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A Superlinear Infeasible-Interior-Point Algorithm
for Monotone Complementarity Problems

Stephen Wright* and Daniel Ralph'

Abstract

We use the globally convergent framework proposed by Kojima, Noma, and Yoshise
to construct an infeasible-interior-point algorithm for monotone nonlinear complemen-
tarity problems. Superlinear convergence is attained when the solution is nondegener-
ate and also when the problem is linear. Numerical experiments confirm the efficacy
of the proposed approach.

1 Introduction

We consider the problem of finding a vector pair (z,y) € R™ x R™ such that

y=f(z), (zy) =20, <Ty=0, (1)

where f : R™ — R" is continuously differentiable in an open set containing the nonnegative
orthant of R™ (denoted by R’ ) and monotone, that is,

(z' — z)T(f(z') = f(z)) = 0 for all ',z € R7.

Problem (1) is a monotone nonlinear complementarity problem, abbreviated as NCP. We use
S to denote the solution set for (1).

Interior-point algorithms for problems of this type have been considered recently by
Kojima, Noma. and Yoshise [4], Giiler [3], and Potra and Ye [6]. In [4], the authors consider a
broad class of infeasible-interior-point algorithms for (1) and show that, assuming continuous
differentiability of f, at least one of three scenarios eventually occurs: The algorithm reaches
the vicinity of a solution to (1), it reaches the vicinity of a solution to a nearby problem,
or it returns an error condition that indicates that no solution of (1) exists in a certain
large nonnegative neighborhood of (0,0). The algorithm we propose in this paper falls into
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the class considered in [4], and so this global convergence result holds. Under additional
assumptions on f and S, our algorithm exhibits superlinear convergence.

Our algorithm is based on the one described in [9] for linear complementarity problems
(for which f has the form f(z) = Az + ¢ for some n x n positive semidefinite matrix A).
It differs in two main respects. First, the step generated by the algorithm of [9] depends
on the entire iteration history through its use of a parameter t;, which counts the number
of fast steps taken prior to iteration k. However, in order to fit the framework of [4],
the mapping from one iterate to the next must be determined completely by the current
iterate (z*, y*¥), so this explicit dependence on t; must be eliminated. Second, it is no longer
practical to choose the step length o to be the largest scalar in (0,1] that satisfies certain
central path/infeasibility conditions, since to do so would require frequent use of expensive
root-finding techniques applied to components of f(z). Instead, we use Armijo conditions in
conjunction with a backtracking line search technique, in which the initial trial step length
is chosen judiciously.

We present some notation and define the algorithm in Section 2. In Section 3, we state the
results from Kojima, Noma, and Yoshise [4] and show that the algorithm of Section 2 fits this
framework. In Section 4, we prove the rate-of-convergence results under the assumption that
the step lengths are of the same order as the current duality gap estimate z7y/n. We show
in Section 5 that this assumption holds when the minimizer is unique and nondegenerate.
Computational experience is reported in Section 6.

Unless otherwise specified, || - || denotes the Euclidean norm of a vector. We frequently
use (z,y) as shorthand for the vector (zT,37)T € R?". Iteration indices (usually k) appear
as superscripts on vectors and matrices and as subscripts on scalars. Subscripts are used to
indicate components of vectors and matrices. The notation B((Z,7), ) is used for the closed

ball
B((2,9),6) = {(z,y) € R* x R™ | ||(z,y) — (z, 9|l < 8}

The vector (1,1,---,1) is denoted by e, while z, is obtained by replacing all negative com-
ponents in the vector z by zero. If (z*,y*) is a solution of (1), we can partition {1,2,...,n}
into two index sets B and NV, where

z;=0VieN, y=0VieB. (2)

The solution is strictly complementary if z* +y~ > 0.

2 The Algorithm

Given a starting point with (2% °) > (0,0), the algorithm generates a sequence of itera-tes
(zF,y*) > (0,0), k = 1,2,---. With each vector pair (z,y) > 0 we associate the following
quantities:

p=zTy/n, r=y-fz), e=(,1,---,)T,
X = diag(z;, 22, ,Zn), Y = diag(y1,y2," " Yn)-




When (z,y) = (z*,y*), we sometimes attach a subscript or superscript k to the quantities
4, Ty, X, Y to make the dependence on (z*,y*) explicit.

The main computational operation at each iteration is solution of the 2n-dimensional

linear system
o0 ][4 -[_s] o
Y X Ay —XYe+ Gure |’

where & € [0,.5]. The steps generated by the algorithm have the form

z(a) = z+aAxz, (4a)
y(a) = y+aly+g(a), (4b)
where
9(a) = f(z + aAz) — f(z) — aDf(z)Az. (5)
Note that
y(a) — f(z(a)) =1 —a)(y — f(z)) = (1 - o). (6)

At each iteration, the formulae (3) and (4) are used to calculate a fast step and, if it is
unsuccessful, a safe step. Safe steps ensure that desirable global convergence properties hold,
while fast steps ensure rapid local convergence. These two types of steps are distinguished
by different choices of the centering parameter & in (3), different choices of the initial trial
step size for the Armijo line search, and slightly different acceptance criteria for the step
length. While the formal treatment and theoretical utility of fast and safe steps are quite
different, the distinction between them need not be so wide in practice. The wide latitude
allowed to the user in the choice of & and initial trial step size for safe steps means that safe
steps can be made to perform like fast steps during the later stages of the algorithm.

The overall algorithm is parametrized by a variety of positive scalar constants, which we
specify now and explain later, as they arise in subsequent discussions:

x€(0,1), &¢€(0,3), @aec(01]
x € (0,1), 7€(0,1), Bo>0,
0< Ymin < Ymax _<_ %, ’—7 € (O, %), p € (0, min(;fl/+,1 — /C))

The starting point (z°,y°) is assumed to satisfy
“7'0“ S ,BO,an x?yzo 2 YmaxHo- (7)
The main algorithm can now be specified.

for £=0,1,2,---,

if R = O,
then terminate with solution (z*, y*);




(xk+l’yk+l) — fast(x",y");
if gy > ppk
then (z**1,y*+!) — safe(z*, y*);
end if
end for.

