

Approved for public release; distribution is unlimited

RECEIVED

OCT 30 1996

OSTI

**Evaluation of Dredged Material
Proposed for Ocean Disposal from
Buttermilk Channel, New York**

**W. W. Gardiner
E. S. Barrows
L. D. Antrim
B. D. Gruendell
J. Q. Word
J. J. S. Tokos**

**Battelle Marine Sciences Laboratory
Sequim, Washington**

August 1996

**Prepared for the
U.S. Army Corps of Engineers - New York District
under a Related Services Agreement
with the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830**

**Pacific Northwest National Laboratory
Operated for the U.S. Department of Energy
by Battelle Memorial Institute**

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST LABORATORY
operated by
BATTELLE MEMORIAL INSTITUTE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC06-76RLO 1830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831;
prices available from (615) 576-8401.

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

This document was printed on recycled paper.

**EVALUATION OF DREDGED MATERIAL
PROPOSED FOR OCEAN DISPOSAL FROM
BUTTERMILK CHANNEL, NEW YORK**

**W. W. Gardiner
E. S. Barrows
L. D. Antrim
B. D. Gruendell
J. Q. Word
J. J. S. Tokos**

**Battelle Marine Sciences Laboratory
Sequim, Washington 98382**

August 1996

**Prepared for the
U.S. Army Corps of Engineers - New York District
under a Related Services Agreement
with the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830**

**Pacific Northwest National Laboratory
Richland, Washington 99352**

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Summary

Buttermilk Channel (FP No. 36) was one of seven waterways that the U. S. Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle/ Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in March 1994.

Sediment samples were collected from the Buttermilk Channel, as well as from the Hudson River, Gravesend Bay Anchorage, South Brother Island, Port Chester, Eastchester, and Brown's Creek, during a survey conducted from March 7 through 14, 1994. Combining sample collection and evaluation of multiple dredged material projects was more cost-effective for the USACE-NYD because the expense of reference site testing and quality control analyses could be shared among project budgets.

Tests and analyses were conducted on Buttermilk Channel sediment core samples according to the manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), *Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual)*, commonly referred to as the "Green Book," and the regional manual developed by the USACE-NYD and EPA Region II, *Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters*. The evaluation of proposed dredged material from Buttermilk Channel included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Buttermilk Channel were analyzed for grain size, moisture content, and total organic carbon (TOC). A composite sediment sample, representing the entire area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Site water and elutriate water, prepared from the suspended-particulate phase (SPP) of Buttermilk Channel sediment, were analyzed for metals, pesticides, and PCBs. Water-column or SPP toxicity tests were performed with three species, the mysid *Mysidopsis bahia*, the juvenile silverside *Menidia beryllina*, and larvae of the mussel *Mytilus galloprovincialis*. Benthic acute toxicity tests were performed with three amphipods, *Ampelisca abdita*, *Rhepoxynius abronius*, and *Eohaustorius estuarius*, as well as with the mysid *M. bahia*. The amphipod benthic toxicity test procedures followed EPA guidance for reduction of total ammonia concentrations in test systems prior to

test initiation. A similar procedure, although experimental and not EPA-recommended, was followed for the mysid toxicity test. Bioaccumulation tests were conducted with the burrowing, polychaete worm *Nereis virens* and the surface-feeding, bent-nose clam, *Macoma nasuta*.

Buttermilk Channel sediment core samples were black, silty-clayey material. The Buttermilk Channel sediment composite sample contained elevated levels of metals, pesticides (particularly the DDD/DDE/DDT group of compounds), PCBs, PAHs, and 1,4-dichlorobenzene.

No statistically significant acute toxicity was found in static renewal tests with *A. abdita*, *R. abronius*, and *M. bahia*. Survival of *M. bahia* in tests with Buttermilk Channel sediment was 88% in the static renewal exposure and 0% in the static exposure, indicating that the procedure to reduce overlying water total ammonia concentrations in the test chambers to nontoxic levels prior to test initiation resulted in increased survival of *M. bahia*. The sediment composite was acutely toxic and had a greater than 20% increase in mortality over the reference sediment in the static renewal test with *E. estuarius*, and a greater than 10% increase in mortality over the reference sediment in the static test with *M. bahia*. In water-column toxicity tests, 100% SPP treatments were acutely toxic to all three species tested. The median lethal concentrations (LC_{50}) ranged from 22.4% SPP for *M. beryllina* to 78.6% SPP for *M. galloprovincialis* survival. The median effective concentration (EC_{50}) for *M. galloprovincialis* normal development, a more sensitive measure than survival, was 23.0% SPP.

Concentrations of some contaminants were elevated in tissues of *N. virens* and *M. nasuta* that were exposed to Buttermilk Channel sediment in 28-day bioaccumulation tests. Concentrations of metals, pesticides, and PCBs were generally the same or slightly higher in *M. nasuta* than in *N. virens*. Concentrations of PAHs were higher in *M. nasuta*. Tissues of both species exposed to Buttermilk Channel sediment had tissue body burdens that were lower than the U.S. Food and Drug Administration (FDA) action levels for poisonous or deleterious substances in fish and shellfish for human consumption for selected pesticides, FDA levels of concern for chronic shellfish consumption for selected metals, and USACE-NYD bioaccumulation matrix levels. Tissue burdens of organisms exposed to Buttermilk Channel sediment compared with those exposed to Mud Dump Reference Site sediment were significantly higher for metals, pesticides, PCBs, and PAHs. Therefore,

Buttermilk Channel sediment requires further evaluation to determine limiting permissible concentration (LPC) and benthic effects compliance.

Contents

Summary	iii
1.0 Introduction	1.1
1.1 Project Objectives	1.1
1.2 Project Background	1.2
1.3 Organization of this Report	1.2
2.0 Materials and Methods	2.1
2.1 Sediment and Water Collection	2.1
2.1.1 Test Sediment and Site Water Sampling	2.1
2.1.2 Reference and Control Sediment Sampling	2.3
2.2 Test Organism Collection	2.4
2.3 Sediment Sample Preparation	2.5
2.3.1 Laboratory Preparation and Safety Considerations	2.6
2.3.2 Preparation of Sediment for Benthic Testing and Bulk Sediment Analyses	2.7
2.3.3 Preparation of Suspended-Particulate Phase and Elutriate	2.8
2.4 Physical and Chemical Analytical Procedures	2.9
2.4.1 Grain Size and Percentage of Moisture	2.9
2.4.2 Bulk Density and Specific Gravity	2.13
2.4.3 TOC	2.13
2.4.4 Metals	2.13
2.4.5 Chlorinated Pesticides and PCBs	2.14
2.4.6 PAHs and 1,4-Dichlorobenzene	2.15
2.4.7 Lipids	2.16
2.5 Biological Testing Procedures	2.16
2.5.1 Water-Column Toxicity Tests	2.16
2.5.1.1 Water-Column Toxicity Test with <i>Menidia beryllina</i>	2.16
2.5.1.2 Water-Column Toxicity Test with <i>Mysidopsis bahia</i>	2.18
2.5.1.3 Water-Column Toxicity Test with <i>Mytilus galloprovincialis</i> Larvae	2.19
2.5.2 Benthic Acute Toxicity Tests	2.21
2.5.2.1 Static Renewal Tests with <i>Ampelisca abdita</i> , <i>Rhepoxynius</i> <i>abronius</i> , and <i>Eohaustorius estuaricus</i>	2.21
2.5.2.2 Static Test and Static Renewal Test With <i>Mysidopsis bahia</i> ..	2.24
2.5.3 Bioaccumulation Testing	2.26
2.6 Data Analysis and Interpretation Procedures	2.27
2.6.1 Randomization	2.27
2.6.2 Statistical Analysis of Water-Column Tests	2.28
2.6.3 Statistical Analysis of Benthic Toxicity Tests	2.28
2.6.4 Statistical Analysis of Bioaccumulation	2.29

Contents (contd)

2.7 Quality Assurance/Quality Control Procedures	2.29
3.0 Results	3.1
3.1 Sample Collection and Processing	3.1
3.2 Physical and Chemical Analyses	3.2
3.2.1 Sediment Core Sample Description	3.2
3.2.2 Grain Size	3.3
3.2.3 Metals	3.4
3.2.4 Chlorinated Pesticides	3.5
3.2.5 PCBs	3.5
3.2.6 PAHs and 1,4-Dichlorobenzene	3.8
3.3 Site Water and Elutriate Analyses	3.8
3.3.1 Metals	3.8
3.3.2 Chlorinated Pesticides and PCBs	3.10
3.4 Water-Column Toxicity Testing	3.12
3.4.1 <i>Menidia beryllina</i> Water-Column Toxicity Test	3.12
3.4.2 <i>Mysidopsis bahia</i> Water-Column Toxicity Test	3.13
3.4.3 <i>Mytilus galloprovincialis</i> Water-Column Toxicity Test	3.13
3.5 Benthic Acute Toxicity Testing	3.14
3.5.1 <i>Ampelisca abdita</i> Benthic Acute Toxicity Test	3.14
3.5.2 <i>Rhepoxynius abronius</i> Benthic Acute Toxicity Test	3.15
3.5.3 <i>Eohaustorius estuarinus</i> Benthic Acute Toxicity Test	3.16
3.5.4 <i>Mysidopsis bahia</i> Static Benthic Acute Toxicity Test	3.16
3.5.5 <i>Mysidopsis bahia</i> Static Renewal Benthic Acute Toxicity Test	3.17
3.6 Bioaccumulation Tests with <i>Macoma nasuta</i> and <i>Nereis virens</i>	3.17
3.6.1 Bioaccumulation of Metals in <i>Macoma nasuta</i>	3.18
3.6.2 Bioaccumulation of Chlorinated Pesticides in <i>Macoma nasuta</i>	3.19
3.6.3 Bioaccumulation of PCBs in <i>Macoma nasuta</i>	3.20
3.6.4 Bioaccumulation of PAHs and 1,4-Dichlorobenzene in <i>Macoma nasuta</i>	3.21
3.6.5 Bioaccumulation of Metals in <i>Nereis virens</i>	3.22
3.6.6 Bioaccumulation of Chlorinated Pesticides in <i>Nereis virens</i>	3.23
3.6.7 Bioaccumulation of PCBs in <i>Nereis virens</i>	3.24
3.6.8 Bioaccumulation of PAHs and 1,4-Dichlorobenzene in <i>Nereis virens</i>	3.25
3.6.9 Magnification Factors of Compounds in <i>Macoma nasuta</i> and <i>Nereis virens</i>	3.26
4.0 Discussion and Conclusions	4.1
4.1 Sediment Physical and Chemical Characterization	4.2
4.2 Site Water and Elutriate Chemical Characterization	4.2
4.3 Toxicity	4.3

Contents (contd)

4.4 Bioaccumulation	4.3
5.0 References	5.1
Appendix A. Quality Assurance/Quality Control Data for Sediment Physical Chemical Analyses, Buttermilk Channel Project	A.1
Appendix B. Site Water and Elutriate Chemical Analysis and Quality Assurance/ Quality Control Data for Buttermilk Channel Project	B.1
Appendix C. Water-Column Toxicity Test Data for Buttermilk Channel Project	C.1
Appendix D. Benthic Acute Toxicity Test Data for Buttermilk Channel Project	D.1
Appendix E. Bioaccumulation Test Data for Buttermilk Channel Project	E.1
Appendix F. <i>Macoma nasuta</i> Tissues Chemical Analysis and Quality Assurance/ Quality Control Data for Buttermilk Channel Project	F.1
Appendix G. <i>Nereis virens</i> Tissues Chemical Analysis and Quality Assurance/ Quality Control Data for Buttermilk Channel Project	G.1

Figures

FIGURE 1.1. Location of Buttermilk Channel Project Area and Sample Collection Stations	1.3
FIGURE 2.1. Testing Containers for Amphipod Static Renewal Toxicity Tests	2.22
FIGURE 4.1. Summary Matrix of Buttermilk Channel Sediment Toxicity and Bioaccumulation Potential	4.4

Tables

TABLE 2.1. List of Analytes, Methods, and Target Detection Limits	2.10
TABLE 3.1. Summary of Sediment Sample Data for Buttermilk Channel	3.2
TABLE 3.2. Buttermilk Channel Sediment Core Descriptions	3.3

Tables (contd)

TABLE 3.3.	Results of Analysis of Buttermilk Channel Sediment Samples for Grain Size, Percentage of Moisture and Total Organic Carbon	3.4
TABLE 3.4.	Results of Analysis of Buttermilk Channel Sediment Samples for Metals	3.5
TABLE 3.5.	Results of Analysis of Buttermilk Channel Sediment for Chlorinated Pesticides	3.6
TABLE 3.6.	Results of Analysis of Buttermilk Channel Sediment for PCBs	3.7
TABLE 3.7.	Results of Analysis of Buttermilk Channel Sediment for PAHs and 1,4-Dichlorobenzene	3.9
TABLE 3.8.	Results of Analysis of Buttermilk Channel Site Water and Elutriate for Metals	3.10
TABLE 3.9.	Results of Analysis of Buttermilk Channel Site Water and Elutriate for Chlorinated Pesticides and PCBs	3.11
TABLE 3.10.	Summary of Water-Column Toxicity Tests Performed with Buttermilk Channel Sediment	3.12
TABLE 3.11.	Summary of Benthic Acute Toxicity Tests Performed with Buttermilk Channel Sediment	3.15
TABLE 3.12.	Mean Concentrations of Metals in <i>Macoma nasuta</i> Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment	3.19
TABLE 3.13.	Mean Concentrations of Pesticides in <i>Macoma nasuta</i> Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment	3.20
TABLE 3.14.	Mean Concentrations of PCBs in <i>Macoma nasuta</i> Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment	3.21
TABLE 3.15.	Mean Concentrations of PAHs and 1,4-Dichlorobenzene in <i>Macoma nasuta</i> Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment	3.22
TABLE 3.16.	Mean Concentrations of Metals in <i>Nereis virens</i> Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment	3.23
TABLE 3.17.	Mean Concentrations of Pesticides in <i>Nereis virens</i> Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment	3.24

Tables (contd)

TABLE 3.18. Mean Concentrations of PCBs in <i>Nereis virens</i> Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment	3.25
TABLE 3.19. Mean Concentrations of PAHs and 1,4-Dichlorobenzene in <i>Nereis virens</i> Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment	3.26
TABLE 3.20. Magnification Factors of All Analyzed Compounds in Tissues Exposed to a Buttermilk Channel Composite Compared to Mud Dump Reference Site Sediment	3.27
TABLE 4.1. Comparison of Contaminant Concentrations in <i>N. virens</i> and <i>M. nasuta</i> Tissues Exposed to Proposed Dredged Material from Buttermilk Channel with Guidance Levels for Bioaccumulation	4.6

1.0 Introduction

1.1 Project Objectives

The objective of the Buttermilk Channel project (FP No. 36) was to evaluate proposed dredged material from Buttermilk Channel in the Upper Bay of New York Harbor to determine its suitability for unconfined ocean disposal at the Mud Dump Site. The Mud Dump Site is the present dredged material disposal site for the Port of New York and New Jersey. It lies in the apex of the New York Bight about 6 miles east of Sandy Hook, New Jersey, and 12 miles south of Rockaway Point, New York.

Tests and analyses were conducted on Buttermilk Channel sediment core samples according to the manual developed by the U.S. Army Corps of Engineers (USACE) and the U.S. Environmental Protection Agency (EPA), *Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual)* (EPA/USACE 1991), commonly referred to as the "Green Book," and the regional manual developed by the USACE-New York District (NYD) and EPA Region II, *Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters* (USACE-NYD/EPA Region II 1992), hereinafter referred to as the "Regional Guidance Manual." The Regional Guidance Manual provides specifications for the use of local or appropriate test species in biological tests and identifies chemical contaminants of concern.

As required by the Regional Guidance Manual, the evaluation of proposed dredged material from Buttermilk Channel consisted of bulk sediment chemical analyses, chemical analyses of site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Buttermilk Channel were analyzed for grain size, moisture content, and total organic carbon (TOC). A composite sediment sample, representing the entire area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Site water and elutriate water, prepared from the suspended-particulate phase (SPP) of Buttermilk Channel sediment, were analyzed for metals, pesticides, and PCBs. Water-column or SPP toxicity tests were performed with three species, the mysid *Mysidopsis bahia*, the juvenile silverside *Menidia beryllina*, and larvae of the mussel *Mytilus galloprovincialis*. Benthic acute toxicity tests were performed with three amphipods, *Ampelisca abdita*, *Rhepoxynius*

abronius, and *Eohaustorius estuaricus*, as well as with the mysid *M. bahia*. Bioaccumulation tests were conducted with the burrowing worm *Nereis virens* and the surface-feeding clam *Macoma nasuta*.

1.2 Project Background

The proposed Buttermilk Channel project area is located southeast of Governors Island, and northwest of Red Hook, New York (Figure 1.1). The project requires dredging and disposal of an estimated 80,000 cu yd of sediment. Project depth of the channel is -35 ft mean low water (MLW) plus 2 ft of overdepth in the outer channel, and -40 ft MLW plus 2 ft of overdepth mid-channel. Buttermilk Channel was one of seven waterways that the USACE-NYD requested the Battelle/ Marine Sciences Laboratory (MSL) to evaluate in a series of dredged material projects that became known as the New York/New Jersey Federal Projects 2 program. The projects evaluated under the Federal Projects 2 program were Buttermilk Channel, the Hudson River, South Brothers Island, Gravesend Bay Anchorage, Brown's Creek, Port Chester, and Eastchester. Sediment samples from 12 reaches in these waterways were collected during a survey that took place from March 7 through March 14, 1994. Combining sample collection and evaluation of multiple dredged material projects was more cost-effective for the USACE-NYD because the expense of reference site testing and quality control analyses could be shared among project budgets.

1.3 Organization of this Report

Following this introduction, Section 2 presents the methods and materials used for sample collection, sample processing, sediment sample analysis of physical and chemical parameters, and quality assurance. Results of all physical/chemical analyses and bioassays are presented in Section 3. A discussion of the results and conclusions are provided in Section 4. Section 5 lists the literature cited in this report. Appendix A contains tabulated

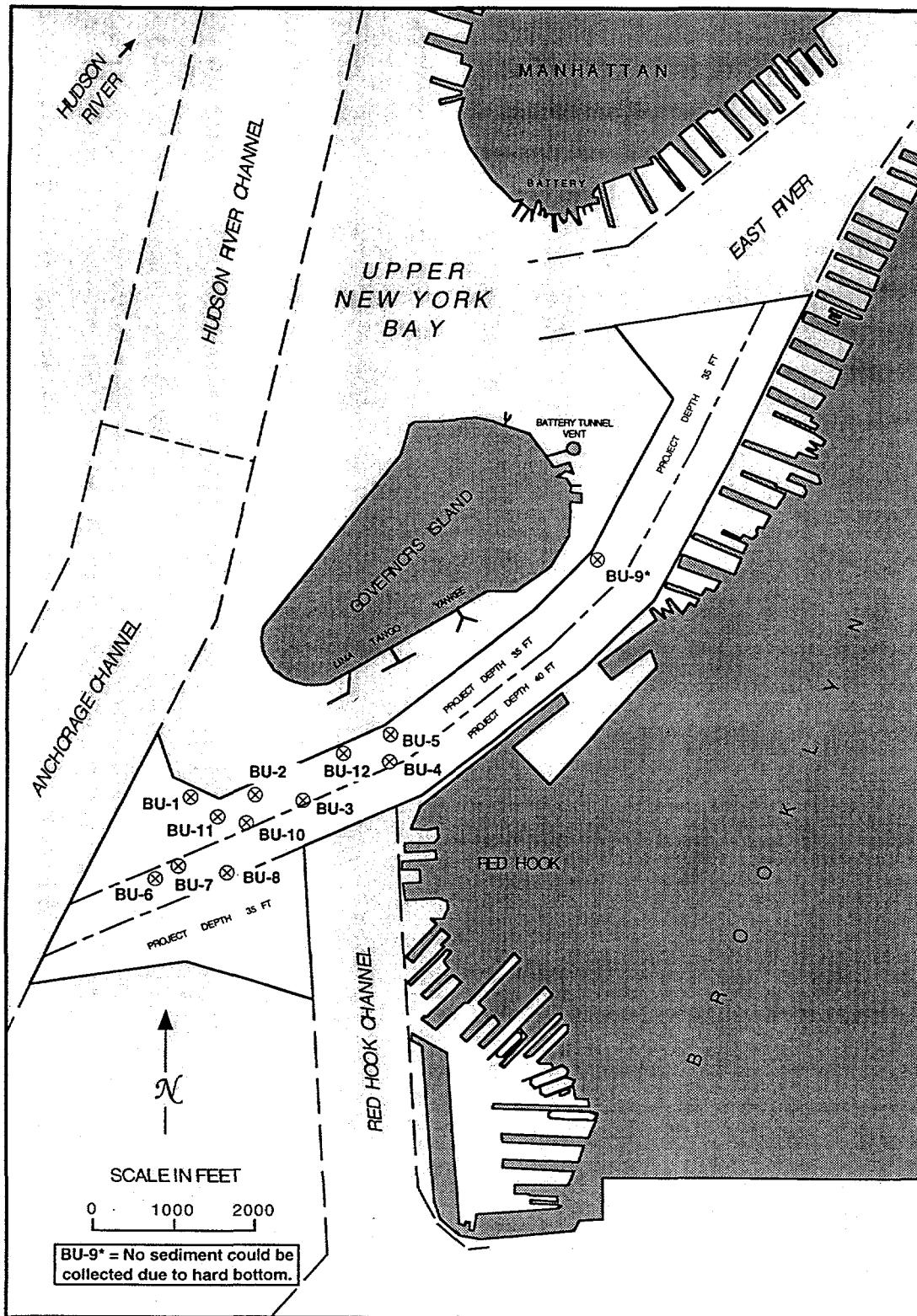


FIGURE 1.1. Location of Buttermilk Channel Project Area and Sample Collection Stations

quality control data for all physical and chemical sediment analyses. Appendix B contains results of replicate sample analyses and quality control data for site water and elutriate chemical parameters. Appendix C contains raw data associated with water-column toxicity tests, such as water quality measurements, test animal survival data, and results of reference toxicant tests. Similar data for benthic acute toxicity tests are provided in Appendix D. Appendix E contains water quality measurements, test animal survival data, and results of reference toxicant tests for the bioaccumulation tests. Appendix F contains replicate sample results and quality control data for chemical analyses of *M. nasuta* tissue samples generated by the bioaccumulation tests, and Appendix G contains replicate sample results and quality control data for chemical analyses of *N. virens* tissue samples.

2.0 Materials and Methods

2.1 Sediment and Water Collection

Sediment samples were successfully collected from 11 out of 12 stations within Buttermilk Channel (Figure 1.1). No sediment was collected at Site BU-9 despite several attempts to sample the site and its vicinity. With each attempt, the vibracorer met resistance due to a hard bottom; the site was eliminated from the study by the USACE-NYD project manager. Sampling locations were selected by the USACE-NYD based on recent bathymetric surveys. The locations, their coordinates, and water and core sampling depths are presented with the sampling results in Section 3.0. Water samples were collected at a representative location in Buttermilk Channel and in the Mud Dump Site. Reference sediment was collected from the Mud Dump Reference Site. All samples were collected aboard the M/V *Gelberman* or the M/V *Hayward*, two vessels owned and operated by USACE-NYD at Caven Point, New Jersey.

2.1.1 Test Sediment and Site Water Sampling

Test sediment core samples were collected using a vibracore sampler deployed from the *Gelberman* or *Hayward*. The approximate sampling locations were first determined with the aid of reference to landmarks, such as shoreline features or buoys, as well as by water depth. Then, a hand-held Magellan Global Positioning System (GPS) was used to identify and record (within 30 m) each sampling station. The vessel's LORAN was available as a backup system. Water depth at the time of sampling was measured by a fathometer on the ship. The actual water depth was corrected to MLW depth by accounting for tide height at the time the depth was recorded. The difference between the MLW depth and the project depth, plus 2 ft overdepth, yields the amount of core required. At some sites, more than one core replicate was required to collect a sufficient volume of sediment for conducting all tests.

Core samples were collected aboard the *Gelberman* using the MSL's vibracore sampler, and aboard the *Hayward* using a vibracore owned and operated by Ocean Surveys, Inc., Old Saybrook, Connecticut. The vibracore sampler consisted of a 4-in. outer diameter (OD), steel core barrel attached to an electric vibratory hammer. The vibratory hammer could be fitted to

steel core barrels of various lengths, depending on the length of core needed. To collect a core sample, the core barrel was fitted with a 3.125-in. interior diameter (ID), steam-cleaned, Lexan polycarbonate tube. The vibracore was then suspended by the ship's crane. Once the coring apparatus was directly above the sampling station, the core was lowered through the water to the sediment surface. At this point, the station coordinates were recorded from the Magellan GPS, and water depth was recorded from the ship's fathometer. The vibratory hammer was switched on until the corer penetrated through the sediment to the desired project depth. Adequate penetration was determined relative to marks on the outside of the core barrel and on the cable suspending the vibracore from the crane. The vibracore apparatus was then pulled out of the sediment and lowered onto the ship's deck. A cutter-head and core-catcher assembly prevented loss of the sediment through the bottom of the core liner. After each core was brought on board, the liner was pulled from the barrel and the length of cored sediment was measured from the mudline to determine whether the appropriate depth had been reached. If the core was too shallow, the liner was replaced and a second core sample was attempted. If the sediment core length achieved project depth plus 2 ft overdepth, it was capped, sealed with tape, and labeled. While on board the sampling vessel, cores were kept cool (~4°C) in a freezer on the deck of the ship. When necessary, cores were cut into shorter sections to fit in the freezer.

A surface-water sample for site water chemical analysis was collected at one station in Buttermilk Channel. Site water was also collected from the Mud Dump Site for chemical analysis and use as dilution water in water-column toxicity tests. Water samples were collected using a clean, epoxy-coated bucket below the surface of the water. Water was then transferred to precleaned, 20-L polypropylene carboys. Prior to the sampling survey, carboys were washed with hot water and detergent, acid-rinsed with dilute hydrochloric acid, then rinsed with distilled water, followed by acetone and methylene chloride. During sampling, the carboys were rinsed with site water three times before filling. Water samples were labeled and stored at ambient temperature (in the shade) while on board the ship.

A log book was maintained containing records of each sample collected, including station designation, coordinates, replicate number, date, sampling time, water depth, core length, and number of core sections per core. At the end of each sampling day, when the *Gelberman* or *Hayward* returned to Caven Point, all sediment cores and water samples were

loaded into a refrigerated van, thermostatically controlled to maintain approximately 4°C. Sample identification numbers were logged on chain-of-custody forms daily.

At the conclusion of the sample collection survey, sediment cores and water samples were shipped by refrigerated van from Caven Point, New Jersey, to the MSL in Sequim, Washington. The shipment departed from Caven Point on March 14, 1994, and arrived at the MSL on March 18, 1994.

2.1.2 Reference and Control Sediment Sampling

Reference sediment for toxicity and bioaccumulation tests was collected from the Mud Dump Reference Site. Four 5-gal containers of surficial sediment were collected using a pipe-dredge sampler. The sampler was deployed from the *Gelberman* and towed astern of the ship for approximately 10 to 20 min. After recovery, water was drained from the sampler, and the sediments were transferred to epoxy-coated steel buckets. The buckets were covered, labeled, and stored at ambient temperature (in the shade) while aboard the ship, then were transferred to the refrigerated van at the end of the sampling day.

Records of reference sediment collected also included coordinates, replicate number, date, sampling time, and water depth. Reference sediment samples were loaded into the refrigerated van at the staging area upon return to port, and sample identification numbers were logged on chain-of-custody forms.

Native control sediments were used in each toxicity and bioaccumulation test to validate test procedures. Control sediment used in *M. nasuta* and *M. bahia* tests was collected from Sequim Bay, Washington, using a Van Veen sampler deployed from an MSL research vessel. *R. abronius* control sediment was collected from West Beach, at Whidbey Island, Washington, using a small anchor-dredge sampler specially designed for collecting the amphipods and their sediment. Locations of these control sites were determined by reference to known shoreline features. While in transit from the sampling site, all control sediments were stored in coolers at ambient temperature and were stored in the walk-in cold room at 4°C±2°C upon arrival at the MSL. Native sediment for *A. abdita*, *E. estuarius*, and *N. virens* were supplied with the test organisms by their respective suppliers.

2.2 Test Organism Collection

Eight species of test organisms were used to evaluate sediment samples from the Buttermilk Channel project area:

- *Ampelisca abdita*, a tube-dwelling, surface detrital-feeding amphipod
- *Rhepoxynius abronius*, a free-burrowing, subsurface detrital feeding amphipod
- *Eohaustorius estuarius*, a free-burrowing, subsurface detrital feeding amphipod
- *Mysidopsis bahia*, a juvenile mysid shrimp
- *Menidia beryllina*, a juvenile silverside fish
- *Mytilus galloprovincialis*, the larval zooplanktonic stage of the mussel
- *Macoma nasuta*, the bent-nose clam, a burrowing, surface-detrital feeder
- *Nereis virens*, a burrowing, deposit-feeding polychaete.

All test organisms except mysids, silversides, and mussels were wild-captured animals, collected either by a commercial supplier or by MSL personnel. The amphipod *A. abdita* was supplied by East Coast Amphipod, Kingston, Rhode Island. *A. abdita* and its native sediment were collected from Narragansett Bay, Rhode Island, by dragging a large dipnet along the sediment surface. Test organisms were carefully removed from their tubes for counting, and then placed in clean, native sediment for overnight transport to the MSL. The amphipod *R. abronius* was collected by MSL personnel from West Beach, at Whidbey Island, using the same anchor-dredge sampler that was used for collecting the amphipod's native sediment. The amphipods were transported to the MSL in clean coolers containing approximately 10 cm of sediment and 5 gal of clean seawater at a temperature approximating natural conditions. The amphipod *E. estuarius* and its native sediment were supplied by Northwest Aquatic Sciences, Newport, Oregon. *E. estuarius* were collected with a benthic dredge, transferred to small plastic containers with native sediment, and shipped in coolers to the MSL by overnight service. Mysids were purchased from Aquatic Biosystems, Fort Collins, Colorado. Mysids that were less than 24-h old were shipped via overnight delivery in plastic bags containing oxygen-supersaturated seawater maintained at approximately 15°C with "blue ice." Silversides were supplied by Aquatic Research Organisms in Hampton, New Hampshire, and were shipped via overnight delivery in plastic bags containing oxygen-supersaturated seawater maintained at approximately 22°C with blue ice. Mussels used for obtaining *M. galloprovincialis* larvae were purchased from the commercial supplier Marinus, Inc., Long Beach, California. Mussels were wrapped in moist paper towels and transported in a Styrofoam cooler packed with blue ice to maintain an ambient temperature of approximately

15°C. Clams (*M. nasuta*) were collected from intertidal zones in Discovery Bay, Washington, by Johnson and Gunstone, Quilcene, Washington. The clams were kept in large containers filled with sediment and seawater obtained from the collection site and transported to the MSL. Worms (*N. virens*) were purchased through Envirosystems, Inc., and were collected from an intertidal region in Newcastle, Maine. The worms were packed in insulated boxes with mats of moist seaweed and shipped at ambient temperature to the MSL via overnight delivery.

All organisms were shipped or transported in native sediment or under conditions designed to ensure their viability. After arrival at the MSL, the test organisms were gradually acclimated to test conditions. Animals with abnormal behavior or appearance were not used in toxicological tests. All acclimation and animal care records are part of the raw data files for these projects.

2.3 Sediment Sample Preparation

Sediment sample preparation consists of all steps performed in the laboratory between receipt of the samples at the MSL and the preparation of samples for biological testing and physical/chemical analyses. Sediment samples for physical, chemical, and biological analysis were prepared from individual core samples, composites from a number of core samples, reference sediment, and control sediment. All sediment samples were assigned random, unique code numbers to ensure that samples are handled without bias by staff in the biology or chemistry laboratories.

Sediment for biological testing was used within the 6-week holding period specified in the Green Book. During this holding time, the sediment samples were received at the MSL; inventoried against chain-of-custody forms; processed and used for benthic and water-column toxicity tests, elutriate analysis, and bioaccumulation tests; and subsampled for sediment physical/chemical analyses. This section describes procedures followed for equipment preparation, compositing strategy, and preparation of sediments for biological testing and chemical analyses.

2.3.1 Laboratory Preparation and Safety Considerations

All glassware, stainless-steel or titanium utensils, Nalgene, Teflon, and other laboratory containers and equipment underwent stringent cleaning procedures to avoid contamination of samples. Glassware (e.g., test containers, aquaria, sediment transfer dishes) was washed with hot water and detergent, rinsed with deionized water, then soaked in a 10% solution of reagent grade nitric acid for a minimum of 4 h and rinsed again with deionized water before it was allowed to air dry. Glassware was then rinsed with methylene chloride and allowed to dry under a fume hood. Polyvinyl chloride (PVC), Nalgene, and Teflon tools were treated in the same manner as glassware. Stainless-steel bowls, spoons, spatulas, and other utensils were washed with hot water and detergent, rinsed with deionized water, and allowed to air dry. They were then solvent-rinsed with methylene chloride and allowed to dry under a fume hood.

Neoprene stoppers and polyethylene sheets or other porous materials were washed with hot water and detergent and rinsed with deionized water. These items were then "seasoned" by continuous soaking in 0.45- μm filtered seawater for at least 2 days prior to use. Large pieces of laboratory equipment, such as the epoxy-coated sediment mixer, were washed with a dilute solution of detergent, and thoroughly rinsed with tap water followed by deionized water.

Equipment used for determining water quality, including the meters for pH, dissolved oxygen (DO), temperature, and salinity, were calibrated according to the manufacturers' specifications and internal MSL standard operating procedures (SOPs).

Because the potential toxicity of the Buttermilk Channel sediment was unknown, sediment processing and testing were segregated from other laboratory activities. Specific areas at the MSL were established for sample storage and for core-cutting, sediment mixing, and sediment sieving. Work areas were covered with plastic sheeting to contain any waste sediment. Wastewater generated during all operations was retained in 55-gal barrels and periodically pumped through activated charcoal filters and into the MSL's wastewater treatment system. These procedures minimized any potential for cross-contamination of sediment samples.

Laboratory staff members were protected by personal safety equipment such as Tyvek suits, plastic aprons, and rubber gloves. Those who were likely to have the most exposure to

the potential volatile compounds in the bulk sediment (i.e., those responsible for opening, homogenizing, and compositing core samples) were also provided with half-mask respirators.

2.3.2 Preparation of Sediment for Benthic Testing and Bulk Sediment Analyses

Each Lexan core liner was opened by scoring the Lexan core liner longitudinally with a circular saw and splitting the liner with a clean linoleum knife to expose the sediment. As each sediment core sample was opened, it was examined for physical characteristics (e.g., sediment type and consistency, color, odor). In particular, the presence of any strata in the cores was noted. All core observations were recorded in the sediment preparation log book. The sediment between the mudline and project depth was then transferred from the core liner to a clean, stainless-steel bowl by scooping the sediment from the core liner with a spoon or spatula. The sediment was mixed by hand with stainless-steel utensils until the color and consistency appeared homogenous, creating a sample representative of the individual sampling station. Sieving was not necessary because live organisms that might interfere with the benthic toxicity tests were not present in the test sediment samples.

Aliquots of the homogenized sediment were then transferred to the appropriate sample jar(s) for physical or chemical analyses required on individual core samples. A portion of each homogenized core sample was also retained as an archive sample. The remainder of the homogenized sediment from the individual core stations was combined to create a composite sample representing the entire Buttermilk Channel project area, designated COMP BU. The composite sediment was homogenized in an epoxy-coated mixer. Aliquots of homogenized composite sediment were transferred to the appropriate sample jar(s) for physical or chemical analyses required on the composite sample. A portion of the homogenized composited sediment was also retained as an archive sample. The remainder was stored in labeled epoxy-coated pails, tightly covered, at $4^{\circ}\text{C}\pm2^{\circ}\text{C}$ until use for SPP/elutriate preparation or benthic toxicity and bioaccumulation tests.

The Mud Dump Reference Site sediment, *M. nasuta* native control sediment, and *N. virens* native control sediment were also homogenized in a large, epoxy-coated mixer, but prior to mixing, these sediments were pressed through a 1-mm mesh to remove live organisms that might affect the outcome of toxicity tests. After mixing, aliquots for physical and chemical analyses were removed. Native control sediments for *A. abdita*, *R. abronius*,

and *E. estuarius* were sieved through a 0.5-mm mesh to remove live organisms and mixed in stainless-steel bowls after sieving. All reference and control sediments were stored at 4°C±2°C until use in benthic toxicity and bioaccumulation tests.

2.3.3 Preparation of Suspended-Particulate Phase and Elutriate

Toxicological effects of dredged sediments dissolved and suspended in the water-column at an open-water disposal site were simulated in the laboratory by preparation of the SPP. To prepare the SPP, a sediment-water slurry was created and centrifuged at low speed. The centrifugation procedure replaced the 1-h settling procedure described for elutriate preparation in the Green Book. Low speed centrifugation provided a more timely SPP preparation and maintained consistency between projects. The supernatant was decanted and reserved for testing with water-column organisms. The elutriate phase was prepared by centrifuging the SPP at a higher speed and collecting the decanted supernatant. This liquid was analyzed for chemical constituents to identify potential water-soluble contaminants that could remain in the water-column after dredge and disposal operations.

The SPP was prepared by creating a 4:1 (volume:volume) water-to-sediment slurry in 1-L glass jars with Teflon-lined lids. The jars were marked at 200 mL and 400 mL and filled to the 200-mL mark with 0.45-µm-filtered Sequim Bay seawater. Sequim Bay seawater was used in place of dredging site water to maintain consistency in salinity among the dredging projects tested. Homogenized COMP BU sediment was added until the water was displaced to the 400-mL mark. Each jar was then filled to 1 L with filtered seawater, placed on a shaker table, and agitated for 30 min at 120 to 150 cycles/min. The slurry was then transferred to 500-mL Teflon jars, tightly sealed, and centrifuged at approximately 1750 rpm for 10 min, at a relative centrifugal force of approximately 1000 g. Following centrifugation, the supernatant was poured into 4-L glass jars. The Teflon jars were rinsed after each use and the above process continued until an adequate amount of SPP was produced from each composite. Between SPP preparations, all glass and Teflon containers were cleaned according to procedures described in Section 2.2.1.1. When all SPP for a treatment was prepared, portions were taken for elutriate preparation. The remaining SPP was either used immediately for biological tests or stored at 4°C±2°C and used within 24 h for testing. The

100% COMP BU SPP was mixed with Mud Dump Site water to yield three dilutions: 0%, 10%, and 50% SPP, for a total of four concentrations.

To prepare elutriate for chemistry analyses, a 1-L aliquot of the SPP was collected in an acid-washed Teflon bottle for trace metals analysis, and three 1-L aliquots were collected in EPA-certified amber glass bottles for analysis of organic compounds. The SPP for metals analysis was transferred to acid-washed polycarbonate centrifuge jars, and the SPP for analysis of organic compounds was transferred to Teflon centrifuge jars. Both were centrifuged at 2000 rpm for 30 min at a relative centrifugal force of approximately 1200 g. The decanted supernatant liquid was the elutriate phase. One liter of elutriate was submitted for triplicate trace metals analysis, and three 1-L portions were submitted for analysis of organic compounds.

2.4 Physical and Chemical Analytical Procedures

Individual sediment cores, composited bulk sediment, water, elutriate, and tissue samples were analyzed for selected physical and chemical parameters. Table 2.1 lists the parameters measured in each sample type, the method used for each analysis, and the target analytical detection limits. The following sections briefly describe the procedures used for physical and chemical analyses. Procedures followed those required by the Regional Guidance Manual unless otherwise noted.

2.4.1 Grain Size and Percentage of Moisture

Grain size was measured following two methods described by Plumb (1981). The wet sieve method was used to determine the size distribution of sand or coarser-grained particles larger than a U.S. No. 230 standard sieve (62.4- μm mesh). The size distribution of particles smaller than a U.S. No. 230 sieve was determined using the pipet method. Grain size was reported as percentages within four general size classes:

- gravel \geq 2000- μm diameter;
- sand \geq 62.4- μm diameter and $<$ 2000- μm diameter;
- silt \geq 3.9- μm diameter and $<$ 62.4- μm diameter; and
- clay $<$ 3.9- μm diameter.

TABLE 2.1. List of Analytes, Methods, and Target Detection Limits

Analyte	Methods	Sediment Detection Limit ^(a)	Tissue Detection Limit ^(b)	Water Detection Limit
PHYSICAL PARAMETERS				
Grain Size	Plumb (1981)	1.0%	— ^(c)	—
Specific Gravity	ASTM D-854	—	—	—
Bulk Density	EM 1110-2-1906 (USACE 1970)	—	—	—
Percent Moisture	Sediment: Plumb (1981) Tissue: Freeze-dry	1.0 %	1.0 %	—
METALS				
Arsenic	EPA 200.2, -3, -8 ^(d)	0.1 mg/kg	1.0 mg/kg	—
Cadmium	EPA 200.2, -3, -8 ^(d)	0.01 mg/kg	0.1 mg/kg	0.025 µg/L
Chromium	EPA 200.2, -3, -8 ^(d)	0.02 mg/kg	0.2 mg/kg	1.0 µg/L
Copper	EPA 200.2, -3, -8 ^(d)	0.1 mg/kg	1.0 mg/kg	0.35 µg/L
Lead	EPA 200.2, -3, -8 ^(d)	0.1 mg/kg	0.1 mg/kg	0.35 µg/L
Mercury	EPA 245.5 (sed.); 245.6 (tiss.) ^(d) Bloom and Crecelius (1983) (water)	0.02 mg/kg	0.02 mg/kg	0.002 µg/L
Nickel	EPA 200.2, -3, -8 ^(d)	0.1 mg/kg	0.1 mg/kg	0.30 µg/L
Silver	EPA 200.2, -3, -9 ^(d)	0.1 mg/kg	0.1 mg/kg	0.25 µg/L
Zinc	EPA 200.2, -3, -8 ^(d)	0.1 mg/kg	1.0 mg/kg	0.15 µg/L
ORGANIC COMPOUNDS				
Total Organic Carbon (TOC)	EPA (1986)	0.1%	—	—
Pesticides				
Aldrin	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.004 µg/L
α-Chlordane	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.014 µg/L
trans-Nonachlor	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.014 µg/L
Dieldrin	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.002 µg/L
4,4'-DDT	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.012 µg/L
2,4'-DDT	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.020 µg/L
4,4'-DDD	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.011 µg/L
2,4'-DDD	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.020 µg/L
4,4'-DDE	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.004 µg/L
2,4'-DDE	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.020 µg/L

TABLE 2.1. (contd)

Analyte	Method(s)	Sediment Detection Limit	Tissue Detection Limit	Water Detection Limit
Endosulfan I	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.014 µg/L
Endosulfan II	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.004 µg/L
Endosulfan sulfate	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.010 µg/L
Heptachlor	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.003 µg/L
Heptachlor epoxide	EPA 8080 (sediment, tissue) EPA 608 (water) ^(d)	1.0 µg/kg	0.4 µg/kg	0.100 µg/L
<u>PCBs</u>				
8 (2,4')	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
18 (2,2',5)	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
28 (2,4,4')	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
44 (2,2',3,5')	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
49 (2,2',4,5')	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
52 (2,2',5,5')	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
66 (2,3',4,4')	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
87 (2,2',3,4,5')	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
101 (2,2',3,5,5')	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
105 (2,3,3',4,4')	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
118 (2,3',4,4',5)	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
128 (2,2',3,3',4,4')	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
138 (2,2',4,4',5,5')	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
153 (2,2',4,4',5,5')	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
170 (2,2',3,3',4,4',5)	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
180 (2,2',3,4',5,5',6)	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
183 (2,2',3,4,4',5,6)	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
184 (2,2',3,4,4',6,6')	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
187 (2,2',3,4',5,5',6)	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
195 (2,2',3,3',4,4',5,6)	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
206 (2,2',3,3',4,4',5,5',6)	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L
209 (2,2',3,3',4,4',5,5',6,6')	NYSDEC (1992)/EPA 8080 ^(d)	1.0 µg/kg	0.4 µg/kg	0.0005 µg/L

TABLE 2.1. (contd)

Analyte	Method(s)	Sediment Detection Limit	Tissue Detection Limit	Water Detection Limit
<u>PAHs</u>				
Acenaphthene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Acenaphthylene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Anthracene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Fluorene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Naphthalene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Phenanthrene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Benz[a]anthracene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Benzo[a]pyrene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Benzo[b]fluoranthene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Benzo[g,h,i]perylene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Benzo[k]fluoranthene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Chrysene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Dibenz[a,h]anthracene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Fluoranthene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Indeno[1,2,3-cd]pyrene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
Pyrene	NOAA 1993 (d)	10 µg/kg	4 µg/kg	—
1,4-Dichlorobenzene	NOAA 1993 (d)	1.0 µg/kg	0.4 µg/kg	—
<u>OTHER MEASUREMENTS</u>				
Total Lipids	Bligh and Dyer (1959)/ Randall (1988)	—	0.1%	—

- (a) Detection limits are in dry weight for all sediment parameters except Hg.
- (b) Detection limits are in wet weight for all organic and inorganic tissue parameters.
- (c) — Not applicable or not analyzed.
- (d) Equivalent Battelle Ocean Sciences or MSL standard operating procedures were substituted for the methods cited.

Percentage of moisture was obtained using the Plumb (1981) method for determining total solids. The procedure involves drying a sediment sample at 100°C until a constant weight is obtained. Percentage of moisture was calculated by subtracting the percentage of total solids from 100%.

2.4.2 Bulk Density and Specific Gravity

Bulk density, or unit weight, was determined according to EM 111-2-1906 (USACE 1970). Specific gravity, the ratio of the mass of a given volume of material to an equal volume of water at the same temperature, was measured according to ASTM D-854.

2.4.3 TOC

Samples were analyzed for TOC according to the EPA Edison, New Jersey, Laboratory Procedure (EPA 1986). Inorganic carbon was removed from the sediment sample by acidification. The sample was combusted, and the evolved carbon dioxide was quantitated using a carbon-hydrogen-nitrogen (CHN) analyzer. TOC was reported as a percentage of the dry weight of the unacidified sample.

2.4.4 Metals

Preparation and analysis of water samples for Cd, Cr, Cu, Pb, Ni, Ag, and Zn were conducted according to MSL SOPs equivalent to EPA Methods 200.2 and 200.9 (EPA 1991). Samples were chelated with 2% ammonium pyrrolidinedithiocarbamate (APDC), precipitated out of solution, and filtered. The filter was digested in concentrated nitric acid and the digestate was analyzed by graphite furnace atomic absorption (GFAA) spectroscopy for Cr and Zn, or by inductively coupled plasma/mass spectrometry (ICP/MS) for Cd, Cu, Pb, Ni, and Ag. Water samples were analyzed for Hg directly by cold vapor atomic fluorescence (CVAF) according to the method of Bloom and Crecelius (1983). This CVAF technique is based on emission of 254-nm radiation by excited elemental Hg atoms in an inert gas stream. Mercuric ions in an oxidized sample were reduced to elemental Hg with tin chloride (SnCl_2), then purged onto gold-coated sand traps to preconcentrate the Hg and remove interferences. Mercury vapor was thermally desorbed to a second "analytical" gold trap, and from that into the fluorescence cell. Fluorescence (indicated by peak area) is proportional to the quantity of Hg collected, and was quantified using a standard curve as a function of the quantity of the sample purged.

Sediment samples for analysis of Ag, As, Cd, Cr, Cu, Pb, Ni, and Zn were prepared according to an MSL SOP equivalent to EPA Method 200.2 (EPA 1991). Solid samples were first freeze-dried and blended in a Spex mixer mill. A 0.2- to 0.5-g aliquot of dried

homogeneous sample was then digested using peroxide and nitric acid. Samples were heated in sealed Teflon bombs overnight at approximately 130°C. Sediment samples were analyzed for As, Cd, Cr, Cu, Pb, Ni, and Zn using ICP/MS, following an MSL SOP based on EPA Method 200.8 (EPA 1991). Sediment samples were analyzed for Ag by GFAA according to an MSL SOP based on EPA Method 200.9 (EPA 1991). Sediments were analyzed for Hg by CVAA according to an MSL procedure for total Hg determination equivalent to EPA Method 245.5 (EPA 1991).

Sediment samples initially showed poor matrix spike recovery for Ag. (Refer to Appendix A, QA/QC Summary for analysis of metals in sediment.) EPA Method 200.2 was modified by the addition of aqua regia to the digestion procedure, and all samples were reanalyzed for Ag. Matrix spike recoveries improved, and concentrations of Ag in the dredging site sediments increased slightly. The low recovery of Ag appears to occur in analysis of marine sediment samples having high (in excess of approximately 5 µg/g) Ag concentrations. During the EPA Method 200.2 digestion procedure, a precipitate of AgCl can form with the Ag in the sediment and the Cl in the seawater. The sample reanalyses showed little change between the EPA Method 200.2 digestion and the aqua regia-modified digestion, because the dredging site sediments tested had fairly low levels of Ag. (Most samples were approximately 0.1 µg/g to 3 µg/g, with a few as high as 9 µg/g.) However, the aqua regia modification resulted in improved recovery of Ag in the matrix spike samples that were spiked with higher concentrations of Ag (20 µg/g).

Tissue samples were prepared for analysis of metals according to an MSL SOP based on EPA Method 200.3 (EPA 1991). Solid samples were first freeze-dried and blended, and a 0.2- to 0.5-g aliquot of dried homogeneous sample was then digested in a microwave using nitric acid, hydrogen peroxide, and hydrochloric acid. Tissue samples were analyzed for As, Cd, Cr, Cu, Pb, Ni, Ag, and Zn using the ICP/MS method (EPA Method 200.8 [EPA 1991]). Tissue samples were analyzed for Hg by CVAA following an MSL procedure equivalent to EPA Method 245.6 (EPA 1991).

2.4.5 Chlorinated Pesticides and PCBs

Water samples were prepared and analyzed for chlorinated pesticides and PCBs according to a Battelle Ocean Sciences procedure equivalent to EPA Method 8080 (EPA

1990), and incorporating techniques developed by the National Oceanic and Atmospheric Administration (NOAA) National Status and Trends "Mussel Watch" Program (NOAA 1993). Samples were extracted with methylene chloride. Extract volumes were reduced and solvent-exchanged to hexane. The sample extracts underwent cleanup by alumina and silica column chromatography; further interferences were removed by an additional cleanup treatment using high-performance liquid chromatography (HPLC). Sample extracts were concentrated and analyzed using gas chromatography with electron capture detection (GC-ECD) by the internal standard technique.

Sediment and tissue samples for pesticide and PCB analysis were extracted and analyzed according to an MSL procedure similar to EPA Method 8080 for pesticides and the New York State Department of Environmental Conservation (NYSDEC) Congener-Specific Method 91-11 (NYSDEC 1992). The method also uses techniques from the NOAA Mussel Watch procedure. A 20- to 50-g sample of homogenized sediment or macerated tissue was first combined with sodium sulfate in a sample jar to remove water. Samples were extracted by adding successive portions of methylene chloride and agitating sample jars at ambient temperature using a roller technique. Extract volumes were reduced and solvent-exchanged to hexane, followed by Florisil column chromatography cleanup. Interferences were removed using HPLC cleanup; tissue sample extracts underwent an additional cleanup by gel permeation chromatography (GPC). Sample extracts were concentrated and analyzed using GC-ECD by the internal standard technique.

The concentration of total PCB in each matrix was estimated by taking the sum of the 22 congeners and multiplying by two. The procedure for calculation of total PCBs was established in 1996 (Mario Del Vicario, Chief of the Marine and Wetlands Protection Branch, U.S. Environmental Protection Agency Region 2, February 14, 1996, letter to John F. Tavolaro, Chief Operations Support Branch, U.S. Army Corps of Engineers, New York District). One-half of the detection limit was used in summation when an analyte was undetected.

2.4.6 PAHs and 1,4-Dichlorobenzene

Sediment samples were prepared for the analysis of 16 PAHs and 1,4-dichlorobenzene (see Table 2.1) according to a Battelle Ocean Sciences method based on the NOAA Mussel

Watch procedure (NOAA 1993). A 20- to 50-g sample of homogenized sediment or macerated tissue was first combined with sodium sulfate in a sample jar to remove water. Samples were extracted by adding successive portions of methylene chloride and agitating sample jars at ambient temperature using an ambient shaker technique. Extract volumes were reduced and solvent-exchanged to hexane, followed by column chromatography cleanup. Interferences were removed using HPLC cleanup; tissue sample extracts underwent an additional cleanup by GPC. Sample extracts were concentrated and analyzed using gas chromatography with mass spectrometry (GC/MS) in the selective ion monitoring (SIM) mode.

2.4.7 Lipids

The lipid content of *M. nasuta* and *N. virens* was determined by the analysis of unexposed background tissue samples of each species. The lipid analysis procedure is a modification of the Bligh and Dyer (1959) method, which involves a chloroform extraction followed by gravimetric measurement of lipids. Randall (1988) modified the original Bligh and Dyer method to accommodate a smaller tissue sample size. Lipid analysis was performed in triplicate, once for each species. Lipid concentration was reported as a percentage on both a wet and dry weight basis.

2.5 Biological Testing Procedures

2.5.1 Water-Column Toxicity Tests

Water-column effects of open-water dredged-material disposal were evaluated by exposing three species of water-column organisms to the SPP of the Buttermilk Channel sediment composite. The three test species were juvenile *M. beryllina* (silverside) and *M. bahia* (mysid), and larval *M. galloprovincialis* (mussel).

2.5.1.1 Water-Column Toxicity Test with *Menidia beryllina*

Upon receipt, the *M. beryllina* were placed in a 10-gal glass aquarium and gradually acclimated from 27.5‰ seawater to 30.0‰ Sequim Bay seawater over a 24-h period. *M. beryllina* were received and held at 20°C±2°C prior to testing and were fed concentrated

brine shrimp nauplii daily. During acclimation and holding, 2% to 3% mortality of the silversides was observed.

Test containers for the water-column toxicity test with silversides were 500-mL glass jars, labeled with sediment treatment code, concentration, position number, and replicate number. Five replicates of each concentration were tested. The 300-mL test volume of SPP was placed in each of the five replicate test chambers. Each test chamber was then placed in a randomly assigned position on a water table at $20^{\circ}\text{C}\pm2^{\circ}\text{C}$ and allowed to equilibrate to test temperature for several hours. After the concentrations were prepared and placed on the water table, water quality parameters were measured and recorded for all replicates of all concentrations for each sediment treatment.

To initiate the test, *M. beryllina* were transferred from the holding tank to test chambers with a wide-bore pipet via small transfer cups. Ten individuals were introduced to each test chamber, creating a test population of 50 silversides per concentration for each treatment. Ten animals per test chamber were used, rather than the 20 animals per chamber as described in the Regional Guidance Manual, because it is not possible to make accurate daily observations of *M. beryllina* behavior when using 20 animals. Test initiation time and date were recorded. Following test initiation, water quality parameters were recorded in one replicate of each concentration daily. Because several treatments had DO levels lower than 40% saturation prior to test initiation, all test chambers were aerated to maintain consistency in handling DO concentration among test containers. Acceptable parameters for this test were as follows:

Temperature	$20^{\circ}\text{C}\pm2^{\circ}\text{C}$
DO	>40% saturation (>3.04 mg/L at 20°C , 30‰)
pH	7.8 ± 0.5
Salinity	$30.0\text{‰}\pm2.0\text{‰}$

The test was run under a 16-h light/8-h dark photoperiod, and silversides were fed brine shrimp nauplii daily during the test. Observations of the animals were performed at 2 h, 24 h, 48 h, and 72 h, and the number of live, dead, and missing organisms was recorded. At the end of the 96-h test period, water quality parameters were measured for all test chambers, and the number of live, dead, and missing silversides was recorded on termination forms. As a quality control check, a second observer confirmed surviving test organisms on at least 10% of the termination counts.

A 96-h, water-only, reference toxicant test was performed concurrently with the toxicity test with each population of *M. beryllina* to establish the health and expected response of the test organisms. The reference toxicant test was conducted in the same manner as the water-column toxicity test. *M. beryllina* were exposed to a seawater control plus four concentrations of copper sulfate: 16, 64, 160, and 400 µg/L copper, using three replicates of each concentration.

2.5.1.2 Water-Column Toxicity Test with *Mysidopsis bahia*

Upon receipt, the *M. bahia* were placed in a 10-gal aquarium and gradually acclimated from 28.0‰ seawater to 30‰ Sequim Bay seawater over a 24-h period. Mysids were received and held at 20°C±2°C until testing and were fed concentrated brine shrimp nauplii twice daily prior to testing. Mortality of the *M. bahia* during holding was less than 1%.

The water-column toxicity test with the mysid was performed in 200 mL of test solution in 400-mL jars, labeled with sediment treatment code, concentration, position number, and replicate number. Five replicates of each concentration were tested. Each of the test chambers received 200 mL of test solution, then was placed randomly in a recirculating water bath and allowed to equilibrate to test temperature for several hours. Prior to test initiation, water quality parameters were measured in each replicate of each sediment treatment concentration. Acceptable water quality parameters for this test were as follows:

Temperature	20°C±2°C
DO	>40% saturation (>3.04 mg/L at 20°C, 30‰)
pH	7.8±0.5
Salinity	30.0‰±2.0‰.

To initiate the test, *M. bahia* were transferred from the holding tank to test chambers with a wide-bore pipet via small transfer cups. Ten individuals were introduced to each test chamber, creating a test population of 50 mysids per concentration (200 mysids per treatment). Ten animals per test chamber were used, rather than the 20 animals per chamber as described in the Regional Guidance Manual, because it is not possible to make accurate daily observations of *M. bahia* behavior when using 20 animals. Test initiation time and date were documented on data forms. Observations of test organisms were performed at 4 h, 24 h, 48 h, and 72 h, using a fluorescent light table to enhance visibility of the *M. bahia*. After test initiation, water quality parameters were measured daily in one replicate

concentration of all concentrations for each sediment treatment. During the 96-h exposure, *M. bahia* were fed <24-h-old brine shrimp daily. Excess food was removed daily with a small pipet, taking care not to disturb test animals. Molted exoskeletons and any particulates from the SPP solutions were also removed.

Prior to test termination, water quality parameters were measured in all replicates. At 96 h, the number of live versus dead animals was recorded for each test container. An animal was considered dead if it did not respond to gentle probing. As a quality control check, a second observer confirmed surviving test organisms on at least 10% of the termination counts.

A 96-h, water-only, reference toxicant test was performed concurrently with the toxicity test with each batch of *M. bahia* to establish the health and expected response of the test organisms. The reference toxicant test was conducted in the same manner as the water-column toxicity test. *M. bahia* were exposed to a seawater control plus four concentrations of copper sulfate: 50, 100, 150, and 200 $\mu\text{g/L}$ copper, using three replicates of each concentration.

2.5.1.3 Water-Column Toxicity Test with *Mytilus galloprovincialis* Larvae

Prior to testing, adult *M. galloprovincialis* were held in flowing, unfiltered Sequim Bay seawater at ambient temperatures for approximately 5 days.

Chambers for the bivalve larvae test were 500-mL glass jars labeled with sediment treatment code, concentration, position number, and replicate number. Dilutions of COMP BU SPP (0%, 10%, 50%, and 100%) were prepared with Mud Dump Site water in a 2000-mL graduated cylinder, then 300 mL of test solution was transferred into each test chamber. Test chambers were placed in random positions on a water table and allowed to equilibrate to test temperature for several hours. Initial water quality parameters were measured in all replicates once test chambers reached testing temperatures ($16^\circ\text{C} \pm 2^\circ\text{C}$).

Spawning was induced by placing *M. galloprovincialis* into 15°C , filtered Sequim Bay seawater and rapidly raising the holding water temperature to 20°C . Spawning generally occurs within 1 h of temperature elevation; however, on the first day of spawning, gametes were shed after 3 h to 4 h. For this group of mussels, the water bath was changed when DO levels fell below 3.0 mg/L. When spawning began, males and females were identified and isolated in individual jars containing filtered Sequim Bay seawater and allowed to shed

gametes for approximately 45 min. Eggs from each female were filtered through a 75- μm Nytex screen into separate jars to remove feces, detritus, and byssal fibers. Sperm from at least three males were pooled, and 10 mL of sperm solution was then added to each of the egg stocks. Egg-sperm solutions were gently mixed every 10 min with a perforated plunger. Fertilization proceeded for 1 h, then fertilization rate (percentage of fertilized eggs) was determined by removing a subsample and observing the number of multicell-stage embryos. Fertilization was considered successful if greater than 90% of the embryos were in the multicell stage. Egg stocks with greater than 90% fertilization were combined and rinsed on a 20- μm Nytex screen to remove excess sperm. Stock embryo solution density was estimated by removing a 0.1-mL subsample and counting all multicell embryos, then multiplying by 10 to yield embryo density (embryos/mL). Stock solution was diluted or concentrated to yield 7500 to 9000 embryos/mL. The test was initiated by introducing 1 mL of stock solution into each test chamber to produce embryo densities of 25 to 30 embryos/mL. Test initiation date and time were recorded on data sheets. Following initiation, 10-mL stocking-density subsamples were removed from each container and preserved in 5% formaldehyde to later determine actual stocking density.

