made. Temperature is cal­

culated in the code by subtracting the (relativistic) kinetic energy 

density of the local, sloshing motion of the particles from the total 

kinetic energy density, in the frame of the grid. Heating is defined 

as the time rate of change of the average local temperature. 

In Fig. 13 the temperature and the action flux transfer are 

plotted as functions of time for a simulation exhibiting trapping 

(corresponding to Fig. 14). There is strong action transfer and 

heating at early timos while the density disturbance and the distribu­

tion function modification are still linear. There then follows a 

murked decrease in the heating of the plasma at a time T„ after 
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lnltlrtian of the beat disturbance! accompanying the reversal of 
action transfer. Meanwhile the velocity distribution function has 
evolved appreciably with a distended nonmaxwellian tall forming 
beyond the phase velocity and a plateau occurring near the beat-wave 
phase velocity (Fig. 14b). 

Scattering continues, however, and there is a return of the 
heating and action transfer to somewhat diminished rates as compared 
to the early stage of strong beat heating. Beat heating continues as 
the three-wave interaction evolves Into a regime best described as 

11 12 76 induced Thomson scattering, KX > 0.35. •*•'"' Now the beat-wave 
phase velocity falls much closer Into the body of the velocity distri­
bution function at a point where the distribution has negative slope 
(Fig. 14c). By the considerable modification of the distribution 
funtion and from the plot of the electron termperature, we observe 
that there has been considerable electron heating over a relatively 
short time: AT e/T e(0) = 5 over u eAt = 40. 

Figure 1$ displays the results of several simulations of beat 
heating in a uniform, finite plasma slab where the increase In 
effective thermal velocity squared over the bounce period x_ is 
plotted against Initial ponderomotlve potential in natural units 

if —2 2 2 

lu-UjJc . We find empirically that v (x_) - v (0) is linearly 
proportional to |UQU.|. We would be motivated to seek an explanation 
for this interesting result were it not for certain unphysical simula­
tion effects that occur. 

When there is appreciable trapping, particles absorb momentum 
from the beat-wave and are more readily carried to the right end of 
the system, where they are either electrostatically returned, or 
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elastically reflected If they reach the system wall. In a longer 

system, trapped particles would have a longer time to bounce back and 

forth in the potential well of the beat-wave, exchanging energy and 

momentum, before encountering the edge of the plasma. In our simula­

tions after one or two bounce periods a significant fraction of the 

particles has been reflected from the right wall of the system. 

Once reflected these particles no longer can resonantly interact with 

the beat wave, and they artifically symmetrize the distribution 

function and phase space (Fig. 14c). In a more realistic plasma model 

strong wave particle interaction persists for a much longer time. Then 

additional dissipation mechanisms should be considered for finite 

amplitude beat waves, e.g., the side-band instability. ' In the next 

subsection competing dissipation mechanisms, the electron-ion para-

metric ('ecay and modulational Instability, are considered. 

c. Competition of beat heating and beat-wave trapping with 

other effects 

We begin by examining under,what condition the two electro­

magnetic waves can propagate across the plasma to Induce beat heating 

without first suffering significant attenuation due to parametric 

Daman backscatter instability. We shall subsequently investigate 

nonlinear processes competing with particle trapping by the beat-wave. 

In Section II.C.3 we reviewed the result due to Rosenbluth 
5 * 

et al. Ascribing the parametric amplification of decay products due 

to Raman backscatter in an inhomogeneous medium. The condition that 

appreciable pump attenuation occurs due to Raman backscatter in an 

inhomogeneous medium of scale length L_ is given by 

L • 2n 0
2/l K' vi v2l ** !• For the-plasma parameters 
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correspondlng to a dense 8-plnch with L > C(10 cm) and CO. lasers, 

n «= 
the condition becomes |u_| » |L_(cn)l" (10 cm/sec) * 
^ 17 2 2 
W 1 0 cm /sec ). Comparison with the threshold for trapping, given 
by expression (50a), Indicates that trapping can occur without there 
being much attentuation due to Raman backseatter. 

Because the ions are fixed in our simulations, there is no 
possibility .for parametric decay, modulational instability, or 
nonlinear Landau damping by ions. In a real plasma these processes 
will, however, compete with trapping. The thresholds for these pro­
cesses can be quite low compered to trapping. But since their growth 
rates scale to a higher power in the small parameter v_/V.> there is 
a regime of beat-wave strengths in which electron trapping occurs 
first. 

To illustrate this, we examine the possible parametric electron-
ion decay of the beat-wave. For purposes of discussion we quote the 
threshold and growth rate derived by Kishikawa for the decay of an 
Infinite wavelength Langmuir pump wave into finite wavelength Langmulr 
and ion acoustic waves. For the actual case of a finite wavelength 
beat wave acting as the pump, the thresholds for parametric decay or 
modulational instability are reduced but the growth rates do not 
change much. 

Nishikawa found that the threshold for the decay instability 
is given by 

V\ « ^ V J / W ^ ) * , (51) 

whare v is the magnitude of the longitudinal oscillation velocity, 
v is the dissipation rate for the electron or ion acoustic wave, 
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and si is the ion acoustic frequency. For the growth rate y , 

of the decay instability, well above threshold, Nishikawa found 

Y e l/w e - (l/4)(irt e) i(vA e)(m e/m 1) 4 . (52) 

It will be useful in the following to observe that from Eq. 
(43) and the electron longitudinal equation of motion we obtain 
v * v T /v.. From Eq. (32) and Eq. (43) we recall that 
v_ * 2|uQu1|/|e|. The threshold for trapping Eq. (44) can be 
rewritten as 

v/ve i KX e|2 - ( ^ r 1 ! 2 • (53) 

Comparison of Eq. (53) with Eq. (51) reveals that the threshold for 
decay instability can be very much lower than that for trapping in 
0-pin.ches and laser-pellet plasmas, for example. 

If we, however, compare the growth rate of parametric decay 
Eq. (52) to the electron bounce frequency uu = <v„ s ui v/V , we find 
that 

Y e i/WB - U/4)(m e/m i) i(,a c) i(v T/v e) . (54) 

At threshold for trapping, described by an equality in (44), we 
obtain by substituting for v_ 

Y a lA>D - (l/4)(ne/m1)i(icXe)*|2 - U e ) - 1 | . 

For 0.2 < K \ < 0.4 and s^ i 1836 m e, then Y e iA)g < ©^0.1). 
We conclude that trapping can occur before there is significant 
growth of the decay instability. 
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In our simulations trapping and the ensuing deformation of the 
velocity distribution function are the most Important features affecting 
beat heating. There is also convection in both the linear and nonlinear 
regimes of beat heating which can produce effective loss and mismatch. 
To test the Importance of convection, we recall the formulation of the 
coupled mode equations as considered in the previous section, Eqs. 
(40)-(42). In Eq. (40) the Coulomb potential, or, using Poisson's 
equation, the density perturbation satisfies a linearized wave equation 
driven by the pcnderomotive force whose left side becomes (In the 
WKB limit) 

(3 t + v + v g \ - 14) n(x,t) 

where v is the group velocity for an electron plasma wave, v 
la the dissipation rate, and & is the frequency mismatch A = ft - SL. 
We can estimate the effect of convection as being of order 
v */L • 3(K \ /KL)U- = ©to.01)u compared to v = flto.ljio g e e © e 
for typical simulations, where we have estimated 3 - L using 
the length of the plasma L. 

We have therefore i<»nored convection and treat the beat distur­
bance as a wave driven near resonance with both damping and mismatch 
functions of time and implicitly of wave amplitude. We shall incor­
porate these nonlinearities into the slowly time dependent dielectric 
response of the plasma e,_(fl,K; t) = e' + ie". The nonlinear 
dielectric response is formulated by Including the nonlinear, time, 
dependent, complex frequency shift to the linear normal mode fre­
quency due to trapped particles. We construct the nonlinear dielectric 
function and the nonlinear normal mode frequency in Section II.c.5. 
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d. Motivation for a model problem 

The qualitative dependence of action +rai.sfer upon £„, has 

been verified in the fully electromagnetic simulations discussed so 

far. The difficulty with a quantitative analysis of e,_. in our 

electromagnetic simulation derives from the finite length of the 

plasma which is only of order five beat wavelengths (see Fig. 14). 

In our simulations after a time as short as one or two bounce periods 

of a representative trapped electron, a large number of accelerated 

electrons have elastieally scattered off the right-hand system 

boundary. The ensuing artificial symmetrization of the distribution 

function and the sudden termination of strong wave-particle inter­

action after wall reflection of an individual electron distort the 

evolution of nonlinear beat heating in an unphysical way. In addition 

there is a nonlinear oscillation of the entire plasma slab because of 

the accumulation of space charge at the slab edges due to the trapping. 

We have therefore constructed a model problem where we consider the 

ponderomotive force driving the beat wave as a fixed amplitude 

external driver in a uniform, infinite, periodic plasma. 

For purposes of simplification, we hold the driver steady and 

simulate the electrostatic ponderomotive driver in a one dimensional, 

electrostatic particle code describing a periodic, homogeneous, warm 

electron plasma. Section II.C.5 takes up the theoretical analysis of 

the model problem generalized to include a time dependent driver 

amplitude and discusses the simulations. Section II.C.6 considers 

the consequent back-reaction of the nonlinesr dielectric response 

on beat heating. Electrostatic simulations are performed with the 

previously fixed amplitude ponderomotive potential $- replaced by 

nn-iiJ/e, and we integrate the linearized coupled mode equations (28) 
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descrlblng u_ and Uj In the temporal limit (3 •* 0). We emphasize 
that, In the model electrostatic simulations to follow, connection 
with our theory of beat heating Is made by using the following expres­
sion for the ponderomotive potential: 

•0(x,t) = (m/e) u^i.t) xi^x.tf . (55) 

Equation (55) is obtained from the relation between the vector 
potential and t'j transverse oscillation velocity, and from Eqs. (9) 
and (26). 
5. Resonant Excitation of Nonlinear Plasma Waves 

a. Introduction 
6fl—71 There has been considerable experimental ~ and theoreti-

72-75 cal attention given the study of the damping and frequency shift 
of freely propagating, large-amplitude, longitudinal electron plasma 
oscillations. Relatively little work has been done concerning finite 
amplitude waves resoi—vtly excited by the modulation of a high 

17 fil 82 frequency wave ' ' or by the low frequency beat of two high fre-
quency wa"es. ' J In this section we study the propagation of 
resonantly excited, longitudinal plasma waves. We formulate the 
resonant plasma response from the point of view of considering the 
approach to a self-consistent equilibrium determined by a nonlinearly 
Induced frequency shift. The formalism is based on the construction 
of a nonlinear normal mode, allowing for the tiire dependence of the 
nonlinear eigenfreq^ency. 
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b. General formulation of the model problem 
For simplicity we consider an initial value problem, and 

assume the tfasraa is infinite and uniform. We begin by defining the 
total potential * (x,t) to be the sum of the external potential 
$ 0 (x,t) (possibly species-dependent, for example, a ponderomotive 
potential; or a true external potential supplied by a grid or a 
slow-wave structure), and the self-consistent Coulomb potential 
*(x,t): * s(x,t) = (fi(x,t) + <(>0

s(x,t). (Litvak 8 3 , 8 4 and S. Johnston76 

have exploited the utility of the idea of a beat-wave potential to 
high degree in describing induced scattering.) The unperturbed 
plaema is assumed to be spatially uniform; all wave forms and perturbed 
quantities have '•' e same spatial phase dependence: 
4 s(x,t) = 4 s(t) exp iicx + c.c. Poieson's equation can be written 

* S(t) - * 0
S(t) = 4mT 2p(t) (56) 

where p(t) is the total charge density summed over species and over 
linear and nonlinear components, p(t)= J, p s(t) = 
I (p^t) • 6ps(t)]. 

We postulate a relation for the nonlinear susceptibilities: 
p s(t) = -[ic2/4ir] [ di f ( r ) »(t - t), with the wavenumber and 
amplitude dependence implicit. The' kernels for the linear suscepti­
bilities X T E ( T ) are obtained by replacing p s(t) with only its 
linear part P L

S(t) on the left side. If we separate the dominant 
time dependence, p 8(t) = p 6(t) expf-Wt] + c.c,, and similarly for 
the potentials, we obtain 
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P*(t) - -[K2/4ITJ I dx X*(T) exp[WT] Wt - T) -
Jo 

-[K 2/4IT]/ dt X S ( T ) exp[iSJT - r(d/dt)] (f{t) , (57) 
JO 

where we haw used the propagator exp[-T(d/dt)J *(t) « *(t - T ) . 
The operator (d/dt) within the argument of the exponential In 
Eq. (57) therefore only acts to the right. 

Utilizing the definition of the Laplace transform of the 
susceptibility x (&>)=/ dr x (*) e x p u m ] , we sua Eq. (57) over 
species and substitute for p(t) from Eq. (56), which we have 
rewritten in the form $(t) • [Wie Jp(t), to obtain 

e(n + id/dt)?(t) +Y. x < , ( n + «/dt)* 0
8(t) » o . ( 58) 

We have defined the nonlinear dielectric function 
e(ui> : J 1 * X8(">)» with its wavenumber and amplitude dependence 

3 
implicit. For the frequency-like argument u), we use B + i(d/dt). 
The differential operator again acts only to the right on $(t) 
and + 0

8(t). 
If the external ion potential is negligible, which is the 

case for the v x B_ ponderomotive force (Eq. (8)) considered here, 
and for the ponderometive forces considered in Refs. 12, 25, 40, 41, 
and 42, then Eq. (58) becomes 

d a + ie'&t) l^t) - [l • x1*! + id/dt)J * 0
e(t) . 
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If the external potential acts equally on the species, e.g., the 

potential due to a grid, or if the ion susceptibility is negligible, 

Eq. (58) gives e(fl + id/dt) »e(t) = J Q
e(t). 

At this point we digress briefly to oonsider the concept of a 

nonlinear normal mode. In the absence of the external potential 

$ 0
8(t) •* 0, and for slow time dependence fl (d/dt) + 0 , Eq. (58) 

defines a nonlinear normal mode: ^ " W I K>4>)$ - 0, i.e., 

e((iw> K,5) = 0. If we express the nonlinear dielectric response as 

e(ai; <,?) = £T(O); K) + 6e(u; K,$), where 6E is the nonlinear 

increment to the dielectric function, then we can determine the complex, 

nonlinear normal mode frequency Uj- 5 u, + fiu. The complex, linear 

normal mode frequency u. = !L + iy. is determined by e.fcOy,*) = 0, 

and 5u is then the complex, nonlinear frequency shift. We can 

Taylor series expand e(u
HT» K'*) around u. to obtain 

efu^j <,•) = EjX^J K ) * <5E(K)L; K«5) + i(^)6u + ••• = 0 where 
0 

i = 3e/3u. Assuming Ifiu/u-| « 1 in order to truncate the expansion, 

we find 

6u = -Se/el . „. r . (59) 

We return to Eq. (58) and now Taylor series expand e around 

OĴ  to obtain e(<iw * SI - ow + id/dt) = e(uj^) * 

efoij. )|n - to,™ + i(d/dt)j + ••• . We consequently find that to lowest 

order in \Si - ui^ • K d / d t ) ! / ^ ! « 1, and for fi^] « |J0
e|, 

ifuta,)[n " "m, + Kd/dt)] * e(t) = [l + x\a + id/dt)] ? Q
e(t) . 

(60) 
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Equation (60) describes tbe self-consistent evolution of the nonlinear 
plasma response i(t) to the driver $«(t). The problem of explicitly 
deducing the nonlinear normal mode frequency M™., and of evaluating 
Eg.. (59) from a calculation of the actual orbit modifications induced 
by the finite wave amplitude, remains. 

For ? 0*(t) • 0 and |d in $(t)/dt| •* 0, use of the Poisson 
equation and Eqs. (57) and (59) leads to 

«d)(t) • [4ir/c2e(uI|)][p(t)-(SI|(t)]/$(t) . (61) 

From Eq. (61), we observe that it is the nonlinear increment to the 
total charge density perturbation that gives rise directly to the 
complex frequency shift. We can make some progress in calculating the 
particle orbit modifications if we can assume that the wave amplitude 
is nearly constant, d*/dt s 0, i.e., |d to $/dt| « \Su>\.72'73 

c. Application to the excitation of electron plasma waves 
The separation of the linear and nonlinear plasma response is 

73 the essence of the subtraction procedure of Morales and O'Neil. 
They appealed to a Vlasov analysis for a specific kinetic model from 
which they derived the dielectric function e and deduced the temporal 
or spatial dependence of the free propagation of finite amplitude 
electron plasma waves. We can adopt for the driven-wave problem, the 
results of any specific calculation of orbit modifications due to 
finite wave amplitude for the free-wave problem, provided that in the 
kinetic description employed, the particle acceleration depends on 
the gradient of the total potential, -[ea/msJV * s(x,t). Thus 
results derived for the complex frequency shift 6<ii, depending on J 
in the problem of freely propagating waves., can be used to describe 
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the driven-wave problem, if we replace $ by 4 s in the particle 

orbit calculations and in the nonlinear eigenfrequeney relation. 

To illustrate our theoretical construction, we consider 

resonantly excited electron plasma waves in the case that trapping 

constitutes the principal nonlinear effect. If the plasma response is 

quasi-steady, i.e., if we can set d/dt * 0 in Eq. (60), then we can 

utilize the calculation of Morales and O'Neil, for example, to deduce 

j. and * self-consistently. (We have dropped the superscript 

denoting that * is the total potential for electrons.) At this 

point we emphasize the fact that Morales and O'Neil's theory is 

analytic and perturbative, but not self-consistent. As in most of 
72—75 *" 

the analytic theories describing trapping, the potential 4> 

is assumed constant. 

Specific application of Morales and O'Neil's theory requires 

that certain assumptions be valid to justify their perturbation 

expansion. The perturbation analysis requires that V
T!2/K « V , i.e., 

weak nonlinearity, and in order that the wave amplitude be nearly 

constant |YL|/iUg « 1, i.e., weak Landau growth or damping relative 

to the bounce frequency. The two conditions require that fl/ic 2 4v . 

We have defined the bounce frequency and the trapping velocity: 

<IL S KV„ = K(2|e$|/m 1 . At this point it is convenient to introduce 

the real and imaginary parts ou(t) 5 6fi(t) + ifiyft) of the complex 

frequency shift. 

To evaluate the right side of Eq. (61) we replace $(t) by 

{(t) in Morales and O'Neil's calculation. The unperturbed distribu­

tion function f Q(v) is Taylor expanded to second order around n/< 
2 2 

to find that 6Q <* d f„/dv and 5Y * dfQ/dv evaluated at the phase 
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velocity SI/K. The tine dependences of 4iXt) and 6v(t) are shown 
in Figs. 1 and 2 of Ref. 73. Uorales and O'Neil find that the dissipa­
tion -[YT + oXt)] has a damped, oscillatory time dependence with 
frequency dig and phase-mires to zero over a time (S"(5 to 10)(2n/<^>)-
The frequency shift oscillates at 2(1). and asymptotically approaches 
a value, 

tttft •+«) = -1.63 SClQ (62) 

where fin^, = Be l^'Ho^yr^ui^/K J d 2f Q/dv 2. Asymptotically there is 
no dissipation, but the resonantly excited wave acquires a finite 
negative frequency shift proportional to uu. 

d. Equilibrium response 
The vanishing of the total dissipation and the approach of 

the frequency shift to a steady value determine an equilibrium. By 
setting (d/dt) = 0 In Eq. (60) and defining the relative response 
R s */? 0, the normalized linear mismatch frequency 
A. = ediw )[fl - SJL], and the normalized nonlinear frequency shift 

5A(|R|) = E ( U W ) o^t s ••)» *e oan describe the equilibrium by 

[^ - « A ( | R | ) ] R = 1 . (63) 

If we express the response as R = r exp(i6) where r = |*/$ 0| and 
6 is the relative phase, then Eq. (63) becomes 

(i L - «A(r)]r - . ±1 . (64) 

The sign of the right-hand side of Eq. (64) corresponds to a value of 
8 • 0 or ir, which is determined by the sign of A, - 6A(r). 
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Equation (64) implicitly determines the magnitude r of the 
response. If we attempt to prepare the linear mismatch and wave 
amplitude in such a manner as to make A, - <5A(r) vanish, or a random 
fluctuation in the response occurs to effect the same, then according 
to Eq. (64) the response r should diverge. Rather than diverge, 
however, the response exhibits finite dissipation and time dependence 
necessarily. The approach to a new equilibrium is then described once 
again by Eq. (60). 

For the case of trapped electrons the nonlinear frequency shift 
can be modeled 6A(r) = -or where Eq. (62) determines a. Then 
Eq. (64) leads to a cubic equation in the variable r describing the 
possible equilibria. Presuming the plasma parameters to be fixed, 
the free parameter governing the nature of the equilibria is the 
normalized linear mismatch A.. The driver amplitude has been 
removed by scaling, r = |*/J0I• 

Figure 16 illustrates graphically the nature of the possible 
equilibria. For A. > 0 there is only one equilibrium possible. 
Jfoltiple equilibria occur for A L < 0 and (-A^3 > (27/4)a2. We 
conclude that at least one equilibrium solution always exists and is 
described by Eq. (64) subject to its consistency with earlier assump­
tions on the weakness of the nonlinearity. We defer discussion of 
the stability of the equilibrium until after we consider momentum and 
energy transfer. 

e. Energy and momentum conservation laws 
To understand the time dependence of the nonlinear frequency 

shift and dissipation, and consequently to appreciate some of the 
details of the approach to and departure from equilibrium, we calculate 
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the energy and momentum exchange between the driving potential and 
the nonlinear plasma response. The derivation here assumes no particu­
lar kinetic model for the plasma. The momentum and energy balance 

73 considerations of Morales and O'Neil ' are generalized to the case of 
an externally driven plasma wave. 

For the momentum exchange, we express the time derivative of 
the momentum density P averaged over the length X = 2ITK - 1, 

dP/dt f(dx/A) /p[-3x4>0(x,t) - 3x*(x,t)]> -

iiep(t) **(t) • c.c. + Of |#|*) . (65) 

We have used the Identity 0 = J dxpV$(x,t) in obtaining Eq. (65). 
The higher order terms in Eq. (65) will be ignored. Using 
p s(x) * _|K /47rJ x8(fl + id/dt) * s(t), we sum over species to obtain 
Rt) = [<2AIT]/[I - e(n + id/dt)] ?(t) - £ x

8(n + «/dt) ? 0

s(t)\ . 

Appropriate to the electron wave case, we ignore ion contributions 
and expand e(fl + id/dt) around UL_, as in Eq. (60), in order to 
express the right side of Eq. (65) a,, a function of 4. 

We can formally express the nonlinear contribution to e in 
Eq. (60) as follows: K u ^ ) 5 O/fciXe^ + 6e)| * 

r- - i ^ 
^"ffi,' * 3 S e / 3 a , L * leL * S " C 3 e / 8 w ) * ' t e ^ L * 
f t[l + 3(«e/eL)Au] 5 e L[l + s], where we have used Eq. (59). We 
evaluate L and 6 = 3(6 e/c. )/3ui at u.. At this point we intro­
duce an explicit ordering scheme sugggested by theory and verified in 
our simulations: we assume that 8,8, - ff(l)u> ; 

Ug.M.Ug Re $,(fi - fl^.Cd/dt) - Otn)i»e; and u e Im B,YL>«Y - 0(n 2)u , 
where n « 1. 
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Ffoai Eq. (65), we then find that to lowest order In n the 
momentum exchange Is given by 

d)>/dt • KRe iL|[d/dt)-2(YI( + «Y)J |K*| 2ATT . (66) 

Transposing the time derivative of the linear wave momentum, 
(d/dt) ic Re E L | K » | AIT, to the left side of Eq. (66), ire can reduce 
Eq. (66) to a statement describing the momentum In the resonant 
particles: 

(d/dt) [p - ic Re eL|ic*|2ATr] « -2(yL * Sy) K Be eL|ic*|2AiT . 

(67) 
The momentum P can be thought of as the sum over the linear and 
nonlinear parts of the wave momentum, and the particle momentum in 
resonant and nonresonant particles exclusive of that attributed to the 
wave momentum. Thus on the left side of Eq. (67) the linear wave 
momentum has been subtracted, leaving to lowest order in rj the 
linear and nonlinear changes of the momentum in the resonant particles. 
We have generalized to the nonlinear case the linear concept that the 
change in the momentum of the nonresonant particles, exclusive of the 
wave momentum, is negligible. 

For the energy exchange we construct the time derivative of 
the average kinetic energy density K, Integrating by parts and using 
the continuity equation and Parseval's equality, 

dK/dt = f(dxA) jf- 8 X * V - f(dx/X) *(dp/dt) = 

\K2/AT<] 5*[-ifl + (d/dt)][e(n + Id/dt) - l ]? + c .c . + &{ I?! 4 ) , 

(68) 
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wisjire J la the longitudinal currant density. In the extensive 

algebraic manipulation that Eq. (68) leads to, we assume the same 

ordering scheme used earlier and oalculate the kinetic energy In the 

driven wave frame, i . e . , ft » 0. If we substitute 

e(ld/dt) * ^ " ^ [ f l - V * 1< d>' d t5] * (V2) e(<^L)[n - «fo, + i(d/dt)J 2 

and define the linear wave action density J K (t) » He IL|ic5(t)| /4*, 

we find that to Otn 3) 

(d/dt) <K - [(ft - ^ )J K - |K«| 2 /«II] > 

- [«B(d/dt) + 2(dfift/dt)] JK + Re eL(ic2Air)[l#*(d2/dt2)5 + e.c] 

(69) 
In the plasma frame, the linear wave energy of a free wave 

(5 • J) is given by [3(ti) Re E T ) A H ] O l«*(t)| /4ir = SLJK. Because 
the driven wave is excited at frequency SI rather than at SL, we 
must evaluate [3(«i Re e^Vau] at SI, which gives [ft + (SI - ftj^jJ^ 
for the linear wave energy in the plasma frame (in the driven wave 
frame: (ft - ft^O- Since the field energy is given by |K*| /4IT, 
the left side of (69) is the time derivative of the total particle 
kinetic energy with the kinetic part of the linear wave energy 
subtracted away. We interpret the residual as the energy exchange 
rate due to resonant particles, evaluated in the driven wave frame. 
Then to lowest order In T\, we have the expression 

(d/dtjKj,* » -[2(dift/dt) + 5ft(d/dt)]jK 

+ Re E L( K 2Air )[i?*( d 2/dt 2 )* + c. e.] , (70) 
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where we define Kg = K - [(0 - SL )J - |ie»| Air] as the average 
kinetic energy density of the resonant particles in the driven wave 
frame. 

We no* Introduce a simple model which Illustrates some of the 
physics hidden in Eqs. (67)-(70). Our objective is to gain insight 
into how the trapped particles can give rise to time dependence in 
the dissipation and the frequency shift. The model crudely represents 
the resonant, trapped particles by a clump of density n_ oscillating 
in the wave frame with velocity v • v_ sin out. Effects due to xhe 
time dependence of the resonant, but untrapped, particles and due to 
nonlinear orbit modification of the nonresonant particles are ignored. 
Furthermore, we make no attempt to include phase-mixing. 

Th" momentum and kinetic energy of the resonant, trapped 
particles are given by P„ = n_ mfl/K • n-mv- sin out and 
W 2 2 

Kp = (l/Sjnymv- sin out in the driven wave frame. Since the depth 
of the potential well seen by a trapped particle in the wave frame is 
Influenced by the presence of the other trapped particles via Poisson's 
equation; the potential acquires a time dependence 
»(t) « * ( 0 ) + * ( 1 ) exp - lout. 

