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SECURE PVM

Thomas H. Dunigan and Nair Venugopal

Abstract

This research investigates techniques for providing privacy, authenti-
cation, and data integrity to PVM (Parallel Virtual Machine). PVM is
extended to provide secure message passing with no changes to the user’s
PVM application, or, optionally, security can be provided on a message-
by-message basis. Diffie-Hellman is used for key distribution of a single
session key for n-party communication. Keyed MD5 is used for message
authentication, and the user may select from various secret-key encryption
algorithms for message privacy. The modifications to PVM are described,
and the performance of secure PVM is evaluated.




1. Introduction

PVM, Parallel Virtual Machine [?], is a message-passing system that allows a
collection of heterogeneous computers on a network to function as a virtual par-
allel computer. PVM supplies the functions to automatically start up tasks on
the logical distributed-memory computer and allows the tasks to communicate
and synchronize with each other. Historically, PVM has been used by researchers
to speed up serial computing applications by harnessing the power of worksta-
tions and supercomputers connected by a network. As PVM’s popularity has
grown, it is now used in commercial applications and in applications where some
of the data may need to be protected. This report describes describes extensions
made to PVM to provide privacy, authentication, and integrity to the data passed
between PVM tasks.
The development of secure PVM had the following design goals:

e compatible with PVM architecture

e transparent

e either full-time or on-demand encryption
¢ selectable encryption technology

¢ extensible

o compatible with other Department of Energy (DOE) security projects

PVM can be compiled and run on a wide variety of UNIX systems without
requiring system privileges. Our secure PVM design tries to stay within those
architectural guidelines. The implementation should be transparent, in that a
user should not have to change their application to incorporate the features of a
secure PVM. On the other hand, it is likely (and will be shown) that encryption
slows PVM performance, so the user should be able to turn encryption on or
off on a message-by-message basis. For performance, or encryption strength, or
legal reasons, a user may also wish to select the form of message encryption
used. The PVM implementer should be able to add other encryption modules or
hashing algorithms to the secure PVM implementation. Finally, the funding for
secure PVM is part of a larger DOE project looking at key distribution and user
authentication. Secure PVM should seek to utililize the proposed authentication
and key distribution technologies of these other research tasks.

This report is a subset of a larger research effort [?] that looked at several
research questions in designing and implementing secure distributed applications.

Research issues studied in developing a secure PVM include:
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key generation (random numbers)

key distribution

e n-party session key

crypto API selection

crypto hash functions for authentication

e crypto algorithm performance

This report summarizes the choices made within these research issues subject to
the design goals of secure PVM.

The following section explores the vulnerabilities of PVM and some of the
counter-measures that can be deployed to reduce these vulnerabilities. Section
3 describes extensions to PVM message passing that were made to provide au-
thentication, integrity, and privacy. Section 4 analyzes the performance of secure
PVM, and the final section looks at the limitations of the current implementa-
tion.

2. Vulnerabilities and countermeasures

2.1. PVM architecture

PVM is a message-passing system that permits a network of heterogeneous com-
puters to work in parallel in solving both scientific and commercial applications.
PVM is called a “virtual” machine since it joins physically separate and archi-
tecturally different machines over a network (LAN or WAN). It functions like a
“loosely-coupled” distributed operating system, but runs on top of the existing
operating system (e.g., UNIX). In order to be highly portable, PVM uses the file-
system and memory-management services provided by the underlying operating
system. Manchek’s thesis [?] is the authoritative reference for the design and
implementation of PVM Version 3. The PVM User’s Guide [?] is another useful
source for information about PVM.

The PVM system consists of two parts. The first part is a daemon process,
called pvmd, that resides on all the computers (hosts) making up the virtual
machine. When a user wants to run a PVM application, he first creates a virtual
machine by starting up PVM. This starts a pvmd process on each of the member
hosts in the virtual machine. The pvmd serves as a message router and controller
(see Figure ?7); it provides a point of contact, authentication, process control,
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Figure 2.1: Partial anatomy of PVM

and fault detection. The first pvmd (started by hand) is designated as the master,
while the others (started by the master) are called slaves. Only the master can
add or delete slaves from the virtual machine.

The second part of the PVM system is a library of routines (1ibpvm) that
allows a task! to interface with the pvmd and other tasks. libpvm contains
functions for packing and unpacking messages, and functions to perform PVM
syscalls by using the message functions to send service requests to the pvmd.