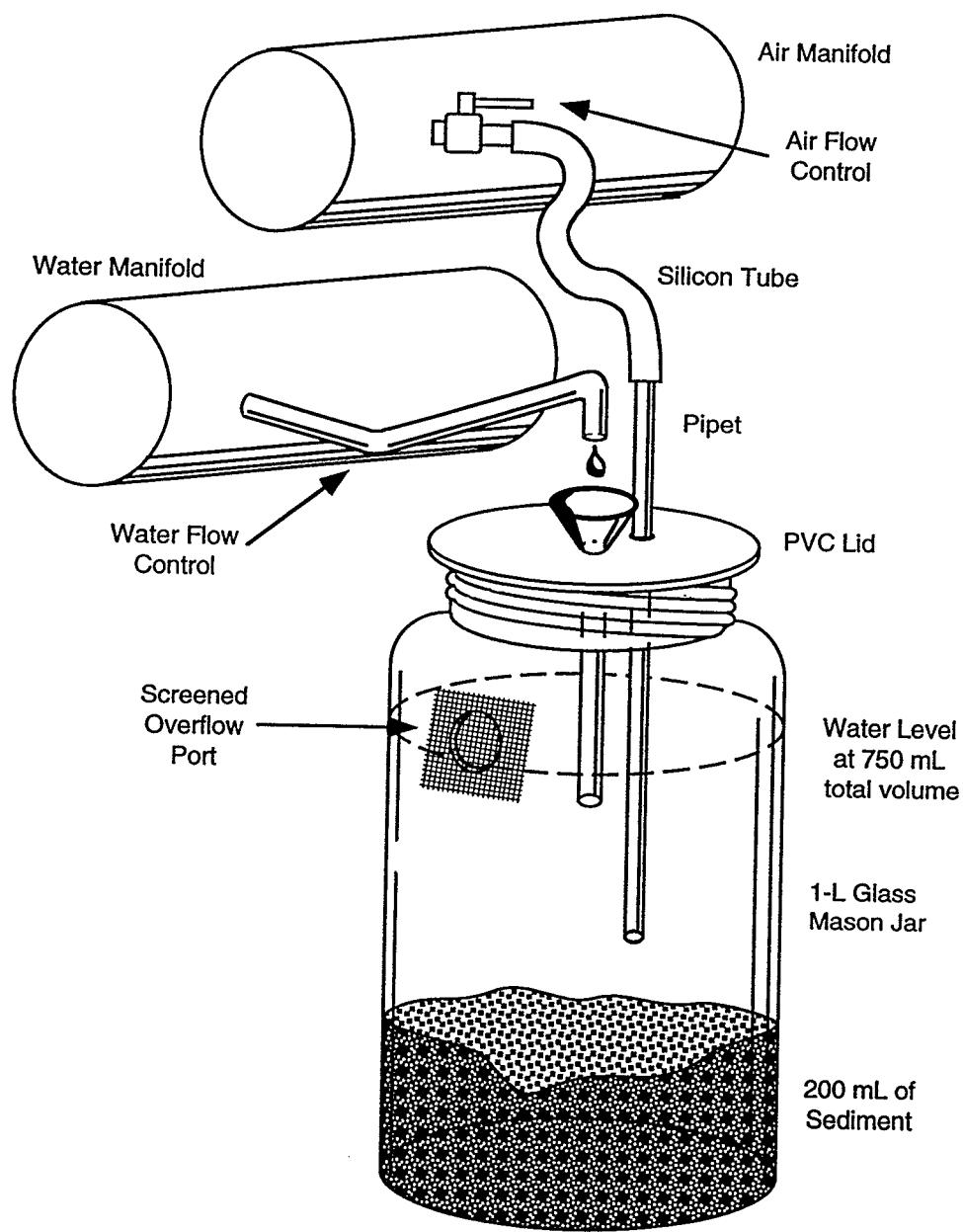
Water quality parameters were measured in one replicate of each concentration per treatment daily throughout the test. Acceptable ranges for water quality parameters were as follows:

Temperature	16°C \pm 2°C
DO	>60% saturation (>3.04 mg/L at 16°C, 30%)
pH	7.8 \pm 0.5
Salinity	30.0‰ \pm 2.0‰

Because several treatments had DO levels below the acceptable level of 60% saturation, each chamber was provided with gentle aeration to maintain consistency in handling DO concentration among test containers. The bivalve test was terminated after 72 h when greater than 80% of the larvae in the controls had reached the D-cell stage. Final water quality parameters were recorded for all replicates. The contents of each chamber were then homogenized with a perforated plunger, and a 10-mL subsample was removed and placed into a 20-mL scintillation vial. The subsample was then fixed with 1 mL of 50% solution of formaldehyde in seawater. Samples were scored for the appearance of normal

and abnormal D-shaped larvae, blastula larvae, and total number of larvae. At least 10% of the counts were confirmed by a second observer.

A 72-h reference toxicant test was conducted to establish the health and expected response of the test organisms. The reference toxicant test was set up and conducted in the same manner as the liquid-phase tests. *M. galloprovincialis* larvae were exposed to a filtered Sequim Bay seawater control plus copper sulfate concentrations of 1, 4, 16, and 64 $\mu\text{g/L}$ copper, with three replicates per concentration.


2.5.2 Benthic Acute Toxicity Tests

Deposited sediment effects of open-water dredged material disposal were evaluated by benthic acute toxicity tests with three marine amphipod species, *A. abdita*, *R. abronius*, and *E. estuarius*, and the mysid *M. bahia*.

2.5.2.1 Static Renewal Tests with *Ampelisca abdita*, *Rhepoxynius abronius*, and *Eohaustorius estuarius*

Upon receipt, the *A. abdita* were placed in a tub of clean sand from their collection area and gradually acclimated with flowing Sequim Bay seawater from 28‰ to 30.5‰ salinity, over a period of 2 days. *A. abdita* were received at approximately 11°C and acclimated to 20°C \pm 2°C over 4 days. They were held at 20°C \pm 2°C for one day and were not fed prior to testing. The *R. abronius* were also placed in a tub of clean sand from their collection area and held under flowing seawater upon arrival at the laboratory. They were received and held at a salinity of 30‰ \pm 2‰ and a temperature of 15°C \pm 2°C until testing. *R. abronius* were not fed during the 11-day holding period. *E. estuarius* were received at the laboratory at approximately 14°C and 13‰ and acclimated to 15°C and 30.5‰ salinity over a period of 4 days. *E. estuarius* were held in a tub of clean sand from their collection area and maintained under flowing seawater. Tests were initiated 11 days after receipt of *E. estuarius*.

All amphipod static renewal tests were performed in 1-L glass jars modified for use as flow-through test chambers. The test chambers were fitted with funneled lids and screened outflow and overflow ports (Figure 2.1). The flow-through system was turned on periodically, long enough to deliver the seawater at a rate of two chamber exchanges per day. Five

FIGURE 2.1. Testing Containers for Amphipod Static Renewal Toxicity Tests

replicates of COMP BU, Mud Dump Reference Site, and native test animal control treatments were tested.

Concentrations of ammonia have been encountered in the pore water of sediment core samples from New York/New Jersey waterways at concentrations high enough to affect survival of amphipods in benthic toxicity tests (Barrows et al. 1996). Therefore, the amphipod tests were conducted according to the ammonia protocols issued by EPA and the USACE (EPA/USACE 1993). This guidance requires postponing test initiation (exposure of test animals) until pore water total ammonia concentrations are <30 mg/L for *A. abdita* and *R. abronius*, and <60 mg/L for *E. estuarius*. During this "purging" period, test chambers were set up and maintained under test conditions, and the overlying water was exchanged twice daily until the pore water ammonia concentrations reached the level appropriate for the particular amphipod. Pore water ammonia measurements were made on "dummy" containers that were set up and maintained in the same manner as the actual test containers but without animals added to them. The pore water was obtained by siphoning off the overlying water in the dummy jar and centrifuging the sediment in a Teflon jar for at least 20 min at approximately 3000 rpm. Salinity, temperature, and pH were also determined in the pore water samples.

The amphipod benthic toxicity tests were initiated by the addition of 20 organisms to each test chamber for a test population of 100 amphipods per sediment treatment. Amphipods were gently sieved from their native sediment in holding tanks and transferred to shallow glass dishes. For each test chamber, five animals were counted and transferred by pipet into each of four small, plastic cups. The animals in each transfer cup were recounted by a second analyst. The animals were placed in the test chamber by dipping the cup below the surface of the water to release the amphipods.

Salinity, temperature, DO, and pH were measured in all replicates prior to test initiation, in at least one replicate per treatment daily, and in all replicates at test termination. Flow rate was measured once in all test chambers prior to test initiation. Total ammonia levels in the overlying water and pore water were measured initially and during testing. Overlying water ammonia was measured in all replicates prior to test initiation (Day 0), in at least one replicate per treatment daily, and in all replicates at test termination (Day 10). Pore water ammonia was measured on Day 0 and Day 10. The following were the acceptable ranges for water quality parameters during the amphipod tests:

	<i>A. abdita</i>	<i>R. abronius</i>	<i>E. estuarius</i>
Temperature	20°C±2°C	14°C±2°C	14°C±2°C
DO	>60% saturation	>60% saturation	>60% saturation
pH	7.8±0.5	7.8±0.5	7.8±0.5
Salinity	30‰±2‰	30‰±2‰	30‰±2‰
Ammonia	≤30 mg/L	≤30 mg/L	≤60 mg/L
Renewal Rate	2 exchanges/day	2 exchanges/day	2 exchanges/day.

Gentle aeration was provided throughout the test, and the amphipods were not fed during testing. At the end of the 10-day period, the contents of each chamber were gently sieved through 0.5-mm mesh, and the number of live, dead, and missing amphipods was recorded on termination forms. An animal was considered dead if it did not respond to gentle probing. As a quality control check, a second observer confirmed surviving test organisms on at least 10% of the termination counts.

Reference toxicant tests with cadmium chloride were performed concurrently with each species. The reference toxicant tests were 96-h, water-only exposures that were otherwise conducted following the same procedures as for the static tests with sediment. *A. abdita* were exposed to nominal concentrations of 0, 0.25, 0.5, 1, and 2 mg/L cadmium. *R. abronius* were exposed to nominal concentrations of 0, 0.38, 0.75, 1.5, and 3 mg/L cadmium. *E. estuarius* were exposed to nominal concentrations of 0, 5, 10, 20, and 30 mg/L cadmium.

2.5.2.2 Static Test and Static Renewal Test With *Mysidopsis bahia*

Upon receipt at the laboratory, *M. bahia* were placed in 10-gal aquaria and gradually acclimated from 28‰ seawater to 30‰ salinity with Sequim Bay seawater over a 24-h period. Mysids were received and held for 4 days at 20°C±2°C until testing and were fed concentrated brine shrimp nauplii twice daily prior to testing. Mortality of the *M. bahia* during holding was less than 1%.

The 10-day static benthic acute toxicity test with *M. bahia* was performed in 1-L glass jars. To prepare each test container, 200 mL of clean seawater was placed in each jar. Sediment was added until water was displaced up to the 400-mL mark, then seawater was added up to the 750-mL mark. Five replicates of COMP BU sediment, Mud Dump Reference Site sediment, and native test animal control sediment were tested. Prior to test initiation two exchanges per day of overlying water was performed to reduce ammonia concentrations in overlying water to less than 20 mg/L.

The mysid benthic toxicity test was initiated by the addition of 20 organisms to each test chamber for a test population of 100 mysids per sediment treatment. Mysids were transferred from holding tanks to shallow glass dishes. For each test chamber, five animals were counted and transferred by pipet into each of four small, plastic cups. The animals in each transfer cup were recounted by a second analyst. The animals were placed in the test chamber by dipping the cup below the surface of the water to release the mysids.

Salinity, temperature, DO, pH, and total ammonia in overlying water were measured in all replicates prior to test initiation, in at least one replicate per treatment daily, and in all replicates at test termination. The following were the acceptable ranges for water quality parameters during the *M. bahia* benthic test:

Temperature	20°C±2°C
DO	>40% saturation
pH	7.8±0.5
Salinity	30‰±2‰

Gentle aeration was provided to all test chambers during the test to maintain consistency in handling DO concentration among test containers. Mysids were fed 1-2 mL of brine shrimp nauplii (<24-h old) in suspension daily. At the end of the 10-day period, the contents of each chamber were gently sieved through 0.5-mm mesh, and the number of live and dead or missing mysids was recorded on termination forms. An animal was considered dead if it did not respond to gentle prodding. As a quality control check, a second observer confirmed surviving test organisms on at least 10% of the termination counts.

Because the same mysid population was used for the static and static-renewal benthic tests, one 96-h water-only reference toxicant test with copper sulfate was performed concurrently with these tests. Mysids were exposed to 0, 100, 150, 200, 250, 300, and 400 µg/L copper, one replicate per concentration. Water quality conditions were the same as for the benthic tests, and animals were fed daily over the 96-h exposure period.

To evaluate effects of reducing overlying water ammonia concentrations on mysids, an additional mysid test was conducted as a static renewal test at the request of the USACE-NYD. The test chambers were slightly modified to allow the test to be conducted under static renewal conditions with seawater delivered intermittently via the flow-through system, as in the amphipod static renewal tests. The lower outflow of the test chamber was plugged with a solid stopper, and the top outflow was covered with a screen.

For the static renewal test, sediment and water were placed in the test jars using the same procedure as the static test. Once the jars were filled, the sediment and water were stirred with a stainless-steel spatula to create a slurry, which was then allowed to settle overnight. The following day, the flow-through system was turned on for an equivalent of six test chamber exchanges per day. This procedure was repeated for a second day. On the third day, the test was initiated by the addition of test animals. For the duration of the 10-day test, the overlying water was renewed at a rate of two test chamber exchanges per day. The same standard procedures and test conditions described above for the static test were followed for the remainder of the test.

2.5.3 Bioaccumulation Testing

The polychaete *N. virens* and the bivalve *M. nasuta* were used to evaluate the potential bioaccumulation of contaminants from dredged material. The bioaccumulation tests were 28-day flow-through exposures to sediment followed by a 24-h depuration period that allowed the organisms to void their digestive tracts of sediment. *N. virens* and *M. nasuta* were tested in separate 10-gal flow-through aquaria. Animals were exposed to five replicates of COMP BU, Mud Dump Reference Site sediment, and native control sediment. Each chamber contained 25 *M. nasuta* or 25 *N. virens*. Water quality parameters (temperature, DO, pH, and salinity) were measured in all replicates at test initiation, in at least one replicate per treatment daily, and in all replicates at test termination. Flow rates were measured daily in all chambers. The Regional Guidance Manual provides an acceptable temperature range of $13^{\circ}\text{C}\pm1^{\circ}\text{C}$ for *M. nasuta*; however, laboratory logistics required that *M. nasuta* shared a 15°C flow-through water supply with *R. abronius*. This alteration of test temperature was not expected to affect the outcome of the test; bioaccumulation tests with *M. nasuta* have been conducted at $15^{\circ}\text{C}\pm2^{\circ}\text{C}$ successfully. After discussion with the USACE-NYD project manager, the following ranges for water quality parameters were established as acceptable for the *M. nasuta* and *N. virens* tests:

	<i>M. nasuta</i>	<i>N. virens</i>
Temperature	14°C±2°C	20°C±2°C
DO	> 60% saturation	> 60% saturation
pH	7.8±0.5	7.8±0.5
Salinity	30‰±2‰	30‰±2‰
Flow Rate	125±10 mL/min	125±10 mL/min.

Aeration was provided to all test chambers to maintain consistency in handling DO concentrations among test chambers. Water quality, organism behavior (e.g., burrowing activity, feeding) and organism mortality were recorded daily. Dead organisms were removed daily. At the end of the 28-day testing period, *M. nasuta* and *N. virens* were placed in clean, flowing seawater for 24 h, after which the tissues were transferred into the appropriate chemistry jars for metals, pesticide/PCB, PAH, and 2,3,7,8-TCDD/TCDF analyses. All tissue samples were frozen immediately and stored at $\leq 20^{\circ}\text{C}$ until analysis. Water-only reference toxicant tests (96-h) were also performed using copper sulfate in six geometrically increasing concentrations. The exposures were conducted using a test volume of 5 L in static 9.5-L (2.5-gal) aquaria. Three replicates of each concentration were tested, each containing 10 organisms. Water quality parameters were monitored at the same frequency and maintained within the same limits as the 28-day test, except that there were no flow rates. The *M. nasuta* reference toxicant test was conducted with treatments of 0, 0.25, 0.50, 0.75, 1.0, 1.5 and 2.5 mg/L copper; the *N. virens* test was conducted with treatments of 0, 0.05, 0.075, 0.15, 0.20, 0.25, and 0.30 mg/L copper.

2.6 Data Analysis and Interpretation Procedures

Statistical analyses were conducted to determine the magnitude and significance of toxicity and bioaccumulation in test treatments relative to the reference treatment. Each statistical test was based on a completely random design that allowed unbiased comparison between treatments.

2.6.1 Randomization

All water-column and benthic toxicity tests were designed as completely random tests. Organisms were randomly allocated to treatments, and treatments were randomly positioned on water tables. To determine randomization, a random-number table was generated for

each test using the discrete random-number generator in Microsoft *Excel* spreadsheet software.

2.6.2 Statistical Analysis of Water-Column Tests

Two statistical tests are presented in the 1991 Green Book for the interpretation of SPP (water-column) tests. The first is a one-sided t-test between survival in control test replicates and survival in the 100% SPP test replicates. This test is to be performed only when survival in the 100% SPP is less than the control (0% SPP) survival, and when control survival is >90% for nonlarval tests and >70% for larval tests (including test validity). Prior to conducting the t-test, angular transformation (arcsine of the square-root) of the proportion surviving in test replicates was performed to reduce possible heterogeneity of variance between mean survival of test organisms in the control and in the 100% SPP. The second test required by the 1991 Green Book is an LC_{50} or EC_{50} calculation, the concentration of SPP that is lethal to (LC_{50}) or affects (EC_{50}) 50% of the organisms tested. The LC_{50} or EC_{50} values for these tests were calculated using the trimmed Spearman-Karber method (Finney 1971). The Spearman-Karber estimator is appropriate only if there was increasing mortality (or effect) with increasing concentration, and if $\geq 50\%$ mortality (or effect) was observed in test treatments when normalized to control survival. If 50% mortality (or effect) did not occur in the 100% SPP concentrations for any treatments, then LC_{50} or EC_{50} values were reported as >100% SPP.

2.6.3 Statistical Analysis of Benthic Toxicity Tests

Benthic toxicity of all sediment treatments was compared by analysis of variance (ANOVA) on the arcsine square root of the proportion of organisms surviving the test. The arcsine square root transformation stabilizes the within-class variances to help meet assumptions of the ANOVA. The Green Book recommends Dunnett's test (Dunnett 1964) for comparing test treatments with a single reference treatment. All treatments were compared using Dunnett's test for comparison of all test treatments with the reference site using an experiment-wise error of $\alpha=0.05$.

2.6.4 Statistical Analysis of Bioaccumulation

The results of the chemical analyses of test organism tissues exposed to the dredged sediment treatments was statistically compared with those tissues similarly exposed to the Mud Dump Reference Site treatment using Dunnett's test with an experiment-wise error of $\alpha=0.05$. The Dunnett's tests determined whether or not the concentrations of contaminants of concern in the organisms exposed to the dredged sediments statistically exceeded those of organisms exposed to the reference sediment.

Statistical analyses were performed on the dry weight concentrations. When a compound (metals, pesticides, PCBs, and PAHs) was undetected (indicated by a "Q" flag in the report tables and a "U" flag in the appendix tables), one-half the detection limit of a compound was used in numerical calculations. If the compound was undetected in all five replicates of a test treatment, or if the mean concentration of a compound was greater in tissue samples from the reference treatment than in tissue samples from the test treatments, no further analysis was necessary. If a compound was undetected in all five replicates of the reference treatment, a one-sided, one-sample t-test ($\alpha=0.05$) was used to determine if the tissue concentrations from organisms exposed to dredged sediment treatments were statistically greater than the mean detection limit for that compound from the reference tissue. Results of background and control tissues were not statistically compared with the reference.

Magnification factors were calculated for each compound as the dry weight ratio of the mean tissue concentration from organisms exposed to dredged sediment treatments to the mean tissue concentration from organisms exposed to the Mud Dump Reference Site sediment. Whole detection limits were used for non-detects in this calculation.

2.7 Quality Assurance/Quality Control Procedures

The quality assurance/quality control (QA/QC) procedures for the Buttermilk Channel project were consistent with the Regional Guidance Manual and the Green Book, and were documented in the Work/Quality Assurance Project Plan, *Evaluation of Dredged Material Proposed for Ocean Disposal from Federal Projects in New York (Part 2)*, prepared by the MSL and submitted to the USACE-NYD for this program. This document describes all QA/QC procedures that were followed for sample collection, sample tracking and storage, and physical/chemical analyses. A member of Pacific Northwest National Laboratory's quality

engineering staff was present throughout all phases of this program to observe procedures, review and audit data, and ensure that accepted protocols were followed. Laboratory notebooks or data accumulation notebooks were assigned to each portion of these studies and served as records of day-to-day project activities.

3.0 Results

This section presents results of sample collection and processing, and physical and chemical analyses conducted on sediment samples collected from the proposed Buttermilk dredging area.

3.1 Sample Collection and Processing

Sediment core samples were collected from the Buttermilk Channel project area on March 13, 1994. Buttermilk Channel is located between Governors Island and Brooklyn, New York. Sediments within the vicinity of sampling station BU-9 (Figure 1.1) were characterized by a hard bottom with mussel beds, and sampling at this site was unsuccessful. A strong current was noted to the south of Governors Island where the Hudson and East Rivers converged.

Table 3.1 lists each sampling station within the Buttermilk Channel project area, sampling coordinates, collection date, length of core required for testing, and length of core actually collected. All but one core sample were collected aboard the *Gelberman*; sediment from station BU-1 was collected aboard the *Hayward*. Eleven core samples were collected (a core sample could not be successfully taken at Station BU-9). Five of the Buttermilk Channel core samples were collected to project depth plus 2 ft of overdepth. Out of the remaining six cores, all were collected at least to project depth (without overdepth) except one (BU-4).

Upon delivery of the sediment core samples to the MSL on March 18, 1994, samples were prepared for the physical and chemical analyses according to the procedures described in Section 2. Individual sediment core samples were analyzed for grain size, moisture content, and TOC. One composited sediment core sample representing the entire Buttermilk Channel project area (COMP BU) was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, PCBs, PAHs, and 1,4-dichlorobenzene.

TABLE 3.1. Summary of Sediment Sample Data for Buttermilk Channel

<u>Station</u>	<u>Collection Date</u>	<u>Station Coordinates</u>		<u>Core Length Required (ft)</u>	<u>Core Length Collected (ft)</u>	<u>Depth (ft)</u>
Core Samples						
BU-1	3/13/94	40° 40.79' N	74° 01.75' W	5.9	5.3	---
BU-2	3/12/94	40° 40.77' N	74° 01.68' W	4.2	3.5	---
BU-3	3/12/94	40° 40.78' N	74° 01.63' W	5.0	3.5	---
BU-4	3/13/94	40° 40.81' N	74° 01.54' W	5.2	2.7	---
BU-5	3/12/94	40° 40.83' N	74° 01.54' W	3.1	2.0	---
BU-6	3/13/94	40° 40.63' N	74° 01.74' W	4.1	3.8	---
BU-7	3/13/94	40° 40.70' N	74° 01.71' W	3.0	3.0	---
BU-8	3/13/94	40° 40.68' N	74° 01.67' W	3.0	3.0	---
BU-9	3/13/94	40° 41.24' N	74° 00.80' W	4.3	NC ^(b)	---
BU-10	3/13/94	40° 40.75' N	74° 01.64' W	4.7	4.7	---
BU-11	3/13/94	40° 40.75' N	74° 01.76' W	4.0	4.0	---
BU-12	3/13/94	40° 40.80' N	74° 01.61' W	5.8	5.8	---
Grab Samples						
MDRS ^(c)	3/13/94	40° 20.19' N	73° 52.20' W	---	---	67
MDRS	3/13/94	40° 20.21' N	73° 52.19' W	---	---	65
MDRS	3/13/94	40° 20.22' N	73° 52.19' W	---	---	66
MDRS	3/13/94	40° 20.22' N	73° 52.19' W	---	---	66
MDRS	3/13/94	40° 20.21' N	73° 52.23' W	---	---	65
MDRS	3/13/94	40° 20.21' N	73° 52.23' W	---	---	64
MDRS	3/13/94	40° 20.22' N	73° 52.23' W	---	---	66
MDRS	3/13/94	40° 20.21' N	73° 52.24' W	---	---	66
MDRS	3/13/94	NR ^(d)	NR	---	---	66
MDRS	3/13/94	NR	NR	---	---	66
MDRS	3/13/94	NR	NR	---	---	NR
MDRS	3/13/94	NR	NR	---	---	NR

(a) --- Not applicable.

(b) NC No core collected at this station.

(c) MDRS Mud Dump Reference Site.

(d) NR Data not recorded during sample collection.

3.2 Physical and Chemical Analyses

3.2.1 Sediment Core Sample Description

Table 3.2 lists physical characteristics of each intact sediment core sample that was examined.

TABLE 3.2. Buttermilk Channel Sediment Core Descriptions

Station	Depth Below Mudline (-ft MLW)			Description of Observations
	Core Top	Core Bottom	Project Depth ^(a)	
BU-1	30.7	49.0	37.0	Uniform black, silty-clayey material. At approximately 35.2 ft, thin (1-2 in.) layer of shell hash and wood chips, remaining core (approximately 1 ft) dark brown clay.
BU-2	32.8	36.3	37.0	Black silty-clayey material interspersed with streaks of brown silty material.
BU-3	32.0	35.2	37.0	Black-grayish silty-clayey material. High water content (core sediment very soft and loose).
BU-4	31.8	34.5	37.0	Uniform black, silty-clayey material.
BU-5	33.9	35.9	37.0	Brown silty material at top; remaining core black, silty-clayey material.
BU-6	37.9	41.7	42.0	Brown silty material at top; remaining core black, silty-clayey material.
BU-7	39.0	42.0	42.0	Black silty-clayey material interspersed with streaks of brown silty material.
BU-8	39.0	42.0	42.0	Black silty-clayey material interspersed with streaks of brown silty material.
BU-10	32.3	37.0	37.0	Several inches of brown flocculent material at top of core; remaining core black, silty-clayey material.
BU-11	33.0	37.0	37.0	Black silty-clayey material.
BU-12	31.2	37.0	37.0	Black silty-clayey material.

(a) Project depth plus 2 ft overdepth.

3.2.2 Grain Size

Table 3.3 shows the results of the analysis of Buttermilk Channel sediment samples for grain size, percentage of moisture, and TOC. A quality control sample summary and associated quality control data for grain size and TOC measurements are provided in Appendix A.

TABLE 3.3. Results of Analysis of Buttermilk Channel Sediment Samples for Grain Size, Percentage of Moisture and Total Organic Carbon

Station	Total Percent (dry weight)					Total Organic Carbon
	Gravel >2000 μm	Sand 62.4-2000 μm	Silt 3.9-62.4 μm	Clay <3.9 μm	Percentage of Moisture	
BU-1	1	22	39	38	60	4.11
BU-2	0	13	41	46	63	3.56
BU-3	0	13	42	45	65	3.60
BU-4	1	12	43	44	63	3.43
BU-5	1	12	42	45	62	3.76
BU-6	0	18	40	42	58	3.78
BU-7	1	22	38	39	56	4.10
BU-8	0	17	41	42	60	3.57
BU-10	0	13	43	44	60	3.75
BU-11	2	28	35	35	57	3.93
BU-12	1	13	41	45	58	3.80
Mud Dump Reference	1	98	0	1	16	0.01

Buttermilk Channel sediments were predominantly silt and clay. Percentages of sand ranged from 12% to 28%; silt ranged from 35% to 43%; and clay ranged from 35% to 46%. The moisture content ranged from 56% to 65%. Percentages of total organic carbon ranged from 3.43% in BU-4 to 4.11% in BU-1.

Bulk density and specific gravity were measured on a single Buttermilk Channel composite, COMP BU. The bulk density, reported in both wet and dry weight, was 86 lb/cu ft wet weight and 35 lb/cu ft dry weight. Specific gravity of the composite COMP BU was 2.58.

3.2.3 Metals

Table 3.4 shows the results of the analysis of COMP BU and Mud Dump Reference site sediment samples for metals. A quality control sample summary and quality control data associated with the metals analysis are provided in Appendix A.

Levels of all nine metals in COMP BU exceeded those found in the Mud Dump Reference Site sediment. Concentrations of Ag, Cd, Cr, Cu, Ni, Pb, and Zn were approximately an order of magnitude higher in COMP BU than the reference sediment. Mercury levels were three orders of magnitude greater in COMP BU than in the reference site sediment.

TABLE 3.4. Results of Analysis of Buttermilk Channel Sediment Samples for Metals

<u>Analyte</u>	<u>Concentration (mg/kg dry weight)</u>	
	<u>COMP BU</u>	<u>Mud Dump Reference</u>
Ag	7.49	0.119 U
As	14.1	5.64
Cd	1.95	0.085
Cr	135	10.0
Cu	163	1.90
Hg	2.05	0.006
Ni	39.5	3.10
Pb	190	6.50
Zn	220	14.1

3.2.4 Chlorinated Pesticides

Table 3.5 shows the results of the analysis of Buttermilk Channel and Mud Dump Reference Site sediments for chlorinated pesticides. A quality control sample summary and associated quality control data are provided in Appendix A.

The COMP BU sediment contained concentrations of eight pesticides at concentrations elevated over those found in the reference site sediment. The dominant pesticides found in COMP BU were the DDT family of compounds (60.0 µg/kg dry weight total DDTs), followed by endosulfan II, dieldrin, α -chlordane, endosulfan sulfate, and *trans*-nonachlor. Endosulfan I and 2,4'-DDE coeluted in the primary GC analysis of these samples, but examination of the confirmatory analysis using a second GC column revealed that neither compound was detected. The value shown is the detection limit for 2,4'-DDE. Pesticides were either undetected or detected at concentrations near or below the target detection limit (1.0 µg/kg dry weight) in sediment from the Mud Dump Reference Site.

3.2.5 PCBs

Table 3.6 shows the results of the analysis of the Buttermilk Channel and Mud Dump Reference Site sediment for PCBs. A quality control sample summary and associated quality control data are provided in Appendix A.

TABLE 3.5. Results of Analysis of Buttermilk Channel Sediment for Chlorinated Pesticides

	Concentration in $\mu\text{g}/\text{kg}$ dry weight		
	COMP BU	Mud Dump	Reference Site
2,4'-DDD	19.1		0.0109 J ^(a)
2,4'-DDT	1.26 U ^(b)		0.604 U
4,4'-DDD	19.2		0.0604 J
4,4'-DDE	15.8		0.0132 J
4,4'-DDT	7.19 U		3.45 U
Total DDT^(c)	60.0		2.91
Aldrin	1.21 U		0.579 U
α -Chlordane	3.72		0.00670 J
Dieldrin	6.14		0.215 J
Endosulfan I /2,4'-DDE ^(d)	3.31 U		1.59 U
Endosulfan II	8.57		0.0450 J
Endosulfan sulfate	2.47		1.12 U
Heptachlor	2.71 U		1.30 U
Heptachlor epoxide	1.50 U		0.721 U
<i>trans</i> -Nonachlor	1.56 J		0.00417 J

(a) J Analyte detected is below established method detection limit (MDL).

(b) U Undetected at or above the given concentration.

(c) Sum of 2,4'-DDD, 2,4'-DDE, 2,4'-DDT, 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT; one-half of the detection limit used in summation when analyte was undetected.

(d) Endosulfan I and 2,4'-DDE coelute; both compounds were undetected; value shown is the detection limit for 2,4'-DDE.

All of the 22 PCB congeners analyzed were detected in COMP BU sediment, with only one congener (PCB 184) found at a concentration below the detection limit. The total PCB concentration calculated for COMP BU was 589 $\mu\text{g}/\text{kg}$ dry weight, about an order of magnitude higher than in reference site sediment. PCBs were either undetected or detected at concentrations near or below the target detection limit (1.0 $\mu\text{g}/\text{kg}$ dry weight) in Mud Dump Reference Site sediment.

TABLE 3.6. Results of Analysis of Buttermilk Channel Sediment for PCBs

	<u>COMP BU</u>	<u>Concentration in $\mu\text{g}/\text{kg}$ dry weight</u>	
		<u>Mud Dump</u>	<u>Reference Site</u>
PCB 8	8.65	2.91	U ^(a)
PCB 18	12.6	1.85	U
PCB 28	40.9	1.21	U
PCB 44	14.9	0.223	J ^(b)
PCB 49	19.2	0.0423	J
PCB 52	19.5	0.0569	J
PCB 66	39.8	0.0366	J
PCB 87	5.51	0.0462	J
PCB 101	16.8	0.0381	J
PCB 105	5.68	0.0259	J
PCB 118	16.7	0.0195	J
PCB 128	13.8	0.915	U
PCB 138	19.6	0.0721	J
PCB 153	15.5	0.0312	J
PCB 170	12.2	0.972	U
PCB 180	11.6	0.649	U
PCB 183	2.36	0.721	U
PCB 184	0.986 J	0.00648 J	
PCB 187	5.94	0.00681 J	
PCB 195	2.12	0.828	U
PCB 206	3.74	1.26	U
PCB 209	6.64	0.790	U
Total PCB^(c)	589	13.3	

(a) U Undetected at or above the given concentration.

(b) J Analyte detected is below established method detection limit (MDL).

(c) Total PCB = 2(x), where x = sum of all PCB congeners detected; one-half of the detection limit used in summation when analyte was undetected.

3.2.6 PAHs and 1,4-Dichlorobenzene

Table 3.7 shows the results of the analysis of the Buttermilk Channel and Mud Dump Reference Site sediments for PAHs. A quality control sample summary and associated quality control data are provided in Appendix A.

All 17 PAHs analyzed were detected in COMP BU sediment. Low-molecular-weight PAH (LPAH) made up approximately 14% of the total PAH concentration, whereas high-molecular-weight PAH (HPAH) made up 86% of the total. The COMP BU PAH levels were about three orders of magnitude higher than those found in the reference site sediments. Concentrations of PAH compounds in Mud Dump Reference Site sediment were either undetected or detected at concentrations below the target detection limit (0.01 µg/kg).

The COMP BU concentration of 1,4-dichlorobenzene was two orders of magnitude higher than that in the reference sediment samples.

3.3 Site Water and Elutriate Analyses

Metals, chlorinated pesticides, and PCBs were analyzed in dredging site water collected from Buttermilk Channel and in elutriate samples prepared from control seawater (Sequim Bay) and the Buttermilk Channel sediment composite. Mud Dump Site water and Sequim Bay control water were also analyzed. All water and elutriate samples were analyzed in triplicate. Mean results of the triplicate analyses are presented and discussed in the following sections. Complete results of all site water and elutriate samples, as well as a quality control summary and associated quality control data, are provided in Appendix B.

3.3.1 Metals

Results of analysis of Sequim Bay control water, Mud Dump Site water, Buttermilk Channel site water, and Buttermilk Channel elutriate are shown in Table 3.8. Concentrations of Cd, Cr, and Zn were similar between the control water and Mud Dump Site water, whereas concentrations of Ag, Cu, Hg, Ni, and Pb were at least twice as high in the Mud Dump Site water than in the control. In particular, Hg and Pb were about an order of magnitude higher in the Mud Dump Site than in the control water.

TABLE 3.7. Results of Analysis of Buttermilk Channel Sediment for PAHs and 1,4-Dichlorobenzene

	<u>Concentration in $\mu\text{g}/\text{kg}$ dry weight</u>	<u>Mud Dump</u>	<u>Reference Site</u>
	<u>COMP BU</u>		
Naphthalene	476	1.13	J ^(a)
Biphenyl	90.8	6.94	U ^(b)
Acenaphthylene	472	6.61	U
Acenaphthene	197	8.59	U
Fluorene	251	7.11	U
Phenanthrene	1590	0.720	J
Anthracene	704	6.96	U
Total LPAH^(c)	3780	20.0	
Fluoranthene	6040	0.528	J
Pyrene	5030	0.554	J
Benz[a]anthracene	1880	0.621	J
Chrysene	2710	9.42	U
Benzo[b]fluoranthene	2440	0.499	J
Benzo[k]fluoranthene	871	8.42	U
Benzo[a]pyrene	1850	6.58	U
Indeno[1,2,3-cd]pyrene	942	5.68	U
Dibenz[a,h]anthracene	278	5.77	U
Benzo[g,h,i]perylene	890	4.77	U
Total HPAH^(c)	22,930	22.5	
Total PAH^(c)	26,710	42.5	
1,4-Dichlorobenzene	89.4	0.794	U

(a)J Analyte detected is below established method detection limit (MDL).

(b)U Undetected at or above given concentration.

(c)One-half detection limit used in summation for undetected values.

Buttermilk Channel Site water had elevated levels of all metals measured when compared with Mud Dump Site water. Concentrations of Cd, Ni, and Zn were only slightly elevated, whereas concentrations of Ag, Cr, Cu, Hg, and Pb were at least twice as high in Buttermilk Channel site water than in Mud Dump Site water.

TABLE 3.8. Results of Analysis of Buttermilk Channel Site Water and Elutriate for Metals

Analyte	Concentration in $\mu\text{g/L}$ ^(a)			
	Control Water	Mud Dump Site Water	Buttermilk Channel Site Water	Buttermilk Channel Elutriate
Ag	0.00350 Q ^(b)	0.0223	0.110	0.0263
Cd	0.0557	0.0603	0.0887	0.0125 Q
Cr	0.180	0.270	0.860	0.577
Cu	0.471	2.06	4.27	0.715
Hg	0.000300	0.00957	0.0223	0.00503
Ni	0.469	1.27	1.88	2.93
Pb	0.0430	0.931	2.81	0.584
Zn	9.20	10.3	13.1	2.66

(a) Value shown is the mean of three replicates; one-half the detection limit used for non-detects.

(b) Q Undetected at or above twice the given concentration.

Buttermilk Channel elutriate concentrations for metals were more similar to those found in the Mud Dump Site water than those in the Buttermilk Channel site water. Concentrations of all metals, with the exception of Cr and Ni, were lower in the Buttermilk Channel elutriate than in the Buttermilk Channel site water.

3.3.2 Chlorinated Pesticides and PCBs

Results of analysis of Sequim Bay control water, Mud Dump Site water, Buttermilk Channel site water, and Buttermilk Channel elutriate are shown in Table 3.9. With few exceptions, pesticides and PCB congeners were not detected in any of the samples. A measurable amount of the analyte PCB 49 was found in Buttermilk Channel site water. This concentration, however, was only slightly greater than the detection limit for this compound. Control water (Sequim Bay) contained heptachlor at a concentration about twice the detection limit value of heptachlor in the Mud Dump Site water, Buttermilk Channel site water, or elutriate water. Two PCB analytes, PCB 170 and PCB 184, were detected in control water at levels lower than the established method detection limit (MDL).

TABLE 3.9. Results of Analysis of Buttermilk Channel Site Water and Elutriate for Chlorinated Pesticides and PCBs

Analyte	Concentration in ng/L ^(a)			
	Control Water	Mud Dump Site Water	Buttermilk Channel Site Water	Buttermilk Channel Elutriate
2,4'-DDD	0.39 Q ^(b)	0.38 Q	0.38 Q	0.41 Q
2,4'-DDT	0.40 Q	0.39 Q	0.39 Q	0.42 Q
4,4'-DDD	0.57 Q	0.56 Q	0.56 Q	0.60 Q
4,4'-DDE	0.49 Q	0.47 Q	0.47 Q	0.51 Q
4,4'-DDT	0.49 Q	0.48 Q	0.48 Q	0.52 Q
Total DDT^(c)	2.76	2.69	2.69	2.90
<i>α</i> -Chlordane	0.46 Q	0.45 Q	0.45 Q	0.48 Q
Aldrin	0.36 Q	0.36 Q	0.36 Q	0.38 Q
Dieldrin	0.48 Q	0.47 Q	0.47 Q	0.51 Q
Endosulfan I/2,4'-DDE	0.42 Q	0.41 Q	0.41 Q	0.44 Q
Endosulfan II	5.51 Q	5.38 Q	5.38 Q	5.81 Q
Endosulfan Sulfate	4.03 Q	3.94 Q	3.94 Q	4.25 Q
Heptachlor	1.02	0.32 Q	0.32 Q	0.34 Q
Heptachlor Epoxide	0.42 Q	0.41 Q	0.41 Q	0.44 Q
<i>trans</i> -Nonachlor	0.47 Q	0.46 Q	0.46 Q	0.50 Q
PCB 8	0.43 Q	0.42 Q	0.42 Q	0.45 Q
PCB 18	0.52 Q	0.51 Q	0.51 Q	0.55 Q
PCB 28	0.59 Q	0.57 Q	0.57 Q	0.62 Q
PCB 44	0.60 Q	0.59 Q	0.59 Q	0.63 Q
PCB 49	0.51 Q	0.50 Q	1.75	0.54 Q
PCB 52	0.60 Q	0.59 Q	0.59 Q	0.64 Q
PCB 66	0.47 Q	0.46 Q	0.46 Q	0.50 Q
PCB 87	0.53 Q	0.51 Q	0.51 Q	0.55 Q
PCB 101	0.53 Q	0.52 Q	0.52 Q	0.56 Q
PCB 105	0.63 Q	0.62 Q	0.62 Q	0.67 Q
PCB 118	0.50 Q	0.49 Q	0.49 Q	0.53 Q
PCB 128	0.56 Q	0.55 Q	0.55 Q	0.59 Q
PCB 138	0.67 Q	0.66 Q	0.66 Q	0.71 Q
PCB 153	0.64 Q	0.63 Q	0.63 Q	0.68 Q
PCB 170	0.19 J ^(d)	0.56 Q	0.56 Q	0.61 Q
PCB 180	0.50 Q	0.49 Q	0.49 Q	0.53 Q
PCB 183	0.52 Q	0.51 Q	0.51 Q	0.55 Q
PCB 184	0.49	0.51 Q	0.51 Q	0.55 Q
PCB 187	0.49 Q	0.48 Q	0.48 Q	0.52 Q
PCB 195	0.57 Q	0.55 Q	0.55 Q	0.60 Q
PCB 206	0.55 Q	0.54 Q	0.54 Q	0.58 Q
PCB 209	0.61 Q	0.60 Q	0.60 Q	0.65 Q
Total PCB^(e)	23.4	23.7	26.2	25.6

(a) Value shown is the mean of three replicates; one-half the detection limit used for non-detects.

(b) Q Undetected at or above twice the given concentration.

(c) Sum of 2,4'-DDD, 2,4'-DDE, 2,4'-DDT, 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT; one-half of the detection limit used in summation when analyte was undetected.

(d) J Analyte detected is below established method detection limit (MDL).

(e) Total PCB = (Σ all PCBs) x 2, where undetected values equal one-half the detection limit.

3.4 Water-Column Toxicity Testing

Water-column tests were performed on four concentrations of an SPP preparation made from the Buttermilk Channel composite. SPP tests were conducted with the silverside *M. beryllina*, the mysid *M. bahia*, and larvae of the bivalve *M. galloprovincialis*. This section discusses the results of all water-column and reference toxicant testing. Complete test results, water quality measurements, and the results of the reference toxicant tests are presented in Appendix C. Throughout this section, the terms "significantly different" and "significantly lower" are used to express statistically significant differences only. Tests for statistical significance between test treatment and control treatment were performed following methods outlined in Section 2.6.

3.4.1 *Menidia beryllina* Water-Column Toxicity Test

Results of the *M. beryllina* water-column toxicity test are summarized in Table 3.10. Complete test results as well as water quality data are presented in Appendix C. Control survival was 98%, validating this test. Survival in the 100% SPP preparation was 0% and was significantly lower than the control. The *M. beryllina* LC₅₀ of the Buttermilk Channel composite was 22.4% SPP.

All water quality parameters were within acceptable ranges throughout the test. Ammonia concentrations in the 100% SPP preparation reached 30.6 mg/L. The copper

TABLE 3.10. Summary of Water-Column Toxicity Tests Performed with Buttermilk Channel Sediment

<u>Test Organism</u>	<u>Survival in 0% SPP</u>	<u>Survival in 100% SPP</u>	<u>0% and 100% Significantly Different</u>	<u>LC₅₀ (%SPP)</u>
<i>Menidia beryllina</i>	98%	0%	Yes	22.4%
<i>Mysidopsis bahia</i>	96%	0%	Yes	70.2%
<i>Mytilus galloprovincialis</i> (Survival)	96%	31%	Yes	78.6%
<i>Mytilus galloprovincialis</i> (Normal development)	93%	0%	Yes	23.0% ^(a)

(a) Median effective concentration (EC₅₀) based on normal development to the D-shaped, protodissococonch stage.

reference toxicant test produced an LC_{50} of 98.1 $\mu\text{g/L}$ Cu, which was within the control limits established at the MSL (71 $\mu\text{g/L}$ to 136 $\mu\text{g/L}$ Cu).

3.4.2 *Mysidopsis bahia* Water-Column Toxicity Test

Results of the *M. bahia* water-column toxicity test are summarized in Table 3.10. Complete test results as well as water quality data are presented in Appendix C. This test was validated by a control survival of 96%. Survival in the 100% SPP preparation was 0% and was significantly lower than the controls. The *M. bahia* LC_{50} for the Buttermilk Channel composite was 70.2% SPP.

All water quality parameters were within acceptable ranges throughout the test, with the exception of pH, which rose to 8.6 in several replicates of the 100% treatment. The ammonia concentration in the 100% SPP preparation reached 30.6 mg/L. The LC_{50} for the copper reference toxicant test could not be estimated by Spearman-Karber since survival was greater than 50% in all treatments. Thus the LC_{50} is estimated as at least 200 $\mu\text{g/L}$ Cu, which could be within the control limits established at the MSL (116 $\mu\text{g/L}$ to 229 $\mu\text{g/L}$).

3.4.3 *Mytilus galloprovincialis* Water-Column Toxicity Test

Results of the *M. galloprovincialis* water-column toxicity test are summarized in Table 3.10. Complete test results and water quality data are presented in Appendix C. This test was validated by 96% survival and 93% normal development in the control. Survival was 31% in the 100% SPP preparation and was significantly lower than the control. The LC_{50} was 78.6% SPP. Normal development, considered a more sensitive indicator of toxicity, was also significantly lower in the 100% SPP, with 0% normal protodissococonch in this treatment. The EC_{50} was 23.0% SPP.

All water quality parameters were within acceptable ranges throughout the test, with the exception of pH, which rose to 8.4 in the 100% treatments. The ammonia concentration in the 100% SPP preparation was 33.5 mg/L. The copper reference toxicant test revealed an LC_{50} of 45.6 $\mu\text{g/L}$ Cu and an EC_{50} of 6.5 $\mu\text{g/L}$ Cu. The LC_{50} was above the control limit of 35 $\mu\text{g/L}$ copper, but the EC_{50} was within the control limits of 5.7 $\mu\text{g/L}$ to 21 $\mu\text{g/L}$ copper established at the MSL. This indicates that this population of mussel could have been slightly less sensitive than those used in previous tests.

3.5 Benthic Acute Toxicity Testing

Benthic acute toxicity tests were performed on the Buttermilk Channel composite and Mud Dump Reference Site sediment. Benthic tests were conducted with the amphipods *A. abdita*, *R. abronius*, and *E. estuarius*, and the mysid *M. bahia*. This section discusses the results of all benthic and reference toxicant testing. Complete test results, water quality measurements, and the results of the reference toxicant tests are presented in Appendix D. Throughout this section the term "significantly lower" is used to express *statistically* significant differences only. Tests for statistical significance between the treatment and reference treatment were performed following methods outlined in Section 2.6.

3.5.1 *Ampelisca abdita* Benthic Acute Toxicity Test

Results of the benthic toxicity test with *A. abdita* are summarized in Table 3.11. Complete test results and water quality data are presented in Appendix D. Prior to test setup, total ammonia concentrations measured in the Buttermilk Channel bulk sediment composite was about 165 mg/L. Test chambers containing sediment and overlying water were set up (March 25, 1994) and maintained under test temperatures with aeration during the ammonia purging period. Overlying water was exchanged twice daily, delivered via a flow-through system (i.e., two times each day, the seawater flow into the test chambers was turned on long enough to displace the volume of the water in the test chamber once). Pore water ammonia was measured in "dummy" jars every few days until concentrations were 30 mg/L or less. The test was initiated after 10 days (April 4, 1994) when the pore water ammonia concentration was 24.9 mg/L.

Survival in the *Ampelisca* control sediment was 97%, validating this test. Survival in the Buttermilk Channel composite was 92% and was not significantly lower than that of the Mud Dump Reference Site sediment (93% survival). Further, the difference in test survival was less than 20% from the reference.

Water quality parameters were within acceptable ranges throughout the test. Ammonia concentrations were less than 1.0 mg/L in the overlying water during the 10-day test, and were 7.39 mg/L in the pore water at test termination. The cadmium reference toxicant test produced an LC₅₀ of 0.66 mg/L Cd, which was within the control limits established at the MSL (0.5 mg/L to 1.4 mg/L Cd).

TABLE 3.11. Summary of Benthic Acute Toxicity Tests Performed with Buttermilk Channel Sediment

<u>Test Organism</u>	<u>Mean % Survival</u>	<u>Significantly Lower Survival Than Mud Dump Reference</u>	<u>Biologically Significant^(a)</u>
<i>A. abdita</i>	92%	No	No
<i>R. abronius</i>	90%	No	No
<i>E. estuarius</i>	73%	Yes	Yes
<i>M. bahia</i> (static)	0%	Yes	Yes
<i>M. bahia</i> (static renewal)	88%	No	No

(a) Biologically significant: Statistically significant mortality in the test treatment that is at least 20% greater than the reference for amphipods and at least 10% greater than the reference for mysids, as required by the Regional Guidance Manual.

3.5.2 *Rhepoxynius abronius* Benthic Acute Toxicity Test

Results of the benthic toxicity test with *R. abronius* are summarized in Table 3.11.

Complete test results and water quality data are presented in Appendix D. The same procedure that was followed to reduce the bulk sediment pore water ammonia concentration from 165 mg/L to 30 mg/L or less in the *A. abdita* test was used in the *R. abronius* test. Test chambers containing sediment and overlying water were set up (March 25, 1994) and maintained under test temperatures with aeration during the ammonia purging period. Overlying water was exchanged twice daily. The test was initiated after 11 days (April 5, 1994) when the pore water ammonia concentration was 17.3 mg/L.

Survival in the West Beach control sediment was 98%, validating this test. Survival in the Buttermilk Channel composite was 90% and was not significantly lower than survival in the Mud Dump Reference Site sediment (98% survival). Further, the difference in test survival was less than 20% from the reference.

All water quality parameters were within acceptable ranges throughout the test. Ammonia concentrations were less than 1.0 mg/L in the overlying water during the 10-day test, and were 12 mg/L in the pore water at test termination. The cadmium reference toxicant test produced an LC₅₀ of 1.14 mg/L Cd, within the control limits established at the MSL (0.48 mg/L to 1.70 mg/L Cd).

3.5.3 *Eohaustorius estuarius* Benthic Acute Toxicity Test

Results of the benthic toxicity test with *E. estuarius* are summarized in Table 3.11. Complete test results and water quality data are presented in Appendix D. The ammonia purging procedure used in the *A. abdita* and *R. abronius* tests was also used in the *E. estuarius* test, except the target pore water ammonia concentration for test initiation was 60 mg/L or less. Test chambers containing sediment and overlying water were set up (April 7, 1994) and maintained under test temperatures with aeration during the ammonia purging period. Overlying water was exchanged twice daily. The test was initiated after 12 days (April 19, 1994) when the pore water ammonia concentration was 18.5 mg/L.

Survival in the control sediment was 99%, validating this test. Survival in the Buttermilk Channel composite was 73% and was significantly lower than the survival in the Mud Dump Reference Site sediment which had a 96% survival rate. This reduction in survival was also biologically significant (i.e., test survival was reduced by $\geq 20\%$ from the reference survival).

All water quality parameters were within acceptable ranges throughout the test, with the exception of pH, which reached a maximum of 8.32 in one replicate. Ammonia concentrations were less than 1.0 mg/L in the overlying water during the 10-day test, and were 14.1 mg/L in the pore water at test termination. The cadmium reference toxicant test produced an LC₅₀ of 8.54 mg/L Cd, within the control limits established at the MSL (7.92 mg/L to 22.9 mg/L Cd).

3.5.4 *Mysidopsis bahia* Static Benthic Acute Toxicity Test

Results of the static benthic toxicity test with *M. bahia* are summarized in Table 3.11. Complete test results and water quality data are presented in Appendix D. The mysid static test was not manipulated in any way to reduce pore water or overlying water ammonia concentrations prior to test initiation. This test was validated by 93% survival in the controls. Survival in the Buttermilk Channel composite was 0% and was significantly lower than that of the Mud Dump Reference Site sediment which had a 89% survival rate. This reduction in survival was also biologically significant (i.e., test survival was reduced by $\geq 20\%$ from the reference survival).

All water quality parameters were within acceptable ranges throughout the test. Total ammonia concentrations in the overlying water ranged from 23.1 mg/L (Day 0) to 78.1 mg/L

(Day 9); with a mean concentration of 40.5 mg/L. The copper reference toxicant test produced an LC₅₀ of 346 µg/L Cu, which was above the control limit of 229 µg/L Cu, indicating that this population of mysids could have been slightly less sensitive than those used in previous tests.

3.5.5 *Mysidopsis bahia* Static Renewal Benthic Acute Toxicity Test

Results of the static renewal benthic toxicity test with *M. bahia* are summarized in Table 3.11. Complete test results and water quality data are presented in Appendix D. As described in Section 2.5.2.2, the ammonia purging procedures were employed to reduce ammonia in the overlying water to nontoxic concentrations. Test chambers containing sediment and overlying water were set up (April 27, 1994) and maintained under test temperatures with aeration during the ammonia purging period. Overlying water was exchanged six times daily for two days. The test was initiated (April 30, 1994) when the overlying water ammonia concentration was 6.48 mg/L, and the pore water ammonia concentration was 79.3 mg/L.

Control survival was 95%, validating this test. Survival in the Buttermilk Channel composite was 88% and was not significantly lower than that in the Mud Dump Reference Site sediment (87% survival), nor was this difference $\geq 10\%$.

All water quality parameters were within acceptable ranges throughout the test. Ammonia concentrations in overlying water of the Buttermilk Channel composite treatments ranged from 3.09 mg/L to 32.0 mg/L, with a mean concentration during the 10-day test of 10.5 mg/L. The copper reference toxicant test produced an LC₅₀ of 346 µg/L Cu, which was above the control limit of 229 µg/L Cu, indicating that this population of mysids could have been slightly less sensitive than those used in previous tests.

3.6 Bioaccumulation Tests with *Macoma nasuta* and *Nereis virens*

Bioaccumulation tests with *M. nasuta* and *N. virens* were conducted using the Buttermilk Channel composite, the Mud Dump Reference Site, and control sediments. Both *M. nasuta* and *N. virens* were exposed for 28 days under flow-through conditions. Survival was greater than 90% survival in the *M. nasuta* control exposure, and 89% in the *N. virens* control exposure. No statistically significant difference in *M. nasuta* or *N. virens* survival was

observed between the Buttermilk Channel composite treatments and the Mud Dump Reference Site sediment. The tissues of the exposed organisms were analyzed for metals and selected organic contaminants (pesticides, PCBs, and PAHs), the results of which are summarized in this section. Total lipids were also analyzed in triplicate on the background or unexposed samples of *M. nasuta* and *N. virens* tissues. The average lipid contents for *M. nasuta* and *N. virens* were 0.59% and 2.11% wet weight, respectively. Complete test results and water quality data are tabulated in Appendix E for both species. Results of tissue analyses, including a quality control summary and associated quality control data, are presented in Appendix F for *M. nasuta* and in Appendix G for *N. virens*.

The statistical analysis of tissue data was performed using one-half detection limits for non-detects and sample dry weight concentrations to remove any variance associated with water content in each sample. Throughout this section the term "significantly different" is used to express *statistically* significant differences only. Tests for statistical significance between the treatment and reference treatment were performed following methods outlined in Section 2.6. Statistical difference between reference site and test sediment exposures is shown in the following tables with the results of sample analysis on a wet weight basis. The wet weight mean tissue concentrations were calculated using one-half detection limits for non-detects. Reporting data in this manner allows for comparison of wet weight concentrations obtained from this study with regulatory levels such as the U.S. Food and Drug Administration (FDA) action levels reported in Section 4.0 of this report. At the end of this section, magnification factors are presented that show a comparison of tissue concentrations. Magnification factors are a ratio of Buttermilk Channel Composite-exposed tissue concentrations to the Mud Dump reference sediment exposed tissue concentrations. Whole detection limit and dry weight concentrations were used to create the magnification factors.

3.6.1 Bioaccumulation of Metals in *Macoma nasuta*

Results of analysis of *M. nasuta* tissues exposed to the Buttermilk Channel composite and Mud Dump Reference Site sediment for metals are shown in Table 3.12. All nine metals analyzed were detected in tissues exposed to the Buttermilk Channel composite. Of these, only Ag, Cr, Cu, Ni, and Pb were detected at statistically significant and elevated

TABLE 3.12. Mean Concentrations of Metals in *Macoma nasuta* Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment

<u>Analyte</u>	<u>Concentration (µg/g wet weight)^(a)</u>		<u>Significantly Different</u>
	<u>Buttermilk Channel Composite</u>	<u>Mud Dump Reference Site Sediment</u>	
Ag	0.0728	0.0372	Yes
As	2.95	3.16	No
Cd	0.0309	0.0355	No
Cr	0.717	0.408	Yes
Cu	2.95	1.78	Yes
Hg	0.0231	0.0180	No
Ni	0.571	0.402	Yes
Pb	1.14	0.157 Q ^(b)	Yes
Zn	11.9	13.1	No

(a) Value shown is a mean of five replicates; one-half the detection limit used for non-detects.

(b) Q Undetected at or above twice the given concentration.

concentrations relative to the reference treatment. The magnification factor, the magnitude by which a contaminant concentration in the test composite tissues exceeds that from the reference composite tissues, was below five for all metals.

3.6.2 Bioaccumulation of Chlorinated Pesticides in *Macoma nasuta*

Results of analysis of *M. nasuta* tissues exposed to the Buttermilk Channel composite and Mud Dump Reference Site sediment for chlorinated pesticides are shown in Table 3.13. Of the 16 pesticides analyzed, 7 were detected in tissues exposed to the Buttermilk Channel composite. With respect to the tissues exposed to the Mud Dump Reference Site sediment, aldrin, dieldrin, α -chlordane, 2,4'-DDD, 4,4'-DDD, 4,4'-DDE, 4,4'-DDT and total DDT were statistically significant and elevated in the Buttermilk Channel composite tissues. Several analytes exceeded reference concentrations: α -chlordane and 4,4'-DDD, by a factor of 5 to 10 times, and 4,4'-DDE by greater than 10 times. Total DDT was 6 times greater in the tissues exposed to the Buttermilk Channel composite than tissues exposed to the Mud Dump Reference Site sediment.

TABLE 3.13. Mean Concentrations of Pesticides in *Macoma nasuta* Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment

<u>Analyte</u>	<u>Concentration (µg/kg wet weight)^(a)</u>		<u>Significantly Different</u>
	<u>Buttermilk Channel Composite</u>	<u>Mud Dump Reference Site Sediment</u>	
2,4'-DDD	0.68	0.12 Q ^(b)	Yes
2,4'-DDE	0.13 Q	0.18	No
2,4'-DDT	0.09 Q	0.09 Q	No
4,4'-DDD	1.86	0.13 Q	Yes
4,4'-DDE	4.58	0.34	Yes
4,4'-DDT	5.40	1.23	Yes
Total DDT^(c)	12.7	2.09	Yes
<i>α</i> -Chlordane	0.55	0.05 Q	Yes
Aldrin	0.76	0.35	Yes
Dieldrin	0.89	0.26 Q	Yes
Endosulfan I	0.09 Q	0.09 Q	No
Endosulfan II	0.09 Q	0.09 Q	No
Endosulfan Sulfate	0.09 Q	0.09 Q	No
Heptachlor	0.09 Q	0.09 Q	No
Heptachlor Epoxide	0.07 Q	0.06 Q	No
<i>trans</i> -Nonachlor	0.07 Q	0.07 Q	No

(a) Value shown is a mean of five replicates; one-half the detection limit used for non-detects.

(b) Q Undetected at or above twice the given concentration.

(c) Sum of 2,4'-DDD, 2,4'-DDE, 2,4'-DDT, 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT; one-half of the detection limit used in summation when analyte was undetected.

3.6.3 Bioaccumulation of PCBs in *Macoma nasuta*

Results of analysis of *M. nasuta* tissues exposed to the Buttermilk Channel composite and Mud Dump Reference Site sediment for PCBs are shown in Table 3.14. Eighteen of 22 PCBs analyzed were detected in *M. nasuta* tissues exposed to the Buttermilk Channel composite. Sixteen PCBs and total PCB were observed at concentrations that were statistically significant and elevated relative to those in tissues exposed to the Mud Dump Reference Site sediment. The concentrations of four PCB congeners (49, 66, 153, and 187) exceeded those of the Mud Dump Reference tissues by at least 10 times.

TABLE 3.14. Mean Concentrations of PCBs in *Macoma nasuta* Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment

<u>Analyte</u>	<u>Concentration (µg/kg wet weight)^(a)</u>		<u>Significantly Different</u>
	<u>Buttermilk Channel Composite</u>	<u>Mud Dump Reference Site Sediment</u>	
PCB 8	0.63	0.87	No
PCB 18	2.77	0.21 Q ^(b)	Yes
PCB 28	5.38	0.62	Yes
PCB 44	1.37	0.08 Q	Yes
PCB 49	4.37	0.17	Yes
PCB 52	5.07	0.81	Yes
PCB 66	5.76	0.18	Yes
PCB 87	1.01	0.16	Yes
PCB 101	3.76	0.45	Yes
PCB 105	0.91	0.09	Yes
PCB 118	2.74	0.17	Yes
PCB 128	0.40	0.07 Q	Yes
PCB 138	1.82	0.18	Yes
PCB 153	2.40	0.15	Yes
PCB 170	0.40	0.12	Yes
PCB 180	0.69	0.09 Q	Yes
PCB 183	0.12 Q	0.12 Q	No
PCB 184	0.12 Q	0.12 Q	No
PCB 187	1.42	0.06 Q	Yes
PCB 195	0.05 Q	0.05 Q	No
PCB 206	0.07	0.05 Q	No
PCB 209	0.05 Q	0.05 Q	No
Total PCB^(c)	82.6	9.76	Yes

(a) Value shown is a mean of five replicates; one-half the detection limit used for non-detects.

(b) Q Undetected at or above twice the given concentration.

(c) Total PCB = (Σ all PCBs) x 2, where undetected values equal one-half the detection limit.