We substitute into Eqs. (67) and (70) our model equations for 
the momentum and kinetic energy of the trapped particles in the wave 
frame and for the time dependent potential amplitude. We obtain to 
©fn ) the momentum, 

lyovjuig cos out = - 2 ( Y L • « Y ) K Re ^KT0'\2/Av . (71) 
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Ve deduce from Eq. (71) that the total dissipation has a 

time dependence given by -(\L * &y) « eos uut. This is a lower irder 
effect than the tine dependence of the nonlinear frequency shift, which 

*. 1 72 71 Is &{n). ' J To further examine the time dependence of the wave 
amplitude, the dissipation, and the frequency shift at frequency u», 
we substitute the Fourier series *(t) » *^0' • w^ 1' exp - itOgt • ••• 
and fu » 5u ' + dor exp -iMfe* * ••• *nto Eq. (60). The lowest 
order tit" independent part of Eq. (60) is given by 
e ^ 0 W ° W 0 ' « i 0, where n u ( 0 ' = a - J^ - Slf°\ Subtracting this 
from Eq. (60) and collecting terms with exp - ioLt time dependence, 
we find to lowest order in n 

i(0W0).(i). 3(0)^(1) + lY(D]4(o) + -(o)v{i) = 0 > ( 7 2 ) 

Then both the dissipation and the component of the frequency shift 
oscillating at uu are related to the wave amplitude oscillations: 

^KlyM = fj°> • ̂ p V 0 ' . (73) «tf' 

The time dependence of '-. •» frequency shift and the dissipation 
in our simulation concurs wit* that described in Eqs. (71) and (73), 
implying that the model time dependence of the velocity of the clump 
of trapped particles and the potent al amplitude are consistent. 
Furthermore, we can use the equation for the kinetic energy to deduce 
that the frequency shift can oscillate at 2u>g as well as at uu. 
Substitution of our models foi ••he time-dependent wave amplitude and 
the trapped particle velocities '-to Eq. (70) yields 

(l/ajn^jmv^wgslnta^t) * <-2(d«fl/dt) + 2o!g((^ - on) 

x I m [ [ » ( l V * ( 0 ) ] exp - Iftfetjjlto e L|K* ( 0 )| 2/4Tr . (74) 
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Equation (74) suggests that the frequency shift &tt has time 

dependence at both the bounce frequency &U and twice the bounce 
frequency 2ui.. For the case of a free wave, Morales and O'Neil find 

2 
that for v_v. « v and v. > 4v the time dependence at frequency 
2uig dominates. 3 In the work of O'Neil, Winfrey, and Malmberg 
however, the frequency shift of a large amplitude electron plasma wave 
excited by the weak beam-plasma instability varies at both ut, and 
2UV, with the former dominant. 

We can Fourier analyze Eq. (74) to determine the relative 
variations of the frequency shift at the frequencies u_ and 2a)_. 
In so doing we recall the assumptions that J#* '/* | - ff'f.n) and 
that 50,Ug - OXn)a_• Then from Eq. (74) we find that to lowest order 
in n 

«n ( 1 ) - *|[«q ( 0 )-^], ( 1W 0 )| (75) 
and 

« 0 ( 2 ) - © K c ^ / B j c j m v j 2 / ^ ! . (76) 

In our simulations we find that the o&^illation in the frequency shift 
at dig dominates that at anjg. The magnitude of iff-1' in simula­
tion is consistent with Eq. (75) to within 25*, if we use <5n'0' from 
the simulation directly or if we take 5&0' « -(3/4)v. 3d 2f Q/dv 2 as 
given by Morales and 0'Neil's theory. 

f. Stability of equilibria 
The stability oi" the nonlinear equilibrium Eq. (64) can be 

examined by employing Eq. (60) and considering a complex, infinitesi­
mal perturbation to the equilibrium plasma response of the form 



-73-

SH = (r + fir) exp(ie • ifi8) - r exp(i6). If we define the dimension-
less quantity T = i~ t and derivative z = dz/dr and ignore the 
nonlinear dissipation perturbed from its equilibrium value of zero, 
then from Eqs. (60) and (64) we obtain the coupled equations: 

r 2«8 - 6T(+1 + <a?/Z/2) = 0 (77a) 

and 

fir ± 69 « 0 . C77b) 

The • and - signs correspond to equilibrium phases 6 = 0 and w 
respectively. 

Differentiation of Eqs. (77) with respect to T and straight­
forward algebraic manipulation give 

r 2(d 2/dr 2) + (1 ± ar3/2)J (78) 

The frequency of a stabTe oscillation or the growth rate of instability 
is given by (1 * aT^2/2)1/£/Er. Recalling that the equilibrium is 
described by Eq. (64), ar can be replaced by ±1 - A.r wherever 
convenient. 

We observe from Eq. (76) that for 8 = 0 the equilibrium 
is obviously stable, 1 + ar 3' 2/2 > 0. For 8 = ir and A T < 0, 

% 2 

multiple equilibria can occur if (-A. Y > 27a M. The condition for 
stability in this case, or 3' 2 < 2 or equivalent^ ar 1' 2 < -2^/3 
using Eq. (78), coincides with the equilibrium response r. lying 
to the left of the minimum of r(A. - 6A(r)J in Fig. 16b, given by 
a r ' • -2A./3. Thus we conclude that for a large response, in phase 
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wlth the driver, the equilibrium is stable, corresponding to r_ or 
r, JI Fig. 16b. 

For sufficiently large, negative linear frequency mismatch, 
a pair of additional equilibria are possible, corresponding to r, and 
r_ In Fig. 16b, of which only r, is stable. Both r- and r_ 
have relative phase IT with respect to the driver. Our simulations 
correspond to a 3 0.4 and &. » -0.33 which do not satisfy the 
condition for multiple equilibria. We therefore expect the simulated 
equilibrium to be stable as it corresponds to r_ in Fig. 16b. 

We point out that one cannot rigorously omit the perturbed 
nonlinear dissipation. Without going into a detailed derivation we, 
however, can make some qualitative remarks. From the conservation 
laws we observe that the nonlinear dissipation is fundamentally 
related to the nonlinear momentum. The trapped particles have no 
momenta in the wave frame. The untrapped particles have either 
positive or negative momenta in the wave frame depending on whether 
they travel faster or slower than the wave. A perturbation to the 
wave amplitude and its phase, will alter the separatrix, trapping or 
dpJ"»apping partic". and consequently producing a small momentum 
exchange. The momenta of the particles remaining trapped is still 
zero. However, the momenta of the free particles and the wave itself 
will be altered since they are wave amplitude dependent. 

In conjunction with the momentum exchange there will be a 
dissipation increment as described by Eq. (67). We expect the unstable 
equilibrium to remain unstable, the growth rate acquiring a complex 
Increment perhaps. For the "stable" equilibria the Influence of 
positive or negative dissipation may cause the oscillations about the 
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equilibrium to grow or relax. Our sluulations indicate that for the 
equilibrium labeled r. In Fig. 16 the dissipation Increment Is such 
that perturbations relax, and the equilibrium is stable. 

g. Simulations with constant-amplitude por.deromotive potential 
To illustrate and apply our theoretical construction we 

have performed computer simulations. For the sake of simplicity we 
have considered a model In which the plasma is unmagnetized, uniform, 
and periodic. ELeetron plasma oscillations are excited with a fixed 
ion background. The computer simulation uses a finite-sized particle 
code originally furnished by A. B. Langdcn and extended by this author 
and G. Smith. We simulate the entire Ifaxwellian velocity distribution 
with a modest number of particles (2500) and mesh points ( 6 0 in one 
dimension. 

Many researchers have investigated in simulation the free 
propagation of electron plasma waves studying the effects due to wave 

86—92 particle resonance. Particular attention has been paid to the 
86-59 92 case of finite YT/<»D- Resonantly excited ion waves have been 

recently considered by Book and Sprangle. Tn our simulations we 
resonantly excite an electron plasma wave of finite wavelength equal 
to the system length. 

We have attempted to simplify our simulation model as much 
as possible. Because of the discrete Fourier spectrum, excitation of 
a large amplitude electron wave at the fundamental wave length cannot 

77 give rise to the sideband instability; the spacing of wavenumbers 
around the fundamental is much too broad to accommodate the spacing of 

o 
the sidebands ±4ic e *aui)./3KV . Furthermore, since the ions are 
held fixed, parametric decay and modulatiinal.instability are 
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excluded. We measure directly in simulation tiw amplitude and phase 
of the total electric field amplitude -lie* relative to the pondero-
motive force -i<&j. Then use of Eq. (60) permits identification of 
the nonlinear dissipation and frequency shift as functions of time 
(Fig. 18). Comparison of the asymptotic frequency shift with theory, 
Eq. (62), is made in Fig. 19. 

Results of typical simulations are shown in Figs. 17, 16, 
and 19. For the set of simulations, the electron distribution was 
initially I&xwellian with parameters JJ/KV = 3.0, K \ = 0.33, and 1) = U L . Therefore the linear mismatch derived from the Bohm-Gross e 
dispersion relation is Jl — IJ, = -0.17 ui , and the linear dissipation 
Is -YT/tt> = 0.03. In Figure 17 we observe the characteristics of the ij e 

large amplitude response (shown here driven in phase with the pondero-
motive force), electron phase space, and the velocity distribution all 
at u t = 300. There is evidence of considerable trapping. Particles 
are trapped much closer to the separatrix than to the bottom of the 
potential well, however. The typical orbital period of these particles 
in the wave frame is of order 6IT/OJ_ and concurs with the observed 
oscillation period of the nonlinear dissipation in Fig. 18b. We seem 
to have a preponderance of particles trapped fairly high in the 
potential well and relatively few down at the bottom; this gives rise 
to the hole observed in phase space, Fig. 17b. 

We recall that from Eqs. (71) and (76) re expect both the non­
linear dissipation and the frequency shift to vary at frequency <*, 
for our parameters (v. = 3 v ) . We observe in Fig. 18 that 
-(V, + S Y ) , 5R, and the amplitude and phase of the response all vary 
at the bounce frequency, but not_ at the bounce frequency of the deeply 
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trapped particles. Instead it 1* the average bounce frequency of 
the bulk of the particles trapped near the sepcratrlx that determine? 
the tine dependence of - ( Y L * &Y) and 612. To understand this and 
other features in our simulations, we must appreciate certain condi­
tions of the simulations not anticipated by existing analytic theory. 

Rather large amplitude waves have been induced in the slmula-
2 tions, i.e., v Tv. » v . Since v. = 3v_ Initially, the trapping x o e o e 

width v„ is large enough to extend back into the main body of 
the distribution function to do considerable trapping (Fig. 17c). 
With only 2900 particles, we do not have good statistics for the 
particles that become deeply trapped, i.e., the nearly, exactly 
resonant particles v » v.. The trapping then of relatively many 
particles near the separatrlx and fewer deeper in the potential well 
is not so surprising. 

The ponderomotlve potential amplitude was varied over a range 
such that 0.2 $ cv-ZSJ < 0.6 In order to check the iependence of 
the nonlinear frequency shift on the total potential amplitude (Fig. 
19). The ponderomotive potential was switched on instantaneously and 
also over rise-times o> t * 50ir which was of order two or three 
characteristic bounce periods of the simulated trapped electrons. 
More rapid phase-mixing and relaxation to equilibrium (in terms of 
the number of bounce periods Zit/iOa) was observed for the slower 
driver switch-cn and for weaker amplitudes, effects similar to those 
in Kruer's simulations. The initial conditions and the rise-time 
of the driver influence the details of the asymptotic state. However, 
as the slower drive switch-on was not very long compared to a typical 
bounce period, the asymptotic state was not significantly different 
from the "udden switch-on case (Fig. 19). 
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Ihe power law dependence fi(Kt • «•) « |»| and magnitude of 
the frequency shifts seem to roughly agree with the nonlinear normal 
mode calculation of Morales and O'Neil, although both the ratio 
• * A e * 3.0 and magnitude of the wave amplitude v_vA = v lie 
outside the regime where their theory is applicable. The nonlinear 
frequency shifts are quite appreciable <fl - -5f(0.10 to 0.25 XJ , and 
the distribution functions are considerably perturbed acquiring 
distinct tails at v > O/K- The body of the distribution functions 
remain approximately Uaxwellian, however. Furthermore, the wave ampli­
tude and phase In simulation show appreciable variation, although the 
relative changes are not large. Thus the particle trajectories have 
slightly different histories as compared with Morales and 0'Neil's 
theoretical description. We therefore conclude that the quantitative 
agreement of the simulated asymptotic frequency shift with theory 
(Fig. 19) is quite remarkable. 

For the case of resonantly excited, longitudinal waves in a 
uniform, unmagnetlzed plasma, we have constructed the nonlinear 
dielectric response. We have formulated the resonant response in 
terms of the mismatch between the driving frequency and the time-
dependent, complex, nonlinear eigenfrequency of a normal mode. We 
have used simulations to illustrate our formalism and find that 
simulations compare remaikably well with nonlinear normal-mode theory 
in a regime of parameters outside the range where analytic perturbatioj 
theory is valid. We have derived energy and momentum conservation laws 
and used them to explain phenomena observed in the simulations, for 
example the time dependence of the responp*. 
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6. Beat Heating with Trapped Electrons 

We return to our discussion of beat heating for large amplitude 
beat waves. Now that we understand to some extent the role that finite 
amplitude effects play in determining the resonantly excited response 
of the plasma when the driving potential has a fixed amplitude, we 
examine the back-reaction that the nonlinear, tine-dependent response 
has upon the ponderomotive potential. Specifically, « Investigate 
beat heating, relaxing the constraint that the ponderomotive potential 
has a constant amplitude. We consider the entire system composed of 
the coupled mode equations describing the transverse wave amplitudes 
u~ and u,, Eqs. (28); the Foisson equation, Eq. (10); the equation 
describing the nonlinear dielectric response, given in the temporal 
limit (3 = 0) by Eq. (60); and th* jonstitutive relation between 
4 0 and UQU., Eq. (55). We shall also discuss further simulations and 
make some remarks on the influence of plasma inhomogeneity on trapping 
and beat heating. 

a. General consideration of the coupled mode equations 
We recall Eq. (29) which expresses the conservation of trans­

verse wave action. The equation is rewritten here defining the 
2 operators D Q . = 3^ ± c. . 8 , where c, = k,e /ui, are the group 

velocities, and the transverse wave actions J, = wJUol * then Eq. 
(29) becomes 

Vo*Vi " ° • ( 7 9 ) 

Introducing the phases e Q 1 > defined by UQ 1 = IUQ JJ exp(-160 j ) , 
we manipulate Eq. (28) to obtain the relation 
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W o - W i • ° <80> 

We can rewrite Eq. (30) describing the rate of action transfer as 

D Q J 0 ' - D ^ * - u e
2 latu^E*/^) , (81) 

and similarly for the phases 

W o " J1D181 = *• *(W* / 2 n0 ) • ( 8 2 ) 

Equations (81) and (82) are quite general; the plasma is 
allowed to be weakly nonuniform, and the density disturbance can have 
quite arbitrary amplitude n excluding, however, higher order couplings. 

To understand the energy exchange between the plasma and the 
transverse waves, we manipulate Eq. (81), recalling the definition of 
•the transverse wave energy density In terms of the wave action in CGS 
units W„ = ui.J. = (m/e )u, |u.| /2ir. We obtain the energy density 
conservation law: 

D 0 W 0 + D1 W1 + ( l 5 / l e ) 2 R e [ 2
0

( j c ' t ) <**(*»*)] ' ° - (83) 

where E_ = - 1 K ? 0 * -i^m/eju-u.. This conservation law states that 
the rate of energy loss or gain by the transverse waves must be equiva­
lent to the rate of work done on the plasma by the ponderomotive force. 

We observe from Eq. (83) that no further work is done when 
EL and n have a relative phase of ir/2 or 3ir/2, which is equiva­
lent to J and 4>n having relative phase 0 or IT. Then as des­
cribed by Eqs. (81) and (82) the** is no action transfer, and the 
transverse waves acquire nonlinear frequency shifts as the only con-
aequence of the coupling: 
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*%!<**> 5 %x\l " ( w0.ll u0,l , 2 )" 1 U e 2 te< W ^ O * • 
(84) 

t>. Quasi-steady nonlinear plasma response 
When the temporal and spatial variation of the amplitude of 

the total potential • is sufficiently weak to penult setting 
3 t * 3 = 0 in evaluating the dielectric function, i.e., 
e(JJ + 13*,* - 13_)5 + e(ft,ie)$, then we describe the plasma response 

\t X 

as "quasi-steady". We can then use Eg.. (32), J • [e_1(fl,ie) - l ] * 0

e , 

and Poisson's equation to algebraically solve for S and express 

Eqs. (81) and (82) as 

V o ^ l 2 = - D l 1 B l l u l | 2 ' ^ " o l 2 ! " ! ! 2 ^ e " 1 " V ( « ) 

and 

"O^o'Vo = ^ l K I 2 0 ! 9 ! " " * 2 | ' \ ) | a | « i l a ^U'1 " XV2 . 
(86) 

The quasi-steady response approxinatioi. requires |ft - u^l » |3 +|, 
(3kv /B.)|3 |, if we use Eqs. (33) and (60) to determine the relative 
importance of finite 3. aad 3. effects in the dielectric response. 

b X 

In Section II.C.5 the nonlinear dielectric function was 
evaluated by expanding about the nonlinear eigenfrequency, Eqs. (59) 
and (60). We find that in the quasi-steady limit the nonlinear 
dielectric response evaluated near a resonance Is given approximately 
by 

i(n,K) « e(i^,L)[n - ufo,] 2 ^ L ^ + l YJ ( 8 7 ) 
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where the mismatch is defined A = 0 - fl, - 6R, and the dissipation is 
defined by y » -Im oi_. To lowest order of approximation e can be 
replaced by e(«W ) * ̂ r • 2w e~ for electron plasma waves assuming 
ieXe « 1. For [e — 1| » 1 and |A| » |Y| the right sides of Eqs. 
(85) and (ff'jj can be re-expressed in terms of A and y by use of 
Eq. (87), obtaining respectively 

-^ lu j 2 !^! 2 T V 2 * 2 <88) 
and 

- ^ l u g l 2 ^ ! 2 aie/4A . (89) 

Prom Eq. (88) it is evident that action transfer requires 
finite dissipation. Since for trapped particles the total dissipation 
of the electron plasma wave oscillates around zero at the bounce 
frequency (Fig. 18), the action transfer will also oscillate at the 
bounce frequency. If tne dissipation asymptotically vanishes while the 
frequency shift approaches a finite value, as w w the case for a 
constant ponderomotive driver (Section II.C.5), then the action 
transfer will cease; and the transverse waves will acquire nonlinear 
frequency shifts. 

c. Simulations with self-consistent ponderomotive potential 
and coupled mode equations 
To investigate the back-reaction of trapping on the transverse 

wave action transfer and to determine the actual usefulness of the 
quasi-steady plasma response approximation, further simulations were 
performed. The coupled mode equations for the transverse waves, Eqs. 
(28) with V « P, and the constitutive relation (55 > $ 0 » (m/ejvuiu 
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were appended to the on* dimensional, electrostatic, particle code 
dlacussed in Section II.C.5. 

Integration forward in tine of the coupled mode equations 
describing the beat heating of two transverse waves in a uniform, 
infinite, periodic plasma is performed as an initial value problem. 
At each time-step, the transverse wave amplitudes are incremented, 
and the ponderomotive potential is constructed. Xhe particle velocities 
and positions are then udvanced using the electric field constructed 
from the gradient of the ponderomotive and self-consistent plasma 
potentials. The self-consistent plasma potential is obtained from the 
solution of *he Poisson equation given the charge density. Finally the 
Fourier component of the density perturbation at the beat wavenumber 
is determined from which the coupling of the transverse modes is 
calculated in Eqs. (28). Simulations in much the same spirit as these 
have been performed for the case of Induced scattering by Litvak 
et al. 83' 8* 

Cbe of the advantages of adding the coupled mode equations to 
an electrostatic simulation over the direct electromagnetic simulation 
is that there is then no restriction on the time-step of the integration 
tion due to the high frequency waved, which would otherwise require 
that u>0 jAt « 1 in addition to a>eot « 1. In practice the time-
step was restricted to a value u At < 0.2. For ease in comparing 
with earlier electrostatlo simulations where the ponderomotive poten­
tial W H S held constant, the following plasma parameters were again 
chosen: e/m « 8 « ( D « K * 1 and n/ie * 3v . The range of transverse 
wave amplitudes connidered was 0.1 $ |^n(0)| * Ju_(0)| 4 0.3 which 
Induced ponderomotive electric fields 0.01 < \\.\ & 0.09. The 
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transverse wave frequenrles were chosen arbitrarily, ti>Q - 5w and 

"l * <V 
Results typical of simulations exhibiting considerable trapping 

are displjjyed in Figs. 20, 21, 22, and 23. The electric field response, 
longitudinal phase space, and the longitudinal velocity distribution 
function are shown in Fig. 20 at w t = 431 and w t = 784. At the 
earlier time the results are is many ways similar to simulations in 
which the ponderomotive potential amplitude was fixed. There is a 
large amplitude response driven nearly in phase with the ponderomotive 
force (Fig. 20a); longitudinal phase space has a hole centered over 
the bottom.of the total potential well (Fig. 20b); and the distribution 
function has a distended, nonmaxwelllan tail for v > !J/K (Fig. 20c). 
At the later tine the electric field response and the ponderomotive 
force are both weaker than at the earlier time and not in phase. In 
addition, there is considerable harmonic structure induced. The total 
potential well being not so deep as before, the hole in phase space 
(related closely to the separatrix) is reduced. The distribution 
function is further perturbed by the scattering. 

In Figs. 21a and 21b are plotted the histories of the pondero­
motive potential and response amplitudes $_ and 4 and phases 6. 
bad 6. The response amplitude and phase oscillate on the time scale 
of the bouncing of the trapped electrons as in earlier simulations. 
The ponderomotive potential amplitude and phase also oscillate on this 
time scale due to the back-reaction of the trapping on the transverse 
waves as illustrated by Eqe. (88) and (89); however, the oscillations 
are of lesser degree than for the response. The phase of the response 
relative to the driver oscillates with a considerably larger excursion 
around zero than was observed in our earlier simulations (Fig. 18). 
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The general decrease of the amplitude of the ponderomotive 
potential is due to pump depletion of the higher frequency transverse 
wave, the general increase of the nonlinear frequency shift and 
dissipation (Figs. 22a and b) due \,o the continued deformation of the 
distribution function fairly steadily reduces the relative amplitude 
of the response. Beat heating enters the regime of induced 
scattering. ' Many particles can satisfy the condition ft » icv, 
and witfiin a trapping width v„ of v = (J/K the distribution function 
has finite slope (Fig. 20e). 

When the frequency shift and nonlinear dissipation become 
appreciable compared to the plasma frequency a, we.can no longer 
make expansions which require |ft - oî - + i{ d/dt) J /{tô rr! « 1; then 
Eq. (60) is no longer valid. Our construction of the nonlinear 
frequency shift and dissipation consequently fails when either of the 
following are appreciable compared to unity: |ft - (ft. + 6J2)|/u or 
|Y L * Sy - K d Jin $/dt)|Aje. 

Ir Fig. 23 the amplitude and phases of the three interacting 
waves u_, u,, and 8 are plotted as functions of time. The amplitude 
of the density perturbation n « ( K Ane)$ oscillates at the bounce 
frequency and diminishes due to the increasing dissipation and fre­
quency shift and due to the decrease of the ponderomotive potential. 
The wave energy in the higher frequency transverse wave depletes by 
approximately 90<. With a relative action transfer efficiency then 
of R * 0.9, the relative energy transfer to the plasma is given by 
Rfl/up * (0.9X0.2) = 0.18. On the trapped particle bounce time scale, 
the amplitudes |u.| and |u.| vary slightly in accordance with the 
sign of the dissipation (Fig. 22b) in Eq. (38). The slowly varying 
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wave phase 9 does not significantly vary over the duration of the 
simulation, but 8 Q varies and fluctuates much more since compara­
tively much less action is associated with it (see Eqs. (82) and (86)). 

The continued appreciable time dependence of the nonlinear 
phenomena, the extensive trapping and deformation of the distribution 
function, the relatively large nonlinear frequency shift and dissipation, 
and the transition of the scattering from resonant (8 = u and 
SI/K = 3v ) to nonresonant (induced scattering) are all features not 
anticipated in our discussion in Section II.C.5. Nevertheless the 
simulations seem to t« self-consistent using all qualitative and 
quantitative considerations still at our disposal. Energy and trans­
verse wave action are conserved to within a few percent, Eqs. (83) 
and (81). Various effects due to particle trapping are observed 
consistently in the longitudinal electric field response, the non­
linear frequency shift and dissipation, and the back-reaction of the 
nonlinear response on the action transfer and the beat heating. 
However, the phase-mixing and relaxation to a quasi-steady state, 
wherein the longitudinal and transverse waves acquire frequency 
shifts and no further changes in amplitudes occur, is not observed. 

The supposition that beat heating approaches a nonlinear 
equilibrium as described in Section 'II.C.5 is predicated on the 
assumption that the longitudinal plasma distribution function is 
only weakly perturbed by a weakly nonlinear plasma wave. To compare 
simulation with an analytic, perturbative, nonlinear theory, a 
longitudinal plasma wa"e would have to be excited much farther out on 
the tail of the distribution function SI/K i 4v , with sufficient linear 
mismatch to guarantee a weak plasma response. We have chosen here to 

'Y 
simulate the physically more interesting case where an electron plasma 
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wave is resonantly excited (il « u and 0/K » Jv ) , inducing a 
e ft 

lerge perturbation of the plasma, couslderable depletion of the higher 

frequency laser, and consequently significant momentum and energy 

transfer to the plasma. 

d. Removal of trapping effects by plasma inhomogeneity 

For the case of a nonuniform plasma, trapped p-Tticles can 

become untrapped in an electron plasma wave and finite dissipation 
95 96 recovered. ' The degree of Inhomogeneity is characterized by 

(J^/u^XdX/dx), where r= k" 1 and k(x) = [$22 - u e
2(x)] }/(3v e

2)*. 
9$ 

Asseo et al. consider a freely propagating wave. They show, In 
2 2 

the limit of a very strong inhomogeneity (SI /dig Xdtf/dx) > 1, that 

because of the effective acceleration in the wavj frame provided by 

the finite spatial density gradient and consequer* spatial dependence 

of the phase velocity, there are no trapped particles; and linear 

Landau damping is recovered. They make the same assumption on the 

weakness of the wave amplitude as do Ifaral- s and O'Heil, viz. 
V* « ve2-

2 2 For weak inhomogeneity, (fr/uu )(dX/dx) « 1, trapping occurs; 
however, the free but nearly resonant particles can exchange energy 

with the longitudinal wave at a finite, nonlinear rate proportional 

to the Landau damping or growth rate. .Asseo et al. derive a spatial 

damping coefficient ficfx), assuming that the number of trapped 

particles is constant over the distance the wave has traveled, 0 to 

x, and also assuming that |AkA| « U where Ak = / dx'(dk/dx'): 
Jo 
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(^/u^XdS/dxXYjAg) for |fikAl « n/uig , 

(90a) 
Wx) 

(n 2/u B
2) 2(d*/dx) 2(Y Lu Bi/v gv i) for |AkA| » n/Ug , 

(90b) 
o _ 

where v , the group velocity, is given by 3v /v., and v. = fVk(x) 
is the spatially dependent phase velocity. 

2 2 
The critical dimensionless parameter (ft /ug Xdff/dx) can 

be recast for purposes of comparison with typical parameters character­
izing beat heating. Assuming a linear density gradient, we define the 
point of exact frequency and wavenumber matching by 

k(x=0) - [vf - H^iO)]**'1 * [*f - uflO)]**"1 E K(0) . 

We obtain at the point x = 0 

(ft^u/XoX/dx) = ( v j ( |
2 / v T

2 X 6 K 2 X e
2 r 1 ( K L n r 1 , (91) 

where v T = Ug/K E (2e|5|/m)* ar.d L R s [d to n Q(x)/dx]^ 0 

Expressions equivalent to (91) can be written, recalling from Eq. (-48) 
the relatioii v_ /v, = Ug /o) = 2|n|/n0. 

We emphasize that in either the case of weak or strong 
plasma inhomogenelty there is finite dissipation within the scope of 
the theory of Asseo et al. Therefore action transfer and heating 
should persist. The relative action transfer R remains parametrized 
by k.L |u_/oI and the input ratio p of the electromagnetic wave 
intensities in Eq. (39). On the other hand, the plasma response and 
hence. V T > U B ' a n^ *'le n o n l i n e a r dissipation are determined 
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Belf-conslstently by the relation « e « $ */fe(fi - « W }], Eq. (63). 
This relation is parametrised by the ratio v./v through the non­
linear frequency shift and by the ponderomotive potential amplitude 
5_ = (m/eWu.. There are a sufficient number of independent 
parameters to allow, in principle, the achieving of efficient transfer 
of action and heating of inhomogeneous plasma in a regime where the 
beat wave i& resonantly excited to moderately large amplitude, while 
dissipation persists. 

D. Cascading 
We conclude our discussion of the heat heating of plasma by 

briefly reviewing research on the beat heating and induced cascading 
of a set of parallel propagating transverse waves all coupled by a 
single resonantly excited electron plasma wave. ' ' This heating 
scheme is another example of stimulated Raman scattering. The mode 
coupling relies on the sane physical mechanisms described in 
Section I.C. 