Note that the fast step is taken if it produces at least a factor of p decrease in the comple-
mentarity gap p. Otherwise, the algorithm reverts to the safe step. The coefficient matrix

in (3) is the same for both fast and safe steps, so only one matrix factorization is required
per iteration.

The safe step procedure is defined as follows.

safe(z,y):

choose & € [7,3], o € [&,1];
solve (3) to find (Az, Ay);
calculate

§ = min( min_z:yi/H, Ymax); (8)

choose a to be the first element in the sequence o, xa®, x2a2, - - -
such that the following conditions are satisfied:

?

zi(@)yi(a) 2 Fz(a) y(a)/n, (9a)
ra(l — &)u < p—z(a)Ty(a)/n < ap; (9b)

return (z(a),y(a)).

A nonzero centering term is used, allowing us to move a nontrivial distance along the search
direction while staying in the set defined by

{(z,y) | ziy: > yp} ' (10)

where v = 4 (see formula (9a)). In the second acceptance condition (9b), the left inequality
ensures a “sufficient decrease” in the objective function. A condition of this kind is present in
most optimization algorithms based on line searchs. The purposes of the right inequality in
(9b) is to prevent improvement in the complementarity gap u from outpacing improvement
in the infeasibility, measured by r. The relevant result is proved in Lemma (2.2).

Fast-step calculations are a little more complicated. Since it is not permissible in the
framework of [4] to maintain a counter ¢, of the number of fast steps taken prior to iteration
k, we form an estimate { of its value by examining the properties of the current iterate. The
integer £ is in turn used to form 4 and 3, which are used in the acceptance criteria for t.he
step length a. We show in later analysis that 4 and § have essentially the same properties
as the quantities ¥ and 3 in the algorithm of [10].
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fast(z,y):

solve (3) with & = 0 to find (Axz, Ay);
calculate ¥ as in (8);

define 4 = Ymin + (¥ — Ymin);
calculate

§= ﬁ (11)

and define 7 to be the smallest positive integer such that

t

[Ha-#)<4,

i=1
(with £ = 0 if B > 1);
if =00 then return(z,y);
define # = 7' (with 8 =1 if r = 0);
define
Clo =1- "%T—.-; (12)
min(¥ — 4, f)
if ® <0 then return(z,y);
choose a to be the first element in the sequence o, xa®, x%a®, - -,
such that the following conditions are satisfied:
zi(@yi(e) 2> Fz(a) y(a)/n, (13a)
s(@)Ty(@) > (1—a)(l - Ao (13b)

return(z(a), y(a)).

There is no centering component in this step, since @ = 0. It is therefore necessary to relax
the value of v in (10) from ¥ to 4 to ensure that we can move a nontrivial distance along this
direction while staying in this set. The second acceptance criterion (13b) is again motivated
by our wish to not allow improvement in g to outpace improvement in r. There is no Armijo
condition for the fast step. Instead, a “sufficient decrease” condition is enforced in the main
program, since the fast step is accepted only if urs < pps. o 3

We stress again that we use the subscripted notation &, 9%, Bk, Bk, and ¢, to denote the
values of 7, 4, B, B, and f associated with the k-th iterate (z*,y*). We use aj to denote the




value of a used by the step that is actually accepted, whether it comes from fast or safe.
For the purposes of subsequent analysis, we also define

k-1
Ve = H(l - aj).
=0
From (6), we have that
r* = . (14)
Suppose that successful fast steps are taken at iterations ky, ks, - - -, with
0Sk1<k2<"',

and that safe steps are taken at all other iterations. If we define ¢, to be the total number
of fast steps accepted prior to iteration k, then clearly

e, =11, 1=12,---, (15)
and
tr =1, k=k+1,---, kg1, 1=12,---. (16)

The following result relates the settings of 4 and ﬁk on each fast step to t;. Its proof is
rather technical and is relegated to the appendix.

Lemma 2.1 Ifr® # 0, then for each iteration ky, | = 1,2,---, at which a fast step is taken,
we have for 1 =1,2,---, that the following inequalities hold.

th <ty =1-1, (17

F = Yemin = 7 (Ymax — Yenin), (18)

Yo, — Vo 2 '71—1(1 — 7)(Ymax — Yemin)s (19)
B 2 7, | (20)

-min(Yx, — Yk Bkz) > 7 (Ymax — Yimin)- (21)

If r® = 0, the inequalities (18), (19), and (21) are satisfied.

Finally, we show that the improvement in complementarity px/po cannot exceed the
improvement in feasibility ||r*]|/||r°||, modulo a constant factor 3, > 0.

Lemma 2.2 Ifr® # 0, all iterates (z*,y*) satisfy

e B 2
11 = Bo 22
where -

1> 8 =[[(1 - %) > e

1=1

Proof. The first inequality follows from (9b), (13b), and (6), with simil:%z,r a,rgurnen;:/s2 t-o
those in the proof of Lemma 2.1, which we do not repeat here. The inequality B > e™/% is
proved in {10, Lemma 3.1). u




3 Global Convergence

Kojima, Noma, and Yoshise {4, Section 4.1] analyze an algorithm that would be equivalent
to our algorithm if we allowed only safe steps to be taken. They show that it fits into the
framework that allows their global convergence result to hold. We show in this section that
the use of fast steps does not disqualify our algorithm from the framework of [4], and so the
main global convergence result of that paper holds.

Throughout the section we assume only that f is continuously differentiable and mono-
tone. '

The model algorithm of Kojima, Noma, and Yoshise consists of three fundamental com-
ponents:

¢ An admissible set  C (R}, x R},)US (where R}, is the strictly positive orthant
in R™) to which all iterates are confined. In our case,

Q= {(z,9) 20| lly ~ f(@)ll < (Bo/BL)(="y/n), miys = A(cTy/n), i=1,---,n}.

e A merit function ¥(z,y), which in our case is simply ¥(z,y) = ¥y = np.

e An algorithmic mapping A that produces a new point (z*,y*) € @ from a given
(z,y) € Q: In our case, A is the fast step calculation whenever it produces a decrease
factor of at least p in u; otherwise, A is the safe-step calculation.