PVM daemons communicate with each other through UDP sockets. A task
talks to its local pvmd and other tasks through TCP sockets. UDP cannot be
used for such communications since tasks cannot be interrupted while computing
to perform I/0?. In order to improve latency and transfer rates, PVM 3.3 intro-
duced the use of UNIX-domain stream sockets as an alternative to TCP for local
communication. If enabled at compile time, stream sockets are used between the
pvmd and tasks as well as tasks on the same host [?].

1 A task is a unit of computation in PVM analogous to a UNIX process.
2UDP can lose packets even within a host, requiring retry (with timers) at both ends.




2.2. PVM vulnerabilities

Currently, PVM depends on UNIX and the standard TCP/IP protocol suite
for security. Vulnerabilities exist in the mechanisms used by PVM in starting up
remote daemons and in the communication between PVM tasks on different hosts.
This study is based on several assumptions. First, this research is concerned
with inter-host security issues. Intra-hosts security issues like the reliability of
the operating system services are not addressed in this research. This is because
intra-host security can be subverted by a malicious user with super-user privileges
on the machine. Second, this research does not address the issue of authenticating
a user to a remote host. User authentication mechanisms like the Kerberos [?]
or DCE [?] infrastructure are assumed to be available on the PVM hosts.

The standard PVM implementation provides three mechanisms to start a
slave pvmd on a remote host.

e rexec
e rsh
e manual startup

The user either has to send his password on the remote host in clear-text or make
the remote host “trust” the host running the master pvmd (using rsh). From a
security viewpoint, the use of rexec is no longer feasible to start a slave pvmd,
since rexec requires the user’s password to be sent in the clear over the network
to the host on which the slave pvmd is being started. With “password-sniffing”
attacks becoming very common [?], it would be quite easy for an attacker to
capture the PVM user’s password if rexec is used. Manual logins and daemon
startup are also subject to sniffing attacks.

Trusted hosts and rsh/rlogin can eliminate password sniffing, but trusted
hosts can be impersonated by exploiting existing vulnerabilities in IP-based net-
works. These vulnerabilities include attacks based on IP source routing, DNS
database corruption and TCP sequence number prediction [?] [?]. Also, an es-
tablished session can be intercepted and co-opted by an attacker by IP-splicing®
attacks [?] [?].

In secure PVM, the above risks can be reduced by using existing mechanisms
like Kerberos [?] or new software like SSH [?] or STEL [?]. The user could
require that the set of machines used in his/her PVM application use Kerberos

3Use of one-time passwords do not hinder this attack, since the connection is hijacked after
the user authentication phase.
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for user authentication and for rsh services used in spawning slave PVM dae-
mons. The Kerberos version of rsh offers a reasonable solution to this problem
by modifying the rsh protocol to take advantage of the Kerberos’s authentication
infrastructure. Kerberized-rsh is a drop-in replacement for the Berkeley-rsh and
eliminates most of the risks involved with using the rsh protocol for remote pro-
cess initiation. Instead of Kerberos, SSH or STEL can also be used to securely
spawn processes on remote hosts.

The other vulnerability in standard PVM is that PVM messages between
hosts are not protected. In order to set up secure communication among the
hosts belonging to the virtual machine, a secret PVM session key needs to be
established among the hosts. This secret key is generated on the master pvmd and
distributed to each slave by means of a Diffie-Hellman (DH) [?] key exchange®.
The slave startup protocol was extended to accomplish the DH key exchange.

The user can request secure communication either while starting PVM (i.e., at
the command-line), or selectively enable secure communication on a per-message
basis (i.e., by routines in 1ibpvm). Regardless of the level of security chosen, the
secret PVM session key is always passed on to the slave during daemon startup.

For encryption, the user can choose from secret-key algorithms like DES, 3-
DES, IDEA, and RC4. For authentication and data integrity, the MD5 message
digest algorithm is used. Venugopal [?] analyzes these various algorithms in terms
of speed, cryptographic strength, and licensing. Figure 7? illustrates the relative
performance of these algorithms. The tests were run on a Sun SPARCS with
96MB of memory uder SunOS 4.1.4. The compiler used was gcc, and optimization
was enabled with a “-O” flag.

By using a modular cryptographic API®, new algorithms can easily be added
in the future. New fields were added to existing PVM data-structures to pass on
cryptographic security related information among the participating hosts in the
virtual machine. The details of these extensions are described in the following
section.