The cascade is initiated by two lasers propagating parallel to 
one another, for example, two C0_ lasers with wavelengths 9.6 um 
and 10.6 um. The cross-coupling of the two lasers to produce a i? x B̂  
ponderomotive force resonantly excites a longitudinal electron plasma 
wave. The density perturbation can then couple to the transverse 
oscillation velocity of either of the two lasers producing transverse 
currents. The transverse currents act as antennas to resonantly excite 
transverse waves shifted up and down in frequency and wavenumber from 
the incident laser frequencies and wavenumbers by the beat frequency 
and wavenumb--r. Tht coupling thus induces new transverse waves as 
well as amplifying or attenuating the pre-existing lasers. The induced 
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transrerse waves can then couple with the existing transverse waves to 

stimulate further transitions. Thus the stimulated scattering can lead 

to a transfer of the incident laser energy into the electron plasma 

wave and into transverse waves at lower and higher frequencies. 

We shall be more explicit in our description of cascading ar.d 

in addition provide a quantum mechanical picture. In this heating 

scheme the energy is supplied by the two lasers with frequencies 

(% and lo, . differing by approximately the plasma frequency: 

t! £ a - bL 1 ; u + A where the mismatch A is assumed small. The 

transverse waves couple via the Lorentz force ir * £ to excite a 

longitudinal wave with wavenumber 1L = kj_ - j^.1- F o r efficient 

coupling there must be nearly exact phase matching which implies fre­

quency and wavenumber resonance conditions. Fcr u « u,,u, , the 

beat wavenumber is relatively small, k = <«>e/c. Since the longi­

tudinal wave ir, a very long wavelength disturbance, "> A » c » v , 

there is no Landau damping. In practice collisional damping is too 

weak to effect efficient plasma heating. Nonlinear dissipation is 

presumed and verified a posteriori. 

The longitudinal wave in turn interacts with each of the two 

transverse waves (L,L-l) to induce nonlinear currents and produce two 

more waves at k. 2 » k ^ - k and k L + 1 = k ^ + k with frequencies 

<o,_- = in. - 2J2 and <A+-, ~ »h * ft- The new transverse waves interact 

to produce further scattering. The new frequency mismatches 
2 2 2 J 

A, = u, - (u + k, c ) are given by the difference of the frequen­
cies of the induced transverse waves <•>[>_ » <>v± rfl a n ,J their 

2 2 2 i corresponding normal mode frequencies giv.n by (u + k. c )* where 

kj. « k, ± n k . When k, and k, , are nearly parallel, the new 
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misnatcbes i, are also «mell coopered to the plaaaa frequency u . 
* e 

Otherwise the new mismatches become appreciable, and multiple scattering 
from the same plasaon is inhibited by progressively larger mismatches 

In Fig. 24 cascading is diagramed schematically. In quantum 
language, a coherent set of photons 1 undergo stimulated decay into 
photons L-i already present and plasoons. The plasoons stimulate 
further transitions upward and downward in frequency by converting 
photons L into 1*1 and so on, and by inducing the coherent cascade 
of photons L-l into L-2 and so on to lower frequency. The damping 
of the plasmons deposits energy irreversibly into the plasma. 
Because energy and also the nunfcer of photons are conserved in these 
interactions (Ifenley-Rowe), the process oust be preferentially down­
ward, to allow for the plasma beating. In quantum language the 
heating ie described as the irreversible absorption of plasoons by 
the plasm'.. 

The rate of photon conversion downward in frequency competes 
with upward spreading. Kaufman, Wctaon, and Cohen" have considered 
under what circumstances the downward cascade rate can be maximized as 
a function of the input ratio of laser intensities and Initial mis-
Batch. For sake of simplicity they assumed the plasma to be uniform 
and nonrelativistlc, v « o. Kaufman obtained an analytic solution 
describing the cascade of the transverse nodes In th« limit of a 
steady state. He solved the boundary value problem in which two 
laser beams with steady intensities are incident on a semi-infinite 
plasma. His solution, however, required the assumption that all the 
transverse waves suffered an equal mismatch, 4. * constant. The 
neglect of variable mismatch, i.e., the ignoring of the dispersion 
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of the electromagnetic waves, raqulrea that * « sag which limits the 
ttltlaata heating efficiency of the cascade because of the Muiley-Rowe 
relations. 

Cohan and Watson'* independently examined the Influence of 
variable miaaatch numerically. Coben aolved the coupled oode equations 
deacrlbing the ateadjr-state cascade as a boundary value problem. 
Watson lnvantigated the temporal davelopoent of the initial value 
problem In which all transverse wave amplitudes are considered to be 
uniform in spaea. For parameters corresponding to CO, lasers and 
a dense 6-plnch, ut/u, * 1°» the cascade was found to proceed In 
accordance with Kaufman's theory for the nodes separated in frequency 
by no taore than tJCl from the incident laser frequencies. Cascading 
to much lower frequencies was found to be sensitive to the initial 
choice of A. Watson determined that one could choose A in such a 
way as to cause A, to pasa through zero ixt lower frequencies 
u, < «, and monotonlcally Increase for the higher frequency modes 
optimizing the downward cascade rate. IHaa and Nlshlkawa^ studied 
the forward Raman scattering and cascading of a single electromagnetic 
wave In a very underdenae plasma u « u~. 

By analogy to the earlier derivation of the beat heating by 
two opposed transverse waves, Eqa.' (25)-(28), the equations describing 
the cascade of parallel propagating transverse waves in inhomogeneous 
plasma can be derived. For the transverse oscillation velocity one 
obtains instead of Eq.(26) 

u(x,t) - ]T u t(x,t) exp|-lutt •!! kjx' >dx'J + c.c. , (92 
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k,U) - [a^2 - «„2<x>)1 c"1, and y x ) - fo2 - u / t x j j V 1 -

[*>£_! - « e (*)] o • lh« density perturbation la giver similarly to 

tq. (27) by 

ta(x,t) « n(x,t) expi-int • 1J k (x'tac'i + c.c. . (93) 

Use of the ware equation,(25), gives tbe equation describing 
the coupling of the transverse eaves 

h - *vx) * •Ah**** * 
•^i/2X» -

2/i* i>{u t nH , ,/n 0) • u^ayh,,)] (94) 

•hers c t(x) 5 kt(x)c /w^, U ( | • u # (x « 0), and ^ « ng(x « 0). 
•e have Ignored the WKB variations In k,(x) compared to the spatial 
variation of the amplitudes. Frost arguments similar to those employed 
in deriving Eqs. (32) and (33) we obtain the equation describing the 
coupling of the density perturbation to the ponderoaotive potential 

[at • v - la(x) • 3(CT #
2/C L)a j !](n/n 0) - -i(k p

2/u e) £ v * L l » 
I 

(95) 
where tbe dissipation rate of the plasma wave Is given by v and 

5 2 2 2 0, Is the Boho-Qross frequency fl, = w (1 • 3 i X ). 
Equation (94) describes explicitly the coupling by the density 

perturbation of any particular transverse wave to both the higher and 
lower frequency adjacent transverse aodeo. Adjacent transverse modes 
In the cascade then beat together to drive the density oscillation in 
Eq.(95), thus supplying the necessary feedback for the stimulated 
scattering. Kaufman's analytic solution of Eqs. (94) and (9?) in the 
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steady-state limit (3. * 0) describes cascading in a uniform plasma 
assuming that variable mismatch can be ignored and that the dissipation 
and mismatch of the plasma wave dominate convection: 
|v - lAjl » |(3KV /R)3 |. Kaufman obtains a formula for the cascade 
rate from which the dependence of cascading on the input ratio of the 
laser intensities and on the plasma wave dissipation rate and mismatch 
Is explicit (Eq. (5) of Ref. 34). 

As compared to the case of opposed lasers the coupling to the 
longitudinal density perturbation (right side of Eq. (95)) is reduced 

2 2 2 2 
by the factor k / ( k , * V_i> = u

e /*°V, f o r u '*"*.• T h u s t h e 

Intensity threshold for effective forward scatter is likely to be auch 
higher than for backscatter. However, for backscatter there can be 
no further photon transitions, as the beat wavenumber 
— S £L " 4-1 " ̂ 4 0 0 u P l e s w i t n t n e lasers to give 
4 . 2 ' 4- i - £ s _ 3 4 "^ 4 + i ' 4 + aB ?4- S l n c e t c t h t h e s e 

wavenumbers violate the electromagnetic dispersion relation, large 
mismatches A, arise terminating both the cascade of energy to lower 
frequency and upward spreading as well. The implication is that 
further decay due to backscatter requires seeding by a third laser 
beam L-2 exciting a new longitudinal wave with wavenumber 
K' »• It. . - k, , / K. No energy need be lost on conversion to higher 
frequency transverse waves, since each transition requires seeding by 
its own laser beam. This heating mechanism was studied in detail in 
Ref. 59 and reviewed in Section 1I.C.1. 

We conclude this review of cascading by describing an innovative 
idea due to W. Kunkel. In Ref. 59 Kaufman and Cohen compare the laser 
Intensity threshold for effective cascading with that for significant 
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Raman backscatter, finding that In • uniform plasma backscatter has 
a lower threshold. The backscatter of the two laser beams that act as 
pumps would of course prohibit efficient cascading. As is reviewed in 
Section II.C.l, Kaufman and Cohen' further determine that beat heating 
of opposed lasers In a linear density gradient and Raman backseatter 
occur effectively in a finite length resonance zone proportional to 
(v/d) )L where the density scale length is defined by 
L = [din n_(x)/dxj . If the plasma is much larger than the resonance 
zone, the action transfer is independent of the dissipation mechanism, 
Eqa. (36) and (37). As is evident from the structure of Eqs. (94) 
and (95 \ the same arguments are basically true for cascading as well. 

Kunkel points out that In the limit of very large dissipation 
of the electron plasma wave concomitant with backscatter, the plasma may 
possibly not contain the entire resonance zone or the electron plasma wave 
may be nowhere close to resonance within the plasma. The reduction in 
action transfer or In attentuatlon of the laser beams due to stimulated 
backscattor can be exactly calculated from Eq. (36), an estimate of 
which appears in Eg.. (38). The reduction of backscatter when the 
electron plasma wave is strongly damped, e.g., when 2k.X > 0.4, 
effectively raises the threshold for appreciable Raman backscatter. 
However, since the beat wave in cascading is almost always weakly 
linearly damped kX s v /e « 1, the plasma might quite easily contain 
the entire resonance zone for cascading. Cascading could then occur 
at lower laser intensities than the intensity threshold for appreciable 
backscatter. The question of under what realistic experimental 
circumstances cascading can preferentially occur over Raman backscatter 
and effectively heat plasma remains open. 
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III. FILttSQJTATION AMD STMIIATfl) BRIIXOUIN SCATTERING 
This part of the thesis describes In detail parametric insta­

bilities Involving the Induced scattering of electromagnetic waves by 
lor frequency ion modes (<u,). The theory constructed In Section I.C 
Is sufficiently general to describe both collective phenomena, e.g., 
stimulated Raman and Brlllouln scattering and modulations! instabili­
ties, and induced Thomson scattering from electrons and ions. We shall 
limit our discussion here to only the scattering from collective ion 
modes: Erlllouin and filamentatlon instabilities. 

We shall describe Brillouln scattering and filaoentation from 
a unified point of view. The distinction between Brillouln strong 
coupling and filamentation is examined. We construct in detail the 
dispersion relations for filamentation and Brillouln. We also consider 
the absolute instability of Brillouln strong coupling, demonstrating 
that the asymptotic Green's function for Brilloufn instability is 
described by analytic weak coupling theory derived for all pump inten­
sities within the Brlllouin regime. We further show that very strong 

pvp waves can Induce growth of the scattered transverse wave at 
it x 

{B) Q + O.-tj + jc) comparable to that st (G^J - Q ,!_ - £ ). We shall 
no aa 

not discuss the nonlinear saturation of Brillouln or filamentation. 

A. Introduction to the Coupling of 
Transverse Waves to Ion Modes 

An ion acoustic wave can be weakly coupled to transverse 
waves by means of the pondero:notive force, corresponding to Brillouin 
weak coupling. The frequency of the ion acoustic wave is given by 
Q * K C S + 6 where c = (T /Bj) and 6 Is a small ( « K C S ) 
complex-valued frequency shift dependent on the pump wave amplitude. 
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For a more Intense puap wave the ponderomotlve force and consequently 
the coupling to the density perturbation increase. In the limit that 
the oscillation frequency of the density perturbation is significantly 
perturbed by the pump, the scattering is defined as Brillouln strong 
coupling. 

Brillouin strong coupling is an example of the stimulated 
scattering of the pump wave Into a transverse wave shifted to lower 
frequency ou - fl with wavenumber k« - ic . Bo*,h the scattered 
transverse wave and the concomitant driven ion mode, or "quasi-mode", 
grow exponentially in the linear regime of the parametric instability. 
When the pump wave scatters off a driven ion mode into transverse 
waves shifted in wavenumber up and down by the wavenumber of the density 
perturbation, t, + jt and k- - je , with resulting exponential growth 
of the scattered transverse waves and the density perturbation, the 
Instability is described as filamentation. The density perturbation 
excited by the scattering is typically a purely growing mode not 
otherwise present. We consider this, as another example of the stimu­
lated scattering of light by a quasi-mode. 

B. General Formulation of Brillouin and Filamentation 
In Section I.C we derived a very general dispersion relation 

(18) which Implicitly includes Brillouin and filamentation. Equation 
(18) requires the evaluation of r(8,£) = \xAl * Xi)/eJo K

 f o r complex 
beat frequencies ft and beat wavenumbers K. In Appendix 1 we 
show that for Maxwelllan velocity distribution functions the electron 

2 2 and ion susceptibilities are given by Xe(8»jc) = 1/rl and 
2 2 Xj(n,£) " -w. /ft where A = v / w . We have assumed that 
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Vj < < l n /<l ** v . and that linear Landau damping and coll isions are 

negligible. Then for r((J,jc) we obtain 

r(fl,ic) = (fl 2 - u ^ J / f s f t l * J \ e

2 ) - K 2 C S

2 ] . 

If we substitute this form of r Into Eq. (18) and multiply by 

[ n ^ l + K % 2 ) - K 2 C S

2 ) , Eq. (18) becomes 

[n2(i • <\2) - <y]f(a 2 - <2c2)2 - t(H - K.k/) 2] 

• d / 2 ^ 2 K 2 V 0
2 ( K 2 C 2 - n 2 ) - 0 . (96) 

Equation (96) describes both x'llamentation and Brillouln 

scattering. Analytic solution of (96) for various special cases and 

numerical solution of the general dispersion relation will be presented. 

If we define cos 6 S H-fL, then Eq.(°6) can be rewritten as 

[n2(l + < \ 2 ) - K 2e a
2][(0 2 - K 2 C 2 ) 2 - 4(ft»0 - Kk 0 cos 8 c 2) 2] 

• ( I / Z ^ V V ^ K V - ii2) = 0 . (97) 

We note that in Eq. (97) changing both the signs of cos 6 and S, 

viz. fi * -fl and cos 8 + -cos C - cos(ir - 8), leaves Eq. (97) 

invariant. We shall therefore solve Eqs. (96) and (97) for 

0 < 8 < ir/2 realizing that fl()c,ir-B) = -J2(K,8). 

C. Filamentation Dispersion Relation 

We first eonsidar Eq. (96) in the special case wLare it 

describes filamentation. In the limit that \K\ | « 1 and 

|fl| « |KC|, Eq. (96) can be somewhat simplified to give 
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(O2 -&*)[&- K.^)2 - KWHUQ2} - ^(rQ/c)2^/^ > 0 

(98) 
2 

where v S k«c /UQ la the group velocity of the pump wave. Drake 
12 et al. derive the sane dispersion relation. Since this equation is 

qucrtic In (2 and sixth order In K, we oust further simplify the dis­
persion relation to make analytic progress. 

For the formation of fllaoents whose dimension (see Fig. ') 
transverse to the pump propagation direction fu is quite small 
coopered to its characteristic length of variation in the x direction 
parallel to £_, \<-/<z\ « 1» •• obtain Jl * jĉ v + 1Y = K v • iy. 
The temporal growth rate y then satisfies the equation 

( y 2 * *«V x , e«* e* * * A ) 2 ) - " iV 'o 2 ' 2 = ° • ( 9 9 ) 

The expressions ft » K v + iv and Eq. (99) are equivalent to Eq. 
(98) to lowest order In ! K_/ K-I a"1* I I C_ V

C/YI> both of which are 
assumed small. This biquadratic dispersion relation has beer obtained 

12 Ti 
also by Drake et al. and lAngdon and Lasinski. The biquadratic 
is readily solved giving 

V * *(Y0

2 - « a

2 c e

2 ) J [ l * ( c s / c ) 2 ( 2 o b / V ) 2 ] - i (100) 

2 £ 2 
where -t = (1/2) u, (v_/c) . The following l imit ing forms aie 
obteined from Eq. (100): for |K c/2uuj « c a / c , 

y » ± Y 0 ( K 2 = / 2 U O K O / O S ) ; and. for I K ^ A O Q I » c g / c , 

2 ^ 2 i 
Y s ± ( Y 0 ~ Kz"" es ' • F o r K ' °' ft = i y w i l l c n i s schematically 
diagrammed as a function of K i n Fig. 25. 
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Further discussion of filamentatlon Is relegated to the 

eiistl'g literature and to a for -heating paper, by C. Mai an'' this 
author, wherein the Green's function describing the linear, convective 

12 growth of filamentation is constructed. Drake et al. and Manheimer 
39 n 

and Ott consider the temporal problem, whereas Kaw et al. investi­
gate spatial growth of filamentation. Hie extensive literature due 
to researchers in the nonlinear optics field is in general more 
directed at the nonlinear structure of steady-state or quasi-steady 
state filamentation or self-focusing. *' " 

D. Brillouin Scattering 
1. Introduction to Brillouir. Weak and Strong Coupling 

We present a detailed examination of Brillouin weak and strong 
coupling. Assuming that the scattered wave a_ suffers a much smaller 
mismatch from its ltaear dispersion relation than the a + scattered 
wave, i.e., |D_/D+| « 1, the Brillouin dispersion relation can be 
immediately obtained from Eq. (19). We evaluate the linear suscepti­
bilities in the limit v± « |J2/K| « v g. If we further assume that 
K X , |J2|/ID0 « 1 then Eq.. (19) becomes a dispersion relation 
describing stimulated Brillouin scatteriv^: 

lyn.K) 2 (a2 - K2cs
2)[n + C 2(K 2 - 7.<^yz^ 

* K2vQ\2/6u0 = 0 . (101) 

To Justify the sssumption that |D_| « |D+|, we require that 
\YT .^•kf)| « |K + 2K-TLA. We continue to assume that the plasma 
is underdense, a < u~. The dispersion relation Eq. (101) was also 

37 obtained by Bodner and Eddleman using a fluid equations approach. 
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„ 2 In the absence of the electromagnetic pump, v, = 0, there 

are only free oscillations: ion acoustic waves fi = ±<c and freely 
propagating electromagnetic waves D_(fl,£) = 0 . In the presence of the 
pump, the two waves are coupled. The dispersion relation of each wave is 
altered by the scattering of the radiation by the density perturba­
tion and the accompanying ponderomotive force driving the low frequency 
density perturbation. In the absence of dissipation, an infinitesimal 
pump gives rise to a growing ion acoustic oscillation and scattered 
electromagnetic wave, i.e., Im fl « Re ft = ice for real K. This 
constitutes Brillouin weak coupling. 

For stronger pump-wave amplitudes the growth rate of the 
instability and modifications to the uscillation frequency increase. 
The ponderomotive force becomes comparable to the normal fluid restoring 
force of an ion acoustic wave. In the strong coupling limit the 
ponderomotive force is dominant: the oscillation frequency is signifi­
cantly modified. For |(i| » |KCJ we obtain Or = -K'V_ uij /Sou 
from Eq. (101). This is similar tovfilamentation in that the density 
perturbation is a driven mode, or quasi-mode, whose pump-dependent 
dispersion relation differs dramatically from a plasma normal mode. 

2. Generalization of Brillouin Analysis to Three Dimensions 
Before proceeding with a retailed, quantitative discussion of 

two dimensional Brillouin, some comments ai the generalization of our 
theoretical description to include scattering in three dimensions are 
appropriate. If the scattered radiation propagates in a direction 
having a component parallel to the pump-wave polarization, then trans­
verse canonical momentum is no longer conserved; our formalism then 

12 breaks down. To describe three dimensional Brillouin, Drake et al., 
11 37 

Itosenbluth et al., and Bodner and Eddelman consider Maxwell's 
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equations and fluid equations. They all employ the simple fluid 
model for the nonlinear current Eq. (14), however, allowing the polari­
zation of the scattered radiation to make an arbitrary angle i> with 
the polarization of the incident electromagnetic wave. 

In calculating the ponderomotive potential driving the low 
frequency longitudinal oscillation, the generalization of Eq. (8), one 
factor of cos I|I enters due to the v_ x B Lorents force of the pump 
and scattered waves. For the component of the total current in the 
direction parallel to the polarization of the scattered radiation 
driring the nonlinear wave equation, a second factor of cos iji occurs 
due to the inner product of the pump quiver velocity with ."ie 
scattered wave polarization direction. 

The result then of including the angle of relative polarization 
is to alter the Brillouin dispersion relation by the replacement of 
2 2 2 

v_ with v Q cos $ in Eq. (101). By requiring the pump and the 
scattered radiation to be polarized perpendicular to the plane defined 
by their propagation directions, the coupling term in Eq. (1C1) is - 2 2 ~ 2 maximized v Q cos ifi •* v. . For scattering angles such that ifi / 0 

~ 2 2 the effective pump strength v. cos I|I is reduced. 

3. Brillouin Dispersion Relations 
We consider first the weak coupling limit of Eq. (101) and 

define the following variables: cos 9 = K.IL; r„ = V Q A U ; the group 
velocity v l CTC-VOL; and A = KG + (K - 2K.k-)c /2u , the fre-
quency mismatch of the scattered electromagnetic wave. (The frequency 
mismatch is obtained from the electromagnetic dispersion relation: 
A » (2O)Q) _ D_. with a = KC g « (AQ. If we define 6ut s SI - Kcg and 
assume \6ui/fl\ « 1, then from Eq. (101) we obtain 
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(1/2)D B(H,K) s « u 2 ( K c a • A/2) • «o)Kc aA + K 2 ^ 2 < ^ ( r 0 / U e ) 2 . 

(102) 
The solution of Eq. (102) is given by 

6(1)(iccs + A/2) = -KC 8A/2 ± [(Kc 8i/2) 2 - " W C r , / 4 * / 0 " ^ + A/2)] 4. 

(103) 
The growth rate, Im fiw, is a maximum, with respect to wavenumber 
(taken here to be real) for fixed angle, at A = 0. This determines 
the wavenumber K = 2k.(cos 6 - c /v_), for which A = 0, and thus 
corresponds to exact wavenumber and frequency matching for the inter­
action of the three normal modes. From Eq. (103) the maximum growth 
rate is given by 

Im ft = [2k 0c su 0(cos 6 - o s/Vg)]* ( V 4 V ( 1 0 4 ) 

in agreement with Eefs. 11, 12, 36, and 37. 
Figure 26 schematically displays the dispersion relation 

IL(fl,0 = 0 in the weak coupling regime, plotting the normalized 
frequency n/2kQc as a function of K/2k_ for fixed angle 9 and 
pump strength. The width of the unstable K region is found from 
Eq. (103) to be 2k 0(c s/v g)(r 0/4A e)[(u) 0A 0o e)/(cos 8 - ^ A g 5 ] * ' for 
( r Q A x e ) (<^A 0c s) « [cos e - °s/vg|- I n ihe unstable K region 
there are complex conjugate solutions for 6u. Both solutions 

correspond to the three waves being effectively phase-locked at a 

relative phase TT/2 or 3H/2 I in Eo. (3). One value of the relative 

phase leaas to instability and the other to decay. In the stable K 

region, |A| » 2uJvQM\ ) , the three-wave coupling induces a 

frequency shift which again, depending on the relative phasing of the 
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three waves, can be either positive or negative. This accounts for the 

splitting of the oscillation frequency whose dependence on pimp-wave 

intensity, wavenumber, and scattering angle is given by Eq. (103). 

To consider the strong coupling limit of Eq. (101) we do not 

make the assumption that the density perturbation i~ a «eakly growing 

ion acoustic wave. Equation (101) is a cubic equation in SI: 

DB(n,K,cos e) = n 3 + a 2 ( * 2 - 2*k0cos e k 2 ^ - n*: 2c s
2 

- [ K 2 ^ 2 ^ 2 - 4 K 2 C S
2 ( K 2 - 2iek0cos 8)e2]/&u0 = 0 . (105) 

The solution for the roots of a cubic equation is standard. Results 

for si as a function of K for fixed cos 8 and pump strength 

in the strong coupling regime are shown in Fig. 27a. For fixed e the 

region of < around 2k-cos 6 is restricted in order that we main­

tain the condition |D_/D+| « 1, which is required In the derivation 

of the Brillouln dispersion relation Eq. (101). 

when the ponderomotive force very much dominates the restoring 

force associated with a free ion acoustic oscillation (in terms of 

characteristic frequencies (in,*- *0 /' 2 < 0o' > > ^s) t h e f 0 1 1 0"* 1^ 

simplification results. We set k-c /u •+ 0 in Eq. (105) to obtain 

D B(!.,KVCOS 6) = Si3 * S32(ic2 - 2KkQcos 6)c2/2&>0 + K 2 ^ 2 ! ^ 2 / ^ = 0. 

(106) 

The complex frequency of the density perturbation Is then completely 

determined by the scattering of the radiation and the degree of mis­

match of the scattered wave from a normal mode, represented by the 
2 term involving K - 2ick0eos 9. 
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For ic and cos 8 such that |D_| « |D +|, growth is 

2 
maximized by x * 2KkQeoa 6 - 0 giving the standard result for strong 
coupling 1 1' 1 2' 3 7 

fl - [(1/2) + 1(VT/2)J (cos Hf/^W2^)1'3 . (107) 

For | cos 81 • |K -*OI < < 1» the Brillouin analysis breaks down, and 
Eq. (96) must be solved. We note that the largest growth rates for 
weak and strong coupling Brillouin occur for exact backscatter, 
ic/2kQ = cos 9 = 1. Figure 27a shows a plot of the normalized fre­
quency ft/Uf., using Eq. (106), as a function of the normalized real 
wavenumbers K/?*Q for various fixed values of cos 6 and fixed 
parameters (ta^lt^v^/u^^ = 0.04 and k QX e = 0.02. 

Wc emphasize that Eqs (101) and (106) give a general descrip­
tion of Brillouin weak and strong coupling. The two regimes of 
scattering are distinguished by (r»/X )*'{<i>0/2k0e ) compared to unity. 
This is obtained by taking the ratio of the strong coupling frequency 
In Eq. (107) to 2k Qc , and then cubing the result, ignoring numerical 
factors of ordsr unity and the dependence on cos 9. Strong coupling 

2 
corresponds to (r 0/X e) (u 0/2k 0e ) i 1; weak coupling occurs for 2 (rQ/X ) (u>0/2kQe ) « 1. However, to correctly extract weak coupling, 
one must carefully Insure frequency and wavenunber matching, i.e., 
A a 0. 

Brillouin strong coupling can exhibit a regime of nearly 
nonoscillatory growth whose parameter dependence closely resembles 

2 2 2 2 
the growth rate of filaoentation in the limit v . /c » ic A . For 

2 2 
< 2 2kg cos 6 and (^/(DQ, (K - 2KKQC08 6)/2kQ » tl/u^ » <aa/uQ, 

2 0 2 
Eq. (105) becomes Dg(ft,K,co8 9) a JJ (K~ » 2KkgCos 9)c /Sijg 2— 2 2 • K v Q u>, /86>0 « 0. Wo oust, however, continue to maintain the 
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lntquality |0_ | « | D + | , which requires K2 - Sick-cos 6 a o, to 

Justify the neglect of a + cospared to a_ and Identifies the 

Instability as Brillouin. Solution of the quadratic dispersion re la t ion 

la readily obtained, U • ±i[ic/(ic - 2k.cos 8)1* <i>,k0v0/u>0. When the 

right s ide of the preceding expression becomes comparable to 

(cos 8 Uj JSQ V Q / 2 I * 0 ) I the (r term in Dgffl.ic/Cos 8) must be 

retained.. 