The main result of [4] is obtained if the following condition is satisfied. (Note that the items
in this condition are obtained by combining Conditions 2.1 and 2.3 of [4].)

Condition 1 The admissible set Q, merit function ¢, and algorithmic mapping A satisfy
the following conditions:

(i) (2°,4°) € Q;
(i) Q@ = Q4 UQs is a subset of (RT, x RT,)US and is closed in (R™ x R™), where
Qe =N (RY, xRYL), Qs =0NS;
(iii) i is a real-valued and continuous function on Q4 ;

(iv) A is a point-to-set mapping from Q into the collection of nonempty subsets of .
For every (Z,7) € Qyy, there ezist positive numbers § and € such that if (z,y) €
B((z,%),6)NQ and (z*,y*) € A(z,y), then either

(z*,y%) € Qs

or

(z*,y%) € Quy and P(z*,y7) < Y(z9) —




(v) sup{zTy | (z,y) € Q4+, ¥(z,y) < T} < 0o for every sufficiently large T € R;
(vi) if (z%,y*) € A(z,y), then

y* = f(z¥) = (1 -0)(y - f(2)),
for some 8 € (0,1].

It is immediately clear from our definition of 2, 1, and A that our algorithm satisfies Con-
dition 1(i), (ii), (iii), (v), and (vi). The following two lemmas show that the remaining
condition, (iv), is also satisfied. The first of these lemmas essentially shows that the require-
ments (9) on the step length o4 in a safe-step calculation are satisfied for all a4 sufficiently
small. In keeping with the definition of the generic algorithm of [4], in which the mapping
A does not depend explicitly on the iteration history, we state the result without reference
to the iteration counter k. The proof of the first result can be found in the appendix.

Lemma 3.1 Suppose that (Z,§) € Q4. Then there ezist b>0and &€ (0,1] such that for
any (z,y) € B((%,%),8)NQ, the calculations (3), (4), and (5) applied to the point (z,y) with
& € [7,1/2] will yield (z(a),y(c)) satisfying the conditions (9) for all o € [0, &].

Lemma 3.2 Given any (z,7) € Q4+, there are constants § > 0 and € > 0 such that if one
step of the algorithm is applied to any point (z,y) € B((Z,7),6) U, the new point (z¥,y™)
generated by this process has (z+)Ty* < 27y — e. Hence Condition 1(iv) is satisfied.

Proof. 1t is easy to check that the result (z*,y*) of any fast or safe step satisfies the

conditions for membership in §2, so we need only find an € > 0 that satisfies the decrease
condition.

Let & and & be as defined in Lemma 3.1. We can clearly choose a 6 < 6 and Cy > 0 such
that

Ty> G V(z,y) € B((2,9),9).
If a safe step is calculated from the point (z,y), then from Lemma 3.1 we have that (9) are

satisfied for all « € [0, &]. Because of the backtracking nature of the step length procedure, it

is easy to see that the step length parameter « actually generated by the safe-step procedure
satisfies :

a 2 min(x4&, &),

where & is the lower bound on the initial trial step length. Setting e} = (x/2)Cs min(x&, &),
we have from (9b) that

(z%)Ty* = 2(a)Ty(a) < 2Ty — k(1 — §)ac’y < Ty — k(1/2)C; min(xé, a) = 2Ty — W

The other algorithmic possibility is that a successful fast step is taken from (z,y). Because
of the acceptance criterion associated with such a step, we have that

(z%)Ty* < paTy = 2Ty — (1 — p)a”y < 2Ty — €9,
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where we have defined €(® = (1 — p)Cs.
The result of the lemma follows by taking e = min(eV), €®). ]
Having shown that Condition 1 holds in our case, we can state the main results, both of

which follow immediately from results in Kojima, Noma, and Yoshise [4]. The first result is
essentially [4, Lemma 2.2].

Theorem 3.3 The sequence (z*,y*) behaves in one of the following three ways.

(4) (z*,yF) € S for some k < .

(B) The sequence {(z*,y*)} is bounded, and every limiting point of the sequence belongs to
SNAQ.

(C) The sequence {(z*,y*)} is unbounded.
The second result follows immediately from [4, Theorem 2.5].

Theorem 3.4 Let ¢ be any small positive number and M be any positive number. Then
there exists a finite integer p such that at least one of the following three alternatives occurs.

(A') (zP)Ty? < € and v, ||| < e.
(B') r°#0, and y||r°| <.
(C') ™ #0, v,||Ir% = ¢, and v,(r*)Tz? — (z?)Ty? > v, M.

In the case (C’), the set
T(M) = {(a,5) € (R} x R}) | (-°)z < M)

contains no solutions of (1).

4 Superlinear Local Convergence

We show here that if the algorithm does not terminate finitely or diverge (that is, if alter-

native (B) of Theorem 3.3 occurs), then the complementarity gap converges superlinearly

to zero, under certain assumptions. The Q-order of convergence is at least 1 + 7, where

# € (0,1) is the user-defined parameter in the main algorithm. The analysis in this section is

similar to that of Wright [11], which deals with the case of linear f, but there are a number

of complications because of the nonlinearity of f and the simpler line search procedure.
We define a near-solution subset of 2,4 by

Q++(S) = {(x7 y) € Q++ IdiSt((:L‘,y),S) S 5}’

where

dist((z, ), S) £ min{||(z",3") = (z,9)}l | (=", y") € S}-

9




Assumption 1 The sequence generated by the algorithm is bounded and does not terminate
finitely. Moreover, there is 6 > 0 such that

(i) for all (z,y) € Qyy(8) there is a constant C3 > O such that a fast step (Az, Ay)
calculated via (3) with & = 0 satisfies ||(Az, Ay)|| < Cay;

(ii) Df(-) is Lipschitz continuous on the set {z|(z,y) € Q44 (8) for some y}.

We show in Wright [11] that this assumption and therefore the conclusions of this section
hold when f is linear and S contains a strictly complementary solution (not necessarily
unique).