3. Implementation of Secure PVM

The security extensions were made to PVM release 3.3.9, which was the latest
one available when work was started on this project. The following subsections

4Instead of Diffie-Hellman, public key mechanisms like the RSA implementation in PGP can
also be used. This approach would require access to the PVM user’s PGP key-rings on each of
the participating hosts.

5Based on the SSH distribution.
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Figure 2.2: Encryption/Hashing performance within a process
describe the extensions made to standard PVM for enhanced security.

3.1. Changes to the user interface

The PVM user can either choose enhanced security services at daemon startup
time or selectively enable them for any specific message sent between PVM hosts.
He can choose from three different levels of security. They are

1. Encryption: The user is assured of message privacy and integrity.
2. Authentication: The user is assured of message integrity.

3. Default: The user gets access to the standard PVM; i.e., services without

cryptographic encryption/authentication support.

While starting PVM, the ‘~e’ flag can be used to specify the encryption al-
gorithm and the ‘-a’ flag can be used to specify the one-way hash function to be
used for authentication. For example,
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1. Start PVM with DES encryption, pvm -edes

2. Start PVM with MDb5 authentication, pvm -amd5

Since there is a performance cost associated with the encryption of mes-
sages, the user may choose to encrypt only essential messages. Support for this
requirement is provided by overloading the “encoding format” parameter® to
pvmmkbuf () (or pvm_initsend()?). Table ?? lists the possible values for the
encoding format.

Table 3.1: Encoding formats used in libpvm

Encoding
PvmDataDefault standard PVM
PvmDataRaw standard PVM
PvmDatalnPlace standard PVM
PvmDataFoo standard PVM

PvmDataDefault_CipherXXX newly added
PvmDataRaw_CipherXXX newly added
PvmDataInPlace_CipherXXX newly added
PvmDataFoo.CipherXXX newly added

T where XXX stands for DES/3DES/IDEA/RC4

For example, to send a message which needs to be encrypted using DES, a
PVM programmer would use the following code segment.

strcpy(buffer, "this is a secret message ");
bufid = pvm_initsend( PvmDataDefault_CipherDES );
info = pvm_pkstr( buffer );

msgtag = 3 ;

info = pvm_send( tid, msgtag );

When pvm_send() gets invoked, it checks to see if the message needs to be
encrypted. If so, it marks all the fragments in the message for encryption by
the local pvmd. When the local pvmd receives a message from 1libpvm, it checks

6Libpvin provides functions to pack all primitive data types into a message. When cre-
ating a new message, the encoder set is determined by the “encoding format” parameter fo
pvm.mkbuf ().

“pvm_initsend() invokes pvmmkbuf ().
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the encryption field in the message fragment and encrypts the data accordingly.
Only messages destined for remote hosts get encrypted (§ ?7).

If the programmer has access to his own crypto-library and only needs access
to a key “shared” among all the PVM hosts, he can invoke pvm_getsesskey() to
get access to the shared PVM session key. This function sends a TM_GETSESSKEY
message to the local pvmd and retrieves the PVM session key. The user can then
use this key to encrypt the data and send the encrypted data opaguely across to
the remote PVM host. At the remote end, his application can extract the PVM
session key from its pvmd in the same way and use it to retrieve the encrypted
data. This feature could be used to enhance the security of PVM direct TCP
connections (i.e., PvmRouteDirect) by using the PVM session key to encrypt and
opaquely send data across to a remote task.

3.2. Internal changes

To provide message integrity, authenticity, and privacy a number of internal
changes were made to PVM. The source for the PVM daemon was modified to
support the new command line arguments, and new source was added to support
key generation, key distribution, encryption, and authentication. Several of the
internal data structures were modified and the message headers were expanded.
Extensions were made to 1ibpvm to add encryption and authentication. Details
of these internal changes are desribed in more detail in the following sections.

Key Distribution Prior to secure communication between the hosts be-
longing to the virtual machine, a secret session key needs to be established among
the hosts. The secret PVM session key is generated on the host running the mas-
ter pvmd. The master pvmd distributes the PVM session key to each slave pvmd
as follows:

1. While starting up a new slave pvmd, the master pvmd initiates a 1024-bit
modulo Diffie-Hellman key exchange with the slave pvmd; to generate a
shared secret key, D Hy.,,, between the master and slave.

2. The master pvmd encrypts the session key using 3-DES with the D Hj,,,
shared with the slave pvmd; and sends the encrypted session key to the
slave.