Except for the geometrical coefficient YK/(K - 2kQcos 8)]*, 
the growth rate for nearly purely growing Brillouin strong coupling 
is identical in its parameter dependence to that for filamentation 
in the limit v-/e » icA , utvA 0 a c, KC/2UU » c /c, and 
| cos 61 < 1, viz. from Eq. (100) Q s ±iv 0 = ii^Vg/VT c. Although 
strong coupling and filamentation have similar growth rates and both 
are characterized by the coupling of t.ansverse normal modes to i 
strongly driven longitudinal mode, they differ radically in that for 
strong coupling the growth of the a_ sideband is dominant and is a 
maximum fo; K « 2kQcos 9. For fiieraentation the two sidebands 
a_,a+ have comparable amplitudes; and for the regime of filamentation 
of interest here, we have the condition |cos 9| « 1. 

As the a_ sideband acquires a larger mismatch D_, Brillouin 
strong coupling exhibits a smooth transition into modulational 
Instability. The transition is complete for |D_/D+| = l9Tl). In 
Figure 77b, the numerical solution of Eq. (96) ia exhibited plotting 
fl/uQ vs K/2k0 for various values of 8. For K = 2k0cos 8 there is 
good agreement with the Brillouin strong coupling solutions shown in 
Fig. 27a. For K » 2kQcos 8, filamentation occurs with growth rate 
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fl = 1 Y 0 corresponding to the limit of 2u e / e 2 « K « (X T H Q / C 
in Eq. (100) and Fig. 25. 

We would like to include the influence of the concomitant 
growth of the a + sideband on Brillouln in such a way as to permit 
further analysis without resorting to the numerical solution of the 
complete dispersion relation (96) displayed in Fig. 27b. We can 
rewrite Eqs. (17) without approximation 

D_ - K \ 2 T / A - (ic2v0
2r/4)2/(Dt - *H*VM = 0 . (108) 

Then defining S(n,K_) = D_(fJ,K_)/D+(8,K) whsre (a,<) satisfy the 
Brillouln dispersion relation Eq. (19), D_ - K^V^TT/4 « 0, the first 
correction ti the Brillouln dispersion relation due to finite & is 
included as follows: 

D_ - *%%[! * «/(l - « )]/4 - 0. (109) 

If the solution (Oj*,) of Eq. (105) 1" iterated back into 6, then 
Eq. (109) constitutes a recursive dispersion relation equivalent to 
the branches of Eq. (13) which correspond to Brillouin. 

The dimensionless quantity 6 thus characterizes the condi­
tion for the existence of the Brillouln instability and the validity 
sad accuracy of its dispersion relation. The mismatch D_ relative 
to D + can increase for a variety of reasons: D_ can cease to be 
nearly zero because of its dependence on K and 6, and because of 
its dependence on pump strength through fl. As |6| approaches order 
unity filamentation smoothly supercedes Brillouln strong coupling. 

By way of an illustration of Brillouln backscatterlng, a 
numerical simulation was performed. The electromagnetic code dis­
cussed in Section II.B was employed to study Brillouin scattering in 
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cne dimension. A linearly polarized monochromatic wave, 

uu • 1.414 u , Impinged upon an unmagnetized, finite, warm plasma 

alab. Electrons were warm (I/si « 0.01) and singly charged ions 

cold. Tiere were a modest number of particles, .2000 of each species 

with m,/m x 25. In terms of the parameters used in Eqs. (105) 

and (106), the dimenslonless pump strength was chosen to be 

[(o) 1/i^ )) 2(k 0
2r 0

2)/2] 1 / 3 = 1.26 x 10~ 2 anc". the dimenslonless sound 

speed k_c /u>Q * 1.4W * 10 . This corresponds to a regime marginally 

between weak and strong coupling. 

Because of the discrete Fourier spectrum of wavenumbers in 

the simulation, only one backscatter mode was excited from noise, 

K m 2kQ. Figures 28 and 29 show the growth of a large amplitude 

density perturbation in electron and ion phase spaces. From the i m 

phase space plots a phase velocity nearly equal to the ion sound 

speed was observed, Re 0/K * c • 0.02c. An accurate measurement of 

a growth rate was somewhat hopeless because of the very weak growth 

rate, the early onset of nonlinear features (ion wave breaking) the 

reflection of particles and waves In our rather short system, and the 

relatively large noise levels present in the simulation (see Fig. 30). 

A detailed simulation study of Brlllouin instability has been made by 
38 Forfllund et al. In which linear growth rates are care'-'lly measured 

and the Importance of competing nonlinear features are assessed. 

4. Absolute Instability of Brlllouln 

We next consider the asymptotic Green's function analysis for 

Brlllouln. We follow the procedure of Bera and Briggs to ascertain 
99 100 the existence of absolute linear instability ' as applied to 

36 Brlllouln weak and strong coupling and extend the work of Jorna"^ 
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and Chambers, Bers, and Watson. , l u A S-function perturbation In 
space and time is assuced for the space-time dependence of the source in 
the Laplace-transformed Initial-value problem for the linearly 
unstable coupled modes a_ and <5n_. For the source term we follow 

102 Oberman and Auer, allowing discrete particles in a collisionless 
plasraa to produce longitudinal noise. We then construct the Green's 
functions fcr the scattered electromagnetic wave and for the electron 
and ion density perturbations, and analyze the Green's functions 
asymptotically. 

The noise enters the charge density as follows. Foisson's 
equation is 

-V2~<d(x,t) = 4ir £ e 8«n s(£>t) " ( r L 0 ) 

8 

Ihe charge density of species a, 6n (x,t), includes the charge 
density due to noise and the perturbed charge density induced by the 
longitudinal electric field and the longitudinal component of the 

102 ponderomotive force. From Oberman and Auer, the Fourier and 
Laplace-transformed charge densities are given by 

«n 8(n,K) • - j y e ^ O , * ) / ^ • §n
a(«,ic) (111) 

where x. " X_(M>£) is the linear susceptibility and S B(jc,t) 
is the longitudinal charge density due to noise, whose Laplace-
transforms in time and Fourier transforms in two spatial dimensions 
are given by 

§ n
a(n,«) 5 I d t ' l d V exp(iJlt - 1K-X') Sn

s(t'.,x') . 
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Substitution of Eq. (ill) for dn Into the Fourier and 
Laplace-transformed Eq. (110) and use of e(fl,£) s 1 • £ •XJ.!1,K), 

*8 - * • t 0

S , and 1^1 « 0 o
e | yield 

e(n,K) •'(R.K) » [i + Xi(n>«)] + 0
e(n.<) 

• 4mc" 2e[s n
e(n, J 1) - S^n,*)] . (112) 

In Eq. (112) we solve for $? and substitute the result into Eq. (ill) 
to obtain 

«*e " -"V 1 + Xi> e^'Aie + (1 • X^'V + v " V ' ( l l 3 ) 

where the frequency and wavenunber dependence (lj,<) in the suscepti­
bilities and the transformed amplitudes is implicit. 

Substituting the electron charge density Into the fluid model 
for the nonlinear transverse current J = evjiig + 6ne(x,t)J , 
Eq. (lOand Fourier and Laplace-transforming give 

J (<is0 - 0 .ICQ - jc') « -enQca_ - eca Q 6ne(u,j<) 

- •ca06n*(2(o0 - fl*,^ - K ) , 

where (mec /«)a_ * (mec /e) *(u Q - Q .JCQ - K) and 
2 2 — 

(o c /«)«n * (m #c /e) »((!)_,]£.) are the Fourier and Laplace-transformed 
amplitudes of the perturbed and pump-wave vector potentials, respec­
tively. The term -ecgjSn (2u. - 20 ,2k. - 2jc ) la higher order In a. and S_ 8 and has been ignored. For Re(2un -(f) » w_, o n u ' e 
the longitudinal noise s"(2inQ - ft ) does not incur the increased 
plasma shielding that low frequency noise S 8(ft) can, and therefore 
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ite contribution la ignored. The electron charge density Induced 
by the ponderomotive potential with phase dependence (2u Q - « , 
atg - £ ) is proportional to 12kg - £ I 2 Xjil * X ^ e - 1 and is 
likewise small compared to the low frequency Induced charge density: 
|xe/e| ~ u e

2/<i) 0
2 « 1 and for backscatter 12kg - £* I 2 « \ K \ 2 . 

Use ponderomotive potential given by Eq. (9) can be Fourier 
and Laplace-transformed to give 

$ 0
e(n,K) - (m ec 2/e)S 0a* . 

Substitution of the above expression into Eq. ( 1 U ) determines 
— — —# — s 
6n (ft,jc) as a function of a Qa 1 and S . We then substitute for 
the charge density in Eq. (114) to express the nonlinear current 
likewise as a function of a., a., and S . We Fourier and Laplace-
transform the electromagnetic wave equation, Eq. (13), to close the 

2 2 2 set of equations. Recalling the definitions D_ = K c - 2kQ-£c -
Jl2 + 2ti^ and r(SJ,£) = Xe'n'i)[l + Xi(n,ic)j/e(0,jc), the transformed 
wave equation Including the effects due to longitudinal noise is 

[D_ - <2c2|a0|2r(fl,jc)]a* -

- w e V 1 ( n , K ) a* /[i + X i(n.<)] § n
e ( n ' * ) / n o * x6(n<£) §

n
i ( n ' £ ) / n o / • 

(115) 

For |icAf| « 1, Vj « |J2/K| « v e , and \f?/ia^\ « 1, the 
2 2 2 2 

linear susceptibilities are v s 1/K A and x« " -*(, /B • Then the 

dielectric response r(f!,jc) can be expressed as 

I!(n,K) : -u^AJl2 - K 2o e

2) . 
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Equation (11$) becomes 

[(fl2 - A 8

2 ) D_ + *?C\2lZ0\*y_ = a^(B,jcJa* -

where D„(Q,K) is defined in Eq. (101). The dispersion relation for 
Brillouin scattering Is determined by DR(£2,>c) = 0. 

We can now exhibit equations for a , fin , and fin.. From 
Eq. (116) we find that 

a (a-0 - £2 ,k Q - £ ) = a_ = 

^ [ ^ V 0 ^ 5 ] " 1 ^ ! 0 2 ^ 0 ' - ^ " K 2 °s 2 § n e ( n '^ / n o] ( 1 1 7 a ) 

and from Eq. (113) 

o5e(n,<) - K 2 c\ 2 (n 2 - ^ V r 1 (a^Gi.K)]- 1 

x ^^[^(n . ic j /ho - K2c s

2sn

e(n,K)/nJ 

- K 2 c 8
2 ( n 2 - Jefr1 Sn

e(fl,£)/n0 . (117b) 

Use of Eqs. (110) and (ill) with <j>. = 0 gives an expression for 
6n.(n,£) of form similar to Eq. (117b). 

To construct the Green's functions for the scattered electro­
magnetic wave a_(x,t) and for the perturbed electron charge density 
6n e(x,t), we multiply Eq. (117a) by exp[i(w0 - O H - K k g - <.)-x] 
and Eq. (117b) by exp(-iBt + iiox) and perform the inverse Laplace 
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and Fourier transforms. We consider the Creen's functions with sources 
due to ion or electron noise separately, asserting that the ion noise 
and electron noise due tc discreteness are independent. We replace 
5n„(x,t) by a Dirac S-function in srace and time whose Fourier and 
Laplare transform is unity. The Green's functions G_ S(x»t) for 
& (x,t), due to initiation by longitudinal electron or ion noise 
respectively, arc 

G„ e (x,t) 

G / ( x , t ) 

= (2u)- 3 [ do f A ^hh'x 

expjiU^ -tdt - Ukg - K)-X] 

f - K 2 C 2 

s 

n 2 , 
(113) 

where C. is the Laplace or Bromwieh contour and C , before deforma­
tion, is the real K ,-K plane. The corresponding Green's functions 
for the electron and ion density perturbations can be similarly 
constructed. 

The Green's functions for a_(x,t), Bj. (118), and also for 
the density perturbations can be written as follows, where we have 
performed the 8-integration by depressing the C„ contour down as far 
as possible and deforming the contour around the highest poles of the 
integrand: 

Ga

s(£,t) --i L^r2Jc * 2iaVft,A)% 

x exp[i(w 0 - n K . , ) t - i ( k Q - K,)-X_] + c-c. (119) 



-114-

I (SI ,,<) absorbs all the constant coefficients and the remaining 
ft KfJ — 

il and < dependence of the integrand, the superscripts s denote 

the species of the noise source, fl, , is determined by D„(SI,K) = 0, 

and t-, denotes the sum over the various branches of the dispersion 

relation D_(ft,K) = 0. We take only the roots for which Be S , > 0, 

since we add the complex conjugate on tne right side of Eq. (119). 

In calculating the Green's functions for 6n (:c,t), there are additional 

poles of the integrand due to terms appearing in the denominator like 

SI - K^C , for example. Since for these poles Im Si = Im(±<c ) = 0, 

jhey do not lead to Instability; however, they remind us of the 

presence of the low frequency normal modes that can also be initiated 

hy longitudinal noise, i.e., ion acoustic waves. 

In performing the remaining jc-integration in Eq. (119), the 

Cjf contour can be deformed as long as the zeroes K„ of D_(S2,jc) = 0 

remain on their r .jtive sides of the contours C in the complex 

K^- and <z-planes. Since fit will lead to a rapid phase variation 

exp(-J, Re Si t) and perhaps to an exponential growth exp(Im Si t), 

the dominant contribution to the integral in the complex K-space will 

arise from the saddle or stationary phase points described by 
3 ! V 3 £ = °* Provided that 3DB(n,jc)/3nL y 0, the saddle point 

condition is equivalent to the simultaneous conditions D-(fi,Jc) = 0 

and 8D_(fi,K)/3K = 0. This corresponds to two roots of the dispersion 

relation pinching together. 

If the pinching roots come from opposite sides of the C 

contours, then no further contour deformations can be performed at 

the pinch point. The C„ contour can be depressed elsewhere in the 

complex fl-plane but C is trapped at K by causality requirements 
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between the pinching roots <Q " *_• If Im Sl̂  > 0 . at the 
pinch point, then the Instability grows in time everywhere in space 

100 (absolute instability ) with asymptotic Green's functions: 

6 a
B(x,t) -

\ <v v * , t } ex*[«% - y* -«*> - soH 
B - iy*p 

and similarly 

where !J and K are the pinch-point frequency and wavenumber with 
largest positive Im 0 . The functions I s and I incorporate 
the different frequency- and wavenumber-dependent factors remaining 
in polynomial form in the numerators and denominators of the respective 
Green's functions' integrands. They also Include the dependence on 
SL, K, x, and t, as the result of the saddle-point integration: 

jd\< expf-iSJ": k'k't + ik'.jc] 

where Q" 5 32£2/3k3kL 

To analyze the nature of the absolute instability of stimulated 
Brillouin scattering in all regimes of pump strength, the pinch 
conditions can be directly applied to Eq. (101) or (105). The pinch 
conditions become 
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DgCfl.K.coa 9) " 0 (120a) 

3E^(fi,ic,cos 8)/3tc = 0 (120b) 

- K " 1 s in 9 3DB(fl,ic,cos 8)/3 cos 9 = 0 . (120c) 

Equation (120c) gives 2K sin 8(K C - ft) = 0, which has non-

trivial solutions for 8 = 0,ir and K j 0. The other solutions to 

Eq. (112c), ft = *KC_» merely describe free ion acoustic oscillations 

and are inconsistent with Eq. (120a). The 9 = 0 solution corresponds 

to Brillouin backscatter. Setting cos 9 = 1 reduces Eqs. (120a) 

and (120b) to a one dimensional description. 

The asymptotic behavior for modes where 8 ^ 0 is constructed 

from the simultaneous solution of Eqs. (120a) and (120b) as functions 

of ft and K and »ith fixed parameter cos 9. These modes can grow 

in time as well. However, as they do not represent simultaneous 

solution of the entire set of Eqs. (120), these modes will have weaker 

growth rates; i.e., their growth rates have not been maximized with 

respect to scattering angle 8. This is corroborated by Eqs. (104) 

and (107) which show that the growth rates of Brillouin weak and 

strong coupling are maximized for exact baekscatter, 8 = 0 . 

The piuch-polnt solutions for complex ft describe the temporal 

growth, if Im ft > 0, and oscillation, if E-< S3 ̂  0, of the low 

frequency density perturbation. The scattered electromagnetic wave 

has shifted complex frequency to— — £1- . A finite imaginary part of K 

will produce a spatial growth or attenuation of the amplitudes of the 

density perturbation and the scattered electromagnetic wave: in fact, 

both grow in space in tne direction of the backseatter. 
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To explicit ly determine the pinch-point frequencies and wave-

numbers for Brlllouln, Eq. (10?) Is substituted into Eqs. (120a) 

and (120b) with cos 8 « 1. We then solve numerically. Since the 

ratio [(wj/Wg^CkQrp^l^AkQCg/Wg) determines the distinction 

between the weak and strong coupling regimes of the Brillouln disper­

sion relation, we set k 0c s/o> 0 • 0.01 for convenience and vary 

P = |(w,/ i iu)~(k 0 r 0 ) /2T' as a free parameter. Figure 30 shows a 
2 2 

plot of Re n/u 0 and Im U/aQ vs (u^/u^) {^r^r/Z, while Fig. 31 2 2 plots Re K/2kQ, Im K/2kQ, and Re fl/Re Kc g vs (uj/uu) (k_r 0) /2. 
By slowly increasing the pump strength from P J « (kno

s/«J0) = 10 
to P » C^n0-/"!/)) = 10" , the continuous transition from weak to 
strong coupling should be exhibited,if it exists. Before commenting 
on the results, we digress to solve Eqs. (120a) and (120b) algebraically 
for weak coupling. 

We can write Eq. (101) as 

D3(fi,K,cos 8) = [a + C 2 ( K 2 - 2KkQcos 9)/2u>0](f22 - K 2 c g

2 ) 

* w i 2 | < : \ 2 / 8 a , o = ° • ( 1 2 1 ) 

If we make an expansion SI = K.c + SOJ and K = K * 6K, where 

K 0/2k 0 = cos 9 - e /v i s the wavenumber for exact frequency and 

wavenumber matching, and assume that appropriate for weak coupling 

| 6 K / K J , \6oi/K e J « 1, then from Eq. (121) we find that u u s 

D^fiio,5K,cos 9) = [&i + o 4ie(ie0 - kQoos e)/a>0](&> - &cca) 

^W^o'A'"1 = ° • ( 1 2 2 > 
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To obtain the pinch point describing the absolute instability 
of weak coupling Brillouin, we set 8 * 0 In accordance with Eq. 
(120c) to obtain KQ » 2k_(l - cg/v_) and 

D B(6O),6K) = [&I + 6 K ( K Q - k 0)c 2A) 0](&) - C 8 « K ) + yQ

2 (123) 

where Y Q
2 = " V b ^ ' V o ^ ^ o V 1 a n d u a 5 ^oV X h e n E<1* ( 1 2 0 b) 

becomes 

3D B(6U,6K)/3«K = [(ie0 - kg^/ujfo'u) -• eg6ic) 

- cs[6u + C 2 ( K 0 - kg^K/^J . (124) 

If we define c x = c (K- - k Q)A) 0, the magnitude of the group velocity 
of the backscattered electromagnetic wave, then the simultaneous 
solutions of Eqs. (123) and (124), determining the pinch point, are 

6^ =ti2v 0(c 1c 8) i/(c 1+ c s) , ± 1 2 ^ ( 0 ^ ) * (125a) 

and 

fiKs = ( l cs " K l ) / 2 s ^ ^ l ' s ' * ' ( 1 2 5 b> 
103 where K. = 6<u /c. and Kg s Su / o B . The ratio k0ca/u>0 has 

been assumed small throughout. The generalization of these results 
to include dissipation is found in the literature. ' 3 

The weak coupling pinch-point solutions Eqs. (125 ) are plotted 
for purposes of reference in Figs. 30 and 31 as dashed lines. The 
lower limit of pump strength in these figures corresponds to 
(u,/n)0) (k Qr 0) /2 = (k-c s/u 0) = 10 , which, according to the normal 
mode analysis, is the upper limit of the" weak coupling regime. One 
observes that the weak coupling analytic formulae describe Brillouin 
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absolute instability to an excellent approximation over a broad range 
of pump strength* (uj/i^r(k 0r 0) /2 > ("o6,/"^)3 " w 1 1 I n t 0 «1» strong 
coupling regime of normal modes. The weak coupling formulae represent 
valid pinch-point solutions for the general Brillouln dispersion 
relation, Bq. (101) or (109) provided |CU S/KC | « 1. The condition 

2 2 3 
(U^/UQ) (k Qr 0) /2 « (kgC^/ii^r applies to the linear dispersion 
relation describing the normal mode spectrum, i.e., the complex 
frequency f K as a function of real ic. In terms of a conditio on 

— - 2 2 
the pump strength v Q /c , the weak coupling pinch point formulae 
require that 

(yc^yj i tgc , ) 2 « i, 

while the weak coupling linear noraal mode dispersion relation 
demands that 

(Vcftuj/zk^rtyc.) « I, 
where numerical factors of order unity and dependence on K/2k. have 
been dropped. Comparison of the two conditions demonstrates that 
the weak coupling formulae describe absolute Brlllouin instability for 

2 pump-wave amplitudes (VQ/C) allowed to be larger by 
v_/c • CTCQ/UQC than those for which the linear dispersion relation 
of Brillouln fl becomes strongly modified. 

In Figs, X and 31, only for pump strengths 
{w./io0) (k Q r„ /2) i 10 •* do the pinch-point solutions diverge from 
the weak coupling formulae. In this regime of pump strengths finite 
i = D_/D + corrections to the Brillouln dispersion relation become 
necessary. We recall from Eq. (109) that replacement of (VQ/C) 
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In the Brillouln dispersion relation where 

S Is to he evaluated for complex 12 and £, provides an implied 
recursion relation for including the effects of the A + sideband in 
Brlllouln. In Fig. 32 |6| evaluated at the pinch-point frequency 

2 2 2 
and wavenumber is plotted as a function of (u./«u) (k_ r_ /2). We 
conclude from Figs. 30, 31, and 32 that the absolute instability of 
Brlllouln is adequately described by the weak coupling formulae for all 
pump strengths, except for those so Intense as to drive both A + 

and A_ sidebands to comparable amplitude and therefore necessitate 
solution for the general filamentation and Brillouin pinch-point 
frequencies and wavenumbers using Eq. (96). 

A final but necessary demonstration of the Brillouin pinch-
point behavior for large and small pump strengths is furnished in 
Figs. 33 and 34. Level contours of IDfi([j,K,e ' 0)1 in the complex K 

plane for parameter a are plotted using Eq, (10$). Re (2 is held 
constant at its pinch-point value for given pump strength, and Ira tt 

is varied from slightly below the pinch point, through it, and then 
above. Roots of the dispersion relation appear as a nesting of con­
centric contours. Figure 34 shows the coalescing and retreat of 

2,2 2 2 7 pinching roots for weak coupling (ii^VuQ )(kp r Q /2) = 10" « 
(k.c /">«) = 10 . The identical topological behavior occurs in 
Fig. 34 for {^MQV.T^^/2) = 10" 2 » (k 0c sA) 0) 3 = 10 - 6. 

S. Plasma and Laser Parameters for Brillouin Strong Coupling 
and Filamentation 

For existing laser-plasma experiments, e.g., laser-pellet 
experiments using neodymium glass lasers and laser heated 9-pinh 
experiments using CO- gas lasers, we consider what pump intensities 
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are necessary to Induce strong coupling and fllanentatlon. Table I 
exhibits parameters typical of these experiments. F Is the laser 
power iidensity In watts/cm . For strong coupling we use Eq. (107) 
to obtain 

( - D 1 / 3 

0.3 * 10 1 3(P°/10 1 6 W / c m 2 ) 1 / 3 sec" 1 COj-gas 

0.5 x lO^fp'VlO 1 8 1/cm2)1/3 sec" 1 Nd-glass 

Using Table I and comparing SI ( K - 2i Q) to <ii = a.o , we 
determine the effective power densities for the occurrence of strong 
coupling Brillouln scattering in a homogeneous plasma. For 
S1K > u a we find that P° > 1 0 1 3 W/cm2 for C0 2 and 1 0 1 7 W/cm2 

for Nd. 
In the limit (icc/2a>0) » (c s/c), and |cos 6| « 1, 

fllamentation occurs for (v Q/c) > KX corresponding to 
P° > 2 < 2 X e

2 * (10 1 6 W/cm2 for COg, 1 0 1 8 W/cm2 for Nd). In the 
absence of dissipation, the thresholds for the growth of long wave­
length filcments therefore can be quite low. Of course the size 
of the laser beam and the plasma target determine limits on the 
wavelengths. The lifetimes of the laser pulse and the plasma target 
set further limitations on how strong the filaoentation growth rates 
must be to be significant. 



Table 1. laser-plasma Experimental Parameters 

C02-gaa 

Nd-glass 

n^em - 3 ) co^see - 1 ) u ^ s e o - 1 ) ^ ( s e e - 1 ) k Q X e yQ

2/0

2 

1 0 1 7 3 x 1 0 1 3 5 x 1 0 1 1 2 x 1 0 1 4 0.1-0.3 P°/1.2 x 1 0 1 6 W/c»2 

1 0 2 0 6 x J O 1 4 1 x 1 0 1 3 2 x 1 0 1 5 0.1-0.3 P°A.2 x 1 0 1 8 V/em2 



-123-
APPENDDC I: USUK SUSCEPTIBILITIES 

To derive the Halting foniti for the linear susceptibilities 
we consider the Vlasov equation as a model kinetic equation: 

3tfB(x,v; t) + v a ^ x . v ; t) - (e t/B s)3 xW/ B(x,vj t) « 0 (A.l) 

where f8(x,v; t) Is the normalised distribution function. Then use 
of n. * n_ /dvf (x,v; t), the Folsson equation -3 t/ix » 4n in.e„, 

O U J 8 m 
and the definitions of the Fourier transformed linear susceptibilities 

•2 •• ~ 
Xa(uiik) = -4irk e H /$ in terms of the Fourier amplitudes n and $ 

yields 

XgUk) » - < D B

2 A 2 J dv f f i(v)/(v - u) (A.2) 

where <i>„ S 4imne2/m . fl(v) = 8f„ (v)/3v, u = <oA, and f ° 
H U 8 8 8 B 

is the velocity-dependent, time and space-independent, unperturbed 
distribution function. 

There are two cases of particular interest when evaluating 
Eq. (A.2). For jlmCwA)! « |Re(wA)| we utilize the Landau 
prescription in evaluating the Hilbert transform: 11m —±— = Pfl/Cv - u)] + iifS(v - u) (A.3) 

Im u*0±v " u l J 

where P( ) indicates the principal value of the implied integral. 
For the case that |lm(o>A)| > [Re <U/K| and |Im( uA)| > 0, there 
is no difficulty in evaluating Eq.(A.2) directly; there is no 
singularity on or near the contour of integration. 

If we consider Maxwellian velocity distribution functions for 
0 2 1/2 2 2 the separate species f„ (v) » (2irv„ ) ' exp(-v*/2v_ ) where S S S 

v = ( l A r is the species thermal velocity, then asymptotic 
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forma for the auaeaptlbllltlea can be straightforwardly derived. 
Numerical table* have alio been conpiled.l0* If we define 
n 3 v/V^ v

a *n* £ s w/V^ )«•.» tben the Frled-Conte function 
Z (uA) can be defined aa follows: 

104 

Z a («/k) = V / J v 6 i f * / dn exp(-i 
1 

•n2)/(n - o ! 

(A.4) 

s «,(e)/V2\ . 

In evaluating the susceptibi l i t ies , the following identity i s useful: 

w"* J d n (-2n) e*p(-n 2)/(n - 5) • <&,/<>£ s ^(C)- n » suscepti-

b i l l t i e s take the form x 8 ( u > k ) * - u

8 Z'(<uA)A where 

Z B («A) 5 dZ g(wA)/d(uiA). 