In our first result, we show that the initial step length in the fast steps (12) approaches

1, giving the possibility of substantial progress. The result is a consequence of Assumption
1 and Theorem 3.3.

Lemma 4.1 If Assumption 1 holds, then
(i) pe 1 0;
(i) wi/3* L0;

(iti) p}/ min(3k = 4x, Br) — 0.

Proof. Assumption 1 implies that alternative (B) of Theorem 3.3 holds, and so all limit
points of {(z*,y*)} are in SN . Since y = 0 for all (z,y) € SN and since {u} is a
decreasing sequence, (i) follows.

For (ii), we consider the effect of iteration k¥ — 1 on the value of {;. If a safe step was
taken at iteration k£ — 1, then we have t; = #,_; and pr < pgg-1, so certainly

Y
Atx Ate-1 )
If a fast step is taken, then t; = t4_; + 1 and g < pur—1. Hence, by the definition of p we
have . . . .
By < = < Yhk—1 — Pi—1 )
Atk T Ayt FAte-1 Atr-1
Hence, the sequence u}/4'* is decreasing. To see that it decreases to zero, comsider two
cases. First, if only a finite number of fast steps are taken, we have that ¢ is constant for
all k sufficiently large, while y; | 0, so we obtain the result in this case. Second, if there are
an infinite number of fast steps, we have from (23) that ul/¥%* decreases by a factor of at
least p7/3 < 1 on each such step. Hence, the subsequence corresponding to the fast steps
decreases geometrically to zero, so by monotonicity the whole sequence converges to zero,
and (ii) holds in this case also.
For (iii), we note from (17) and (21) that

(29)

Ty < BE
. ~ ~ A — Ttp+2’
min(¥x — %, Bx) 7 :

10




and hence the sequence in question is majorized by a sequence that is decreasing monotoni-
cally to zero, giving the desired result. n

If Assumption 1 holds, then we can define positive constants C4 and C5s such that for the
fast steps (Az, Ay) we have

|A3:3Ay$| S 04”23 t= 1’ R (2 (24)

and
|Az|| < Csp (25)

for all k sufficiently large. Defining & = ¢ 4+ Csuo, where po = (2°)7y%/n, we have under the
prevailing assumption that

lz + aAz]| < €. (26)

The next result show that the initial step length (12) eventually satisfies the acceptance
criteria (13a) and (13b), making reduction of the step length unnecessary.

Lemma 4.2 Suppose that Assumption 1 holds. Define the constant Cg by
Ce =2(Cs + ELC?) (27)
Then provided that (z,y) € Q4.(8) and

Csp <
. A~ Ay — T3
mln(ﬂv 1 7)

where 3, 7, and 5 are defined in fast, the conditions (13a) and (13b) are satisfied for all
Cep J
min(3,% — 4)

Proof. We start with the condition (13a). Using (3), (4), (5), (8), (24), (25), (26), and
Assumption 1, we have for o € [0, 1] that

a € [0, 1- (28)

zi(a@)yi(a)
= (z; + alAz))(y: + aAy; + fi(z + adz) — fi(z) — aDfi(z)Az)

1
>z + al—ziys) + @? AziAy; + oz + aAT) /0 (D fi(z + 8aiz) — Dfi(z)] Az df
> 3u(1 - @) - o?Cus — alle + adal sup [[Df(a +ada) ~ DI@)Aal
9€(0,1)
> Fu(l - a) — &®’Cyp® — o*EL|| Az’
> Jp(l —a) — Cap® — ELCEp’. (29)




Meanwhile, from the right-hand side of (133.); we have
z(a)Ty(a)
(z + aAz)T (y + aAy + f(z + aAz) — f(z) — aDf(z)Az)
1
zTy(1 — a) + 2 AzTAy + o(z + aAa:)T/(; [Df(z + 8aAz) — Df(z)] Az db

Tyl — @) + *Cynp?® + ¥ L||Az|?
eTy(l — @) + Canp® + ELC? . (30)

IA A

Combining (29) and (30), we see that (13a) will hold provided that
(1l = @) — Cap® — ELC2p® > 4u(1 — a) + 4Cup® + (4/n)ELCEu?. (31)
By replacing 4 by 1 in the last term and rearranging, we see that (31) holds if

2(Capp + ELCp)
-9

F-Hp(l —a) —2Cu* —2LCH* 20 <= 1—a>
From (27) we see that this inequality is equivalent to
1—a> £
-9

and, since (32) holds for all & in the range of (28), the condition (13a) also holds for all & in
this range.

Turning now to (13b), we can perform a similar calculation to (30) (but this time seeking
a lower bound) to obtain

.(32)

z() y(e) 2 z7y(1 — @) — Canp® — ELCIp’. (33)
From (27) and (33) we deduce that
2(@)Ty(a) > 27y (1 — o — Cap — ELCEp/n) > 2Ty(1 — a — Cop)-
Therefore a sufficient condition for (13b) is that

R C
tTy(l —a— Cep) > (1 —a)(1 - Bzly <= 1-a> —%lﬁ. (34)

Condition (34) is certainly satisfied for all @ in the range (28), so we obtain the desired
result. =

We now give some threshold conditions on u that ensure that the initial trial step lengt.h
a® is accepted not only by the conditions (13a), (13b), but also by the outer loop, that is, it
yields a reduction factor of at least p in the complementarity u.

12




Lemma 4.3 Suppose that Assumption 1 holds and that (z,y) € Q44 (8) with

1\ V(-9
< [ =
v< () (35)
and X
v p
min(y ~4,5) ~ 2

Then the initial step length o for the fast step defined by (12) satisfies the acceptance criteria
(13), and the fast step is accepted by the main algorithm.

Proof. Note from (35) that

N 1 .
”l—'r S _C_’G_ = #r 2 CSF

Using (21) and (36), we have

Gk B <fqy (37)
mln(ﬁa 2 e 7) mln(ﬂv 1 S 7) 2

We can use Lemma 4.2 and the first inequality in (37) to deduce that o° lies in the range
(28) and hence satisfies (13).