3.6.4 Bioaccumulation of PAHs and 1,4-Dichlorobenzene in *Macoma nasuta*

Results of analysis of *M. nasuta* tissues exposed to the Buttermilk Channel composite and Mud Dump Reference Site sediment for PAHs and 1,4-dichlorobenzene are shown in Table 3.15. All PAHs analyzed were detected in *M. nasuta* tissues exposed to the Buttermilk Channel composites at statistically significant and elevated concentrations, relative to tissues exposed to the Mud Dump Reference Site sediment. Fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, and benzo(a)pyrene were found at

TABLE 3.15. Mean Concentrations of PAHs and 1,4-Dichlorobenzene in *Macoma nasuta* Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment

Analyte	Concentration (µg/kg wet weight) ^(a)		Significantly Different
	Buttermilk Channel Composite	Mud Dump Reference Site Sediment	
Naphthalene	3.09	1.12	Yes
Acenaphthylene	1.99	0.36 Q ^(b)	Yes
Acenaphthene	3.09	0.64 Q	Yes
Fluorene	3.58	0.61 Q	Yes
Phenanthrene	19.9	1.26 Q	Yes
Anthracene	16.4	1.10 Q	Yes
Total LPAH	48.1	5.09	
Fluoranthene	78.4	2.64 Q	Yes
Pyrene	111	2.25 Q	Yes
Benz[a]anthracene	50.0	2.36	Yes
Chrysene	60.3	1.12 Q	Yes
Benzo[b]fluoranthene	49.4	3.37	Yes
Benzo[k]fluoranthene	16.6	1.83	Yes
Benzo[a]pyrene	36.1	1.21	Yes
Indeno[1,2,3-cd]pyrene	11.0	0.87 Q	Yes
Dibenz[a,h]anthracene	3.15	0.62 Q	Yes
Benzo[g,h,i]perylene	12.0	0.99	Yes
Total HPAH	428	17.3	
Total PAH	476	22.4	
1,4-Dichlorobenzene	0.92 Q	0.92 Q	No

(a) Results shown are a mean of five replicate tissue analyses. If any constituents were undetected, one-half the detection limit was used in calculation of the mean concentration.

(b) Q Undetected at or above twice the given concentration.

concentrations over 10 times higher in *M. nasuta* exposed to Buttermilk Channel sediments than in the Mud Dump Reference Site sediment. The compound 1,4-dichlorobenzene was undetected in all replicates of the tissues exposed to the Buttermilk Channel composite.

3.6.5 Bioaccumulation of Metals in *Nereis virens*

Results of analysis of *N. virens* tissues exposed to the Buttermilk Channel composite and Mud Dump Reference Site sediment for metals are shown in Table 3.16. All metals

TABLE 3.16. Mean Concentrations of Metals in *Nereis virens* Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment

<u>Analyte</u>	<u>Concentration (µg/g wet weight)^(a)</u>		<u>Significantly Different</u>
	<u>Buttermilk Channel Composite</u>	<u>Mud Dump Reference Site Sediment</u>	
Ag	0.018	0.022	No
As	2.06	2.07	No
Cd	0.055	0.062	No
Cr	0.141	0.103 Q ^(b)	No
Cu	1.37	3.30	No
Hg	0.008	0.012	No
Ni	0.119	0.0928 Q	No
Pb	0.280	0.311	No
Zn	10.9	11.2	No

(a) Value shown is a mean of five replicates; one-half the detection limit used for non-detects.

(b) Q Undetected at or above twice the given concentration.

analyzed were detected in *N. virens* tissues exposed to the Buttermilk Channel composite. Of these, however, none were measured at concentrations statistically significant and elevated from those measured in tissues exposed to the Mud Dump Reference Site sediment.

3.6.6 Bioaccumulation of Chlorinated Pesticides in *Nereis virens*

Results of analysis of *N. virens* tissues exposed to the Buttermilk Channel composite and Mud Dump Reference Site sediment for chlorinated pesticides are shown in Table 3.17. Analytes 2,4'-DDE, 2,4'-DDT, and the endosulfans I and II were not detected in *N. virens* tissues exposed to the Buttermilk Channel composite. Aldrin, dieldren, α -chlordane, 4,4'-DDE, 4,4'-DDD, and total DDT were detected at concentrations statistically significant and elevated from tissues exposed to the Mud Dump Reference Site sediment. Both aldrin and α -chlordane were detected at concentrations greater than 10 times those of the reference tissues.

TABLE 3.17. Mean Concentrations of Pesticides in *Nereis virens* Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment

Analyte	Concentration ($\mu\text{g}/\text{kg}$ wet weight) ^(a)		Significantly Different
	Buttermilk Channel Composite	Mud Dump Reference Site Sediment	
2,4'-DDD	1.33	0.18	No
2,4'-DDE	0.18 Q ^(b)	0.14 Q	No
2,4'-DDT	0.12 Q	0.09 Q	No
4,4'-DDD	2.79	0.51	Yes
4,4'-DDE	2.21	0.15	Yes
4,4'-DDT	0.23	0.08 Q	No
Total DDT^(c)	6.86	1.14	Yes
<i>α</i> -Chlordane	1.06	0.05 Q	Yes
Aldrin	1.98	0.07 Q	Yes
Dieldrin	1.49	0.58	Yes
Endosulfan I	0.12 Q	0.09 Q	No
Endosulfan II	0.12 Q	0.09 Q	No
Endosulfan Sulfate	0.16	0.09 Q	No
Heptachlor	0.19	0.10 Q	No
Heptachlor Epoxide	0.13	0.07 Q	No
<i>trans</i> -Nonachlor	0.80	0.54	No

(a) Value shown is a mean of five replicates; one-half the detection limit used for non-detects.

(b) Q Undetected at or above twice the given concentration.

(c) Sum of 2,4'-DDD, 2,4'-DDE, 2,4'-DDT, 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT; one-half of the detection limit used in summation when analyte was undetected.

3.6.7 Bioaccumulation of PCBs in *Nereis virens*

Results of analysis of *N. virens* tissues exposed to the Buttermilk Channel composite and Mud Dump Reference Site sediment for PCBs are shown in Table 3.18. Fourteen of 22 PCBs analyzed and total PCB were detected in *N. virens* tissues exposed to the Buttermilk Channel at concentrations that were statistically significant and elevated relative to those in tissues exposed to the Mud Dump Reference composite. Three PCBs (PCB 28, 49, 52) were observed at concentrations greater than 10 times those of the tissues exposed to the Mud Dump Reference composite.

TABLE 3.18. Mean Concentrations of PCBs in *Nereis virens* Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment

<u>Analyte</u>	<u>Concentration (µg/kg wet weight)^(a)</u>		<u>Significantly Different</u>
	<u>Buttermilk Channel Composite</u>	<u>Mud Dump Reference Site Sediment</u>	
PCB 8	0.28 Q ^(b)	0.21 Q	No
PCB 18	1.66	0.22 Q	Yes
PCB 28	3.54	0.11 Q	Yes
PCB 44	1.29	0.09 Q	Yes
PCB 49	3.11	0.12 Q	Yes
PCB 52	5.34	0.32	Yes
PCB 66	0.06 Q	0.05 Q	No
PCB 87	0.37	0.11	Yes
PCB 101	4.21	0.46	Yes
PCB 105	1.16	0.18	Yes
PCB 118	2.12	0.15 Q	Yes
PCB 128	0.63	0.25	No
PCB 138	3.57	1.18	Yes
PCB 153	4.50	2.01	No
PCB 170	0.95	0.28	Yes
PCB 180	1.80	0.58	Yes
PCB 183	0.57	0.17	Yes
PCB 184	0.16 Q	0.12 Q	No
PCB 187	1.32	0.50	No
PCB 195	0.09	0.05 Q	No
PCB 206	0.45	0.23	No
PCB 209	0.31	0.16	Yes
Total PCB^(c)	74.9	15.1	Yes

(a) Value shown is a mean of five replicates; one-half the detection limit used for non-detects.

(b) Q Undetected at or above twice the given concentration.

(c) Total PCBs = (Σ all PCBs) x 2, where undetected values equal one-half the detection limit.

3.6.8 Bioaccumulation of PAHs and 1,4-Dichlorobenzene in *Nereis virens*

Results of analysis of *N. virens* tissues exposed to the Buttermilk Channel composite and Mud Dump Reference Site sediment for PAHs and 1,4-dichlorobenzene are shown in Table 3.19. All PAHs analyzed were detected in tissues exposed to the Buttermilk Channel composite. Of these, eight were detected as statistically significant and elevated concentrations relative to those in tissues exposed to the Mud Dump Reference Site

TABLE 3.19. Mean Concentrations of PAHs and 1,4-Dichlorobenzene in *Nereis virens* Tissues Exposed to Buttermilk Channel and Mud Dump Reference Site Sediment

Analyte	Concentration ($\mu\text{g}/\text{kg}$ wet weight) ^(a)		Significantly Different
	Buttermilk Channel Composite	Mud Dump Reference Site Sediment	
Naphthalene	4.01	4.49	No
Acenaphthylene	1.45	0.88	No
Acenaphthene	3.11	2.02	No
Fluorene	2.09	1.85	No
Phenanthrene	3.53	3.01	No
Anthracene	3.72	1.17 Q ^(b)	Yes
Total LPAH	17.9	13.4	
Fluoranthene	19.8	2.80 Q	Yes
Pyrene	25.3	3.86	Yes
Benz[a]anthracene	4.43	3.43	No
Chrysene	10.5	1.18 Q	Yes
Benzo[b]fluoranthene	7.34	2.66	Yes
Benzo[k]fluoranthene	4.28	1.09	Yes
Benzo[a]pyrene	4.77	0.78 Q	Yes
Indeno[1,2,3-cd]pyrene	3.71	1.43	No
Dibenz[a,h]anthracene	1.36	0.66 Q	No
Benzo[g,h,i]perylene	3.92	1.27	Yes
Total HPAH	85.4	19.2	
Total PAH	103	32.6	
1,4-Dichlorobenzene	1.24 Q	0.97 Q	No

(a) Value shown is a mean of five replicates; one-half the detection limit used for non-detects.

(b) Q Undetected at or above twice the given concentration.

sediment. The compound 1,4-dichlorobenzene was not detected in the Buttermilk Channel composite tissues.

3.6.9 Magnification Factors of Compounds in *Macoma nasuta* and *Nereis virens*

Table 3.20 shows the calculated magnification factors of all compounds analyzed in tissues of *M. nasuta* and *N. virens*. Magnification factors were calculated with the dry weight concentrations of the compounds in the tissues of the test organism. These factors show the

TABLE 3.20. Magnification Factors of All Analyzed Compounds in Tissues Exposed to a Buttermilk Channel Composite Compared to Mud Dump Reference Site Sediment

Analyte	Magnification Factors ^(a)	
	<i>Macoma nasuta</i>	<i>Nereis virens</i>
Ag	1.90	0.70
As	1.03	0.97
Cd	0.97	0.87
Cr	1.92	0.67
Cu	1.85	0.42
Hg	1.43	0.65
Ni	1.58	0.62
Pb	3.99	0.74
Zn	0.99	0.93
2,4'-DDD	2.86	4.80
2,4'-DDE	0.95	1.25
2,4'-DDT	1.06	1.24
4,4'-DDD	<u>7.54</u>	4.72
4,4'-DDE	13.5	9.49
4,4'-DDT	4.88	1.90
<i>α</i> -Chlordane	5.86	10.1
Aldrin	2.09	14.3
Dieldrin	1.93	2.06
Endosulfan I	1.05	1.24
Endosulfan II	1.05	1.24
Endosulfan Sulfate	1.05	1.35
Heptachlor	1.04	1.42
Heptachlor Epoxide	1.05	1.48
<i>trans</i> -Nonachlor	1.03	1.47
PCB 8	0.76	1.25
PCB 18	<u>6.77</u>	3.81
PCB 28	<u>9.08</u>	16.3
PCB 44	<u>8.54</u>	<u>7.16</u>
PCB 49	19.0	12.2
PCB 52	<u>6.54</u>	12.1
PCB 66	25.0	1.25
PCB 87	<u>5.09</u>	2.10
PCB 101	<u>8.90</u>	<u>8.68</u>
PCB 105	<u>8.10</u>	<u>5.59</u>
PCB 118	<u>9.86</u>	<u>6.71</u>
PCB 128	2.79	1.73
PCB 138	<u>6.49</u>	2.95

TABLE 3.20. (contd)

Analyte	Magnification Factors(a)	
	<i>Macoma nasuta</i>	<i>Nereis virens</i>
PCB 153	15.0	2.19
PCB 170	2.37	3.14
PCB 180	4.01	3.03
PCB 183	1.04	2.34
PCB 184	1.04	1.25
PCB 187	11.4	2.57
PCB 195	1.06	1.33
PCB 206	1.12	1.88
PCB 209	1.04	1.89
 Naphthalene	1.73	0.81
Acenaphthylene	2.91	1.27
Acenaphthene	2.50	1.31
Fluorene	3.04	1.10
Phenanthrene	8.21	1.02
Anthracene	<u>7.76</u>	1.69
Fluoranthene	15.4	3.42
Pyrene	25.6	4.66
Benz[a]anthracene	21.9	1.30
Chrysene	28.0	4.30
Benzo[b]fluoranthene	15.3	2.36
Benzo[k]fluoranthene	<u>8.67</u>	2.30
Benzo[a]pyrene	24.7	2.97
Indeno[1,2,3-cd]pyrene	<u>6.62</u>	1.82
Dibenz[a,h]anthracene	2.64	1.40
Benzo[g,h,i]perylene	<u>8.87</u>	2.04
 1,4-Dichlorobenzene	1.05	1.23

(a) Magnification factors are the number of times the test treatment concentration is greater than the reference treatment concentration on a dry weight basis. When the compound is undetected the achieved detection limit is used in the calculation. Magnification factors greater than or equal to 5 but less than 10 appear as underlined values, and magnification factors greater than or equal to 10 appear in bold type.

magnitude of increase in tissue concentrations from tissues exposed to Buttermilk Channel Composite sediments to those exposed to the Mud Dump Reference Site sediments. When all replicate analyses of a compound were undetected for tissues exposed to the Mud Dump Reference Site sediments, the magnification factor displayed is the magnitude of increase from the detection limit.

4.0 Discussion and Conclusions

In this section, physical and chemical analyses, and bioassays performed on the Buttermilk Channel sediment composite are evaluated relative to the Mud Dump Reference Site sediment by the guidelines of the Green Book Tier III. Tier III evaluations include water-column toxicity tests, benthic toxicity tests, and whole-sediment bioaccumulation studies. Tier III evaluations assess the impact of contaminants in the dredged material on marine organisms to determine whether there is potential for the material to have an unacceptable environmental effect during ocean disposal. The Green Book provides the following guidance for determining whether the proposed dredged material is unacceptable for ocean disposal based on the Tier III test:

- Water-Column Toxicity. The limiting permissible concentration (LPC) of dissolved plus suspended contaminants cannot exceed 0.01 of the acutely toxic concentration at the boundaries of the disposal site within the first 4 h after disposal, or at any point in the marine environment after the first 4 h. The acutely toxic concentration in this case is taken to be the median lethal concentration (LC_{50}); therefore, acute toxicity in SPP tests would require at least 50% mortality in an SPP treatment to be evaluated according to the Green Book. A numerical mixing model should be used to predict whether concentrations greater than 0.01 of the acutely toxic SPP concentrations are likely to occur beyond the boundaries of the disposal site within the first 4 h after disposal.
- Benthic Acute Toxicity. The proposed dredged material does not meet the LPC for benthic toxicity when organism survival in the test sediment and the reference site sediment is statistically significant, and the decrease in survival is at least 20% for *A. abdita*, *R. abronius*, and *E. estuarius*, or at least 10% for *M. bahia*.
- Bioaccumulation. The proposed dredged material does not meet the LPC for bioaccumulation if tissue concentrations of one or more contaminants of concern are greater than the applicable FDA levels (FDA 1993a, 1993b, 1993c, 1993d, 1993e). Regional guidance (USACE-NYD 1981) for interpretation of bioaccumulation was also considered. When the bioaccumulation of contaminants in the dredged material exceeds that in the reference material exposures, further case-specific evaluation criteria listed in the Green Book should be consulted to determine LPC and benthic effects compliance.

Sections 4.1 through 4.4 discuss the proposed Buttermilk Channel dredged material in terms of sediment characterization and Tier III evaluations. The contribution of the Buttermilk

Channel sediment composite to water-column or benthic acute toxicity and potential for bioaccumulation relative to the reference is also presented.

4.1 Sediment Physical and Chemical Characterization

Buttermilk Channel sediment core samples were black, silty-clayey material. Percentages of silt ranged from 35% to 43%, and clay ranged from 35% to 46%. Sediment moisture contents varied from 56% to 65% in individual cores. Levels of all metals in Buttermilk Channel sediment exceeded those found in the Mud Dump Reference Site sediment and in typical New York Bight sediment. The dominant pesticides found were those in the DDD/DDE/DDT group of compounds. All of the 22 PCB congeners analyzed were detected in Buttermilk Channel sediment, with a total PCB concentration of 589 µg/kg, dry weight. All 17 PAHs analyzed were detected in Buttermilk Channel sediment. Total PAH was 26,710 µg/kg, dry weight; 14% of the total was LPAH; 86% of the total was HPAH. Fluoranthene and pyrene were present at the highest concentrations. The concentration of 1,4-dichlorobenzene was 89 µg/kg, dry weight.

4.2 Site Water and Elutriate Chemical Characterization

Sequim Bay control water had the lowest concentrations of metals, when compared with Mud Dump Site water and Buttermilk Channel site water. Metals concentrations were consistently highest in the Buttermilk Channel site water. Buttermilk Channel elutriate concentrations of metals were generally lower than Mud Dump Site water, except for Cr and Ni, which were elevated by a factor of two in the Buttermilk Channel elutriate. With a few exceptions, pesticides were not detected in any of the samples. Measurable amounts of the PCB congener CL4(49) were found in Buttermilk Channel site water, and congener CL4(66) was found in the Buttermilk Channel elutriate. However, these concentrations were only slightly greater than the detection limits for these compounds.

4.3 Toxicity

The benthic acute toxicity of the Buttermilk Channel sediment relative to the Mud Dump Reference Site is shown in Figure 4.1. No statistically significant acute toxicity was found in static renewal tests with *A. abdita*, *R. abronius*, and *M. bahia*. Survival of *M. bahia* in tests with Buttermilk Channel sediment was 88% in the static renewal exposure and 0% in the static exposure, indicating that the procedure to reduce overlying water total ammonia concentrations in the test chambers to nontoxic levels prior to test initiation resulted in increased survival of *M. bahia*. The sediment composite was acutely toxic and had at least 20% increase in mortality over the reference sediment in the static renewal test with *E. estuarius*, and at least 10% increase in mortality over the reference sediment in the static test with *M. bahia*. Therefore, Buttermilk Channel sediment did not meet the LPC for benthic toxicity to these test organisms, if the observed effects are due to persistent contaminants.

In water-column toxicity tests, 100% SPP treatments were acutely toxic to all three species tested. The LC₅₀'s ranged from 22.4% SPP for *M. beryllina* to 78.6% SPP for *M. galloprovincialis* survival. The EC₅₀ for *M. galloprovincialis* normal development, a more sensitive measure than survival, was 23.0% SPP. The LPC for water-column effects outside of the disposal site boundaries after 4 h is 0.22% SPP for Buttermilk Channel sediment. A projection of SPP concentrations exceeding this value after 4 h at the Mud Dump Site boundary would be unacceptable.

4.4 Bioaccumulation

When *N. virens* and *M. nasuta* were exposed to Buttermilk Channel sediment in 28-day bioaccumulation tests, concentrations of some contaminants were elevated in tissues of both species. Concentrations of metals were higher in *M. nasuta* than in *N. virens*. Pesticide and PCB concentrations were similar in the two species, with some analytes higher in the *N. virens*, and others higher in the *M. nasuta*. Concentrations of PAHs were higher in *M. nasuta*, many compounds by a factors of 4 to 10 times, than in *N. virens*. Table 4.1 compares the FDA action levels for poisonous or deleterious substances in fish and shellfish for human consumption for selected pesticides, and FDA levels of concern for chronic shellfish consumption for selected metals with the mean concentration of these contaminants

		Sediment Treatment	Buttermilk Channel Composite	
Acute Toxicity			(a)	
Any Significant Bioaccumulation	<i>A. abdita</i> Benthic Static-Renewal Test			
	<i>E. estuarinus</i> Benthic Static-Renewal Test		AT ^(b)	
	<i>R. abronius</i> Benthic Static-Renewal Test		-	
	<i>M. bahia</i> Benthic Static-Renewal Test		-	
	<i>M. bahia</i> Benthic Static Test		AT	
	<i>M. beryllina</i> SPP Test		S ^(c)	
	<i>M. bahia</i> SPP Test		S	
	<i>M. galloprovincialis</i> SPP Test		S	
Bioaccumulation < 2 times Reference	Test Species		<i>M. nasuta</i> ^(d)	<i>N. virens</i> ^(d)
	# of Metals (9 total)		5	-
	# of Pesticide compounds (15 total)		7	5
	# of PCB congeners (22 total)		17	14
	# of PAH compounds (16 total)		16	8
Bioaccumulation > 2-5 times Reference	1,4-dichlorobenzene		-	-
	# of Metals (9 total)		8	9
	# of Pesticide compounds (15 total)		9	9
	# of PCB congeners (22 total)		6	7
	# of PAH compounds (16 total)		1	9
Bioaccumulation > 5-10 times Reference	1,4-dichlorobenzene		1	1
	# of Metals (9 total)		1	-
	# of Pesticide compounds (15 total)		3	3
	# of PCB congeners (22 total)		3	8
	# of PAH compounds (16 total)		4	7
Bioaccumulation > 10 times Reference	1,4-dichlorobenzene		-	-
	# of Metals (9 total)		-	-
	# of Pesticide compounds (15 total)		2	1
	# of PCB congeners (22 total)		9	4
	# of PAH compounds (16 total)		5	-

(a) No significant difference/no significant bioaccumulation at this level.

(b) AT Acutely toxic; significantly different from reference and mortality at least 20% greater ($\geq 10\%$ for mysids) than reference.

(c) S Significantly different mortality between 0% and 100% SPP

(d) Number of compounds bioaccumulating in tissues.

FIGURE 4.1. Summary Matrix of Buttermilk Channel Sediment Toxicity and Bioaccumulation Potential

TABLE 4.1. Comparison of Contaminant Concentrations in *N. virens* and *M. nasuta* Tissues Exposed to Proposed Dredged Material from Buttermilk Channel with Guidance Levels for Bioaccumulation

Substance	Guidance Level (mg/kg wet wt)	Concentration ^(a) in <i>M. nasuta</i> Tissues (mg/kg wet wt)	Concentration ^(a) in <i>N. virens</i> Tissues (mg/kg wet wt)
Chlordane ^(b)	0.3 ^(c)	0.00062	0.00186
Total DDT ^(d)	5.0 ^(c)	0.0127	0.00686
Dieldrin + Aldrin	0.3 ^(c)	0.00165	0.00347
Heptachlor +			
Heptachlor epoxide	0.3 ^(c)	0.00016	0.00032
Total PCB ^(e)	2.0 ^(c)	0.0826	0.0749
Arsenic	86 ^(f)	2.95	2.06
Cadmium	3.7 ^(f)	0.0309	0.0553
Chromium	13 ^(f)	0.717	0.141
Lead	1.7 ^(f)	1.14	0.280
Nickel	80 ^(f)	0.571	0.119
Methyl Mercury	1.0 ^(f)	0.0231 ^(g)	0.00811 ^(g)
Total DDT ^(d)	0.04 ^(h)	0.0127	0.00686
Total PCB ^(e)	0.10 ^(h)	0.0826	NA
Total PCB ^(e)	0.40 ^(h)	NA	0.0749
Mercury (total)	0.20 ^(h)	0.0231	0.00811
Cadmium	0.30 ^(h)	0.0309	0.0553

(a) Concentration shown is the mean of five replicate tissue analyses. If any constituents were undetected, one-half of the detection limit was used in calculation of the mean concentration.

(b) Sum of α -chlordane and *trans*-Nonachlor only, whereas FDA action level is a sum of nine chlordane analytes.

(c) FDA action levels for poisonous and deleterious substances in fish and shellfish for human food.

(d) Sum of mean values for 2,4'-DDT, 4,4'-DDT, 2,4'-DDE, 4,4'-DDE, 2,4'-DDD, and 4,4'-DDD. One-half of the detection limit was used in the summation when mean values were undetected.

(e) Total PCB=2.0(x), where x equals the sum of the 22 congeners. One-half of the detection limit was used in summation when mean values were undetected in a replicate.

(f) FDA level of concern for chronic shellfish consumption.

(g) Value reported is for total mercury.

(h) NYD bioaccumulation matrix designated in 1981 (USACE-NYD 1981).

found in tissues of each test species. The *N. virens* and *M. nasuta* tissues exposed to Buttermilk Channel sediment had tissue body burdens that were lower than the FDA levels for each of these selected contaminants.

When tissue burdens of organisms exposed to Buttermilk Channel sediment were compared with those exposed to Mud Dump Reference Site sediment, the tissue burdens

were statistically significantly higher for metals, pesticides, PCBs, and PAHs. Therefore, Buttermilk Channel sediment requires further evaluation to determine LPC and benthic effects compliance. Figure 4.1 indicates the number of compounds in each contaminant group that was statistically significantly elevated, and whether the bioaccumulation was a greater than two- but less than fivefold increase over the reference; greater than five- but less than tenfold increase over the reference; or a greater than tenfold increase over the reference site treatment.

5.0 References

Barrows, E.S., M.R. Pinza, W.W. Gardiner, N.P. Kohn, B.D. Gruendell, H.L. Mayhew, J.Q. Word, and L.B. Rosman. 1996 (In preparation). *Evaluation of Dredged Material Proposed for Ocean Disposal from Federal Projects in New York and New Jersey and the Military Ocean Terminal (MOTBY)*. Prepared for Department of the Army, U.S. Army Corps of Engineers, New York District, Water Quality Branch, under a Related Services Agreement with the U.S. Department of Energy Contract DE-AC06-76RLO 1830 by Battelle/Marine Sciences Laboratory, Pacific Northwest National Laboratory.

Bligh, E.G., and W.J. Dyer. 1959. "A Rapid Method of Total Lipid Extraction and Purification." *Canadian Journal of Biochemistry and Physiology*. 37:8 911-917.

Bloom, N.S., and E.A. Crecelius. 1983. "Determination of Mercury in Seawater at Sub-Nanogram per Liter Levels." *Mar. Chem.* 14:49-59.

Dunnett, C.W. 1964. "New Tables for Multiple Comparisons with a Control." *Biometrics* 20:482-491.

EPA (U.S. Environmental Protection Agency). 1986. *Determination of Total Organic Carbon in Sediment*. U.S. Environmental Protection Agency, Region II, Environmental Services Division, Monitoring Management Branch, Edison, New Jersey.

EPA (U.S. Environmental Protection Agency). 1990. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846*. 3rd Ed. U.S. Environmental Protection Agency, Washington, D.C.

EPA (U.S. Environmental Protection Agency). 1991. *Methods for the Determination of Metals in Environmental Samples*. EPA/600/4-91-010. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C.

EPA (U.S. Environmental Protection Agency). 1992. *Chemical Analysis of Tissue and Sediment from Potential Disposal Areas in the New York Bight, Summer Survey, August 1992*. Contract No. 68-C8-0105. Report Prepared by Battelle Ocean Sciences under Contract to U.S. Environmental Protection Agency, Oceans and Coastal Protection Division, Washington, D.C.

EPA/USACE (U.S. Environmental Protection Agency/U.S. Army Corps of Engineers). 1991. *Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual)*. EPA-503/8-91/001. U.S. Environmental Protection Agency, Office of Marine and Estuarine Protection, Washington, D.C.

EPA/USACE (U.S. Environmental Protection Agency/U.S. Army Corps of Engineers). 1993. Memorandum: Technical Panel Recommendations Concerning Use of Acute Amphipod Tests in Evaluation of Dredged Material. December 21, 1993. U.S. Environmental Protection Agency/U.S. Army Corps of Engineers. Washington, D.C.

FDA (U.S. Food and Drug Administration. 1993a. Guidance Document for Arsenic in Shellfish. U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Washington, D.C.

FDA (U.S. Food and Drug Administration. 1993b. Guidance Document for Cadmium in Shellfish. U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Washington, D.C.

FDA (U.S. Food and Drug Administration. 1993c. Guidance Document for Chromium in Shellfish. U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Washington, D.C.

FDA (U.S. Food and Drug Administration. 1993d. Guidance Document for Nickel in Shellfish. U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Washington, D.C.

FDA (U.S. Food and Drug Administration. 1993e. Guidance Document for Lead in Shellfish. U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Washington, D.C.

Finney, D. J. 1971. *Probit Analysis*. 3rd Ed. Cambridge University Press, Boston, Massachusetts.

NOAA (National Oceanic and Atmospheric Administration). 1993. *Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984-1992. Volume IV. Comprehensive Descriptions of Trace Organic Analytical Methods*. G. G. Lauenstein and A.Y. Cantillo, eds. NOAA Technical Memorandum NOS ORCA 71. National Oceanic and Atmospheric Administration, Coastal Monitoring and Bioeffects Assessment Division, Office of Ocean Resources Conservation and Assessment, Silver Spring, Maryland.

NYSDEC (New York State Department of Environmental Conservation). 1992. *Analytical Method for the Determination of PCB congeners by Fused Silica Capillary Column Gas Chromatography with Electron Capture Detector*. NYSDEC Method 91-11. New York State Department of Environmental Conservation, Albany, New York.

Plumb, R. H., Jr. 1981. *Procedure for Handling and Chemical Analysis of Sediment and Water Samples*. Tech. Rep. EPA/CE-81-1. Prepared by Great Lakes Laboratory, State University College at Buffalo, New York, for the U.S. Environmental Protection Agency/U.S. Army Corps of Engineers Technical Committee on Criteria for Dredged and Fill Material. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

Randall, R. C. 1988. *Lipid Standard Operating Procedure, Modified Bligh/Dyer*. U.S. Environmental Protection Agency Office of Research and Development, Environmental Research, Washington D.C.

USACE (U.S. Army Corps of Engineers). 1970 (Revised 1980). *Engineer Manual, Engineering and Design, Laboratory Soils Testing*. EM 110-2-1906. Headquarters, Department of the Army, Office of the Chief of Engineers, Washington, D.C.

USACE-NYD (U.S. Army Corps of Engineers, New York District). April 7, 1981. *Memorandum: Final Interpretive Guidance for Bioaccumulation of Petroleum Hydrocarbons, DDT, Cadmium, and Mercury in the New York Bight*. USACE Office of the Chief of Engineers, New York, New York.

USACE-NYD/EPA Region II (U.S. Army Corps of Engineers, New York District/U.S. Environmental Protection Agency, Region II). 1992. *Guidance for Performing Tests on Dredged Material Proposed for Ocean Disposal*. 18 December 1992 Draft. U.S. Army Corps of Engineers, New York District and U.S. Environmental Protection Agency, Region II. New York, New York.

Appendix A

**Quality Assurance/Quality Control Data for
Sediment Physical/Chemical Analyses,
Buttermilk Channel Project**

QA/QC SUMMARY

PROGRAM: New York/New Jersey Federal Projects-2

PARAMETER: Grain Size, Bulk Density, Specific Gravity and Total Solids

LABORATORY: Soil Technology, Bainbridge Island, Washington

MATRIX: Sediment

QA/QC DATA QUALITY OBJECTIVES

	<u>Reference Method</u>	<u>Range of Recovery</u>	<u>SRM Accuracy</u>	<u>Relative Precision</u>	<u>Detection Limit (dry wt)</u>
Grain Size	ASTM D-2217 and D-422	N/A	N/A	≤20%	1.0%
Bulk Density	ASTM D-854	N/A	N/A	≤20%	N/A
Specific Gravity	EM 1110-2-1906	N/A	N/A	≤20%	N/A
Total Solids	Plumb 1981	N/A	N/A	N/A	1.0%

METHOD Grain size was measured for four fractions using a combination of sieve and pipet techniques, following ASTM method D-2217 and D-422 for wet sieving. Bulk density was measured in accordance with ASTM method D-854. Specific gravity was measured in accordance with USACE Method EM 1110-2-1906. Total solids were measured gravimetrically following Plumb (1981).

HOLDING TIMES Samples were analyzed within the 6 month holding time.

DETECTION LIMITS Target detection limits of 1.0% by weight for each fraction were met for all samples.

METHOD BLANKS Not applicable.

MATRIX SPIKES Not applicable.

REPLICATES Six samples were analyzed in triplicate for grain size for the entire set of NY/NJ Federal Projects-2 program. Precision was measured by calculating the relative standard deviation (RSD) among triplicate results. The RSD's ranged from 0% to 10%, indicating acceptable precision. Two samples were analyzed in duplicate for bulk density and specific gravity. Precision was measured by calculating the relative percent difference (RPD) between the replicate results. The RPDs for bulk density were 0% and 2% while the RPDs for specific gravity were both 1%, indicating acceptable precision of the methods.

For total solids, three samples were analyzed in duplicate and four samples were analyzed in triplicate. All RSDs and RPDs were 0%.

**QA/QC SUMMARY/GRAIN SIZE, BULK DENSITY, SPECIFIC GRAVITY and
TOTAL SOLIDS (continued)**

SRMs Not applicable.

REFERENCES

ASTM D-2217. Standard Method for Wet Preparation of Soil Samples for Particle-size Analysis and Determination of Soil Constants.

ASTM D-422. Standard Method for Particle-Size Analysis of Soils.

ASTM D-854. Standard Method for Specific Gravity

EM 1110-2-1906. USACE (U.S. Army Corps of Engineers). 1970. Engineering and Design Laboratory Soils Testing.

Plumb R.H. 1981. Procedure for Handling and Chemical Analysis of Sediment and Water Samples. Tech. Rep. EPA/CE-81-1. Prepared for Great Lakes Laboratory, State University College at Buffalo, Buffalo, New York, for the U.S. Environmental Protection Agency/U.S. Army Corps of Engineers Technical Committee on Criteria for Dredged and Fill Material. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

QA/QC SUMMARY

PROGRAM: New York/New Jersey Federal Projects-2

PARAMETER: Total Organic Carbon (TOC)

LABORATORY: Global Geochemistry, Canoga Park, California

MATRIX: Sediment

QA/QC DATA QUALITY OBJECTIVES

<u>Reference Method</u>	<u>Range of Recovery</u>	<u>SRM Accuracy</u>	<u>Relative Precision</u>	<u>Detection Limit (dry wt)</u>
EPA 1986	N/A	≤20%	≤10%	0.1%

METHOD	TOC was analyzed in accordance with EPA (1986). Analysis was performed by combustion and quantitation of evolved carbon dioxide using a LECO analyzer.
HOLDING TIMES	Samples were analyzed within the 6 month holding time.
DETECTION LIMITS	Target detection limits of 0.1% was met for all samples.
METHOD BLANKS	Thirty-four method blanks were analyzed with the entire set of NY/NJ Federal Projects-2 program sediment samples. TOC levels detected in blanks ranged from 0.001% to 0.008% which were less than the established detection limit.
MATRIX SPIKES	Not applicable.
REPLICATES	Four samples were analyzed in triplicate and three samples were analyzed in duplicate. Precision was measured by calculating the relative standard deviation (RSD) or relative percent difference (RPD) between the replicate results. All RSDs and RPDs were between 1% and 10% indicating acceptable precision of the method.
SRMs	Standard reference material MESS-1, obtained from the National Research Council of Canada, was analyzed at least once per batch of sediment samples. Although MESS-1 is not certified for TOC, accuracy was measured by calculating the percent difference (PD) from the in-house consensus value. PD values reported ranged from 1% to 8%.

REFERENCES

EPA (U.S. Environmental Protection Agency) 1986. Determination of Total Organic Carbon in Sediment. Environmental Protection Agency, Region II, Environmental Services Division, Monitoring Management Branch, Edison, New Jersey.

QA/QC SUMMARY

PROGRAM: New York/New Jersey Federal Projects-2

PARAMETER: Metals

LABORATORY: Battelle/Marine Sciences Laboratory, Sequim, Washington

MATRIX: Sediment

QA/QC DATA QUALITY OBJECTIVES

	<u>Reference Method</u>	<u>Range of Recovery</u>	<u>SRM Accuracy</u>	<u>Relative Precision</u>	<u>Achieved Detection Limit (mg/kg dry wt)</u>
Arsenic	ICP/MS	75-125%	≤20%	≤20%	0.572
Cadmium	ICP/MS	75-125%	≤20%	≤20%	0.020
Chromium	ICP/MS	75-125%	≤20%	≤20%	0.401
Copper	ICP/MS	75-125%	≤20%	≤20%	0.525
Lead	ICP/MS	75-125%	≤20%	≤20%	0.136
Mercury	CVAA	75-125%	≤20%	≤20%	0.001
Nickel	ICP/MS	75-125%	≤20%	≤20%	0.849
Silver	ICP/MS	75-125%	≤20%	≤20%	0.119
Zinc	ICP/MS	75-125%	≤20%	≤20%	2.55

METHOD

A total of nine metals was analyzed: silver (Ag), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn). Hg was analyzed using cold-vapor atomic absorption spectroscopy (CVAA) according to the method of Bloom and Crecelius (1983). The remaining metals were analyzed by inductively coupled plasma mass spectrometry (ICP/MS) following EPA Method 200.8 (EPA 1991)

To prepare sediment samples for analysis, samples were freeze-dried and blended in a Spex mixer-mill. Approximately 5 g of mixed sample was ground in a ceramic ball mill. For ICP/MS and CVAA analyses, 0.2- to 0.5-g aliquots of dried homogenous sample were digested using nitric acid following modified EPA Method 200.2 (EPA 1991). Sediment samples initially showed poor matrix spike recovery for Ag. (Refer to Matrix Spike section of this QA/QC Summary.) EPA Method 200.2 was modified by the addition of aqua regia to the digestion procedure and all samples were reanalyzed for Ag.

HOLDING TIMES

Samples were received on 3/30/94 and were logged into Battelle's log-in system. Samples were frozen to -80°C and subsequently freeze dried. Samples were all analyzed within 180 days of collection. The following list summarizes all analysis dates:

<u>Task</u>	<u>Date Performed</u>
Sample Digestion	5/5/94
ICP-MS	5/20/94
CVAA-Hg	5/9/94

QA/QC SUMMARY/METALS (continued)

DETECTION LIMITS	Target detection limits were exceeded for some metals; however, metals were detected above the MDLs in all samples with the exception of Ag in one sample. MDLs were determined by multiplying the standard deviation of the mean of four replicate low level sediment spikes by 3.5.
METHOD BLANKS	Two method blanks were analyzed. No metals were detected above the MDL in either blank with the exception of Pb in Blank-2. The value was less than three times the MDL and all sample values were detected at levels greater than five times the blank concentration, so no data were flagged. All data were blank corrected.
MATRIX SPIKES	Two samples were spiked with all nine metals. In the original set of matrix spikes, recoveries of all metals, with the exception of Ag, were within the QC limits of 75% to 125%. Recoveries of Ag in the original spikes were low (3% and 10%). After reanalysis of the matrix spikes with the addition of aqua regia to the digestion procedure (see Methods section of this QA/QC Summary), matrix spike recoveries improved (93%) and concentrations of Ag in the dredging site sediments increased slightly. The low recovery of Ag appears to occur in analysis of marine sediment samples having high (in excess of approximately 5 $\mu\text{g/g}$) Ag concentrations. During the EPA Method 200.2 digestion procedure, a precipitate of AgCl can form with the Ag in the sediment and the Cl in the seawater.
REPLICATES	Two samples were digested and analyzed in triplicate. Precision of triplicate analyses is reported by calculating the relative standard deviation (RSD) between the replicate results. RSD values ranged from 1% to 5%, within the QC limits of $\pm 20\%$, indicating acceptable precision.
SRM	Standard Reference Material (SRM) 1646 (estuarine sediment from the National Institute of Standards and Technology [NIST]), was analyzed for all metals. Only results for Cd, Cu and Hg were within $\pm 20\%$ of the certified value (Ag is not certified). Results for As, Ni, and Pb were between 20 and 30% of the certified values. The poorest result was with Cr, where the mean was 46% of the certified value. Values for the remaining metals were low because the digestion method used is not as strong as the method (perchloric acid) used to certify the SRM; thus, the results of this analysis should not be expected to match the SRM certified values. Therefore, no corrective actions were taken.

REFERENCES

Bloom, N. S., and E.A. Crecelius. 1983. "Determination of Mercury in Seawater at Sub-Nanogram per Liter Levels." *Mar. Chem.* 14:49-59.

EPA (U.S. Environmental Protection Agency). 1991. *Methods for the Determination of Metals in Environmental Samples*. EPA-600/4-91-010. Environmental Services Division, Monitoring Management Branch., Washington D.C.

QA/QC SUMMARY

PROGRAM: New York/New Jersey Federal Projects-2

PARAMETER: Additional Metals

LABORATORY: Battelle/Marine Sciences Laboratory, Sequim, Washington

MATRIX: Sediment

QA/QC DATA QUALITY OBJECTIVES

	<u>Reference Method</u>	<u>Range of Recovery</u>	<u>SRM Accuracy</u>	<u>Relative Precision</u>	<u>Achieved Detection Limit (mg/kg dry wt)</u>
Antimony	ICP/MS	75-125%	≤20%	≤20%	0.03
Beryllium	ICP/MS	75-125%	≤20%	≤20%	0.5
Selenium	GFAA	75-125%	≤20%	≤20%	0.13
Thallium	ICP/MS	75-125%	≤20%	≤20%	0.024

METHOD An additional four metals were analyzed for a subset of sediment samples: Antimony (Sb), Beryllium (Be), Selenium (Se) and Thallium (Tl).

To prepare sediment samples for analysis, samples were freeze-dried and blended in a Spex mixer-mill. Approximately 5 g of mixed sample was ground in a ceramic ball mill. For inductively coupled plasma mass spectrometry (ICP/MS) and graphite furnace atomic absorption (GFAA) analyses, 0.2- to 0.5-g aliquots of dried homogenous sample were digested according to EPA Method 200.2 (EPA 1991), modified by the addition of aqua regia to the digestion procedure. Se was analyzed using GFAA. The other three metals were analyzed by ICP/MS following EPA Method 200.8 (EPA 1991).

HOLDING TIMES Samples were received on 3/30/94 and was logged into Battelle's log-in system. Samples were frozen to -80°C and subsequently freeze-dried. According to instructions from the program manager, 21 samples were composited into 8 samples. A subset of 17 samples (the Port Chester and Eastchester sediment composites) were analyzed for an additional four metals as requested in a memo from the program manager dated 1/11/95. The following list summarizes all analysis dates:

<u>Task</u>	<u>Date Performed</u>
Aqua Regia	2/1/95
ICP/MS - Sb, Be, Tl	3/7/95
GFAA - Se	2/7/95

DETECTION LIMITS Target detection limits were met for Sb, Se, and Tl. The detection limit (DL) for Be exceeds the target detection limit. However, all but three values were greater than the estimated DL and these values were flagged with a J to indicate an estimation.

QA/QC SUMMARY/ADDITIONAL METALS (continued)

METHOD BLANKS	Two method blanks were analyzed. Only Sb was detected in one of the blanks; however, the values were less than three times the MDL and all sample values were detected at levels greater than five times the blank concentration. Therefore, no data were flagged and all data were blank corrected.
MATRIX SPIKES	One sample was spiked with all four metals. Recoveries of all metals except Sb (228%) were within the QC limits of 75% to 125%.
REPLICATES	One sample was digested and analyzed in triplicate. Precision for triplicate analyses is reported by calculating the relative standard deviation (RSD) between replicate results. RSD values ranged from 2% to 12%, which is within the QC limits of $\pm 20\%$, indicating acceptable precision.
SRM	SRM 1646 (estuarine sediment from the National Institute of Standards and Technology [NIST]), was analyzed for all metals. None of the four additional metals are certified. However, non-certified values are reported and all four metals, with the exception of one replicate for Sb, are within 39% of the non-certified values.

REFERENCES

EPA (U.S. Environmental Protection Agency). 1991. *Methods for the Determination of Metals in Environmental Samples*. EPA-600/4-91-010. Environmental Services Division, Monitoring Management Branch, Washington D.C.

QA/QC SUMMARY

PROGRAM: New York/New Jersey Federal Projects-2

PARAMETER: Chlorinated Pesticides, PCB Congeners, and 1,4-Dichlorobenzene

LABORATORY: Battelle Ocean Sciences, Duxbury, Massachusetts

MATRIX: Sediment

QA/QC DATA QUALITY OBJECTIVES

<u>Reference Method</u>	<u>MS Recovery</u>	<u>Surrogate Recovery</u>	<u>SRM Accuracy</u>	<u>Relative Precision</u>	<u>Detection Limit (dry wt)</u>
GC/ECD	50-120%	30-150%	≤30%	≤30%	1.0 - 20 ng/g
METHOD	Sediment samples were extracted with methylene chloride according to a modified version of EPA Method 8080 and the National Oceanic and Atmospheric Administration (NOAA) Status and Trends cleanup procedure (Krahn et al. 1988). Extracts were analyzed using gas chromatography with electron capture detection (GC/ECD) following a modified version of EPA Method 8270. Pesticide detections were qualitatively confirmed on a secondary column.				
HOLDING TIMES	Samples were collected from 3/22/94 through 3/25/94, and after compositing, were held frozen at -20°C until shipment to the analytical laboratory. Sediment samples were received by Battelle Ocean Sciences on 4/22/94. Samples were held frozen at -20°C until extraction and analysis. Samples were extracted by 5/6/94 and analyzed from 6/2/94 to 6/29/94.				
DETECTION LIMITS	Target detection limits were exceeded for most of the analytes. Actual detection limits were determined by the Method Detection Limit (MDL) verification study. Four sediment samples with very low background concentrations of contaminants were spiked with target compounds. For each analyte, the standard deviation of the four spiked replicates was multiplied by 3.5.				
METHOD BLANKS	One method blank was extracted with batch of samples. No pesticides or PCB congeners were detected in the blank.				
SURROGATES	Two compounds, DBOFB and PCB congener 112, were added to all samples prior to extraction to assess the efficiency of the analysis. The mean recoveries of DBOFB and PCB 112 were 71% and 60%, respectively. Recoveries of these compounds were within the QC guidelines of 30% -150% for all samples analyzed.				
MATRIX SPIKES	One sample in each batch was spiked with pesticides and PCB congeners. Recoveries for PCB congener CL ₂ (25% and 47%) fell below the acceptable criteria of 50% to 120%. The reason for this low recovery is probably that the PCB congener CL ₂ coeluted with alpha-BHC. All other PCB congener recoveries ranged from 54% to 121%. Recoveries for all pesticides and 1,4-dichlorobenzene ranged from 57% to 115%. Since >80% of all analytes were between 50% and 120%, no corrective action was taken.				

QA/QC SUMMARY/CHLORINATED PESTICIDES and PCB CONGENERS (continued)

REPLICATES

One sample from each batch was extracted in triplicate. Precision was measured by calculating the relative standard deviation (RSD) between the replicate results. RSDs were evaluated only when pesticides or PCB congeners were detected in all three replicates. RSDs ranged from 5% to 114%. Six of the RSDs were greater than 30% but of those six, only three were for analytes that were >10 times the MDL. These three were 31% for CL₃(18), 114% for CL₅(105) and 52% for CL₆(138).

SRMs

One SRM, 1941a, a marine sediment sample obtained from the National Institute of Science and Technology (NIST) was analyzed with each batch. Many of the values exceeded the acceptable criteria of $\leq 30\%$; however all were <10 times the MDL. Percent differences were calculated using SRM concentrations that were corrected for surrogate recovery.

REFERENCES

Krahn, M.M., C.A. Wigren, R.W. Pearce, L.K. Moore, R.G. Bogar, W.D. MacLeod, Jr., S-L Chan, and D.W. Brown. 1988. *New HPLC Cleanup and Revised Extraction Procedures for Organic Contaminants*. NOAA Technical Memorandum NMFS F/NWC-153. National Oceanic and Atmospheric Administration, National Marine Fisheries, Seattle, Washington.

EPA (U.S. Environmental Protection Agency). 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. SW-846. U.S. Document No. 955-001-00000, U.S. Environmental Protection Agency, Washington D.C.

QA/QC SUMMARY

PROGRAM: New York/New Jersey Federal Projects-2
PARAMETER: Polynuclear Aromatic Hydrocarbons (PAH)
LABORATORY: Battelle Ocean Sciences, Duxbury, Massachusetts
MATRIX: Sediment

QA/QC DATA QUALITY OBJECTIVES

<u>Reference Method</u>	<u>MS/MSD Recovery</u>	<u>Surrogate Recovery</u>	<u>SRM Accuracy</u>	<u>Relative Precision</u>	<u>Detection Limit (dry wt)</u>
GC/MS/SIM	50-120%	30-150%	≤30%	≤30%	10 ng/g

METHOD	Sediment samples were extracted according to a modified version of EPA Method 8080 and the NOAA Status and Trends cleanup procedure (Krahn et al. 1988). Extracts were analyzed using gas chromatography/mass spectrometry (GC/MS) in the selected ion mode (SIM) following a modified version of EPA Method 8270.
HOLDING TIMES	Samples were collected from 3/22/94 through 3/25/94, and after compositing, were held frozen at -20°C until shipment to the analytical laboratory. Sediment samples were received by Battelle Ocean Sciences, Duxbury, Massachusetts, on 4/22/94. Samples were held frozen at approximately -20°C until extraction and analysis. Samples were extracted by 5/6/94 and analyzed from 5/16/94 to 6/28/94.
DETECTION LIMITS	Target detection limits of 10 ng/g dry weight were met for most of the PAH compounds. Actual detection limits were determined by the Method Detection Limit (MDL) verification study. Four sediment samples with very low background concentrations of contaminants were spiked with target compounds. For each analyte, the standard deviation of the four spiked replicates was multiplied by 3.5. Actual detection limits ranged from 7.18 to 20.84 µg/kg.
METHOD BLANKS	One method blank was extracted with each batch of samples. No PAH compounds were detected above the MDL; however, 2 of the 17 compounds were detected below the MDL and are flagged with a "J" to indicate the values are estimates. They are pyrene in Batch 1 and naphthalene in Batch 2.
SURROGATES	Three isotopically labelled compounds were added prior to extraction to assess the efficiency of the method. These were naphthalene-d ₈ , acenaphthene-d ₁₀ , and chrysene-d ₁₂ . Recoveries of surrogates were within the quality control limits of 30% -150% with one exception. For Batch 1, mean recoveries of naphthalene-d ₈ , acenaphthene-d ₁₀ , and chrysene-d ₁₂ were 52%, 59%, and 48%, respectively. In one sample, recovery of chrysene-d ₁₂ was 28%. For Batch 2, mean recoveries of naphthalene-d ₈ , acenaphthene-d ₁₀ , and chrysene-d ₁₂ were 62%, 64%, and 57%, respectively.

QA/QC SUMMARY/PAHs (continued)

MATRIX SPIKES

One sample was spiked with all PAH compounds for each batch. Matrix spike recoveries for all analytes in Batch 2 ranged from 57% to 67%. Matrix spike recoveries for all analytes in Batch 1 ranged from 26% to 73%. Six of the analytes in Batch 1 fell outside the acceptable ranges of 50% to 120%. They are 48% for fluoranthene; 47% for pyrene; 44% for benzo[a]anthracene; 38% for chrysene; 26% for benzo[b]fluoranthene; and 32% for benzo[a]pyrene. These PAHs were present at naturally elevated levels in the background sample. A blank spike was prepared with this batch and had acceptable recoveries for all target PAHs. As a result, it appears that the failure of selected PAHs to meet the recovery criteria is related to the sediment sample. The recoveries of PAHs in the MS sample for Batch 2 met the acceptance criteria.

REPLICATES

One sample was extracted in triplicate for each batch. Precision was measured by calculating the relative standard deviation (RSD) between the replicate results. The RSDs ranged from 1% to 20%, within the target precision goal of $\leq 30\%$.

SRMs

One SRM, 1941a, a marine sediment sample obtained from the National Institute of Standards and Technology, was analyzed with each batch of samples. Twelve of the 17 PAH compounds analyzed are certified at levels above the MDLs. Of these, all compounds were detected within 30% of the certified mean, with the exception of chrysene (58% and 73%), benzo[b]fluoranthene (32% and 45%), and dibenz[a,h]anthracene (63% and 40%) in both batches. Percent differences were calculated using SRM concentrations that were corrected for surrogate recovery.

REFERENCES

Krahn, M.M., C.A. Wigren, R.W. Pearce, L.K. Moore, R.G. Bogar, W.D. MacLeod, Jr., S-L Chan, and D.W. Brown. 1988. *New HPLC Cleanup and Revised Extraction Procedures for Organic Contaminants*. NOAA Technical Memorandum NMFS F/NWC-153. National Oceanic and Atmospheric Administration, National Marine Fisheries, Seattle, Washington.

EPA (U.S. Environmental Protection Agency). 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. SW-846. U.S. Document No. 955-001-00000, U.S. Environmental Protection Agency, Washington D.C.

TABLE A.1. Quality Assurance/Quality Control Data for Grain Size Analysis

Sediment Treatment	Gravimetric Water Content (%)	Batch No.	Total Percent (dry weight)			
			Gravel >2000 µm	Sand 62.4-2000 µm	Silt 3.9-62.4 µm	Clay <3.9 µm
R-CLIS, Replicate 1	109	1	0	6	59	35
R-CLIS, Replicate 2	109	1	0	6	60	34
R-CLIS, Replicate 3	109	1	0	6	60	34
RSD			NA ^(a)	0%	1%	2%
EC-8, Replicate 1	151	2	0	21	39	40
EC-8, Replicate 2	151	2	0	20	40	40
EC-8, Replicate 3	151	2	1	21	38	40
RSD			NA	3%	3%	0%
HU-2, Replicate 1	124	3	1	18	47	34
HU-2, Replicate 2	124	3	0	19	47	34
HU-2, Replicate 3	124	3	2	18	47	33
RSD			NA	3%	0%	2%
HU-22, Replicate 1	139	4	0	16	48	36
HU-22, Replicate 2	139	4	0	16	48	36
HU-22, Replicate 3	139	4	0	15	47	38
RSD			NA	4%	1%	3%
BU-2, Replicate 1	171	5	0	13	42	45
BU-2, Replicate 2	171	5	0	13	40	47
BU-2, Replicate 3	171	5	0	14	41	45
RSD			NA	4%	2%	3%
BC-4, Replicate 1	222	6	0	15	55	30
BC-4, Replicate 2	222	6	0	14	56	30
BC-4, Replicate 3	222	6	0	17	55	28
RSD			NA	10%	1%	4%

(a) NA Not applicable.

TABLE A.2. Quality Assurance/Quality Control Data for Analysis of Specific Gravity and Bulk Density

Sediment Treatment	Replicate	Sample ID	Batch	Bulk Density		Specific Gravity
				Wet lbs/cu ft	Dry lbs/cu ft	
COMP HU-C	1	NY2-GRA-17	1	92	45	2.61
COMP HU-C	2	NY2-GRA-17	1	ND ^(a)	ND	2.64
RPD				NA ^(b)	NA	1%
I-Stat				NA	NA	0.01
COMP SB-A	1	NY2-GRA-1	1	83	30	2.58
COMP SB-A	2	NY2-GRA-1	1	83	30	2.56
RPD				0%	0%	1%
I-Stat				0.00	0.00	0.00
COMP GR	1	NY2-GRA-9	1	116	94	2.67
COMP GR	2	NY2-GRA-9	1	118	96	ND
RPD				2%	2%	NA
I-Stat				0.01	0.01	NA

(a) ND No data; not tested.

(b) NA Not applicable.

TABLE A.3. Quality Assurance/Quality Control Data for Analysis of TOC and Percentage of Moisture

Sediment Treatment	Batch No.	TOC (% dry wt.)
<u>Method Blanks</u>		
Blank-1	1	0.003
Blank-2	1	0.001
Blank-1	2	0.003
Blank-2	2	0.003
Blank-1	3	0.003
Blank-2	3	0.002
Blank-3	3	0.003
Blank-4	3	0.003
Blank-5	3	0.002
Blank-1	4	0.005
Blank-2	4	0.008
Blank-3	4	0.002
Blank-4	4	0.002
Blank-5	4	0.004
Blank-6	4	0.004
Blank-1	5	0.003
Blank-2	5	0.002
Blank-3	5	0.002
Blank-4	5	0.004
Blank-5	5	0.004
Blank-1	6	0.001
Blank-2	6	0.002
Blank-3	6	0.002
Blank-4	6	0.002
Blank-5	6	0.002
Blank-6	6	0.005
Blank-7	6	0.004
Blank-8	6	0.004
Blank-9	6	0.004
Blank-10	6	0.006
Blank-11	6	0.004
Blank-12	6	0.002
Blank-13	6	0.002
Blank-14	6	0.002

TABLE A.3. (contd)

Sediment Treatment	Batch No.	TOC (% dry wt.)	Percent Difference ^(a)
<u>Standard Reference Material</u>			
Non-certified Value		2.6	
SRM MESS-1	1	2.49	4%
SRM MESS-1	2	2.44	6%
SRM MESS-1	2	2.62	1%
SRM MESS-1	3	2.56	2%
SRM MESS-1	4	2.42	7%
SRM MESS-1	5	2.40	8%
SRM MESS-1	6	2.40	8%
SRM MESS-1	6	2.39	8%
SRM MESS-1	6	2.45	6%
MESS-1Y	6	2.47	
MESS-1Y, Duplicate	6	2.48	
RPD			0%

TABLE A.3. (contd)

Sediment Treatment	Batch No.	TOC (% dry wt.)	Total Percent Solids
<u>Analytical Replicates</u>			
EC-2, Replicate 1	1	1.02	66
EC-2, Replicate 2	1	1.13	66
RPD		10%	0%
GR-1, Replicate 1	1	0.12	80
GR-1, Replicate 2	1	0.13	80
RPD		8%	0%
EC-3, Replicate 1	2	1.26	75
EC-3, Replicate 2	2	1.23	75
EC-3, Replicate 3	2	1.31	75
RSD		3%	0%
HU-1, Replicate 1	3	3.17	53
HU-1, Replicate 2	3	3.13	53
HU-1, Replicate 3	3	3.30	53
RSD		3%	0%
HU-21, Replicate 1	4	3.26	44
HU-21, Replicate 2	4	3.19	44
HU-21, Replicate 3	4	3.15	44
RSD		2%	0%
HU-39, Replicate 1	5	1.95	52
HU-39, Replicate 2	5	1.95	52
HU-39, Replicate 3	5	1.88	52
RSD		2%	0%
BU-4, Replicate 1	6	3.42	37
BU-4, Replicate 2	6	3.44	37
RPD		1%	0%

(a) Percent Difference between results obtained from analysis of SRM MESS-1 and non-certified value of 2.6%. SRM MESS-1 is not certified for TOC, but according to historical analyses from Battelle's records, the estimated value is 2.6% TOC.

TABLE A.4. Quality Assurance/Quality Control Data for Metals in Sediment

Sediment Treatment	Batch	Ag (ICP/MS)	Ag (ICP/Aqua)	As	Cd	Cr	Cu	Hg	Ni	Pb	Zn
<u>Method Blanks</u>											
Blank-1	1	0.119 U ^(a)	0.131	0.572 U	0.020	0.401 U	0.525 U	0.001 U	0.849 U	0.14 U	2.55 U
Blank-2	1	0.119 U	0.119 U	0.572 U	0.020	0.401 U	0.525 U	0.001 U	0.849 U	0.41	2.55 U
Blank-3	1	NA ^(b)	NA	NA	NA	NA	NA	0.001 U	NA	NA	NA
Mean blank		NA	NA	NA	NA	NA	NA	NA	NA	0.2	NA
<u>Standard Reference Material</u>											
Certified value Range	NC ^(c)	NC	11.6	0.36	76	18	0.063	32	28.2	138	
SRM 1646	1	0.119 U	0.275	8.72	0.331	42.7	16.4	0.074	25.4	22.7	93.6
SRM 1646	1	0.119 U	0.136	8.89	0.350	39.9	16.1	0.079	23.5	22.4	90.6
SRM 1646	1	NA	NA	NA	NA	NA	NA	0.077	NA	NA	NA
SRM 1646	1	NA	NA	NA	NA	NA	NA	0.070	NA	NA	NA
Percent Difference	NA	NA	25% ^(d)	8%	44% ^(d)	9%	17% ^(d)	21% ^(d)	20% ^(d)	32% ^(d)	
Percent Difference	NA	NA	23% ^(d)	3%	48% ^(d)	11%	25% ^(d)	27% ^(d)	21% ^(d)	34% ^(d)	
Percent Difference	NA	NA	NA	NA	NA	NA	22%	NA	NA	NA	
Percent Difference	NA	NA	NA	NA	NA	NA	11%	NA	NA	NA	
<u>Matrix Spike Results</u>											
EC-11/CT COMP EC-B-II	1	2.91	3.38	11.1	4.15	104	250	1.21	44.1	322	379
EC-11/CT COMP EC-B-II MS	1	4.85	22.0	192	21.4	589	696	11.4	135	840	1140
Concentration Recovered		1.94	18.6	181	17.3	485	446	10.2	90.9	518	761
Amount Spiked		20.0	20.0	200	20.0	500	500	10.0	100	500	1000
Percent Recovery	10% ^(e)	93%	90%	86%	97%	89%	102%	91%	104%	76%	

TABLE A.4. (contd)

Sediment Treatment	Batch	Ag (ICP/MS)		Ag (ICP/Aqua)		Metals (µg/g dry wt)					
		As	Cd	Cr	Cu	Hg	Ni	Pb	Zn		
COMP HU-C	1	6.22	7.02	15.2	4.06	169	174	2.55	40.0	194	252
COMP HU-C, MS	1	6.85	25.6	193	21.4	656	612	12.1	125	715	1010
Concentration Recovered		0.63	18.6	178	17.3	487	438	9.55	85.0	521	758
Amount Spiked		20.0	20.0	200	20.0	500	500	10.0	100	500	1000
Percent Recovery		3% (e)	93%	89%	87%	97%	88%	96%	85%	104%	76%
<u>Analytical Replicates</u>											
EC-11/CT COMP EC-B-II, Re	1	2.78	3.36	10.9	4.26	102	248	1.27	44.6	322	375
EC-11/CT COMP EC-B-II, Re	1	3.05	3.44	11.3	4.04	107	254	1.18	44.6	333	383
EC-11/CT COMP EC-B-II, Re	1	2.91	3.33	11.1	4.15	103	248	1.19	43.1	312	378
RSR		5%	2%	2%	3%	3%	1%	4%	2%	3%	1%
COMP HU-C, Replicate 1	1	6.10	7.05	15.2	4.05	171	174	2.57	40.3	196	247
COMP HU-C, Replicate 2	1	6.05	7.03	15.5	4.11	167	173	2.66	39.4	193	253
COMP HU-C, Replicate 3	1	6.51	6.98	15.0	4.02	170	175	2.42	40.3	194	257
RSR		4%	1%	2%	1%	1%	1%	5%	1%	1%	2%

(a) U Undetected at or above given concentration.