3. The slave-pvmd; decrypts the encrypted session key using its copy of D Hpey, .

The Diffie-Hellman (DH) key exchange requires each participating entity to
exchange their public keys with each other. The slave pvmd startup protocol
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was extended to accomplish this exchange. When each pvmd (master or slave)
is started up, it generates a public/private key-pair to be used for the DH key
exchange®. The DH public keys exchanged between the master and slave pvmds
are not authenticated. This makes it theoretically possible for an adversary to
mount an active attack (man-in-the-middle attack, [?]) on the DH key exchange
protocol. However, such attacks are not trivial to mount®; so there is still im-
proved security with respect to standard PVM. Since messages are encrypted and
authenticated in secure PVM, and the master pvmd will reject forged messages
for starting up a new slave. This makes it more difficult for an intruder to mount
a man-in-the middle attack on the secure PVM DH key exchange.

Figure ?? shows a host being added to the virtual machine'®. A task calls
pvm_addhosts(), to send a request to its pvmd, which in turn sends a DM_ADD
message to the master {possibly itself). The master pvmd creates a new host table
entry for each host requested, looks up the IP addresses and sets the options from
the host file entries or defaults. The host descriptors are kept in a waitc_add
structure (attached to a wait context!!) and are not yet added to the host table.
The master forks the pymd’, passing it a list of hosts and commands to execute!?.
The pvmd’ uses rsh or manual startup to start each pvmd, pass it parameters,
and gets configuration data back from the newly started slave.

The addresses of the master and slave pvmds are passed on the command
line. The slave writes its configuration on standard output, then waits for an
EOF from the pvmd’ and disconnects. The slave runs on probationary status
until it receives the rest of its configuration from the master pvmd. If it is not
configured within five minutes (parameter DDBAILTIME), it assumes that there is
something amiss with the master and quits. The protocol revision (parameter
DDPROTOCOL) of the slave pvmd must match that of the master. This number
is incremented whenever a change in the protocol makes its incompatible with
the previous version'®. When several hosts are added at once, startup is done in

8The base and the modulos for the DH exchange are constant and are “hard-coded” in this
implementation.

®Private communication with Randal Atkinson, rja@cisco.com (Jan 9, 1996).

10The dotted lines indicate the new messages added to the standard PVM slave startup
protocol.

1Pymds use a wait context (waitc) to hold state when a thread of operation must be
interrupted.

12The shadow pvmd, pumd’, is a process which runs on the master host and is used by the
master to start new slave pvmds.

13The DDPROTOCOL value was incremented while modifying code for this research. This facil-
itates the detection of pvmd versions without security extensions attempting to join the virtual
machine configuration.
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Figure 3.1: Timeline of key-exchange operation

parallel*®. The pvmd’ sends the data (or errors) in a DM_STARTACK message to the
master pvmd, which completes the host descriptors held in the wait context.

After the slaves are started, the master sends a DM_MASTER PUBKEY message
to each slave. The master also sends each slave a DM_SLCONF message to set
parameters not included in the startup protocol. It then broadcasts a DM_HTUPD
message to all new and existing slaves.

On receiving the DM_MASTER_PUBKEY message, the slave computes its copy of
the Diffie-Hellman (DH) shared secret key using its private key and the mas-
ter’s public key. The slave then sends its public key to the master using a
DM_SLAVE PUBKEY message. Upon receiving the DM_HTUPD message, each slave
knows the configuration of the new virtual machine.

14PVM can initiate the startup of five slaves concurrently.
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On receiving the DM_SLAVE_PUBKEY from a slave, the master computes the
DH key shared with this slave. It then encrypts the PVM session key with
the DH key using 3-DES and sends the encrypted session key to the slave in a
DM_SESSKEY message. On receiving the DM_SESSKEY message, the slave extracts
the PVM session key from it. It then informs the receipt of the PVM session key
by sending the master a DM_SESSKEYACK message.

The master waits for an acknowledging DM_SESSKEYACK message from each
newly started slave, and then broadcasts a DM_HTCOMMIT message, shifting all
pvmds to the new host table. Finally, the master sends a DM_ADDACK reply to the
original request, giving the host IDs.

PVM messages The pvmd and 1ibpvm use the same message header (see
Figure ??). Code is an integer tag which specifies the message type. Since
libpvm can pack messages in different formats, it makes use of the Encoding field
to specify the encoding style of the message. The pvmd always sets the Encoding
field to use foo encoding. The pvmds use the Wait Context field to specify the
wait ID (if any) of the waitc associated with the message. The Checksum field is
reserved for future use’®. No modifications were made to the message header in

secure PVM.