To demonstrate acceptance of the fast step by the main algorithm, we need to show that
z(a®)Ty(a®) < pzTy.
Using (30) again, we have
z(a)Ty(a) < 2Ty(1 — o) + Cu(aTy)u + ELCE(cTy/n)u < 2Ty(1 —a+ Cep).  (38)

From this expression, we deduce that the fast step (with & = a°) is accepted by the main
algorithm if

1-a®+Cep < p. (39)
Note from (36) that )
p p
) 1 - ao = —_—T——= S -.
min(y —4,8) ~ 2
Using both (35) and (36), we have
i s w p
Cout < Copt 7" <y € —r—— < -,
R S ninG-4,8) 72
The bound (39) clearly follows from these expressions, so the fast step is accepted. ]

We are ready for the main superlinear convergence result.
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Theorem 4.4 Suppose that Assumption 1 holds. Then the algorithm eventually always takes
fast steps, and '

(i) the sequence {ur} converges superlinearly to zero with Q-order at least 1 + 7, and
(ii) the sequence {vr} converges superlinearly to zero with R-order at least 1 + 7.

Proof. Because of Lemma 4.1, the threshold conditions (35), (36) will be satisfied for all
sufficiently large k, so fast steps will eventually always be taken.

For the rate-of-convergence result, note from (12), (30), and # € (0,1) that there is a
constant Cio such that

ut A

——————== < Cro, 13> 40
min(y —4,8) ~ 7+ 4o
for all fast iterates k for k sufficiently large. Superlinear convergence of p; with Q-order

at least 1 4 7 follows by standard arguments; see Wright [9, Theorem 6.3] and Wright and
Zhang [12, Theorem 5.2]. For (ii), we have from (22) that

I B
Ve =0l S Bl

so {vk} is majorized by a sequence that converges with Q-order at least 1 + 7, giving the
result. u

#r1 < Cho

5 Nondegenerate Problems

We have already noted that Assumption 1 holds if f is linear and S contains a strictly
complementary solution. In this section, we consider nonlinear f. We show that if (1) has

a unique, nondegenerate solution, and if there is a vector # > 0 for which f(Z) > 0, then
Assumption 1 is satisfied.

Assumption 2 (i) The solution set S contains the single vector pair (z*,y"), where z* +
y*>0;

(ii) There is a point T € R™ such that (Z, f(Z)) > 0;

(ii1) The submatriz
[Df(fc*)ij]ees,jes
(with B defined in (2)) is nonsingular, and Df(-) is Lipschitz continuous in a neigh-
borhood of x*.

We start by showing boundedness of the iteration sequence.

Lemma 5.1 Suppose that Assumption 2 holds. Then the sequence {(z*,y*)} is bounded.

14




Proof. Define ¢* > 0 by

*

€ =3 i_r‘l,nf;(a':) >0,

1==1,

and choose M > 0 large enough that (r°)Tz* < M. Then case (C’) of Theorem 3.4 cannot
occur, so there is a finite integer K such that we have that vk||r%| < €*. Since the sequence
{vk} is decreasing, we have v;||r0|| < ¢* for all £ > K.

By monotonicity of f, we have

(z* - &)T(f(e*) - f(2)) 2 0. (41)
Hence, using (14) and the inequalities z > 0, y* > 0, and (z*)Ty* < (2°)Ty°, we have
@) - @) < 7 f(@) — 27 f(<h)
= @) F@) +r*) < T f(@) + 57 - 3Tk + (M)
= (T [F(Z) + nr®] < 2T f(F) + @ 0 + (2°)74°. (42)

For £ > K we have from (42) that
eeTz* < (2)T[f(2) — €¢] < (zF)T[f(Z) + nr®) < FT f(E) + "7 + (2°)Ty°

Hence, since €* > 0 and z* > 0, it follows that {z*} is bounded.
Boundedness of {y*} follows from

™Il = £ (=) + r* il S WFEEH+ 1)

n

Because of boundedness, case (C) of Theorem 3.3 does not occur, so the sequence either
terminates finitely or converges to (z*,y*). An estimate of the size of the step from (3) can
also be easily obtained.

Lemma 5.2 Suppose that Assumption 2 holds. Then there is § > 0 such that for all (z,y) €
Q44+(6), the step calculated from (3) satisfies

(Az, Ay)l| = O(w). (43)
Proof. Consider the nonlinear system of equations F(z,y) = (0,0) defined by
_ | f@) -y
F($7 y) - [ XYe ’
and note that F(z*,y*) = (0,0) with nonsingular Jacobian

DF(z*,y*) = { Df;f‘) ;{I ] .
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We can choose constants M > 0 and & > 0 such that

(z,y) € B((z*,y"),8) = n(DF(:c",y“))'ln < M.

Also, we know from the definition of 2 that

(z,9) € Uy = ||y — f(2), XYe)|| = O(n).
Combining these estimates with (3), we have for (z,y) € 0, (6) that

I(Az, Ay)l| < M||(y — f(z), XY e - Ge)|| = O(p),

giving the result. =
We can now state the main result of this section.

Theorem 5.3 Suppose that Assumption 2 holds and that finite termination of the algorithm
at the solution point (z*,y*) does not occur. Then Assumption 1 is satisfied.

6 Computational Results

The method described here has been implemented and tested on some small NCPs from the
collection of Dirkse [2] and some larger extended linear-quadratic programming problems
from Zhu and Rockafellar [13]. The following parameter settings are used in our code:

x =.9, o = .01, & = .95, K =.1, 7 =.5,

Ymin = 1074, ~max = 1072, =9, p=0.2.

We modify the algorithm slightly to use a different value for the reduction factor x for the

fast steps. This value, Xtas:, is set to 0.98. The value of sigma is chosen at each safe iteration
according to the formula

o= ma,x(a', min(ﬂ, Umax))7

where we used max = .25. We also avoid calculation of fast steps when they are not likely
to succeed. In our implementation, the fast step is not calculated as long as gz > 0.1; the
safe step is always taken when this condition holds.