(b) NA Not applicable.

(c) NC Not certified.

(d) Outside quality control criteria ($\pm 20\%$) for SRMs.

(e) Outside quality control criteria (75-125%) for matrix spike recoveries.

TABLE A.5. Quality Control Data for 1,4-Dichlorobenzene, Pesticides, and PCB Congeners in Sediment

Batch:	Treatment:	MATRIX SPIKE						
		1 EC-10	1 EC-10, MS	1 Concentration Recovered NA ^(b) µg/kg	1 Amount Spiked NA ng	1 Concentration Spiked NA µg/kg	1 Percent Recovery	
Sample Size (g) Units (dry wt):	9.076 ^(a) µg/kg	6.689 µg/kg	2.289 µg/kg					
1,4-Dichlorobenzene	1.19 U ^(c)	84.46	510.36	425.91	1425	623	68	
2,4-DDD	0.97 U	16.57	18.72	2.15	NS ^(d)	NS	NA	
2,4-DDT	0.91 U	NA	NA	NA	NS	NS	NA	
4,4-DDD	1.56 U	53.31	154.73	101.42	201.0	88	115	
4,4-DDE	2.29 U	38.55	117.11	78.56	200.5	88	90	
4,4-DDT	5.19 U	2.19 J ^(e)	74.76	72.56	200.5	88	83	
Aldrin	0.87 U	1.18 U	58.05	58.05	200.5	88	66	
alpha-Chlordane	1.27 U	14.46	85.02	70.56	200.0	87	81	
Dieldrin	1.85 U	8.52	66.86	58.34	200.5	88	67	
Endosulfan I /2,4-DDE	2.39 U	3.24 U	73.57	73.57	200.5	88	84	
Endosulfan II	1.78 U	2.42 U	72.03	72.03	200.5	88	82	
Endosulfan Sulfate	1.68 U	2.28 U	86.48	86.48	200.5	88	99	
Endrin ^(f)	3.24 U	4.40 U	78.26	78.26	200.0	87	90	
Endrin Aldehyde ^(f)	1.93 U	2.62 U	66.18	66.18	200.5	88	76	
Heptachlor	1.96 U	2.65 U	87.96	87.96	200.5	88	100	
Heptachlor Epoxide	1.09 U	1.47 U	81.04	81.04	200.5	88	93	
alpha-BHC ^(f)	1.21 U	0.28 J	69.22	68.94	200.5	88	79	
beta-BHC ^(f)	0.09 J	2.42 U	64.97	64.97	200.5	88	74	
delta-BHC ^(f)	1.20 J	2.20 U	68.21	68.21	200.5	88	78	
Lindane ^(f)	0.33 J	1.92 U	72.05	72.05	200.5	88	82	
Methoxychlor ^(f)	2.03 U	2.75 U	94.68	94.68	200.0	87	108	
Toxaphene ^(f)	61.41 U	83.32 U	NA	NA	NS	NS	NA	
trans-Nonachlor	1.86 U	7.45	5.57	5.57	NS	NS	NA	
CL2(08)	4.38 U	6.47	28.20	21.74	200.00	87	25 ^(g)	
CL3(18)	2.78 U	26.86	98.05	71.18	200.00	87	81	
CL3(28)	1.83 U	42.91	148.46	105.55	200.00	87	121 ^(g)	
CL4(44)	2.65 U	43.52	118.73	75.21	200.00	87	86	
CL4(49)	1.66 U	34.91	44.50	9.60	NS	NS	NA	
CL4(52)	1.54 U	51.61	122.53	70.92	200.00	87	81	
CL4(66)	1.45 U	59.60	158.19	98.58	200.00	87	113	
CL5(87)	0.88 U	13.96	15.20	1.24	NS	NS	NA	
CL5(101)	0.74 U	33.21	98.14	64.93	200.00	87	74	
CL5(105)	0.49 U	12.92	85.99	73.07	200.00	87	84	
CL5(118)	1.30 U	28.18	87.87	59.69	200.00	87	68	
CL6(128)	1.38 U	5.45	82.99	77.54	200.00	87	89	
CL6(138)	1.19 U	31.64	101.08	69.45	200.00	87	79	
CL6(153)	5.77 U	26.37	91.20	64.83	200.00	87	74	
CL7(170)	1.46 U	17.20	88.02	70.82	200.00	87	81	
CL7(180)	0.98 U	31.37	96.83	65.45	200.00	87	75	
CL7(183)	1.09 U	4.97	NA	NA	NS	NS	NA	
CL7(184)	1.09 U	0.49 J	NA	NA	NS	NS	NA	
CL7(187)	0.82 U	15.44	70.69	55.25	200.00	87	63	
CL8(195)	1.24 U	6.36	76.77	70.41	200.00	87	81	
CL9(206)	1.90 U	14.96	90.94	75.98	200.00	87	87	
CL10(209)	1.18 U	9.42	90.27	80.85	200.00	87	93	
Surrogate Recoveries (%)								
DBOFB	73	82	86	NA	NA	NA	NA	
CL5(112)	64	55	67	NA	NA	NA	NA	

TABLE A.5. (contd)

Batch:	Treatment:	MATRIX SPIKE					
		2 R-MUD	2 R-MUD, MS	2 Concentration Recovered	2 Amount Spiked	2 Concentration Spiked	2
Sample Size (g)	8.542 ^(a)	13.660 µg/kg	13.220 µg/kg	NA µg/kg	NA ng	NA µg/kg	Percent Recovery
1,4-Dichlorobenzene	1.27 U	0.79 U	61.78	61.78	1425.00	108	57
2,4-DDD	1.04 U	0.01 J	NA	NA	NS	NS	NA
2,4-DDT	0.97 U	0.60 U	NA	NA	NS	NS	NA
4,4-DDD	1.65 U	0.06 J	11.72	11.66	201.00	15	77
4,4-DDE	2.43 U	0.01 J	10.08	10.07	200.50	15	66
4,4-DDT	5.51 U	3.45 U	10.99	10.99	200.50	15	72
Aldrin	0.93 U	0.58 U	11.35	11.35	200.50	15	75
alpha-Chlordane	1.35 U	0.01 J	11.39	11.39	200.00	15	75
Dieldrin	1.97 U	0.21 J	11.34	11.13	200.50	15	75
Endosulfan I /2,4-DDE	2.54 U	1.59 U	13.52	13.52	200.50	15	89
Endosulfan II	1.89 U	0.05 J	13.24	13.19	200.50	15	87
Endosulfan Sulfate	1.79 U	1.12 U	10.86	10.86	200.50	15	72
Endrin ^(b)	NA	NA	NA	NA	NS	NS	NA
Endrin Aldehyde ^(b)	NA	NA	NA	NA	NS	NS	NA
Heptachlor	2.08 U	1.30 U	10.27	10.27	200.50	15	68
Heptachlor Epoxide	1.15 U	0.72 U	10.60	10.60	200.50	15	70
alpha-BHC ^(b)	NA	NA	NA	NA	NS	NS	NA
beta-BHC ^(b)	NA	NA	NA	NA	NS	NS	NA
delta-BHC ^(b)	NA	NA	NA	NA	NS	NS	NA
Lindane ^(b)	NA	NA	NA	NA	NS	NS	NA
Methoxychlor ^(b)	NA	NA	NA	NA	NS	NS	NA
Toxaphene ^(b)	NA	NA	NA	NA	NS	NS	NA
trans-Nonachlor	1.98 U	0.00 J	NA	NA	NS	NS	NA
CL2(08)	4.65 U	2.91 U	7.05	7.05	200.00	15	47 ^(g)
CL3(18)	2.95 U	1.85 U	8.12	8.12	200.00	15	54
CL3(28)	1.94 U	1.21 U	10.03	10.03	200.00	15	66
CL4(44)	2.82 U	0.22 J	10.29	10.07	200.00	15	67
CL4(49)	1.76 U	0.04 J	NA	NA	NS	NS	NA
CL4(52)	1.63 U	0.06 J	9.91	9.85	200.00	15	65
CL4(66)	1.54 U	0.04 J	10.43	10.39	200.00	15	69
CL5(87)	0.93 U	0.05 J	NA	NA	NS	NS	NA
CL5(101)	0.78 U	0.04 J	10.27	10.23	200.00	15	68
CL5(105)	0.52 U	0.03 J	9.12	9.09	200.00	15	60
CL5(118)	1.38 U	0.02 J	9.25	9.23	200.00	15	61
CL6(128)	1.46 U	0.92 U	9.42	9.42	200.00	15	62
CL6(138)	1.26 U	0.07 J	9.36	9.29	200.00	15	61
CL6(153)	6.13 U	0.03 J	8.56	8.53	200.00	15	56
CL7(170)	1.55 U	0.97 U	9.26	9.26	200.00	15	61
CL7(180)	1.04 U	0.65 U	9.32	9.32	200.00	15	62
CL7(183)	1.15 U	0.72 U	NA	NA	NS	NS	NA
CL7(184)	1.15 U	0.01 J	NA	NA	NS	NS	NA
CL7(187)	0.87 U	0.01 J	9.28	9.27	200.00	15	61
CL8(195)	1.32 U	0.83 U	9.35	9.35	200.00	15	62
CL9(206)	2.02 U	1.26 U	9.13	9.13	200.00	15	60
CL10(209)	1.26 U	0.79 U	9.41	9.41	200.00	15	62
<u>Surrogate Recoveries (%)</u>							
DBOFB	66	65	69	NA	NA	NA	
CL5(112)	72	49	64	NA	NA	NA	

TABLE A.5. (contd)

Batch: Treatment: Sample Size (g) Units (dry wt):	STANDARD REFERENCE MATERIAL					
	1 SRM NIST 1941a	1 Certified Value µg/kg	1 Percent Difference ^(b)	2 SRM NIST 1941a	2 Certified Value µg/kg	2 Percent Difference
	5.133 µg/kg	5.057 µg/kg				
1,4-Dichlorobenzene	NA	NC ^(d)	NA	NA	NC	NA
2,4-DDD	NA	NC	NA	NA	NC	NA
2,4-DDT	NA	NC	NA	NA	NC	NA
4,4-DDD	2.56 J	5.06	4	4.86	5.06	103
4,4-DDE	3.46 J	6.59	8	3.16 J	6.59	1
4,4-DDT	NA	NC	NA	NA	NC	NA
Aldrin	NA	NC	NA	NA	NC	NA
alpha-Chlordane	1.01 J	2.33	44	1.06 J	2.33	14
Dieldrin	NA	NC	NA	NA	NC	NA
Endosulfan I /2,4-DDE	C ^(d)	0.73	NA	ND	0.73	NA
Endosulfan II	NA	NC	NA	NA	NC	NA
Endosulfan Sulfate	NA	NC	NA	NA	NC	NA
Endrin ^(d)	NA	NC	NA	NA	NC	NA
Endrin Aldehyde ^(d)	NA	NC	NA	NA	NC	NA
Heptachlor	NA	NC	NA	NA	NC	NA
Heptachlor Epoxide	NA	NC	NA	NA	NC	NA
alpha-BHC ^(d)	NA	NC	NA	NA	NC	NA
beta-BHC ^(d)	NA	NC	NA	NA	NC	NA
delta-BHC ^(d)	NA	NC	NA	NA	NC	NA
Lindane ^(d)	NA	NC	NA	NA	NC	NA
Methoxychlor ^(d)	NA	NC	NA	NA	NC	NA
Toxaphene ^(d)	NA	NC	NA	NA	NC	NA
trans-Nonachlor	0.39 J	1.26	61	0.60 J	1.26	10
CL2(08)	NA	NC	NA	NA	NC	NA
CL3(18)	NA	NC	NA	NA	NC	NA
CL3(28)	NA	NC	NA	NA	NC	NA
CL4(44)	3.88 J	4.80	4	3.92 J	4.80	54
CL4(49)	3.03	9.50	59	3.14 J	9.50	38
CL4(52)	3.20	6.89	40	3.89	6.89	6
CL4(66)	7.11	6.80	34	6.07	6.80	68
CL5(87)	1.45 J	6.70	55	1.72	6.70	46
CL5(101)	9.02	11.00	5	6.94	11.00	19
CL5(105)	1.18	3.65	33	1.05	3.65	39
CL5(118)	3.29	10.00	32	3.55	10.00	25
CL6(128)	3.07	1.87	238	1.82 J	1.87	106
CL6(138)	4.96	13.38	24	6.05	13.38	4
CL6(153)	5.21 J	17.60	39	5.21 J	17.60	37
CL7(170)	4.82	3.00	230	C	3.00	NA
CL7(180)	5.47	5.83	93	5.10	5.83	85
CL7(183)	NA	NC	NA	NA	NC	NA
CL7(184)	NA	NC	NA	NA	NC	NA
CL7(187)	NA	NC	NA	NA	NC	NA
CL8(195)	NA	NC	NA	NA	NC	NA
CL9(206)	C	3.67	NA	2.93 J	3.67	69
CL10(209)	7.52	8.34	85	5.26	8.34	33
<u>Surrogate Recoveries (%)</u>						
DBOFB	78	NA	NA	53	NA	NA
CL5(112)	49	NA	NA	47	NA	NA

TABLE A.5. (contd)

Batch:	TRIPPLICATE ANALYSES							
	Treatment:	1	1	1	2	2	2	
		EC-15	EC-15	EC-15	GR-10	GR-10	GR-10	
Sample Size (g)	Replicate 1	Replicate 2	Replicate 3		Replicate 1	Replicate 2	Replicate 3	
Units (dry wt):	µg/kg	µg/kg	µg/kg	RSD(%)	µg/kg	µg/kg	µg/kg	RSD(%)
1,4-Dichlorobenzene	10.65	8.00	7.52	19	17.73	25.25	19.82	19
2,4-DDD	10.32	13.52	10.13	17	6.58	9.27	6.64	21
2,4-DDT	0.84 U	0.87 U	0.88 U	NA	1.01 U	0.96 U	0.95 U	NA
4,4-DDD	41.51	47.84	42.18	8	5.56	6.05	5.52	5
4,4-DDE	13.20	12.90	10.14	14	4.58	5.53	5.01	9
4,4-DDT	2.35 J	4.25 J	2.57 J	34	0.38 J	0.19 J	0.16 J	48
Aldrin	0.80 U	0.84 U	0.85 U	NA	0.97 U	0.92 U	0.91 U	NA
alpha-Chlordane	18.62	23.16	22.52	11	1.02 J	1.41	1.09 J	18
Dieldrin	7.09	7.58	6.22	10	1.27 J	1.35 J	1.46 J	7
Endosulfan I /2,4-DDE	2.20 U	2.30 U	2.32 U	NA	2.65 U	2.52 U	2.51 U	NA
Endosulfan II	1.64 U	1.71 U	1.73 U	NA	1.38 J	1.77 J	0.97 J	29
Endosulfan Sulfate	1.55 U	1.62 U	1.64 U	NA	0.31 J	0.44 J	0.28 J	25
Endrin ^(I)	2.98 U	3.11 U	3.15 U	NA	NA	NA	NA	NA
Endrin Aldehyde ^(I)	1.78 U	1.86 U	1.88 U	NA	NA	NA	NA	NA
Heptachlor	1.80 U	1.88 U	1.90 U	NA	2.17 U	2.07 U	2.05 U	NA
Heptachlor Epoxide	1.00 U	1.04 U	1.05 U	NA	1.20 U	1.15 U	1.14 U	NA
alpha-BHC ^(I)	1.11 U	1.16 U	1.17 U	NA	NA	NA	NA	NA
beta-BHC ^(I)	1.64 U	1.71 U	1.73 U	NA	NA	NA	NA	NA
delta-BHC ^(I)	1.49 U	1.56 U	1.58 U	NA	NA	NA	NA	NA
Lindane ^(I)	1.30 U	1.36 U	1.37 U	NA	NA	NA	NA	NA
Methoxychlor ^(I)	1.87 U	1.95 U	1.97 U	NA	NA	NA	NA	NA
Toxaphene ^(I)	56.56 U	59.03 U	59.68 U	NA	NA	NA	NA	NA
trans-Nonachlor	11.31	14.64	14.13	13	0.54 J	0.66 J	0.53 J	12
CL2(08)	7.98	8.19	6.21	15	2.53 J	2.95 J	2.64 J	8
CL3(18)	19.18	23.08	22.08	9	3.81	4.43	4.15	7
CL3(28)	51.14	30.02	31.95	31 (K)	13.08	17.79	14.05	17
CL4(44)	24.24	31.36	29.22	13	5.15	6.44	5.42	12
CL4(49)	23.21	27.19	24.75	8	5.38	7.00	6.50	13
CL4(52)	29.20	41.52	36.00	17	6.66	8.07	6.98	10
CL4(66)	88.09	103.82	92.36	9	10.53	11.61	9.40	10
CL5(87)	5.33	7.44	6.83	17	1.78	2.11	1.90	8
CL5(101)	24.93	29.25	28.42	8	5.15	6.22	5.24	11
CL5(105)	4.86	41.07	7.37	114 (K)	2.29	2.35	1.85	13
CL5(118)	13.11	16.42	15.16	11	4.74	6.11	5.26	13
CL6(128)	4.50	6.23	7.30	24	2.96	3.47	3.17	8
CL6(138)	67.37	36.36	24.29	52 (K)	5.60	7.00	6.08	11
CL6(153)	12.25	10.68	12.57	9	4.21 J	5.46 J	5.04 J	13
CL7(170)	9.06	9.86	8.44	8	2.11	2.81	2.31	15
CL7(180)	9.43	12.62	10.25	15	3.04	3.82	3.20	12
CL7(183)	1.45	2.28	2.07	22	0.60 J	0.89 J	0.73 J	19
CL7(184)	1.19	0.79 J	0.42 J	48	0.38 J	0.36 J	0.45 J	11
CL7(187)	3.29	4.79	3.73	20	1.61	2.04	1.72	12
CL8(195)	1.57	2.03	1.59	15	0.35 J	0.41 J	0.37 J	8
CL9(206)	4.73	5.62	4.95	9	0.74 J	1.07 J	0.86 J	19
CL10(209)	4.10	5.87	4.75	18	1.27 J	1.49	1.49	9
<u>Surrogate Recoveries (%)</u>								
DBOFB	84	94	85	NA	50	63	58	NA
CL5(112)	34	43	34	NA	39	50	44	NA

TABLE A.5. (contd)

Qualifiers

- (a) Sample concentration of the procedural blank adjusted for the average sample size of the batch.
- (b) NA Not applicable.
- (c) U Undetected at or above given concentration.
- (d) NS Not spiked.
- (e) J Concentration estimated; analyte detected below method detection limit (MDL), but above instrument detection limit (IDL).
- (f) Analyte required only in samples designated for Central Long Island Disposal Testing Site.
- (g) Outside quality control criteria (50-120%) for matrix spike recoveries.
- (h) Percent Difference from certified
 - = absolute value [(certified value, $\mu\text{g}/\text{kg}$ - value detected corrected for surrogate recovery, $\mu\text{g}/\text{kg}$) / certified value, $\mu\text{g}/\text{kg}$].
- (i) NC No certified value available.
- (j) C Analyte not determined due to co-eluting peak.
- (k) Outside quality control criteria ($\pm 30\%$) for replicates.

TABLE A.6. MDL Verification Study for Analysis of Pesticides and PCBs in Sediment

Battelle ID:	OG99	OH01	OH02	OH03	OH04	OH05	OH06	OH07	Standard Deviation (n-1)	Method Detection Limit	Method Detection Limit	Method Detection Limit
Sample Size (g): Units (dry wt):	20.919 μg/kg	19.455 μg/kg	19.201 μg/kg	18.645 μg/kg	19.087 μg/kg	19.434 μg/kg	18.896 μg/kg	18.612 μg/kg	0.372	1.114	21.485	MDL ^(a) μg/kg
1,4-Dichlorobenzene	1.934	1.589	1.642	1.966	1.820	1.483	1.965	2.685	0.372	NA ^(e)	NA	NA
2,4-DDD	NS ^(b)	NS	NA ^(e)	NA	NA	NA						
2,4-DDT	NS	NS	NS	NS	NS	NS	NS	NS	NA	NA	NA	NA
4,4-DDD	0.494	0.516	0.533	0.637	0.526	0.570	0.453	0.503	0.055	0.165	0.180	3.180
4,4-DDE	0.380	0.433	0.422	0.477	0.464	0.462	0.451	0.456	0.031	0.093	1.791	
4,4-DDT	0.853	0.455	0.487	0.474	0.515	0.546	0.498	0.499	0.129	0.387	7.460	
Aldrin	0.379	0.460	0.443	0.502	0.459	0.431	0.450	0.477	0.036	0.108	2.077	
Alpha-chlordane	0.344	0.427	0.375	0.471	0.435	0.413	0.438	0.440	0.040	0.121	2.328	
Dieldrin	0.400	0.451	0.478	0.493	0.456	0.499	0.465	0.441	0.032	0.095	1.836	
Endosulfan I	0.423	0.556	0.480	0.562	0.531	0.506	0.517	0.540	0.045	0.136	2.628	
Endosulfan II	0.500	0.538	0.544	0.575	0.552	0.558	0.529	0.526	0.023	0.068	1.319	
Endosulfan Sulfate	0.416	0.426	0.448	0.476	0.463	0.489	0.473	0.462	0.025	0.076	1.458	
Endrin ^(c)	0.381	0.490	0.512	0.557	0.552	0.550	0.540	0.549	0.059	0.178	3.439	
Endrin Aldehyde ^(d)	0.425	0.534	0.532	0.619	0.568	0.526	0.558	0.578	0.056	0.169	3.256	
Heptachlor	0.445	0.516	0.476	0.561	0.527	0.480	0.528	0.549	0.040	0.119	2.296	
Heptachlor epoxide	0.442	0.542	0.495	0.572	0.549	0.514	0.543	0.560	0.042	0.127	2.444	
A-BHC ^(e)	0.342	0.415	0.428	0.450	0.433	0.384	0.415	0.433	0.034	0.103	1.985	
B-BHC ^(e)	0.442	0.547	0.539	0.541	0.495	0.493	0.513	0.504	0.035	0.104	1.996	
D-BHC ^(e)	0.429	0.537	0.489	0.510	0.532	0.473	0.491	0.485	0.034	0.103	1.989	
Lindane ^(f)	0.386	0.477	0.467	0.482	0.458	0.431	0.452	0.460	0.030	0.091	1.745	
Methoxychlor ^(g)	0.319	0.446	0.497	0.489	0.530	0.553	0.561	0.554	0.081	0.242	4.673	
Toxaphene ^(h)	NS	NS	NS	NS	NS	NS	NS	NS	NA	NA	NA	
Trans-nonachlor	NS	NS	NS	NS	NS	NS	NS	NS	NA	NA	NA	

TABLE A.6. (cont'd)

Battelle ID:	OG99	OH01	OH02	OH03	OH04	OH05	OH06	OH07	Standard Deviation (n-1)	Method Detection Limit	Method Detection Limit
Sample Size (g): Units (dry wt):	20.919 µg/kg	19.455 µg/kg	19.201 µg/kg	18.645 µg/kg	19.087 µg/kg	19.434 µg/kg	18.866 µg/kg	18.612 µg/kg	STD	MDL ^(a) µg/kg	MDL ^(a) µg/kg
CL2(08)	0.273	0.302	0.289	0.319	0.244	0.312	0.319	0.378	0.039	0.117	2.265
CL3(18)	0.376	0.447	0.416	0.489	0.452	0.415	0.423	0.445	0.034	0.100	1.937
CL3(28)	0.376	0.491	0.465	0.482	0.439	0.463	0.459	0.486	0.037	0.112	2.155
CL4(44)	0.425	0.529	0.478	0.551	0.506	0.470	0.489	0.511	0.039	0.116	2.243
CL4(49)	NS	NA	NA	NA							
CL4(52)	0.418	0.491	0.442	0.522	0.471	0.426	0.450	0.473	0.035	0.104	2.000
CL4(66)	0.423	0.526	0.487	0.519	0.493	0.436	0.477	0.490	0.036	0.108	2.087
CL5(87)	NS	NA	NA	NA							
CL5(101)	0.459	0.587	0.530	0.597	0.551	0.501	0.519	0.532	0.045	0.134	2.581
CL5(105)	0.373	0.381	0.416	0.459	0.405	0.435	0.423	0.421	0.028	0.084	1.618
CL5(118)	0.399	0.479	0.454	0.486	0.463	0.469	0.460	0.467	0.027	0.080	1.534
CL6(128)	0.363	0.414	0.401	0.394	0.400	0.404	0.385	0.401	0.015	0.046	0.887
CL6(138)	0.379	0.422	0.411	0.421	0.418	0.410	0.407	0.417	0.014	0.042	0.806
CL6(153)	0.359	0.416	0.418	0.437	0.430	0.414	0.402	0.414	0.024	0.071	1.378
CL7(170)	0.343	0.402	0.376	0.407	0.394	0.384	0.378	0.380	0.020	0.060	1.149
CL7(180)	0.341	0.384	0.380	0.430	0.426	0.397	0.395	0.390	0.028	0.084	1.622
CL7(183)	NS	NA	NA	NA							
CL7(184)	NS	NA	NA	NA							
CL7(187)	0.329	0.384	0.358	0.421	0.400	0.403	0.391	0.378	0.029	0.086	1.654
CL8(195)	0.328	0.367	0.364	0.397	0.390	0.382	0.381	0.371	0.021	0.064	1.227
CL9(206)	0.267	0.303	0.314	0.326	0.305	0.277	0.299	0.222	0.065	1.256	1.256
CL10(209)	0.359	0.399	0.402	0.448	0.447	0.430	0.437	0.425	0.030	0.090	1.738
Surrogate Recoveries (%)											
DBO/FB	55	67	58	66	64	64	61	63	65	61	61
CL5(112)	58	63	61	67	64	67	62	62	61	61	61

(a) MDL = The Method Detection Limit (2.998 x standard deviation).

(b) NS = Not spiked.

(c) NA = Not applicable.

(d) Analyte required only in samples designated for Central Long Island Disposal Testing Site.

TABLE A.7. Quality Control Data for Polynuclear Aromatic Hydrocarbons (PAH) in Sediment

Batch: Treatment: Percent Moisture: Dry Weight (g) Units (dry wt):	BLANKS				MATRIX SPIKE			
	1		2		1		2	
	Blank NA ^(a)	Blank NA	EC-10 56.369	EC-10, MS 19.842	Concentration	Concentration	R-MUD	R-MUD, MS Concentration
			µg/kg	µg/kg	µg/kg	Percent Recovery	µg/kg	µg/kg Recovery
naphthalene	12.36	U ^(c)	0.73	J ^(d)	293.40	1949.96	2695.02	64
1-methylnaphthalene ^(e)	13.00	U	NA	95.73	1781.30	2575.36	65	NA
2-methylnaphthalene ^(e)	10.96	U	NA	190.08	1754.99	NS	NA	NA
biphenyl	10.45	U	11.10	U	64.14	1699.62	2588.69	63
2,6-dimethylnaphthalene ^(e)	10.21	U	NA	89.93	1798.88	2579.29	66	NA
acenaphthylene	9.94	U	10.57	U	392.81	2109.65	2484.93	69
acenaphthene	12.93	U	13.74	U	199.96	1884.07	2681.52	63
fluorene	10.69	U	11.36	U	234.41	1876.21	2570.55	64
phenanthrene	10.78	U	11.45	U	1129.33	2727.93	2584.10	62
anthracene	10.46	U	11.12	U	839.49	2036.08	1956.09	61
1-methylphenanthrene ^(e)	9.57	U	NA	343.98	2220.41	2555.70	73	NA
fluoranthene	9.72	U	10.32	U	4118.64	5351.78	2594.15	48
pyrene	2.83	J	12.46	U	4171.38	5396.57	2590.65	47
benz[a]anthracene	11.56	U	12.29	U	2017.45	3005.59	2245.09	44
chrysene	14.17	U	15.06	U	2535.99	3529.16	2602.88	38
benzo[b]fluoranthene	10.68	U	11.34	U	3396.16	4074.64	2582.35	26
benzo[k]fluoranthene	12.66	U	13.46	U	780.34	2498.31	2572.30	67
benzof[e]pyrene ^(e)	7.98	U	NA	1244.09	2852.72	2582.79	62	NA
benzo[a]pyrene	9.90	U	10.52	U	2397.66	3136.38	2332.46	32
perylene ^(e)	20.84	U	NA	381.92	1567.57	1953.69	62	NA
indeno[1,2,3-c,d]pyrene	8.55	U	9.08	U	1408.83	2781.05	2292.27	60
dibenz[a,h]anthracene	8.68	U	9.22	U	355.49	1583.39	1938.40	63
benzo[g,h,i]perylene	7.18	U	7.63	U	1349.43	2656.07	2307.99	57
Surrogate Recoveries (%)								
naphthalene-d8	59	69	53	55	NA	NA	54	66
acenaphthene-d10	63	66	60	59	NA	NA	56	63
chrysene-d12	65	63	52	55	NA	NA	58	64

TABLE A.7. (contd)

Batch: Treatment:	Dry Weight (g) Units (dry wt):	STANDARD REFERENCE MATERIAL					
		1 NIST 1941a Certified Value µg/kg	1 NIST 1941a Certified Value µg/kg	Percent Difference ^(b) µg/kg	2 NIST 1941a Certified Value µg/kg	2 NIST 1941a Certified Value µg/kg	Percent Difference ^(b) µg/kg
naphthalene	1010	446.35	2	1010	461.60	10	NA
1-methylnaphthalene ^(e)	NC ^(f)	69.83	NA	NA	NA	NA	NA
2-methylnaphthalene ^(e)	NC	149.85	NA	NA	NA	NA	NA
biphenyl	NC	45.65	NA	NC	45.92	NA	NA
2,6-dimethylnaphthalene ^(e)	NC	33.39	NA	NA	NA	NA	NA
acenaphthylene	NC	50.40	NA	NC	43.38	NA	NA
acenaphthene	NC	23.36	NA	NC	24.71	NA	NA
fluorene	97.3	49.71	18	97	47.87	3	NA
phenanthrene	489	274.57	12	489	275.27	6	NA
anthracene	184	115.14	24	184	114.23	17	NA
1-methylphenanthrene ^(e)	NC	59.14	NA	NA	NA	NA	NA
fluoranthene	981	558.33	13	981	523.89	1	NA
pyrene	811	465.23	14	811	439.33	2	NA
benz[a]anthracene	427	228.99	7	427	208.24	8	NA
chrysene	380	330.74	73 ^(g)	380	318.66	58 ^(g)	NA
benzo[b]fluoranthene	740	540.68	45 ^(g)	740	519.11	32 ^(g)	NA
benzo[k]fluoranthene	361	186.68	3	361	192.57	1	NA
benzo[e]pyrene ^(e)	553	291.70	5	NA	NA	NA	NA
benzo[a]pyrene	628	277.29	12	628	291.97	12	NA
perylene ^(e)	452	202.39	11	NA	NA	NA	NA
indeno[1,2,3-c,d]pyrene	501	264.41	5	501	248.25	6	NA
dibenz[a,h]anthracene	73.9	60.42	63 ^(g)	74	54.65	40 ^(g)	NA
benzo[g,h]perylene	525	249.44	6	525	233.31	16	NA
<u>Surrogate Recoveries (%)</u>							
naphthalene-d8	NA	43	NA	NA	51	NA	NA
acenaphthene-d10	NA	50	NA	NA	53	NA	NA
chrysene-d12	NA	51	NA	NA	55	NA	NA

TABLE A.7. (cont'd)

Batch:	Treatment:	ANALYTICAL REPLICATES						GR-10 Trip. Replicate 3 8.657 µg/kg	GR-10 Dup. Replicate 2 8.594 µg/kg	GR-10 Trip. Replicate 3 8.657 µg/kg			
		1		2		2							
		EC-15 Replicate 1	EC-15 Replicate 2	EC-15 Replicate 3	EC-15 Replicate 1	EC-15 Replicate 2	EC-15 Replicate 3						
Dry Weight (g)	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg			
Units (dry wt):	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg			
naphthalene	413.07	383.64	346.57	9	97.15	122.54	106.28	12	NA	NA			
1-methyl(naphthalene) ^(e)	230.13	293.43	294.48	14	NA	NA	NA	NA	NA	NA			
2-methyl(naphthalene) ^(e)	220.96	269.92	256.05	10	NA	NA	NA	NA	NA	NA			
biphenyl	67.60	81.01	101.32	20	21.24	27.72	23.89	13	ND	ND			
2,6-dimethylnaphthalene ^(e)	141.18	161.94	151.86	7	ND	ND	ND	NA	NA	NA			
acenaphthylene	350.59	356.12	360.45	1	72.16	85.43	82.68	9	NA	NA			
acenaphthene	393.29	494.18	516.99	14	27.42	37.65	34.18	16	NA	NA			
fluorene	496.91	588.49	564.89	9	51.78	69.28	58.58	15	NA	NA			
phenanthrene	2775.86	3308.85	2624.88	12	293.40	391.80	305.88	16	NA	NA			
anthracene	784.75	917.38	820.41	8	228.03	286.56	241.40	12	NA	NA			
1-methylphenanthrene ^(e)	480.83	521.03	513.57	4	NA	NA	NA	NA	NA	NA			
fluoranthene	4967.01	5744.20	5225.88	7	809.42	996.86	801.60	13	NA	NA			
pyrene	4698.65	5597.13	5124.00	9	877.93	1063.72	851.74	12	NA	NA			
benz[a]anthracene	2158.28	2538.62	2480.41	9	492.12	601.96	493.70	12	NA	NA			
chrysene	2530.60	2939.22	2913.86	8	502.85	603.94	493.96	11	NA	NA			
benzof[b]fluoranthene	2953.82	3554.01	3284.14	9	572.66	705.11	577.73	12	NA	NA			
benzo[k]fluoranthene	678.98	661.98	723.19	5	221.94	269.23	228.73	11	NA	NA			
benzo[e]pyrene ^(e)	1586.76	1869.29	1743.18	8	NA	NA	NA	NA	NA	NA			
benzo[a]pyrene	2154.13	2596.21	2437.45	9	518.39	627.31	524.96	11	NA	NA			
perylene ^(e)	380.77	395.37	445.44	8	NA	NA	NA	NA	NA	NA			
indeno[1,2,3-c,d]pyrene	1507.35	1811.51	1634.00	9	276.94	335.32	284.94	11	NA	NA			
dibenz[a,h]anthracene	371.68	394.28	398.09	4	71.13	90.76	75.94	13	NA	NA			
benzo[g,h,i]perylene	1365.92	1673.81	1530.19	10	249.71	298.49	254.12	10	NA	NA			
Surrogate Recoveries (%)													
naphthalene-d8	52	61	55	NA	41	52	46	NA	NA	NA			
acenaphthene-d10	57	68	59	NA	47	58	51	NA	NA	NA			
chrysene-d12	39	44	41	NA	46	56	49	NA	NA	NA			

TABLE A.7. (contd)

Qualifiers	
(a)	NA Not applicable.
(b)	Sample concentration of the procedural blank adjusted for the average sample size of the batch.
(c)	U Undetected at or above given concentration.
(d)	J Concentration estimated; analyte detected below method detection limit (MDL), but above instrument detection limit (IDL).
(e)	Analyte required only in samples designated for Central Long Island Disposal Testing Site.
(f)	NS Not spiked.
(g)	Outside quality control criteria (50-120%) for matrix spike recoveries.
(h)	Percent Difference from certified = absolute value [(certified value, $\mu\text{g}/\text{kg}$ - value detected corrected for surrogate recovery, $\mu\text{g}/\text{kg}$) / certified value, $\mu\text{g}/\text{kg}$].
(i)	NC No certified value available.
(j)	Outside SRM quality control acceptable criteria ($\leq 30\%$).

TABLE A.8. MDL Verification Study for Analysis of Polynuclear Aromatic Hydrocarbons (PAH) in Sediment

Sample Number:	OG99	OH01	OH02	OH03	OH04	OH05	OH06	OH07	OH08	Standard Deviation	Method Detection Limit	Method Detection Limit	
Percent Moisture (%):	38.233	38.160	38.160	38.098	38.160	38.160	38.160	38.161	38.161	STD	MDL ^(a)	MDL ^(a)	
Sample Dry Weight (g):	20.919	19.455	19.201	18.645	19.087	19.434	18.896	18.612	18.612	μg/kg	μg/kg	μg/kg	
Units (dry wt):	(μg/kg)												
naphthalene	1.61	1.85	1.86	1.66	1.72	1.75	1.97	0.12	0.36				
biphenyl	1.30	1.55	1.49	1.61	1.56	1.50	1.57	0.11	0.33				
acenaphthylene	0.93	1.06	1.09	1.15	1.01	1.18	1.09	1.16	0.08		0.25	0.87	
acenaphthene	1.12	1.41	1.16	1.41	1.38	1.21	1.34	1.56	0.15		0.44	8.55	
fluorene	1.07	1.31	1.12	1.17	1.09	0.99	1.27	1.25	0.11		0.34	6.48	
phenanthrene	1.25	1.41	1.35	1.58	1.42	1.38	1.43	1.59	0.11		0.34	6.52	
anthracene	0.73	0.87	0.78	0.88	0.87	0.78	0.77	0.99	0.08		0.25	4.80	
fluoranthene	1.10	1.24	1.08	1.24	1.11	1.13	1.13	1.11	0.06		0.19	3.64	
pyrene	1.16	1.34	1.21	1.21	1.14	1.15	1.19	1.19	0.06		0.19	3.64	
benz[a]anthracene	0.82	1.08	0.94	0.96	0.92	0.89	0.88	0.95	0.08		0.23	4.38	
chrysene	0.95	1.12	0.98	1.14	1.01	1.16	0.95	1.02	0.09		0.26	4.98	
benzo[b]fluoranthene	0.97	1.02	0.93	1.03	0.89	0.88	0.85	0.86	0.07		0.21	4.03	
benzo[k]fluoranthene	0.93	0.92	0.93	1.01	0.89	0.92	1.01	0.69	0.10		0.30	5.72	
benzo[a]pyrene	0.67	0.77	0.61	0.79	0.81	0.70	0.71	0.60	0.08		0.24	4.54	
indeno[1,2,3-c,d]pyrene	0.85	0.84	0.70	0.75	0.75	0.58	0.66	0.61	0.10		0.30	5.79	
dibenz[a,h]anthracene	0.70	0.71	0.53	0.62	0.45	0.53	0.44	0.40	0.12		0.36	6.90	
benzo[ghi]perylene	0.95	0.87	0.86	0.99	0.73	0.84	0.85	0.76	0.09		0.26	4.99	
<u>Surrogate Recoveries (%)</u>													
naphthalene-d8	66	74	69	74	68	74	70	71	71				
acenaphthene-d10	65	71	69	73	68	73	70	70	70				
chrysene-d12	58	65	61	65	61	64	62	62	62				

(a) MDL = STD * 2.998, Average Sample Dry Weight (g) = 19.281.

Appendix B

Site Water and Elutriate Chemical Analyses and Quality Assurance/Quality Control Data for Buttermilk Channel Project

QA/QC SUMMARY

PROGRAM: New York/New Jersey Federal Projects-2

PARAMETER: Metals

LABORATORY: Battelle/Marine Sciences Laboratory, Sequim, Washington

MATRIX: Site Water and Elutriate

QA/QC DATA QUALITY OBJECTIVES

	<u>Reference Method</u>	<u>Range of Recovery</u>	<u>SRM Accuracy</u>	<u>Relative Precision</u>	<u>Target Detection Limit (µg/L)</u>
Cadmium	ICP/MS	75-125%	≤20%	≤20%	0.025
Chromium	GFAA	75-125%	≤20%	≤20%	1.0
Copper	ICP/MS	75-125%	≤20%	≤20%	0.35
Lead	ICP/MS	75-125%	≤20%	≤20%	0.35
Mercury	CVAA	75-125%	≤20%	≤20%	0.002
Nickel	ICP/MS	75-125%	≤20%	≤20%	0.3
Silver	ICP/MS	75-125%	≤20%	≤20%	0.25
Zinc	GFAA	75-125%	≤20%	≤20%	0.15

METHOD

A total of eight metals was analyzed in water and elutriate samples: silver (Ag), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn). Hg was analyzed using cold-vapor atomic absorption spectroscopy (CVAA) according to the method of Bloom and Crecelius (1983). Cr and Zn were analyzed by Graphite Furnace Atomic Absorption (GFAA) spectrometry following the EPA Method 200.9 (EPA 1991). The remaining metals were analyzed by inductively coupled plasma mass spectrometry (ICP/MS) following a procedure based on EPA Method 200.8 (EPA 1991).

All water and elutriate samples were acidified to pH <2 upon receipt in the laboratory. Five metals, Cd, Cu, Pb, Ni and Ag, were extracted from the water according to a procedure based on EPA Method 218.3 (EPA 1979). This preconcentration involves addition of a chelating agent which results in precipitation of the metals from solution, followed by filtration, and digestion of the filter in concentrated acid in order to achieve low detection limits. The digestates were then analyzed by ICP/MS as described above.

HOLDING TIMES

Twelve site water samples (for triplicate analysis) were received on 3/24/94. Five elutriate samples (for triplicate analysis) were received on 4/11/94, and another five elutriate samples (for triplicate analysis) were received on 4/16/94. All samples were received in good condition, assigned ID numbers according to Battelle's log-in system, acidified to pH<2 with concentrated nitric acid, and held at ambient temperature until analysis.

QA/QC SUMMARY/METALS (continued)

Mercury in water has a holding time of 28 days from collection to analysis. All samples were analyzed within this holding time. Samples were analyzed for the remaining metals within 180 days of collection. Samples were received, digested, and analyzed in two batches, Batch 1a/1b (site waters), and Batch 2 (elutriate). The following table summarizes analysis dates:

<u>Task</u>	<u>Date</u>	
	<u>Batch 1a/1b</u>	<u>Batch 2</u>
APDC Extraction	6/13/94	5/24/94
ICP-MS	7/14/94	7/14/94
CVAA-Hg	4/26-28/94	5/9/94
GFAA-Cr	1a: 5/5/94 1b: 5/6/94	5/9/94
GFAA-Zn	5/16/94	5/16/94

DETECTION LIMITS

Target detection limits were met for all metals except Zn. Detection limits for Zn exceeded the target limits; however, all sample values were well above the detection limits achieved. Method Detection Limits (MDLs) for Ag, Cd, Cu, Hg, Ni and Pb were determined by spiking eight replicates of laboratory deionized water and multiplying the standard deviation of the resulting analysis by the Student's t value for n=8. MDLs reported for Cr and Zn were determined by taking the standard deviation of three replicate analyses of the method blank and multiplying the standard deviation by 3. An MDL verification study was performed within the previous year by spiking four replicates of Sequim Bay seawater and multiplying the standard deviation of the resulting analysis by 4.451. All sample MDLs were lower than the MDL verification values.

METHOD BLANKS

Method blanks were generated during the APDC extraction step and analyzed for the metals that were preconcentrated (Ag, Cd, Cu, Ni and Pb.) The blanks reported for Hg, Cr and Zn (the metals analyzed by direct injection of water samples) consist of a dilute nitric acid solution used to dilute all samples for analysis. For Batch 1a/1b, two APDC procedural blanks were analyzed and no APDC metals were detected in the blanks. Cr and Zn were detected in the blank; Cr at levels less than three times the MDL, and Zn at levels greater than three times the MDL. All data were corrected for the blank concentrations, and no data were flagged. For Batch 2, two APDC procedural blanks were analyzed and no APDC metals were detected in the blanks. Zn and Cr were detected in the blank at levels less than three times the MDL. All data were corrected for the blank concentrations.

MATRIX SPIKES

Two samples were spiked in duplicate with all metals except Hg, which was spiked on two single samples. The APDC metals (Ag, Cd, Cu, Ni and Pb) were spiked prior to sample processing and the other metals were spiked just prior to analysis. For Batch 1a/1b, all recoveries were within the QC limits of 75% -125%, with the exception of Ag, Cd, and Cu in some of the spikes. Spike recoveries for these metals ranged from 70% to 74%, just below the lower QC limit. No action was taken. For Batch 2, all recoveries were within the QC limits of 75% -125% with the exception of Pb and Ni in one direct spike. Because Pb and

QA/QC SUMMARY/METALS (continued)

Ni values for the other spikes were acceptable, no further action was taken.

REPLICATES

Each sample was analyzed in triplicate. Precision for triplicate analyses was reported by calculating the relative standard deviation (RSD) of the replicate results. For Batch 1a/1b, RSD values were within the QC limits of $\pm 20\%$, with the exception of Hg, Pb, and Ni on one sample. For Batch 2, RSD values were all within the QC limits of $\pm 20\%$, with the exception of Cd in one sample and Ag in two samples.

SRMs

Standard Reference Material (SRM), CASS-2, a certified seawater sample from the National Institute of Standards and Technology, (NIST), was analyzed for all metals with the exception of Ag and Hg, which are not certified in this SRM. Results for all metals were within $\pm 20\%$ of mean certified value. Cd and Pb are certified below the MDL and were not detected.

A second SRM, 1641b, a freshwater sample from NIST, was analyzed twice for Hg. Results were within $\pm 20\%$ of mean certified value. No salt water SRMs certified for Ag are available.

A third SRM, 1643c, a freshwater sample from NIST, was analyzed for all metals except Hg. All metals were recovered within $\pm 20\%$ of mean certified value.

REFERENCES

Bloom, N. S., and E.A. Crecelius. 1983. "Determination of Mercury in Seawater at Sub-Nanogram per Liter Levels." Mar. Chem. 14:49-59.

EPA (U.S. Environmental Protection Agency). 1979. (Revised 1983). Methods for the Chemical Analysis of Water and Wastes. EPA-600/4-79-020. Environmental Monitoring Systems Laboratory, Cincinnati, Ohio.

EPA (U.S. Environmental Protection Agency). 1991. Methods for the Determination of Metals in Environmental Samples. EPA-600/4-91-010. Environmental Services Division, Monitoring Management Branch, Washington D.C.

QA/QC SUMMARY

PROGRAM: New York/New Jersey Federal Projects-2

PARAMETER: Chlorinated Pesticides and PCB Congeners

LABORATORY: Battelle Ocean Sciences

MATRIX: Site Water and Elutriate

QA/QC DATA QUALITY OBJECTIVES

<u>Reference Method</u>	<u>Surrogate Recovery</u>	<u>MS Recovery</u>	<u>Relative Precision</u>	<u>Detection Limit</u>
GC/ECD	30-150%	50-120%	≤30%	2-20 ng/L

SAMPLE CUSTODY Twelve site water samples (in triplicate) were received on 3/31/94. Five elutriate samples (in triplicate) were received on 4/15/94, and another six elutriate samples (in triplicate) were received on 4/19/94. All samples were received in good condition, assigned ID numbers according to Battelle's log-in system, and stored at approximately 4°C until extraction.

METHOD Water samples were extracted with methylene chloride in a separatory funnel under ambient conditions following a procedure based on the National Oceanic and Atmospheric Administration (NOAA) Status and Trends Program method (Krahn et al. 1988). Sample extracts were passed through a silica/alumina (5% deactivated) chromatography column followed by high performance liquid chromatography (HPLC) cleanup (Krahn et al. 1988). Extracts were analyzed for 15 chlorinated pesticides using gas chromatography with electron capture detection (GC/ECD) following a procedure based on EPA Method 8080 (EPA 1986). The GC column used was a J&W DB-17 capillary column (30-m x 0.25-mm I.D.) with confirmatory analysis on a DB-1701 column (also 30-m x 0.25-mm I.D.).

HOLDING TIMES Samples were extracted in four batches: Batches 1 and 2 consisted of site waters; Batches 3 and 4 were elutriate samples. The following table summarizes sample extraction and analysis dates for each batch:

<u>Batch No.</u>	<u>Receipt</u>	<u>Extraction</u>	<u>Analysis</u>
1	3/31/94	4/5/94	4/22-26/94
2	3/31/94	4/5/94	4/26-28/94
3	4/15/94	4/19/94	5/5-7/94
4	4/19/94	4/22/94	5/13-15/94

DETECTION LIMITS Target detection limits (DLs) were met for all pesticides except endosulfan II in some samples (target DL for endosulfan II was 4 ng/L; achieved DL was 11 ng/L).

QA/QC SUMMARY/PESTICIDES AND PCBs (continued)

METHOD BLANKS	One method blank (Sequim Bay seawater) was extracted with each extraction batch for a total of four method blanks. No pesticides or PCBs were detected in any of the method blanks.
SURROGATES	Two compounds, dibromooctafluorobiphenyl (DBOFB) and PCB congener 112, were added to all samples to assess the efficiency of the analysis. Sample surrogate recoveries were all within the QC guidelines of 30% -150%.
MATRIX SPIKES	One water sample in each batch (for a total of four) was spiked with 11 pesticides and 19 PCB congeners. Matrix spike recoveries were within the control limit range of 50-120% with the following exceptions: In the Batch 1, 2, 3, and 4 spike, recovery of PCB 8 was unacceptable due to interference from coelution of the non-target pesticide, alpha-BHC. In the batch 2 matrix spike, recovery of PCB 18 was 48%. In the Batch 3 matrix spike, recovery of endosulfan I/2,4'DDE was 123% and recovery of heptachlor epoxide was 125%. No action was taken.
REPLICATES	Each sample was extracted and analyzed in triplicate. Precision was measured by calculating the relative standard deviation (RSD) of the replicate results. The target precision goal was $\leq 30\%$ RSD for analytes > 10 times the Method Detection Limit (MDL). RSDs ranged from 6% to 79%, however, the majority of mean concentrations of all analytes (in each set of triplicate samples) were < 10 times the detection limit. Twenty-five PCB/pesticides had a mean > 10 times the detection limit and had an RSD of $> 30\%$. These RSDs ranged from 31% to 64%.

REFERENCES

Krahn, M.M., C.A. Wigren, R.W. Pearce, L.K. Moore, R.G. Bogar, W.D. MacLeod, Jr., S-L Chan, and D.W. Brown. 1988. *New HPLC Cleanup and Revised Extraction Procedures for Organic Contaminants*. NOAA Technical Memorandum NMFS F/NWC-153. National Oceanic and Atmospheric Administration, National Marine Fisheries, Seattle, Washington.

EPA (U.S. Environmental Protection Agency). 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. SW-846. U.S. Document No. 955-001-00000, U.S. Environmental Protection Agency, Washington D.C.

TABLE B.1. Metals in Site Water and Elutriate

Sediment Treatment	Replicate	Concentrations in $\mu\text{g/L}$							
		Ag ICP/MS	Cd ICP/MS	Cr GFAA	Cu ICP/MS	Hg CVAF	Ni ICP/MS	Pb ICP/MS	Zn GFAA
Target detection limit		0.25	0.025	1.0	0.35	0.002	0.30	0.035	0.15
MDL verification ^(a)		0.007	0.025	0.163	0.143	0.0006	0.253	0.035	0.582
BU Site Water	1	0.104	0.090	0.810	4.16	0.023	1.82	2.79	12.2
BU Site Water	2	0.109	0.080	0.850	4.38	0.022	1.87	2.79	14.0
BU Site Water	3	0.118	0.096	0.920	4.27	0.022	1.94	2.85	13.1
BU Elutriate	1	0.021	0.025 U ^(b)	0.58	0.737	0.0049	2.99	0.586	2.25
BU Elutriate	2	0.038	0.025 U	0.62	0.700	0.0051	2.95	0.603	3.28
BU Elutriate	3	0.020	0.025 U	0.53	0.709	0.0051	2.85	0.564	2.44

(a) MDL Method detection limit based on standard deviation of 4 replicates of spiked control water $\times 4.541$.
 (b) U Not detected at or above concentration shown.

TABLE B.2. Quality Control Data (Method Blanks and Recovery of Matrix Spikes) for Metals in Site Water and Elutriate

Sediment Treatment	Batch	Concentrations in $\mu\text{g/L}$									
		Ag ICP/MS	Cd ICP/MS	Cr GFAA	Cu ICP/MS	Hg CVAF	Ni ICP/MS	Pb ICP/MS	Zn GFAA		
METHOD BLANKS											
Site Water											
Blank-1	1a	0.007 U ^(a)	0.025 U	0.33	0.143 U	0.0009	0.253 U	0.035 U	7.48		
Blank-2	1b	0.007 U	0.025 U	0.41	0.143 U	0.0011	0.253 U	0.035 U	8.42		
Blank-3	1b	NS ^(b)	NS	0.45	NS	NS	NS	NS	NS		
Elutriate											
Blank-4	2	0.007 U	0.025 U	0.18	0.143 U	0.0009	0.253 U	0.035 U	0.75		
Blank-5	2	0.007 U	0.025 U	0.16	0.143 U	0.0009	0.253 U	0.035 U	0.75		
MATRIX SPIKES											
PC Site Water	1a	NA ^(c)	NA	1.79	NA	NA	NA	NA	27.2		
PC Site Water, MS ^(d)	1a	NA	NA	2.81	NA	NA	NA	NA	67.3		
Concentration Recovered		NA	NA	1.02	NA	NA	NA	NA	40.1		
Amount Spiked		NS	NS	0.97	NS	NS	NS	NS	44.8		
Percent Recovery		NA	NA	105%	NA	NA	NA	NA	90%		
PC Site Water	1a	NA	NA	1.79	NA	NA	NA	NA	27.2		
PC Site Water, MSD ^(e)	1a	NA	NA	6.47	NA	NA	NA	NA	114		
Concentration Recovered		NA	NA	4.68	NA	NA	NA	NA	86.8		
Amount Spiked		NS	NS	4.67	NS	NS	NS	NS	89.2		
Percent Recovery		NA	NA	100%	NA	NA	NA	NA	97%		
RPD ^(f)		NA	NA	5%	NA	NA	NA	NA	8%		
SB-A Site Water	1a	0.143	0.112	NA	5.15	0.0165	1.95	2.96	NA		
SB-A Site Water, MS	1a	0.945	0.903	NA	5.89	0.0511	2.73	4.19	NA		
Concentration Recovered		0.802	0.791	NA	0.74	0.0346	0.78	1.23	NA		
Amount Spiked		1.00	1.00	NS	1.00	0.0364	1.00	1.00	NS		
Percent Recovery		80%	79%	NA	74% ^(g)	95%	78%	123%	NA		
SB-A Site Water	1a	0.143	0.112	NA	5.15	NA	1.95	2.96	NA		
SB-A Site Water, MSD	1a	4.49	3.83	NA	9.67	NA	5.94	7.4	NA		
Concentration Recovered		4.35	3.72	NA	4.52	NA	3.99	4.44	NA		
Amount Spiked		5.00	5.00	NS	5.00	NS	5.00	5.00	NS		
Percent Recovery		87%	74% ^(g)	NA	90%	NA	80%	89%	NA		
RPD		8%	6%	NA	20%	NA	2%	32%	NA		
HU-B Site Water	1b	NA	NA	1.81	NA	NA	NA	NA	NA		
HU-B Site Water, MS	1b	NA	NA	2.94	NA	NA	NA	NA	NA		
Concentration Recovered		NA	NA	1.13	NA	NA	NA	NA	NA		
Amount Spiked		NS	NS	0.97	NS	NS	NS	NS	NS		
Percent Recovery		NA	NA	116%	NA	NA	NA	NA	NA		
HU-B Site Water	1b	NA	NA	1.81	NA	NA	NA	NA	NA		
HU-B Site Water, MSD	1b	NA	NA	6.24	NA	NA	NA	NA	NA		
Concentration Recovered		NA	NA	4.43	NA	NA	NA	NA	NA		
Amount Spiked		NS	NS	4.67	NS	NS	NS	NS	NS		
Percent Recovery		NA	NA	95%	NA	NA	NA	NA	NA		
RPD		NA	NA	20%	NA	NA	NA	NA	NA		

TABLE B.2. (continued)

Sediment Treatment	Batch	Concentrations in $\mu\text{g/L}$								
		Ag ICP/MS	Cd ICP/MS	Cr GFAA	Cu ICP/MS	Hg CVAF	Ni ICP/MS	Pb ICP/MS	Zn GFAA	
Mud Dump Site Water	1b	0.022	0.060	NA	2.06	0.0096	1.27	0.931	NA	
Mud Dump Site Water, MS	1b	0.743	0.763	NA	3.00	0.0469	20.8	1.86	NA	
Concentration Recovered		0.721	0.703	NA	0.94	0.0373	0.810	0.929	NA	
Amount Spiked		1.00	1.00	NS	1.00	0.0347	1.00	1.00	NS	
Percent Recovery		72% (g)	70% (g)	NA	94%	107%	81%	93%	NA	
Mud Dump Site Water	1b	0.022	0.060	NA	2.06	NA	1.27	0.931	NA	
Mud Dump Site Water, MSD	1b	4.13	3.56	NA	6.56	NA	5.3	5.60	NA	
Concentration Recovered		4.11	3.50	NA	4.50	NA	4.03	4.67	NA	
Amount Spiked		5.00	5.00	NS	5.00	NS	5.00	5.00	NS	
Percent Recovery		82%	70% (g)	NA	90%	NA	81%	93%	NA	
RPD		13%	0.4%	NA	4%	NA	0.5%	1%	NA	
PC Elutriate	2	NA	NA	0.78	NA	NA	NA	NA	6.51	
PC Elutriate, MS	2	NA	NA	1.70	NA	NA	NA	NA	54.7	
Concentration Recovered		NA	NA	0.92	NA	NA	NA	NA	48.2	
Amount Spiked		NS	NS	0.97	NS	NS	NS	NS	44.8	
Percent Recovery		NA	NA	95%	NA	NA	NA	NA	108%	
PC Elutriate	2	NA	NA	0.78	NA	NA	NA	NA	6.51	
PC Elutriate, MSD	2	NA	NA	5.44	NA	NA	NA	NA	102	
Concentration Recovered		NA	NA	4.66	NA	NA	NA	NA	95.5	
Amount Spiked		NS	NS	4.67	NS	NS	NS	NS	89.2	
Percent Recovery		NA	NA	100%	NA	NA	NA	NA	107%	
RPD		NA	NA	5%	NA	NA	NA	NA	0.5%	
SB-B Elutriate	2	0.018	0.025 U	NA	0.741	0.0034	3.02	0.681	NA	
SB-B Elutriate, MS	2	0.824	0.856	NA	1.72	0.0245	4.31	2.32	NA	
Concentration Recovered		0.806	0.856	NA	0.982	0.0211	1.29	1.64	NA	
Amount Spiked		1.00	1.00	NS	1.00	0.0211	1.00	1.00	NS	
Percent Recovery		81%	86%	NA	98%	100%	129% (g)	164% (g)	NA	
SB-B Elutriate	2	0.018	0.025 U	NA	0.741	NA	3.02	0.681	NA	
SB-B Elutriate, MSD	2	4.34	3.79	NA	5.57	NA	8.10	5.11	NA	
Concentration Recovered		4.32	3.79	NA	4.83	NA	5.08	4.43	NA	
Amount Spiked		5.00	5.00	NS	5.00	NS	5.00	5.00	NS	
Percent Recovery		86%	76%	NA	97%	NA	102%	89%	NA	
RPD		7%	12%	NA	2%	NA	24%	60%	NA	
EC-B Elutriate	2	NA	NA	NA	NA	0.0275	NA	NA	NA	
EC-B Elutriate, MS	2	NA	NA	NA	NA	0.0470	NA	NA	NA	
Concentration Recovered		NA	NA	NA	NA	0.0195	NA	NA	NA	
Amount Spiked		NS	NS	NS	NS	0.0212	NS	NS	NS	
Percent Recovery		NA	NA	NA	NA	92%	NA	NA	NA	
HU-B Elutriate	2	NA	NA	0.18	NA	NA	NA	NA	11.0	
HU-B Elutriate, MS	2	NA	NA	1.15	NA	NA	NA	NA	59.9	
Concentration Recovered		NA	NA	0.97	NA	NA	NA	NA	48.9	
Amount Spiked		NS	NS	0.97	NS	NS	NS	NS	44.8	
Percent Recovery		NA	NA	100%	NA	NA	NA	NA	109%	

TABLE B.2. (continued)

Sediment Treatment	Batch	Concentrations in $\mu\text{g/L}$							
		Ag ICP/MS	Cd ICP/MS	Cr GFAA	Cu ICP/MS	Hg CVAF	Ni ICP/MS	Pb ICP/MS	Zn GFAA
HU-B Elutriate	2	NA	NA	0.18	NA	NA	NA	NA	11.0
HU-B Elutriate, MSD	2	NA	NA	5.77	NA	NA	NA	NA	111
Concentration Recovered		NA	NA	5.59	NA	NA	NA	NA	100
Amount Spiked		NS	NS	4.67	NS	NS	NS	NS	89.2
Percent Recovery		NA	NA	120%	NA	NA	NA	NA	112%
RPD		NA	NA	18%	NA	NA	NA	NA	3%
EC-A Elutriate	2	0.007 U	0.025 U	NA	0.661	0.0005	0.771	0.992	NA
EC-A Elutriate, MS	2	0.831	0.805	NA	1.55	0.0319	1.59	1.85	NA
Concentration Recovered		0.831	0.805	NA	0.892	0.0314	0.816	0.857	NA
Amount Spiked		1.00	1.00	NS	1.00	0.0316	1.00	1.00	NS
Percent Recovery		83%	81%	NA	89%	99%	82%	86%	NA
EC-A Elutriate	2	0.004	0.012	NA	0.661	NA	0.771	0.992	NA
EC-A Elutriate, MSD	2	4.34	3.82	NA	5.34	NA	5.11	5.48	NA
Concentration Recovered		4.33	3.81	NA	4.68	NA	4.31	4.49	NA
Amount Spiked		5.00	5.00	NS	5.00	NS	5.00	5.00	NS
Percent Recovery		87%	76%	NA	94%	NA	86%	90%	NA
RPD		4%	6%	NA	5%	NA	5%	5%	NA

(a) U Undetected at or above concentration shown.

(b) NS Not spiked.

(c) NA Not applicable.

(d) MS Matrix spike

(e) MSD Matrix spike duplicate

(f) RPD Relative percent difference.