For the case that o>Av • is nearly real,then using 
Eqs. (A.2), (A.3), and (A.A) one obtains 

las. • if* expC-5 2), lo zi * -2ir* ? expf-C2) (A. 5a) s a 

and asymptotically 

11a He z„ » -2£<1 - 2/352 • • • • ) , 
€-0 S 

11m Re a = -5 - 1(l + 5"2/2 + •••) , 
(A. 5b) 

5~ 
and 

lim Re z' • -2 + 45* • ••• , 
6-0 s 

lim Re z' » 5~2(1 • 35~2/2 • 
5~ S 

(A. 5c) 
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For «i/kr • V 2 C complex then the results (A.Jb) and 
(A. 9c) describe the ccsjplei asymptotic forms of the Frled-Conte 
functions if 'one drops the designation "Re" on the left sides of 
the equations. Weakly damped electron plasma oscillations correspond 
to u » B » «j and foi/Icf » v . Then the lor susceptibility Is 
negligible, end the electron susceptibility is given by 
X. * -« e

2/(u 2 - 3 k \ 2 ) + i(tr/2)*(w./kv-)3 exp(-oi2/2k2ve
2). For ion 

modes In the limit that w, » |u| and r » (a/k) » v., then to 
lowest order of approximation the susceptibilities are given by 
X e « l A 2 A e and Xi s -m^M2. 
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iPHMDDC 2 : ELECTROUAGHETIC CODE 

P'OGRA* F M l ( l N F U r , - 0 l T P U T f T » P E 2 » I K P U T . T A P F 3 . T « P E * > 
C P N E - 1 [ H ? I ' I S K N « L ELECTPIViGNFTIC PLAS*« S ! » U l A T t O N CODE. 
C R F L A ' l v l S M C S l t C T F C M , •JCK-P = L A T | v l S T l C I 3 N S . 
C WRITTEN BY \ . BluCS LANGOCN. L I V E f C l ' E . 1 9 7 2 . 
C BEAUTIFIED BY fl. COHENi H . HaSTPr.", AND 0 . NICMCLSOI. BERKELEY MARCH,1973 
C 

COKI<flh/CFlELR/.Nr.,L,AEI. ,CX,CGSHL, J Y » < 2 5 7 l . r V < 2 5 7 l , P H 0 0 < 2 5 7 > , 
. RH0 I2 5 7 I , F H I I 2 5 7 > , E / ( 2 5 7 ) , J Y P ( 2 5 7 I , E V U 2 - 5 7 ) , £ Y R I 2 5 7 I , E Y ( 2 5 7 > 

PEAL L> J Y * , JYP "C . . . . . . . . . . . 

CC«W)N/1/XI20C0I ,VX(2001) ,VY(2000) 
C O f c M O N / C M T P . L / I T . C T . T I M E . I E X f l J Y i I E Y L i l E Y i t , 

» P L O T S , . N T H , I T h L . l E Y , 1 8 2 , 
. I R H O , I R H O S , 1 P h i . t XVX, IVXVY 

COMMON/SAVE/ H I 8 , 3 0 l l , I . H < 3 0 l l . K A Y { 8 l , N l t A Y S , I T H , W T , N F , M . 
LOGICAL P L T T S . I F T - - - -
CONMON/TI-ERMAL / ITFFRM 
r O > H < l l w U f l I T S / f r N M I C 2 I < 8 N . , < 2 C 2 I . n M l C 2 I , F , I 2 C 2 I , « C 2 E V 
CGMMf)N/OI lRY/«CAr, ICClL. ! :YP. .» .EYLH,FYaC,fYP»,EYLC,EYLN 
COMMJN / P L H P / fcPNPR,WPMPL.EPPPR,EPI»PL 
FEAl L P . V ? . 1 2 1 , ' : i C 2 , H 2 C 2 ' 
INTEGER T I T C E I S I 

X I 

C 0 M M T O / 2 / E » i ; ( 3 J M , E Y F [ 3 ' > l I , E Y L E I 1 : > l > , l XEt3011 ,*Sin3l>, 
. K E 2 C 3 0 1 I , H X I 3 0 2 I , P 1 Y I 3 0 Z I , P 2 X < 3 0 2 I , P 2 Y I 3 0 2 > , N N 5 , N H 2 

REAL K 6 1 , KE2, K f l , ^H2 
SEAL H I , P 2 , KE, xo 
NAMELISi / I N / M , N 2 , H T , N G . H C n E . V I 0 , V 2 0 , X U , X 2 1 , ~ " 

o W l , « 2 . H C l . C H l , 0 M 2 , K ' ) , P T , P L a T S , I P H Q , I P H n S . I P H I , 
. ixvx, IVXVY.IEX, : r.', :n j, U Y , I EYL ,KY:', SCALE, 5C;L2.::!,' 
. ,TEMPI,TEHP2,V;PVPP,V;P.':PL,EPM?.'',EP»PL,HCAT,IT!IE<.I,.'<F,NL 

DEFAULT INPUT PAR»MET6RS. 
T4TA Ul.UZ,UCl,aPl,CI'2/l..l.,0.i-l.,-l./ 
CATA Vl0,V2O,XU,X2l,MCnE,K0/O.,--0.,2*0.0 ~,l,l./ '" ' 
DATA NC,Nl,*!?,.\7,OT/32,128,128;<ieO,.l/ 
DATA P L C T S , I i J H C . I R H C S . I P H I t I x y x t ' I V X V Y / , T P U E . . - * 0 , : ) , 4 0 , 2 0 , 2 0 / 
DATA I EX, t E Y , I 5 2 , l J Y , I 6 Y L , I E Y P , I P T / < i i " . 0 , . T R U E . / 
CATA SCALE,SCAL2, l 'V . /0 . IF , 5 0 , 0 . l ^ S O . O . / 
CATA T E M P I , T E M P 2 / 0 . . 0 . / 

'" DATA WPHPR , t « k e P L . = P P P i : , F P P P L , f ' [ > A T / 4 » 3 . 0 , 3 / ' ~ " 
CATA I T H E R M , I M F , N L / 2 ! ) , 6 4 , 2 4 / 
DATA N K A Y S , K . " Y / 9 , 2 , 3 , * , ' J , 6 , 7 , 8 , S / 
DATA I T , T I ! ' F , I T H , l T H L , N 7 H / 0 , 0 . , 0 , i > , 3 0 I J / 
CATA T I T L F . / 9 » 0 / 
R S A 0 ( 2 , I N I 
K U t T E O . ' . N ) — 
CALL H1STRY 
ICCLL'O •" 
ITTH»1 
EYP.C-EYRN-F.YLC=£YLN*EYFM«EYL.M=0. 
EK*AX*0.C 

"" EKCAXR-fl.O ' • • - • — • 
ENHAXL=0.d 
ELCSS-0 . 
T W C P I * 8 . » A T A M 1 . ) 
CGSHL»L=TWCPI/KO T " 

MOAT INTR00UCE0 
"""" D X n / N G ". " " ' 

T l » W C l « D T / 2 . 
NP=NWN2 
0L»M»Vi l»(NG-MCAT»/ (Nl»<3»U»NG> 
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C I . O W C H I 
NNI«N1»H1 
I F ( N 2 . t U " 1 0 2 = 0 . 0 
1 F I N 2 . N E . 0 ) 02«W2"«2« ING-M0ATI / (N2»0H2»NC» 
* 2 » C 2 / C C 2 - - -
T 2 " 0 . 
I F ( « 2 . G T . 0 . l 7 2 = P I * T 1 / M 2 
N«2=.N2»e2 

C H K 2 E V = . 5 I 1 0 0 < 1 : 0 6 U E f T R C N VOLTS. 
P 2 C 2 5 V = f 2 / K l » . ; i U ' i ; 4 1 £ O f t 

C S C A L I N G I N U M T S O F P E S T M A S S E N E R G Y O E M S I T V " • - • " 
H I C 2 - H 1 » ( C X / 0 I I " ' 2 
P 2 C 2 = N 2 » < O X / C T I » » 2 
R P I C 2 I - 1 . / I H 1 C 2 I 
P N M 1 C 2 I » I . / ( N 1 > M I C 2 I 
I F I N 2 . N E . 0 ) R P 2 C 2 I « 1 . . / < H 2 C 2 I 

- ' " " " 1 F I N 2 . N E . 0 ) R M < 2 C 2 I = l . / t N Z » P 2 C 2 ) " — - -

C OENSTITY AMD VELOCITY LOADING 
C MOAT 1NTPCBUCED 
C MOAT MUST 6£ AN I M E G F P GREATER THAN 2 

DFOAr»KCA;«DX 
IP-L-CPCAT ' " ' ~ 
M1*N1»L 

C Q.UIET START FOB CENSITY 
C SCALE IS IN UNITS OF LP CCNV5RT TO ABSOLUTE UNITS OF LENGTH 
C DENSITY PRCFILE 
C SCALE ^UST EXCEEO .5 • 

_ SCALE"SCALE*LP/nX 
SCAL2*.S«I0X/SCAL21*«2/LP»»2 

B8» SCALE 
X m N = F L U S T ( M 0 A T I / 2 . 0 • 
X K A X = N G - F L C A T ( M A n / 2 . 0 - . . . - . -
C A L L D E N S E ( E a , s c a t 2 , H W r X . N i . ' K . x M i N . X M A X ) 

" CO 10 1 = 1 , M ' 
V Y ( I ] = 0 . 
v x u i = v i o • • — • 

10 CONTINUE 
CALL C K E A T C R I V X , V Y , V 1 0 , l , N l , T E K P l i 36HL0HGtTUBir:AL VELOCITY OIST 

. R I B U T I C N 1 ,3<.HTRA»ISVESSS VELOCITY D ISTRIBUTION I ) 
CALL S . " E A R < X , l , N l ) . - - . - .- _ 
I F I N 1 1 GT.NP1GC TO 17 
DO 11 1 ' N l l i N P . . . 
V Y ( I » = 0 . 0 

1 1 V X I I I = V 2 0 * • ' " 
CALL C K R A T 0 R < V X , V Y , V 2 0 , N U . N P , TE«P2 ,3 tHL0NGITUDINAL VELOCITY 0 1 

^STRIPUTICN 2.34HTRANSVERSE VELOCITY D ISTRIBUTION 2 1 _ — 
CALL S P E A R . f X i M l . N P I 

17 CCNTINUE . - . - . . . 
NG1=NG+1 
DO 12 J=1 .NG1 • " 

12 EYL<J]=EYR(J> = J Y . » I J | . J Y < > ( J I = ! i H C ! C ( J I = 0 . 0 
— C THIS WILL ZCRC RAOIATICN FIELDS AT T=0. " 

C DC NOT NrEC CUUPENT AT T=-f)I/2 NOW. 
CALL SF.TRHJI l.M.Qll - . . . 
CALL SETRI'C1N11.NP,Q2) 

C AT THIS POINT THE NET DFNSITY IS EXACTLY ZERO. IF YOU WANT TO 
C TUIDOLC THE DENSITY, YOU HLST DO IT AFTEP THIS PJINT. ««•»«••••«* 

DO 13 1=1,Nl " " 
x m = x u i * x i i » c c s ( T u i P i « M o o E * x i i i / . \ G i 

13 CONTINUE - . . . 

http://SPEAR.fXiMl.NPI


•128-

CAIL F I E L O S I E X E d l . F Y l C t l l , E Y P E ( l l , < = Y F ( l ) . 3 l E I 
CALL S E T 7 U , f i l , C l , H l , J ' ' l . P l x I U . P I Y I t i l 
CALl S E T V ( M l , r . F , U 2 t M 2 , O T , T 2 . P 2 X ( L I , P 2 Y U ) l 

C 
WRirE(*.1«J» "" " "~ - - -. 

949 F O R M A T K X , * T I M E * , 5 X . * E X 6 * , 1 3 X . « F Y L E * , 1 2 X , « E Y S S * , 1 3 X . « EYE«, 
. 1 4 X , « * £ « • * I C 0 t L » f 9 X i » EYLNI l ) * . 7 X , « E Y P M N G l l * / ) 

BEGIN TtME STEP L C 3 F . 
100 CONTINUE 

CALl A C C E L ( I , N l , 0 l t f ! I t 0 T t T t , P [ x < i r H » 2 | , P l Y < I T H * 2 l , K E l j r T T H l , K E . 
. 1 7 ) " ' 

CALL t C C E L ( N H , N P , C 2 f H 2 , 0 T . T 2 , P 2 X t I T H * 2 1 , P 2 Y ( I T H » 2 l , K E 2 « I T T H > , 
• K E . I T ) 

K E ' K E / N H 
W R I T E ( 4 . 9 5 0 ) T I M E , E X E ( I T H H I , E Y l E ( t T H » l l , E Y R F ( t T H * I I , E Y E { t r H * l l , K E 

. . I C O L L . E Y L H . E Y R M 
950 FC«K»TIFU.2 ,5Sl f t .» i I5 ,2616 .81 " - • - —• 

C ACCUMULATES •UDIATED ENERGY LOSS 
E L O S S * E Y l r , G l > * E Z l N G l l - E Y ( l ) » B Z t l ) * E L O S S 
T r T A L - c X F I I T h * l l » E Y F l I T H H ) « E * e Z E 
T0TAL = TOrALtELCSS>DX*F.N'f lC2l/CGSHL 
W R I T ? ! * , 9 5 1 1 TCTAL • 

9 S I " F 0 P M A T < » TCTAL ENERGY!FIELC*K,INSTIC«LOSS("NORMALIZED TO NHC2 *," 
. 6 1 6 . 3 ) 

V L " V I J - 0 . 
CALL P L C T X V t l , N l , V L , « U , L . 9HELECTRONS,11 
V L « V U * 0 . 0 
CALL P L O T X V ( l , N l , V L , V ' J , L , 9HELECTP.CNSi2) 
W U » 0 . ~ ~ " 
CALL P L T V X Y l l i N l . V M u , 9HELECTRCNSI 
VL»VU=0 . • •• — 
CALL P L C T X V I M l . N P . V L . V U . L , 4 H I C N S . 1 I 
V L - V U - 0 . 0 
CALL H L C T X V ( N l I t N P . V L , V " l , L . * H t O N S , 2 l 
VMU»0. " " " - — -
C ' L L P L T V X Y t N l l . N P , V « U , 4H ICNSI 
i - ( I T . E O . N T I GC TO 101 "" ~ ' 
I F ( I T H . E O . N T H ) CALL HISTRY 
I T - t T + 1 

C PARTICLE DENSITY AND VELOCITY DISTRIBUTION PLCTS 
I F ( ( I T / I T h E R N I * I T H E P M . K E . I T I GO TO 99 "" 
I T T H . I T T K U 
«N«FL0ATrNC) " 
ENCODE I 9 C , 5 0 0 , T I T L E ) TIME 

5 0 0 FORNATI»F.lECTRCN DENSITY ( N O . OF PTCLS. V S . X /OX) AT T I M E * * , 
. F I O . W 

C » L l F C F V I I , N 1 , 0 . , G M , X , 1 0 H POSITION . T I T L E ) 
T r T « T I . u E * . 5 * D T 
E N C C 0 E t 9 0 , 8 , T I I L E I TTT 

S FORMATl»ELECTRCN VELDCITY O I S T R I M T I O N (NO. OF PTCLS. V S . V / C I 
. AT T I » E « « • • i O . « ) 

V M U = W I ! 1 = U . 
" " "CALL P « N G E Y ( V X , V R , N I I ~ ~ . . . . . 

V M ' A 4 A X l U B S ( V h ( l ) ) , A ; < S I V R t 2 ) ) ) 
CALL F C F V U , N l , - V M , V " , V X , 10HX-VEL0CITY ,T ITLE ) 
V R C W » V R 1 2 ) = 0 . 
CALL KANGF.Y IVY .VR .M) 
V M . A M A X W A R S I V K U I l , A 3 S ( V R I 2 l ) I 

- " CALL F O F V d . N l . - V M . V l ' . V Y . l O H Y - V E L O C I T V . - ' I T L E I 
99 CONTINUE 

TlME-IT*OT 
ITH.IT-ITHL 
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C A l t M C V t I 1 . M 1 . C 1 I 
CALL P . C V E t M l . r . P . q * ! 
CALL F I FLOS! t X i ( I T H » l ) .FYLEt I T H H I ,EYP6« t T H U I ,EYEI I T H M ) , 9 * E I 
CO TO 1 0 0 

" C . . . -
C ENO CF PUN. 

1'Jl CONTINUE 
C 'LL H1STP.Y 
CALL EX IT 
ESO 

' " SUBROUTINE S M E A R t x . I L , I U I " ~ " 
C THIS SUBROUTINE R i . M l i r N U t S A VECTO" ARPAY BY RANOOM PAIR, EXCHANGE 

0IMFNS1CN Xt L I 
N U M - I U - I L U 
DO 70 I - I L i I U 
1 I * M U * » K A . \ F | 0 ) « I L ___ _ 

xx»xtn " 
X(II = XI I I I 
XtIII*KX 

70 CONTINUE 
RETURN 
ENO 

— ' SUBROUTINE DENSE(SCAL6,C,HW.X,Ni.NZ.XMIN,xrUX) " " _ 

OIHENSICN X(l> 
INTEGER T I T L c C S I 
COMHON/BDRY/f 'CAT,ICOLI. , ; :YRf , EYLH. f YRC, EYFN . E Y L O E Y L N 
Cnr'MnN/r.Fi:Ln/r>G.L,.lSL,CX,CGSHL. JYi!<2S7! ,eZ1257),RHnO[257), 
. RHOI257I ,^H11257),EX(J5'/l,Jvpl257),EYL(257l,5»Ria57),SY(257) 
FOENStX)=IN m»"AX-ArtINII»l !.• I X-0. F *X.H«X+0.5*XHIN I /SCALE 
. -C*IX-.5<XN4X».5«X^IfM««2l«AN0RM 
AHCRH»l./Il.-f kK£X-.v.M:NI**2*C/12.) 
DATA TI7LE/9»0/ 
K-NN-N1 - -_ . 
J-l 
KSTEPS=100C00 " 
OfLTA-(XMAX-XK1NI/NST6PS 
AINT=0.5 " " 

50 CONTINUE 
0 0 100 1=1, ' .STEPS - . . -
A IMT-A INT * FULNSt D E L T A « I I * OELTA 
I F I A I i N T . G T . F L O A T I J I I X I J I = X » I N t - O E L T » * I " ' " 
I F ( A I M T > G T . | - L C » T I J I I J » J H 
I F t J . G T . N N ) GC TC 250 . . . . . . . . . . . 

100 CGNTINUE 
DO 150 I=J,NN " 
x m - X I I - 1 ) • 10.0* OELTA • 

150 CONTINUE 
250 IF(H2.EQ.O) GC TC 350 

IFtPN.GT.NII GO TO 350 . . . — 
»INTaFL0.1T(Nl)»0.5 
J"NI*1 
N"N2 
K.N-NUN2 - — . 
IF(hl.£a.K2l GC TO 60 
GO TO 50 " 

60 00 65 l'J.KN 
65 X I I I = X t I - M I . . . 
350 CONTINUE 

_ GN«FLOATINGI "" 
FNCOOEt10,<iOO, T I T L E ) 

* 0 0 FnP«AT(»DENSITY PROFIL? INO. If PTCLS. V S . X ) AT T « 0 « l 
CALL F C F V ( 1 . N 1 I O . . C N , X , 1 0 H POSITION . T I T L E ) 
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S£TU»N 
END 
SUEPOUrlNE C R J A I C U V X , V » , v a . ! l t l U . T F l ' P , T I T l ' : l p T t ? L F 2 l 

C WS USE THE VX AORr.Y AS A PUV1Y AP"AY FOB TOTAL P A l l TOTAL V 
~ C "" NSTFPS IS THE AVf=ACf NUK1EP OF INTEGRATION STEPS PEP PtRTICLE 

OIXE' ISICN V X ( 1 I , V Y ( ! > 
INTEGER T I T L I ~ l < 4 l t T I T L £ 2 t 4 ) 
INTEGER T ITLE(<> ) ,X IAB 
FUI»EXPC-Si::'TU.0«fi>2«J««2)/T)«DP««2«C 
G(JI=EXP(-.5«0»2»)>J/TI»['P*«2«C 

' " " IFirL.GE.IU.C-i.TE'lP.EO.O.) RETURN "" 
T«TEHP 
NFCl»«(IU-ILHI/4 
KFCUR*f.FC1UR»4 
K M - N F C U R U 
N = I U - l L H 

'" F I > A T A N ( 1 . I * 4 . " " ' "" ~ ~ ' " ' 
KSTEPS = 200 

C VELOCITIES ARE I N UWITS OF C ANO MC*ENTA I N t C 
F X A X ^ . O * S C K T [ T + 4 . 0 » T « » 2 I 
OP-PMAX/(N«ffSTEPS> • - • -
C P 2 » O P « 2 

' I F ( T , O T . 0 . 0 0 2 1 C » , 2 5 » « ! » 6 X P ( 1 . 0 / T » / I T t T * T ) " ~ 
IFIT.LE.0 .0021 C-.25eN/(T»T»T) 
J -1 ' 
I « l 
A I N T - O . S ~ " ~ 

50 CONTINUE 
I F I T . G T . 0 . 0 0 2 ) A l N T > M N T t J * F I J ) " _ • 
I F I T . L E . 0 . 0 0 2 1 AINT=A«NT«-J*GIJ» 
I * « 4 » t * I L - 4 - - • -
IFIAINT.OT.I) VXII<H-J»DP 
I F ( A I N T . G T . l l l - I « l 
I F U * I . G T . N F C U I - . C R . J » D P . G T . P < « A X ) G n TO 100 

j , J t a . . _ . 
GO TO 50 

100 CONTINUE " _ .'""" 
IFI4«l.GT.NI GC TO 170 
l«.>4*l»ll-4 "" 
OD 150 K'l/i, IU 

'" ~ISO VXCKI'0.0 " " ~ ~" 
170 CONTINUE 

00 180 l » I l t ! U 
lao vx(i)»vxm/sgRT(uotvxiii»»2) 

KFL-NFCLH-4 
CO 200 J - l . N F L , * 
I . J - l » I L — " 
T H ' - T A ' . R A N F I O M P I * . * 
PX«VX(It - . . -
V X ( I U P X * C C S ( T H E T » I 
V Y I I ( » P X * S I N I T h S T A > . . . 
VXII*l l» -VXtII 
v v i l » l > » - V V I J ) 
VXII»2I=-VY<!I 
VY(I»2I=VXUI 
VY(I«3»»-VX(M 

?»0 VX(I+3)'VV(II " ' 
I F I M F O U R . t C . M G a TC 202 

:-.. . i L N F , i L t N F C U R — -
T 1 OC 201 J ' l L N F . I U 

2 0 1 V X ( J I = V Y ( J I * 0 . 0 — - " • 
20 2 CONTINUE 



• 1 3 1 -

V Y M X - P N « X / S C R T | U 0 » P » A X » « 2 > 
V X H A X * I V O » V Y » , A X I / < i . » v o » v v > ' t x » 
C - » * S J H T I I . - V O « V O I 
0 0 300 1 = 1 L I U _ 
Y V < I I « G » » V Y ( n / l l . » V . > « V X ( ( I I ' " ~~ 
V X I I l " ( V X ( t i » V O I / l l . » V 0 « V X I t I I 

3 0 0 CONTINUE 
X L 4 B » 1 0 H X - V E L C C n r 
ENCODE 1 9 0 . 8 , T I I L EI 71 T IE 1 , XLA9 

a F n R M A T i 4 4 i o , « ( r . j . o f P T C L S . V S . • , « I O . » / C I » T T I M E » o»> 
CALL F C F V ( I L . I L , - V X M A X , V X M A X , V X , X L A e . T I T L E I 
XLAB-IOHY-VELOCITY 
E N C 0 D E I 9 U , a , T l T L E I T ITLS2 .XLAB 
CALL F C F v l I L . I L , - v Y H A X , v Y H A X , V Y , X L A B , T I T l . E I 
RETURN 
END 

" "" SUBROUTINE F 0 F V ( I L , I U , V X H I H . V X M A X , V V , X L A 3 . T I T L S I — " 
C PUNCHES PTCLS. INTO 8 INS OF WIDTH (VXMAX-VXf I M /NPINS 
C ANO PLCTS NO. OF PTCLS. VS . PCSIT ICN CF B I N CENTER. 

0 IPENS10N a i N l l O l l . V X 8 I N I 1 0 1 I 
DEKE.NSICN W i l l 
INTEGER T I T L E D ) , X L * B _ _ 
NP.INS-10O " "" " ' ~ " ~ 
BINMAX-O.O 
0 0 100 J - l . N B I N S 
e i N U I ' O . 
VXBtH lJ> = V X H I N » I V X H « X - V X M I N > * » r a O A T t J I - 0 . S ) / H O A T ( N e i N S » 

100 CONTINUE . 
" ' 0 0 200 I = I L , I U " " ' 

X X X > N e i N S » I V V I I I - V X M t N I / < V X P » X - V X < U N l 
jj»xxr.u 
I F I J J . C T . N 3 1 N S . C F . J J . L T , 1 I C C TO 200 
B ! H I J J I » a i N ( J J I M . 
I F I B I N I J J I . C T . B I N M A X I B 1 I . H A X - B I N I J J I 

'"' 2 0 0 CONTINUE " 
CALL P P L T I V X B I N , B [ N , V X M I N , V X K A X , 0 . , , 8 I H K A X . N B I N S . X I A B , T I T L E I 
RETURN 
END 
SU8R0UTINE PPLT(X,Y,XMIN,XMAX,YMTN,YHAX,NUH,XLAB,TITLE) 

C PPLT0020 
~C "" " PPLT0031 

C THIS SUBROUTINE, GIVEN 4 S «T OF M X-Y COORDINATES. H ILL PLOT THEM PPLT0040 
C CN A 5 1 BY 101 XY GRID T H E X ANY Y AR?*YS ARE UNAFFECTEO 
C EY T H I S ROUTINE WHO OUT OF RANG* POINTS ARE IGN03E0 

"INTEGER T I T L E K I f X L A B 

PPLT0010 
PPLT0100 

DIMENSION X I I ) , Y I U , X S R I C C l l l , Y G R i n m l , G R I O U 0 1 1 PPLT0110 
DIMENSICN 9LAI37I 
DATA I U L A I I I . 1 - L . 3 7 I / 1 H , 1 H * , I H 2 , 1 H 3 , 1 H 4 , I H 3 . I H 6 . 1 H 7 , I H 8 , 1 H 9 , 

* I H A . l H B . l h C , 11-0, l l - F , I M F , 1HG, I H H , 1 H I , 1HJ, 1HK. 1HL. I H H , 1HN, IHO, I H P , 
* I H O , IHP. , 1HS , 1HT , 1HU, 1HV, I H H , I H X , 1HY, 1HZ. 1H» / 

INTEGER BLA.GRIO * ~ _ " • " 
K R I T E I 3 . 1 0 I T ITLE 

1 0 F 0 R M A T I 1 H 1 , Z X . 5 A 1 0 ) 
PPLT0280 
PPLT0290 
PPLT0300 

- PPLT0110 
PPLT0320 
PPLT0330 
PPLT03*0 

2 0 TL " 1XMAX - X M M / 1 0 . 
T2 . (YMAX 
X C R I 0 I 1 I ' 

- YH1NI 
XMllv / 1 0 . 

Y G R I D I 1 I » 
DC 25 1 - 1 

VMAX 
J . U 

X G R I O I I I > X G R I O I I - 1 ) * T l 
25 Y G P I D I I I - Y G R I C I I - 11 - T2 

http://IFIJJ.CT.N31NS.CF.JJ.lt
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YMIN • (A - 1 . ) ) / 50. 

IF(YKAx.EC.O) TMAX.1^0F-0S 
Ift ABSIYbRIO(U) /YH»X).LT.l.OE-lO» YCP.I0(ll)«O.O 
I • I 
K - I 
00 65 K » I , 10 " -

CO 50 I - 1. 101 
50 G R M U I ' l 

A«N 
q • IYHAX • ( 5 1 . - A) 
00 S3 IL » I t hUK 
IF IASS10 - V I I L I I - [Y.MAX - YHIV) / 100.1 4 1 . 5J,~ S3 

41 1X0 . [00. • I X I I L I - X-4IN) / IXMAX - XHINI » 1.5 
51 IFUXP.GE. l .AKO. IXP.LE. lOl) GRIClIXP1«GRI0(IXP>*1 
53 CONTINUE 
52 DO 54 J l - 1 , 1 0 1 

J2«NIN0IGRI0(J1),37> 
54 G»IC{Jl ] .eLA(J2) " 

kRITE (3.751 YCRIO(L) , (CRIO(I ) , I • 1 . 1011 
N • H • I 
P » N • 3 
00 60 J . N, M 
00 55 I » 1 . 101 

' 5 5 C P I O d l ' l 
A«J 
0 « (YHAX • 151. - A 
00 57 IL . ' 1 . HUH 
IF IABSIU - Y t l L H -

4 6 IXP - 100. • ( X l l L l • 
56 IFUXP.GE. 1 .AKO. IXI 
57 CCNTINUE 

00 5) J ' - ! ,.191 
•IZ'MINOIGK I 0 ( J I ) , 3 7 I 

59 CRIDI JU=rtLA(J2l 
6 0 W1ITE 13.76) GRID 

14 » M » 1 
65 L » L • 1 

CO 66 I = 1 . 101 
66 GRIO(!l=t 

00 72 IL - 1 . MJH 

• Yi IN • (A - 1 .JJ / 50 . 