Successful termination is declared when the criteria

|[rk|| < nmax(TOL, 1079), ur < TOL

are both satisfied, where TOL = 107!° in our examples.

We experimented with three nonlinear problems from Dirkse [2]. We omit the details of
these problems here, but refer the reader to [2] and the references therein for further details.
Briefly, the problems are

nash: Nash equilibrium problem, with n = 10;
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Table 1: Performance of the algorithm on small NCP test problems

Problem nash josephy colvncp
Starting Point | 2°=e¢ 2°=10e| 2°=e 2%°=10e| 2°=¢ 2% =10e
u° 16(+3)  .21(+5) | .10(4+2) .73(+4) | .59(+2) .28(+5)
1%l oo 30(+4)  .18(+453) | .12(+2) .75(+3) | .65(+3) .31(+5)
Iterations 43 15 9 17 17 24
Solves 47 19 13 22 26 34
Trial steps 702 17 10 17 26 35
Fast steps 2 2 2 3 7 8

josephy: Four-variable problem due to Josephy;
colvnep: A convex programming problem, formulated as an NCP with n = 15.

Two starting points, both of which are distant from the solution, are used for each problem.
They are

®=¢e,  y°=max(1,||f(z%l)e,
and

z° = 10e, y° = max(1, || f(z%)]|oo)e-

Table 1 summarizes the performance of our code on these problems. The entries for x° and
"% are self-explanatory; they indicate that our starting point was distant from the solution
for each of the problems. The number of “iterations” equals the number of evaluations of
the Jacobian Df(-) and also the number of matrix factorizations. The number of “solves”
indicates the number of times the factors were used to compute a (safe or fast) step. The
number of solves typically exceeds the number of iterations because both a safe step and a
fast step are computed on some iterations. The “trial steps” entry is the total number of
candidate step lengths oy that were tried during the entire algorithm. This number is equal
to the total number of evaluations of the function vector f.

The results in the table represent good performance of the method, with the exception
of the Nash problem from the first starting point. The large number of unsuccessful trial
values of ay is due to the lack of sophistication of our Armijo line search, which would
certainly be replaced by a safeguarded polynomial interpolation scheme in a more practical
implementation of the algorithm. When x is changed from .9 to a more conservative .5,
the number of trial steps for this case decreases to 139, without affecting the number of
factorizations. .

Our second set of test problems is quite different from the first. They are large, mixed
linear complementarity problems, in which, given an index set T C {1,-:-,n} and its com-
plement Z = {1,---,n}\Z, we aim to find a vector pair (z,y) such that

y= Mz + q, (xI,yI) Z 07 zgyI = 07 yr = 07 (44) .
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where the coefficient matrix M is positive semidefinite. A few obvious modifications to
the algorithm are required to take account of the mixed nature of the problem, and we do
not discuss these here. We obtain the problems by reformulating the stagewise extended
linear-quadratic programming (ELQP) problems considered by Rockafellar [7] and Zhu and
Rockafellar [13]. The motivation for these stagewise problems comes from optimal control,
and we refer the reader to the cited references for more details. Stagewise ELQPs are quite
complicated to state. They are defined in terms of the quadratic function

N
. T T 1, T 1,.T T
J(uo, ety UNY UL, ,'UN+1) = Z [P, u; + q; v + Eu,' Piui - '2'vi ini - U; Diui}
=1
T T gk T T
T T 1 1
+pg uo + Qi 41VN+1 + Suf Porto — 2N 1QN+1vNs1 — Y [Clvi + ai) i,

=1

where the intermediate variables (zo, - -, zn) satisfy
zo = Bouo + bo, $i=Ai$i—1+Biui+bz‘, i“-—‘l,"',N-

The matrices P; and @Q); are all positive semidefinite. The problem is to find a saddle point
of J(uo,+ -, un; V1, ,UN41) subject tou; € U;, 2 =0,--- ,N,and v; € V;, ¢ =1,--- ,N+1,
where each U; and V; is a polyhedral subset of R™ and R™¢, respectively. Associated with
the ELQP is a primal problem

.n U e U
("0:"',“N1)réll/°x...x[}'~ f( 0, ] N),

where

.. — Uo. * " UN V1t U
f(UOs ,UN) (vx,"',UN-f.:)nlea"’)l{X"'XVNq-l J( 0y yUn, U1, y N+1),

and a dual problem

max g{v1, -, UN$1)s
(vi,vn41)EVIX % Vngy

where

Uy, e, = min J(Ug, * , UN} VL, " * * y UN$1)e -
g( 1 ’ N+1) (s0sryun )€U X XU ( ) ’ y U1y

By introducing explicit representations of the polyhedral sets U; and V;, and introducing
intermediate and slack variables, we can formulate the ELQP as a mixed monotone linear
complementarity problem of the form (44). Moreover, by a “stagewise” ordering of the
variables, we can ensure that the coefficient matrix M is banded, where the bandwidth
is independent of N. It is the bandedness that makes the complementarity formulation
practical, since the time taken to factor and solve the linear system at each iteration of
our algorithm is O(N), rather than the O(N?) that would be obtained by a more naive
formulation. In our code, the LAPACK band solve routines DGBTRF and DGBTRS [1] are
used to solve this linear system.

We tested our algorithm on modifications of the random stagewise ELQPs that are fle-
scribed in Section 6 of Zhu and Rockafellar [13]. The problems are obtained by discretizing

18




Table 2: Performance of the algorithm on smaller ELQP problems

n; = 10, m; = 10, N = 64, dimension = 2600
Data Set 1 3 5 7 9
Lo J9(+4)  11(46) .15(+4) .43(+4) .18(+4)
Iterations 15 19 15 23 18
Solves 20 24 18 35 24
Trial steps 16 24 19 35 24
Fast steps 3 4 5 3 5
CPU time (sec) | 26.1 33.3 25.4 41.2 31.5

continuous generalized optimal control problems, where the data for the continuous prob-
lems is generated randomly. The matrices P; and @); are chosen to be diagonal and positive
semidefinite, while the remaining matrices and vectors in the problem are dense. The poly-
hedra U; and V; are rectangles, that is, Cartesian products of intervals on the real line. In
[13], the matrices Q; and P; are all strictly positive definite, but we modify them here by
setting @; = 0. As discussed in Rockafellar [7], this choice corresponds to “hard” constraints
on the primal variables u;; in fact, the primal problem above reduces to a quadratic pro-
gram. The algorithms described by Rockafellar [8] and Zhu and Rockafellar {13] tend not to
perform well in this important case, however. They lend themselves better to fully quadratic
problems in which P; and @Q); are all positive definite. On the other hand, our interior-point
algorithm seems indifferent to this property.