(g) Outside data quality criteria of 75%-125%.

TABLE B.3. Quality Control Data (Triplicate Analyses) for Metals in Site Water and Elutriate

Sediment Treatment	Replicate	Batch	Concentrations in $\mu\text{g/L}$							
			Ag ICP/MS	Cd ICP/MS	Cr GFAA	Cu ICP/MS	Hg CVAF	Ni ICP/MS	Pb ICP/MS	Zn GFAA
PC Site Water	1	1a	0.079	0.325	1.83	8.13	0.0261	2.36	9.83	25.3
PC Site Water	2	1a	0.080	0.360	1.87	8.38	0.0232	2.36	10.1	28.1
PC Site Water	3	1a	0.099	0.336	1.67	8.32	0.0253	2.45	10.5	18.1
RSD ^(a)			13%	5%	6%	2%	6%	2%	3%	22% ^(b)
EC-A Site Water	1	1a	0.092	0.503	6.47	13.4	0.0685	4.43	20.5	58.9
EC-A Site Water	2	1a	0.091	0.519	6.71	14.1	0.0640	4.64	22.1	64.5
EC-A Site Water	3	1a	0.087	0.542	6.35	18.6	0.0619	4.43	21.7	64.5
RSD			3%	4%	3%	18%	5%	3%	4%	5%
EC-B Site Water	1	1a	0.152	0.411	4.49	19.0	0.212	4.76	18.7	64.5
EC-B Site Water	2	1a	0.167	0.396	4.61	18.9	0.155	4.58	17.6	69.2
EC-B Site Water	3	1a	0.159	0.419	4.44	18.7	0.182	4.69	18.0	71.1
RSD			5%	3%	2%	1%	16%	2%	3%	5%
HU-A Site Water	1	1a	0.107	0.102	0.83	4.53	0.0178	1.67	3.37	12.2
HU-A Site Water	2	1a	0.082	0.114	0.85	4.59	0.0189	1.79	3.60	14.0
HU-A Site Water	3	1a	0.120	0.114	0.88	4.87	0.0188	1.80	3.78	13.1
RSD			19%	6%	3%	4%	3%	4%	6%	7%
SB-A Site Water	1	1a	0.145	0.108	1.02	5.04	0.0190	1.92	2.85	19.6
SB-A Site Water	2	1a	0.141	0.118	1.15	5.09	0.0160	1.96	3.03	18.7
SB-A Site Water	3	1a	0.142	0.110	1.32	5.33	0.0145	1.97	2.99	21.5
RSD			1%	5%	13%	3%	14%	1%	3%	7%
SB-B Site Water	1	1a	0.075	0.094	0.71	3.53	0.0066	1.67	1.30	9.35
SB-B Site Water	2	1a	0.075	0.093	0.59	3.56	0.0061	1.81	1.32	10.3
SB-B Site Water	3	1a	0.073	0.088	0.68	3.49	0.0062	1.58	1.27	11.2
RSD			2%	4%	9%	1%	4%	7%	2%	9%
BU Site Water	1	1b	0.104	0.090	0.81	4.16	0.0233	1.82	2.79	12.2
BU Site Water	2	1b	0.109	0.080	0.85	4.38	0.0220	1.87	2.79	14.0
BU Site Water	3	1b	0.118	0.096	0.92	4.27	0.0216	1.94	2.85	13.1
RSD			6%	9%	6%	3%	4%	3%	1%	7%
Mud Dump Site Water	1	1b	0.023	0.063	0.26 J ^(c)	2.09	0.0097	1.29	0.942	9.35
Mud Dump Site Water	2	1b	0.020	0.058	0.32 J	1.99	0.0093	1.22	0.904	12.2
Mud Dump Site Water	3	1b	0.024	0.060	0.23 J	2.10	0.0097	1.30	0.947	9.35
RSD			9%	4%	17%	3%	2%	3%	3%	16%
HU-B Site Water	1	1b	0.192	0.105	1.75	6.73	0.0351	2.13	5.34	13.1
HU-B Site Water	2	1b	0.188	0.105	1.92	6.42	0.0369	2.09	4.95	11.2
HU-B Site Water	3	1b	0.182	0.107	1.75	6.57	0.0373	2.07	5.12	13.1
RSD			3%	1%	5%	2%	3%	1%	4%	9%
HU-C Site Water	1	1b	0.144	0.093	0.94	5.52	0.0288	1.85	4.30	30.9
HU-C Site Water	2	1b	0.139	0.087	0.83	5.25	0.0279	1.86	4.15	31.8
HU-C Site Water	3	1b	0.142	0.089	0.90	5.37	0.0296	1.79	4.02	27.1
RSD			2%	3%	6%	3%	3%	2%	3%	8%
HU-D Site Water	1	1b	0.119	0.113	1.43	5.69	0.0263	1.82	4.89	38.3
HU-D Site Water	2	1b	0.119	0.113	1.39	5.59	0.0277	1.65	4.94	37.4
HU-D Site Water	3	1b	0.121	0.111	1.26	5.81	0.0269	4.24	5.17	36.5
RSD			1%	1%	7%	2%	3%	56% ^(b)	3%	2%

TABLE B.3. (Contd)

Sediment Treatment	Replicate	Batch	Concentrations in $\mu\text{g/L}$								
			Ag ICP/MS	Cd ICP/MS	Cr GFAA	Cu ICP/MS	Hg CVAF	Ni ICP/MS	Pb ICP/MS	Zn GFAA	
PC Elutriate	1	2	0.018	0.535	0.76	1.64	0.0236	3.57	1.78	7.81	
PC Elutriate	2	2	0.022	0.517	0.78	1.60	0.0221	3.48	1.64	6.51	
PC Elutriate	3	2	0.020	0.539	0.64	1.63	0.0225	3.57	1.76	6.51	
RSD			10%	2%	10%	1%	3%	1%	4%	11%	
SB-B Elutriate	1	2	0.017	0.025 U ^(d)	0.72	0.755	0.0031	2.95	0.667	3.10	
SB-B Elutriate	2	2	0.018	0.025 U	0.58	0.736	0.0032	3.02	0.676	3.47	
SB-B Elutriate	3	2	0.018	0.025 U	0.64	0.741	0.0034	3.02	0.681	2.72	
RSD			3%	NA ^(e)	11%	1%	5%	1%	1%	12%	
SB-A Elutriate	1	2	0.036	0.025 U	1.15	1.28	0.0285	2.61	0.807	3.10	
SB-A Elutriate	2	2	0.035	0.025 U	1.21	1.18	0.0290	2.39	0.779	2.63	
SB-A Elutriate	3	2	0.030	0.025 U	1.17	1.12	0.0290	2.42	0.772	2.25	
RSD			10%	NA	3%	7%	1%	5%	2%	16%	
BU Elutriate	1	2	0.021	0.025 U	0.58	0.737	0.0049	2.99	0.586	2.25	
BU Elutriate	2	2	0.038	0.025 U	0.62	0.700	0.0051	2.95	0.603	3.28	
BU Elutriate	3	2	0.020	0.025 U	0.53	0.709	0.0051	2.85	0.564	2.44	
RSD			38% ^(b)	NA	8%	3%	2%	2%	3%	21% ^(b)	
EC-B Elutriate	1	2	0.027	0.083	1.62	3.54	0.0263	1.75	5.82	5.35	
EC-B Elutriate	2	2	0.023	0.236	1.66	3.57	0.0249	1.73	5.28	5.06	
EC-B Elutriate	3	2	0.035	0.121	1.83	3.67	0.0275	1.74	5.34	3.94	
RSD			22% ^(b)	54% ^(b)	7%	2%	5%	1%	5%	16%	
HU-B Elutriate	1	2	0.075	0.033	2.44	1.90	0.0198	1.39	1.18	1.78	
HU-B Elutriate	2	2	0.061	0.034	2.16	1.92	0.0187	1.43	1.11	2.16	
HU-B Elutriate	3	2	0.064	0.035	2.42	1.95	0.0179	1.42	1.09	1.88	
RSD			11%	3%	7%	1%	5%	1%	4%	10%	
HU-A Elutriate	1	2	0.025	0.028	1.44	1.24	0.0130	1.53	0.994	6.19	
HU-A Elutriate	2	2	0.022	0.028	1.25	1.22	0.0110	1.50	1.03	6.10	
HU-A Elutriate	3	2	0.023	0.025 U	1.17	1.14	0.0108	1.44	0.999	5.91	
RSD			7%	NA	11%	4%	10%	3%	2%	2%	
EC-A Elutriate	1	2	0.007 U	0.025 U	0.66	0.590	0.0010	0.711	0.971	1.13	
EC-A Elutriate	2	2	0.007 U	0.025 U	0.60	0.640	0.0006 U	0.750	0.935	1.41	
EC-A Elutriate	3	2	0.007 U	0.025 U	0.55	0.661	0.0005	0.771	0.992	1.41	
RSD			NA	NA	9%	6%	NA	4%	3%	12%	
HU-C Elutriate	1	2	0.035	0.031	1.73	1.25	0.0152	2.37	1.11	2.25	
HU-C Elutriate	2	2	0.030	0.031	1.81	1.14	0.0132	2.24	0.994	2.34	
HU-C Elutriate	3	2	0.031	0.033	1.95	1.24	0.0124	2.32	1.09	1.88	
RSD			8%	4%	6%	5%	11%	3%	6%	11%	
HU-D Elutriate	1	2	0.021	0.025 U	0.84	0.993	0.0125	1.41	0.847	1.69	
HU-D Elutriate	2	2	0.016	0.057	0.84	1.06	0.0129	1.39	0.953	1.59	
HU-D Elutriate	3	2	0.027	0.045	0.72	1.03	0.0128	1.44	0.846	1.31	
RSD			26% ^(b)	NA	9%	3%	2%	2%	7%	13%	
Control Site Water	1	2	0.007 U	0.054	0.18	0.468	0.0006 U	0.465	0.035 U	7.88	
Control Site Water	2	2	0.007 U	0.056	0.18	0.452	0.0003	0.456	0.094	8.72	
Control Site Water	3	2	0.007 U	0.057	0.18	0.492	0.0006 U	0.486	0.035 U	11.0	
RSD			NA	3%	0%	4%	NA	3%	NA	18%	

(a) RSD Relative standard deviation.

(b) Outside data quality criteria of +/-20% RSD.

(c) J Concentration estimated; analyte detected below detection limit.

(d) U Undetected at or above concentration shown.

(e) NA Not applicable.

TABLE B.4. Quality Control Data (Standard Reference Materials) for Metals in Site Water and Elutriate

Standard Reference Material	Replicate	Batch	Concentrations in $\mu\text{g/L}$								
			Ag ICP/MS	Cd ICP/MS	Cr GFAA	Cu ICP/MS	Hg CVAF	Ni ICP/MS	Pb ICP/MS	Zn GFAA	
Site Water											
SRM CASS-2	1	1a	0.007 U ^(a)	0.025 U	0.32 U	0.695	NA ^(b)	0.301	0.016 J ^(c)	2.04	
SRM CASS-2	2	1a	0.007 U	0.025 U	0.32 U	0.730	NA	0.339	0.018 J	2.30	
SRM CASS-2	1	1b	NA	NA	0.19 U	NA	NA	NA	NA	NA	
Certified Value CASS-2			NC ^(d)	0.019	0.121	0.675	NC	0.298	0.019	1.97	
Range			NC	± 0.004	± 0.016	± 0.039	NC	± 0.036	± 0.006	± 0.12	
Percent Difference	1		NA	NA	NA	3	NA	1	16	4	
Percent Difference	2		NA	NA	NA	8	NA	14	5	17	
Percent Difference	1		NA	NA	NA	NA	NA	NA	NA	NA	
SRM 1641b	1	1a	NA	NA	NA	NA	1530	NA	NA	NA	
SRM 1641b	2	1a	NA	NA	NA	NA	1540	NA	NA	NA	
Certified Value 1641b			NC	NC	NC	NC	1520	NC	NC	NC	
Range			NC	NC	NC	NC	± 40	NC	NC	NC	
Percent Difference	1		NA	NA	NA	NA	1	NA	NA	NA	
Percent Difference	2		NA	NA	NA	NA	1	NA	NA	NA	
SRM 1643c	1	1a	2.09	11.7	20.5	20.6	NA	55.3	33.6	84.2	
SRM 1643c	2	1a	2.01	11.0	19.4	19.2	NA	54.2	35.8	84.2	
SRM 1643c	1	1b	NA	NA	19.5	NA	NA	NA	NA	NA	
Certified Value 1643c			2.21	12.2	19.0	22.3	NC	60.6	35.3	73.9	
Range			± 0.30	± 1.0	± 0.6	± 2.8	NC	± 7.3	± 0.9	± 0.9	
Percent Difference	1		5	4	8	8	NA	9	5	14	
Percent Difference	2		9	10	2	14	NA	11	1	14	
Percent Difference	1		NA	NA	3	NA	NA	NA	NA	NA	
Elutriate											
SRM CASS-2	1	2	0.003 U	0.025 U	0.103	0.671	NA	0.257	0.035 U	2.10	
SRM CASS-2	2	2	0.003 U	0.025 U	0.103	0.668	NA	0.258	0.035 U	1.83	
Certified Value CASS-2			NC	0.019	0.118	0.675	NC	0.298	0.019	1.97	
Range			NC	± 0.004	± 0.021	± 0.039	NC	± 0.036	± 0.006	± 0.12	
Percent Difference	1		NA	NA	13	1	NA	14	NA	7	
Percent Difference	2		NA	NA	13	1	NA	13	NA	7	
SRM 1641b	1	2	NA	NA	NA	NA	1540	NA	NA	NA	
SRM 1641b	2	2	NA	NA	NA	NA	1510	NA	NA	NA	
Certified Value 1641b			NC	NC	NC	NC	1520	NC	NC	NC	
Range			NC	NC	NC	NC	± 40	NC	NC	NC	
Percent Difference	1		NA	NA	NA	NA	1	NA	NA	NA	
Percent Difference	2		NA	NA	NA	NA	1	NA	NA	NA	
SRM 1643c	1	2	1.89	11.3	19.3	20.4	NA	56.7	33.0	76.0	
SRM 1643c	2	2	1.80	11.2	21.0	20.0	NA	56.3	32.8	71.9	
Certified Value 1643c			2.21	12.2	19.0	22.3	NC	60.6	35.3	73.9	
Range			± 0.30	± 1.0	± 0.6	± 2.8	NC	± 7.3	± 0.9	± 0.9	
Percent Difference	1		15	7	2	9	NA	6	7	3	
Percent Difference	2		19	8	11	10	NA	7	7	3	

(a) U Undetected at or above concentration shown.

(b) NA Not applicable.

(c) J Analyte detected below detection limit; concentration estimated.

(d) NC Not certified.

TABLE B.5. Pesticides and PCBs in Site Water and Elutriate

Site/Replicate	BU Rep 1	BU Rep 2	BU Rep 3	BU Rep 1	BU Rep 2	BU Rep 3
Matrix	Water	Water	Water	Elutriate	Elutriate	Elutriate
Sample Size (L)	1.04	1.04	1.04	0.95	0.96	0.98
Units	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
2,4-DDD	0.765	U ^(a)	0.765	U	0.838	U
2,4-DDT	0.777	U	0.777	U	0.851	U
4,4-DDD	1.12	U	1.12	U	1.22	U
4,4-DDE	0.949	U	0.949	U	1.04	U
4,4-DDT	0.962	U	0.962	U	1.05	U
Aldrin	0.713	U	0.713	U	0.780	U
<i>alpha</i> -Chlordane	0.891	U	0.891	U	0.976	U
Dieldrin	0.948	U	0.948	U	1.04	U
Endosulfan I/2,4-DDE	0.813	U	0.813	U	0.891	U
Endosulfan II	10.8	U	10.8	U	11.8	U
Endosulfan sulfate	7.87	U	7.87	U	8.62	U
Heptachlor	0.63	U	0.63	U	0.691	U
Heptachlor epoxide	0.82	U	0.82	U	0.900	U
<i>trans</i> -Nonachlor	0.93	U	0.93	U	1.02	U
CL2(08)	0.84	U	0.84	U	0.921	U
CL3(18)	1.02	U	1.02	U	1.12	U
CL3(28)	1.15	U	1.15	U	1.26	U
CL4(44)	1.17	U	1.17	U	1.28	U
CL4(49)	4.25		1.01	U	1.10	U
CL4(52)	1.18	U	1.18	U	1.29	U
CL4(66)	0.917	U	0.917	U	1.00	U
CL5(87)	1.03	U	1.03	U	1.13	U
CL5(101)	1.04	U	1.04	U	1.13	U
CL5(105)	1.24	U	1.24	U	1.36	U
CL5(118)	0.977	U	0.977	U	1.07	U
CL6(128)	1.10	U	1.10	U	1.20	U
CL6(138)	1.31	U	1.31	U	1.43	U
CL6(153)	1.26	U	1.26	U	1.38	U
CL7(170)	1.12	U	1.12	U	1.23	U
CL7(180)	0.975	U	0.975	U	1.07	U
CL7(183)	1.02	U	1.02	U	1.12	U
CL7(184)	1.02	U	1.02	U	1.12	U
CL7(187)	0.964	U	0.964	U	1.06	U
CL8(195)	1.10	U	1.10	U	1.21	U
CL9(206)	1.08	U	1.08	U	1.18	U
CL10(209)	1.20	U	1.20	U	1.31	U
Surrogate Recoveries (%)						
DBOFB	29.8	51.0	44.5	96.3	88.3	94.9
CL5(112)	46.6	57.5	57.9	73.7	75.0	80.7

(a) U Undetected at or above the given concentration or amount

TABLE B.6. Quality Control Data (Method Blanks and Recovery of Matrix Spikes) for Pesticides and PCBs in Site Water and Elutriate

Sample:	Method Blank	SB-B Rep. 3	SB-B Rep. 3 MS	Amount Spiked	Percent Recovery
Matrix:	Control Water	Site Water	Site Water		
Sample Size (L):	1.01 ^(a)	0.53	0.51		
Batch:	1	1	1	1	1
Units:	ng/L	ng/L	ng/L	ng	%
2,4-DDD	0.79 U ^(b)	1.52 U	NS ^(c)	NS	NA ^(d)
2,4-DDT	0.80 U	1.54 U	159.31	NS	NA
4,4-DDD	1.15 U	2.21 U	142.46	80.40	90
4,4-DDE	0.98 U	1.88 U	138.23	80.20	88
4,4-DDT	0.99 U	1.90 U	135.93	80.20	86
Aldrin	0.73 U	1.41 U	134.31	80.20	85
alpha-Chlordane	0.92 U	1.77 U	129.31	80.00	82
Dieldrin	0.97 U	2.64	111.18	80.20	69
Endosulfan I/2,4'-DDE	0.84 U	1.61 U	138.52	80.20	88
Endosulfan II	11.07 U	21.33 U	131.51	80.20	84
Endosulfan sulfate	8.09 U	15.59 U	120.25	80.20	76
Heptachlor	0.65 U	1.25 U	117.33	80.20	75
Heptachlor epoxide	0.85 U	1.63 U	118.33	80.20	75
trans-Nonachlor	0.95 U	1.84 U	NS	NS	NA
CL2(08)	0.87 U	1.67 U	C ^(e)	80.00	NC ^(f)
CL3(18)	1.05 U	2.03 U	83.25	80.00	53
CL3(28)	1.18 U	2.27 U	131.73	80.00	84
CL4(44)	1.20 U	2.32 U	114.82	80.00	73
CL4(49)	1.03 U	1.99 U	NS	NS	NA
CL4(52)	1.22 U	2.34 U	108.44	80.00	69
CL4(66)	0.94 U	1.82 U	137.82	80.00	88
CL5(87)	1.06 U	2.04 U	NS	NS	NA
CL5(101)	1.06 U	2.05 U	110.62	80.00	71
CL5(105)	1.28 U	2.46 U	133.30	80.00	85
CL5(118)	1.00 U	1.94 U	121.65	80.00	78
CL6(128)	1.13 U	2.17 U	121.75	80.00	78
CL6(138)	1.35 U	2.60 U	123.58	80.00	79
CL6(153)	1.29 U	2.49 U	108.26	80.00	69
CL7(170)	1.16 U	2.23 U	127.93	80.00	82
CL7(180)	1.00 U	1.93 U	118.14	80.00	75
CL7(183)	1.05 U	2.02 U	NS	NS	NA
CL7(184)	1.05 U	2.02 U	NS	NS	NA
CL7(187)	0.99 U	1.91 U	108.34	80.00	69
CL8(195)	1.14 U	2.19 U	122.94	80.00	78
CL9(206)	1.11 U	2.14 U	117.95	80.00	75
CL10(209)	1.23 U	2.38 U	113.65	80.00	72
Surrogate Recoveries (%)					
DBOFB	86	99	94	NA	NA
CL5(112)	77	74	74	NA	NA

TABLE B.6. (Contd)

Sample:	Method Blank	HU-D Rep. 3	HU-D Rep. 3 MS	Amount	Percent
Matrix:	Control Water	Site Water	Site Water	Spiked	Recovery
Sample Size (L):	1.01 ^(a)	0.52	0.52		
Batch:	2	2	2	2	2
Units:	ng/L	ng/L	ng/L	ng	%
2,4-DDD	0.79 U	1.53 U	NS	NS	NA
2,4-DDT	0.80 U	1.55 U	NS	NS	NA
4,4-DDD	1.15 U	2.23 U	132.72	80.40	86
4,4-DDE	0.98 U	1.90 U	120.53	80.20	78
4,4-DDT	0.99 U	1.92 U	125.17	80.20	81
Aldrin	0.73 U	1.43 U	113.20	80.20	73
<i>alpha</i> -Chlordane	0.92 U	1.72 J ^(g)	118.11	80.00	76
Dieldrin	0.98 U	1.53 J	84.92	80.20	54
Endosulfan I/2,4'-DDE	0.84 U	1.63 U	136.31	80.20	88
Endosulfan II	11.08 U	2.71 J	111.86	80.20	71
Endosulfan sulfate	8.10 U	15.74 U	98.59	80.20	64
Heptachlor	0.65 U	1.26 U	103.27	80.20	67
Heptachlor epoxide	0.85 U	1.64 U	117.22	80.20	76
<i>trans</i> -Nonachlor	0.95 U	1.86 U	NS	NS	NA
CL2(08)	0.87 U	1.68 U	C	80.00	NC
CL3(18)	1.05 U	2.05 U	73.37	80.00	48 ^(h)
CL3(28)	1.18 U	2.29 U	125.42	80.00	82
CL4(44)	1.20 U	2.34 U	109.8	80.00	71
CL4(49)	1.03 U	2.01 U	NS	NS	NA
CL4(52)	1.22 U	2.37 U	103.56	80.00	67
CL4(66)	0.94 U	1.83 U	147	80.00	96
CL5(87)	1.06 U	2.06 U	NS	NS	NA
CL5(101)	1.07 U	2.07 U	118.56	80.00	77
CL5(105)	1.28 U	2.48 U	138.28	80.00	90
CL5(118)	1.00 U	1.95 U	125.01	80.00	81
CL6(128)	1.13 U	2.19 U	122.64	80.00	80
CL6(138)	1.35 U	2.62 U	113.75	80.00	74
CL6(153)	1.29 U	2.52 U	103.09	80.00	67
CL7(170)	1.16 U	2.25 U	130.43	80.00	85
CL7(180)	1.00 U	1.95 U	115.48	80.00	75
CL7(183)	1.05 U	2.04 U	NS	NS	NA
CL7(184)	1.05 U	2.04 U	NS	NS	NA
CL7(187)	0.99 U	1.93 U	94.93	80.00	62
CL8(195)	1.14 U	2.21 U	112.84	80.00	73
CL9(206)	1.11 U	2.16 U	106.60	80.00	69
CL10(209)	1.23 U	2.40 U	96.54	80.00	63
<u>Surrogate Recoveries (%)</u>					
DBOFB	33	32	62	NA	NA
CL5(112)	46	49	64	NA	NA

TABLE B.6. (Contd)

Sample:	Method Blank	EC-B Rep. 3	EC-B Rep. 3 MS	Amount Spiked	Percent Recovery
Matrix:	Control Water	Elutriate	Elutriate		
Sample Size (L):	0.94 ^(a)	0.50	0.48		
Batch:	3	3	3	3	3
Units:	ng/L	ng/L	ng/L	ng	%
2,4-DDD	0.85 U	3.07	NS	NS	NA
2,4-DDT	0.86 U	0.925 J	NS	NS	NA
4,4-DDD	1.24 U	12.2	185.49	80.40	103
4,4-DDE	1.06 U	6.55	163.88	80.20	94
4,4-DDT	1.07 U	2.00 U	172.90	80.20	103
Aldrin	0.79 U	22.5	199.10	80.20	106
alpha-Chlordane	0.99 U	13.2	189.13	80.00	106
Dieldrin	1.05 U	3.80	122.35	80.20	71
Endosulfan I/2,4'-DDE	0.90 U	1.69 U	205.25	80.20	123 ⁽ⁿ⁾
Endosulfan II	11.97 U	22.4 U	154.59	80.20	93
Endosulfan sulfate	8.75 U	16.4 U	146.38	80.20	88
Heptachlor	0.70 U	1.31 U	179.22	80.20	107
Heptachlor epoxide	0.91 U	1.71 U	209.34	80.20	125 ⁽ⁿ⁾
trans-Nonachlor	1.03 U	7.17	7.24	NS	NA
CL2(08)	0.94 U	1.75 U	C	80.00	NC
CL3(18)	1.14 U	2.13 U	145.89	80.00	88
CL3(28)	1.28 U	15.3	203.61	80.00	113
CL4(44)	1.30 U	12.4	185.74	80.00	104
CL4(49)	1.12 U	8.62	10.64	NS	NA
CL4(52)	1.32 U	66.5	201.24	80.00	81
CL4(66)	1.02 U	17.8	215.42	80.00	119
CL5(87)	1.14 U	4.94	NS	NS	NA
CL5(101)	1.15 U	11.6	181.50	80.00	102
CL5(105)	1.38 U	1.88 J	181.11	80.00	108
CL5(118)	1.09 U	9.71	164.19	80.00	93
CL6(128)	1.22 U	2.54	155.43	80.00	92
CL6(138)	1.46 U	11.1	155.98	80.00	87
CL6(153)	1.40 U	7.32	141.71	80.00	81
CL7(170)	1.25 U	2.34 U	163.91	80.00	98
CL7(180)	1.08 U	2.03 U	152.51	80.00	92
CL7(183)	1.14 U	2.09 J	NS	NS	NA
CL7(184)	1.14 U	2.12 U	NS	NS	NA
CL7(187)	1.07 U	2.01 U	121.21	80.00	73
CL8(195)	1.23 U	2.30 U	143.07	80.00	86
CL9(206)	1.20 U	2.24 U	147.57	80.00	89
CL10(209)	1.33 U	2.49 U	131.96	80.00	79
<u>Surrogate Recoveries (%)</u>					
DBOFB	86	113	111	NA	NA
CL5(112)	79	72	74	NA	NA

TABLE B.6. (Contd)

Sample:	Method Blank	HU-A Rep. 3	HU-A Rep. 3 MS	Amount Spiked	Percent Recovery
Matrix:	Control Water	Elutriate	Elutriate		
Sample Size (L):	0.94 ^(a)	0.47	0.50		
Batch:	4	4	4	4	4
Units:	ng/L	ng/L	ng/L	ng	%
2,4-DDD	0.85 U	9.81	NS	NS	NA
2,4-DDT	0.86 U	1.62 U	NS	NS	NA
4,4-DDD	1.23 U	9.54	180.43	80.40	100
4,4-DDE	1.05 U	26.82	185.20	80.20	93
4,4-DDT	1.06 U	2.00 U	168.19	80.20	99
Aldrin	0.79 U	1.48 U	145.33	80.20	85
alpha-Chlordane	0.98 U	2.06	152.82	80.00	89
Dieldrin	1.05 U	4.72	129.96	80.20	73
Endosulfan I/2,4'-DDE	0.90 U	10.32	178.82	80.20	99
Endosulfan II	11.89 U	22.40 U	160.96	80.20	94
Endosulfan sulfate	8.69 U	16.37 U	167.71	80.20	98
Heptachlor	0.70 U	1.31 U	176.94	80.20	104
Heptachlor epoxide	0.91 U	0.47 J	176.62	80.20	103
trans-Nonachlor	1.02 U	1.20 J	NS	NS	NA
CL2(08)	0.93 U	1.75 U	C	80.00	NC
CL3(18)	1.13 U	7.52	107.87	80.00	59
CL3(28)	1.27 U	11.32	146.96	80.00	80
CL4(44)	1.29 U	12.98	129.37	80.00	68
CL4(49)	1.11 U	9.72	13.77	NS	NA
CL4(52)	1.31 U	17.50	127.11	80.00	64
CL4(66)	1.01 U	59.92	183.33	80.00	73
CL5(87)	1.14 U	5.12	5.28	NS	NA
CL5(101)	1.14 U	13.99	127.98	80.00	67
CL5(105)	1.37 U	2.31 J	155.08	80.00	90
CL5(118)	1.08 U	8.52	130.92	80.00	72
CL6(128)	1.21 U	4.25	146.69	80.00	84
CL6(138)	1.45 U	15.07	142.49	80.00	75
CL6(153)	1.39 U	10.27	114.82	80.00	61
CL7(170)	1.24 U	5.21	161.93	80.00	92
CL7(180)	1.08 U	8.42	152.31	80.00	85
CL7(183)	1.13 U	3.39	NS	NS	NA
CL7(184)	1.13 U	2.12 U	NS	NS	NA
CL7(187)	1.07 U	2.01 U	118.67	80.00	70
CL8(195)	1.22 U	3.11	163.38	80.00	94
CL9(206)	1.19 U	7.24	171.60	80.00	97
CL10(209)	1.32 U	6.82	153.12	80.00	86
<u>Surrogate Recoveries (%)</u>					
DBOFB	79	83	81	NA	NA
CL5(112)	71	71	65	NA	NA

(a) Sample concentration of the method blank adjusted for the average sample size of the batch.

(b) U Undetected at or above concentration shown.

(c) NS Not spiked.

(d) NA Not applicable.

(e) C PCB congener 08 coeluted with non-target pesticide a-BHC, resulting in unacceptable recovery in matrix spike samples.

(f) NC Percent recovery not calculated due to coeluting peak.

(g) J Concentration estimated; analyte detected below method detection limit (MDL) and above instrument detection limit (IDL).

(h) Outside quality control criteria (50-120%) for matrix spike recovery.

TABLE B.7. Quality Control Data (Triplicate Analyses) for Pesticides and PCBs in Site Water and Elutriate

Matrix	PC Rep. 1 Site Water	PC Rep. 2 Site Water	PC Rep. 3 Site Water	RSD ^(a)	EC-A Rep. 1 Site Water	EC-A Rep. 2 Site Water	EC-A Rep. 3 Site Water	RSD
Sample Size (L)	1.04	1.04	1.04		1.04	1.04	1.04	
Batch	1	1	1		1	1	1	
Units	ng/L	ng/L	ng/L		ng/L	ng/L	ng/L	
2,4-DDD	0.77 U ^(b)	0.77 U	0.77 U	NA ^(c)	0.77 U	0.77 U	0.70 J	NA
2,4-DDT	0.78 U	0.78 U	0.78 U	NA	0.78 U	0.78 U	0.78 U	NA
4,4-DDD	1.95	1.71	1.90	7%	4.99	3.50	3.89	19%
4,4-DDE	0.63 J ^(d)	0.60 J	0.81 J	16%	2.97	1.84	2.64	23%
4,4-DDT	0.96 U	1.70	0.90 J	NA	4.42	3.92	0.96 U	NA
Aldrin	0.71 U	0.71 U	0.71 U	NA	26.7	27.1	0.71 U	NA
alpha-Chlordane	1.80	1.94	1.76	5%	4.35	4.29	5.59	16%
Dieldrin	1.80	1.55	1.56	9%	3.24	1.76	2.53	30%
Endosulfan I/2,4'-DDE	0.81 U	0.81 U	0.81 U	NA	0.81 U	0.81 U	0.81 U	NA
Endosulfan II	1.57 J	10.8 U	10.8 U	NA	10.8 U	10.8 U	10.8 U	NA
Endosulfan sulfate	7.87 U	7.87 U	7.87 U	NA	7.87 U	7.87 U	7.87 U	NA
Heptachlor	0.63 U	0.63 U	0.63 U	NA	0.63 U	0.63 U	0.63 U	NA
Heptachlor epoxide	0.82 U	0.82 U	0.82 U	NA	0.82 U	0.82 U	0.82 U	NA
trans-Nonachlor	0.93 U	0.93 U	0.93 U	NA	1.62	1.60	3.03	39%
CL2(08)	0.84 U	0.84 U	0.84 U	NA	0.84 U	0.84 U	0.84 U	NA
CL3(18)	1.02 U	1.02 U	1.02 U	NA	1.80	1.02 U	1.02 U	NA
CL3(28)	4.20	2.69	3.05	24%	4.25	1.15 U	1.15 U	NA
CL4(44)	1.17 U	1.17 U	1.17 U	NA	2.97	2.59	1.17 U	NA
CL4(49)	1.01 U	1.01 U	1.01 U	NA	1.01 U	1.01 U	1.01 U	NA
CL4(52)	1.18 U	1.18 U	1.18 U	NA	2.98	2.30	1.18 U	NA
CL4(66)	0.92 U	0.92 U	0.92 U	NA	0.92 U	0.92 U	0.92 U	NA
CL5(87)	0.82 J	0.52 J	0.73 J	23%	1.96	0.69 J	1.41	47%
CL5(101)	1.04 U	1.04 U	1.04 U	NA	1.04 U	1.04 U	1.04 U	NA
CL5(105)	1.24 U	1.24 U	1.24 U	NA	0.71 J	0.86 J	1.24 U	NA
CL5(118)	0.98 U	0.98 U	0.98 U	NA	1.50	0.98 U	1.25	NA
CL6(128)	1.10 U	1.10 U	1.10 U	NA	1.10 U	1.10 U	1.10 U	NA
CL6(138)	1.31 U	1.31 U	0.66 J	NA	1.41	1.28 J	1.31 U	NA
CL6(153)	1.26 U	1.26 U	0.96 J	NA	1.17 J	1.26	1.26 U	NA
CL7(170)	1.12 U	1.12 U	1.12 U	NA	1.12 U	1.12 U	1.12 U	NA
CL7(180)	0.98 U	0.98 U	0.98 U	NA	0.98 U	0.98 U	0.98 U	NA
CL7(183)	1.02 U	1.02 U	1.02 U	NA	1.02 U	1.02 U	1.02 U	NA
CL7(184)	1.02 U	1.02 U	1.02 U	NA	0.67 J	1.02 U	1.02 U	NA
CL7(187)	0.96 U	0.96 U	0.96 U	NA	0.96 U	0.96 U	0.96 U	NA
CL8(195)	1.10 U	1.10 U	1.10 U	NA	1.10 U	1.10 U	1.10 U	NA
CL9(206)	1.08 U	1.08 U	1.08 U	NA	1.08 U	1.08 U	1.08 U	NA
CL10(209)	1.20 U	1.20 U	1.20 U	NA	1.20 U	1.20 U	1.20 U	NA
<u>Surrogate Recoveries (%)</u>								
DBOFB	108	105	103	NA	100	112	114	NA
CL5(112)	72	72	71	NA	69	71	69	NA

TABLE B.7. (Contd)

Matrix	EC-B Rep. 1 Site Water	EC-B Rep. 2 Site Water	EC-B Rep. 3 Site Water	RSD	HU-A Rep 1 Site Water	HU-A Rep 2 Site Water	HU-A Rep 3 Site Water	RSD
Sample Size (L)	1.04 1 ng/L	1.04 1 ng/L	1.04 1 ng/L		1.04 1 ng/L	1.04 1 ng/L	1.04 1 ng/L	
Batch								
Units								
2,4-DDD	0.77 U	0.77 U	0.77 U	NA	0.77 U	0.77 U	0.77 U	NA
2,4-DDT	0.46 J	0.78 U	0.78 U	NA	0.78 U	0.78 U	0.78 U	NA
4,4-DDD	2.88	2.24	3.07	16%	1.12 U	1.12 U	1.12 U	NA
4,4-DDE	1.03	0.70 J	0.86 J	19%	0.95 U	0.95 U	0.95 U	NA
4,4-DDT	0.96 U	0.96 U	0.88 J	NA	0.96 U	0.96 U	0.96 U	NA
Aldrin	15.5	8.37	7.68	41%	0.71 U	0.71 U	0.71 U	NA
alpha-Chlordane	2.99	2.03	2.57	19%	0.89 U	0.68 J	0.89 U	NA
Dieldrin	1.80	1.14	2.80	44%	2.28	1.42	1.21	35%
Endosulfan I/2,4'-DDE	0.81 U	0.81 U	0.81 U	NA	0.81 U	0.81 U	0.81 U	NA
Endosulfan II	10.8 U	10.8 U	10.8 U	NA	10.8 U	10.8 U	10.8 U	NA
Endosulfan sulfate	7.87 U	7.87 U	7.87 U	NA	7.87 U	7.87 U	7.87 U	NA
Heptachlor	0.63 U	0.63 U	0.63 U	NA	0.63 U	0.63 U	0.63 U	NA
Heptachlor epoxide	0.82 U	0.82 U	0.82 U	NA	0.82 U	0.82 U	0.82 U	NA
trans-Nonachlor	1.00	1.01	1.74	34%	0.93 U	0.93 U	0.93 U	NA
CL2(08)	0.84 U	0.84 U	0.84 U	NA	0.84 U	0.84 U	0.84 U	NA
CL3(18)	1.02 U	1.02 U	1.02 U	NA	1.02 U	1.02 U	1.02 U	NA
CL3(28)	7.34	4.16	5.59	28%	1.15 U	1.15 U	1.15 U	NA
CL4(44)	1.17 U	1.17 U	1.94	NA	1.17 U	1.17 U	1.17 U	NA
CL4(49)	1.01 U	1.01 U	1.01 U	NA	1.01 U	1.01 U	1.01 U	NA
CL4(52)	1.18 U	1.18 U	1.18 U	NA	1.18 U	1.18 U	1.18 U	NA
CL4(66)	0.92 U	0.92 U	0.92 U	NA	0.92 U	0.92 U	0.92 U	NA
CL5(87)	0.76 J	0.75 J	1.45	40%	1.56	2.51	2.32	24%
CL5(101)	1.04 U	1.04 U	1.04 U	NA	1.33	0.96 J	1.13	16%
CL5(105)	1.24 U	1.24 U	1.24 U	NA	1.24 U	1.24 U	1.24 U	NA
CL5(118)	0.56 J	0.52 J	0.87 J	29%	0.98 U	0.98 U	0.98 U	NA
CL6(128)	1.10 U	1.10 U	1.10 U	NA	1.10 U	1.10 U	1.10 U	NA
CL6(138)	1.31 U	1.31 U	1.45	NA	1.31 U	1.31 U	1.31 U	NA
CL6(153)	0.88 J	0.62 J	0.83 J	18%	1.26 U	1.26 U	1.26 U	NA
CL7(170)	1.12 U	1.12 U	1.12 U	NA	1.12 U	1.12 U	1.12 U	NA
CL7(180)	0.98 U	0.98 U	0.98 U	NA	0.98 U	0.98 U	0.98 U	NA
CL7(183)	1.02 U	1.02 U	1.02 U	NA	1.02 U	1.02 U	1.02 U	NA
CL7(184)	1.02 U	1.02 U	0.50 J	NA	1.02 U	1.02 U	1.02 U	NA
CL7(187)	0.96 U	0.96 U	0.96 U	NA	0.96 U	0.96 U	0.96 U	NA
CL8(195)	1.10 U	1.10 U	1.10 U	NA	1.10 U	1.10 U	1.10 U	NA
CL9(206)	1.08 U	1.08 U	1.08 U	NA	1.08 U	1.08 U	1.08 U	NA
CL10(209)	1.20 U	1.20 U	1.20 U	NA	1.20 U	1.20 U	1.20 U	NA
<u>Surrogate Recoveries (%)</u>								
DBOFB	108	64	112	NA	86	75	90	NA
CL5(112)	69	42	67	NA	72	69	70	NA

TABLE B.7. (Contd)

Matrix	SB-A Rep 1 Site Water	SB-A Rep 2 Site Water	SB-A Rep 3 Site Water	RSD	SB-B Rep 1 Water	SB-B Rep 2 Water	SB-B Rep 3 Water	RSD
Sample Size (L)	1.04	1.04	1.04		1.04	1.04	0.53	
Batch	1	1	1	1	1	1	1	1
Units	ng/L	ng/L	ng/L		ng/L	ng/L	ng/L	
2,4-DDD	0.77 U	0.77 U	0.77 U	NA	0.77 U	0.77 U	1.52 U	NA
2,4-DDT	0.78 U	0.78 U	0.78 U	NA	0.78 U	0.78 U	1.54 U	NA
4,4-DDD	1.12 U	1.12 U	1.12 U	NA	1.12 U	1.12 U	2.21 U	NA
4,4-DDE	0.95 U	0.95 U	0.95 U	NA	0.95 U	0.95 U	1.88 U	NA
4,4-DDT	0.96 U	0.96 U	0.96 U	NA	0.96 U	0.96 U	1.90 U	NA
Aldrin	0.71 U	0.71 U	0.71 U	NA	0.71 U	0.71 U	1.41 U	NA
<i>alpha</i> -Chlordane	0.89 U	0.89 U	0.89 U	NA	0.89 U	0.89 U	1.77 U	NA
Dieldrin	0.95 U	1.41	0.95 U	NA	0.95 U	2.18	2.64	NA
Endosulfan I/2,4'-DDE	0.81 U	0.81 U	0.81 U	NA	0.81 U	0.81 U	1.61 U	NA
Endosulfan II	10.8 U	10.8 U	10.8 U	NA	10.8 U	10.8 U	21.3 U	NA
Endosulfan sulfate	7.87 U	7.87 U	7.87 U	NA	7.87 U	7.87 U	15.6 U	NA
Heptachlor	0.63 U	0.63 U	0.63 U	NA	0.63 U	0.63 U	1.25 U	NA
Heptachlor epoxide	0.82 U	0.82 U	0.82 U	NA	0.82 U	0.82 U	1.63 U	NA
<i>trans</i> -Nonachlor	0.93 U	0.93 U	0.93 U	NA	0.93 U	0.93 U	1.84 U	NA
CL2(08)	0.84 U	0.84 U	0.84 U	NA	0.84 U	0.84 U	1.67 U	NA
CL3(18)	1.02 U	1.02 U	1.02 U	NA	1.02 U	1.02 U	2.03 U	NA
CL3(28)	1.15 U	1.15 U	1.15 U	NA	1.15 U	1.15 U	2.27 U	NA
CL4(44)	1.17 U	1.17 U	1.17 U	NA	1.17 U	1.17 U	2.32 U	NA
CL4(49)	1.01 U	1.01 U	1.01 U	NA	1.01 U	1.01 U	1.99 U	NA
CL4(52)	1.18 U	1.18 U	1.18 U	NA	1.18 U	2.48	2.34 U	NA
CL4(66)	0.92 U	0.92 U	0.92 U	NA	0.92 U	0.92 U	1.82 U	NA
CL5(87)	1.03 U	1.03 U	1.03 U	NA	1.03 U	2.15	2.04 U	NA
CL5(101)	1.04 U	1.23	1.04 U	NA	1.04 U	0.99 J	2.05 U	NA
CL5(105)	1.24 U	1.24 U	1.24 U	NA	1.24 U	1.24 U	2.46 U	NA
CL5(118)	0.98 U	0.98 U	0.98 U	NA	0.98 U	0.98 U	1.94 U	NA
CL6(128)	1.10 U	1.10 U	1.10 U	NA	1.10 U	1.10 U	2.17 U	NA
CL6(138)	1.31 U	1.31 U	1.31 U	NA	1.31 U	1.31 U	2.60 U	NA
CL6(153)	1.26 U	1.26 U	1.26 U	NA	1.26 U	1.26 U	2.49 U	NA
CL7(170)	1.12 U	1.12 U	1.12 U	NA	1.12 U	1.12 U	2.23 U	NA
CL7(180)	0.98 U	0.98 U	0.98 U	NA	0.98 U	0.98 U	1.93 U	NA
CL7(183)	1.02 U	1.02 U	1.02 U	NA	1.02 U	1.02 U	2.02 U	NA
CL7(184)	1.02 U	1.02 U	1.02 U	NA	1.02 U	1.02 U	2.02 U	NA
CL7(187)	0.96 U	0.96 U	0.96 U	NA	0.96 U	0.96 U	1.91 U	NA
CL8(195)	1.10 U	1.10 U	1.10 U	NA	1.10 U	1.10 U	2.19 U	NA
CL9(206)	1.08 U	1.08 U	1.08 U	NA	1.08 U	1.08 U	2.14 U	NA
CL10(209)	1.20 U	1.20 U	1.20 U	NA	1.20 U	1.20 U	2.38 U	NA
<u>Surrogate Recoveries (%)</u>								
DBOFB	82	94	104	NA	73	97	99	NA
CL5(112)	58	72	74	NA	61	67	74	NA

TABLE B.7. (Contd)

Matrix	BU Rep. 1 Site Water	BU Rep. 2 Site Water	BU Rep. 3 Site Water	RSD	Mud Dump Site Rep. 1 Site Water	Mud Dump Site Rep. 2 Site Water	Mud Dump Site Rep. 3 Site Water	RSD
Sample Size (L)	1.04 2 ng/L	1.04 2 ng/L	1.04 2 ng/L	2	1.04 2 ng/L	1.04 2 ng/L	1.04 2 ng/L	2
2,4-DDD	0.77 U	0.77 U	0.77 U	NA	0.77 U	0.77 U	0.77 U	NA
2,4-DDT	0.78 U	0.78 U	0.78 U	NA	0.78 U	0.78 U	0.78 U	NA
4,4-DDD	1.12 U	1.12 U	1.12 U	NA	1.12 U	1.12 U	1.12 U	NA
4,4-DDE	0.95 U	0.95 U	0.95 U	NA	0.95 U	0.95 U	0.95 U	NA
4,4-DDT	0.96 U	0.96 U	0.96 U	NA	0.96 U	0.96 U	0.96 U	NA
Aldrin	0.71 U	0.71 U	0.71 U	NA	0.71 U	0.71 U	0.71 U	NA
<i>alpha</i> -Chlordane	0.89 U	0.89 U	0.89 U	NA	0.89 U	0.89 U	0.89 U	NA
Dieldrin	0.95 U	0.95 U	0.95 U	NA	0.95 U	0.95 U	0.95 U	NA
Endosulfan I/2,4'-DDE	0.81 U	0.81 U	0.81 U	NA	0.81 U	0.81 U	0.81 U	NA
Endosulfan II	10.8 U	10.8 U	10.8 U	NA	10.8 U	10.8 U	10.8 U	NA
Endosulfan sulfate	7.87 U	7.87 U	7.87 U	NA	7.87 U	7.87 U	7.87 U	NA
Heptachlor	0.63 U	0.63 U	0.63 U	NA	0.63 U	0.63 U	0.63 U	NA
Heptachlor epoxide	0.82 U	0.82 U	0.82 U	NA	0.82 U	0.82 U	0.82 U	NA
<i>trans</i> -Nonachlor	0.93 U	0.93 U	0.93 U	NA	0.93 U	0.93 U	0.93 U	NA
CL2(08)	0.84 U	0.84 U	0.84 U	NA	0.84 U	0.84 U	0.84 U	NA
CL3(18)	1.02 U	1.02 U	1.02 U	NA	1.02 U	1.02 U	1.02 U	NA
CL3(28)	1.15 U	1.15 U	1.15 U	NA	1.15 U	1.15 U	1.15 U	NA
CL4(44)	1.17 U	1.17 U	1.17 U	NA	1.17 U	1.17 U	1.17 U	NA
CL4(49)	4.25	1.01 U	1.01 U	NA	1.01 U	1.01 U	1.01 U	NA
CL4(52)	1.18 U	1.18 U	1.18 U	NA	1.18 U	1.18 U	1.18 U	NA
CL4(66)	0.92 U	0.92 U	0.92 U	NA	0.92 U	0.92 U	0.92 U	NA
CL5(87)	1.03 U	1.03 U	1.03 U	NA	1.03 U	1.03 U	1.03 U	NA
CL5(101)	1.04 U	1.04 U	1.04 U	NA	1.04 U	1.04 U	1.04 U	NA
CL5(105)	1.24 U	1.24 U	1.24 U	NA	1.24 U	1.24 U	1.24 U	NA
CL5(118)	0.98 U	0.98 U	0.98 U	NA	0.98 U	0.98 U	0.98 U	NA
CL6(128)	1.10 U	1.10 U	1.10 U	NA	1.10 U	1.10 U	1.10 U	NA
CL6(138)	1.31 U	1.31 U	1.31 U	NA	1.31 U	1.31 U	1.31 U	NA
CL6(153)	1.26 U	1.26 U	1.26 U	NA	1.26 U	1.26 U	1.26 U	NA
CL7(170)	1.12 U	1.12 U	1.12 U	NA	1.12 U	1.12 U	1.12 U	NA
CL7(180)	0.98 U	0.98 U	0.98 U	NA	0.98 U	0.98 U	0.98 U	NA
CL7(183)	1.02 U	1.02 U	1.02 U	NA	1.02 U	1.02 U	1.02 U	NA
CL7(184)	1.02 U	1.02 U	1.02 U	NA	1.02 U	1.02 U	1.02 U	NA
CL7(187)	0.96 U	0.96 U	0.96 U	NA	0.96 U	0.96 U	0.96 U	NA
CL8(195)	1.10 U	1.10 U	1.10 U	NA	1.10 U	1.10 U	1.10 U	NA
CL9(206)	1.08 U	1.08 U	1.08 U	NA	1.08 U	1.08 U	1.08 U	NA
CL10(209)	1.20 U	1.20 U	1.20 U	NA	1.20 U	1.20 U	1.20 U	NA
<u>Surrogate Recoveries (%)</u>								
DBOFB	30	51	44	NA	45	49	44	NA
CL5(112)	47	57	58	NA	52	56	56	NA

TABLE B.7. (Contd)

Matrix	HU-B Rep. 1	HU-B Rep. 2	HU-B Rep. 3	RSD	HU-C Rep. 1	HU-C Rep. 2	HU-C Rep. 3	RSD
	Site Water	Site Water	Site Water		Site Water	Site Water	Site Water	
Sample Size (L)	1.04	1.04	1.04		1.04	1.04	1.04	
Batch	2	2	2	2	2	2	2	2
Units	ng/L	ng/L	ng/L		ng/L	ng/L	ng/L	
2,4-DDD	0.77 U	0.77 U	0.77 U	NA	0.77 U	0.77 U	0.77 U	NA
2,4-DDT	0.78 U	0.78 U	0.78 U	NA	0.78 U	0.78 U	0.78 U	NA
4,4-DDD	1.12 U	1.12 U	1.12 U	NA	1.12 U	1.12 U	1.12 U	NA
4,4-DDE	0.95 U	0.95 U	0.95 U	NA	0.95 U	0.95 U	0.95 U	NA
4,4-DDT	0.96 U	0.96 U	0.96 U	NA	0.96 U	0.96 U	0.96 U	NA
Aldrin	14.7	0.71 U	0.71 U	NA	0.71 U	0.71 U	0.71 U	NA
alpha-Chlordane	0.89 U	0.89 U	0.89 U	NA	0.89 U	0.89 U	0.89 U	NA
Dieldrin	0.95 U	0.95 U	0.95 U	NA	0.95 U	0.95 U	0.95 U	NA
Endosulfan I/2,4'-DDE	0.81 U	0.81 U	0.81 U	NA	0.81 U	0.81 U	0.81 U	NA
Endosulfan II	10.8 U	10.8 U	10.8 U	NA	10.8 U	10.8 U	10.8 U	NA
Endosulfan sulfate	7.87 U	7.87 U	7.87 U	NA	7.87 U	7.87 U	7.87 U	NA
Heptachlor	0.63 U	0.63 U	0.63 U	NA	0.63 U	0.63 U	0.63 U	NA
Heptachlor epoxide	0.82 U	0.82 U	0.82 U	NA	0.82 U	0.82 U	0.82 U	NA
trans-Nonachlor	0.93 U	0.93 U	0.93 U	NA	0.93 U	0.93 U	0.93 U	NA
CL2(08)	0.84 U	0.84 U	0.84 U	NA	0.84 U	0.84 U	0.84 U	NA
CL3(18)	1.02 U	1.02 U	1.02 U	NA	1.02 U	1.02 U	1.02 U	NA
CL3(28)	1.15 U	1.15 U	1.15 U	NA	1.15 U	1.15 U	1.15 U	NA
CL4(44)	1.17 U	1.17 U	1.17 U	NA	1.17 U	1.17 U	1.17 U	NA
CL4(49)	1.88	2.22	2.27	10%	1.01 U	1.01 U	1.01 U	NA
CL4(52)	1.18 U	2.08	2.02	NA	1.95	2.10	1.87	6%
CL4(66)	0.92 U	0.81 J	0.92 U	NA	0.92 U	0.92 U	0.92 U	NA
CL5(87)	1.03 U	1.03 U	1.03 U	NA	1.03 U	1.03 U	1.03 U	NA
CL5(101)	1.04 U	1.04 U	1.04 U	NA	1.04 U	1.04 U	1.04 U	NA
CL5(105)	1.24 U	1.24 U	1.24 U	NA	1.24 U	1.24 U	1.24 U	NA
CL5(118)	0.98 U	0.98 U	0.98 U	NA	0.98 U	0.98 U	0.98 U	NA
CL6(128)	1.10 U	1.10 U	1.10 U	NA	1.10 U	1.10 U	1.10 U	NA
CL6(138)	1.31 U	1.31 U	1.31 U	NA	1.31 U	1.31 U	1.31 U	NA
CL6(153)	1.26 U	1.26 U	1.26 U	NA	1.26 U	1.26 U	1.26 U	NA
CL7(170)	1.12 U	1.12 U	1.12 U	NA	1.12 U	1.12 U	1.12 U	NA
CL7(180)	0.98 U	0.98 U	0.98 U	NA	0.98 U	0.98 U	0.98 U	NA
CL7(183)	1.02 U	1.02 U	1.02 U	NA	1.02 U	1.02 U	1.02 U	NA
CL7(184)	1.02 U	1.02 U	1.02 U	NA	1.02 U	1.02 U	1.02 U	NA
CL7(187)	0.96 U	0.96 U	0.96 U	NA	0.96 U	0.96 U	0.96 U	NA
CL8(195)	1.10 U	1.10 U	1.10 U	NA	1.10 U	1.10 U	1.10 U	NA
CL9(206)	1.08 U	1.08 U	1.08 U	NA	1.08 U	1.08 U	1.08 U	NA
CL10(209)	1.20 U	1.20 U	1.20 U	NA	1.20 U	1.20 U	1.20 U	NA
<u>Surrogate Recoveries (%)</u>								
DBOFB	47	51	49	NA	49	41	53	NA
CL5(112)	57	63	57	NA	61	57	59	NA

TABLE B.7. (Contd)

Matrix	HU-D Rep. 1			RSD	GR Rep. 1	GR Rep. 2	GR Rep. 3	RSD
	Site Water	Site Water	Site Water					
Sample Size (L)	1.04	1.04	0.52		1.04	1.04	1.04	
Batch	2	2	2	2	2	2	2	2
Units	ng/L	ng/L	ng/L		ng/L	ng/L	ng/L	
2,4-DDD	0.77 U	0.77 U	1.53 U	NA	0.77 U	0.77 U	0.77 U	NA
2,4-DDT	0.78 U	0.78 U	1.55 U	NA	0.78 U	0.78 U	0.78 U	NA
4,4-DDD	1.12 U	1.12 U	2.23 U	NA	1.12 U	1.12 U	1.12 U	NA
4,4-DDE	0.95 U	0.95 U	1.90 U	NA	0.95 U	0.95 U	0.95 U	NA
4,4-DDT	0.96 U	0.96 U	1.92 U	NA	0.96 U	0.96 U	0.96 U	NA
Aldrin	0.71 U	0.71 U	1.43 U	NA	0.71 U	0.71 U	0.71 U	NA
<i>alpha</i> -Chlordane	0.89 U	0.89 U	1.72 J	NA	0.89 U	0.89 U	0.89 U	NA
Dieldrin	0.95 U	0.95 U	1.53 J	NA	0.95 U	0.95 U	0.95 U	NA
Endosulfan I/2,4'-DDE	0.81 U	0.81 U	1.63 U	NA	0.81 U	0.81 U	0.81 U	NA
Endosulfan II	10.8 U	10.8 U	2.71 J	NA	10.8 U	10.8 U	10.8 U	NA
Endosulfan sulfate	7.87 U	7.87 U	15.7 U	NA	7.87 U	7.87 U	7.87 U	NA
Heptachlor	0.63 U	0.63 U	1.26 U	NA	0.63 U	0.63 U	0.63 U	NA
Heptachlor epoxide	0.82 U	0.82 U	1.64 U	NA	0.82 U	0.82 U	0.82 U	NA
<i>trans</i> -Nonachlor	0.93 U	0.93 U	1.86 U	NA	0.93 U	0.93 U	0.93 U	NA
CL2(08)	0.84 U	0.84 U	1.68 U	NA	0.84 U	0.84 U	0.84 U	NA
CL3(18)	1.02 U	1.02 U	2.05 U	NA	1.02 U	1.02 U	1.02 U	NA
CL3(28)	1.15 U	1.15 U	2.29 U	NA	1.15 U	1.15 U	1.15 U	NA
CL4(44)	1.17 U	1.17 U	2.34 U	NA	1.17 U	1.17 U	1.17 U	NA
CL4(49)	1.01 U	1.01 U	2.01 U	NA	3.46	2.79	3.21	11%
CL4(52)	1.16 J	1.51	2.37 U	NA	1.18 U	1.18 U	1.18 U	NA
CL4(66)	0.92 U	0.92 U	1.83 U	NA	0.92 U	0.92 U	0.92 U	NA
CL5(87)	1.03 U	1.03 U	2.06 U	NA	1.03 U	1.03 U	1.03 U	NA
CL5(101)	1.04 U	1.04 U	2.07 U	NA	1.04 U	1.04 U	1.04 U	NA
CL5(105)	1.24 U	1.24 U	2.48 U	NA	1.24 U	1.24 U	1.24 U	NA
CL5(118)	0.98 U	0.98 U	1.95 U	NA	0.98 U	0.98 U	0.98 U	NA
CL6(128)	1.10 U	1.10 U	2.19 U	NA	1.10 U	1.10 U	1.10 U	NA
CL6(138)	1.31 U	1.31 U	2.62 U	NA	1.31 U	1.31 U	1.31 U	NA
CL6(153)	1.26 U	1.26 U	2.52 U	NA	1.26 U	1.26 U	1.26 U	NA
CL7(170)	1.12 U	1.12 U	2.25 U	NA	1.12 U	1.12 U	1.12 U	NA
CL7(180)	0.98 U	0.98 U	1.95 U	NA	0.98 U	0.98 U	0.98 U	NA
CL7(183)	1.02 U	1.02 U	2.04 U	NA	1.02 U	1.02 U	1.02 U	NA
CL7(184)	1.02 U	1.02 U	2.04 U	NA	1.02 U	1.02 U	1.02 U	NA
CL7(187)	0.96 U	0.96 U	1.93 U	NA	0.96 U	0.96 U	0.96 U	NA
CL8(195)	1.10 U	1.10 U	2.21 U	NA	1.10 U	1.10 U	1.10 U	NA
CL9(206)	1.08 U	1.08 U	2.16 U	NA	1.08 U	1.08 U	1.08 U	NA
CL10(209)	1.20 U	1.20 U	2.40 U	NA	1.20 U	1.20 U	1.20 U	NA
<u>Surrogate Recoveries (%)</u>								
DBOFB	57	70	32	NA	37	36	47	NA
CL5(112)	59	63	49	NA	60	55	60	NA

TABLE B.7. (Contd)

Matrix	PC Rep. 1 Elutriate	PC Rep. 2 Elutriate	PC Rep. 3 Elutriate	RSD	SB-B Rep. 1 Elutriate	SB-B Rep. 2 Elutriate	SB-B Rep. 3 Elutriate	RSD
Sample Size (L)	0.87	0.96	0.95		0.97	0.98	0.98	
Batch	3	3	3	3	3	3	3	3
Units	ng/L	ng/L	ng/L		ng/L	ng/L	ng/L	
2,4-DDD	11.1	13.5	17.9	24%	0.82 U	0.81 U	0.81 U	NA
2,4-DDT	5.01	4.62	5.47	8%	0.83 U	0.82 U	0.82 U	NA
4,4-DDD	42.1	48.9	75.1	31% ^(a)	1.20 U	1.18 U	1.18 U	NA
4,4-DDE	11.6	13.8	22.0	35% ^(a)	1.02 U	1.01 U	1.01 U	NA
4,4-DDT	1.15 U	1.04 U	1.05 U	NA	1.03 U	1.02 U	1.02 U	NA
Aldrin	0.85 U	0.77 U	0.78 U	NA	0.76 U	0.76 U	0.76 U	NA
alpha-Chlordane	13.4	14.9	21.1	25%	0.96 U	0.95 U	0.95 U	NA
Dieldrin	9.36	11.2	14.8	24%	1.02 U	1.01 U	1.01 U	NA
Endosulfan I/2,4'-DDE	0.97 U	0.88 U	0.89 U	NA	0.87 U	0.86 U	0.86 U	NA
Endosulfan II	4.93 J	4.73 J	6.70 J	20%	11.5 U	11.4 U	11.4 U	NA
Endosulfan sulfate	11.5	13.5	18.0	23%	8.44 U	8.35 U	8.35 U	NA
Heptachlor	0.75 U	0.68 U	0.69 U	NA	0.68 U	0.67 U	0.67 U	NA
Heptachlor epoxide	0.98 U	0.89 U	0.90 U	NA	0.88 U	0.87 U	0.87 U	NA
trans-Nonachlor	6.55	7.38	10.3	25%	0.99 U	0.98 U	0.98 U	NA
CL2(08)	1.01 U	0.91 U	0.92 U	NA	0.90 U	0.89 U	0.89 U	NA
CL3(18)	1.22 U	1.11 U	1.12 U	NA	1.10 U	1.09 U	1.09 U	NA
CL3(28)	5.32	5.88	6.89	13%	1.23 U	1.22 U	1.22 U	NA
CL4(44)	12.2	14.8	19.5	24%	1.25 U	1.24 U	1.24 U	NA
CL4(49)	7.62	7.50	11.4	25%	1.08 U	1.07 U	1.07 U	NA
CL4(52)	24.5	27.5	41.4	29%	1.27 U	1.26 U	1.26 U	NA
CL4(66)	9.78	11.8	21.5	44% ^(a)	0.98 U	0.97 U	0.97 U	NA
CL5(87)	25.0	26.6	37.1	22%	1.10 U	1.09 U	1.09 U	NA
CL5(101)	67.2	79.1	118	30%	1.11 U	1.10 U	1.10 U	NA
CL5(105)	30.6	34.2	30.0	7%	1.33 U	1.32 U	1.32 U	NA
CL5(118)	47.0	52.5	79.1	29%	1.05 U	1.04 U	1.04 U	NA
CL6(128)	8.85	10.6	14.9	27%	1.18 U	1.16 U	1.16 U	NA
CL6(138)	56.4	66.1	96.5	29%	1.41 U	1.39 U	1.39 U	NA
CL6(153)	35.9	39.0	67.7	37% ^(a)	1.35 U	1.33 U	1.33 U	NA
CL7(170)	11.3	15.7	22.3	33% ^(a)	1.21 U	1.19 U	1.19 U	NA
CL7(180)	26.2	29.5	44.9	30%	1.05 U	1.03 U	1.03 U	NA
CL7(183)	5.57	5.91	8.02	20%	1.09 U	1.08 U	1.08 U	NA
CL7(184)	1.22 U	1.11 U	1.12 U	NA	1.09 U	1.08 U	1.08 U	NA
CL7(187)	18.0	20.1	28.0	24%	1.03 U	1.02 U	1.02 U	NA
CL8(195)	3.00	3.41	5.39	32%	1.18 U	1.17 U	1.17 U	NA
CL9(206)	6.07	7.20	11.0	32%	1.16 U	1.14 U	1.14 U	NA
CL10(209)	1.28 J	1.37	1.97	25%	1.29 U	1.27 U	1.27 U	NA
<u>Surrogate Recoveries (%)</u>								
DBOFB	120	120	123	NA	102	101	98	NA
CL5(112)	71	66	58	NA	75	76	82	NA