(YHAX - YMINI / 100. I 46, 57, 57 
• XHINI / (XI'AX - XHINI • 1.5 

IXP.LS.1011 GRI0<IXP]«GRID(IXP)H 

IF (ABS1YMIN - V I I L I I - (YHAX - YCIHI / 100.1 
69 IXP « 100. • (X I IL1 - XMINI / (XHAX - XMIH) 

69, 
1.5 

70 IF I IXP.G6.1 .AND. IXP.LE.101) GRIIMIXPI-GRIDIIXPIH 
72 CONTINUE 
71 CO 73 J l= l , 101 

J2*H1N0H;(1I0(J1I ,371 . -- - . 
73 GRIC(J1I*1LA(J2) 

""" KRITE (3 ,75) YGRIOI11>,(GRICII) , I - ~ 1 , I 0 1 1 
75 FORKAT (10X, 69 .2 , IX , I01AII 
76 FORMAT (20X, 10141) 

WRITE (3,851 (X i iR lC I I I , I « 1 , 111 
85 FORHAT I16X, 111 E9.2, IX ) ] 

HRITE(3,90I XLAR 
90 FORHAT(/60X,AIO) "~ ~~ " " 

RETURN 
ENO 
SURROUTIME HISTRY 

PLOT ENERGIES ETC. VS. TINS, 
CONHUN/CNTRim,CT,TIME.lEX,IJY,IEYL.IEYR, '".PLOTS,NTH,ITHL.IEY.IBJ, .-...—. 
. IRH0,1RH0S.IPHI,IXVX,IVXVY 
CCHHON/SAVE/ h(8,30l),hH(301),K«Y(8),NKAYS,ITH,NT,NF,NL 
LOGICAL PLOTS,[FT 

PPLT0410 
PPLT0*20 
PPLT043* 
PPLT0440 

PPLT0470 
PPLT04SO 
PPLT3490 
PPLT0500 
PPLT0520 

PPLT0540 
"PPLT05S0 
PPLTO'560 
PPLT0570 

PPLT0600 
PPLT0610 
PPLT0620 
PPLT0630 
PPLT0650 

PPLT0670 
PPLT0S80 
PPLT0690 
PPLT0710 
PPLT0720 
PPLT0730 

PPLT0780 
PPLT0810 

PPLT0330 
PPLT0340 
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CCfMON/Ti i tHMAL/ ITHEPl l 
C 

C O M M O N / 2 / F X E I 3 a i l . E V E ( 3 G l ) . E Y l £ ( 3 J I > . < : v » E ( 3 9 1 > . i < E l ( 3 0 l > , 
. K E 2 I 3 0 1 I , P I X ( 3 0 2 ) , P I Y ( 3 0 2 ) , P 2 X < 3 U 2 > , P 2 Y < J O J ) , ^ ! , * ^ 

REAL K 6 1 . KE2, N C I . M*2 
OIMENSION I I M I 3 0 1 I . r i - I H ( 1 0 0 1 
I F ( I T . E O . O I CO TO 10 
TL" ITHL»OT 
H T H - 1 T - I T H L H 
CO 1 I - l . M T H 

~~ ' " 1 T t H M > - ( I - l l * O T » T l " ' " " 
C C PLCT FIELD ENERGIES. 

CALL PLTHSTI22HFI5LO ENERGY FX5CMMC2),EXE,TIN,MTH,TL.TIME,1,0) CALL PL7HSTt23HFiEL0 :<WGV EYI.-;r<tfC2) .tYLE,TIM,MTH.TL,TIME, 1,0) CALL PLTHSr(23hFIEL0 5NERGY i!YPF(\"C2l ,EYRE,TIH,MTH,TL .TIME. 1,01 
—'" CALL PLTHST(22hFICL0 ENERGY EYE Iti"C2l,EYE.TIM,MTU, TL,TIME,1,01 

C 
C PLOT /VERAGE CRIFT •OMFHTUM PER PTCI. If! UNITS OF W. I E PLOT 6AHHA«V/C 
C PLOT I S LAdELEO TL TO TIME WHEREAS MOMENTUM VALUES 
C ARE ACTUALLY KIOkK, FRCM T L - O T / 2 TO T I M E - D T / 2 . 

P I X L ' P I X I M T H ) ' 
. P I Y L - P I Y < M T H ) ~ 

I F ( N M 2 . N E . 0 . 0 I P2XL=P2XINTHI 
I F I N N 2 . N E . 0 . 0 I P2YL=P2YtMTH) 
CALL PLTHSTI2 7HAVERAG6 PTCLi X M C M E N T U M t M C ) . F I X , T I M , N T H , T L , T I M E 

"" . , 0 , 0 1 
CALL PLTHSTI27I-AVERAGE PTCLI YM0MENTUMIMC) .P1Y,T IM,MTH,TL ,T IME 

— . , o , o ) "" • • . - -
I F I N M 2 . N C . 0 . 0 ) 

•CALL Pi .rnSTI27«AVE?SGE PTCL2 XMOMFNTilMMC) .P2X , T I M , M T H , T L . T I M E 
. , 0 , 0 ) 

I F I N N 2 . N E . C 0 ) 
•CALL PLTHST(i7|-AVERAGE PTCL2 YMCMEN.'UMIHC) , P 2 Y , T I M , M T H , T l . T IME 

— . , 0 , 0 ) - .— 
C PLOr ES MODE ENERGIES CO 499 K-l.MCAYS — " ...-—--• 

0 0 500 [ - 1 . M T H 
t i H C I U M K . I I 

500 CCNTINUE • 
KAY1"KAY(K>-1 
CALL P L T H S T I 2 0 t E S MODE E H E R G Y I f l M C ? ) , H H , T I M , M T H . T L , T I M E , l . K A Y l ) 

4 9 9 CONTINUE 
I F I I T . N E . N T I G O TO 7 0 0 

C 

C PLOT THERHJL ENEFGIES. " " NPTH-IT/ITHERMH 
CO 200 l-l.NPTd 
TIMTH(I>*U-l)*JTHEPM«DT 

200 CONTINUE CALL PLTHSTI21HTI-EPHAL ENERGYtEV.) t,KEl,TIMTH,NPTH,9..TIME,1,0) IFINM2.NE.O.0) 
~" '.CALL PLTHSTI21HTHERMAL ENERGY1EV.) 2,KE2,TIHTH,MPTH,0..TIME,1,0) 

C 
7 0 0 CONTINUE 

ITHL«1T 
C LAST VALUES NOW ARE FIRST VALUES FOR NEXT TIME INTERVAL. 

P I X U I ' P I X L 
P i Y I H - P l Y L — 

I F I N M 2 . N E . J . 0 1 P 2 X I 1 ) « P 2 X L 
I F < N M 2 , H E . 0 . 0 ) P 2 Y < I ) « P 2 Y L 
P1X«2I»PIXIMTH*1I 
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P l Y ( 2 l * P l Y ( M T H U > _ 
l F ( N M 2 . h S . O . U | P 2 . X I ? l » P Z * ( S T H H » 
I F ( h M i ! . f . E . J . U ) P 2 Y ( 2 I . P 2 V ( M T H H > 
DC 33 K*L.OKAYS 

3 3 " H ( K , l ) « H i K , r r n i " 
E X F ( l > » E X E ( M T M 
EYLF(1 I *SYLE<»THJ 
E Y R H H - E Y R E I ^ T H I 
E Y E d l - c Y E C H T h l 
0 0 2 I - 2 . M T H 

" " " " " ' P l X ( I » l l = P l Y ( [ H ) = P 2 X ( I * l ) » P 2 Y ( I * l l = 0 . 0 " " 
CO 22 K . I , M A Y S 

22 H ( K , I I ' 0 . 
2 EXE 11 I ' E Y L E I I I - S Y R E I I > » E Y E ( I I - 0 . 

RETURN 
C 

" C AT T»0 IUST ZERO ARRAYS. ' " 
10 C T H i M I M H 

00 t l I - l .PTH 
KC1(II-KE2I I ) > P l X ( I » l l > P I V ( m i « P 2 X I I » l l > P 2 Y ( I - l ) - 0 . 

11 E X E I I l=£YLE< I I = E Y R F | I I = £ Y E U I = 0 , 
F l X ( L > ' P l Y ( l ) - P 2 x < U » P 2 Y < 1 ) = 0 . • 
RETURN 
END 

" ' ' SUBROUTINE F I E L O S I E X E . E Y L E , E Y R E . E Y E , P 2 E ) 
C SOLVES FOR PHI Af.C EX. COMPUTES FIELO ENERGY, E T C . 

COHXOIJ /CFIELn/NG,L,AEL.OX,CGSHL, J YM<2 571 , 87 . (2571 ,RHt>012571 , 
. R H 0 ( 2 5 7 ) , P H I f 2 5 7 ) , E X ( 2 5 7 ) , J Y P I 2 5 7 ) , E Y L < 2 5 7 ) , 6 Y R I 2 5 7 ) , E Y ( 2 3 7 ) 

COI ' » )N / l i r )RY /MCiT , ICCL l ,SYS; ' ,HYL I ' . FYRC,EYr !N ,cYLC,cYLN 
COCMilN / P U H P / •,FMPB,UPMPL,EPHPR,EPMPL 
REAL L. J Y P , JY.> 
COHKJN/SAVC/ M 3 , 3 0 L ) > h H I 3 0 l ] l K A Y l B l i N K . * - Y S t l T H , N T l K F l N l 
COMNIWCNTKL/IT,I:T,TI*E,IEK,IJY,IEYL,IEYR, . "" 
,PLOrs,«iw,lTHL,ifY,ie^, 

~.IRHO,IRHOS,IPH[,IXVX,IVXVY " ~ 
LOGICAL PLOTS,IFT 
C 0 P M ' I N / U N I T S / K N M 1 C 2 I ,RN»t2C2I ,RMIC21 .RM2C2 I ,M2C2cY " 
INTEGER T l T L E l S j . X L A B 

C 
DIMENSION E Y R K ( 2 5 7 » , E Y L K < 2 5 ? I , X J ! 1 0 1 ) , G I V E N ( 2 > 
REAL R H O K I L I , F H U U l i SCRACH(L) ' ~ " 
ECUIVALEMCE (RK' .RhCK I , ( P K . P H I K J t CEX.SCRACH) 
REAL KDX2, K S 0 I 1 2 1 I , L I , S U 2 8 I 
CATA T I T L E / 9 » 0 / 

" C " " " ' • 

C FIRST TIME STEP D U T I E S . 
"~" OATA N G 2 / 0 / * ' " ~ 

I J - I T H » l 
I F ! N G 2 . N E . 0 ) CO TO 2 
NG2»NG/2 
OGl=NG* l . - . 

_ _ H 0 X * 0 . 5 » D X _ _ __ _ _ _ 

H D X ! " 0 . 5 / 0 X 
TFM*.25«CGSHL*CT 

C SET UP RATIO PHIK/RHOK. 
P I > 4 . 0 * A T A M l . C I •• " 
0 0 I K * l , N G 2 

"" KDX2»(P1/NG1»K - •— 
**n siKi-i.o 
- ^ 1 H S 0 I K I = » C G S H L / I ( 2 . 0 * S I N ( K D X 2 ) / 0 X I « * 2 I « S I K I * ' 2 

I F C I F . L E . O I GO TC 2 
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ITFfL»0 
HOT-«0. 5»OT 
NF2-NF/2 
KPTS'NL 
NPTS-MUO<NPTS,IOII " ' 
TO IT J - l f h P T S 

7T X J C l l - F L O A H J I - l 
XLAB=10h PCDE NC. 
XRIGHT»NPTS 

2 CONTINUE 

C TRANSFORM CHARGE DENSITY. 
C AP6RQDIC BOUNDARY CC.NDI TIONS 

P H C ( l l " P H C t N G l l > 0 . 
CALL PLCTFtRHCKHCHARGE DENSITY, WHO) 
DO 10 J ' l f N G 
R H C K ( J I « R H C I J ) * K C X ' 

10 SCRACHIJ>*0 . 
CALL CPFT (P .HGK,SCR»CH,NG. l , l ) " 
CALL RPFT2CRHr.K,SCRSCH,NG,l> 
RHOKUI-0. 

C • 
C CALCULATE PHIK AhC FIELD ENERGY. 

ESES>0. 
PH1K(H»0. " 

C 
" C "" " "'"" 

C COMPUTE THE tNEPGY IN A PARTICULAR FOURIER HODE 
0 0 15 KN- l .NKAYS " " ' 
K-KAYIKNI 
I F ( K A V ( K M 1 . E 0 . 1 1 H ( K M , U I - 0 . 0 "" " " "" 
I F t K A Y I K N I . c C . i l GO TO 15 
I F ( K A Y ( K M . E C . H G 2 * l l GO TO 13 
KK*NG»2-K 
F K « K S O t K - l l « h C K ( K I 
FKK«KSO<K-l)«iJHCKIKKI 
H ( K N , I J I » ( S ( H O M K ) « F K • SHGK(KIU*FKK) /L*RNH1C21 " " 
GO TO 15 

13 H I K N , I J J * . 5 * K S S ( K - l ) * R H 0 K < K » * » 2 / L » R N M l C 2 I 
_ 15 CONTINUE . 

C 
' " 0 0 20 K=2.NG2 . . - . - _ - -

KK-NG*2-K 
PHIK IK l«KSQ<K- l l«RHPK(K » ~ " 
PHIK(KK)>KSC<K-1)>HH0KC(K) 
ESES'ESES»BHCK(KI '>PHIK(KI»RHOKtKK)*PHIK{KKI~ 
RHCKIK ) " S ( K - l l * P H r ; < | K I 

20 BHCK(KK>=S(K-U«f lHCK{KK) " " " 
P H I K I N v , 2 * l l = K S C ( r G 2 l « R H a K ( N G 2 * l l ' 
E X E - l 2 . 0 « e S E S * F H C K U . r . ? H I « ' P H [ K l N G 2 » U ) / I 2 . O « L I * a N M l C 2 t 
R H 0 K ( N C 2 * l l = " S ( N G 2 ) » S H 0 K I ' I G i > l ) 

C INVERSF TRANSFORM PHI. 
0 0 30 M L . M - . _ . . . 
fcHO(KI»RHCK(Kim 

JO P H U K » " P H I K ( K I » L I 
CALL R P F T I 2 I F H I , F H 0 f N C i l l 

~ ~ CALL CPFT ( P H I , P H C . W . , l . - l ) "" 
C PERI001C ElGfcNFUNCTIONS 

R H C I 1 I - P H O I N G l l - C . • 
P H I I N C 1 > » P H H I » 

http://IFtKAYIKNI.cC.il
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C IMPOSE qOUNflARV CONDITION CF ZE«fl ES FIELO AT J - I ANO J.NGl 
DELPHI.HOXIMPHt l - i C I - P H l m I 
PCI 31 J - l .NGl 

31 PHt lJ I -PHI IJ I^CELPMMJ- l l 
CAIL PLGTMSMG.UHS-'RDTHen DENS tTV.IPHOSI " 
CALL PlOTFIPHI.lBHtLtCriti: PTfEN'IALilPHll 

t 
C CENTERED DIFFERENCE ACROSS 2 CELLS. 

00 101 J"2,HG 
101 E X I J I - I P I< I IJ - t ) -PHHJ»l ) l»HOXl 

— C BOUNOtRYCO.NDITlCHS SX(ll»EX<NGIt»0 
EX<1>'EX(NG1>-C. 
CALL PLGTFIEX.UKSX . IEX) 

C 
C HAXfELL EQUATICN SOLVER FOR RACIATION FIELDS 

CALL PLOTf(JYP.IIHJYP , I JY I 
C " " " INPUT EXTERNAL PtClATICN FIELDS HERE - - . - - . - -

EYHNGl>'EPrPl«SlN|TIME*WPNPLl 
EYRIl) • 6PMP*»SIN(TIME»wn'P») 

C AOO HALF CF CUfPENTi TOWED FPO» XtT) ANO VY(T»0T/2). 
OC SO J- l .NGl 
EYLIJI'F.YLtJI-TEI^JYMIJ* 

50 EY'WJ>»EYR(J)-TFF«JYH<J> . 
C LET C-OX/DT. TFEA EYL IS JUST MOVED ONE CELL TO LEFT 

""' C ANO EYR ONE CEIL TC RIGHT. 
00 SI J«l,NG 
EYKJ»»EYL(J*1) 
JJ - rGl -J 

51 EVRIJJ»ll*EYRIJJ) • 
C AGAIN INPUT EXIEFNAL RADIATION FIELDS 

EYR(l) »EPMPR»SIN|[TiM6+DTltWPMP0) 
EYLING1I»FPMPL«SIN<(TIME»DTI«KPMPLI 

" C AOO OTHER fALF CF CUPRENT. FDRVEO FROM X(T*DT) AND VYCT+DT/21. 
00 52 J»1,NG1 • 
«YL(J)>EYLUI-T6y»JYP(JI " ~ ~" 

52 EYRIJ»"E*RIJ)-TEC*JYP(J) 
CALL PL0TFI6YL.16HLEFT-GQING FtSLD.IEYL) 
CALL PLCTFIEYR.lTHRIGHr-ROING FISLOilEYRI 

C CALCULATE PUMP TRANSMISSION 
_ " ' ' -"' IYPCEYRC * " " 

EYLO'EYLC 
EYRC-EYRN '" 
EYLC-EVLN 
EYRN>AeSIEY«INGl)l "" - — 
EVLN'AOSIEVLIIM 
IFIEYRC.GE.EYnC.ANO.SYRC.GE.SYRNI EY»M»EYRC : 
1FIEYLC.GE.EYLC.AN0.EYLC.GE.EYLN) EYLM-EYLC 

00 64 J ' l . N G l 
EY|J)»EYR(J)*EYL(J) 

60 BZIJI»EYR(J)-EYLtJI 
" ""' " CALL PLOTFIEY.MHEY ' . I E Y 1 ' 

CALL PLOTFCBZ.IH-RZ , I 8 Z I 
C 
C CALCULATE RADIATICN FIELD ENERGIES. 

EYLES.EYRES«EY6S"0. 
fZFS-O. 

• CO Ti> J'Z.NG ~" 
EYLES.6YLES»EYL(J)«*2 
EYRES«EYRES«eYRIJI«*2 
BZES>BZES»OZ<JI«*2 
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7 0 EYES -EYES « E V t j l « « 2 
E V L E S ' t Y L S S ^ n . 5 » I E ' a l l l « « 2 » F Y L ( > . ' U » » » ? » 
fY = t 5 - E V B E S « 0 . 5 •!<•¥= I l l * * 7 < E Y F ( M i l l * « 2 l 
E Y F S - S Y t S » 0 . s ' ( r » ( l l » " 2 » F Y I - i G U « « 2 > 

" C LEFT fiC alSMT C f l > " c I = i n ENERGIES. 
EYIE»£K1 E S « O X / C C S M l « V 4 l C 2 l 
eYSE"CY^es«ox/CGSHL*» . \ ' . i icz t 

• C EY ENERGY, 
E Y E - F Y E S « r x / l 2 . « C G « H L l « R N H I C 2 I 
e z E ^ / j E s ' c x y ^ . i c c t H L M R M j ^ i 

~ c " ' ' 
C F0UFIE» ANALYZE EYR(X*LJ AND F Y L I X ' O I OVER KF VALUES OF T I P ? 10 TO 
C N F - I , KF TO 2 N F - 1 , FTC, I . SUP. OVFS FREO. MCOES GIVES ENERGY OENSITY 
C <tN UNITS OF N H I C 2 / L I AVERAGED OVER AN INTERVAL NF»OT 

I F t N F . L E . O l GC TO 21 
I T E P » I T - I T E P L > 1 

" " " " EY«K( ITFP.UEYR<NGl l»HOT " " 
E Y L M I T F . H ) » E Y L U l » H M 
I F U T E P . I T . H F I GC TO 8 0 
CALL C P F T I E Y R K . E Y L K , N F t l , t ) 
CALL R P F T 2 I E Y R K , E Y L K . N F , i : 
E Y R M 1 I =EYI_K( I I =C.O 

" " CO 75 H - 2 . N F 2 - - - -
PP»NF»2-M 
£ Y R K t H | a l t Y R K l K I * « 2 > E Y I > X I > " > t ) « « 2 ) » ( 2 . 0 / C G S H L I * L « N ) » l C 2 I / ( N F « o r » * » 2 

75 EYLK(MI *C£YLKtMI» ' "2 i -FYL<t l«X)«« ;>>«(2 .0 /CGSHL>»L»RNKLC2t /<NF«OT)*«2 
E Y R K ( h F 2 » l l = E Y F K ( i l F 2 * l l « * 2 * U » 0 / C G S H L >*L«F N M U 2 m NFtOT > " 2 
E Y L K . < N F 2 t l l > E Y L K ( N F 2 » l I « « 2 » ( 1 . 0 / C U S h L I » L * R N « l C 2 [ / ( N F « O T » * » 2 

" TC T> H = I , N P T S 
E Y P K ( H I = A L 0 i ; i O ( 6 Y R K [ » H - l . O E - 2 O I 

79 EYLMPJ^ALGGICMEYL K I M ) » 1 . 0 E - 2 0 I 
CALL RANSSYIEYPlt .Gi lreM.NPTS) 
Y B c r > G I V F N U I - 5 . 
G I V E H ( 2 I = A M A X 1 ( G I V E N I 2 ( . Y B C T I 

~ DC 74 M»WMPTS ' 
T6 EYRKIP 1=A><4XIIEYF.KIP. | .GIVEN<2)> 

TEML=tTEKL»OT 
E N C O t 5 t e ; 0 . 7 a , T I T L E I TEML.TIME 

78 F 0 F P » T f * i U G H T - G 0 I N G FIELD PCOE ENERGY 0 E N S I T Y ( N M I C 2 / L > > X - L . FFT 
. OVFR T - » , F 1 0 . « , » T O ' * . F | Q . M 

• CALL F P L T ( X J , C Y f t K , l . , X ' ! I G H T , G I v ; M I 2 ) , G I V E N ( n , N P T S t X L A a , T I T L E ) "" 
CALL FANGEYIEYLK.GIVEN.NPTSI 
YB0T--CIVEN(l)-5. 
G I V E N I 2 l - l M A X I ( G I V E f i ( 2 ) . Y B 0 T ) 
0 0 97 H ' l i N P T S 

97 E Y L M M I - A M A X H S Y L K I " ! i G I V E N I 2 ) ) 
— ~ T I T L C U I - I O H L E F T - C O I N 

T I T L E ( 6 I = I 0 H X . C . FFT U 
CALL P P L T ( X J , E Y L K , l . . X R I G H T . G I V E N I 2 l , G I V E N t l » , N ? T S , X L A B , T t T L E I 
ITEML«1T«1 

SO CONTINUE 
C 

'" " C " ELECTRIC F1ELC.HAS NOT BEEN RENCF.MALTZEO YET. — 
A E l » l . 
RETURN ~ 
END 
SUBROUTINE A C C E L I I L , I U . O . « , D T , T T , P X , P Y , T H E R M T . K E , I T I 

C ADVANCES VELfjCITY Ct.t TIME STEP. COMPUTES MCHENTUH AND K INET IC ENERGY 
" ~ ' ' " REAL K E , H - • - - . - . . . . 

COMPUN/CFIELD/NG.L .ACLinx .CGSHL, JYMJ2 5 7 I . 8 Z I 2 S 7 ) , R H 0 0 I J S 7 ) , 
. R H 0 < 2 f 7 ( . P H I ( 2 5 7 » , = X ( 2 5 7 I . J Y P ( 2 S 7 ) , E Y L ( 2 S 7 ) . E Y R I 2 5 7 l , E Y ( 2 5 7 ) 

REAL L ,JYCJYF,MC2 .HRKE,N3NREL 
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33 

Cr*>"Wi/)C(2a';oi,V'ci2oooi,vv(iooo> 
CtWIO/REL/GANHA 13001)1 
CCWJN/TrE.'fAL/lIHfFX 
COH-at./UNlTs/SI MlC2l.as«;>C2l.«Htr2t.»"2C2t .H2C2EV 

' REAL AXIl)»AYU>»rmi.THE«MX|f2!7).THF>>MX2l2»TI.VX0SCI2S7l. ' 
.V2SXI2571 ,NW>7|,VYCSC(257I 
EQUIVALENCE (AX.EXI, U Y , ; Y I , ( T I . S Z I I tThSRHXl,THEF.1*2.V2SXiPMI) 
EQUIVALENCE (VXOSC.JYM). CVYOSCIYP), (N.RH0I 
REAL M2C2EV 

C 
" " " IFIIL.GT.IU1RETUPN " ' • " 

KG1-NGH 
CO 100 J-1.NG1 
THE«HXI(J)-N(JI'VXOSC(J>-VYOSCIJ>'0«0 

100 CONTINUE 
C R6NCRML1K ACCELERATION IF NEED BE. 

" " AE.(Q/HI»<CT«0T/0XI/2. 
IF< AE.EO.AEl ) CO TO 2 
TEN-AC/AcL 
CP 1 J»l,NGl 
AX<JI-AX(-I>«TEH " "~ """ ~" 
AY(JI-AYUI»TEH 

1 TZU)>UU>«TEK 
AEI.-AE 

2 CONTINUE " 
i F i i L . E a . i ) K E « O . 

— IF IABSIQ/KI .LT.O. l l GO TO 5 - - - -
C 

"C LINEAR, KCNFNTl'M CONSERVING. INCLUDING ALL MAGNETIC FIELDS; '" 
C P6LATIVISTIC ELECTRONS. 

R£LKS»NPKE«0.0 
00 MO I-H.IU 
J ' X t l l 
XX aX(I)—J 
T-Tr.TZIJ»l>»XX«C TZ<J*2! -TJ!J*1 ! ! 
AAX«AX(JtlltXX*( ltX(J»2t-AX(J»l> I 
A»Y-AYIJ«l)*XX*( AY(J»2)-AY<J*1I ) 

C HALF ACCEL. TWO-STEP POT. I'.ETHOO WITH (JUICK. ROT. SCMENE. 
' GVXX-VXIIMGAKPAMUAAX 

GVYY«VY11 I*G«HffA(I)»A»Y 
"" C.V2»GVXX«GVXX»GVYY»GVYY " ' 

G4."MA2-1.*GV? 
GAMMAI-S0RMGAKHA2I " • 
T»TAN(T/GAMMAII 
S«IT»TI/I1«»T«TI 
REtKE-RELKE'IGAFfAl-I.IMI 
N»KE.NRKEn).5*M *GV2/GWMA2 ~" " " 
GVXX-GVXX»T«GVYV 
CVYY"GVYY-S*GVXX 
GVX»CVXX»T»GVYY*AAX 
OVY«GVYY»«»Y - -
GV2«GVX»GYX*GVY»GVY 

""" " CAHM4U>»S0i<T<l.«r.V2l ~ 
VX<II>GVX/LAK.VA<I) 
VYUI-GVY/GAPPMII • - -
PX»PX»GVX 
PY-PY«GVY - . . 
K ' X I t l t . S 
N f K H I - H l K H I H . ' — 
VX3SC(X*l)»VxaSCtK+ll>VX(I) 
VYOSC<K»I!»VYCSC<K»ll*VYI!> " _ 

•250 CONTINUE 
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KE»A«AXU>ElxC.MIK«l 
. C DPIFT COH./USIT 1ASS !•) UNITS OF C. 