The code for our algorithm does not take advantage of the linear nature of these problems,
even though the Armijo line search could be replaced easily by an exact determination of the
maximal a;. Our aim is to demonstrate that the algorithm that we analyze in this paper is
quite effective for both linear and nonlinear problems.

We use the code discussed in [13] to generate the data and starting points for our test
problems. Besides resetting each Q; to 0, we modify the starting points slightly to ensure
strict interiority. We use the odd-numbered data sets from the problem generator, which
accounts for our numbering scheme for the test problems. Tables 2 and 3 contain a summary
of our results. The first line of each table contains the dimensions of the problem according
to the notation above. The total dimension of the linear system to be solved at each iteration
depends not only on the total number of components in (ug, - -,un) and (v, -+, vn41) but
also on the number of intermediate and slack variables. Some components of the linear
system can be eliminated conveniently, leaving a subproblem whose size is the “dimension”
indicated in Tables 2 and 3. The numbers of iterations, solves, and trial step lengths are as
in Table 1. The last row contains CPU times on a Sun SPARCstation IPX.

The results indicate good performance, with between 15 and 28 iterations performed for
each problem. These results could have been improved by finer tuning of the user-defined
parameters, but they substantiate our claim that a single set of parameters can give good
performance on very different problems (large and small, linear and nonlinear). Note that the
average number of iterations is slightly higher in Table 3, reflecting the oft-made observation
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Table 3: Performance of the algorithm on larger ELQP problems

n; = 20, m; = 20, N = 128, dimension = 10320
Data Set 1 -3 5 7 9
o 28(+4) .11(+6) .14(+5) .18(+5) .10(+5)
Iterations 21 26 20 28 22
Solves 29 38 25 45 32
Trial steps 34 48 31 52 36
Fast steps 6 4 6 1 4
CPU time (sec) | 435. 548. 406. 592. 452.

that this number grows slowly with problem size in most interior-point methods. Note, too,

that a number of fast steps were taken at the tail of the iteration sequence, and rapid local
convergence was observed.

7 Conclusions

The local convergence results represent a natural extension of those presented in [11} for the
case of linear f. In this case, we require only existence of a strictly complementary solution for
II(Az, Ay)|| = O(r) to bold. Monteiro and Wright [5] show that the strict complementarity
assumption is necessary for superlinear convergence of methods that behave like Newton’s
method near the solution. There is a considerable gap between the weak assumption of the
linear case and the stronger assumptions of Section 5 for nonlinear f, and current research
is aimed at bridging this gap as far as possible.

Our results can be extended easily to the case of Holder continuous Df(-), that is,
|Df(z') — Df(z*))| < Ljjz* — 2?||” for some r € (0,1] and z', z? in a neighborhood of z~.
When 7 > (v/5 — 1)/2, we can show local convergence with Q-order 1 + 7, provided that 7
lies in the range (0,7% 4+ 7 — 1). The algorithm can be modified to allow reduction of 7 after
failed fast iterations, so that that the inclusion # € (0,72 + r — 1), and therefore superlinear
convergence, eventually occurs. Knowledge of 7 is not necessary. In the case of D f(-) merely
continuous near z~, we still have global convergence, from the analysis of Section 3.
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Appendix

Proof of Lemma 2.1. We deal only with the case of r° # 0, since the proofs for the case of
% = 0 are simple specializations.

We prove (17) and (18) by induction on !. Taking ! = 1, we know that safe steps are
taken for k = 0,1,---,k; — 1. Therefore, from (9b), we have

k=1
pe /o 2 JI (1 = a5) = vy,
Jj=1
while, from (14),
rh = ukl'ro.

Therefore, by (11), we have 8, > 1 and fx, = 0 = t;,, yielding (17). For (18), we note that
by choice of (z°,y°) and (8), we have

'70 = “Ymax-:

Since safe steps are taken for k = 0,1,---,k; — 1, we have by repeated application of (9a)
and (8) that
Tmax = Fo=F1 = = Vi
Hence,
Yk — Ymin = Ymax — Ymin,

so (18) is satisfied for I = 1.

We now assume that (17) and (18) are satisfied for ky, k2, -,k and prove that they
continue to be true at k;4;. From (11) and (14), we have that

iy,

ﬂkl/y'o Z Vkuék( 2 Vg, H(l - ’7])'

j=1

Applying (13b) to the fast step that is taken at iteration k;, we have that

(1= aw)(1 = Bu)(pxe/ o)
(1 — o) (1 = Br)v, Br,
Vi +1(1 = Bk;)Bk,

Vig+1(1 — ’7tk'+1)Bkz
t',,,+1 ‘
> vt [ Q-7
e

/‘kt+1/“0

v v

Il

t

Since safe steps are taken at iterations k; +1,- -+, ki41 — 1, we have from (9b) that the ratio
(ur/ve) is nondecreasing for k = k; + 1,-- -, ki41. In particular,
Zk,+l )
/‘k1+1//~"0 2 Vi, H (1-%),
=1

21




and therefore

Bun 2 T1 (1-7). (45)
From (45), the definition of i, +1» and the inductive hypothesis for (17), we have

togy ST +1 <t +1=1=1,,,

so (17) continues to hold at k4.