Byte 0 1 2 3
0 Code
4 Encoding
3 Wait Context ID
12 (reserved for checksum)

Figure 3.2: PVM Message header

PVM daemons communicate with one another through UDP sockets. UDP
is an unreliable delivery service that can lose, duplicate, or reorder packets. An
acknowledgement and retry mechanism is used by PVM to provide a reliable
delivery service over UDP. UDP also limits packet length, so PVM fragments
long messages. Messages are sent in one or more fragments, each with its own
fragment header. The message header is at the beginning of the first fragment.

Each message fragment is sent in a separate UDP packet. In order to re-
assemble packets back into a PVM message at the receiving pvmd, each packet

15Gecure PVM uses a packet checksum/hash.
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has a packet header with the requisite information (see Figure ??). Multi-byte
values are sent “most significant byte first”, i.e., in (Internet) network byte order.

Byte 0 1 2 3

0 Destination TID

4 Source TID

8 Sequence Number Ack Number

vl R b . .
12 CEIEIRIG Cipher Padding Auth
16 One—Way Hash
of Packet Data

28

Figure 3.3: Pvmd-Pvmd packet header for secure PVM

The source and destination fields hold the TIDs of the true source and final
destination of the packet, regardless of the route it takes. Sequence and acknowl-
edgement numbers start at 1 and increment to 65535, and then wrap to zero. The
Flag field conveys information about the packet like whether it is the first/last
fragment of the message (SOM/EOM), whether any data is contained in the
packet (DAT), whether the packet is an acknowledgment (ACK), or whether a
pvmd is closing down the connection (FIN).

In order to pass on cryptographic security related information among the
pvmds, a few new fields were added to the packet header. The Cipher field is
used by the pvmd to specify the algorithm used to encrypt the data (0 means un-
encrypted) contained in the packet. If the encryption algorithm is block-oriented,
the data will have to be padded to a multiple of the block size before being en-
crypted. The Padding field is used to convey the size of the padding (in bytes)
present in the encrypted data, so that the receiving pvmd can correctly extract the
data from the encrypted payload. The Auth field is used by the pvmd to indicate
whether the data in the packet is authenticated using a one-way hash function
(0 indicates un-authenticated). The last 16 bytes of the packet header are used
to store the one-way hash of the data, if the packet is being authenticated.

Authentication Secure one-way hash functions are used to facilitate the
authentication of data going across the network. The PVM packet header was
extended by 16 bytes to include a 128-bit message digest of the packet data. The
pvmd at the remote host that receives the packet computes the message digest
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from the relevant fields'® in the packet and compares it with the message-digest
which was included in the incoming packet. If they match, the remote pvmd is
assured that the packet is authentic.

If authentication is requested by the user explicitly or implicitly, netoutput ()
checks the pk_authtype field in the packet, and invokes auth_-hash() to gener-
ate a message digest of the packet data (currently, MD5 is the only one-way
hash function supported). The message digest is calculated by auth-hash() as
specified in the keyed-MD5 RFC [?]. The form of the authenticated message is

[< key >< key fill >< data >< key >< M D5 fill >]

The message digest is generated as follows.

1. The secret authentication key is padded with zeroes to the next 512-bit
boundary.

2. The “filled” key is concatenated with the relevant fields of the packet struc-
ture (struct pkt) and concatenated with the original session key again.
These fields include the source and destination task-ids, the packet sequence
number, and the data contained in the packet.

3. A trailing pad with length to the next 512-bit boundary for the entire
message is added by MD?5 itself.

The PVM session key, shared by all the pvmds, is used as the key while computing
the message digest.

netoutput () incorporates the message-digest generated by auth_hash() into
the packet header, sets the Auth field, and adds the packet to the send-queue
for the remote destination. On receiving a packet, netinput () examines the
packet header to check if the Auth field is set. If so, it invokes auth_verify ()
to authenticate the packet. auth_verify() computes the message digest in the
same way as auth_hash(), and checks if it matches the message digest included
in the incoming packet. If they do not match, the packet is considered to be
a bogus one and dropped after logging it to the PVM log file. Message replay
attacks can be detected because the packet sequence number is also hashed in
while generating the message digest. Duplicate packets are logged to the PVM
log file and dropped without further processing.