TABLE B.7. (Contd)

Matrix	SB-A Rep. 1 Elutriate	SB-A Rep. 2 Elutriate	SB-A Rep. 3 Elutriate	RSD	BU Rep. 1 Elutriate	BU Rep. 2 Elutriate	BU Rep. 3 Elutriate	RSD
Sample Size (L)	1.00	0.995	0.995		0.95	0.96	0.98	
Batch	3	3	3	3	3	3	3	3
Units	ng/L	ng/L	ng/L		ng/L	ng/L	ng/L	
2,4-DDD	0.80 U	0.80 U	0.80 U	NA	0.84 U	0.83 U	0.81 U	NA
2,4-DDT	0.81 U	0.81 U	0.81 U	NA	0.85 U	0.84 U	0.82 U	NA
4,4-DDD	1.16 U	1.17 U	1.17 U	NA	1.22 U	1.21 U	1.18 U	NA
4,4-DDE	0.99 U	0.99 U	0.99 U	NA	1.04 U	1.03 U	1.01 U	NA
4,4-DDT	1.00 U	1.01 U	1.01 U	NA	1.05 U	1.04 U	1.02 U	NA
Aldrin	0.74 U	0.74 U	0.74 U	NA	0.78 U	0.77 U	0.76 U	NA
<i>alpha</i> -Chlordane	0.93 U	0.93 U	0.93 U	NA	0.98 U	0.97 U	0.95 U	NA
Dieldrin	0.99 U	0.99 U	0.99 U	NA	1.04 U	1.03 U	1.01 U	NA
Endosulfan I/2,4'-DDE	0.85 U	0.85 U	0.85 U	NA	0.89 U	0.88 U	0.86 U	NA
Endosulfan II	11.2 U	11.3 U	11.3 U	NA	11.8 U	11.7 U	11.4 U	NA
Endosulfan sulfate	8.19 U	8.23 U	8.23 U	NA	8.62 U	8.53 U	8.35 U	NA
Heptachlor	0.66 U	0.66 U	0.66 U	NA	0.69 U	0.68 U	0.67 U	NA
Heptachlor epoxide	0.86 U	0.86 U	0.86 U	NA	0.90 U	0.89 U	0.87 U	NA
<i>trans</i> -Nonachlor	0.97 U	0.97 U	0.97 U	NA	1.02 U	1.01 U	0.98 U	NA
CL2(08)	0.88 U	0.88 U	0.88 U	NA	0.92 U	0.91 U	0.89 U	NA
CL3(18)	1.07 U	1.07 U	1.07 U	NA	1.12 U	1.11 U	1.09 U	NA
CL3(28)	1.19 U	1.20 U	1.20 U	NA	1.26 U	1.24 U	1.22 U	NA
CL4(44)	1.22 U	1.22 U	1.22 U	NA	1.28 U	1.27 U	1.24 U	NA
CL4(49)	1.05 U	1.05 U	0.74 J	NA	1.10 U	1.09 U	1.07 U	NA
CL4(52)	1.23 U	1.24 U	2.12	NA	1.29 U	1.28 U	1.26 U	NA
CL4(66)	0.95 U	0.96 U	0.96 U	NA	1.00 U	0.99 U	0.97 U	NA
CL5(87)	1.07 U	1.07 U	1.07 U	NA	1.13 U	1.11 U	1.09 U	NA
CL5(101)	1.08 U	1.08 U	1.22	NA	1.13 U	1.12 U	1.10 U	NA
CL5(105)	1.29 U	1.30 U	1.30 U	NA	1.36 U	1.34 U	1.32 U	NA
CL5(118)	1.02 U	1.02 U	1.02 U	NA	1.07 U	1.06 U	1.04 U	NA
CL6(128)	1.14 U	1.15 U	1.15 U	NA	1.20 U	1.19 U	1.16 U	NA
CL6(138)	1.36 U	1.37 U	1.37 U	NA	1.43 U	1.42 U	1.39 U	NA
CL6(153)	1.31 U	1.31 U	1.31 U	NA	1.38 U	1.36 U	1.33 U	NA
CL7(170)	1.17 U	1.17 U	1.17 U	NA	1.23 U	1.22 U	1.19 U	NA
CL7(180)	1.01 U	1.02 U	1.02 U	NA	1.07 U	1.06 U	1.03 U	NA
CL7(183)	1.06 U	1.07 U	1.07 U	NA	1.12 U	1.11 U	1.08 U	NA
CL7(184)	1.06 U	1.07 U	1.07 U	NA	1.12 U	1.11 U	1.08 U	NA
CL7(187)	1.00 U	1.01 U	1.01 U	NA	1.06 U	1.04 U	1.02 U	NA
CL8(195)	1.15 U	1.15 U	1.15 U	NA	1.21 U	1.20 U	1.17 U	NA
CL9(206)	1.12 U	1.13 U	1.13 U	NA	1.18 U	1.17 U	1.14 U	NA
CL10(209)	1.25 U	1.25 U	1.25 U	NA	1.31 U	1.30 U	1.27 U	NA
Surrogate Recoveries (%)								
DBOFB	101	94	98	NA	96	88	95	NA
CL5(112)	75	80	77	NA	74	75	81	NA

TABLE B.7. (Contd)

Matrix	EC-B Rep. 1			EC-B Rep. 2			EC-B Rep. 3			RSD	EC-A Rep. 1			EC-A Rep. 2			RSD
	Elutriate	Elutriate	Elutriate	Elutriate	Elutriate	Elutriate	Elutriate	Elutriate	Elutriate		ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	
Sample Size (L)	0.96	0.98	0.50				0.90		0.91		0.92						
Batch	3	3	3	3			4		4		4						4
Units	ng/L	ng/L	ng/L	ng/L			ng/L		ng/L		ng/L						
2,4-DDD	3.30	1.82	3.07	29%			2.33		3.20		2.49						17%
2,4-DDT	0.912	0.647 J	0.925 J	19%			0.90 U		0.89 U		0.88 U						NA
4,4-DDD	12.2	6.58	12.2	32%			5.21		4.06		4.49						13%
4,4-DDE	6.27	2.65	6.55	42%			7.99		7.13		6.98						7%
4,4-DDT	1.04 U	1.02 U	2.00 U	NA			1.11 U		1.10 U		1.09 U						NA
Aldrin	14.1	14.9	22.5	27%			0.82 U		0.81 U		0.81 U						NA
alpha-Chlordane	10.0	7.93	13.2	26%			1.43		1.24		1.38						7%
Dieldrin	3.25	2.87	3.80	14%			2.36		2.53		1.66						21%
Endosulfan I/2,4'-DDE	0.88 U	0.86 U	1.69 U	NA			0.94 U		0.93 U		0.92 U						NA
Endosulfan II	11.7 U	11.4 U	22.4 U	NA			12.4 U		12.3 U		12.2 U						NA
Endosulfan sulfate	8.53 U	8.35 U	16.4 U	NA			9.10 U		9.00 U		8.95 U						NA
Heptachlor	0.68 U	0.67 U	1.31 U	NA			0.73 U		0.72 U		0.72 U						NA
Heptachlor epoxide	0.89 U	0.87 U	1.71 U	NA			0.95 U		0.94 U		0.93 U						NA
trans-Nonachlor	6.11	3.94	7.17	29%			0.86 J		0.95 J		0.77 J						10%
CL2(08)	0.91 U	0.89 U	1.75 U	NA			4.26		3.54		4.44						12%
CL3(18)	1.11 U	1.09 U	2.13 U	NA			3.68		4.90		2.30						36%
CL3(28)	6.66	4.10	15.3	68%			9.82		6.22		6.74						26%
CL4(44)	7.88	3.73	12.4	54%			7.46		7.71		5.79						15%
CL4(49)	9.33	4.65	8.62	33%			4.76		3.71		2.83						26%
CL4(52)	39.1	31.06	66.5	41% ^(a)			11.6		10.5		12.5						9%
CL4(66)	19.9	20.11	17.8	7%			35.9		40.5		33.6						10%
CL5(87)	3.13	2.24	4.94	40%			1.82		1.70		1.50						10%
CL5(101)	6.84	5.66	11.6	39%			3.93		3.82		3.90						1%
CL5(105)	1.94	1.81	1.88 J	3%			1.42 J		2.00		1.28 J						24%
CL5(118)	7.55	4.74	9.71	34%			4.42		3.69		3.70						11%
CL6(128)	1.97	1.69	2.54	21%			1.27 U		1.25 U		1.25 U						NA
CL6(138)	9.97	2.83	11.1	56%			5.12		4.29		5.01						9%
CL6(153)	5.18	3.55	7.32	35%			3.42		3.17		2.66						13%
CL7(170)	1.22 U	1.19 U	2.34 U	NA			2.60		2.09		2.19						12%
CL7(180)	1.06 U	1.03 U	2.03 U	NA			2.60		2.08		2.07						13%
CL7(183)	1.39	0.72 J	2.09 J	NA			0.71 J		0.61 J		0.60 J						9%
CL7(184)	1.11 U	1.08 U	2.12 U	NA			1.18 U		1.17 U		1.16 U						NA
CL7(187)	1.04 U	1.02 U	2.01 U	NA			1.79		1.10 U		1.10 U						NA
CL8(195)	1.20 U	1.17 U	2.30 U	NA			0.41 J		0.43 J		0.69 J						31%
CL9(206)	1.17 U	1.14 U	2.24 U	NA			0.87 J		0.61 J		0.61 J						21%
CL10(209)	1.30 U	1.27 U	2.49 U	NA			0.86 J		0.93 J		0.92 J						5%
<u>Surrogate Recoveries (%)</u>																	
DBOFB	111	115	113	NA			70		70		64						NA
CL5(112)	72	72	72	NA			56		63		53						NA

TABLE B.7. (Contd)

Matrix Sample Size (L) Batch Units	HU-A Rep 1	HU-A Rep 2	HU-A Rep 3	RSD	HU-D Rep. 1	HU-D Rep. 2	HU-D Rep. 3	RSD
	Elutriate 0.98	Elutriate 0.97	Elutriate 0.50		Elutriate 0.98	Elutriate 0.96	Elutriate 0.96	
	4 ng/L	4 ng/L	4 ng/L		4 ng/L	4 ng/L	4 ng/L	4 ng/L
2,4-DDD	16.6	8.38	9.81	38% ^(e)	3.94	6.65	8.29	35%
2,4-DDT	0.83 U	0.83 U	1.62 U	NA	0.82 U	0.84 U	0.84 U	NA
4,4-DDD	13.4	8.49	9.54	25%	3.50	2.37	5.01	36%
4,4-DDE	52.1	28.4	26.8	40% ^(e)	9.47	5.05	9.47	32%
4,4-DDT	1.03 U	1.03 U	2.00 U	NA	1.02 U	1.04 U	1.04 U	NA
Aldrin	0.76 U	0.76 U	1.48 U	NA	0.76 U	0.77 U	0.77 U	NA
alpha-Chlordane	3.45	1.81	2.06	36%	1.27	0.27 J	1.56	66%
Dieldrin	5.64	4.31	4.72	14%	5.14	2.33	4.13	37%
Endosulfan I/2,4'-DDE	17.0	10.4	10.3	31% ^(e)	0.86 U	0.88 U	0.88 U	NA
Endosulfan II	11.5 U	11.5 U	22.4 U	NA	11.4 U	1.70 J	11.7 U	NA
Endosulfan sulfate	8.40 U	8.44 U	16.4 U	NA	5.37 J	8.53 U	2.88 J	NA
Heptachlor	0.67 U	0.68 U	1.31 U	NA	0.67 U	0.68 U	0.68 U	NA
Heptachlor epoxide	3.25	1.59	0.47 J	79%	0.87 U	0.89 U	0.89 U	NA
trans-Nonachlor	0.85 J	0.83 J	1.20 J	21%	0.65 J	1.01 U	1.00 J	NA
CL2(08)	1.75	1.99	1.75 U	NA	0.89 U	0.91 U	0.91 U	NA
CL3(18)	16.0	9.25	7.52	41%	18.0	8.50	14.9	35% ^(e)
CL3(28)	19.9	11.3	11.3	35% ^(e)	10.7	6.75	11.1	25%
CL4(44)	17.2	11.9	13.0	20%	14.3	8.22	15.0	30%
CL4(49)	16.8	11.0	9.72	30%	13.5	6.39	12.9	36%
CL4(52)	23.4	15.6	17.5	22%	16.9	9.44	19.1	34% ^(e)
CL4(66)	72.7	48.4	59.9	20%	44.1	31.6	49.3	22%
CL5(87)	8.62	5.34	5.12	31%	4.08	2.38	4.89	34%
CL5(101)	21.9	13.6	14.0	28%	9.57	5.72	11.9	34%
CL5(105)	3.56	2.51	2.31 J	24%	1.98	1.36	2.70	33%
CL5(118)	14.9	8.02	8.52	37%	7.57	4.00	8.63	36%
CL6(128)	5.38	3.40	4.25	23%	2.32	0.84 J	2.46	48%
CL6(138)	24.5	14.4	15.1	31% ^(e)	10.3	1.42 U	1.42 U	NA
CL6(153)	19.2	10.3	10.3	39% ^(e)	8.70	4.21	9.28	37%
CL7(170)	7.88	4.82	5.21	28%	3.55	1.52	3.13	39%
CL7(180)	17.4	9.73	8.42	41% ^(e)	5.78	2.58	5.98	40%
CL7(183)	4.43	2.61	3.39	26%	1.89	0.78 J	1.57	41%
CL7(184)	1.09 U	1.09 U	2.12 U	NA	1.08 U	1.11 U	1.11 U	NA
CL7(187)	1.03 U	1.03 U	2.01 U	NA	1.02 U	1.04 U	1.04 U	NA
CL8(195)	6.76	3.81	3.11	42%	2.53	1.07 J	2.55	41%
CL9(206)	16.5	8.70	7.24	46%	5.83	2.19	5.68	45%
CL10(209)	12.8	7.77	6.82	35%	3.50	1.54	3.60	40%
<u>Surrogate Recoveries (%)</u>								
DBOFB	73	64	83	NA	89	70	91	NA
CL5(112)	64	56	71	NA	72	69	80	NA

TABLE B.7. (Contd)

Matrix Sample Size (L) Batch Units	HU-B Rep. 1	HU-B Rep. 2	HU-B Rep. 3	RSD	HU-C Rep. 1	HU-C Rep. 2	HU-C Rep. 3	RSD
	Elutriate 0.98 4 ng/L	Elutriate 0.96 4 ng/L	Elutriate 0.96 4 ng/L	Elutriate 4 ng/L	Elutriate 0.96 4 ng/L	Elutriate 0.98 4 ng/L	Elutriate 1.00 4 ng/L	
2,4-DDD	10.3	5.43	6.47	35%	6.49	5.83	5.59	8%
2,4-DDT	0.83 U	0.84 U	0.84 U	NA	0.84 U	0.82 U	0.81 U	NA
4,4-DDD	9.51	4.87	6.98	33%	7.70	6.14	7.89	13%
4,4-DDE	32.2	11.2	14.1	59% ^(a)	26.3	20.6	20.0	16%
4,4-DDT	1.03 U	1.04 U	1.04 U	NA	1.04 U	1.02 U	1.01 U	NA
Aldrin	0.76 U	0.77 U	0.77 U	NA	0.77 U	0.76 U	0.74 U	NA
alpha-Chlordane	3.67	1.31	0.91 J	76%	3.65	3.50	2.79	14%
Dieldrin	6.17	2.38	3.03	53%	5.78	5.50	5.62	2%
Endosulfan I/2,4'-DDE	0.87 U	0.88 U	0.88 U	NA	0.88 U	0.86 U	0.85 U	NA
Endosulfan II	11.5 U	11.7 U	11.7 U	NA	11.7 U	11.4 U	11.3 U	NA
Endosulfan sulfate	10.5	4.68 J	5.43 J	46%	13.5	10.0	10.0	18%
Heptachlor	0.67 U	0.68 U	0.68 U	NA	0.68 U	0.67 U	0.66 U	NA
Heptachlor epoxide	3.35	0.82 J	0.79 J	89%	2.95	3.11	2.72	7%
trans-Nonachlor	1.46	0.81 J	0.88 J	34%	1.39	1.45	1.55	6%
CL2(08)	3.58	4.44	3.85	11%	3.77	3.66	0.88 U	NA
CL3(18)	26.6	10.5	12.0	55% ^(a)	25.1	21.7	16.6	20%
CL3(28)	31.2	11.2	12.1	62% ^(a)	28.6	22.9	22.7	14%
CL4(44)	28.6	11.2	13.7	53% ^(a)	24.9	23.5	21.1	8%
CL4(49)	29.5	9.50	12.0	64% ^(a)	24.9	23.1	21.4	8%
CL4(52)	37.2	18.9	17.8	44% ^(a)	30.3	30.2	27.4	6%
CL4(66)	65.7	33.4	47.5	33% ^(a)	46.2	38.8	20.6	37% ^(a)
CL5(87)	10.2	3.64	5.01	55%	9.99	7.73	7.81	15%
CL5(101)	24.0	10.0	11.5	51% ^(a)	22.7	20.0	18.2	11%
CL5(105)	5.17	2.34	2.37	49%	5.82	4.17	4.82	17%
CL5(118)	1.04 U	7.03	9.63	NA	20.3	15.5	14.7	18%
CL6(128)	4.14	2.15	2.32	38%	3.82	2.92	3.32	13%
CL6(138)	25.2	9.86	12.90	51% ^(a)	27.1	21.7	20.8	15%
CL6(153)	21.3	7.50	10.38	56%	21.2	16.4	16.2	16%
CL7(170)	8.05	3.34	3.80	51%	7.62	5.93	5.75	16%
CL7(180)	16.0	5.53	7.56	57%	14.6	10.8	11.1	17%
CL7(183)	3.88	1.67	2.05	47%	3.94	3.14	3.74	12%
CL7(184)	1.09 U	1.11 U	1.11 U	NA	1.11 U	1.08 U	1.07 U	NA
CL7(187)	1.03 U	1.04 U	1.04 U	NA	1.04 U	1.02 U	1.01 U	NA
CL8(195)	7.19	2.09	2.80	69%	3.89	2.99	3.36	13%
CL9(206)	16.7	4.82	6.65	68%	7.23	4.95	5.10	22%
CL10(209)	9.43	3.60	4.09	57%	6.18	4.99	5.09	12%
<u>Surrogate Recoveries (%)</u>								
DBOFB	79	70	73	NA	74	77	57	NA
CL5(112)	64	63	68	NA	68	71	56	NA

TABLE B.7. (Contd)

Matrix	C-SB Rep. 1	C-SB Rep. 2	C-SB Rep. 3	RSD
	Site Water	Site Water	Site Water	
Sample Size (L)	1.02	1.02	1.02	
Batch	4	4	4	4
Units	ng/L	ng/L	ng/L	
2,4-DDD	0.78 U	0.78 U	0.78 U	NA
2,4-DDT	0.80 U	0.80 U	0.79 U	NA
4,4-DDD	1.14 U	1.14 U	1.14 U	NA
4,4-DDE	0.97 U	0.97 U	0.97 U	NA
4,4-DDT	0.99 U	0.99 U	0.98 U	NA
Aldrin	0.73 U	0.73 U	0.73 U	NA
<i>alpha</i> -Chlordane	0.91 U	0.91 U	0.91 U	NA
Dieldrin	0.97 U	0.97 U	0.97 U	NA
Endosulfan I/2,4'-DDE	0.83 U	0.83 U	0.83 U	NA
Endosulfan II	11.0 U	11.0 U	11.0 U	NA
Endosulfan sulfate	8.07 U	8.07 U	8.03 U	NA
Heptachlor	2.41	0.65 U	0.64 U	NA
Heptachlor epoxide	0.84 U	0.84 U	0.84 U	NA
<i>trans</i> -Nonachlor	0.95 U	0.95 U	0.95 U	NA
CL2(08)	0.86 U	0.86 U	0.86 U	NA
CL3(18)	1.05 U	1.05 U	1.04 U	NA
CL3(28)	1.18 U	1.18 U	1.17 U	NA
CL4(44)	1.20 U	1.20 U	1.19 U	NA
CL4(49)	1.03 U	1.03 U	1.03 U	NA
CL4(52)	1.21 U	1.21 U	1.21 U	NA
CL4(66)	0.94 U	0.94 U	0.94 U	NA
CL5(87)	1.05 U	1.05 U	1.05 U	NA
CL5(101)	1.06 U	1.06 U	1.06 U	NA
CL5(105)	1.27 U	1.27 U	1.27 U	NA
CL5(118)	1.00 U	1.00 U	1.00 U	NA
CL6(128)	1.12 U	1.12 U	1.12 U	NA
CL6(138)	1.34 U	1.34 U	1.34 U	NA
CL6(153)	1.29 U	1.29 U	1.28 U	NA
CL7(170)	0.30 J	0.14 J	0.13 J	48%
CL7(180)	1.00 U	1.00 U	0.99 U	NA
CL7(183)	1.05 U	1.05 U	1.04 U	NA
CL7(184)	0.42 J	1.05 U	1.04 U	NA
CL7(187)	0.99 U	0.99 U	0.98 U	NA
CL8(195)	1.13 U	1.13 U	1.13 U	NA
CL9(206)	1.10 U	1.10 U	1.10 U	NA
CL10(209)	1.23 U	1.23 U	1.22 U	NA
<u>Surrogate Recoveries (%)</u>				
DBOFB	79	94	84	NA
CL5(112)	75	77	74	NA

(a) % RSD Percent relative standard deviation.

(b) U Undetected at or above concentration shown.

(c) NA Not applicable.

(d) J Concentration estimated; analyte detected below method detection limit (MDL) and above instrument detection limit (IDL).

(e) Outside quality control criteria ($\leq 30\%$ for replicate analysis) for analytes >10 times the achieved MDL.

TABLE B.8 Quality Control Data (Method Detection Limit Verification) for Pesticides and PCBs in Site Water and Elutriate

Sample Matrix	Sample Size (L)	Sequim Bay 1 Control Water	Sequim Bay 2 Control Water	Standard Deviation	Detection Limit						
	Units	1.00 ng/L	1.00 ng/L	1.01 ng/L	0.91 ng/L	1.00 ng/L	1.01 ng/L	0.96 ng/L	1.01 ng/L	STD (n-1)	MDL (a) (ng/L)
2,4-DDD	NS (a)	NS	NA (b)	NA							
2,4-DDT	NS	9.85	9.95	9.66	11.69	9.90	11.95	10.95	12.23	1.06	3.18
4,4-DDD	9.14	9.34	8.90	9.63	8.78	8.73	9.09	9.75	0.38	1.13	2.43
4,4-DDE	10.70	10.49	10.49	12.00	10.65	11.02	11.14	12.74	0.81	1.33	3.25
4,4-DDT	11.33	11.17	11.18	12.03	10.94	10.51	12.02	11.09	0.52	1.55	2.30
Aldrin	9.26	9.72	9.67	10.49	9.22	9.25	9.90	11.44	0.77	1.98	2.42
<i>alpha</i> -Chlordane	9.31	9.21	8.87	9.62	8.65	8.61	8.95	9.84	0.44	1.33	3.09
Dieldrin	9.99	10.67	10.31	12.02	10.20	10.70	10.91	13.20	1.09	2.75	3.75
Endosulfan 1/2,4'-DDE	10.82	10.58	10.45	11.40	10.14	10.30	10.39	11.81	0.58	1.51	2.34
Endosulfan II	10.07	9.79	9.74	10.68	9.58	9.73	9.81	10.96	0.50	1.96	2.34
Endosulfan sulfate	8.85	8.99	8.94	9.80	8.71	8.42	9.38	10.43	0.65	1.75	2.30
Heptachlor	9.30	9.74	9.61	10.27	9.26	9.52	10.01	11.66	0.78	2.34	3.09
Heptachlor epoxide	NS	NS	NS	NS	NS	NS	NS	NS	NA	NA	NA
<i>trans</i> -Nonachlor	6.04	7.39	6.94	6.50	6.63	6.21	6.63	7.03	0.44	1.32	2.30
CL2(08)	7.71	9.10	8.43	8.97	7.60	10.80	9.45	10.69	1.17	3.50	4.92
CL3(18)	8.32	8.86	8.78	9.75	8.51	7.95	8.83	9.78	0.64	2.34	3.09
CL3(28)	9.38	9.27	9.32	10.59	9.01	8.51	10.03	10.69	0.77	2.30	3.09
CL4(44)	NS	NS	NS	NS	NS	NS	NS	NS	NA	NA	NA
CL4(49)	8.75	8.25	8.82	9.49	8.31	8.14	9.19	9.64	0.57	1.72	2.30
CL4(52)	8.87	9.63	9.58	10.32	9.11	9.67	9.87	11.11	0.70	2.09	2.30
CL4(66)	NS	NS	NS	NS	NS	NS	NS	NS	NA	NA	NA
CL5(87)	9.26	9.82	10.00	10.08	9.12	8.72	9.67	11.19	0.75	2.25	2.30
CL5(101)	9.57	9.50	9.64	10.13	9.34	9.04	9.62	10.35	0.42	1.25	2.30
CL5(105)	9.68	10.08	9.64	10.75	9.65	9.64	9.95	10.85	0.50	1.50	2.30
CL5(118)	9.68	9.81	8.92	10.19	9.22	9.78	8.95	10.19	0.51	1.52	2.30
CL6(128)	9.78	9.78	9.80	11.14	9.52	10.01	11.57	11.57	0.78	2.35	2.30
CL6(138)	10.59	10.84	10.46	11.93	10.36	10.62	10.56	12.00	0.66	1.98	2.30
CL6(153)	9.15	9.24	9.31	10.07	9.30	9.05	9.50	9.86	0.36	1.07	2.30
CL7(170)	9.42	9.40	9.43	10.11	9.01	9.37	9.36	10.57	0.50	1.50	2.30
CL7(180)	NS	NS	NS	NS	NS	NS	NS	NS	NA	NA	NA
CL7(183)	NS	NS	NS	NS	NS	NS	NS	NS	NA	NA	NA
CL7(184)	9.43	9.34	9.24	10.22	9.03	9.21	9.36	9.69	0.37	1.11	2.30
CL7(187)	8.36	8.73	8.33	9.19	8.27	8.21	8.57	8.99	0.36	1.09	2.30
CL8(195)	7.86	7.65	7.46	8.03	7.26	7.26	7.55	8.30	0.37	1.11	2.30
CL9(206)	8.85	8.63	8.49	8.96	8.02	8.02	8.28	9.14	0.42	1.26	2.30
CL10(209)											
Surrogate Recoveries (%)		85	89	84	82	81	81	82	71	88	71
DBOFB		86	88	85	81	82	79	84	84	84	84
CL5(112)											

(a) MDL Method Detection Limit, calculated as Students-t (2.998 for 8 replicates) x standard deviation.
 (b) NS Not spiked.
 (c) NA Not applicable.

Appendix C

Water-Column Toxicity Test Data for Buttermilk Channel Project

TABLE C.1. Test Results for *M. beryllina* 96-Hour Water Column Toxicity Test

Sediment Treatment	SPP Percent Concentration	Replicate	Live ^(a)	Dead or Missing	Proportion Surviving	Proportion Surviving	Mean Standard Deviation
COMP BU	0	1	10	0	1.00		
COMP BU	0	2	10	0	1.00		
COMP BU	0	3	10	0	1.00		
COMP BU	0	4	10	0	1.00		
COMP BU	0	5	9	1	0.90	0.98	0.04
COMP BU	10	1	10	0	1.00		
COMP BU	10	2	9	1	0.90		
COMP BU	10	3	10	0	1.00		
COMP BU	10	4	10	0	1.00		
COMP BU	10	5	10	0	1.00	0.98	0.04
COMP BU	50	1	0	10	0.00		
COMP BU	50	2	0	10	0.00		
COMP BU	50	3	0	10	0.00		
COMP BU	50	4	0	10	0.00		
COMP BU	50	5	0	10	0.00	0.00	0.00
COMP BU	100	1	0	10	0.00		
COMP BU	100	2	0	10	0.00		
COMP BU	100	3	0	10	0.00		
COMP BU	100	4	0	10	0.00		
COMP BU	100	5	0	10	0.00	0.00	0.00

(a) Survival based on initial exposure of 10 organisms per replicate.

TABLE C.2. Water Quality Summary for *M. beryllina* 96-Hour Water Column Toxicity Test

Sediment Treatment	Concentration Percent SPP	Temperature (°C)				Dissolved Oxygen (mg/L)		Salinity (o/oo)	
		Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range		18.0	22.0	7.30	8.30	4.0	NA ^(a)	28.0	32.0
COMP BU	0	18.3	19.5	7.92	8.10	7.1	8.7	32.0	32.0
COMP BU	10	18.3	19.5	7.85	8.23	7.2	8.7	31.0	32.0
COMP BU	50	18.2	19.5	7.66	8.39 ^(b)	7.2	8.8	30.5	31.5
COMP BU	100	18.5	19.5	7.57	8.45 ^(b)	6.5	7.3	30.0	30.5

(a) NA Not applicable.

(b) Data point out of range.

TABLE C.3. Test Results for *M. beryllina* 96-Hour Copper Reference Toxicant Test

Copper Concentration (µg/L Cu)	Replicate	Live ^(a)	Dead or Missing	Proportion Surviving	Mean Proportion Surviving		Standard Deviation
					Proportion Surviving	Standard Deviation	
0	1	10	0	1.00			
0	2	10	0	1.00			
0	3	10	0	1.00	1.00	0.00	
16	1	10	0	1.00			
16	2	10	0	1.00			
16	3	10	0	1.00	1.00	0.00	
64	1	10	0	1.00			
64	2	8	2	0.80			
64	3	8	2	0.80	0.87	0.12	
160	1	1	9	0.10			
160	2	1	9	0.10			
160	3	2	8	0.20	0.13	0.06	
400	1	0	10	0.00			
400	2	0	10	0.00			
400	3	0	10	0.00	0.00	0.00	

(a) Survival based on initial exposure of 10 organisms per replicate.

TABLE C.4. Water Quality Summary for *M. beryllina* 96-Hour Copper Reference Toxicant Test

Copper Concentration (µg/L)	Temperature (°C)		pH		Dissolved Oxygen (mg/L)		Salinity (o/oo)	
	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range	18.0	22.0	7.30	8.30	4.0	NA ^(a)	28.0	32.0
0	18.5	19.3	7.90	8.09	7.1	7.9	31.0	32.0
16	18.6	19.2	7.98	8.09	7.3	8.0	31.0	32.0
64	18.5	19.2	7.91	8.07	7.4	8.1	31.0	32.0
160	18.6	19.3	7.95	8.08	7.4	8.1	31.0	32.0
400	18.7	19.4	7.85	8.03	7.3	7.6	31.0	31.5

(a) NA Not applicable.

TABLE C.5. Test Results for *M. bahia* 96-Hour Water Column Toxicity Test

Sediment Treatment	Concentration (Percent SPP)	Replicate	Live(a)	Dead or Missing	Proportion Surviving	Mean Proportion Surviving	Standard Deviation
COMP BU	0	1	10	0	1.00		
COMP BU	0	2	10	0	1.00		
COMP BU	0	3	9	1	0.90		
COMP BU	0	4	10	0	1.00		
COMP BU	0	5	9	1	0.90	0.96	0.05
COMP BU	10	1	9	1	0.90		
COMP BU	10	2	9	1	0.90		
COMP BU	10	3	10	0	1.00		
COMP BU	10	4	10	0	1.00		
COMP BU	10	5	10	0	1.00	0.96	0.05
COMP BU	50	1	8	2	0.80		
COMP BU	50	2	10	0	1.00		
COMP BU	50	3	9	1	0.90		
COMP BU	50	4	10	0	1.00		
COMP BU	50	5	10	0	1.00	0.94	0.09
COMP BU	100	1	0	10	0.00		
COMP BU	100	2	0	10	0.00		
COMP BU	100	3	0	10	0.00		
COMP BU	100	4	0	10	0.00		
COMP BU	100	5	0	10	0.00	0.00	0.00

(a) Survival based on initial exposure of 10 organisms per replicate.

TABLE C.6. Water Quality Summary for *M. bahia* 96-Hour Water Column Toxicity Test

Sediment Treatment	Concentration (Percent SPP)	Temperature (°C)				pH		Dissolved Oxygen (mg/L)		Salinity (o/oo)	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range		18.0	22.0	7.30	8.30	3.0	NA ^(a)	28.0	32.0		
COMP BU	0	18.7	19.3	7.88	8.13	7.0	8.2	31.5	32.0		
COMP BU	10	18.7	19.2	7.82	8.25	6.8	8.2	31.0	32.0		
COMP BU	50	18.7	19.1	7.74	8.48 ^(b)	6.5	8.1	30.5	32.0		
COMP BU	100	18.7	18.9	7.66	8.58 ^(b)	6.7	8.2	30.5	31.0		

(a) NA Not applicable.

(b) Data point out of range.

TABLE C.7. Test Results for *M. bahia* 96-Hour Copper Reference Toxicant Test

Copper Concentration (µg/L)	Replicate	Live ^(a)	Dead or Missing	Proportion Surviving	Mean Proportion Surviving	Standard Deviation
0	1	9	1	0.90	0.97	0.06
	2	10	0	1.00		
	3	10	0	1.00		
50	1	10	0	1.00	0.97	0.06
	2	9	1	0.90		
	3	10	0	1.00		
100	1	8	2	0.80	0.83	0.06
	2	9	1	0.90		
	3	8	2	0.80		
150	1	8	2	0.80	0.73	0.06
	2	7	3	0.70		
	3	7	3	0.70		
200	1	5	5	0.50	0.53	0.06
	2	5	5	0.50		
	3	6	4	0.60		

(a) Survival based on initial exposure of 10 organisms per replicate.

TABLE C.8. Water Quality Summary for *M. bahia* 96-Hour Copper Reference Toxicant Tests

Copper Concentration (µg/L)	Temperature (°C)		pH		Dissolved Oxygen (mg/L)		Salinity (o/oo)	
	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range	18.0	22.0	7.30	8.30	4.0	NA ^(a)	28.0	32.0
0	19.3	19.5	7.58	8.08	5.8	8.1	30.5	32.0
50	19.2	19.6	7.81	8.05	7.1	8.0	30.5	32.0
100	19.2	19.5	7.81	8.09	7.0	7.9	30.5	32.0
150	19.2	19.6	7.83	8.08	7.1	7.9	30.5	32.0
200	19.2	19.5	7.85	8.06	7.3	8.0	30.5	32.0

(a) NA Not applicable.

TABLE C.9. Test Results for All Replicates in 48-Hour Larval *M. galloprovincialis* Water-Column Toxicity Test

Sediment Treatment	SPP	Concentration	Replicate	Mean Stocking Density	Number	Normal	Abnormal	Other	Proportion Normal ^(a)	Mean	Proportion Number Surviving	Proportion Surviving ^(a)	Proportion Standard Deviation ^(b)	Mean
COMP BU	0%	1	261	204	0	18	0	78		222		0.85		
COMP BU	0%	2	261	310	0	3	0	100		313		1.00		
COMP BU	0%	3	261	243	0	11	0	93		254		0.97		
COMP BU	0%	4	261	244	1	8	0	93		253		0.97		
COMP BU	0%	5	261	301	0	13	0	100		314		1.00		0.06
COMP BU	10%	1	261	241	1	14	0	92		256		0.98		
COMP BU	10%	2	261	254	0	11	0	97		265		1.00		
COMP BU	10%	3	261	240	6	20	0	92		266		1.00		
COMP BU	10%	4	261	264	0	7	0	100		271		1.00		
COMP BU	10%	5	261	238	0	17	0	91		255		0.98		0.01
COMP BU	50%	1	261	1	0	245	0	0		246		0.94		
COMP BU	50%	2	261	5	0	221	0	02		226		0.87		
COMP BU	50%	3	261	2	0	221	0	01		223		0.85		
COMP BU	50%	4	261	0	0	97	0	00		97		0.37		
COMP BU	50%	5	261	11	0	242	0	04		0.01	253	0.97	0.80	0.24
COMP BU	100%	1	261	0	0	95	0	00		95		0.36		
COMP BU	100%	2	261	0	0	35	0	00		35		0.13		
COMP BU	100%	3	261	0	0	153	0	00		153		0.59		
COMP BU	100%	4	261	2	0	67	0	01		69		0.26		
COMP BU	100%	5	261	1	0	54	0	00		55		0.21		0.31
													0.17	

(a) When number normal or number surviving exceeded the stocking density, a proportion normal and/or proportion survival of 1.00 was used for mean calculations and statistical analysis.

(b) Standard deviation is based on proportion surviving.

TABLE C.10. Water Quality Summary for *M. galloprovincialis* 48-Hour Water Column Toxicity Test

Sediment Treatment	Percent Concentration	Temperature (°C)				Dissolved Oxygen (mg/L)		Salinity (o/oo)	
		Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range									
COMP BU	0	14.0	18.0	7.30	8.30	5.0	NA ^(a)	28.0	32.0
COMP BU	10	16.0	16.3	7.98	8.20	7.6	8.6	30.5	30.5
COMP BU	50	15.9	16.2	7.90	8.21	7.6	8.5	30.5	30.5
COMP BU	50	15.8	16.3	7.73	8.32 ^(b)	7.6	8.1	30.0	30.5
COMP BU	100	15.8	16.2	7.60	8.40 ^(b)	6.5	8.2	29.5	30.5

(a) NA Not applicable.

(b) Data point out of range.

TABLE C.11. Test Results for Larval *M. galloprovincialis* 48-Hour Copper Reference Toxicant Tests

Copper Concentration (µg/L)	Replicate	Mean Stocking Density	Number Normal	Number Abnormal	Other	Normal ^(a)	Proportion Normal	Mean	Proportion Normal	Number Surviving	Proportion Surviving ^(a)	Mean Proportion Surviving	Standard Deviation ^(b)
0.00	1	285	217	0	2	0.76				219	0.77		
0.00	2	285	252	1	15	0.88				268	0.94		
0.00	3	285	232	1	13	0.81				246	0.86		
0.00	4	285	194	0	10	0.68				204	0.72		
0.00	5	285	249	1	14	0.87	0.80			264	0.93	0.84	0.10
1.00	1	285	223	0	19	0.78				242	0.85		
1.00	2	285	248	0	10	0.87				258	0.91		
1.00	3	285	265	2	9	0.93	0.86			276	0.97	0.91	0.06
4.00	1	285	0	0	7	0.00				7	0.02		
4.00	2	285	268	1	10	0.94				279	0.98		
4.00	3	285	264	1	14	0.93	0.62			279	0.98	0.66	0.55
16.00	1	285	16	38	160	0.06				214	0.75		
16.00	2	285	0	13	309	0.00				322	1.00		
16.00	3	285	0	0	242	0.00	0.02			242	0.85	0.87	0.13
64.00	1	285	2	0	1	0.01				3	0.01		
64.00	2	285	254	0	11	0.89				265	0.93		
64.00	3	285	4	0	4	0.01	0.30			8	0.03	0.32	0.53

(a) When number normal or number surviving exceeded the stocking density, a proportion normal and/or proportion survival of 1.00 was used for mean calculations and statistical analysis.

(b) Standard deviation is based on proportion surviving.

TABLE C.12. Water Quality Summary for *M. galloprovincialis* 48-Hour Copper Reference Toxicant Tests

Copper Concentration (µg/L)	Temperature (°C)		pH		Dissolved Oxygen (mg/L)		Salinity (o/oo)	
	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range	14.0	18.0	7.30	8.30	5.0	NA ^(a)	28.0	32.0
0.00	15.9	16.5	8.03	8.14	7.9	8.2	30.5	31.5
1.00	16.0	16.4	8.00	8.15	7.5	8.2	30.5	31.0
4.00	16.0	16.3	7.93	8.06	7.6	8.1	30.5	31.5
16.0	15.8	16.4	8.03	8.15	7.5	8.2	30.5	32.0
64.0	15.9	16.4	8.01	8.18	7.4	8.2	30.5	31.5

(a) NA Not applicable.

Appendix D

Benthic Acute Toxicity Test Data for Buttermilk Channel Project

TABLE D.1. Test Results for *A. abdita* 10-Day, Static Renewal, Benthic Acute Toxicity Test

Sediment Treatment	Replicate	Live ^(a)	Dead or Missing	Proportion Surviving	Mean Proportion Surviving	Standard Deviation
COMP BU	1	20	0	1.00		
COMP BU	2	16	4	0.80		
COMP BU	3	19	1	0.95		
COMP BU	4	19	1	0.95		
COMP BU	5	18	2	0.90	0.92	0.08
R-MUD	1	17	3	0.85		
R-MUD	2	19	1	0.95		
R-MUD	3	18	2	0.90		
R-MUD	4	19	1	0.95		
R-MUD	5	20	0	1.00	0.93	0.06
C-AM	1	20	0	1.00		
C-AM	2	20	0	1.00		
C-AM	3	19	1	0.95		
C-AM	4	18	2	0.90		
C-AM	5	20	0	1.00	0.97	0.04

(a) Survival based on initial exposure of 20 organisms per replicate.

TABLE D.2. Water Quality Summary for *A. abdita* 10-Day Static Renewal, Benthic Acute Toxicity Test

Sediment Treatment	Temperature (°C)		pH		Dissolved Oxygen (mg/L)		Salinity (o/oo)		Total Ammonia ^(a) (mg/L)	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range										
Range	18.0	22.0	7.30	8.30	5.0	NA ^(b)	28.0	32.0	NA	30.0
COMP BU	17.8 ^(c)	19.4	7.92	8.45 ^(c)	6.9	8.3	30.5	32.0	<1.00	7.13
R-MUD	17.9 ^(c)	19.3	7.93	8.14	7.3	8.3	30.5	32.0	<1.00	<1.00
C-AM	17.9 ^(c)	19.3	7.80	8.16	6.8	8.2	30.0	31.5	<1.00	1.30

(a) Total ammonia measured in overlying water.

(b) NA Not applicable.

(c) Data point out of range.

TABLE D.3. Water Quality Measurements of Porewater for *A. abdita* 10-Day, Static Renewal, Benthic Acute Toxicity Test

Sediment Treatment	Ammonia (mg/L)	Temperature (°C)	pH	Dissolved Oxygen (mg/L)	Salinity (o/oo)
Day 0					
COMP BU	24.9	19.1	8.07	8.1	31.0
R-MUD	0.737	19.2	8.07	7.9	31.5
C-AM	7.12	19.3	8.03	8.1	31.0
Day 10					
COMP BU	7.39	18.8	8.28	8.2	31.0
R-MUD	ND ^(a)	18.9	8.01	8.2	31.0
C-AM	4.61	18.4	8.12	8.1	30.0

(a) ND No data.

TABLE D.4. Test Results for *A. abdita* 96-Hour Cadmium Reference Toxicant Test

Cadmium Concentration (mg/L)	Replicate	Live ^(a)	Dead or Missing	Proportion Surviving	Mean	Standard Deviation
					Proportion Surviving	
0.00	1	20	0	1.00		
0.00	2	19	1	0.95		
0.00	3	20	0	1.00	0.98	0.03
0.25	1	13	7	0.65		
0.25	2	13	7	0.65		
0.25	3	15	5	0.75	0.68	0.06
0.50	1	12	8	0.60		
0.50	2	15	5	0.75		
0.50	3	13	7	0.65	0.67	0.08
1.00	1	4	16	0.20		
1.00	2	5	15	0.25		
1.00	3	5	15	0.25	0.23	0.03
2.00	1	0	20	0.00		
2.00	2	0	20	0.00		
2.00	3	0	20	0.00	0.00	0.00

(a) Survival based on initial exposure of 20 organisms per replicate.

TABLE D.5. Water Quality Summary for 96-Hour *A. abdita* Cadmium Reference Toxicant Test

Cadmium Concentration (mg/L)	Temperature (°C)				Dissolved Oxygen (mg/L)		Salinity (o/oo)	
	Min	Max	Min	pH	Min	Max	Min	Max
Acceptable Range	18.0	22.0	7.30	8.30	5.0	NA ^(a)	28.0	32.0
0.00	19.3	19.5	7.97	8.14	7.3	8.0	30.5	31.0
0.25	19.3	19.5	7.92	8.10	7.5	7.9	30.5	31.5
0.50	19.3	19.6	7.91	8.10	7.5	7.8	30.5	31.0
1.00	19.2	19.5	7.90	8.09	7.6	7.9	30.5	31.5
2.00	19.3	19.6	7.85	8.03	7.6	7.9	30.5	31.5

(a) NA Not applicable.

TABLE D.6. Results of *R. abronius* 10-Day, Static Renewal, Benthic Acute Toxicity Test

Sediment Treatment	Replicate	Live ^(a)	Dead or Missing	Proportion Surviving	Mean Proportion Surviving	Standard Deviation
COMP BU	1	15	5	0.75		
COMP BU	2	19	1	0.95		
COMP BU	3	20	0	1.00		
COMP BU	4	17	3	0.85		
COMP BU	5	19	1	0.95	0.90	0.10
R-MUD	1	20	0	1.00		
R-MUD	2	20	0	1.00		
R-MUD	3	20	0	1.00		
R-MUD	4	20	0	1.00		
R-MUD	5	18	2	0.90	0.98	0.04
C-WB	1	19	1	0.95		
C-WB	2	20	0	1.00		
C-WB	3	21	0	1.00		
C-WB	4	18	2	0.90		
C-WB	5	20	0	1.00	0.97	0.04

(a) Survival based on initial exposure of 20 organisms per replicate.

TABLE D.7. Water Quality Summary for *R. abronius* 10-Day Solid-Phase, Static Renewal, Benthic Acute Toxicity Test

Sediment Treatment	Temperature (°C)				Dissolved Oxygen (mg/L)				Salinity (o/oo)				Total Ammonia ^(a) (mg/L)	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range	12.0	16.0	7.30	8.30	5.0	NA ^(b)	28.0	32.0	NA	30.0				
COMP BU	13.8	15.0	7.73	8.14	7.7	8.8	30.5	32.0	0.074	2.92				
R-MUD	13.8	15.0	7.10	8.12	7.4	8.8	30.5	32.0	0.026	<1.00				
C-WB	13.8	15.1	7.91	8.40 ^(c)	7.6	8.8	31.0	32.0	0.034	0.219				

(a) Total ammonia measured in the overlying water.

(b) NA. Not applicable.

(c) Data point out of range.

TABLE D.8. Water Quality Measurements of Porewater for *R. abronius* 10-Day, Static Renewal, Benthic Acute Toxicity Test

Sediment Treatment	Ammonia (mg/L)	Temperature (°C)	pH	Dissolved Oxygen (mg/L)	Salinity (o/oo)
Day 0					
COMP BU	17.3	14.2	7.98	7.8	32.0
R-MUD	0.685	15.0	7.99	8.0	32.0
C-WB	2.74	14.8	7.93	7.7	31.5
Day 10					
COMP BU	12.0	14.5	8.12	8.7	31.0
R-MUD	ND ^(a)	14.5	8.10	8.8	31.0
C-WB	ND	14.3	8.09	8.8	31.0

(a) ND No data.

TABLE D.9. Test Results for *R. abronius* 96-Hour Cadmium Reference Toxicant Test

Cadmium Concentration (mg/L)	Rep	Live ^(a)	Dead or Missing	Proportion Surviving	Mean Proportion Surviving	Standard Deviation
0.00	1	18	2	0.90		
0.00	2	20	0	1.00		
0.00	3	20	0	1.00	0.97	0.06
0.38	1	15	5	0.75		
0.38	2	5	5	0.25		
0.38	3	20	0	1.00	0.67	0.38
0.75	1	15	5	0.75		
0.75	2	17	3	0.85		
0.75	3	12	8	0.60	0.73	0.13
1.50	1	8	12	0.40		
1.50	2	2	18	0.10		
1.50	3	9	11	0.45	0.32	0.19
3.00	1	1	19	0.05		
3.00	2	4	16	0.20		
3.00	3	1	19	0.05	0.10	0.09

TABLE D.10. Water Quality Summary for *R. abronius* 96-Hour Cadmium Reference Toxicant Test

Cadmium Concentration (mg/L)	Temperature (°C)		pH		Dissolved Oxygen (mg/L)		Salinity (o/oo)	
	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range	12.0	16.0	7.30	8.30	5.0	NA ^(a)	28.0	32.0
0.00	14.9	15.6	7.91	8.10	7.9	8.3	30.5	32.0
0.38	14.9	15.2	7.90	8.07	8.0	8.4	30.5	32.0
0.75	14.8	15.3	7.90	8.06	8.0	8.3	30.5	31.5
1.50	14.9	15.2	7.87	8.02	8.0	8.3	30.5	32.0
3.00	14.9	15.2	7.66	7.92	7.9	8.2	30.5	32.0

(a) NA Not applicable.

TABLE D.11. Test Results for 10-Day, Static Renewal, Benthic Acute Toxicity Test with *E. estuarius*

Sediment Treatment	Replicate	Live ^(a)	Dead or Missing	Proportion Surviving	Mean Proportion Surviving	Standard Deviation
COMP BU	1	14	6	0.70		
COMP BU	2	13	7	0.65		
COMP BU	3	16	4	0.80		
COMP BU	4	14	6	0.70		
COMP BU	5	16	4	0.80	0.73	0.07
R-MUD	1	20	0	1.00		
R-MUD	2	20	0	1.00		
R-MUD	3	19	1	0.95		
R-MUD	4	17	3	0.85		
R-MUD	5	20	0	1.00	0.96	0.07
Eoh Control	1	20	0	1.00		
Eoh Control	2	20	0	1.00		
Eoh Control	3	20	0	1.00		
Eoh Control	4	20	0	1.00		
Eoh Control	5	19	1	0.95	0.99	0.02

(a) Survival based on initial exposure of 20 organisms per replicate.

TABLE D.12. Water Quality Summary for 10-Day, Static Renewal, Benthic Acute Toxicity Test with *E. estuarius*

Sediment Treatment	Temperature				Dissolved Oxygen		Salinity		Total Ammonia ^(a)	
	Temperature (°C)		pH		Min	Max	Min	Max	Min	Max
	Min	Max	Min	Max						
Acceptable Range	12.0	16.0	7.30	8.30	5.0	NA ^(b)	28.0	32.0	NA	60.0
COMP BU	14.9	15.8	7.88	8.32 ^(c)	6.7	8.3	30.5	32.0	<1.00	2.69
R-MUD	14.3	15.7	7.94	8.11	7.3	8.3	30.5	31.5	<1.00	4.94
Eoh Control	14.9	15.8	7.62	8.10	7.6	8.2	30.5	31.5	<1.00	1.42

(a) Total ammonia measured in the overlying water.

(b) NA Not applicable.

(c) Data point out of range.

TABLE D.13. Water Quality Measurements of Porewater for 10-Day *E. estuarius* Static Renewal Test

Sediment Treatment	Ammonia (mg/L)	Temperature ^(a) (°C)	pH	Dissolved Oxygen ^(a) (mg/L)	Salinity o/oo)
Day 0					
COMP BU	18.5	15.1	7.31	8.0	30.5
R-MUD	ND ^(b)	ND	ND	ND	ND
Eoh Control	<1.00	15.1	ND	8.1	ND
Day 10					
COMP BU	14.1	21.4	6.92	7.4	30.5
R-MUD	1.22	ND	ND	7.9	30.5
Eoh Control	1.11	ND	ND	7.8	30.5

(a) Values are a mean of the five replicates, rather than values from the porewater dummy jars.

(b) ND No data.

TABLE D.14. Test Results for 96-Hour *E. estuarius* Cadmium Reference Toxicant Test

Cadmium Concentration (mg/L)	Replicate	Live ^(a)	Dead or Missing	Proportion Surviving	Mean Proportion Surviving	Standard Deviation
0	1	18	2	0.90		
0	2	19	1	0.95		
0	3	17	3	0.85	0.90	0.05
5	1	16	4	0.80		
5	2	14	6	0.70		
5	3	15	5	0.75	0.75	0.05
10	1	6	14	0.30		
10	2	5	15	0.25		
10	3	9	11	0.45	0.33	0.10
20	1	2	18	0.10		
20	2	1	19	0.05		
20	3	3	17	0.15	0.10	0.05
30	1	0	20	0.00		
30	2	0	20	0.00		
30	3	0	20	0.00	0.00	0.00

(a) Survival based on initial exposure of 20 organisms per replicate.

TABLE D.15. Water Quality Summary for 96-Hour Cadmium Reference Toxicant Test with *E. estuarius*

Cadmium Concentration (mg/L)	Temperature (°C)				Dissolved Oxygen (mg/L)				Salinity (o/oo)	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range	12.0	16.0	7.30	8.30	5.0	NA ^(a)	28.0	32.0		
0.0	14.0	15.5	8.00	8.10	7.5	8.2	30.5	31.5		
5.0	14.2	15.7	7.98	8.10	7.4	8.3	30.5	31.5		
10.0	14.2	15.6	7.90	8.10	7.4	8.4	30.5	31.5		
20.0	14.1	15.5	7.90	8.10	7.4	8.3	30.5	31.5		
30.0	14.1	15.7	7.93	8.10	7.5	8.3	31.0	31.5		

(a) NA Not applicable.

TABLE D.16. Test Results for 10-Day, Static, Benthic Acute Toxicity Test with *M. bahia*

Sediment Treatment	Replicate	Live ^(a)	Dead or Missing	Proportion Surviving	Proportion Surviving	Mean Standard Deviation
COMP BU	1	0	20	0.00		
COMP BU	2	0	20	0.00		
COMP BU	3	0	20	0.00		
COMP BU	4	0	20	0.00		
COMP BU	5	0	20	0.00	0.00	0.00
R-MUD	1	20	0	1.00		
R-MUD	2	18	2	0.90		
R-MUD	3	18	2	0.90		
R-MUD	4	17	3	0.85		
R-MUD	5	16	4	0.80	0.89	0.07
Control-SB	1	19	1	0.95		
Control-SB	2	16	4	0.80		
Control-SB	3	19	1	0.95		
Control-SB	4	20	0	1.00		
Control-SB	5	19	1	0.95	0.93	0.08

(a) Survival based on initial exposure of 20 organisms per replicate.

TABLE D.17. Water Quality Summary for 10-Day, Static, Benthic Acute Toxicity Test with *M. bahia*

Sediment Treatment	Temperature (°C)		pH		Dissolved Oxygen (mg/L)		Salinity (o/oo)		Ammonia (mg/L)	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range	18.0	22.0	7.30	8.30	3.0	NA ^(a)	28.0	32.0	NA	20.0
COMP BU	18.6	19.5	7.54	8.21	5.2	6.9	29.5	31.0	19.9	79.0 ^(b)
R-MUD	18.6	19.6	7.57	8.06	5.8	7.3	30.0	31.0	1.21	52.7 ^(b)
Control-SB	18.6	19.5	7.73	8.24	5.9	7.4	30.0	32.0	3.36	82.0 ^(b)

(a) NA Not applicable.

(b) Data point out of range.

TABLE D.18. Test Results for 10-Day, Static Renewal, Benthic Acute Toxicity Test with *M. bahia*

Sediment Treatment	Replicate	Live ^(a)	Dead or Missing	Proportion Surviving	Mean Proportion Surviving	Standard Deviation
COMP BU	1	14	6	0.70		
COMP BU	2	20	0	1.00		
COMP BU	3	18	2	0.90		
COMP BU	4	17	3	0.85		
COMP BU	5	19	1	0.95	0.88	0.12
R-MUD	1	18	2	0.90		
R-MUD	2	15	5	0.75		
R-MUD	3	18	2	0.90		
R-MUD	4	17	3	0.85		
R-MUD	5	19	1	0.95	0.87	0.08
Control-SB	1	20	0	1.00		
Control-SB	2	19	1	0.95		
Control-SB	3	18	2	0.90		
Control-SB	4	20	0	1.00		
Control-SB	5	18	2	0.90	0.95	0.05

(a) Survival based on initial exposure of 20 organisms per replicate.

TABLE D.19. Water Quality Summary for 10-Day, Static Renewal, Benthic Acute Toxicity Test with *M. bahia*

Sediment Treatment	Dissolved									
	Temperature (°C)		pH		Oxygen (mg/L)		Salinity (o/oo)		Ammonia (mg/L)	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range	18.0	22.0	7.30	8.30	3.0	NA ^(a)	28.0	32.0	NA	20.0
COMP BU	18.6	20.1	7.62	8.04	6.2	7.2	30.5	31.0	3.09	32.0 ^(b)
R-MUD	18.4	20.1	7.72	8.03	6.2	7.7	30.5	31.0	1.01	12.9
Control-SB	18.5	20.1	7.62	8.60 ^(b)	5.2	7.5	30.5	31.0	1.13	15.8

(a) NA Not applicable.

(b) Data point out of range.

TABLE D.20. Test Results for 96-Hour, Benthic Acute Toxicity, Copper Reference Toxicant Test^(a) with *M. bahia*

Copper Concentration (µg/L)	Live ^(b)	Dead or Missing	Proportion Surviving
0	10	0	1.00
100	10	0	1.00
150	9	1	0.90
200	8	2	0.80
250	7	3	0.70
300	7	3	0.70
400	3	7	0.30

(a) Reference toxicant test run concurrently with the static and static renewal benthic acute toxicity tests
 (b) Survival based on initial exposure of 10 organisms per replicate.

TABLE D.21. Water Quality Summary for 96-Hour, Benthic Acute Toxicity, Copper Reference Toxicant Test^(a) with *M. bahia*

Copper Concentration (µg/L)	Temperature (°C)				pH				Dissolved Oxygen (mg/L)		Salinity (o/oo)	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range	18.0	22.0	7.30	8.30	4.0	NA ^(b)	28.0	32.0				
0	18.7	18.9	7.84	7.88	6.9	7.8	30.5	31.0				
100	18.7	18.9	7.85	7.97	6.9	7.8	30.5	31.0				
150	18.7	19.0	7.83	7.91	7.0	7.7	30.5	31.0				
200	18.7	19.0	7.80	7.87	6.8	7.9	30.5	31.5				
250	18.7	18.9	7.84	7.91	7.0	8.2	30.5	31.0				
300	18.6	18.9	7.78	7.94	7.0	8.0	30.5	31.0				
400	18.6	18.9	7.73	8.00	7.1	7.9	30.5	31.5				

(a) Reference toxicant test run concurrently with the static and static renewal benthic acute toxicity tests.

(b) NA Not applicable.

Appendix E

Bioaccumulation Test Data for Buttermilk Channel Project

TABLE E.1. Test Results for 28-Day Bioaccumulation Test with *M. nasuta*

Sediment Treatment	Replicate	Number Live ^(a)	Number Dead or Missing	Proportion Surviving	Mean Proportion Surviving	Standard Deviation
COMP BU	1	20	5	0.80		
COMP BU	2	20	5	0.80		
COMP BU	3	22	3	0.88		
COMP BU	4	22	3	0.88		
COMP BU	5	25	0	1.00	0.87	0.08
R-MUD	1	22	3	0.88		
R-MUD	2	20	5	0.80		
R-MUD	3	23	2	0.92		
R-MUD	4	21	4	0.84		
R-MUD	5	24	1	0.96	0.88	0.06
C-SB	1	25	0	1.00		
C-SB	2	24	1	0.96		
C-SB	3	24	1	0.96		
C-SB	4	24	1	0.96		
C-SB	5	25	0	1.00	0.98	0.02

(a) Survival based on initial exposure of 25 organisms per replicate.

TABLE E.2. Water Quality Summary for 28-day Bioaccumulation Test with *M. nasuta*

Sediment Treatment	Temperature (°C)				Dissolved Oxygen (mg/L)				Salinity (o/oo)	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range	12.0	16.0	7.30	8.30	5.0	NA ^(a)	28.0	32.0		
COMP BU	14.4	16.5 ^(b)	7.44	7.99	7.1	8.2	30.0	31.5		
R-MUD	14.4	16.4 ^(b)	7.68	8.03	7.4	8.3	30.0	31.0		
R-CLIS	14.4	15.9	7.67	8.05	7.2	8.8	30.0	31.0		
C-SB	14.3	16.5 ^(b)	7.71	8.01	7.1	8.2	30.5	31.0		

(a) NA Not applicable.

(b) Data point out of range.