P X » P X / I I U - T L « 1 I 
PY«PY/< I I I - I L» I> 
IF I ITHFBM.LE.C) CO TO 3 - - - . 
lF< in / iTheF; i i» i i t -EFK^E. iT» 60 ro 3 
Of- 300 JM.NGI 
IFCM J I .Lc . -3 . I GC TO 303 
VXCSC(JI»V»OSC(JI/NIJ> 
VYOSCIJJ-VYOSCI.lt/NIJ> 

300 CONTtNUS ~ ' " " ' 
CO 350 1'IL.IU 
K - X U H . 5 
ec-i./suRT[:.-vxcsciKni«»xosciKni-vYOSc(ic»ii" 'vroscm*m 

C RELATIVISTIC CALCULATE* 
PXTHEPM«VXM)»GAPH»II) 
PYTHFRM-VYlll'CAf.MAIII " ~ _ ' "" " ~ 
PXS0>CC*VXI*.SC(X»I)«>',C*VXQSCIK»1> 
pvsa«GC« v r OS-; i K »11 «GG* VYOSC c %*i I 

C RELATIVE KE OEFIHEO AS KEIWC. HOTIC.'4»JIGCLE>-KE(AVG. MOTIONI 
ReLT"S0<r<I.*PXTHEPri»PX7HE«M»PrTHEFH»PYTHEIIH)-S0RTtl.*PXSQ»PYSQ» 
FFLT..51inc«16C6»aElT 

C" NCUfFLAriVISTlCAlLr COBPECT """ "' " " " 
C 
c NONPELATIVIST:; CALCULATION ~ 

VXTHERM-VXIt 1-VXCSCIKH) 
VY^HESf<>V¥(I )-VYCSC(K»l) 
NaNRSL-0.5«.511.>0<il';.l)e»lYXrHeRH«VXTME<>l'»VYTHERH*VYIHERM 
TEMPP«AHAX1(RELT,HC«SELI " " " 
TH6RHT"rHEPHT*T':»'PP/UU-IL»ll 
THEi(PXl(X>l)>TliE;:lXIIK»l|rT£>>PP/.>l(K«ll 

3S0 CONTINUE 
CALL PLCTF(THEPXXI,18HREL. TE(EV.I VS. X.ITHERMI GO TO 3 5 "CONTINUE - - -

C 
C LINEAR, HCHENTUH CCNSERVING. INCLUDING ALL MAGNETIC FI6L0S, 
C NOH-»ELATmSnC ICNS. 

VIXS=V1YS=V2S»0. 
DO 251 I - U . I U 

XX»XU)-J 
T»TT»TZ< JH)+XX»(TZU»2 I -TZ IJ»1 I I 
T-TANIT) 
S»<T*T) / IL»T»T1 
AAX-AXU*!l»XX*l AXIJ»2I-AX(J*1> I 
AAY-AYIJ»1I*XX»( AY(J»2)-AY(J»l) I " " 

C HALF ACCEL. THO-STEP POT. METHOD WITH( 3UNEMNI QUICK ROT. SCHEME. 
YXX=VXUI>AAX 
VYY»VY(I>»AAY 
VZS»V2S^VXX»VXX»VYY*VYY " 
1XX»VXX+T»VYY 
VYY»VYY-S*VXX - _ 
VX(II=VXX*T»VYY»AAX 
VYIII-VYY*AAY - - . 
K ' X m t . 5 
N ( K » l l ' l t ( K » l l M . 
VXOSC(K»II=vxosc<K+i)»vxt;i 
VYOSCIKtl)=VYCSC(KH)»VY(I| " " — ; 

V2SX(KH)=VZSX(K<ll»VXII I»VXII I»VYII)«VYH> vixs»vixstvx(ii 
ZSl VIYS = VlYS*\ iYUI 

http://JI.Lc.-3
http://VYOSCIJJ-VYOSCI.lt/NIJ
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I F H T H E R M . L E . O ) Crt 10 4 
| F < U T / I T h E R . M I » I l H £ i l M . N ? . I T » 0 0 TO 4 
T H I P M T - O . 
DC * 0 0 J - 1 . N C 1 
tflNUI.Li.O. I r,c TC * 0 1 
v i S o s c - < v x o s c u > * v x r ; s c ( j i » v \ c s c i J i » v v o s c i j i l / N < j i 
T H F C » X 2 ( J ) . 0 . 5 — l 2 C 2 i V » l « S X I J » - V 2 S < > S C I 
T H e R M T - T H E R K T « T H f 3 « X 2 C J > / U U - I l M ( 
^ « s M X 2 i j ) » r h e P " x e i j i / i « ( j i 

4 0 0 CONTINUE - - . . 
C l l L P L 0 T F ( T H E P M X 2 , 1 3 H T ! ( E V . I V S . X . I T H F R M 

4 CONTINUE 
KE«KE»0.S»«l«V2S 

C OPIFT M ' IM . /UNIT MASS I N UMITS OF C . 
P X « V t X S / I I U - I L « l l 

— • I H I I S / l l l r U U I "" ~ " " 
3 CONTINUE 

RETURN 
END 
SUBROUTINE S E T V t H . i I H . O , « t O T , T ' ' , P X f ' V > ' 

C CCNVEPTS PARTICLE VELOCITIES AT T » 0 TO COKPUTcR NORMALIZATION AT 
C T ^ - O T / 2 . - -

CCMKON/CFlELO/KG.L .AeL.OX.CGSHLi J V H I 2 5 7 ) . R 2 I 2 S 7 I i R H 0 O I 2 5 7 > , 
. « H O ( 2 5 7 l , P H M 2 5 7 ) , F X ( 2 S 7 J , j y P I J 5 7 ) , ( - T L I 2 S 7 ) , E V P I 2 S 7 l , E Y I 2 5 7 ) 
REAL L i J Y P , J Y P , N 
C Q h M 3 N / l / X ( 2 0 C 0 ) , V X < 2 0 0 0 1 . V Y < 2 0 0 0 1 
tOKHUN/REL/GAfKAUt fCO) 

I F U L . S T . t U I R E T U P N 
— • • " T . T T " - " 

OTCX«DT/DX 
C ROT.ITE V THRU ANCLE • 0 . 5 » M C » 0 T , N O N - R E L A T I V I S T I C . 

I F I T . E Q . O . ) GO TO 2 
" T=TANIT ) "~ ~ 

C » l . . O / S Q R T ( l - 0 » T « T 
" S»C«T ' " • "~ - - - - - -

0 0 I 1 ' I L f I U 
V X X - V X ( I ) 
V X I t l * C « V X X - S * \ i Y ( I > 

" 1 V Y ( I > - " S * V X X » C » V Y ( I I - " 
2 CCKTiKUE 

C NORMALIZE VX ANC V Y . 
on i I » I L , I U 
V Y I I ) » V Y ( I ) » O T D X 

3 V X ( I I = V X I I ) » O T D X 
C " ' CNLY ELECTIONS B.ELAT1VISTIC. " ~ 

I F U B S I O / H I . L T . O . Z ) GO TO 4 
0 0 99 I - I L . I U ' 
V 2 » V X ( I l » V X ( I > * V Y J | l * V V | I I 
C - A H K A I 1 1 - 1 . / S O R T ( 1 . - V 2 I 

9 9 CONTINUE 
4 CONTINUE — " ~ """ " 

C ELECTRIC IMPULSE TO GO 9ACX 1 / 2 T I H E STEP. 
DATA 0 U H 1 . 0 l ' K 2 , D U M J / 0 . l 3 . > l / 
CALL ACCEL I I , I U I - 0 . E » O > K i 0 T , O . , P X , P Y t O U M l . 0 U M 2 , D U M 3 I 
P.ETURN 
EAO 

• - " ' — SUBROUTINE K O V E I I L . l U i Q I "" " 
~T~1 C AOVANCES POSIT ION CHE TIME STEP AfJ'fl 
~ ^ C ACCUMULATES CHARGE AN3 CUBPENT D E N S I T I E S . 

C O B H O N / C N T R L / l T . C T . T I H S . I F X . I J Y t l E Y L . I E Y P , 
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. P i r i S t N T M . I T H l . I f Y , : * ! . 
• I"»-'-.IPMOS,|PMl,IXK,|V»VY 
CCMr"l/rFIFLC/NG.l .AEL.OX.CGSHL, JY»I2»7I .BM257I .RM.MI257I, 

. FHni257I.Pfi I<2-ri ,£112571.JYP|2S7lf£YLI2S7I.ElKf 2571 ,EY(237I 
LOGICAL PLOTS 
REAL L. JY". J1P.J / 
cc><«orj/i/x[2coc).vx(2aoi»ivri2000l 
CO"fnN/enk»/MCir»ICflL.EYR»<,EYLPtsYPC.fY»>t,eYL£.E»LN 
I F I I 1 .GT.IJJRETUFN 
COX'O/OX 

" CDT-O/DT ~ ' 
C IF IS FI1ST GPCUP HP PARTICLES. THfN 
C CLEAR CUT OLD CttP.CE AND CURRENT DENSITIES. 

I F I I L . M E . l l GO TC 1C 
KGl>NG«l 
»N«NG 
00 41 J ' l . N G l * ~ " 
PHniJ)»8H00(J) 

*1 JYF>(J)>JYPIJ)-0. 
10 CONTINUE 

C 
C LINEAR 

DC 201 I» IL , ! !1 "" "~ " " " " "" 
C LINEAR HEIGriTIKG USING OLD POSITIONS. 

J - X ( I ) 
X X - X l l l - J 
JY«OOT«VY»ll 
OJY.XX«JY 
JYMlJ»ll*JYH<J.l)-OJYtJY " ' 
JYPIJ»2)-JYK(J»2I*CJY 
X ( l l ' X I [ ) * V X < l ) 

C AP6RO0IC 90IINCARY CCNOITIGNS 
I F ( X < I I . G E . l . I GO TO 202 
ICCLl*ICOLL»l 
X ( I I . X I I ) . 2 * I l . - X ( l l l " " "" " 
vxui.-vxm 

202 CONTINUE ' " - - - -
1FIXU I . L E . l X N - l . l I GO TO 203 
ICCLL*ICCLL»1 
X l l l * X I I > » ( X N - l . - X I I > l * 2 

" VX(I)>-VX<I) "" 
203 CONTINUE 

C LINFAR WEIGHTING USING NEW POSI'IOkS. 
J - X l t l 
I W I I I - J 
OJY»xx»JY 

— JYPtJ»l | .JYPIJ* l I -DJY*JY "' 
JYP(J»2>=JYPCJ»2f*DJY 
CPHO-aOX*XX 
RKO<JUI=RHOCJ»U-C<<H)«QDX 
RH0IJ»2>*RHO[J»2l*GRhO 

201 CONTINUE 
RETURN " 

C 
END 
SUBROUTINE SETPHCIII.IU.QJ 

C ACCU^LU"";S CH«RGE DENSITY. POSITIONS NCRHALIZED IN DENSE 
COHHON/CFIELO/Nt.,I, AEL.OX.CGSHL. JYHI2S71,82(2571,RH0OI2S7>. 

. RH3(257>,PHn2571,EX(2571,JYP(2S7].FYLI257l,EV*f257l,EY(257> 
REAL I , JYP, JYP 
CCHHjn/l/XI2C00).VX(ZO00l,VYI2O00l 
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I F I I L . G T . I U R E T U R N 
crx.y/ox 
XIMKG 

C I F IS FIRST GROUP I F 'ARTICLES, THEN CLEAR CUT RHO. 
IF« IL . ' IE . I I CO TO 2 

' OC I J ' l . K S 
1 PMO <J I -R> i r i J { . l ) =3 .0 

RHO(r iG« l ) 'OHGO<MG»' . l>0 .0 
2 C Q M I N U E 

C 
"" C LINEAR " * " 

DO 7 0 1 I - I L . I U 
C APERCOIC .OLNf.ARY CONDITIONS 

I F I X U I . G E . l . l <JU TO 2 U 2 
x m = xm>z>(i.-xii)i 

202 CONTINUE 
I F I X ( I ) . L E . ( x r i - t . M GO TO 2 0 3 
xm»XU)*IX«-U-XII>l»2 

203 CONTINUE 
J » X ( I I 
DRHC-OOXH X I D - J I 
F H [ ) ( J » l > « R H O < J » l l - r R H O t Q O X 

"'" " 2 0 1 PMC(J»2»- i>H0(J»2)«-OFhJ """ " ' "" 
NGl»NG*L 
CO 3 0 0 J ' l . N G l 
R M W ( J ) = R H C O ( J I - R M H J t 
PHOIJ ) » 0 . 0 . — - -

300 CONTINUE 
'" ' RETURN " " ' " " ' • -~ ' ~ 

ENO 
SUBROUTINE P L O T F I F , L A B E L , I M A V L I 

C PLOT F I E l . 0 AT CcftTAlN T I ' E S . 
OiHEMStON LABEL 1 2 ) , G I V E N ( 2 I . X J I 2 S 7 ) 
C0MH.] r4 /CFtELD/rG,L ,A>:L ,0X,Ct" .SHl , J Y H ( 2 5 T i , 8 2 t 2 S 7 l > P H O 0 ( 2 W I , 

. P M O ( 2 5 7 ) , P h I ( 2 5 7 ) , 6 X ( ' 5 7 l , J Y P ( 2 5 7 > , E Y L ( 2 5 7 l J e Y 8 ( 2 5 7 ) , E Y ( 2 5 r ) 
REAL I , J Y C , JVC , F I I I 
C C M M 9 N / C H T ? l / t T , C T , T I H E . I E X , I J Y . I S Y L , I S Y R » 

. P L O T S • M T U , I T h L . I C Y , 1 3 2 . 
• H H O . I R H O S . I P H I . I X V X . I V X O T " 

LOGICAL FLCTS 
INTECER T i r L E ( 9 ) , X L A e " "' " 
OATA X J I 2 I / 0 / 
DATA T I T L E / 9 * 0 / 

C 
I F I I N T 3 V L . L E . 0 I RETURN " 
I F ( I I T / I N T R V L I ' I N T R V L . N E . I T » KETURN 
I F I . N O T . PLOTS 1 RETURN ' " " " 

C 
I F I X J ( 2 ) . E 0 . 0 X I GO TO 2 "" 
K P T S - N G H 
X L E F T - O . 
XRIGHT=L 

"' ~ XLAS-10H PGSIT ICK 
0 0 I J - l . N P T S 

1 X J I J ) > ( J - 1 ) * C X 
2 CONTINUE 

C 
CALL RANGEYIF.GIVEN.NPTSI 

' "~ ENCO0Ei")0,3,TITLEI LABEL,TIME " "" 
T") 3 F0R.MAT(2Al0t* AT TIMe-«,FlG.4l 

CALL PPl.TIXJ,F,XLEFT,XRIGHT,GIVEri(2l,GIVEHIl),NPTS,XL«B,TITLE) 
RETURN 
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ENC 
SURPOUTKIE PLCTXVCI1 . I U . V l . V U , L , L < a £ L , » A P « E R I 

C PLOT X-VX SPACE .VT CERTAIN TI -ES !F ««P«(FR IS I 
C AT CFRTAIN TIMES IF f"A>HE» IS 2 . 

PEAL L i J Y C JYP 
C O H f n N / i / x ( 2 ! ] C 0 i , v x ! ? " o - i » , V Y ! 2 n o i i 
C O ^ M O N / C N T ( . L / I T , C T , T H E , I F X , U r , t E Y L , I E Y P , 

• P L O T S , N I H , I I H L , I C Y , r f l £ . 
. IP.HC. I R H 0 S , ! P H I , 1 X V X , I V X V Y 

LOGICAL PLOTS 
INTEGER T I T L E 1 9 I . X L A B " 
DIMENSION G I V E M 2 I . L A B E L I 2 1 
TATA T I T L E / 9 ' 0 / 

c 
I F I I L . G r . I L I R E T O P N 
I F ( I X V X . L 6 . 0 ) PETIIPN 
I F ! U T / I X H X I « U V X . H 6 „ I T I RETURN 
! F I .NOT.PLG1S I RETURN 

C 
I F I 1 L . G T . 1 ) CALL S H A P I X . V X . V Y , I L 1 
N P T S » I U - ! L » 1 
GIVENI21*VL 

"CIVENIl)=VU ""' 
C SET VELOCITY PANGS ETC. I F NEED. BE 

I F I V L . L T . V U > GC TO 1 
CALL RAMGEYIVX,GIVEN.NPTSI 

I CONTINUE ~ "" 
XRtCHT=L 

— j , L A 8 ! , i 0 H POSITION " 
T ! M » T I w S » O . 5 » 0 T 
IFIHARXER.EQ.2IGC TO 10 - -• 
ENCODE 190.3,TITLE) TIM,LABEL 

3 FORMAT!* VX VS. X. TIM=«»,F10.*,5X,»A10) 
CALL PPLTIX.VX.O.,XRIGHr,GIVENt2),GIVFN(ll,NPTS,XlA8,TITL£l 

— GO TO 11 ' " 
10 CALL RANGEYIVY,GIVEN,NPTSI 

ENCODE 190,5,TITLE I TIM,LABEL 
5 FOPHATI» VY VS. X, IIK5=«,F10.4,5X,3A10I 
CALL PPLTIX,VY,0.,XRtGt-T,GIV6M 21 ,G[V?N!I),NPTS,XLAB, TITLE! 

11 IFIIL.GT.1ICALL SMAPIX.VX.VY.ILI 
~ F6TURN 

END 
SUBROUTINE PLTVXYIII,1U.VMU.LA8FL! 

C PLOT VX-VY PHASE SPACt AT CERTAIN TINF.S. 
C0HH1N/l/X(20OCI,VXI2OOJI,VY(2O0OI 
CONMON/CNTRL/IT,CT,T[ME,lEX,IJY,IEYl,IEYR, 

' .PLOTS,NTH,ITHL.IEY.IBZ, 
. I " H C , I R H n S > I P r i I , I X V X , I V X V Y 

LOGICAL PLOTS 
INTEGER T I T L S I 9 1 . X L A B 
CtHENS ION G I V E N ! 2 ) , L A B E L ( 2 1 
OATA T H L E / 9 » 0 / 

I F I I L . G T . I U I R E T U f N 
I F U V X V Y . L S . O ! SETURN 
I F ! ! 1 T / ! V X V Y I » I V X V Y . K E . I T » RETURN 
IFI.NOT.PLOTS! aSTURN 

C 
— I F U L . C T . l l CALL S W A P ! X , V X , V Y , l l l " ~ 

N P T S * I U - I L » l 
C SET VELGCITY RAJ.GE F 1 C . I F NEED BE 

I F I V H U . N 6 . 0 . I GO TQ I 

OR PLOT X-VY SPACE 

http://IFIVL.LT.VU
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r « n RA^GEv(vx.SIvfN.NPrsl 
VI1U-1MAX1I A- lS(01VfHl l ) l , 40S(CIVtN(2 l l I 
XPIGHT'GIVENIU'Vtu 
XLEFT«GJVEM2I»-V«U 
CALL SAKCf1l1iY,r,lviN,HPJS) 
VKU-4MAXU A O M G I V t r ( 1 1 > , » B S I G I V E M 2 > > ) 
V T 0 P « G I V E N ( 1 ) * V M U 
Y 8 0 T - G I V £ t l ( 2 ) « - V M U 

I CONTINUE 
T [ C * T I » ' E « 1 . 5 « O T 
XLAB' IOH VX " ' " 
f N C a O E O O . J . H T L E ) T I K . L A 9 E L 

3 FORHAT<» VV -VS. V X , T[ME = « , F 1 0 , * , 5 . * , 2 A 1 0 1 
CALL PPL r ( V X , V V , X L f f r . X r ! I G H T . Y 3 C T , V T O P i « I P r S , X l A B i T I T L E ) 
I F I I L . C T . l i CALL S W A P l X , V X , V Y , I L t 
RETURfl 

" E N D ~ " " "" 
SUBROUTINE SHAPIXX,VI.V2iNN) 
D1KENSICN XX(ll,Vl(l).V2(l> 
INTEGER NN 
f.N«NN-l 
DO 10 1=1.NN 

"S1-XXM1 " 
S2=V1(II 
S3-V2U) 
XX<l)=XX<t»NNt 
VI (I I«V1I H*li» " "" " 
V 2 m - V 2 ( I t N N » 

~" X X ( I » N N ) * S 1 '" " 
V U I » N K ) - S Z 
V 2 I I « - N N I > S 3 

10 CONTINUE 
^N=<NN^ 1 
RETURN 

" E N D ' " "~ 
SUBROUTINE PLTHSTILABEL,RcC.TIH,HTH,TL,TU,LINICG,MODEM) 

" C PLOT TIME HISTJRY, LINfAR CR LOG. 
0IKENS1CN GIVEN! 2l.LABELI3),RECIMTH1,TIHIHTHI 
INTEGER TITLEISI.XLAB 
CATA TITLE/9'0/ 

" " NPTS^MTH " '" 
XLAB-IOM TICE 
CALL RANGEYIPEC,GIVEN,NPTSI 
IFtLlNLCG.EU.O) GO 13 2 
YB0T*l„0E-5«GIVF.Ml» 
CUHxREC(HTH) 

~ DO 3 1 = 1 , HTH "~ ' 
R E C I ! ) = A H A X l ( R E C I [ I , Y B O T > 
RSC ( I ) =ALOG10(P.f C( t I I 

3 CONTINUE 
CALl AAr'GEYIREC,GIVEN,NPTS) 
I F I I " 3 r > e h . N c . 0 1 GG TO 5 

"" ENC( lDE(90 .2 i ; 0 , T I T L E ) LA3EL , T L . TLI " - " 
2 0 0 FOP.KST(« LCGIO OF « . 3 A i a , « T t f E = > * . F 1 0 . 4 . • TO * , F 1 0 . 4 I 

GO TO 6 
5 E N C O O E I 9 0 , 3 0 0 , T I T L F I LArtEL.KCDEK.TL.TU 

, 3 0 0 FORMAT!" LGGIO OF » , 3 . U 3 , * , N30E N 0 . * . I 3 , » T I H E » » , F 1 0 . 4 , * TO • 
. . F l O . i . ) 

S C I I L P P L T < T [ M , 8 E C , T L , T U , G [ V E N ( 2 1 . G I V E N ( l ) . N P T S . X L A 0 , T I T t E I 
SECCTHl^OUM 
GO TO 102 

2 CCNTINUE 
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«,Fl0 . t l 
TIKE) 

I F t f i j O E N . N E . O I CO TP T 
F N C l n e ( 9 1 ) . 1 0 0 . T I T L E I I A 8 E l . T L . T U 

100 FORMATI3A10.O T I P M « . F 1 ' ) . 4 , * To • . F 1 0 . 4 I 
GO TO 8 

T E N C ' l n E ( 9 0 , * 0 a , T I T L E I LABEL.MOOES.TL.TU 
4 0 0 F G » M i r [ 3 A 1 0 , « , WOE N 0 . » , I 3 , » T I M F . « , F 1 0 , * , » TB 

6 CALL r P L T ( T I M , l ! £ C , 7 L , T U , G I V ! r f , C 2 > . G I V E « l l l l , N P T S . X L A S , 
102 CONTINUE 

RFTURN 
FNO 

" SUBROUTINE RANGEYIY ,GIVEN.NPI - - • - - - -
FEAL Y l l l . G I V E M 2 I 
V H X » Y I 1 ) 
YKN.Ydl 
INCY-1 
DO 1 IP'l.MP.IKCV 

" Y ^ X ' A H A X 1 { Y H X , Y ( | P > ) " -

1 V M N » A M I N 1 ( Y H N , Y U P ) I 
I F I Y M X . L E . Y H N ) YMX-YMN* ! . . . . 
G IVEN!1>*YMX 
G I V E N I 2 ) » Y M N 
RETURN 
ENC ~ " ~ " 
SUBROUTINE R P F T 2 I A . B . N . I N C P I 
REAL A < 1 ) . 0 ( 1 1 

REAL i i * T A , P E R I O O I C . FCURIER TRANSFORM, TWO AT A T I N E . 

INTERFACE TO COMPLEX PERICPIC FOURIER TRANSFORM, TO 0 0 PAIRS OF 
- \RANSFORHS OF REAL SEQUENCES. - . . _ . . . 

THE THO SEOUfcNCiS AKc ELEMENTS 0 . I M C » Z « I f l C . . . < M - M « t « e OF ARRAYS A . « 

AFTER A CCMPLEX PERIODIC FOURIER TRANSFORM, WITH A AMD B AS THE 
REAL ANO IHAGIN4PY P.1RTS, RPFTZ SEPARATES THE TSANSFGRNS OF A ANO B 

" AND PACKS THEH, TIMES 2 . BACK INTO ARRAYS A ANO B . 
THUS, THE CONTENTS UF A ANO 9 ARE "EPLACJO BY TWICE THEIR TRANSFORMS 
BY TFE CALLS I 

CPFT ( A , B. N , 1I1C. S I G N I 
P P F T 2 I A , B. N , INC) 

TWICF. THE REAL PARTS OF THE FIRST HALF OF THE COMPLEX FOURIER 
COEFFICIENTS OF A (COSINE COEF. I APE I N A « 0 » , A< ( ) , . , , A ( N / 2 ) . I F 
I N C « 1 . TWICE THE IMAGINARY PARTS I S I N E C 3 S F . I ARE STORfO IN 
REVERSE ORDER. IN A I N - l l . A ( N - 2 > . . . A < N / 2 » l > . LIKEWISE FOR B . 

NO PARAMETER « S I G M I S P R O V I D E FOR HE PURPOSE OF CHANGING THE SIGN 
"OF THE S INE COEFFIC IENTS. THIS HAY BE OOME KITH PARAMETER * S I G N * CF 

" T H E FOURIER TRANSFOFN. CPFT. - . — - _ . 

T IME REQUIRED I S LESS THAN 1 / 1 3 OF THAT FCR CPFT. 

SH1UL0 ee RE-C30EC IS ASSEMBLY LANGUAGE. 

"WRITTEN BY A . BRUCE LANGDCN. LRL LIVERPOPS, HAY 1 9 7 1 . ' 

SEAL I P , I P " 
INCMNCP 
NIKi«N«INC - -
A(1>'AII)»A<1> 
1 1 I - 3 I 1 I K I 1 I " 
L P ' I N C 
LM-NINC-LP 
1 F I LP .GE .LM ) GC TO 2 

RPFT2 2 
RPFT2 3 
RPFT2 * RPFTZ 5 
ROFT2 6 
RPFTZ 7 
RPFT2 B 

I .RPFT2 9 
R.PFT2 10 
RPFT2 11 
RPFT2 U 
RPFT2 13 
RPFT2 14 
RPFTZ 15 
RPFTZ 16 
RPFTZ 17 
RPFT2 IB 
RPFT2 19 
RPFTZ ZO 
RPFTZ 2 1 
RP=T2 22 
RPFTZ 23 
RPFTZ 2% 
RPFTZ 25 
RPFTZ 26 
RPFTZ Z7 
RPFTZ 28 
RPFTZ 2 9 
RPFT2 30 
RPFT2 3 1 
RPFTZ 32 
RPFTZ 33 
RPFTZ 3 * 
RPFTZ 35 
RPFTZ 36 
RPFTZ 37 
RPFTZ 38 
RPFTZ 3"? 
RPFTZ • 0 

http://A8El.TL.TU
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P P . M l P ' l ) 
RM»AILM>ll 
IP .? ILP* l> 
IP-BCLF<-1I _ 
AllP»ll»rfM»aP 
MlH»ll»RM-RP 
BILP»l]«IP*IM 
»(LH»1)"IP-IM 
IP«LP»INC 
IP-NJNC-LP 

" ' IF I LP.LT.LM I CC TC 1 "* " ~ " " " 
I F ! LP.GT.NINC I PETURN 
A(LP* 11 =A 1LP+1 >«•.••< LP*l I 
B ILPHI=a<LPHI»e lLP* l l 
RETURN 
END 

'•'"' SUBROUTINE RPFTi2(A,B,(v,lHCPI 
PEAL 4(1), 8(11 

REAL DATA. PFBICDIC, FCURIER TRANSFORM INVERSE, TMO AT A TIME. 
INTERFACE TO COMPLEX PERIODIC FOURIER TRANSFORM. TO 00 PAIRS OF 
TRANSFORMS OF RFAL SECUENCES. 
UNPACKS THE COSINE ANO SINE COEFFICIENTS OF A ANO 0 A W COMBINES 
THEM SO THAT A • I B IS THE CCHPLEX PERIP0IC FOUP.IcR TRANSFORM OF 
THE ORIGINAL SEQUENCES. RPFTI2 9EVERSES THE EFFECT OF RPFT2, EXCEPT 
THAT A AND B ARE COUBLEO. 
THE CALLS . 

"' RPFTI2IA, « . K, IKCt ~ """ " " 
CPFT (A, B, M, INC. -StGNI 

INVEAT THE TRSIJSrCRK OONE EARLIE", EXCEPT THAT THE ARRAYS HAVE BEEN 
MULTIPLIED BY 2»N. 