18Currently the fields that are hashed include the source task-id, the destination task-id, the
packet sequence number and the packet data.
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Encryption Secret-key encryption is used to ensure the privacy of mes-
sages sent across the network. The PVM session key, shared among all the
pvmds, is used as the key for encryption/decryption. To facilitate the use of dif-
ferent algorithms for encryption, a modular cryptographic API is used. This API
implementation'” currently supports DES, 3-DES, IDEA and RC-4.

The encryption/decryption of data is handled on a per-packet basis. If the
encryption field is set in struct pkt, the data portion of the packet is encrypted
before the packet is queued for a remote-destination'®. netoutput() checks the
pk_ctype field in the packet structure to determine the encryption algorithm
being used. It then invokes encrypt_packet () to encrypt the data contained in
the packet. Before encrypting the data, encrypt_packet() pads the data to a
multiple of the block-size used by the encryption algorithm. The Padding field
in the packet header (see Figure ?7) is used to indicate the amount of padding
used.

On receiving a packet from a remote pvmd, netinput () inspects it to check if
the payload is encrypted. If so, it invokes decrypt_packet () to recover the data.
After decrypting the data, the Padding field is checked to see if data was padded
to a multiple of the block-size prior to encryption and only the relevant portion
is extracted. netinput () then sends an acknowledgment to the sending pvmd to
indicate proper receipt of the packet and adds the packet to the reordering queue
for further processing by netinpkt ().

If encryption is chosen, authentication is also implicitly enabled for sending
messages between pvmds. This is because each block of ciphertext corresponds
to some block of plaintext. Since the receiving host needs to know that the
encrypted message is coming from an authentic source, the data also needs to be
authenticated.

PVM Key Generation PVM uses the Diffie-Hellman key exchange to
distribute the secret session key among all the pvmds. For this purpose, each
slave pvmd generates a public/private key-pair, and exchanges public keys with
the master pvmd during startup time. The public/private key-pairs and the
PVM session key used for securing pvmd-pvmd communication are obtained via
a pseudo-random number generator'® implemented using the GNU Maultiple-

Precision (GMP) package.

17Based on SSH’s cipher APIL.

18packet headers cannot be encrypted since the pvmds need to inspect them to make routing
decisions.

19Based on STEL’s method for random number generation.
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In order to achieve better performance, entropy is collected into a buffer from
readily available sources on the local machine. These sources include the current
system time, the host name and operating system version(i.e., the output of
uname()), the process and group-id’s, the current working directory, and the
access/create/modify times of frequently changing files. Other candidates for
“entropy-sources” are the output of UNIX utilities like netstat, vmstat, pstat,
iostat etc®. This buffer is hashed using MD5 to generate a 16-byte value. This
MD5 hash is repeatedly concatenated to generate a 512-byte string which is then
encrypted using 3-DES (used as a mixing function) to distill out a reasonably
random string.

The PVM session key is generated during the startup handshake with the
first slave pvmd connecting back to the master. Prior to generating the PVM
session key, the Diffie-Hellman key shared between the master pvmd and the first
slave pvmd connecting to the master is also used to seed the random number
generating routines.

3.3. PVM and Kerberos

During the initial stages of this research, the integration of PVM with Ker-
beros and/or DCE 2! was investigated. For this purpose, a Kerberos Version 5
Beta 5 KDC was installed along with the Kerberized versions of the Berkeley ‘r’
commands?2.

The PVM design, however, does not fit cleanly into the Kerberos model. In the
Kerberos model, the KDC shares a secret key with each Kerberized service on a
host. This requires the existence of a registered principal on each host?>. In PVM,
multiple users can simultaneously run their own isolated virtual machines with the
pvmds running on any of the non-reserved ports on a host. This design was chosen
in order to allow an user to install PVM without having any special (super-user)
privileges on the machine. Due to this, a single trusted PVM principal cannot
be used to function as the pvmd for all PVM users in a host.

One could perhaps extend the forwardable ticket concept in Kerberos V5 to
create a session key shared among the pvmds. This shared session key could then
be used to encrypt/authenticate messages sent between hosts. However, forward-

20Tt would be great if something like Linux’s /dev/random were available on all UNIX
platforms.

21DOE has several projects based on Kerberos and DCE.

22Kerberos V5 Betab was the latest release available when this research started.

23This suggests the need for a well-known PVM port on each machine.
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able tickets do not function correctly in the Kerberos V5 Beta5 distribution?* and
hence this could not be tested.