TABLE E.3. Test Results for 96-Hour Copper Reference Toxicant Test with *M. nasuta*

Copper Concentration (mg/L)	Live ^(a)	Dead or Missing	Proportion Surviving
0.00	10	0	1.00
0.25	10	0	1.00
0.50	10	0	1.00
0.75	8	2	0.80
1.00	10	0	1.00
1.50	8	2	0.80
2.50	4	6	0.40

(a) Survival based on initial exposure of 10 organisms per replicate.

TABLE E.4. Water Quality Summary for 96-Hour Copper Reference Toxicant Test with *M. nasuta*

Copper Concentration (mg/L)	Temperature (°C)				Dissolved Oxygen (mg/L)		Salinity (o/oo)	
	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range	12.0	16.0	7.30	8.30	5.0	NA ^(a)	28.0	32.0
0.00	15.1	15.8	7.78	7.96	7.0	8.0	30.5	31.5
0.25	15.0	15.5	7.64	7.94	6.9	8.1	30.5	31.5
0.50	15.0	15.6	7.65	7.94	6.9	8.0	30.5	31.5
0.75	15.0	15.5	7.48	7.93	5.4	8.0	30.5	31.5
1.00	15.1	15.5	7.53	7.88	6.2	8.1	30.5	31.5
1.50	15.0	15.6	7.44	7.88	5.3	8.1	30.5	31.5
2.50	15.0	15.6	7.27 ^(b)	7.86	3.2 ^(b)	8.1	30.5	31.5

(a) NA Not applicable.

(b) Data point out of range.

TABLE E.5. Test Results for 28-Day Bioaccumulation Test with *N. virens*

Sediment Treatment	Replicate	Live ^(a)	Dead or Missing	Proportion Surviving	Mean Proportion Surviving	Standard Deviation
COMP BU	1	17	3	0.85		
COMP BU	2	16	4	0.80		
COMP BU	3	15	5	0.75		
COMP BU	4	18	2	0.90		
COMP BU	5	11	9	0.55	0.77	0.14
R-MUD	1	16	4	0.80		
R-MUD	2	15	5	0.75		
R-MUD	3	18	2	0.90		
R-MUD	4	15	5	0.75		
R-MUD	5	15	5	0.75	0.79	0.07
C-NR	1	19	1	0.95		
C-NR	2	20	0	1.00		
C-NR	3	16	4	0.80		
C-NR	4	19	1	0.95		
C-NR	5	15	5	0.75	0.89	0.11

(a) Survival based on initial exposure of 20 organisms per replicate.

TABLE E.6. Water Quality Summary for 28-Day Bioaccumulation Test with *N. virens*

Sediment Treatment	Temperature (°C)		pH		Dissolved Oxygen (mg/L)		Salinity (o/oo)	
	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range	18.0	22.0	7.30	8.30	5.0	NA ^(a)	28.0	32.0
COMP BU	18.0	20.0	7.57	8.03	6.2	8.1	30.0	32.0
R-MUD	18.0	19.9	7.73	8.88 ^(b)	6.5	8.3	30.5	32.0
C-NR	18.0	19.9	7.70	8.01	6.3	8.2	30.0	31.5

(a) NA Not applicable.

(b) Data point out of range.

TABLE E.7. Test Results for 96-Hour Copper Reference Toxicant Test
with *N. virens*

Copper Concentration (mg/L)	Live ^(a)	Dead or Missing	Proportion Surviving
0.00	10	0	1.00
0.05	10	0	1.00
0.075	10	0	1.00
0.15	4	6	0.40
0.20	0	10	0.00
0.25	0	10	0.00
0.30	0	10	0.00

(a) Survival based on initial exposure of 10 organisms per replicate.

TABLE E.8. Water Quality Summary for 96-Hour Copper Reference Toxicant Test with *N. virens*

Copper Concentration (mg/L)	Temperature (°C)		pH		Dissolved Oxygen (mg/L)		Salinity (o/oo)	
	Min	Max	Min	Max	Min	Max	Min	Max
Acceptable Range	18.0	22.0	7.30	8.30	5.0	NA ^(a)	28.0	32.0
0.00	18.6	19.2	7.52	7.94	5.7	7.4	30.5	31.5
0.05	18.6	19.3	7.60	7.95	6.3	7.4	30.5	31.5
0.075	18.6	19.4	7.61	7.91	5.2	7.6	30.5	31.5
0.15	18.6	19.4	7.39	7.93	4.5 ^(b)	7.4	30.5	31.5
0.20	18.7	19.4	7.00 ^(b)	7.82	0.6 ^(b)	7.5	30.5	31.5
0.25	18.6	19.4	7.14 ^(b)	7.86	2.0 ^(b)	7.5	30.5	31.5
0.30	18.6	19.4	7.21 ^(b)	7.90	3.0 ^(b)	7.6	30.5	31.5

(a) NA Not applicable.

(b) Data point out of range.

Appendix F

***Macoma nasuta* Tissues Chemical Analyses and
Quality Assurance/Quality Control Data for
Buttermilk Channel Project**

QA/QC SUMMARY

PROGRAM: New York/New Jersey Federal Projects-2

PARAMETER: Metals

LABORATORY: Battelle/Marine Sciences Laboratory, Sequim, Washington

MATRIX: Worm and Clam Tissue

QA/QC DATA QUALITY OBJECTIVES

	<u>Reference Method</u>	<u>Range of Recovery</u>	<u>SRM Accuracy</u>	<u>Relative Precision</u>	<u>Detection Limit (µg/g dry wt)</u>
Arsenic	ICP/MS	75-125%	≤20%	≤20%	1.0
Cadmium	ICP/MS	75-125%	≤20%	≤20%	0.1
Chromium	ICP/MS	75-125%	≤20%	≤20%	0.2
Copper	ICP/MS	75-125%	≤20%	≤20%	1.0
Lead	ICP/MS	75-125%	≤20%	≤20%	0.1
Mercury	CVAA	75-125%	≤20%	≤20%	0.02
Nickel	ICP/MS	75-125%	≤20%	≤20%	0.1
Silver	ICP/MS	75-125%	≤20%	≤20%	0.1
Zinc	ICP/MS	75-125%	≤20%	≤20%	1.0

METHOD

A total of nine (9) metals was analyzed for the New York Federal Projects-2 Program: silver (Ag), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn). Hg was analyzed using cold-vapor atomic absorption spectroscopy (CVAA) according to the method of Bloom and Crecelius (1983). The remaining metals were analyzed by inductively coupled plasma mass spectrometry (ICP/MS) following a procedure based on EPA Method 200.8 (EPA 1991).

To prepare tissue for analysis, samples were freeze-dried and blended in a Spex mixer-mill. Approximately 5 g of mixed sample was ground in a ceramic ball mill. For ICP/MS and CVAA analyses, 0.2- to 0.5-g aliquots of dried homogenous sample were digested using a mixture of nitric acid and hydrogen peroxide following EPA Method 200.3 (EPA 1991).

HOLDING TIMES

A total of 68 worm and 68 clam samples was received on 6/15/94 in good condition. Samples were logged into Battelle's log-in system, frozen to -80°C and subsequently freeze dried within approximately 7 days of sample receipt. Samples were analyzed within 180 days of collection. Worms and clams were digested in two separate batches. The following table summarizes the analysis dates:

Task	Clams	Worms
Sample Digestion	8/9/94	9/9/94
ICP-MS	9/15/94	10/6/94
CVAA-Hg	8/17-8/24/94	8/17-8/24/94

QA/QC SUMMARY METALS (continued)

DETECTION LIMITS	Four aliquots of a background clam tissue were analyzed as four separate replicates. The standard deviation of these results were multiplied by 4.541 to determine a method detection limits (MDL). Target detection limits were exceeded for all metals except Ag, Cd and Hg.
METHOD BLANKS	One procedural blank was analyzed per 20 samples. No metals were detected in the blanks above the MDLs.
MATRIX SPIKES	One sample was spiked with all metals at a frequency of 1 per 20 samples. All recoveries were within the QC limits of 75% -125% with the exception of Ag in one spiked worm sample and Zn in three of the four spiked worm samples. Zn was spiked at a level near the level found in the native samples and, in one case, Zn was spiked at a level below that detected in the native sample and no recovery was calculated.
REPLICATES	One sample was analyzed in triplicate at a frequency of 1 per 20 samples. Precision for triplicate analyses is reported by calculating the relative standard deviation (RSD) between the replicate results. Only the RSDs for Zn in one of the four replicated worm analyses exceeded the QC limits of $\pm 20\%$. RSDs for the rest of the metals were within the QC limits.
SRMs	Standard Reference Material (SRM), 1566a (Oyster tissue from the National Institute of Standards and Technology, NIST), was analyzed for all metals. Results for all metals were within $\pm 20\%$ of mean certified value with the exception of Cr and Ni. Cr values were below the lower QC limit in two of the five SRMs analyzed with the clams and for three of the four SRMs analyzed with the worms. The SRM certified value for Cr (1.43 $\mu\text{g/g}$) is close to the detection limit (1.46 $\mu\text{g/g}$). Ni was also recovered below or above the control limits in some samples.

REFERENCES

Bloom, N. S., and E.A. Crecelius. 1983. "Determination of Mercury in Seawater at Sub-Nanogram per Liter Levels." *Mar. Chem.* 14:49-59.

EPA (U.S. Environmental Protection Agency). 1991 Methods for the Determination of Metals in Environmental Samples. EPA-600/4-91-010. Environmental Services Division, Monitoring Management Branch, Washington D.C.

QA/QC SUMMARY

PROGRAM: New York/New Jersey Federal Projects-2
PARAMETER: Chlorinated Pesticides/PCB Congeners
LABORATORY: Battelle/Marine Sciences Laboratory, Sequim, Washington
MATRIX: Worm and Clam Tissue

QA/QC DATA QUALITY OBJECTIVES

<u>Reference Method</u>	<u>Surrogate Recovery</u>	<u>Spike Recovery</u>	<u>Relative Precision</u>	<u>Detection Limit</u>
GC/ECD	30-150%	50-120%	≤30%	0.4 ng/g wet wt.

SAMPLE CUSTODY A total of 68 worm and 68 clam samples was received on 6/15/94 in good condition. Samples were logged into Battelle's log-in system and stored frozen until extraction.

METHOD Tissues were homogenized wet using a stainless steel blade. An aliquot of tissue sample was extracted with methylene chloride using the roller technique under ambient conditions following a procedure which is based on methods used by the National Oceanic and Atmospheric Administration for its Status and Trends Program (Krahn et al. 1988). Samples were then cleaned using silica/alumina (5% deactivated) chromatography followed by HPLC cleanup (Krahn et al. 1988). Extracts were analyzed for 15 chlorinated pesticides and 22 PCB congeners using gas chromatography/electron capture detection (GC/ECD) following a procedure based on EPA Method 8080 (EPA 1986). The column used was a J&W DB-17 and the confirmatory column was a DB-1701, both capillary columns (30m x 0.25mm I.D.). All detections were quantitatively confirmed on the second column.

HOLDING TIMES Samples were extracted in seven batches. All extracts were analyzed by GC/ECD. The following summarizes the extraction and analysis dates:

<u>Batch</u>	<u>Species</u>	<u>Extraction</u>	<u>Analysis</u>
1	<i>M. nasuta</i>	7/28/94	9/9-9/12/94
2	<i>M. nasuta</i>	8/3/94	9/13-9/15/94
3	<i>M. nasuta</i>	8/17/94	9/23-9/25/94
4	<i>N. virens</i>	8/19/95	9/26-9/30/94
5	<i>N. virens</i>	8/26/94	9/8-9/11/94
6	<i>N. virens</i>	9/6/94	9/17-9/19/94
7	<i>M. nasuta/N. virens</i>	9/26/94	9/15-9/17/94
8	<i>M. nasuta</i> MDL study	10/10/94	10/25/94

DETECTION LIMITS Target detection limits of 0.4 ng/g wet weight were met for all pesticides and PCB congeners, with the exception of dieldrin, PCB 8 and PCB 18, and for the samples that were analyzed in triplicate. These elevated detection limits for the replicates were due to the limited amount of tissue available resulting in smaller aliquots used for extraction. Method detection limits (MDLs) reported were determined by multiplying the

QA/QC SUMMARY/PCBs and PESTICIDES (continued)

standard deviation of seven spiked replicates of clam tissue by the Student's t value (99 percentile). Actual pesticide MDLs ranged from approximately 0.1 to 1.1 ng/g wet weight and PCB congener MDLs ranged from approximately 0.1 to 0.9 ng/g wet weight, depending on the compound and the sample weight extracted. MDLs were reported corrected for individual sample wet weight extracted.

Method detection limit verification was performed by analyzing four replicates of a spiked clam sample and multiplying the standard deviation of the results by 3.5. All detection limits calculated in this way were below the target detection limit of 0.4 ng/g wet weight with the exception of 4,4'-DDD which had a DL of 0.467 ng/g.

METHOD BLANKS

One method blank was extracted with each extraction batch. No pesticides or PCBs were detected in any of the method blanks.

SURROGATES

Two compounds, PCB congeners 103 and 198, were added to all samples prior to extraction to assess the efficiency of the analysis. Sample surrogate recoveries were all within the QC guidelines of 30% - 150%, with the exception of one sample in Batch 3 and two samples in Batch 4. All of these incidents involved a high recovery of PCB 198. This was most likely due to matrix interferences with the internal Standard octachloronaphthalene (OCN) which is used to quantify the recovery of surrogate PCB 198. Since no sample data are corrected for the OCN, sample results should not be affected. One sample had low surrogate recoveries for both PCB 103 and 198. This sample was re-extracted once due to surrogate recoveries. Since the recoveries in the reextraction also exceeded control limits, the problem was determined to be matrix interferences and no additional extractions were performed. Sample results were quantified using the surrogate internal standard method.

MATRIX SPIKES

Ten out of the 15 pesticides and 5 of the 22 PCB congeners analyzed were spiked into one sample per extraction batch. Matrix spike recoveries were within the control limit range of 50-120% for all Pesticides and PCBs in Batches 1, 2, 3, 6 and 7 with the exception of PCB 138 in Batch six and three pesticides and 2 PCBs in Batch seven. In all cases, the recoveries were high and are most likely due to matrix interferences. Recoveries for the majority of pesticides and PCBs in Batches four and five exceeded control limits due to high native levels compared with the levels spiked. In most cases, the spiked concentrations were 2 to 10 times lower than the concentrations detected in the samples.

REPLICATES

One sample from each extraction batch was analyzed in triplicate. Precision was measured by calculating the relative standard deviation (RSD) between the replicate results. RSDs for all detectable values were below the target precision goal of $\leq 30\%$ in Batches 1, 2, 3, 4 and 7. The RSD for Endosulfan Sulfate in Batch 5 was high due to comparison of very low concentrations, less than 1 ng/g in the replicates. RSDs for two pesticides and for two PCB congeners in Batch 6 were high due to matrix interferences associated with the first replicate sample.

QA/QC SUMMARY/PCBs and PESTICIDES (continued)

SRMs Not applicable.

MISCELLANEOUS All pesticide and PCB congener results are confirmed using a second dissimilar column. RPDs between the primary and confirmation values must be less than 75% to be considered a confirmed value.

REFERENCES

Krahn, M.M., C.A. Wigren, R.W. Pearce, L.K. Moore, R.G. Bogar, W.D. MacLeod, Jr., S-L Chan, and D.W. Brown. 1988. *New HPLC Cleanup and Revised Extraction Procedures for Organic Contaminants*. NOAA Technical Memorandum NMFS F/NWC-153. National Oceanic and Atmospheric Administration, National Marine Fisheries, Seattle, Washington.

EPA (U.S. Environmental Protection Agency). 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. SW-846. U.S. Document No. 955-001-00000, U.S. Environmental Protection Agency, Washington D.C.

QA/QC SUMMARY

PROGRAM: New York/New Jersey Federal Projects-2
PARAMETER: Polynuclear Aromatic Hydrocarbons (PAH) and 1,4-Dichlorobenzene
LABORATORY: Battelle/Marine Sciences Laboratory, Sequim, Washington
MATRIX: Clam and Worm Tissue

QA/QC DATA QUALITY OBJECTIVES

<u>Reference Method</u>	<u>MS Recovery</u>	<u>Surrogate Recovery</u>	<u>SRM Accuracy</u>	<u>Relative Precision</u>	<u>Detection Limit (wet wt)</u>
GC/MS/SIM	50-120%	30-150%	≤30%	≤30%	4 ng/g

SAMPLE CUSTODY A total of 68 worm and 68 clam samples was received on 6/15/94 in good condition. Samples were logged into Battelle's log-in system and stored frozen until extraction.

METHOD Tissue samples were extracted with methylene chloride using a roller under ambient conditions following a procedure which is based on methods used by the National Oceanic and Atmospheric Administration for its Status and Trends Program (Krahn et al. 1988). Samples were then cleaned using silica/alumina (5% deactivated) chromatography followed by HPLC cleanup.

Extracts were quantified using gas chromatography/mass spectrometry (GC/MS) in the selected ion mode (SIM) following a procedure based on EPA Method 8270 (EPA 1986).

HOLDING TIMES Samples were extracted in seven batches. All extracts were analyzed by GC/MS/SIM. The following summarizes the extraction and analysis dates:

<u>Batch</u>	<u>Species</u>	<u>Extraction</u>	<u>Analysis</u>
1	<i>M. nasuta</i>	7/28/94	9/9-9/12/94
2	<i>M. nasuta</i>	8/3/94	9/13-9/15/94
3	<i>M. nasuta</i>	8/17/94	9/23-9/25/94
4	<i>N. virens</i>	8/19/95	9/26-9/30/94
5	<i>N. virens</i>	8/26/94	9/8-9/11/94
6	<i>N. virens</i>	9/6/94	9/17-9/19/94
7	<i>M. nasuta/N. virens</i>	9/26/94	9/15-9/17-94
8	<i>M. nasuta</i> MDL study	10/10/94	10/25/94

DETECTION LIMITS Target detection limits of 4 ng/g wet weight were met for all PAH compounds except for fluoranthene and pyrene, which had method detection limits (MDL) between 4 and 6 ng/g wet weight. MDLs were determined by multiplying the standard deviation of seven spiked replicates of a background clam sample by the Student's t value (99 percentile). These MDLs were based on a wet weight of 20 g of tissue sample.

QA/QC SUMMARY/PAHs (continued)

Aliquots of samples that were analyzed in triplicate, used for spiking, or were re-extracted, were generally less than 20 g due to limited quantities of tissue available. Because MDLs reported are corrected for sample weight, the MDLs reported for these samples appear elevated and in some cases may exceed the target detection limit.

In addition a method detection limit verification study was performed, which consisted of analyzing four spiked aliquots of a background clam sample received with this project. The standard deviation of the results of these replicate analyses was multiplied by 3.5. Detection limits calculated in this way were all less than the target detection limit of 4 ng/g wet wt.

METHOD BLANKS	One method blank was extracted with each extraction batch. Benz[a]anthracene was detected in blanks from all batches and benzo[b]fluoranthene was detected in the blank from Batch 3. Two method blanks were analyzed with Batch 7 and in addition to benz[a]anthracene, three other compounds were detected in at least one of the two blanks; naphthalene, benzo[a]pyrene and indeno(123-cd)pyrene. All blank levels were less than three times the target MDL of 4 ng/g wet wt. Sample values that were less than five times the value of the method blank associated with that sample were flagged with a "B."
SURROGATES	Five isotopically labeled compounds were added prior to extraction to assess the efficiency of the method. These were d8-naphthalene, d10-acenaphthene, d12-chrysene, d14-dibenz[a,h]anthracene and d4-1,4 dichlorobenzene. Recoveries of all surrogates were within the quality control limits of 30% -150% with the exception of low recoveries for d4-1,4 dichlorobenzene in one sample from Batch 1 and Batch 4 and two samples in Batch seven. In addition, d8-naphthalene recovery was low in two samples in Batch seven.
MATRIX SPIKES	One sample from each batch was spiked with all PAH compounds. Matrix spike recoveries were generally, within QC limits of 50% -120%, with some exceptions. The recoveries for benzo(b)- and benzo[k]fluoranthene were variable due to the poor resolution of these two compounds. Spike recoveries quantified as the sum of these two compounds were within QC limits. Spike recoveries for a number of PAH compounds in Batches 4 and 7 were out of control due to high native levels, relative to the levels spiked. Spike concentrations were from 2 to 20 times lower than native concentrations. Recoveries for a number of compounds in Batches 4 and 6 were slightly above the upper control limit. These recoveries were all between 120% and 140%.
REPLICATES	One sample from each batch was extracted and analyzed in triplicate. Precision was measured by calculating the relative standard deviation (RSD) between the replicate results. All RSDs were within $\pm 30\%$.
SRMs	Not applicable.

QA/QC SUMMARY/PAHs (continued)

MISCELLANEOUS

Some of the compounds are flagged to indicate that the ion ratio for that compound was outside of the QC range. This is due primarily to low levels of the compound of interest. Because the confirmation ion is present at only a fraction of the level of the parent ion, when the native level of the compound is low, the amount of error in the concentration measurement of the confirmation ion goes up. The compound is actually quantified from the parent ion only, so most likely this will not affect the quality of the data. For sample values that are relatively high (>5 times the MDL) it may be an indication of some sort of interference.

REFERENCES

Krahn, M.M., C.A. Wigren, R.W. Pearce, L.K. Moore, R.G. Bogar, W.D. MacLeod, Jr., S-L Chan, and D.W. Brown. 1988. *New HPLC Cleanup and Revised Extraction Procedures for Organic Contaminants*. NOAA Technical Memorandum NMFS F/NWC-153. National Oceanic and Atmospheric Administration, National Marine Fisheries, Seattle, Washington.

EPA (U.S. Environmental Protection Agency). 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. SW-846. U.S. Document No. 955-001-00000, U.S. Environmental Protection Agency, Washington D.C.

TABLE F.1. Metals in Tissue of *M. nasuta* (Wet weight)

Sediment Treatment	Replicate	Batch	% Dry Weight	<i>M. nasuta</i> Metals (wet weight µg/g)								
				Ag ICP/MS	As ICP/MS	Cd ICP/MS	Cr ICP/MS	Cu ICP/MS	Hg CVAF	Ni ICP/MS	Pb ICP/MS	Zn ICP/MS
COMP BU	1	1	14.94%	0.054	2.72	0.022	0.613	2.82	0.021	0.477	0.962	8.49
COMP BU	2	1	14.34%	0.060	3.36	0.032	0.566	2.84	0.021	0.568	0.928	13.1
COMP BU	3	1	15.03%	0.067	2.89	0.031	0.750	2.90	0.023	0.570	0.960	11.9
COMP BU	4	2	13.78%	0.110	2.87	0.040	0.934	3.33	0.027	0.661	1.71	15.0
COMP BU	5	1	13.94%	0.073	2.91	0.029	0.721	2.83	0.024	0.580	1.14	10.9
R-MUD	1	1	14.08%	0.031	2.13	0.028	0.404	1.48	0.014	0.322	0.282 U ^(a)	11.3
R-MUD	2	1	18.71%	0.058	4.40	0.060	0.400	2.39	0.023	0.608	0.374 U	17.2
R-MUD	3	1	13.02%	0.040	2.75	0.023	0.365	1.39	0.014	0.292	0.261 U	12.1
R-MUD	4	1	11.83%	0.040	2.45	0.027	0.285	1.13	0.012	0.299	0.237 U	9.17
R-MUD	5	1	20.96%	0.035 U	4.07	0.039	0.585	2.49	0.026	0.486	0.419 U	15.6
C-SB	1	1	12.86%	0.024	3.16	0.022	0.404	1.85	0.011	0.579	0.257 U	12.0
C-SB	2	1	12.45%	0.025	2.95	0.020	0.341	1.93	0.012	0.468	0.249 U	8.83
C-SB	3	1	13.90%	0.023 U	3.06	0.030	0.421	1.74	0.012	0.680	0.278 U	8.15
C-SB	4	1	13.16%	0.022 U	2.95	0.019	0.404	1.65	0.012	0.513	0.263 U	9.29
C-SB	5	1	13.21%	0.023	2.92	0.032	0.432	1.99	0.013	0.633	0.264 U	11.4
F.1												
<i>M. nasuta</i> Background	1	1	15.16%	0.025 U	2.49	0.019	0.249	1.77	0.011	0.303	0.303 U	10.2
<i>M. nasuta</i> Background	2	1	14.86%	0.025 U	2.69	0.034	0.337	1.52	0.012	0.355	0.297 U	11.2
<i>M. nasuta</i> Background	3-1	1	14.87%	0.025 U	2.38	0.021	0.232	1.74	0.011	0.311	0.298 U	10.6
<i>M. nasuta</i> Background	3-2	1	14.87%	0.025 U	2.54	0.025	0.256	1.72	0.013	0.311	0.298 U	10.6
<i>M. nasuta</i> Background	3-3	1	14.87%	0.025 U	2.48	0.026	0.238	1.78	0.011	0.338	0.298 U	10.5

(a) U Undetected at or above given concentration

Table F.2. Metals in Tissue of *M. nasuta* (Dry Weight)

Sediment Treatment	Replicate	Batch	% Dry	Ag	As	Cd	<i>M. nasuta</i> Metals (dry weight $\mu\text{g/g}$)			Pb	Zn
			Mass	ICP/MS	ICP/MS	ICP/MS	Cr	Cu	Hg		
COMP BU	1	1	14.94%	0.363	18.2	0.149	4.10	18.9	0.140	3.19	6.44
COMP BU	2	1	14.34%	0.417	23.4	0.225	3.95	19.8	0.145	3.96	6.47
COMP BU	3	1	15.03%	0.445	19.2	0.207	4.99	19.3	0.153	3.79	6.39
COMP BU	4	2	13.78%	0.798	20.8	0.288	6.78	24.2	0.195	4.80	12.4
COMP BU	5	1	13.94%	0.526	20.9	0.209	5.17	20.3	0.171	4.16	8.17
R-MUD	1	1	14.08%	0.221	15.1	0.196	2.87	10.5	0.099	2.29	2.00 U ^(a)
R-MUD	2	1	18.71%	0.309	23.5	0.323	2.14	12.8	0.124	3.25	2.00 U
R-MUD	3	1	13.02%	0.307	21.1	0.180	2.80	10.7	0.111	2.24	2.00 U
R-MUD	4	1	11.83%	0.336	20.7	0.227	2.41	9.51	0.103	2.53	2.00 U
R-MUD	5	1	20.96%	0.166 U	19.4	0.186	2.79	11.9	0.126	2.32	2.00 U
C-SB	1	1	12.86%	0.184	24.6	0.174	3.14	14.4	0.082	4.50	2.00 U
C-SB	2	1	12.45%	0.203	23.7	0.158	2.74	15.5	0.097	3.76	2.00 U
C-SB	3	1	13.90%	0.166 U	22.0	0.214	3.03	12.5	0.083	4.89	2.00 U
C-SB	4	1	13.16%	0.166 U	22.4	0.146	3.07	12.5	0.093	3.90	2.00 U
C-SB	5	1	13.21%	0.171	22.1	0.242	3.27	15.1	0.102	4.79	2.00 U
<i>M. nasuta</i> Background	1	1	15.16%	0.166 U	16.4	0.125	1.64	11.7	0.075	2.00	2.00 U
<i>M. nasuta</i> Background	2	1	14.86%	0.166 U	18.1	0.229	2.27	10.2	0.079	2.39	2.00 U
<i>M. nasuta</i> Background	3-1	1	14.87%	0.166 U	16.0	0.140	1.56	11.7	0.071	2.09	2.00 U
<i>M. nasuta</i> Background	3-2	1	14.87%	0.166 U	17.1	0.165	1.72	11.6	0.085	2.09	2.00 U
<i>M. nasuta</i> Background	3-3	1	14.87%	0.166 U	16.7	0.175	1.60	12.0	0.073	2.27	2.00 U

(a) U Undetected at or above given concentration

TABLE F.3. Quality Control Summary for Metals in Tissue of *M. nasuta*

Sed Code ID Method Blanks	Replicate	Batch	Ag	As	Cd	Cr	Cu	Hg	Ni	Pb	Zn	<i>M. nasuta</i> Metals (µg/g dry weight)	
												U (a)	U
Blank-1	1	0.166	0.166	3.39	0.081	1.46	6.86	0.001	1.32	2.00	10.8	U	U
Blank-2	1	0.166	0.166	3.39	0.081	1.46	6.86	0.001	1.32	2.00	10.8	U	U
Blank-3	1	0.166	0.166	3.39	0.081	1.46	6.86	0.001	1.32	2.00	10.8	U	U
Blank-4	1	0.166	0.166	3.39	0.081	1.46	6.86	0.001	1.32	2.00	10.8	U	U
Blank-5	1	0.166	0.166	3.39	0.081	1.46	6.86	0.001	1.32	2.00	10.8	U	U
Matrix Spikes													
COMP EC-A	3	1	0.244	19.7	0.276	4.37	20.1	0.113	4.42	10.3	81.3		
COMP EC-A, MS	3		1.95	72.7	4.21	14.2	73.9	1.22	14.5	14.8	163		
Concentration Recovered			1.71	53.0	3.93	9.83	53.8	1.11	10.1	4.52	81.7		
Amount Spiked			2.08	52.1	4.17	10.4	52.1	1.04	10.4	4.17	100		
Percent Recovery			82%	102%	94%	95%	103%	106%	97%	108%	82%		
COMP HU-C	5	1	0.569	20.9	0.37	8.01	23.5	0.242	5.28	10.4	88.2		
COMP HU-C, MS	5	1	2.15	74.0	3.95	17.9	76.3	1.21	15.9	14.5	175		
Concentration Recovered			1.58	53.1	3.58	9.89	52.8	0.968	10.6	4.14	86.8		
Amount Spiked			2.08	52.1	4.17	10.4	52.1	1.04	10.4	4.17	100		
Percent Recovery			76%	102%	86%	95%	101%	93%	102%	99%	87%		
R-CLIS	5	1	0.203	17.4	0.238	3.25	19.0	0.107	4.06	5.46	94.3		
R-CLIS, MS	5	1	1.91	74.3	4.26	13.9	74.1	1.22	14.8	10.2	190		
Concentration Recovered			1.71	56.9	4.02	10.65	55.1	1.11	10.7	4.74	95.7		
Amount Spiked			2.08	52.1	4.17	10.4	52.1	1.04	10.4	4.17	100		
Percent Recovery			82%	109%	96%	102%	106%	107%	103%	114%	96%		
<i>M. nasuta</i> Background	3	1	0.166	16.6	0.160	1.63	11.8	0.076	2.15	2.00	70.9		
<i>M. nasuta</i> Background, MS	3	1	1.78	71.7	3.90	10.9	64.7	1.12	12.6	4.75	163		
Concentration Recovered			1.78	55.1	3.74	9.27	52.9	1.04	10.5	4.75	92.1		
Amount Spiked			2.08	52.1	4.17	10.4	52.1	1.04	10.4	4.17	100		
Percent Recovery			86%	106%	90%	99%	102%	100%	100%	114%	92%		

TABLE F.3. (contd)

Sed Code ID	Replicate	Batch	Ag	As	Cd	Cr	Cu	Hg	Ni	Pb	Zn	<i>M. nasuta</i> Metals (µg/g dry weight)		
Standard Reference Material														
Certified value range			1.68 ±0.15	14.0 ±1.2	4.15 ±0.38	1.43 ±0.46	66.3 ±4.3	0.0642 ±0.0067	2.25 ±0.44	0.371 ±0.014	830 ±57			
SRM 1566a	1	1	1.38	13.6	4.05	1.25	62.6	0.063	1.87	0.372	762			
SRM 1566a	2	1	1.41	13.6	4.08	1.23	65.4	0.063	1.61	0.368	808			
SRM 1566a	3	1	1.35	13.0	3.99	1.20	64.4	0.060	2.18	0.392	755			
SRM 1566a	4	1	1.42	13.8	4.19	0.931	66.9	0.068	2.50	0.382	777			
SRM 1566a	5	1	1.44	13.3	3.65	1.04	67.1	0.061	1.51	0.377	765			
Percent Difference	1		18	3	2	13	6	2	17	0	8			
Percent Difference	2		16	3	2	14	1	2	28 (b)	1	3			
Percent Difference	3		20	7	4	16	3	7	3	6	9			
Percent Difference	4		15	1	1	35 (b)	1	6	11	3	6			
Percent Difference	5		14	5	12	27 (b)	1	5	33 (b)	2	8			
Analytical Replicates														
COMP EC-A, Replicate 1	3	1	0.246	19.1	0.256	4.66	21.0	0.130	4.80	11.6	81.1			
COMP EC-A, Replicate 2	3	1	0.242	18.9	0.305	4.32	20.6	0.105	4.46	9.69	81.9			
COMP EC-A, Replicate 3	3	1	0.245	21.0	0.267	4.12	18.8	0.105	4.00	9.54	80.9			
RSD			1%	6%	9%	6%	13%	9%	11%	1%				
COMP HU-C, Replicate 1	5	1	0.565	20.5	0.396	7.80	24.1	0.242	5.28	10.6	86.3			
COMP HU-C, Replicate 2	5	1	0.629	21.8	0.380	8.62	23.4	0.245	5.27	10.7	88.5			
COMP HU-C, Replicate 3	5	1	0.514	20.3	0.335	7.60	22.9	0.238	5.28	9.78	89.9			
RSD			10%	4%	9%	7%	3%	1%	0%	5%	2%			

TABLE F.3. (contd)

Sed Code ID	Replicate	Batch	Ag	As	<i>M. nasuta</i> Metals (µg/g dry weight)						
					Cd	Cr	Cu	Hg	Ni	Pb	Zn
R-CLIS, Replicate 1	5	1	0.219	17.1	0.217	3.36	19.1	0.103	4.05	5.60	94.1
R-CLIS, Replicate 2	5	1	0.196	18.4	0.259	3.16	19.4	0.108	4.17	5.48	96.1
R-CLIS, Replicate 3	5	1	0.193	16.8	0.238	3.23	18.5	0.111	3.95	5.29	92.7
RSD			7%	5%	9%	3%	2%	4%	3%	3%	2%
<i>M. nasuta</i> Background, Rep 1	3	1	0.166 U	16.0	0.140	1.56	11.7	0.071	2.09	2.00 U	71.0
<i>M. nasuta</i> Background, Rep 2	3	1	0.166 U	17.1	0.165	1.72	11.6	0.085	2.09	2.00 U	71.3
<i>M. nasuta</i> Background, Rep 3	3	1	0.166 U	16.7	0.175	1.60	12.0	0.073	2.27	2.00 U	70.5
RSD			NA (e)	3%	11%	5%	2%	10%	5%	NA	1%

F.5
 (a) U Undetected at or above given concentration.
 (b) Outside quality control criteria ($\pm 20\%$) for SRMs.
 (c) NA Not applicable.

TABLE F.4. MDL Verification Study for Metals in *M. nasuta* Tissue Chemistry

Sed Code ID	Replicate	Batch	<i>M. nasuta</i> Metals (µg/g dry weight)								
			Ag	As	Cd	Cr	Cu	Hg	Ni	Pb	Zn
COMP SB-B, Replicate 1	3	1	0.462	22.5	0.188	4.32	20.3	0.122	3.86	6.02	90.1
COMP SB-B, Replicate 2	3	1	0.491	22.4	0.242	4.25	21.5	0.122	4.00	6.27	93.4
COMP SB-B, Replicate 3	3	1	0.392	24.5	0.212	3.41	17.5	0.126	3.19	5.00	88.1
COMP SB-B, Replicate 4	3	1	0.494	23.1	0.201	4.10	21.8	0.126	3.94	6.08	91.3
Mean			0.460	23.1	0.211	4.02	20.3	0.124	3.75	5.84	90.7
Standard Deviation			0.0474	0.967	0.0230	0.417	1.96	0.00231	0.376	0.572	2.22
Method Detection Limit (MDL) ^(a)			0.215	4.39	0.105	1.89	8.90	0.0105	1.71	2.60	10.1

(a) MDL calculated by multiplying the standard deviation times Students-t for four replicates (4.541).

TABLE F.5. Pesticides and PCB Congeners (Wet Weight) in Tissue of *M. nasuta*

Treatment	COMP BU	COMP BU	COMP BU	COMP BU	COMP BU
Replicate	1	2	3	4	5
Batch	2	2	2	1	2
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	14.94	14.34	15.03	13.78	13.94
Heptachlor	0.19 U ^(a)	0.18 U	0.19 U	0.19 U	0.18 U
Aldrin	0.75	0.73	0.81	0.76	0.74
Heptachlor Epoxide	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
2,4'-DDE	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
Endosulfan I	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
alpha-Chlordane	0.56	0.48	0.54	0.64	0.55
trans-Nonachlor	0.15 U	0.14 U	0.15 U	0.15 U	0.14 U
4,4'-DDE	4.89	4.39	4.78	3.94	4.92
Dieldrin	0.99	0.94	0.52 U	1.09	1.18
2,4'-DDD	0.68	0.59	0.77	0.63	0.73
2,4'-DDT	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
4,4'-DDD	1.94	1.76	1.95	1.84	1.82
Endosulfan II	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
4,4'-DDT	3.11	3.32	0.74	11.5	8.31
Endosulfan Sulfate	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
PCB 8	1.55	1.01	0.41 U	0.41 U	0.40 U
PCB 18	3.05	2.53	2.82	2.56	2.89
PCB 28	5.69	5.18	5.28	5.51	5.26
PCB 52	5.48	4.76	5.23	4.74	5.16
PCB 49	4.63	4.16	4.52	4.12	4.42
PCB 44	1.58	1.16	1.47	1.26	1.40
PCB 66	6.02	5.44	5.88	5.63	5.82
PCB 101	3.88	3.57	3.95	3.46	3.94
PCB 87	1.13	0.95	0.93	0.94	1.11
PCB 118	2.85	2.74	2.84	2.48	2.80
PCB 184	0.24 U	0.23 U	0.24 U	0.24 U	0.23 U
PCB 153	2.50	2.36	2.50	2.11	2.54
PCB 105	0.93	0.89	0.95	0.85	0.95
PCB 138	1.87	1.77	1.88	1.67	1.89
PCB 187	1.93	0.53	1.92	0.40	2.30
PCB 183	0.24 U	0.23 U	0.24 U	0.24 U	0.23 U
PCB 128	0.44	0.42	0.45	0.32	0.37
PCB 180	0.66	0.60	0.81	0.72	0.65
PCB 170	0.45	0.37	0.43	0.29	0.45
PCB 195	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
PCB 206	0.11 U	0.11 U	0.11 U	0.14	0.11 U
PCB 209	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Surrogate Recoveries (%)					
PCB 103 (SIS)	74	72	74	77	77
PCB 198 (SIS)	56	51	54	68	57

TABLE F.5. (contd)

Treatment	R-MUD 1	R-MUD 2	R-MUD 3	R-MUD 4	R-MUD 5
Replicate					
Batch	2	3	2	3	2
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	14.08	18.71	13.02	11.83	20.96
Heptachlor	0.19 U	0.19 U	0.19 U	0.19 U	0.17 U
Aldrin	0.13 U	0.73	0.13 U	0.68	0.22
Heptachlor Epoxide	0.13 U	0.13 U	0.13 U	0.13 U	0.12 U
2,4'-DDE	0.26 U	0.26 U	0.26 U	0.37	0.24 U
Endosulfan I	0.18 U	0.18 U	0.18 U	0.18 U	0.17 U
a-Chlordane	0.10 U	0.10 U	0.10 U	0.10 U	0.09 U
Trans Nonachlor	0.15 U	0.15 U	0.15 U	0.15 U	0.13 U
4,4'-DDE	0.30	0.36	0.46	0.36	0.24
Dieldrin	0.52 U	0.52 U	0.52 U	0.52 U	0.47 U
2,4'-DDD	0.25 U	0.25 U	0.25 U	0.25 U	0.23 U
2,4'-DDT	0.18 U	0.18 U	0.18 U	0.18 U	0.16 U
4,4'-DDD	0.26 U	0.26 U	0.26 U	0.26 U	0.24 U
Endosulfan II	0.18 U	0.18 U	0.18 U	0.18 U	0.17 U
4,4'-DDT	0.41	3.51	0.15 U	1.71	0.43
Endosulfan Sulfate	0.18 U	0.18 U	0.18 U	0.18 U	0.17 U
PCB 8	0.41 U	1.76	0.41 U	1.99	0.38 U
PCB 18	0.43 U	0.43 U	0.43 U	0.43 U	0.40 U
PCB 28	0.53	0.67	0.65	0.64	0.60
PCB 52	0.68	0.94	0.78	0.84	0.83
PCB 49	0.24 U	0.24	0.24 U	0.25	0.22 U
PCB 44	0.17 U	0.17 U	0.17 U	0.17 U	0.15 U
PCB 66	0.09 U	0.09 U	0.74	0.09 U	0.09 U
PCB 101	0.33	0.52	0.45	0.42	0.53
PCB 87	0.16 U	0.29	0.16 U	0.27	0.15 U
PCB 118	0.29 U	0.29 U	0.30	0.29 U	0.27 U
PCB 184	0.24 U	0.24 U	0.24 U	0.24 U	0.22 U
PCB 153	0.17	0.14	0.26	0.13	0.11 U
PCB 105	0.11 U	0.11 U	0.13	0.11 U	0.13
PCB 138	0.29 U	0.29 U	0.29 U	0.29 U	0.30
PCB 187	0.13 U	0.13 U	0.13 U	0.13 U	0.12 U
PCB 183	0.24 U	0.24 U	0.24 U	0.24 U	0.22 U
PCB 128	0.15 U	0.15 U	0.15 U	0.15 U	0.14 U
PCB 180	0.18 U	0.18 U	0.18 U	0.18 U	0.17 U
PCB 170	0.18	0.17 U	0.17 U	0.19	0.15 U
PCB 195	0.10 U	0.10 U	0.10 U	0.10 U	0.09 U
PCB 206	0.11 U	0.11 U	0.11 U	0.11 U	0.10 U
PCB 209	0.09 U				
<u>Surrogate Recoveries (%)</u>					
PCB 103 (SIS)	81	80	83	76	86
PCB 198 (SIS)	66	129	65	121	65

TABLE F.5. (contd)

Treatment	C-SB	C-SB, Dup	C-SB, Trip	C-SB	C-SB
Replicate	1	1	1	2	3
Batch	3	3	3	2	3
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	12.86	12.86	12.86	12.45	13.9
Heptachlor	0.36 U	0.36 U	0.37 U	0.19 U	0.18 U
Aldrin	0.25 U	0.25 U	0.25 U	0.13 U	0.12 U
Heptachlor Epoxide	0.26 U	0.26 U	0.26 U	0.13 U	0.13 U
2,4'-DDE	0.51 U	0.51 U	0.52 U	0.26 U	0.26 U
Endosulfan I	0.35 U	0.35 U	0.36 U	0.18 U	0.18 U
a-Chlordane	0.19 U	0.19 U	0.19 U	0.10 U	0.09 U
Trans Nonachlor	0.28 U	0.28 U	0.29 U	0.15 U	0.14 U
4,4'-DDE	0.81	0.37 U	0.37 U	0.36	0.52
Dieldrin	1.01 U	1.01 U	1.02 U	0.52 U	0.51 U
2,4'-DDD	0.50 U	0.50 U	0.50 U	0.25 U	0.25 U
2,4'-DDT	0.35 U	0.35 U	0.35 U	0.18 U	0.18 U
4,4'-DDD	0.51 U	0.51 U	0.52 U	0.26 U	0.26 U
Endosulfan II	0.35 U	0.35 U	0.36 U	0.18 U	0.18 U
4,4'-DDT	0.30 U	0.30 U	0.30 U	0.37	1.24
Endosulfan Sulfate	0.35 U	0.35 U	0.36 U	0.18 U	0.18 U
PCB 8	0.82	1.26	0.94	0.41 U	0.54
PCB 18	0.84 U	0.84 U	0.85 U	0.43 U	0.42 U
PCB 28	0.40 U	0.40 U	0.40 U	0.20 U	0.23
PCB 52	0.70 U	0.70 U	0.71 U	0.36 U	0.35 U
PCB 49	0.46 U	0.46 U	0.47 U	0.24 U	0.23 U
PCB 44	0.32 U	0.32 U	0.33 U	0.17 U	0.16 U
PCB 66	0.19 U	0.30	0.32	0.90 U	0.09 U
PCB 101	0.29 U	0.29 U	0.29 U	0.15 U	0.19
PCB 87	0.31 U	0.31 U	0.32 U	0.16 U	0.16 U
PCB 118	0.58 U	0.58 U	0.58 U	0.29 U	0.29 U
PCB 184	0.46 U	0.46 U	0.47 U	0.24 U	0.23 U
PCB 153	0.24 U	0.24 U	0.24 U	0.12 U	0.12 U
PCB 105	0.22 U	0.22 U	0.22 U	0.11 U	0.11 U
PCB 138	0.57 U	0.57 U	0.57 U	0.29 U	0.28 U
PCB 187	0.25 U	0.25 U	0.25 U	0.13 U	0.12 U
PCB 183	0.46 U	0.46 U	0.47 U	0.24 U	0.23 U
PCB 128	0.30 U	0.30 U	0.31 U	0.15 U	0.15 U
PCB 180	0.36 U	0.36 U	0.37 U	0.18 U	0.18 U
PCB 170	0.33 U	0.34	0.33 U	0.17 U	0.16 U
PCB 195	0.20 U	0.20 U	0.20 U	0.10 U	0.10 U
PCB 206	0.22 U	0.22 U	0.22 U	0.11 U	0.11 U
PCB 209	0.19 U	0.19 U	0.19 U	0.09 U	0.09 U
<u>Surrogate Recoveries (%)</u>					
PCB 103 (SIS)	89	79	88	77	94
PCB 198 (SIS)	144	125	141	59	162 ^(b)

TABLE F.5. (contd)

Treatment	C-SB	C-SB	C-SB, Dup	C-SB, Trip
Replicate	4	5	5	5
Batch	2	2	2	2
Units	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	13.16	13.21	13.21	13.21
Heptachlor	0.19 U	0.36 U	0.37 U	0.36 U
Aldrin	0.13 U	0.25 U	0.25 U	0.25 U
Heptachlor Epoxide	0.13 U	0.26 U	0.26 U	0.26 U
2,4'-DDE	0.26 U	0.51 U	0.52 U	0.51 U
Endosulfan I	0.18 U	0.35 U	0.36 U	0.25 U
a-Chlordane	0.10 U	0.19 U	0.19 U	0.19 U
Trans Nonachlor	0.15 U	0.28 U	0.29 U	0.28 U
4,4'-DDE	0.45	0.54	0.37 U	0.36 U
Dieldrin	0.52 U	1.01 U	1.02 U	1.00 U
2,4'-DDD	0.25 U	0.50 U	0.50 U	0.49 U
2,4'-DDT	0.18 U	0.35 U	0.35 U	0.35 U
4,4'-DDD	0.26 U	0.51 U	0.52 U	0.51 U
Endosulfan II	0.18 U	0.35 U	0.36 U	0.35 U
4,4'-DDT	0.39	0.91	0.30 U	0.34
Endosulfan Sulfate	0.18 U	0.35 U	0.36 U	0.35 U
PCB 8	0.41 U	0.81 U	0.81 U	0.80 U
PCB 18	0.43 U	0.84 U	0.85 U	0.83 U
PCB 28	0.20 U	0.40 U	0.40 U	0.40 U
PCB 52	0.36 U	0.70 U	0.71 U	0.69 U
PCB 49	0.24 U	0.46 U	0.47 U	0.46 U
PCB 44	0.17 U	0.32 U	0.33 U	0.32 U
PCB 66	0.09 U	0.19 U	0.19 U	0.18 U
PCB 101	0.15 U	0.29 U	0.29 U	0.28 U
PCB 87	0.16 U	0.31 U	0.32 U	0.31 U
PCB 118	0.29 U	0.58 U	0.58 U	0.57 U
PCB 184	0.24 U	0.46 U	0.47 U	0.46 U
PCB 153	0.12 U	0.24 U	0.24 U	0.24 U
PCB 105	0.11 U	0.22 U	0.22 U	0.21 U
PCB 138	0.29 U	0.57 U	0.57 U	0.56 U
PCB 187	0.13 U	0.25 U	0.25 U	0.24 U
PCB 183	0.24 U	0.46 U	0.47 U	0.46 U
PCB 128	0.15 U	0.30 U	0.31 U	0.30 U
PCB 180	0.18 U	0.36 U	0.37 U	0.36 U
PCB 170	0.17 U	0.33 U	0.45	0.32 U
PCB 195	0.10 U	0.20 U	0.20 U	0.19 U
PCB 206	0.11 U	0.22 U	0.22 U	0.22 U
PCB 209	0.09 U	0.19 U	0.19 U	0.18 U
<u>Surrogate Recoveries (%)</u>				
PCB 103 (SIS)	84	82	76	75
PCB 198 (SIS)	66	61	57	58

TABLE F.5. (contd)

Treatment Replicate Batch Units Percent Dry Weight	<i>M. nasuta</i> Background	<i>M. nasuta</i> Background	<i>M. nasuta</i> Background
	1	2	3
	7	7	7
	ng/g	ng/g	ng/g
Heptachlor	0.18 U	0.19 U	0.19 U
Aldrin	0.12 U	0.13 U	0.13 U
Heptachlor Epoxide	0.13 U	0.13 U	0.13 U
2,4'-DDE	0.26 U	0.26 U	0.26 U
Endosulfan I	0.18 U	0.18 U	0.18 U
a-Chlordane	0.09 U	0.10 U	0.10 U
Trans Nonachlor	0.14 U	0.15 U	0.15 U
4,4'-DDE	0.58	0.19 U	0.19 U
Dieldrin	0.51 U	0.52 U	0.52 U
2,4'-DDD	0.25 U	0.25 U	0.25 U
2,4'-DDT	0.18 U	0.18 U	0.18 U
4,4'-DDD	0.26 U	0.26 U	0.26 U
Endosulfan II	0.18 U	0.18 U	0.18 U
4,4'-DDT	0.15 U	0.15 U	0.15 U
Endosulfan Sulfate	0.55	0.47	0.39
PCB 8	0.40 U	0.41 U	0.41 U
PCB 18	0.42 U	0.43 U	0.43 U
PCB 28	0.50	0.77	0.20 U
PCB 52	0.35 U	0.36 U	0.36 U
PCB 49	0.23 U	0.24 U	0.24 U
PCB 44	0.16 U	0.17 U	0.17 U
PCB 66	0.09 U	0.09 U	0.09 U
PCB 101	0.14 U	0.15 U	0.15 U
PCB 87	0.16 U	0.16 U	0.16 U
PCB 118	0.29 U	0.29 U	0.29 U
PCB 184	0.23 U	0.24 U	0.24 U
PCB 153	0.12 U	0.12 U	0.12 U
PCB 105	0.11 U	0.11 U	0.11 U
PCB 138	0.28 U	0.29 U	0.29 U
PCB 187	0.12 U	0.13 U	0.13 U
PCB 183	0.23 U	0.24 U	0.24 U
PCB 128	0.15 U	0.15 U	0.15 U
PCB 180	0.18 U	0.18 U	0.18 U
PCB 170	0.16 U	0.17 U	0.17 U
PCB 195	0.10 U	0.10 U	0.10 U
PCB 206	0.11 U	0.11 U	0.11 U
PCB 209	0.09 U	0.09 U	0.09 U
Surrogate Recoveries (%)			
PCB 103 (SIS)	61	61	62
PCB 198 (SIS)	74	76	80

(a) U Undetected at or above given concentration.

(b) Result is outside quality control range (30-150%) for surrogate internal standard.

TABLE F.6. Pesticides and PCB Congeners (Dry Weight) in Tissue of *M. nasuta*

Treatment	COMP BU	COMP BU	COMP BU	COMP BU	COMP BU
Replicate	1	2	3	4	5
Batch	2	2	2	1	2
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	14.94	14.34	15.03	13.78	13.94
Heptachlor	1.27 U ^(a)	1.26 U	1.26 U	1.38 U	1.29 U
Aldrin	5.02	5.09	5.39	5.52	5.31
Heptachlor Epoxide	0.87 U	0.91 U	0.86 U	0.94 U	0.93 U
2,4'-DDE	1.74 U	1.81 U	1.73 U	1.89 U	1.87 U
Endosulfan I	1.20 U	1.26 U	1.20 U	1.31 U	1.29 U
α -Chlordane	3.75	3.35	3.59	4.64	3.95
Trans Nonachlor	1.00 U	0.98 U	1.00 U	1.09 U	1.00 U
4,4'-DDE	32.73	30.61	31.80	28.59	35.29
Dieldrin	6.63	6.56	3.46 U	7.91	8.46
2,4'-DDD	4.55	4.11	5.12	4.57	5.24
2,4'-DDT	1.20 U	1.26 U	1.20 U	1.31 U	1.29 U
4,4'-DDD	12.99	12.27	12.97	13.35	13.06
Endosulfan II	1.20 U	1.26 U	1.20 U	1.31 U	1.29 U
4,4'-DDT	20.82	23.15	4.92	83.45	59.61
Endosulfan Sulfate	1.20 U	1.26 U	1.20 U	1.31 U	1.29 U
PCB 8	10.37	7.04	2.73 U	2.98 U	2.87 U
PCB 18	20.41	17.64	18.76	18.58	20.73
PCB 28	38.09	36.12	35.13	39.99	37.73
PCB 52	36.68	33.19	34.80	34.40	37.02
PCB 49	30.99	29.01	30.07	29.90	31.71
PCB 44	10.58	8.09	9.78	9.14	10.04
PCB 66	40.29	37.94	39.12	40.86	41.75
PCB 101	25.97	24.90	26.28	25.11	28.26
PCB 87	7.56	6.62	6.19	6.82	7.96
PCB 118	19.08	19.11	18.90	18.00	20.09
PCB 184	1.61 U	1.60 U	1.60 U	1.74 U	1.65 U
PCB 153	16.73	16.46	16.63	15.31	18.22
PCB 105	6.22	6.21	6.32	6.17	6.81
PCB 138	12.52	12.34	12.51	12.12	13.56
PCB 187	12.92	3.70	12.77	2.90	16.50
PCB 183	1.61 U	1.60 U	1.60 U	1.74 U	1.65 U
PCB 128	2.95	2.93	2.99	2.32	2.65
PCB 180	4.42	4.18	5.39	5.22	4.66
PCB 170	3.01	2.58	2.86	2.10	3.23
PCB 195	0.67 U	0.70 U	0.67 U	0.73 U	0.72 U
PCB 206	0.74 U	0.77 U	0.73 U	1.02	0.79 U
PCB 209	0.60 U	0.63 U	0.60 U	0.65 U	0.65 U

TABLE F.6. (contd)

Treatment	R-MUD	R-MUD	R-MUD	R-MUD	R-MUD
Replicate	1	2	3	4	5
Batch	2	3	2	3	2
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	14.08	18.71	13.02	11.83	20.96
Heptachlor	1.3 U	1.0 U	1.5 U	1.6 U	0.81 U
Aldrin	0.92 U	3.9	1.0 U	5.7	1.0
Heptachlor Epoxide	0.92 U	0.69 U	1.0 U	1.1 U	0.57 U
2,4'-DDE	1.8 U	1.4 U	2.0 U	3.1	1.1 U
Endosulfan I	1.3 U	0.96 U	1.4 U	1.5 U	0.81 U
α -Chlordane	0.71 U	0.53 U	0.77 U	0.85 U	0.4 U
Trans Nonachlor	1.1 U	0.80 U	1.2 U	1.3 U	0.62 U
4,4'-DDE	2.1	1.9	3.5	3.0	1.1
Dieldrin	3.7 U	2.8 U	4.0 U	4.4 U	2.2 U
2,4'-DDD	1.8 U	1.3 U	1.9 U	2.1 U	1.1 U
2,4'-DDT	1.3 U	1.0 U	1.4 U	1.5 U	0.76 U
4,4'-DDD	1.8 U	1.4 U	2.0 U	2.2 U	1.1 U
Endosulfan II	1.3 U	1.0 U	1.4 U	1.5 U	0.81 U
4,4'-DDT	2.9	18.8	1.2 U	14.5	2.1
Endosulfan Sulfate	1.3 U	0.96 U	1.4 U	1.5 U	0.81 U
PCB 8	2.9 U	9.41	3.1 U	16.8	1.8 U
PCB 18	3.1 U	2.3 U	3.3 U	3.6 U	1.9 U
PCB 28	3.8	3.6	5.0	5.4	2.9
PCB 52	4.8	5.0	6.0	7.1	4.0
PCB 49	1.7 U	1.3	1.8 U	2.1	1.0 U
PCB 44	1.2 U	0.91 U	1.3 U	1.4 U	0.72 U
PCB 66	0.6 U	0.5 U	5.7	0.8 U	0.4 U
PCB 101	2.3	2.8	3.5	3.6	2.5
PCB 87	1.1 U	1.5	1.2 U	2.3	0.72 U
PCB 118	2.1 U	1.5 U	2.3	2.5 U	1.3 U
PCB 184	1.7 U	1.3 U	1.8 U	2.0 U	1.0 U
PCB 153	1.2	0.75	2.0	1.1	0.52 U
PCB 105	0.78 U	0.59 U	1.0	0.93 U	0.62
PCB 138	2.1 U	1.5 U	2.2 U	2.5 U	1.4
PCB 187	0.92 U	0.69 U	1.0 U	1.1 U	0.57 U
PCB 183	1.7 U	1.3 U	1.8 U	2.0 U	1.0 U
PCB 128	1.1 U	0.80 U	1.2 U	1.3 U	0.67 U
PCB 180	1.3 U	0.96 U	1.4 U	1.5 U	0.81 U
PCB 170	1.3	0.91 U	1.3 U	1.6	0.72 U
PCB 195	0.71 U	0.53 U	0.77 U	0.85 U	0.4 U
PCB 206	0.78 U	0.59 U	0.84 U	0.93 U	0.48 U
PCB 209	0.6 U	0.5 U	0.7 U	0.8 U	0.4 U

TABLE F.6. (contd)

Treatment	C-SB 1	C-SB, Dup 1	C-SB, Trip 1	C-SB 2	C-SB 3
Replicate	Batch 3	Batch 3	Batch 3	Batch 2	Batch 3
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	12.86	12.86	12.86	12.45	13.9
Heptachlor	2.8 U	2.8 U	2.9 U	1.5 U	1.3 U
Aldrin	1.9 U	1.9 U	1.9 U	1.0 U	0.86 U
Heptachlor Epoxide	2.0 U	2.0 U	2.0 U	1.0 U	0.94 U
2,4'-DDE	4.0 U	4.0 U	4.0 U	2.1 U	1.9 U
Endosulfan I	2.7 U	2.7 U	2.8 U	1.4 U	1.3 U
a-Chlordane	1.5 U	1.5 U	1.5 U	0.80 U	0.65 U
Trans Nonachlor	2.2 U	2.2 U	2.3 U	1.2 U	1.0 U
4,4'-DDE	6.3	2.9 U	2.9 U	2.9	3.7
Dieldrin	7.85 U	7.85 U	7.93 U	4.2 U	3.7 U
2,4'-DDD	3.9 U	3.9 U	3.9 U	2.0 U	1.8 U
2,4'-DDT	2.7 U	2.7 U	2.7 U	1.4 U	1.3 U
4,4'-DDD	4.0 U	4.0 U	4.0 U	2.1 U	1.9 U
Endosulfan II	2.7 U	2.7 U	2.8 U	1.4 U	1.3 U
4,4'-DDT	2.3 U	2.3 U	2.3 U	3.0	8.92
Endosulfan Sulfate	2.7 U	2.7 U	2.8 U	1.4 U	1.3 U
PCB 8	6.4	9.80	7.3	3.3 U	3.9
PCB 18	6.5 U	6.5 U	6.6 U	3.5 U	3.0 U
PCB 28	3.1 U	3.1 U	3.1 U	1.6 U	1.7
PCB 52	5.4 U	5.4 U	5.5 U	2.9 U	2.5 U
PCB 49	3.6 U	3.6 U	3.7 U	1.9 U	1.7 U
PCB 44	2.5 U	2.5 U	2.6 U	1.4 U	1.2 U
PCB 66	1.5 U	2.3	2.5	7.2 U	0.6 U
PCB 101	2.3 U	2.3 U	2.3 U	1.2 U	1.4
PCB 87	2.4 U	2.4 U	2.5 U	1.3 U	1.2 U
PCB 118	4.5 U	4.5 U	4.5 U	2.3 U	2.1 U
PCB 184	3.6 U	3.6 U	3.7 U	1.9 U	1.7 U
PCB 153	1.9 U	1.9 U	1.9 U	0.96 U	0.86 U
PCB 105	1.7 U	1.7 U	1.7 U	0.88 U	0.79 U
PCB 138	4.4 U	4.4 U	4.4 U	2.3 U	2.0 U
PCB 187	1.9 U	1.9 U	1.9 U	1.0 U	0.86 U
PCB 183	3.6 U	3.6 U	3.7 U	1.9 U	1.7 U
PCB 128	2.3 U	2.3 U	2.4 U	1.2 U	1.1 U
PCB 180	2.8 U	2.8 U	2.9 U	1.4 U	1.3 U
PCB 170	2.6 U	2.6	2.6 U	1.4 U	1.2 U
PCB 195	1.6 U	1.6 U	1.6 U	0.80 U	0.72 U
PCB 206	1.7 U	1.7 U	1.7 U	0.88 U	0.79 U
PCB 209	1.5 U	1.5 U	1.5 U	0.7 U	0.6 U

TABLE F.6. (contd)

Treatment	C-SB	C-SB	C-SB, Dup	C-SB, Trip
Replicate	4	5	5	5
Batch	2	2	2	2
Units	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	13.16	13.21	13.21	13.21
Heptachlor	1.4 U	2.7 U	2.8 U	2.7 U
Aldrin	0.99 U	1.9 U	1.9 U	1.9 U
Heptachlor Epoxide	0.99 U	1.97 U	1.97 U	1.97 U
2,4'-DDE	2.0 U	3.9 U	3.9 U	3.9 U
Endosulfan I	1.4 U	2.6 U	2.7 U	1.9 U
a-Chlordane	0.76 U	1.4 U	1.4 U	1.4 U
Trans Nonachlor	1.1 U	2.1 U	2.2 U	2.1 U
4,4'-DDE	3.4	4.1	2.8 U	2.7 U
Dieldrin	4.0 U	7.65 U	7.72 U	7.57 U
2,4'-DDD	1.9 U	3.8 U	3.8 U	3.7 U
2,4'-DDT	1.4 U	2.6 U	2.6 U	2.6 U
4,4'-DDD	2.0 U	3.9 U	3.9 U	3.9 U
Endosulfan II	1.4 U	2.6 U	2.7 U	2.6 U
4,4'-DDT	3.0	6.9	2.3 U	2.6
Endosulfan Sulfate	1.4 U	2.6 U	2.7 U	2.6 U
PCB 8	3.1 U	6.1 U	6.1 U	6.1 U
PCB 18	3.3 U	6.4 U	6.4 U	6.3 U
PCB 28	1.5 U	3.0 U	3.0 U	3.0 U
PCB 52	2.7 U	5.3 U	5.4 U	5.2 U
PCB 49	1.8 U	3.5 U	3.6 U	3.5 U
PCB 44	1.3 U	2.4 U	2.5 U	2.4 U
PCB 66	0.7 U	1.4 U	1.4 U	1.4 U
PCB 101	1.1 U	2.2 U	2.2 U	2.1 U
PCB 87	1.2 U	2.3 U	2.4 U	2.3 U
PCB 118	2.2 U	4.4 U	4.4 U	4.3 U
PCB 184	1.8 U	3.5 U	3.6 U	3.5 U
PCB 153	0.91 U	1.8 U	1.8 U	1.8 U
PCB 105	0.84 U	1.7 U	1.7 U	1.6 U
PCB 138	2.2 U	4.3 U	4.3 U	4.2 U
PCB 187	1.0 U	1.9 U	1.9 U	1.8 U
PCB 183	1.8 U	3.5 U	3.6 U	3.5 U
PCB 128	1.1 U	2.3 U	2.3 U	2.3 U
PCB 180	1.4 U	2.7 U	2.8 U	2.7 U
PCB 170	1.3 U	2.5 U	3.4	2.4 U
PCB 195	0.76 U	1.5 U	1.5 U	1.4 U
PCB 206	0.84 U	1.7 U	1.7 U	1.7 U
PCB 209	0.7 U	1.4 U	1.4 U	1.4 U

TABLE F.6. (contd)

Treatment Replicate Batch Units Percent Dry Weight	<i>M. nasuta</i> Background	<i>M. nasuta</i> Background	<i>M. nasuta</i> Background
	1	2	3
	ng/g	ng/g	ng/g
15.16	14.86	14.87	
Heptachlor	1.2 U	1.3 U	1.3 U
Aldrin	0.79 U	0.87 U	0.87 U
Heptachlor Epoxide	0.86 U	0.87 U	0.87 U
2,4'-DDE	1.7 U	1.7 U	1.7 U
Endosulfan I	1.2 U	1.2 U	1.2 U
a-Chlordane	0.59 U	0.67 U	0.67 U
Trans Nonachlor	0.9 U	1.0 U	1.0 U
4,4'-DDE	3.8	1.3 U	1.3 U
Dieldrin	3.4 U	3.5 U	3.5 U
2,4'-DDD	1.6 U	1.7 U	1.7 U
2,4'-DDT	1.2 U	1.2 U	1.2 U
4,4'-DDD	1.7 U	1.7 U	1.7 U
Endosulfan II	1.2 U	1.2 U	1.2 U
4,4'-DDT	1.0 U	1.0 U	1.0 U
Endosulfan Sulfate	3.6	3.2	2.6
PCB 8	2.6 U	2.8 U	2.8 U
PCB 18	2.8 U	2.9 U	2.9 U
PCB 28	3.3	5.2	1.3 U
PCB 52	2.3 U	2.4 U	2.4 U
PCB 49	1.5 U	1.6 U	1.6 U
PCB 44	1.1 U	1.1 U	1.1 U
PCB 66	0.6 U	0.6 U	0.6 U
PCB 101	0.92 U	1.0 U	1.0 U
PCB 87	1.1 U	1.1 U	1.1 U
PCB 118	1.9 U	2.0 U	2.0 U
PCB 184	1.5 U	1.6 U	1.6 U
PCB 153	0.79 U	0.81 U	0.81 U
PCB 105	0.73 U	0.74 U	0.74 U
PCB 138	1.8 U	2.0 U	2.0 U
PCB 187	0.79 U	0.87 U	0.87 U
PCB 183	1.5 U	1.6 U	1.6 U
PCB 128	1.0 U	1.0 U	1.0 U
PCB 180	1.2 U	1.2 U	1.2 U
PCB 170	1.1 U	1.1 U	1.1 U
PCB 195	0.66 U	0.67 U	0.67 U
PCB 206	0.73 U	0.74 U	0.74 U
PCB 209	0.6 U	0.6 U	0.6 U

(a) U Undetected at or above given concentration.