SHOULD BE RE-CODEC IN ASSEMBLY LANGUAGE. _ 

WRITTEN BY A. BRUCE LANGOON, LRL LIVEPKOPEt HAY 1971. 

1NC-INCP 
NINC»N«INC 
LP.INC 
LH.NIflC-LP " " " 
IF I LP.Cc.LH ) RETURN 
CA'AILPH) - - - . -
SB*elLN»l> 
CB-BILP*!) 
SA-MLHU) 
A(LP»1)*C*-S8 
AILM»ll-CA»S8 
B(LP»1)«CB»SA ." " 
BILH»1»»CB-SA 
LP-LPUNC 
LP.NINC-LP 

• • I F I LP.LT.LM I GO TO 3 
RETURN 
END 
SUBROUTINE CPFTIP, 1 . N, INCPt SIGNPI 

FORTRAN TRAMSL1TERATICN OF SINGLETON'S 6600 ASSEMBLY COOED FFT. 
DIFFERS FROM SIHGLET3MS ORIGINAL In THAT THERE IS A SPECIAL LOOP 
FOR AHGlc-PI/2. TUS SHOULD RE FASTE" ON MACHINES WHOSE FLOATING 
POINT ARITHMETIC IS MUCH SLO.ER THAN INOEXING INOT TRUE ON CDC 6600) 
SEE COMMENTS IN 0TFE3 VFPSICN. 
A. BRUCE LANGOON, H OIVISION. L . L . L . . 1971. 

RPFT2 41 
•PFT2 42 
RPFT2 43 
RPFT2 44 
RPFTJ 45 
RPFT2 4* 
SPFT2 47 
RPFT2 48 
RPFT2 49 
RPFT2 50 
RPFT2 51 
RPFT2 52 
RPFT2 53 
RPFT2 54 
RPFT2 55 
RPFT2 56 
RPFT12 2 
RPFFI2 3 

.RPFT12 4 
RPFTI2 5 
RPFTI2 6 
RPFTI2 7 
RPFTI2 » 
RPFTI2 9 
RPFTI210 
RPFTI211 
RPFTI212 
RPFTI213 
RPFTI2I* 
RPFT1215 
RPFTI216 
RPFTI217 
RPFTI218 
RPFTI219 
RPFTI220 
RPFTI221 
RPFTI222 
RPFTI223 
RPFTI224 
RPFTI225 
RPFTI226 
RPFTI22T 
RPFTI22B 
RPFTI229 
RPFTI230 
RPFTI2U 
RPFTI232 
RPFTI233 
RPFTI234 
RPFTI235 
RPFTI2J6 
RPFTI237 
RPFTI238 
RPFTI239 
RPFTI240 
CPFTPI22 
CPFTPI23 
CPFTPI24 
CPFTPI25 

.CPFTPI26 
CPFTPI27 
CPFTPI28 
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ce*L m i ) , n i t 
t M « G E R M C ' I P , SPAN, RC 
RFAl S I N E S ( l i ) , 1 0 , t l 
o»r* SINJSID/O./ 
I F I S l h c S m . E C . l . ) CO 
S I K E S I U - ' l . 
T a A T ' N I L I 
DC 2 I S - Z . I S 
S I n r S ( I S I ' S l N I T ) 

2 T - T / 2 . 
1 CCNTINUE 

I F I H , E 0 . 1 > PSTURN 
tNC«INCP 
S G r i - t S I G N I L S I G N P I 
SP*M'NtNC>N«lKC 
l T a N / 2 

"" CO 3 1 S - 1 . 1 5 
I F I I T . E a . l I CO TO 12 

3 I T - t T / 2 

10 T . S » ( S O « C - C O » S ) 
c-c-::otc»so*s) 
S>T 

I t Kl-Kv)»SPAN 
ftO*<l(KO*l) 
R l > P < X l + l ) 
l O - K K O . U 
U - M K . U I I 

' R I K O > l l - R O » R l " 
iiKoni=io»n 
RC-RO-Rl 
I O « | i J - U 

~ R l K i m * C » « 0 - S » I O 
HKi*ii»s»«o»c»io 
K0»K2»SPAN 
I F ( KO.LT .H INC 1 GO TO 11 

"~ K1«K0-N INC 
C — C 

.-- K0*SPAN-X1 
I F I K I . L T . K O 1 CO TO I t 

• " " ' KO-KOUNC 
K l -SPAN-KO 
I F I K O . U T . K l ) GO TO 10 

u continue 
SPAN-SPAM/2 
KO»G 

. . . _ l 3 _ . K l - K O S P A N " • 
R O - a ( K O H ) 
R 1 * R I K U 1 > 
1 C > I I K C t [ l 
I l - I I K I « 1 ) 
R I K O * U * R O * R 1 
t l K O t l l - I O U I 
R I K I H W P . O - R l 

. K K l + l l - l O - U 
K0-K1+SPAN 

~ I F I K O . L T . N I H C 1 CO TO 11 
I F I SCAN.EC. INC ) GO TO 2 0 

. ' KO-SPAN/2 " " ' 
i * K l»KO*SP»N 

S0«RIK(H-1) 
ftl-RIKl+ll 

C P F r » H O 
C P F T P I H 
CPFTPI12 
C P F T P U J 
C P V T P U * 
CPFTPIIS 
C P F T P U 6 
CPFTPI17 
C P F T P U a 
C P F T P U 9 
CPFTPJ20 
C P F T P I 2 1 
CPFTPI22 
CPFTPI23 
C P F T P I 2 * 
CPFTPI25 
CPFTPI26 
CPFTPI27 

- C P F T P I 2 3 
CPFTPI29 
C P F T P t 3 3 
CPFTP I31 
C P F T P I 3 2 
C P F T P I 3 3 
C P F T P t l * 
CPFTPI35 
C P F T P I 3 6 
CPFTP 137 
C P F T P I 3 8 
CPFTP139 
CPFTP1«) 
C P F T P ! * ! 
CPFTP1*2 
C P F T P I , 3 
CPFTP1*4 
CPFTP1*5 
C P F T P U 6 
CPFTP1*7 
C P F T P U S 
C P F T P I * 9 
CPFTPI SO 
C P F T P I 5 1 
CPFTPI52 
CPFTP153 
C P F T P I 5 * 
CPFTP155 
C P F T P I 5 6 
C P F T P I 5 7 
CPFTPI58 
CPFTP159 
C P F T P I 6 0 
C P F T P I 6 1 
CPFTPI62 
CPFTPI63 
C P F T P I 6 * 
CPFTPI65 
CPFTP166 
CPFTPI&7 
CPFTPI68 
CPFTP169 
C P F T P I 7 0 
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!0<I(K0«1> 
t l > I I K l » l > 

I I K O » l ) » M » U _ 
l l (Kl» l l"SCN»(I l - IO) 
ItKH-l l -SCN'tHO-Bl) 
K0»K1*SPAH 
I F | KO.ir.NINC ) CC TO 1* 
K1«INC»!NC 
IFI SP4N.EC.Kl ) GC TC IZ 

' CO-2 .»SIN6SIISI"Z 
I S - t S - 1 
SO-S-SIGM SINESIISIrSGN I 
C- l . -CO 
KO-INC 
GO TO 11 

20 M-NIMC-INC 
N2.NIKC/2 
IJ«JI«RC«0 
IF< N2.EH.INC ) RETURN 
C3 TO 22 

2 l " " I J -N1 - IJ 
J I»N l -J I 
T - R I I J + l l 
R J 1 J U I - M J H I I 
R U t + K - T 
T » I ( r j » l ) 
I U J U I - H J l * l i ~ 
I U t * l l - T 
i n I J . C T . : : 2 : cc TC 21 

22 U - I J U N C 
~ J I -J I *N2 

T . R ( U * U 
~ ~ R ( I J » l l " R ( J I * l l 

R I J t H » - T 
_ : „ . . . T - I I I J * l > 

I ( I J * l » - I ( J I + l t 
— I ( J l * l ) - T 

IT«N2 
~~Z3 I T - I T / Z ' " 

RORC-IT 
' IFt RC.CE.O ) GO TO 23 

J I = R 0 R O 2 * I T 
» IJ»IJ* INC 

I F I JJ .LT.J I 1 GO TO Z l 
" ~ I F ( IJ.LT.N2 ) GO TC 22 

RETURN 
END 

CPFTPI71 
CPFTPJ7? 
Ci>FrplJ3 
CPFTPI7* 
CPFTPI75 
CPFTPt If, 
CPFTP177 
CPFTPI78 
CPFTPI79 
CPFTPI80 
CPFTPI81 
CPFTPI82 
CPFTPI33 
CPFTPIS* 
CPFTPId! 
CPFTOI36 
CPFTFIB7 
CPFTPI30 

~CPFTPI89 
CPFTPI90 
CPFTPI91 
CPFTPI92 

"CPFTPI93 
CPFTPI9* 
CPFTPI95 
CPFTPI94 
CPFTPI97 
CPFTPI98 

" CPFTPI99 
CPFTP100 
CPFTP101 
CPFTP102 
CPFTP103 
CPFTP104 

" CPFTP105 
CPFT°106 
CPFTP107 
CPFTP108 
CPFTP109 
CP eTPlIO 
CPFTPUl 
CPFTPUZ 
CPFTP113 
CPFTP114 
CPFTPU5 
CPFTPU6 
CPFTP117 
CPFTPlia 
CPFTPM9 
CPFTPUO 

http://SP4N.EC.Kl


-149-

LIST OF SnCOLS 

Page where 
defined on 

Description first use 

Latin Alphabet 

a. Complex field quantities 2 

a0,a+,a ELmensionless vector potentials 19 

a. Slowly varying or Fourier amplitudes 2,110 

AfJk-fA^A^A, Vector potentials 13,31 

B Ifagnetlc field 9 

B Q External magnetic field 25 

c Speed of light 12 

o. Group velocities 34 

e Sound speed 18 

C ic-space contour 113 

C_ Bromwich or Laplace contour 113 

c.c. Complex conjugate 

D(w,k) Dispersion relation for electromagnetic 19 
waves 

D +,D Dispersion relation for electromagnetic 19 
sidebands 

100 DR(n,ic) Brillouin dispersion relation 

DQ,D, Partial differential operators 79 

e,e Electron charge, species charge 11,14 

E Electric field 25 

fQ(v),f(v) Petrurbed and unperturbed velocity 64,123 
distribution functions 

F, Electromagnetic field quantities: 25 
F. 5 E ±B ± y z 
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Syabol Description 
G 8(x,t) Green's function for a_(x,t) due to 113 

density noise In species s 
G a(x,t) Green's function for number density due 113 

to density noise in species s 
h Resonance zone 40 
-fl Planck's constant modulo 2ir 5 
•^"("'S^ Multiplicative factors In Green's function 113 

integrand 
I s(d),k) Multiplicative factors In Green's function 115 

integrand 
in Subscript or superscript denoting input or 37 

boundary value 
J,J(z,t),J Transverse current and amplitude 16,110 
J Longitudinal current 69 
J : J ,J~ SinTilation transverse currents 26 
y y y 
J. Trjansverse wave action density 80 
J ,J' Input action density and spatial derivative 40 

JL At 

k Wavenumber 19 
lc, Wavenumber mode j 2 
tyt. Electromagnetic pump-wave wavenumbers 6 
k (x) WKB wavenumber for electron plasma wave 93 
K Kinetic energy density 68 

w 
K_ Kinetic energy density of resonant particles 70 

in waveframe 
L Plasma system length 36 
L_ Plasma density scale length 35 
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Descriptlon 
m,me Electron mass 11 
"i Ion mass 11 
n0 Unperturbed number density 16 
ns' Bs Number density in species s and 

its amplitude 
123,15 

NJ Number of quanta in mode i 5 
P Average momentum density 67 
P Pump parameter 117 
P° Laser power (watts/cm ) 121 
« ) Principal value integral 123 
PR Momentum density in resonant particles 70 
r Field position 15 
t Magnitude of response: r = |* e/$ 0 | 66 
rJ Equilibrium response magnitude 66 
R Relative action transfer 7 
R Complex response amplitude, R = f^/ir? 65 
s Speoies index W 
h,si Action flux density, input action 34,37 
s Action flux density difference: 

s = s Q - s, 35 
s s 3 e 
S n , Sn Number density source term for species s 

and Fourier-Laplace transform 
109 

t lime 2 
Ts Temperature of species s 16 
u(x,t) Transverse electron fluid velocity 28 
i. Transverse electron fluid'velocity for 31 
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Page where 
defined on 

. Description first use 
Particle velocity 9 
Electromagnetic wave group velocity 99 
Longitudinal wave group velocity 57,88 
Characteristic wave velocity 2 
Thermal velocity species s 17 
Trapping velocity 49 
Phase velocity 76 
Oscillation velocity 55 
Transverse oscillation velocity for 11,14 

species s 
lfaTlimnn electron transverse velocity in 19 

pump wave field 
liode J group velocity 3 
Wave energy density in mode j 31 
Field or particle position coordinate 2 
Position coordinate 13 
Position coordinate 13 
Related plasma dispersion function: 

*e=V2"Vs • 12* 
Plasma dispersion function 1 2 4 
Derivative of plasma dispersion function 124 
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Page where 
defined on 

Symbol Description first use 

Greek Alphabet 

a Coupling constant 42,66 
a, Coupling constant mode j 3 
6 Coupling constant 42 
6, Coupling constant mode j 2 
Y Dissipation or growth rate 82 
y . Electron-ion parametric decay growth rate 56 

'L Unear growth or damping rate 62 
Y 0 Growth rates for Raman, filamentatlon, 

or Brillouin 45,99,118 
r(u,k) Coupling strength: 

r(u,k) 5 X ^ l + X ^ e ' 1 17 
T Coupling constant.: r = -4ir Im e (0,ie) 40 
6(iD,k) Mismatch ratio: 6 s D_/D + 107 
6j,fij Transverse electron current perturbation 11 
An Number density perturbation 11 
on Laplace and Fourier transformed 6n 109 
S(x) Dirae 6-function 27 
Sc Nonlinear dielectric function perturbation 62 
£K Attenuation length 88 
dp ,&p Nonlinear charge density by species 

and amplitude 60 
fb) Complex, nonlinear frequency nhift 62 
£(1,6QQ Real part of fiu and related function 65 
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Page where 
defined on 

3ybol Deacription first use 
c((i),k) nieleetrie function 15 
e' Real part of e 35 
e" Imaginary part of e 3? 
e. Linear part of e 62 

Nonlinear dielectric function 57 
e,e First and second frequency derivatives of e 33,69 
p Characteristic, n = (et - s)rj. 40 
v. Saall quantity 67 
6 Balative phase of response w.r.t. driver 65 
6 Angle of K w.r.t. to k. 98 
6, Phase of node t 79 
8 Haavlslde unit-step function 40 
K Vavenuaber for density perturbation 6 
K Pinch-point wavenumber 115 P 
K 0 , K L ' K B Characteristic wavenudiers related to 117,118 

Brillouln 
K' Spatial derivative of wavenunber ndLsaBtch 46 
X Debye length for species s 12 

•X Inverse wavenunber 87 
2 2 2 

u Coupling strength: u = K v Q rffl,K)/4 19 
v Dissipation rate 33 
U f f Effective dissipation rata 48 
wai ELectron-lon collision frequency 40 
v. Dlssipaticn rate for node J 2 
V. Dissipation rate for electron wave or 

ion sound wave 55 
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Symbol 

M 

Daaerlption 
Characteristic, C = (ct • 3)rj_ 
Dioensionless phase Telocity: 

Page where 
defined on 
first use 

40 

C 2 U/V2 kv o 124 
0 Ware action flux density input ratio 37 
p(t) Total charge density 60 
p^t).? Vharge density species s and Fourier 

amplitude 
60 

S - 8 Linear part of species charge density and 
Fourier amplitude 

60 

<r Characteristic, a = (ct - t)(r J J ) 1 / 2 40 
T Characteristic, T 5 (ct • « X r J 0 ) 1 / 2 40 
t lime 50 
TB Bounce period 49 
Texp Duration of experiment (sees.) 50 
TI Characteristic time for ignored effect 50 
A,A Coulomb potential and Fourier amplitude 15 
A 'J * S 

*0 '•o 
Effective, penderomotive potential and 

Fourier amplitude, species s 15 
« S,« 8 Total potential and Fourier transform, 

species s 15 
\^>i) Susceptibility for species s 15 
x".jfc«.s) Susceptibility kernel and nonlinear 

susceptibility 60,61 
Ponderomotive potential energy and amplitude 32 
Polarization angle 102 
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Page where 
defined on 

Symbol Description first use 
u Frequency '.> 

u Ion acoustic frequency K'l 
Up Bounce frequency i& 

ui. Mode frequency 2 

dWjUin- Linear and nonlinear eigenroode frequencies <r-2 
u Plasma frequency 4U 
ui Plasma frequency for species s U 
oi_ . Transverse wave frequencies . 
Q Beat f ?quency 6 
SI. Characteristic frequency in normal mode 

dispersion relation 2 
0. Real part of (o. 32 
!2 Pinch-point frequency 115 
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FIGORE CAPTIONS 

(a) Stimulated scattering of a higher frequency transverse ware 

occurs Into a lower frequency transverse wave and a longi­

tudinal plasma oscillation. 

(b) Simultaneous three-wave interactions occur coupled by 

a common driven longitudinal density perturbation. The 

process is generally described as modulation. 

Coordinate system for two dimensional scattering in the x-z 

plane with electric field polarizations in the y-direction. 

6 is defined as the angle between real wavenumbers < and 

So-
(a) Three-wave coupling, e.g., Raman or Brillouin scattering. 

(b) Forward scattering or four-wave coupling, e.g., 

filamentation. 

The one and one-half dimensions (I,T ,T ) of the code are 

pictured schematically. Wave propagation and density variation 

occur parallel to x. Transverse waves are linearly polarized 

In the y-direction. Magnetic fields are parallel to z. The 

three-wave interaction is diagrammed. 

The equations describing transverse waves and particle dynamics 

are integrated forward in time using a time-centered, leap­

frog technique. Currents are calculated from charge locations 

measured over consecutive time-steps and from velocities at the 

half time-steps [j = (J* + O / 2 ] -

Beat heating in an inhomogeneous medium. Because of the 

resonance conditior, there arises a resonance region h. The 

density gradient, described by the scale length 



-165-

L s (dlnng/dz)' , is parallel to the propagation direction 
of wares. 

Fig. 6. Beat heating In a finite, inhooogeneous medium: 
(a) the right- and left-going electromagnetic waves before 
onset of beating; 
(b) (i,v_) phase space after a fairly large amplitude 
electron plasma wave has been established. 

Fig. 7. Relative energy or action depletion R of the high frequency 
wave vs dimensionless parameter (snale length x pump strength) 
4irkQL IUQI /C for beat heating in an inhomogeneous medium 
with input ratio J, /J Q * 1. Ehe data points for 
4TrtQL |u_| /c = 0.5 represent three parameter choices: 
V : ^ I U Q / C I 2 = 0.008 and kgl^ ~ 18.3; D : A I U Q / C I 2 = 0.010 

and kgl^ = 15.2; and A : i,\v^a\2 = 0.012 and k Q L n = 13.7. 
Fig. 8. Steady propagation of a stationary pulse-like three-wave inter­

action for parameters V. = V, = -V 2 = 1: a.(x,t) = -0.1 
tanh(0.15), a 2(x,t) = 0.00499 sech(0.1£), and 
a,(x,t) = 0.1 sech(O.lC) where £ = i - l.Olt. 

Fig. 9. Perturbed pulse propagation for parameters V. = V_ = -V_ = 1, 
and initial conditions a.(x,0) = -0.1 tanh(O.lx), 
a2(x,0) = 0.0499 sech(O.lx), and a (x,0) = 0.1 seeh(0.1x). 

Fig. 10. Propagation of superposed right- and left-going solitary 
pulse solutions showing break-up for parameters 
VI = V, = -V 2 = 1, and initial conditions: a^r^O) = 
-0.l[tanh(0.1C) + tanh(0.1n)], a 2(x,0) = 0.00499 seeh(O.lC) -
2.01 seeh(0.1n), and a_(x,0) = 0.l[sech(0.1g) + sech(0.1n)j 
where £ • x + x- and n = x - x_; ±x_ denote the initial 
locations of the left- and right-going pulses respectively. 
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11. Beat heating in a cold, uniform plasma with initial condi­

tions ajfjc.O) * e(-z), a.fx,0) » 6(i), and e.JLx,0) = 0, 
where 8 is the unit-step function. We have chosen 
parameters V, * V, « 1, v, = 0.2, and V, = v, = \>2 = 
v, = K' ' 0. 

12. Beat heating in a warm, uniform plasma, with initial condi­
tions aj(x,0) = 8(-x), a,(i,0) = 9(x), and a.(x,0) = 0. 
We have chosen parameters V., = V, = 5, V = 1 , v, = 0.2, 
and v. = v_ = K 1 = 0. 

13. (a) Temperature (eV) is plotted as a funciton of time. 
There is a temporary halt in the heating at around the first 
"bounce period" T after the onset of heat heating. 
(b) The relative action transfer is plotted as a function 
of time for a simulation exhibiting +r=n",""2 ' -orresponding 
to Fig. 14). 

14. Phase space (x,v ) and the velocity distribution function 
f(v), for beat heating in a finite homogeneous plasma with 
trapping, for parameters: |u. I " luJ = 0.03c, 
v e(0) = 0.042c, and u Q = 5.0<»e-
(a) At uet = 6; | V n Q l = 0.3, AS/SQ = 0.25, and 
T /T (0) = 1.0. The action transfer rate is large, since 
the beat wave is still in a linear regime. 
(b) At uet = 25j |6n/nQ| = 0.7, As/S Q = 0.11, and 
T /T (0) = 3-3. The density disturbance has become large in 
amplitude. Trapping has significantly reduced the action 
transfer rate. 
(c) At (Det = 40; |fin/nQ| = 0.4, AS/S Q = 0.1, and 
T /T (0) ~ 4.7. There has been significant plasma heating. 
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Beat heating Is no longer resonant but continues In a regime 
described as Induced Thomson scattering. 

2 2 
15. Heating v (T_) - v_ (0) is plotted against input laser 

intensity v. v, (we have chosen equal intensities 
v. * v. ). The period of tine over which the heating is 
measured is defined as the average "bounce period" T„ 
after the onset of beating. The fixed parameters and initial 
conditions for these simulations are KC/U * 8.36, 
"(/""e * 5* 0' a n d "'e^ 0^ * °* 3 5' 

16. Plotted is [A, - 6"A(r)]r, for 54 • -off*, with A, as 
a parameter., Equilibric described by Eq. (64) occur at 
Intersections with ±1. 
(a) Equilibrium occurs only at r Q for A, > 0. 
(b) For A^ = A-.Ag, where A, < Aj < 0, multiple 
equilibria occur for A, but not for A.. 

17. (a) Total electric field E and driving electric lield E-, 
in natural units vs KX; -
(b) Longitudinal phase rpacc, <vM vs wc; 
(c) Electron velor-tv distribution function f(v) in 
arbitrary units vs tcv/io ; all at i t = 300. 

18. (a) Relative response mag Ltude r and relative phtse 6, 
r exp 16 = «/$0 vs (Ufit. 
(b) Frequency ?hift and nonlinear dissipation normalized to 
w« vs a _t. e e 

19. Asymptotic frequency shift normalized to u vs normalized 
wave amplitude |e*(t = ~)|/(mu' /2< ) = t*. /u for slow 
driver switch-on over lit = 50ir {0) and for sudden switcli-on 
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(•). The solid line indicates the theoretical result of 
Ibrales and O'Neil. 

20. Simulation of resonant response of a Uunrellian electron 
plasma (thermal speed v ) to a ponderomotive plane wave 
driving force, of frequency fi (chonn to equal ai ) and 
phase velocity v = fi/ic (chosen to equal 3v ), induced 
by the y x B coupling of two opposed lasers with oscilla­
tion velocity amplitudes UQ and a, (chosen initially 
equal to 0.2v.). Initially the linear normal mode frequency 
is 12, - 1.17(o , and the linear Landau damping -y. is 
0.03UL. The frequencies of the transverse waves are chosen e 
to he a = 5u snd UL = uu - (2 = <a> . For a typical 
simulation, we exhibit at u pt -= 431, 784: 
(a) The driving field E_ and the total field E as 
functions of z, in natural units; 
(b) Longitudinal electron phase space; 
(c) The velocity distribution, In arbitrary units. 

21. For the same simulation as in Fig. 20, we show, as functions 
of time: 
(a) The magnitude t e(t) and $Q (t) of the total and 
ponderomotive potentials; 
(b) Their respective phases 8 and 6_: 
4e(x,t) = 4 e(t) cos(ftt - KX + 6) and 
* 0

e(x,t) = * Q
e(t) cos(fit - KI * e Q ) . 

22. For the same simulation as in Fig. 20, we show, as functions 
of time: 
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(a) The deduced frequency shift SB; 

(b) The nonlinear dampisg-Y,— . 

Fig. 23. For the sane simulation as in Fig. 20, we show, as functions 

of time: 

(a) Coupled mode amplitudes lunl/'Ti' (u-, f/v
A» and 

|S|/V 
(b) Their respective phases 6„. 6,, and 9 . 

u x n 
Fig. 24. Two lasers in channels L and L-l initiate the multiple 

scattering of photons (o>,,k,) by a single plasmon 

(fl.k_)> leading to the genei-atlon of photons in both lower 

and higher fre H .jncy channels. 

Fig. 25. A schematic sketch of Be R/u, and Im il/w. — vs K\ 

for filamentation, with ic-kg » 0. 

Fig. 26. W e a i coupling Brillouin scattering: Re Si/2k-.c and 

Im fl/2kQcs — vs ie/2k0. 

Fig. 27. (a) Strong coupling Brillouin dispersion relation: 

Re .i/uiQ — and Im £f/W vs K/2k_> for cos 8 = 0.25, 

0.50, 0.75, and 1.0, tdth parameters k-A « 0.02, 

VQ/C = 0.2, u / U Q = 0.2, and m./m = 25. 

(b) Combined filamentation and strong coupling Brillouin 

dispersion relations: Re fl/W — and Im ft/uu — vs 

ic/2k0 for cos 8 = 0.0, 0.25, 0.50, 0.75, and 1.0 and 

same parameters. 

Fig. 28. Longitudinal phase space (i,v ) for Brillouin backscatter: 

electrons at 

(a) 0) t = 47.5 and 

(b) u et = 90.0; 



-170-

ions at 
(c) « t * 47.5 and 
(d) u>et » 90.0 

29. Electrostatic energy density, W/n_m c vs time, to t, 
for the K * 2k- mode. 

30. Brillouin pinch-point frequency. Re (3 /m- — , and growth 
rate Im 8 /•>„ —- vs. dimensionleos pump strength P ° 

2 2 1 
(UJ/WQ) (k Qr 0) /2. The pump strengths exceed (kQc-Afo) = 
10 , and thus are in the regime of strong coupling normal 
modes. Results derived using the weak coupling approximation 
are shown by .. . 

31. Brillouin pinch-point solutions for Re K-/2kn — , 
Im Kp/ZkQ — , and Re a/Re y 8 vs (uj/^fyi^T^/2. 

Analytic approximation for weak coupling is shown by 

32. The ratio of mismatches |D_/Dj Irs pump strength 
2 2 (u./uu) (k Qr Q) /2, evaluated at the pinch-point frequency 

and wavenumber for Brillouin backscatter ( 8 = 0 ) and for 
parameters u « UQ and ttfjvn " 10 • 

33. Contoi.- if equal |Dfi| vs Re K/Zkn (abscissa) and 
2 2 Im K/2kQ (ordinate) for a strong pump, (W./ULJ (k Qr 0) H -

10 »(kQe /u.) =10* , and ioe « t^. He fl is set equal 
to the pinch-point frequency. 
(a) Im SI less than the pinch-point growth rate. 
(b) Im ft equal to the pinch-point growth rate. 
(c) 3m IJ greater than the pinch-point growth rate. 
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Flg. y,. Contours of equal fD—| vs Be K/Zkn (abscissa) and 
2 2 Im K/2k0 (ordinate) for a weak pump, (aij/cî ) (*QTQ) ^ 2 * 

10 ,(k0e8/ii>0)3«10 , ard « e « a-. Be 12 is set equal 
to the pinch-point frequency. 
(a) En a less than the pinch-point growth rate. 
(b) Jim ft equal to the pinch-point growth rate. 
(c) Im ft greater than the pinch-point growth rate. 
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