Kerberos does provide a programming interface for developing secure appli-
cations, and if all of the hosts participating in a PVM application were running
Kerberos, then the Kerberos API could be used by PVM to provide message in-
tegrity, authenticity, and privacy. At this time, Kerberos is not widely deployed,
so our implementation of secure PVM is self-contained and does not depend on
Kerberos services. DCE is based on Kerberos V5 and authentication and key
management services are roughly equivalent. The DCE programming interface is
RPC-based and does not fit the PVM programming model, though DCE 1.1 will
provide a GSS-based programming interface [?].

4. Performance

All the PVM tests were carried out on Sun SPARCS’s running SunOS 4.1.4 and
containing 96MB of main memory. Experiments were carried out to determine
the message passing performance of secure PVM relative to standard PVM 3.3.9.
All machines were connected to the same Ethernet segment; packets were routed
between hosts in a single hop without being forwarded through any routers.

4.1. Comparison of Pvind Slave Startup Times

The slave pvmd startup protocol (§ ??) was extended to do the Diffie-Hellman
(DH) handshake and to distribute the PVM secret session key among all the
pvmds. Figure 7?7 shows the time taken to start up one to eight slaves in parallel.
Two sets of startup times, one for standard PVM and one for PVM with security
extensions are plotted side by side.

It can be seen that the startup times in secure PVM increases with the increase
in the number of slaves added concurrently®®. The factors contributing to the
additional latency when compared with standard PVM are

e Public/private key computation on the slave pvmd.
¢ DH key computation on the slave pvmd.

¢ DH key computation on the master pvmd.

?4Joe Ramus (ramus@nersc.gov), private email.
25PVM can initiate the startup of five slave pvmds in parallel via rsh.
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Figure 4.1: Time taken to start 1-8 slave pvmnds

e 3-DES encryption and distribution of the PVM session key by the master
pvind.

As the number of slave pvmds started concurrently increases, the DH key
computation on the master pvmd becomes the botileneck.

4.2. Comparison of PVM Throughput

Tests of throughput were run to find out the relative performance of different
encryption/authentication algorithms used in secure PVM. The message-lengths
were varied from 128 bytes to 4k bytes (the default PVM fragment size is 4kB).
Figure ?? plots the bandwidths that can be achieved for traffic between two
PVM hosts with standard PVM, secure PVM with authentication enabled, and
secure PVM with encryption enabled?®. In all the cases, “default” routing is
used (i.e., packets are routed via each hosts’s pvmd). In order to avoid having
to synchronize the clocks of the two hosts or to approximate the offset, messages

26When encryption is turned on, authentication is implicitly enabled (§ ?7).
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are sent round-trip, and the total time difference is divided in half. It can be
observed from Figure 7?7 that adding encryption/authentication extensions to
PVM degrades the throughput performance.
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Figure 4.2: Comparison of throughput performance between two PVM hosts

A program called timing.c is provided with the PVM 3.3.9 distribution to
get an estimate of PVM performance on different platforms. This program sends
messages with lengths ranging from 100 bytes to 1 Mbytes from one PVM host
to another. For each message sent, the sending host gets an acknowledgement
which is 4 bytes long from the receiving host. The results from this test can also
be used to get an estimate of the throughput performance between two PVM
hosts. Table ?? shows the results obtained from running this program with
standard PVM, secure PVM with authentication enabled, and secure PVM with
encryption enabled.
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Table 4.1: Results from timing.c

Message Size PVM | PVM(md5) | PVM(des+md5) | PVM(rc4+md5)
(bytes) (usec) (nsec) (usec) (usec)

100 | 5,739 9.106 10,504 10,509

1000 6,668 10,627 16,804 13,458

10000 18,999 32,022 76,790 49,861

100000 | 147,219 | 276,958 677,735 427,962
1000000 | 1528,444 3113,104 6678,024 4346,369

5. Limitations and Further Work

This research focussed on extending PVM message passing to provide message in-
tegrity, authenticity, and encryption. The use of different encryption/authentication
algorithms and their impact on the performance of PVM were studied. Since
security services based on cryptographic techniques require the keys used for en-
cryption/authentication to be distributed securely, various mechanisms for key
distribution were also investigated.

5.1. Limitations

This implementation of secure PVM has several limitations. Some of these are
due to the fact that the security extensions are done at the application level.
Others are intrinsic to the current PVM design.