Combining (13a) at k = k; with (8) at k& = k; + 1, we have that Jg,41 = J%,. In fact, as
observed earlier, 4, is nondecreasing over the safe iterations k =k +1,--+, k43 — 1, and so

’7’:¢+1 Z e Z ‘7’:{4—1 Z :Yk('
Hence, by using the definition of 4, and the inductive hypothesis for (18), we have that
Fripr — Ymin = Yk — Ymin = T(F& — Ymin) = 7 (Ymax — Yenin)-

Therefore (18) continues to hold at iteration ki41. We conclude that (17) and (18) hold for
all1=1,2,---.

To prove (19), we note by (18) and the definition of 4, that

Yo — Yo = A — [7nﬁn + 3, — 7min)} =(1- '7)(’7’:: — Ymin) = (1 — '7);/1—1(%11&1( ~ “Ymin)>
as required.
For (20), we need only note that

By = 70+t 2 U0 = 5l

The final inequality (21) follows immediately from (19) and (20), if we note that 1—-% > 7.

N
Proof of Lemma 3.1. Define

5= 2 min (min(Z;, %)) > 0,
t=1,--m
and choose positive constants Cz and C; such that

2Ty > C; and ||(z,9)]| < Cs for all (z,y) € B((z,7),6).

Df(z) -1
Y X
is nonsingular at (Z,7) and continuous in an open set containing B((Z, 7),8) C (R™ x R}).

The right-hand side of (3) is also continuous with respect to both (z,y) and &. Therefore
we can define a constant C; > 0 such that

Note that the coefficient matrix

Az, Ayl < Gy
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for all (z,y) € B((,§),6) and & € [5,1/2].
Taking « € [0,1] and (z,y) € B((%,7), §), we have

z(a)y(a)

(z + aAz)T(y + aAy + f(z + aAz) — f(z) - aDf(z)Az)

2Ty — a1 — 5)zTy + o AzTAy + a/o (z + aAz)T[Df(z + 8aAz) — Df(z)]|Az db

< 2Tyl —a(l - &) + a®C? + aCy(Cs + Cy) os&p)HDf(:r: + 8aAz) — D f(z)|]. (46)
€(0,1

I

Hence the left inequality in (9b) is certainly satisfied if

a®C? + aCy(Cs + C’l)osgpl) IDf(z + 8aAz) — Df(z)]] < (1 — k)a(l — &)zTy. (47
&(o,

By continuity of Df, we can make the following assertion: for each (z,y) € B((i,g),ﬁ),
there is 71(z) > 0 such that

IS +4) = DI < gm0

for all d with ||d}| < n:(z). Since B((Z,7),8) is compact, we have that

& inf ~ mi(z) > 0.
(z,y)€B((£,§).6)nQ

Therefore, setting

5@ = min (A=F)C: T
& —rnln( w0

we have for (z,y) € B((%,7),8), & € [7,1/2), and « € [0,4")] that

02012 + aCy(C3 + Cy) sup ||Df(z + 8alz) — Df(z)]|
9€(0,1)

< a&dMC? 4 aly(Cs + Cy) 0s;1p)HDf(:c + 8aAz) — Df(z)l|
€(0.1
< ol = K)(Ca/4) + aCi(Cs + C1)(1 — k)(Ca/4)/(Co(Cs + C1))
< (1 - k)a(Cy/2)
< (1= 81 —&)zTy. : (48)

Hence (47) is satisfied, yielding the left inequality in (9b). ) -
We now show that (9a) holds. For any : = 1,---,n, (z,¥) € B((%,7),$), and a € [0,&'")],
we have

zi(a)yi(a)




(zi + aAz)(yi + ¢Ay; + fi(z + alz) — fi(z) — aDfi(z)Az)
ziyi + al~ziyi + 5(z7y)/n] — 6*CF — aCy(Cs + Cy) e | Dfi(z + 6aAz) — Dfi(z)|
€(o,

v i

v

ziyi(l — &) + 8a(z"y)/n — *C} — aC1(Cs + O1) o IDf(z + 8arz) — D f(z)|

v

¥(aTy/n)(1 — ) + Ga(zTy/n) - o CF (49)
—aC(Cs + C1) ozt(tpl) |Df(z + 8aAz) — D f(z)]-

Meanwhile, we have as in (46) that
z(a)y(a) < 2yl ~ &1 - &)] + a*C] + aCi(Cs + C1) R IDf(z + aAz) — Df(z)]|.
€(0,1

By combining the last two expressions, we find that (9a) will be satisfied if
(zTy/n)ad(l — 7) — 202C? — 2aC1(Cs + C:) sup ||Df(z + 8aAz) — Df(z)|| > 0,
6€(0,1)
which in turn is true if

(Ca/n)5(1 = Ymax) ~ 2aC2 — 2C4(Cs + C) Sup DSz +0a82) = D)2 0. (50)
€(0,

Just as we chose 7; above, we can find #; such that

(C2/n)3 (1 — Ymax)
I1Df(z +d) - DF@I < {arm=gy

for all (z,y) € B((z,7),4) and ||d|| < 7. Hence, if we choose

2 _ o [amy T2 (C2fn)a(1 —27)
& _mm(a YoR i ;

a calculation similar to (48) shows that (50) (and hence (9a)) is satisfied for all o € [0, &3]
and (z,y) € B((%,), ).

For the remaining inequality, we have as in (46) that

z(e)Ty(a) > zTy[l — a(l = 5)] — &®C? — aCy(Cs + C1) sup ||Df(z + 8alz)— Df(z)|l.

6e(0,1)

Therefore, the right inequality in (9b) holds if
aszly — a?Ct — aCy(Cs + C1) sup ||Df(z + 8aAz) - Df(z)|| 20,

#€(0,1)
which in turn is satisfied if
5Cy — aC? — Cy(Cs + C1) sup ||Df(z + 0aAz) — Df(z)|| = 0. (51)
9€(0,1)
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As before, we can choose 7j; > 0 such that

aC,
|Df(z +d)— Df(z)|| < m

for all (z,y) € B((Z,7),8) and ||d|| < 7s. Another calculation like (48) shows that the
inequality (51) is satisfied if @ € [0, &®], where

~ _ . (2 &Cz 773
a(3) = min (a( ), _ich’ a) .

The conclusion of the lemma is obtained by setting & = &0, u
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