Since PVM is layered over the existing operating system, vulnerabilities in
the operating system implementation can be exploited to subvert the security
of secure PVM. For example, a malicious user with super-user access on a host
which is a part of PVM can obtain the PVM session key from the operating
system kernel. '

The transport mechanism used for pvmd-pvmd communication is UDP. 1t is
much easier to forge UDP packets than TCP packets, since there are no hand-
shakes or sequence numbers [?]. Due to this threat, sites using firewalls often drop
all UDP packets arriving at non-reserved ports (e.g., port numbers > 1024). Se-
cure PVM (and standard PVM) will not work with hosts behind firewalls having
this policy.

To securely spawn slave pvmds, secure PVM uses Kerberized-rsh or new proto-
cols like SSH or STEL. In order to use Kerberized-rsh, a Kerberos or DCE infras-
tructure should already exist. SSH and STEL also require system-administrator
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assistance for installation on a machine. Another issue that needs to be consid-
ered is that SSH and STEL are still quite new and have not undergone extensive
public review. Bug-fixes to their implementations should be promptly applied in
order to prevent malicious users from exploiting newly discovered security holes.

In the current design, the PVM session-key is passed on to the slave pvmd
during daemon startup. The encryption and authentication of PVM packets
exchanged between hosts does not begin until the slave pvmd acknowledges receipt
of the PVM session key to the master. Also, there is no provision to change the
PVM session key during a PVM session.

Another limitation is that the pvmd packet headers are sent unencrypted
across the network. This is because the pvmds need to inspect the packet header
for making routing decisions. Also, the packet header specifies the algorithm used
for encryption and the amount of padding used. The pvmd needs access to this
information to correctly decipher the encrypted data. However, portions of the
packet headers are part of the message authentication code.

5.2. Future Work

In addition to inter-host communication via the pvmds on each host, PVM also
supports direct communication between tasks on different hosts. Direct routing
allows tasks to exchange messages via TCP, avoiding the overhead of forwarding
through the pvmds [?]. In this research, encryption support is not provided for
direct task routing. Instead, tasks on each host can obtain the PVM session key
by sending a TM_GETSESSKEY message to the local pvmd, and use this key to
encrypt and opaquely send data across to a remote task.

In order to facilitate changing the encryption key during a PVM session, secure
PVM could have a key hierarchy as in SKIP [?]. A master (or key-encrypting) key
could be exchanged during slave startup, and a separate packet-encrypting key
could be used to encrypt individual packets. The packet-encrypting key would
be encrypted using the master key and sent in-band in the PVM packet. Since it
is sent in-band, it will be possible to change the key used for encrypting packet
data during a PVM session.

By increasing the size of keys used for encryption, brute-force attacks on
cryptosystems can be made “theoretically” infeasible. However, if good random

number generation techniques are not used, attackers can exploit weaknesses in
the key generation techniques to reduce the search-space for brute force attacks.
Operating systems which provide efficient and easy access to randomness sources
could help in generating sufficient entropy for seeding pseudo random number
generators.
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There is a pressing need for implementations of standard security APIs which
are fast and suitable for use in distributed parallel applications. A high-performance
library that includes implementations of both standard and specialized confiden-
tiality and integrity mechanisms would be very useful to application developers.
We chose a custom API developed from the SSH source distribution for secure
PVM. Future work should re-investigate using GSS [?] as the underlying API for
secure PVM.

The Internet community has recognized the need for having an integrated
security framework [?]. By providing security services at the lower levels of the
network hierarchy, ad-hoc application specific security solutions can be replaced
by generic solutions. There would be no need for a secure version of PVM, if the
network (IP) layer provided support for cryptographic security.

5.3. Legal Issues

Foreign accessibility to strong cryptography is considered to compromise commu-
nications intelligence. “According to the U.S. government, cryptography can be
a munition” [?]. Most packages that include cryptographic solutions have export
restrictions associated with them. So considerable care needs to be exercised
while making software using cryptographic algorithms publicly available.

Software and algorithms can be patented in the United States. A large number
of public and secret key algorithms are patented, though some of them can be used
freely for non-commercial purposes. Before incorporating cryptographic solutions
into software packages, the legal issues associated with using them should be
carefully examined.

Due to these reasons, the distribution of secure PVM will have to be con-
trolled. It is likely that there will be two separate PVM distributions, one for
standard PVM and the other for secure PVM. For the current status and availabil-
ity of secure PVM, the reader is invited to visit Attp://www.epm.ornl.gov/pvm.
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