TABLE F.7. Quality Control Summary for Pesticides and PCB Congeners in Tissue of *M. nasuta* (Wet Weight)

Matrix Spike Results

Treatment	Matrix Spike				Matrix Spike			
	Replicate	COMP HU-A	COMP HU-A	Amount Spiked	Percent Recovery	COMP HU-C	COMP HU-C	
		1	1			5	5	
Batch	1	1				2	2	
Wet Wt Units	20.12 ng/g	20.12 ng/g				10.14 ng/g	10.25 ng/g	
Heptachlor	0.19 U ^(a)	2.62	2.50	105	0.37 U	4.69	4.90	96
Aldrin	1.66	4.28	2.50	105	3.40	5.96	4.90	52
Heptachlor Epoxide	0.13 U	2.13	2.50	85	0.26 U	3.53	4.90	72
2,4'-DDE	0.26 U	NA ^(b)	NS ^(c)	NA	0.52 U	NA	NS	NA
Endosulfan I	0.18 U	2.28	2.50	91	0.36 U	3.31	4.90	68
a-Chlordane	0.10 U	NA	NS	NA	0.85	NA	NS	NA
Trans Nonachlor	0.15 U	NA	NS	NA	0.29 U	NA	NS	NA
4,4'-DDE	5.48	7.48	2.50	80	10.1	13.9	4.90	78
Dieldrin	0.91	3.12	2.50	88	2.13	5.15	4.90	62
2,4'-DDD	0.77	NS	NS	NS	1.49	NA	NS	NA
2,4'-DDT	0.18 U	NS	NS	NS	0.35 U	NA	NS	NA
4,4'-DDD	2.67	5.24	2.50	103	4.61	8.58	4.90	81
Endosulfan II	0.18 U	2.92	2.50	117	0.36 U	4.49	4.90	92
4,4'-DDT	12.6	14.1	2.50	60	0.96	6.16	4.90	106
Endosulfan Sulfate	0.18 U	2.00	2.50	80	0.65	4.51	4.90	79
PCB 8	0.41 U	NA	NS	NA	0.81 U	NA	NS	NA
PCB 18	4.09	NA	NS	NA	17.0	NA	NS	NA
PCB 28	4.92	8.51	3.19	113	24.6	30.9	6.25	101
PCB 52	4.65	10.5	6.65	88	21.1	33.0	13.0	92
PCB 49	3.33	NS	NS	NS	16.7	NA	NS	NA
PCB 44	1.37	NA	NS	NA	9.51	NA	NS	NA
PCB 66	4.11	NA	NS	NA	19.6	NA	NS	NA
PCB 101	2.54	6.73	4.51	93	9.97	17.9	8.84	90
PCB 87	0.86	NA	NS	NA	3.11	NA	NS	NA
PCB 118	1.62	NA	NS	NA	7.68	NA	NS	NA
PCB 184	0.24 U	NA	NS	NA	0.47 U	NA	NS	NA
PCB 153	1.26	3.31	2.64	78	4.43	8.76	5.17	84
PCB 105	0.63	NA	NS	NA	2.85	NA	NS	NA
PCB 138	1.02	2.75	2.04	85	3.68	7.29	3.99	90
PCB 187	1.18	NA	NS	NA	0.25 U	NA	NS	NA
PCB 183	0.24 U	NA	NS	NA	0.54	NA	NS	NA
PCB 128	0.27	NA	NS	NA	0.90	NA	NS	NA
PCB 180	0.40	NA	NS	NA	1.25	NA	NS	NA
PCB 170	0.17 U	NA	NS	NA	0.33 U	NA	NS	NA
PCB 195	0.10 U	NA	NS	NA	0.20 U	NA	NS	NA
PCB 206	0.24	NA	NS	NA	0.41	NA	NS	NA
PCB 209	0.11	NA	NS	NA	0.29	NA	NS	NA
Surrogate Recoveries (%)								
PCB 103 (SIS)	65	65	NA	NA	81	77	NA	NA
PCB 198 (SIS)	63	69	NA	NA	59	59	NA	NA

TABLE F.7. (contd)

Matrix Spike Results

Treatment	COMP SB-A				COMP PC			
	COMP SB-A	MS	Amount Spiked	Percent Recovery	COMP PC	MS	Amount Spiked	Percent Recovery
Replicate	3	3			1	1		
Batch	3	3			7	7		
Wet Wt Units	10.06 ng/g	10.32 ng/g			20.84 ng/g	20.18 ng/g		
Heptachlor	0.37 U	4.35	4.85	90	0.18 U	2.41	2.50	96
Aldrin	1.45	5.18	4.85	77	0.90	2.96	2.50	82
Heptachlor Epoxide	0.26 U	3.97	4.85	82	0.13 U	2.58	2.50	103
2,4'-DDE	0.52 U	NA	NS	NA	0.25 U	NA	NS	NA
Endosulfan I	0.36 U	3.62	4.85	75	0.17 U	2.11	2.50	84
<i>a</i> -Chlordane	0.75	NA	NS	NA	3.09	NA	NS	NA
Trans Nonachlor	0.29 U	NA	NS	NA	0.52	NA	NS	NA
4,4'-DDE	4.00	7.91	4.85	81	4.47	7.19	2.50	109
Dieldrin	1.50	4.84	4.85	69	2.94	5.83	2.50	116
2,4'-DDD	0.55	NA	NS	NA	4.01	NA	NS	NA
2,4'-DDT	0.35 U	NA	NS	NA	0.17 U	NA	NS	NA
4,4'-DDD	2.22	7.25	4.85	104	8.51	13.3	2.50	192 ^(e)
Endosulfan II	0.36 U	3.77	4.85	78	0.17 U	2.72	2.50	109
4,4'-DDT	2.12	7.55	4.85	112	0.15 U	3.22	2.50	129 ^(e)
Endosulfan Sulfate	0.36 U	4.57	4.85	94	0.17 U	3.04	2.50	122 ^(e)
PCB 8	1.54	NA	NS	NA	0.39 U	NA	NS	NA
PCB 18	1.63	NA	NS	NA	0.66	NA	NS	NA
PCB 28	3.31	9.60	6.18	102	0.99	4.93	3.19	124 ^(e)
PCB 52	3.35	14.8	12.9	89	4.18	10.9	6.65	101
PCB 49	2.63	NA	NS	NA	1.33	NA	NS	NA
PCB 44	0.84	NA	NS	NA	0.35	NA	NS	NA
PCB 66	4.44	NA	NS	NA	0.09 U	NA	NS	NA
PCB 101	3.34	11.8	8.75	97	5.90	11.0	4.51	113
PCB 87	1.12	NA	NS	NA	2.57	NA	NS	NA
PCB 118	1.71	NA	NS	NA	3.67	NA	NS	NA
PCB 184	0.47 U	NA	NS	NA	0.23 U	NA	NS	NA
PCB 153	1.61	4.95	5.12	65	1.90	4.21	2.64	88
PCB 105	0.57	NA	NS	NA	1.49	NA	NS	NA
PCB 138	1.30	4.93	3.95	92	2.42	4.63	2.04	108
PCB 187	0.37	NA	NS	NA	0.49	NA	NS	NA
PCB 183	0.47 U	NA	NS	NA	0.23 U	NA	NS	NA
PCB 128	0.31 U	NA	NS	NA	0.48	NA	NS	NA
PCB 180	0.94	NA	NS	NA	0.57	NA	NS	NA
PCB 170	0.63	NA	NS	NA	0.30	NA	NS	NA
PCB 195	0.20 U	NA	NS	NA	0.10 U	NA	NS	NA
PCB 206	0.22 U	NA	NS	NA	0.11	NA	NS	NA
PCB 209	0.19 U	NA	NS	NA	1.37	NA	NS	NA
<u>Surrogate Recoveries (%)</u>								
PCB 103 (SIS)	86	82	NA	NA	77	82	NA	NA
PCB 198 (SIS)	154 ^(d)	147	NA	NA	72	67	NA	NA

TABLE F.7. (contd)

Analytical Replicate Results

Treatment Replicate Batch	DUP				TRIP				Control-SB 5 ng/g	DUP		TRIP		
	COMP		EC-B	5	COMP		EC-B	5		Control-SB		5	Control-SB	
	1				1			1		2	2	2		
Wet Wt Units	10.04		ng/g	10.02		ng/g	10.11	ng/g	RSD%	10.16	ng/g	10	ng/g	NA RSD%
Heptachlor	0.37	U	0.37	U	0.37	U	NA	0.36	U	0.37	U	0.36	U	NA
Aldrin	1.15		1.23		1.21		3	0.25	U	0.25	U	0.25	U	NA
Heptachlor Epoxide	0.27	U	0.27	U	0.26	U	NA	0.26	U	0.26	U	0.26	U	NA
2,4'-DDE	0.52	U	0.52	U	0.52	U	NA	0.51	U	0.52	U	0.51	U	NA
Endosulfan I	0.36	U	0.36	U	0.36	U	NA	0.35	U	0.36	U	0.25	U	NA
a-Chlordane	2.58		2.98		2.92		8	0.19	U	0.19	U	0.19	U	NA
Trans Nonachlor	0.75		1.06		1.01		18	0.28	U	0.29	U	0.28	U	NA
4,4'-DDE	3.65		3.82		3.91		3	0.54		0.37	U	0.36	U	NA
Dieldrin	1.77		1.95		1.92		5	1.01	U	1.02	U	1.00	U	NA
2,4'-DDD	1.62		1.50		1.59		4	0.50	U	0.50	U	0.49	U	NA
2,4'-DDT	0.36	U	0.36	U	0.35	U	NA	0.35	U	0.35	U	0.35	U	NA
4,4'-DDD	5.35		5.63		5.96		5	0.51	U	0.52	U	0.51	U	NA
Endosulfan II	0.36	U	0.36	U	0.36	U	NA	0.35	U	0.36	U	0.35	U	NA
4,4'-DDT	1.86		2.54		3.15		26	0.91		0.30	U	0.34		NA
Endosulfan Sulfate	0.36	U	0.36	U	0.36	U	NA	0.35	U	0.36	U	0.35	U	NA
PCB 8	0.82	U	0.82	U	0.82	U	NA	0.81	U	0.81	U	0.80	U	NA
PCB 18	6.73		6.77		6.82		1	0.84	U	0.85	U	0.83	U	NA
PCB 28	7.35		7.93		7.85		4	0.40	U	0.40	U	0.40	U	NA
PCB 52	7.26		7.29		7.44		1	0.70	U	0.71	U	0.69	U	NA
PCB 49	4.78		4.89		4.99		2	0.46	U	0.47	U	0.46	U	NA
PCB 44	2.17		2.65		2.54		10	0.32	U	0.33	U	0.32	U	NA
PCB 66	6.75		7.12		7.26		4	0.19	U	0.19	U	0.18	U	NA
PCB 101	3.35		3.42		3.73		6	0.29	U	0.29	U	0.28	U	NA
PCB 87	1.23		1.35		1.41		7	0.31	U	0.32	U	0.31	U	NA
PCB 118	2.48		2.49		2.70		5	0.58	U	0.58	U	0.57	U	NA
PCB 184	0.47	U	0.47	U	0.47	U	NA	0.46	U	0.47	U	0.46	U	NA
PCB 153	1.38		1.39		1.46		3	0.24	U	0.24	U	0.24	U	NA
PCB 105	0.93		0.97		1.03		5	0.22	U	0.22	U	0.21	U	NA
PCB 138	1.19		1.23		1.31		5	0.57	U	0.57	U	0.56	U	NA
PCB 187	3.47		3.11		3.41		6	0.25	U	0.25	U	0.24	U	NA
PCB 183	0.47	U	0.47	U	0.47	U	NA	0.46	U	0.47	U	0.46	U	NA
PCB 128	0.33		0.31	U	0.34		NA	0.30	U	0.31	U	0.30	U	NA
PCB 180	0.68		0.65		0.62		5	0.36	U	0.37	U	0.36	U	NA
PCB 170	0.33	U	0.33	U	0.33	U	NA	0.33	U	0.45		0.32	U	NA
PCB 195	0.20	U	0.20	U	0.20	U	NA	0.20	U	0.20	U	0.19	U	NA
PCB 206	0.23	U	0.23	U	0.23	U	NA	0.22	U	0.22	U	0.22	U	NA
PCB 209	0.19	U	0.19	U	0.19	U	NA	0.19	U	0.19	U	0.18	U	NA
<u>Surrogate Recoveries (%)</u>														
PCB 103 (SIS)	67		80		74		NA	82		76		75		NA
PCB 198 (SIS)	54		74		62		NA	61		57		58		NA

TABLE F.7. (contd)

Analytical Replicate Results

Treatment	C-SB	DUP	TRIP	COMP PC	DUP	TRIP	COMP PC	
		C-SB	C-SB		5	5		
Replicate	1	1	1	7	7	7	7	
Batch	3	3	3					
Wet Wt	10.22	10.18	10.08	NA	16.10	16.99	17.88	
Units	ng/g	ng/g	ng/g	RSD%	ng/g	ng/g	ng/g	
							RSD%	
Heptachlor	0.36 U	0.36 U	0.37 U	NA	0.23 U	0.22 U	0.21 U	NA
Aldrin	0.25 U	0.25 U	0.25 U	NA	1.14	1.12	1.05	4
Heptachlor Epoxide	0.26 U	0.26 U	0.26 U	NA	0.16 U	0.16 U	0.15 U	NA
2,4'-DDE	0.51 U	0.51 U	0.52 U	NA	0.32 U	0.31 U	0.29 U	NA
Endosulfan I	0.35 U	0.35 U	0.36 U	NA	0.22 U	0.21 U	0.20 U	NA
a-Chlordane	0.19 U	0.19 U	0.19 U	NA	3.54	3.06	2.78	12
Trans Nonachlor	0.28 U	0.28 U	0.29 U	NA	0.61	0.39	0.32	34
4,4'-DDE	0.81	0.37 U	0.37 U	NA	5.66	5.28	4.61	10
Dieldrin	1.01 U	1.01 U	1.02 U	NA	3.96	3.79	3.43	7
2,4'-DDD	0.50 U	0.50 U	0.50 U	NA	5.45	4.75	4.45	11
2,4'-DDT	0.35 U	0.35 U	0.35 U	NA	0.22 U	0.21 U	0.20 U	NA
4,4'-DDD	0.51 U	0.51 U	0.52 U	NA	11.4	10.6	9.14	11
Endosulfan II	0.35 U	0.35 U	0.36 U	NA	0.22 U	0.21 U	0.20 U	NA
4,4'-DDT	0.30 U	0.30 U	0.30 U	NA	0.19 U	0.18 U	0.17 U	NA
Endosulfan Sulfate	0.35 U	0.35 U	0.36 U	NA	0.22 U	0.21 U	0.20 U	NA
PCB 8	0.82	1.26	0.94	23	0.51 U	0.48 U	0.46 U	NA
PCB 18	0.84 U	0.84 U	0.85 U	NA	0.53 U	0.90	0.48 U	NA
PCB 28	0.40 U	0.40 U	0.40 U	NA	1.33	1.17	1.03	13
PCB 52	0.70 U	0.70 U	0.71 U	NA	5.27	4.90	4.38	9
PCB 49	0.46 U	0.46 U	0.47 U	NA	1.83	1.58	1.41	13
PCB 44	0.32 U	0.32 U	0.33 U	NA	0.50	0.19 U	0.18 U	NA
PCB 66	0.19 U	0.30	0.32	NA	0.12 U	0.11 U	0.11 U	NA
PCB 101	0.29 U	0.29 U	0.29 U	NA	7.32	6.83	6.12	9
PCB 87	0.31 U	0.31 U	0.32 U	NA	3.21	3.00	2.64	10
PCB 118	0.58 U	0.58 U	0.58 U	NA	4.56	4.02	3.83	9
PCB 184	0.46 U	0.46 U	0.47 U	NA	0.29 U	0.28 U	0.26 U	NA
PCB 153	0.24 U	0.24 U	0.24 U	NA	2.53	2.19	2.04	11
PCB 105	0.22 U	0.22 U	0.22 U	NA	2.11	1.72	1.60	15
PCB 138	0.57 U	0.57 U	0.57 U	NA	3.19	2.82	2.59	11
PCB 187	0.25 U	0.25 U	0.25 U	NA	0.63	0.50	0.51	13
PCB 183	0.46 U	0.46 U	0.47 U	NA	0.31	0.28 U	0.26 U	NA
PCB 128	0.30 U	0.30 U	0.31 U	NA	0.73	0.59	0.56	14
PCB 180	0.36 U	0.36 U	0.37 U	NA	0.76	0.73	0.64	9
PCB 170	0.33 U	0.34	0.33 U	NA	0.39	0.36	0.34	7
PCB 195	0.20 U	0.20 U	0.20 U	NA	0.12 U	0.12 U	0.11 U	NA
PCB 206	0.22 U	0.22 U	0.22 U	NA	0.18	0.18	0.15	10
PCB 209	0.19 U	0.19 U	0.19 U	NA	0.12 U	0.11 U	0.11 U	NA
<u>Surrogate Recoveries (%)</u>								
PCB 103 (SIS)	89	79	88	NA	95	95	86	NA
PCB 198 (SIS)	144	125	141	NA	93	82	75	NA

(a) U Undetected at or above given concentration.

(b) NA Not applicable.

(c) NS Not spiked.

(d) Outside quality control range (30-150%) for SIS.

(e) Outside quality control criteria (50-120%) for matrix spike recovery.

TABLE F.8. Polynuclear Aromatic Hydrocarbons (PAH) and 1,4-Dichlorobenzene (Wet Weight) in Tissue of *M. nasuta*

Treatment	COMP BU	COMP BU	COMP BU	COMP BU	COMP BU
Replicate	1	2	3	4	5
Batch	2	2	2	1	2
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	14.94%	14.34%	15.03%	13.78%	13.94%
1,4-Dichlorobenzene	1.86 U ^(a)	1.83 U	1.86 U	1.86 U	1.83 U
Naphthalene	3.19	2.97 ^(b)	2.63	3.68	2.96
Acenaphthylene	2.04 ^(b)	2.18 ^(b)	1.44 ^(b)	2.20	2.07 ^(b)
Acenaphthene	3.30	2.48 ^(b)	3.21	3.14	3.30
Fluorene	3.76	3.24 ^(b)	3.70	3.90	3.32
Phenanthrene	22.5	18.2	19.8	19.5	19.6
Anthracene	17.6	14.2	14.4	15.7	20.3
Fluoranthene	84.2	71.0	75.8	76.1	84.8
Pyrene	117	103	113	106	116
Benz(a)anthracene	51.8	45.3	45.8	49.8	57.3
Chrysene	62.0	56.4	58.1	56.7	68.3
Benzo(b)fluoranthene	48.9	44.3	46.8	50.2	56.6
Benzo(k)fluoranthene	16.2	15.3	16.4	15.9	19.0
Benzo(a)pyrene	36.5	32.6	33.1	36.5	41.8
Indeno(1,2,3-c,d)pyrene	11.4	9.66	9.54	10.5	14.1
Dibenz(a,h)anthracene	3.08	2.75	2.95	3.18	3.78
Benzo(g,h,i)perylene	12.8	10.7	11.1	11.6	14.0
Surrogate Internal Standards (%)					
d4 1,4-Dichlorobenzene	52	42	50	56	58
d8 Naphthalene	61	53	58	70	65
d10 Acenaphthene	65	58	63	71	68
d12 Chrysene	71	65	68	79	74
d14 Dibenz(a,h,i)anthracene	80	75	73	106	83

TABLE F.8. (contd)

Treatment	R-MUD	R-MUD	R-MUD	R-MUD	R-MUD
Replicate	1	2	3	4	5
Batch	2	3	2	3	2
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	14.08%	18.71%	13.02%	11.83%	20.96%
1,4-Dichlorobenzene	1.86 U	1.86 U	1.86 U	1.86 U	1.71 U
Naphthalene	1.86 U	1.86 U	1.86 U	1.86 U	1.87 ^(b)
Acenaphthylene	0.72 U	0.72 U	0.72 U	0.72 U	0.67 U
Acenaphthene	1.30 U	1.30 U	1.30 U	1.30 U	1.20 U
Fluorene	1.24 U	1.24 U	1.24 U	1.24 U	1.14 U
Phenanthrene	2.56 U	2.56 U	2.56 U	2.56 U	2.35 U
Anthracene	2.24 U	2.24 U	2.24 U	2.24 U	2.06 U
Fluoranthene	5.36 U	5.36 U	5.36 U	5.36 U	4.94 U
Pyrene	4.57 U	4.57 U	4.57 U	4.57 U	4.20 U
Benzo(a)anthracene	2.16 ^(b) B ^(c)	2.38 ^(b) B	2.73 ^(b) B	2.34 ^(b) B	2.20 ^(b) B
Chrysene	2.27 U	2.27 U	2.27 U	2.27 U	2.09 U
Benzo(b)fluoranthene	2.98 ^(b)	3.25 ^(b) B	4.14 ^(d)	2.95 ^(b) B	3.54
Benzo(k)fluoranthene	2.05 ^(b)	2.12 ^(b)	1.67 U	2.17 ^(b)	1.96
Benzo(a)pyrene	1.49 U	1.49 U	1.54 ^(b)	1.62 ^(b)	1.41
Indeno(123-cd)pyrene	1.76 U	1.76 U	1.76 U	1.76 U	1.62 U
Dibenzo(a,h)anthracene	1.26 U	1.26 U	1.26 U	1.26 U	1.16 U
Benzo(g,h,i)perylene	1.40 U	1.40 U	1.46 ^(b)	1.40 U	1.41 ^(b)
Surrogate Internal Standards (%)					
d4 1,4-Dichlorobenzene	58	51	55	43	60
d8 Naphthalene	66	60	65	51	71
d10 Acenaphthene	68	63	70	56	73
d12 Chrysene	73	61	72	61	73
d14 Dibenzo(a,h,i)anthracene	88	70	86	71	86

TABLE F.8. (contd)

Treatment Replicate Batch Units	DUP		TRIP			
	C-SB	C-SB	C-SB	C-SB	C-SB	C-SB
	1-1	1-2	1-3	2	3	4
	3	3	3	2	3	2
Percent Dry Weight	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
12.86%	12.86%	12.86%	12.45%	13.90%	13.16%	
1,4-Dichlorobenzene	3.65 U	3.65 U	3.69 U	1.86 U	1.86 U	1.86 U
Naphthalene	3.65 U	3.65 U	3.69 U	1.86 U	1.86 U	1.86 U
Acenaphthylene	1.42 U	1.42 U	1.44 U	0.72 U	0.72 U	0.72 U
Acenaphthene	2.56 U	2.56 U	2.58 U	1.30 U	1.30 U	1.30 U
Fluorene	2.42 U	2.42 U	2.45 U	1.24 U	1.24 U	1.24 U
Phenanthrene	5.02 U	5.02 U	5.07 U	2.56 U	2.56 U	2.56 U
Anthracene	4.39 U	4.39 U	4.43 U	2.24 U	2.74 ^(b)	2.24 U
Fluoranthene	10.5 U	10.5 U	10.6 U	5.36 U	5.76	5.92
Pyrene	8.95 U	8.95 U	9.05 U	4.57 U	4.57 U	4.57 U
Benzo(a)anthracene	4.54 ^(b) B	4.95 ^(b) B	4.65 ^(b) B	2.52 ^(b) B	2.57 ^(b) B	2.46 ^(b) B
Chrysene	4.45 U	4.45 U	4.49 U	2.27 U	2.27 U	2.27 U
Benzo(b)fluoranthene	6.41 ^(b) B	5.72 ^(b) B	6.18 ^(b) B	3.54	4.11 ^(b) B	4.35 ^(d)
Benzo(k)fluoranthene	3.27 U	3.93 ^(b)	3.31 U	2.09 ^(b)	1.67 U	1.67 U
Benzo(a)pyrene	2.92 U	2.93 U	2.96 U	1.49 U	1.49 U	1.49 U
Indeno(123-cd)pyrene	3.45 U	3.45 U	3.49 U	1.76 U	1.76 U	1.76 U
Dibenzo(a,h)anthracene	2.47 U	2.47 U	2.50 U	1.26 U	1.26 U	1.26 U
Benzo(g,h,i)perylene	2.75 U	2.75 U	2.78 U	1.40 U	1.40 U	1.48
<u>Surrogate Internal Standards (%)</u>						
d4 1,4-Dichlorobenzene	54	57	59	57	65	53
d8 Naphthalene	64	65	71	62	74	65
d10 Acenaphthene	67	66	76	64	73	69
d12 Chrysene	80	75	87	65	78	75
d14 Dibenzo(a,h,i)anthracene	83	77	91	76	89	87

TABLE F.8. (contd)

Treatment	C-SB	DUP	TRIP	<i>M. nasuta</i>	<i>M. nasuta</i>	<i>M. nasuta</i>
Replicate	5-1	C-SB	C-SB	Background	Background	Background
Batch	2	2	2	7	7	7
Units	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	13.21%	13.21%	13.21%	15.16%	14.86%	14.87%
1,4-Dichlorobenzene	3.65 U	3.69 U	3.62 U	1.83 U	1.86 U	1.86 U
Naphthalene	3.65 U	3.69 U	3.62 U	2.31	2.51	3.18 ^(b)
Acenaphthylene	1.42 U	1.44 U	1.41 U	0.71 U	0.73 U	0.73 U
Acenaphthene	2.56 U	2.58 U	2.53 U	1.28 U	1.3 U	1.3 U
Fluorene	2.42 U	2.45 U	2.40 U	1.21 U	2.82 ^(b)	2.86 ^(b)
Phenanthrene	5.02 U	5.07 U	4.96 U	5.25	3.74	3.96
Anthracene	4.39 U	4.43 U	4.34 U	2.19 U	2.24 U	2.24 U
Fluoranthene	10.5 U	10.6 U	10.4 U	6.49 ^(b)	7.05 ^(b)	7.42 ^(b)
Pyrene	8.95 U	9.05 U	8.86 U	4.61 ^(b)	5.10	5.49
Benzo(a)anthracene	4.73	4.80 ^(b) B	4.53 ^(b) B	4.00 ^(b)	4.04 ^(b)	4.06 ^(b)
Chrysene	4.45 U	4.49 U	4.40 U	2.22 U	2.27 U	2.27 U
Benzo(b)fluoranthene	5.67	5.81 ^(b)	6.38	4.90	4.67 ^(b)	4.97 ^(b)
Benzo(k)fluoranthene	3.98	4.08 ^(b)	3.24 U	2.51 ^(b)	2.65 ^(b)	2.62 ^(b)
Benzo(a)pyrene	4.70	2.96 U	2.90 U	2.85 ^(b)	2.26 ^(b)	2.64 ^(b)
Indeno(123-cd)pyrene	3.45 U	3.49 U	3.42 U	3.31 ^(b)	3.48 ^(b)	3.44 ^(b)
Dibenzo(a,h)anthracene	2.47 U	2.50 U	2.45 U	1.24 U	1.26 U	1.26 U
Benzo(g,h,i)perylene	2.75 U	2.78 U	2.72 U	3.12 ^(b)	1.4 U	1.4 U
Surrogate Internal Standards (%)						
d4 1,4-Dichlorobenzene	58	59	53	11 ^(e)	45	31
d8 Naphthalene	67	67	61	18 ^(e)	59	44
d10 Acenaphthene	68	66	62	27 ^(e)	76	66
d12 Chrysene	68	63	63	70	75	75
d14 Dibenzo(a,h,i)anthracene	79	71	74	88	71	92

(a) U Undetected at or above given concentration.

(b) Ion ratio out or confirmation ion not detected.

(c) B Value is < 5 times concentration in blank.

(d) Benzo(b)fluoranthene is the sum of benzo(b)fluoranthene and benzo(k)fluoranthene.

Benzo(k)fluoranthene is present but could not be quantified due to poor resolution.

(e) Outside quality control criteria (30-150%) for surrogate internal standards.

TABLE F.9. Polynuclear Aromatic Hydrocarbons (PAH) and 1,4-Dichlorobenzene (Dry Weight) in Tissue of *M. nasuta*

Sed COMP ID	COMP BU Replicate Batch Units	COMP BU 1 2 ng/g	COMP BU 3 2 ng/g	COMP BU 4 1 ng/g	COMP BU 5 2 ng/g
Percent Dry Weight	0.1494	0.1434	0.1503	0.1378	0.1394
1,4-Dichlorobenzene	12.4 U	12.8 U	12.4 U	13.5 U	13.1 U
Naphthalene	21.4	20.7 ^(b)	17.5	26.7	21.2
Acenaphthylene	13.7 ^(b)	15.2 ^(b)	9.58 ^(b)	16.0	14.8 ^(b)
Acenaphthene	22.1	17.3 ^(b)	21.4	22.8	23.7
Fluorene	25.2	22.6 ^(b)	24.6	28.3	23.8
Phenanthrene	151	127	132	142	141
Anthracene	118	99.0	95.8	114	146
Fluoranthene	564	495	504	552	608
Pyrene	783	718	752	769	832
Benzo(a)anthracene	347	316	305	361	411
Chrysene	415	393	387	411	490
Benzo(b)fluoranthene	327	309	311	364	406
Benzo(k)fluoranthene	108	107	109	115	136
Benzo(a)pyrene	244	227	220	265	300
Indeno(123-cd)pyrene	76.3	67.4	63.5	76.2	101
Dibenzo(a,h)anthracene	20.6	19.2	19.6	23.1	27.1
Benzo(g,h,i)perylene	85.7	74.6	73.9	84.2	100

TABLE F.9. (contd)

Treatment	R-MUD	R-MUD	R-MUD	R-MUD	R-MUD
Replicate	1	2	3	4	5
Batch	2	3	2	3	2
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	14.08%	18.71%	13.02%	11.83%	20.96%
1,4-Dichlorobenzene	13.2 U	9.94 U	14.3 U	15.7 U	8.16 U
Naphthalene	13.2 U	9.94 U	14.3 U	15.7 U	8.92 ^(b)
Acenaphthylene	5.1 U	3.8 U	5.5 U	6.1 U	3.2 U
Acenaphthene	9.23 U	6.95 U	9.98 U	11.0 U	5.73 U
Fluorene	8.81 U	6.63 U	9.52 U	10.5 U	5.44 U
Phenanthrene	18.2 U	13.7 U	19.7 U	21.6 U	11.2 U
Anthracene	15.9 U	12.0 U	17.2 U	18.9 U	9.83 U
Fluoranthene	38.1 U	28.6 U	41.2 U	45.3 U	23.6 U
Pyrene	32.5 U	24.4 U	35.1 U	38.6 U	20.0 U
Benzo(a)anthracene	15.3 ^(b) B ^(c)	12.7 ^(b) B	21.0 ^(b) B	19.8 ^(b) B	10.5 ^(b) B
Chrysene	16.1 U	12.1 U	17.4 U	19.2 U	9.97 U
Benzo(b)fluoranthene	21.2 ^(b)	17.4 ^(b) B	31.8 ^(d)	24.9 ^(b) B	16.9
Benzo(k)fluoranthene	14.6 ^(b)	11.3 ^(b)	12.8 U	18.3 ^(b)	9.35
Benzo(a)pyrene	10.6 U	7.96 U	11.8 ^(b)	13.7 ^(b)	6.73
Indeno(123-cd)pyrene	12.5 U	9.41 U	13.5 U	14.9 U	7.73 U
Dibenzo(a,h)anthracene	8.95 U	6.73 U	9.68 U	10.7 U	5.53 U
Benzo(g,h,i)perylene	9.94 U	7.48 U	11.2 ^(b)	11.8 U	6.73 ^(b)

TABLE F.9. (contd)

Treatment	C-SB	C-SB	C-SB	C-SB	C-SB	C-SB
Replicate	1-1	1-2	1-3	2	3	4
Batch	3	3	3	2	3	2
Units	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	12.86%	12.86%	12.86%	12.45%	13.90%	13.16%
1,4-Dichlorobenzene	28.4 U	28.4 U	28.7 U	14.9 U	13.4 U	14.1 U
Naphthalene	28.4 U	28.4 U	28.7 U	14.9 U	13.4 U	14.1 U
Acenaphthylene	11.0 U	11.0 U	11.2 U	5.8 U	5.2 U	5.5 U
Acenaphthene	19.9 U	19.9 U	20.1 U	10.4 U	9.35 U	9.88 U
Fluorene	18.8 U	18.8 U	19.1 U	9.96 U	8.92 U	9.42 U
Phenanthrene	39.0 U	39.0 U	39.4 U	20.6 U	18.4 U	19.5 U
Anthracene	34.1 U	34.1 U	34.4 U	18.0 U	19.7 ^(b)	17.0 U
Fluoranthene	81.6 U	81.6 U	82.4 U	43.1 U	41.4	45.0
Pyrene	69.6 U	69.6 U	70.4 U	36.7 U	32.9 U	34.7 U
Benzo(a)anthracene	35.3 ^(b) B	38.5 ^(b) B	36.2 ^(b) B	20.2 ^(b) B	18.5 ^(b) B	18.7 ^(b) B
Chrysene	34.6 U	34.6 U	34.9 U	18.2 U	16.3 U	17.2 U
Benzo(b)fluoranthene	49.8 ^(b) B	44.5 ^(b) B	48.1 ^(b) B	28.4	29.6 ^(b) B	33.1 ^(d)
Benzo(k)fluoranthene	25.4 U	30.6 ^(b)	25.7 U	16.8 ^(b)	12.0 U	12.7 U
Benzo(a)pyrene	22.7 U	22.8 U	23.0 U	12.0 U	10.7 U	11.3 U
Indeno(123-cd)pyrene	26.8 U	26.8 U	27.1 U	14.1 U	12.7 U	13.4 U
Dibenzo(a,h)anthracene	19.2 U	19.2 U	19.4 U	10.1 U	9.06 U	9.57 U
Benzo(g,h,i)perylene	21.4 U	21.4 U	21.6 U	11.2 U	10.1 U	11.2

TABLE F.9. (contd)

Treatment	C-SB	C-SB	C-SB	<i>M. nasuta</i> Background	<i>M. nasuta</i> Background	<i>M. nasuta</i> Background
Replicate	5-1	5-2	5-3	1	2	3
Batch	2	2	2	7	7	7
Units	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	13.21%	13.21%	13.21%	15.16%	14.86%	14.87%
1,4-Dichlorobenzene	27.6 U	27.9 U	27.4 U	12.1 U	12.5 U	12.5 U
Naphthalene	27.6 U	27.9 U	27.4 U	15.2	16.9	21.4 ^(b)
Acenaphthylene	10.7 U	10.9 U	10.7 U	4.68 U	4.91 U	4.91 U
Acenaphthene	19.4 U	19.5 U	19.2 U	8.44 U	8.75 U	8.74 U
Fluorene	18.3 U	18.5 U	18.2 U	7.98 U	19.0 ^(b)	19.2 ^(b)
Phenanthrene	38.0 U	38.4 U	37.5 U	34.6	25.2	26.6
Anthracene	33.2 U	33.5 U	32.9 U	14.4 U	15.1 U	15.1 U
Fluoranthene	79.5 U	80.2 U	78.7 U	42.8 ^(b)	47.4 ^(b)	49.9 ^(b)
Pyrene	67.8 U	68.5 U	67.1 U	30.4 ^(b)	34.3	36.9
Benzo(a)anthracene	35.8	36.3 ^(b) B	34.3 ^(b) B	26.4 ^(b)	27.2 ^(b)	27.3 ^(b)
Chrysene	33.7 U	34.0 U	33.3 U	14.6 U	15.3 U	15.3 U
Benzo(b)fluoranthene	42.9	44.0 ^(b)	48.3	32.3	31.4 ^(b)	33.4 ^(b)
Benzo(k)fluoranthene	30.1	30.9 ^(b)	24.5 U	16.6 ^(b)	17.8 ^(b)	17.6 ^(b)
Benzo(a)pyrene	35.6	22.4 U	22.0 U	18.8 ^(b)	15.2 ^(b)	17.8 ^(b)
Indeno(123-cd)pyrene	26.1 U	26.4 U	25.9 U	21.8 ^(b)	23.4 ^(b)	23.1 ^(b)
Dibenzo(a,h)anthracene	18.7 U	18.9 U	18.5 U	8.18 U	8.48 U	8.47 U
Benzo(g,h,i)perylene	20.8 U	21.0 U	20.6 U	20.6 ^(b)	9.4 U	9.41 U

(a) U Undetected at or above given concentration.

(b) Ion ratio out or confirmation ion not detected.

(c) B Value is < 5 times concentration in blank.

(d) Benzo(b)fluoranthene is the sum of benzo(b)fluoranthene and benzo(k)fluoranthene.

Benzo(k)fluoranthene is present but could not be quantified due to poor resolution.

TABLE F.10. Quality Control Summary for Polynuclear Aromatic Hydrocarbons (PAHs) and 1,4-Dichlorobenzene in Tissue of *M. nasuta* (Wet Weight)

Matrix Spike Results

Treatment	Matrix Spike		Amount Spiked ng/g	Percent Recovery
	COMP PC	COMP PC(MS)		
Replicate	1	1		
Batch	7	7		
Wet Weight	20.84	20.18		
Units	ng/g	ng/g		
1,4-Dichlorobenzene	1.79 U ^(a)	22.3	24.8	90
Naphthalene	3.19 ^(b)	30.6	24.8	111
Acenaphthylene	0.70 U	26.0	24.8	105
Acenaphthene	14.3	44.1	24.8	120
Fluorene	5.12 ^(b)	32.5	24.8	110
Phenanthrene	23.9	54.5	24.8	123 ^(c)
Anthracene	27.2	62.2	24.8	141 ^(c)
Fluoranthene	495	555	24.8	242 ^(c)
Pyrene	364	414	24.8	202 ^(c)
Benzo(a)anthracene	80.6	118	24.8	151 ^(c)
Chrysene	96.0	128	24.8	129 ^(c)
Benzo(b)fluoranthene	69.4	83.3	24.8	56
Benzo(k)fluoranthene	1.60 U	47.1	24.8	190 ^(c)
Benzo(a)pyrene	25.6	55.7	24.8	121 ^(c)
Indeno(123-cd)pyrene	9.45	34.9	24.8	103
Dibenzo(a,h)anthracene	2.97	30.9	24.8	113
Benzo(g,h,i)perylene	9.36	33.5	24.8	97
Surrogate Internal Standards (%)				
d4 1,4-Dichlorobenzene	49	57	NA ^(d)	NA
d8 Naphthalene	63	67	NA	NA
d10 Acenaphthene	73	74	NA	NA
d12 Chrysene	79	76	NA	NA
d14 Dibenzo(a,h,i)anthracene	96	93	NA	NA

TABLE F.10. (contd)

Matrix Spike Results

Treatment	Matrix Spike			
	COMP HU-A	COMP HU-A(MS)	Amount Spiked ng/g	Percent Recovery
Replicate	1	1		
Batch	1	1		
Wet Weight	20.12	20.12		
Units	ng/g	ng/g		
1,4-Dichlorobenzene	1.86 U	37.1	37.8	98
Naphthalene	3.34	25.8	24.9	90
Acenaphthylene	2.20 ^(b)	24.4	24.9	89
Acenaphthene	7.45	31.8	24.9	98
Fluorene	8.07	31.9	24.9	96
Phenanthrene	90.2	112	24.9	92
Anthracene	42.8	68.2	24.9	102
Fluoranthene	232	251	24.9	76
Pyrene	278	291	24.9	52
Benzo(a)anthracene	144	167	24.9	92
Chrysene	155	173	24.9	72
Benzo(b)fluoranthene	86.6	110	24.9	94
Benzo(k)fluoranthene	24.1	49.8	24.9	103
Benzo(a)pyrene	69.7	94.1	24.9	98
Indeno(123-cd)pyrene	13.9	34.2	24.9	82
Dibenzo(a,h)anthracene	4.22	25.5	24.9	85
Benzo(g,h,i)perylene	14.4	34.8	24.9	82
<u>Surrogate Internal Standards (%)</u>				
d4 1,4-Dichlorobenzene	43	53	NA	NA
d8 Naphthalene	53	65	NA	NA
d10 Acenaphthene	62	69	NA	NA
d12 Chrysene	76	84	NA	NA
d14 Dibenzo(a,h,i)anthracene	84	95	NA	NA

TABLE F.10. (contd)

Analytical Replicate Results

Treatment Replicate Batch	COMP PC 5-1	<i>Dup</i>		<i>Trip</i> COMP PC 5-3	RSD%
		COMP PC 5-2	ng/g		
Wet Weight Units	16.10	16.99	17.88	ng/g	
1,4-Dichlorobenzene	2.31 U	2.20 U	2.09 U	NA	
Naphthalene	4.65	4.68	4.39	3	
Acenaphthylene	0.93 ^(b)	0.86 U	0.82 ^(b)	NA	
Acenaphthene	20.2	18.4	17.5	7	
Fluorene	6.90	6.56	5.99	7	
Phenanthrene	34.0	30.5	28.1	10	
Anthracene	36.7	34.0	30.8	9	
Fluoranthene	627	587	533	8	
Pyrene	453	425	383	8	
Benzo(a)anthracene	106	96.8	85.5	11	
Chrysene	122	112	99.5	10	
Benzo(b)fluoranthene	69.3	81.1	57.6	17	
Benzo(k)fluoranthene	17.6	1.97 U	13.7	NA	
Benzo(a)pyrene	32.8	30.5	26.6	10	
Indeno(123-cd)pyrene	12.2	11.4	10.1	9	
Dibenzo(a,h)anthracene	3.88	3.64	3.25	9	
Benzo(g,h,i)perylene	12.1	11.4	10.0	10	
<u>Surrogate Internal Standards (%)</u>					
d4 1,4-Dichlorobenzene	62	68	50	NA	
d8 Naphthalene	74	80	63	NA	
d10 Acenaphthene	88	91	79	NA	
d12 Chrysene	95	94	83	NA	
d14 Dibenzo(a,h,i)anthracene	118	114	102	NA	

TABLE F.10. (contd)

Analytical Replicate Results

Treatment	<i>Dup</i>		<i>Trip</i>	RSD%
	COMP EC-B	COMP EC-B	COMP EC-B	
Replicate	5-1	5-2	5-3	
Batch	1	1	1	
Wet Weight	10.04	10.02	10.11	
Units	ng/g	ng/g	ng/g	
1,4-Dichlorobenzene	3.73 U	3.73 U	3.73 U	NA
Naphthalene	5.99	4.80	5.64	11
Acenaphthylene	3.26 ^(b)	3.21 ^(b)	3.24 ^(b)	1
Acenaphthene	40.0	41.5	41.8	2
Fluorene	25.8	26.2	25.9	1
Phenanthrene	210	213	213	1
Anthracene	103	106	106	2
Fluoranthene	453	464	475	2
Pyrene	466	476	484	2
Benzo(a)anthracene	183	188	190	2
Chrysene	226	233	234	2
Benzo(b)fluoranthene	139	139	146	3
Benzo(k)fluoranthene	31.7	34.1	32.7	4
Benzo(a)pyrene	88.9	91.4	94.4	3
Indeno(123-cd)pyrene	22.2	22.3	22.9	2
Dibenzo(a,h)anthracene	4.77	5.06	5.17	4
Benzo(g,h,i)perylene	24.1	24.4	25.0	2
<u>Surrogate Internal Standards (%)</u>				
d4 1,4-Dichlorobenzene	44	52	53	NA
d8 Naphthalene	54	65	64	NA
d10 Acenaphthene	58	74	70	NA
d12 Chrysene	69	89	78	NA
d14 Dibenzo(a,h,i)anthracene	79	102	89	NA

TABLE F.10. (contd)

Analytical Replicate Results

Treatment	<i>Dup</i>		<i>Trip</i>	
	C-SB	C-SB	C-SB	
Replicate	5-1	5-2	5-3	
Batch	2	2	2	
Wet Weight	10.16	10.14	10.34	
Units	ng/g	ng/g	ng/g	RSD%
1,4-Dichlorobenzene	3.65 U	3.69 U	3.62 U	NA
Naphthalene	3.65 U	3.69 U	3.62 U	NA
Acenaphthylene	1.42 U	1.44 U	1.41 U	NA
Acenaphthene	2.56 U	2.58 U	2.53 U	NA
Fluorene	2.42 U	2.45 U	2.40 U	NA
Phenanthrene	5.02 U	5.07 U	4.96 U	NA
Anthracene	4.39 U	4.43 U	4.34 U	NA
Fluoranthene	10.5 U	10.6 U	10.4 U	NA
Pyrene	8.95 U	9.05 U	8.86 U	NA
Benzo(a)anthracene	4.73	4.80 ^(b) B ^(e)	4.53 ^(b) B	3
Chrysene	4.45 U	4.49 U	4.40 U	NA
Benzo(b)fluoranthene	5.67	5.81 ^(b)	6.38	7
Benzo(k)fluoranthene	3.98	4.08 ^(b)	3.24 U	NA
Benzo(a)pyrene	4.70	2.96 U	2.90 U	NA
Indeno(123-cd)pyrene	3.45 U	3.49 U	3.42 U	NA
Dibenzo(a,h)anthracene	2.47 U	2.50 U	2.45 U	NA
Benzo(g,h,i)perylene	2.75 U	2.78 U	2.72 U	NA
<u>Surrogate Internal Standards (%)</u>				
d4 1,4-Dichlorobenzene	58	59	53	NA
d8 Naphthalene	67	67	61	NA
d10 Acenaphthene	68	66	62	NA
d12 Chrysene	68	63	63	NA
d14 Dibenzo(a,h,i)anthracene	79	71	74	NA

TABLE F.10. (contd)

Analytical Replicate Results

Treatment	Dup		Trip	
	C-SB	C-SB		
Replicate	1-1	1-2	1-3	
Batch	3	3	3	
Wet Weight	10.22	10.18	10.08	
Units	ng/g	ng/g	ng/g	
			RSD%	
1,4-Dichlorobenzene	3.65 U	3.65 U	3.69 U	NA
Naphthalene	3.65 U	3.65 U	3.69 U	NA
Acenaphthylene	1.42 U	1.42 U	1.44 U	NA
Acenaphthene	2.56 U	2.56 U	2.58 U	NA
Fluorene	2.42 U	2.42 U	2.45 U	NA
Phenanthrene	5.02 U	5.02 U	5.07 U	NA
Anthracene	4.39 U	4.39 U	4.43 U	NA
Fluoranthene	10.5 U	10.5 U	10.6 U	NA
Pyrene	8.95 U	8.95 U	9.05 U	NA
Benzo(a)anthracene	4.54 ^(b) B	4.95 ^(b) B	4.65 ^(b) B	5
Chrysene	4.45 U	4.45 U	4.49 U	NA
Benzo(b)fluoranthene	6.41 ^(b) B	5.72 ^(b) B	6.18 ^(b) B	6
Benzo(k)fluoranthene	3.27 U	3.93 ^(b)	3.31 U	NA
Benzo(a)pyrene	2.92 U	2.93 U	2.96 U	NA
Indeno(123-cd)pyrene	3.45 U	3.45 U	3.49 U	NA
Dibenzo(a,h)anthracene	2.47 U	2.47 U	2.50 U	NA
Benzo(g,h,i)perylene	2.75 U	2.75 U	2.78 U	NA
<u>Surrogate Internal Standards (%)</u>				
d4 1,4-Dichlorobenzene	54	57	59	NA
d8 Naphthalene	64	65	71	NA
d10 Acenaphthene	67	66	76	NA
d12 Chrysene	80	75	87	NA
d14 Dibenzo(a,h,i)anthracene	83	77	91	NA

(a) U Undetected at or above given concentration.

(b) Ion ratio out or confirmation ion not detected.

(c) Outside quality control range (50-120%) for matrix spike recovery.

(d) NA Not applicable.

(e) B Value is less than 5 times concentration in associated blank.

TABLE F.11. Lipids in Tissue of *M. nasuta*

Sediment Treatment	Replicate	Sample Weight	% Dry Weight	% Lipids (wet weight)	% Lipids (dry weight)
<i>Macoma</i> Background	1	5.18	15.16	0.58	3.83
<i>Macoma</i> Background	2	5.07	14.86	0.59	3.97
<i>Macoma</i> Background	3	5.04	14.87	0.60	4.03

Appendix G

***Nereis virens* Tissues Chemical Analyses and
Quality Assurance/Quality Control Data for
Buttermilk Channel Project**

QA/QC SUMMARY

PROGRAM: New York/New Jersey Federal Projects-2

PARAMETER: Metals

LABORATORY: Battelle/Marine Sciences Laboratory, Sequim, Washington

MATRIX: Worm and Clam Tissue

QA/QC DATA QUALITY OBJECTIVES

	<u>Reference Method</u>	<u>Range of Recovery</u>	<u>SRM Accuracy</u>	<u>Relative Precision</u>	<u>Detection Limit (µg/g dry wt)</u>
Arsenic	ICP/MS	75-125%	≤20%	≤20%	1.0
Cadmium	ICP/MS	75-125%	≤20%	≤20%	0.1
Chromium	ICP/MS	75-125%	≤20%	≤20%	0.2
Copper	ICP/MS	75-125%	≤20%	≤20%	1.0
Lead	ICP/MS	75-125%	≤20%	≤20%	0.1
Mercury	CVAA	75-125%	≤20%	≤20%	0.02
Nickel	ICP/MS	75-125%	≤20%	≤20%	0.1
Silver	ICP/MS	75-125%	≤20%	≤20%	0.1
Zinc	ICP/MS	75-125%	≤20%	≤20%	1.0

METHOD

A total of nine (9) metals was analyzed for the New York Federal Projects-2 Program: silver (Ag), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn). Hg was analyzed using cold-vapor atomic absorption spectroscopy (CVAA) according to the method of Bloom and Crecelius (1983). The remaining metals were analyzed by inductively coupled plasma mass spectrometry (ICP/MS) following a procedure based on EPA Method 200.8 (EPA 1991).

To prepare tissue for analysis, samples were freeze-dried and blended in a Spex mixer-mill. Approximately 5 g of mixed sample was ground in a ceramic ball mill. For ICP/MS and CVAA analyses, 0.2- to 0.5-g aliquots of dried homogenous sample were digested using a mixture of nitric acid and hydrogen peroxide following EPA Method 200.3 (EPA 1991).

HOLDING TIMES

A total of 68 worm and 68 clam samples was received on 6/15/94 in good condition. Samples were logged into Battelle's log-in system, frozen to -80°C and subsequently freeze dried within approximately 7 days of sample receipt. Samples were analyzed within 180 days of collection. Worms and clams were digested in two separate batches. The following table summarizes the analysis dates:

<u>Task</u>	<u>Clams</u>	<u>Worms</u>
Sample Digestion	8/9/94	9/9/94
ICP-MS	9/15/94	10/6/94
CVAA-Hg	8/17-8/24/94	8/17-8/24/94

QA/QC SUMMARY METALS (continued)

DETECTION LIMITS	Four aliquots of a background clam tissue were analyzed as four separate replicates. The standard deviation of these results were multiplied by 4.541 to determine a method detection limits (MDL). Target detection limits were exceeded for all metals except Ag, Cd and Hg.
METHOD BLANKS	One procedural blank was analyzed per 20 samples. No metals were detected in the blanks above the MDLs.
MATRIX SPIKES	One sample was spiked with all metals at a frequency of 1 per 20 samples. All recoveries were within the QC limits of 75% -125% with the exception of Ag in one spiked worm sample and Zn in three of the four spiked worm samples. Zn was spiked at a level near the level found in the native samples and, in one case, Zn was spiked at a level below that detected in the native sample and no recovery was calculated.
REPLICATES	One sample was analyzed in triplicate at a frequency of 1 per 20 samples. Precision for triplicate analyses is reported by calculating the relative standard deviation (RSD) between the replicate results. Only the RSDs for Zn in one of the four replicated worm analyses exceeded the QC limits of $\pm 20\%$. RSDs for the rest of the metals were within the QC limits.
SRMs	Standard Reference Material (SRM), 1566a (Oyster tissue from the National Institute of Standards and Technology, NIST), was analyzed for all metals. Results for all metals were within $\pm 20\%$ of mean certified value with the exception of Cr and Ni. Cr values were below the lower QC limit in two of the five SRMs analyzed with the clams and for three of the four SRMs analyzed with the worms. The SRM certified value for Cr (1.43 $\mu\text{g/g}$) is close to the detection limit (1.46 $\mu\text{g/g}$). Ni was also recovered below or above the control limits in some samples.

REFERENCES

Bloom, N. S., and E.A. Crecelius. 1983. "Determination of Mercury in Seawater at Sub-Nanogram per Liter Levels." *Mar. Chem.* 14:49-59.

EPA (U.S. Environmental Protection Agency). 1991 Methods for the Determination of Metals in Environmental Samples. EPA-600/4-91-010. Environmental Services Division, Monitoring Management Branch, Washington D.C.

QA/QC SUMMARY

PROGRAM: New York/New Jersey Federal Projects-2

PARAMETER: Chlorinated Pesticides/PCB Congeners

LABORATORY: Battelle/Marine Sciences Laboratory, Sequim, Washington

MATRIX: Worm and Clam Tissue

QA/QC DATA QUALITY OBJECTIVES

<u>Reference Method</u>	<u>Surrogate Recovery</u>	<u>Spike Recovery</u>	<u>Relative Precision</u>	<u>Detection Limit</u>
GC/ECD	30-150%	50-120%	≤30%	0.4 ng/g wet wt.

SAMPLE CUSTODY A total of 68 worm and 68 clam samples was received on 6/15/94 in good condition. Samples were logged into Battelle's log-in system and stored frozen until extraction.

METHOD Tissues were homogenized wet using a stainless steel blade. An aliquot of tissue sample was extracted with methylene chloride using the roller technique under ambient conditions following a procedure which is based on methods used by the National Oceanic and Atmospheric Administration for its Status and Trends Program (Krahn et al. 1988). Samples were then cleaned using silica/alumina (5% deactivated) chromatography followed by HPLC cleanup (Krahn et al. 1988). Extracts were analyzed for 15 chlorinated pesticides and 22 PCB congeners using gas chromatography/electron capture detection (GC/ECD) following a procedure based on EPA Method 8080 (EPA 1986). The column used was a J&W DB-17 and the confirmatory column was a DB-1701, both capillary columns (30m x 0.25mm I.D.). All detections were quantitatively confirmed on the second column.

HOLDING TIMES Samples were extracted in seven batches. All extracts were analyzed by GC/ECD. The following summarizes the extraction and analysis dates:

<u>Batch</u>	<u>Species</u>	<u>Extraction</u>	<u>Analysis</u>
1	<i>M. nasuta</i>	7/28/94	9/9-9/12/94
2	<i>M. nasuta</i>	8/3/94	9/13-9/15/94
3	<i>M. nasuta</i>	8/17/94	9/23-9/25/94
4	<i>N. virens</i>	8/19/95	9/26-9/30/94
5	<i>N. virens</i>	8/26/94	9/8-9/11/94
6	<i>N. virens</i>	9/6/94	9/17-9/19/94
7	<i>M. nasuta/N. virens</i>	9/26/94	9/15-9/17-94
8	<i>M. nasuta</i> MDL study	10/10/94	10/25/94

DETECTION LIMITS Target detection limits of 0.4 ng/g wet weight were met for all pesticides and PCB congeners, with the exception of dieldrin, PCB 8 and PCB 18, and for the samples that were analyzed in triplicate. These elevated detection limits for the replicates were due to the limited amount of tissue available resulting in smaller aliquots used for extraction. Method detection limits (MDLs) reported were determined by multiplying the

QA/QC SUMMARY/PCBs and PESTICIDES (continued)

standard deviation of seven spiked replicates of clam tissue by the Student's t value (99 percentile). Actual pesticide MDLs ranged from approximately 0.1 to 1.1 ng/g wet weight and PCB congener MDLs ranged from approximately 0.1 to 0.9 ng/g wet weight, depending on the compound and the sample weight extracted. MDLs were reported corrected for individual sample wet weight extracted.

Method detection limit verification was performed by analyzing four replicates of a spiked clam sample and multiplying the standard deviation of the results by 3.5. All detection limits calculated in this way were below the target detection limit of 0.4 ng/g wet weight with the exception of 4,4'-DDD which had a DL of 0.467 ng/g.

METHOD BLANKS

One method blank was extracted with each extraction batch. No pesticides or PCBs were detected in any of the method blanks.

SURROGATES

Two compounds, PCB congeners 103 and 198, were added to all samples prior to extraction to assess the efficiency of the analysis. Sample surrogate recoveries were all within the QC guidelines of 30% - 150%, with the exception of one sample in Batch 3 and two samples in Batch 4. All of these incidents involved a high recovery of PCB 198. This was most likely due to matrix interferences with the internal Standard octachloronaphthalene (OCN) which is used to quantify the recovery of surrogate PCB 198. Since no sample data are corrected for the OCN, sample results should not be affected. One sample had low surrogate recoveries for both PCB 103 and 198. This sample was re-extracted once due to surrogate recoveries. Since the recoveries in the reextraction also exceeded control limits, the problem was determined to be matrix interferences and no additional extractions were performed. Sample results were quantified using the surrogate internal standard method.

MATRIX SPIKES

Ten out of the 15 pesticides and 5 of the 22 PCB congeners analyzed were spiked into one sample per extraction batch. Matrix spike recoveries were within the control limit range of 50-120% for all Pesticides and PCBs in Batches 1, 2, 3, 6 and 7 with the exception of PCB 138 in Batch six and three pesticides and 2 PCBs in Batch seven. In all cases, the recoveries were high and are most likely due to matrix interferences. Recoveries for the majority of pesticides and PCBs in Batches four and five exceeded control limits due to high native levels compared with the levels spiked. In most cases, the spiked concentrations were 2 to 10 times lower than the concentrations detected in the samples.

REPLICATES

One sample from each extraction batch was analyzed in triplicate. Precision was measured by calculating the relative standard deviation (RSD) between the replicate results. RSDs for all detectable values were below the target precision goal of $\leq 30\%$ in Batches 1, 2, 3, 4 and 7. The RSD for Endosulfan Sulfate in Batch 5 was high due to comparison of very low concentrations, less than 1 ng/g in the replicates. RSDs for two pesticides and for two PCB congeners in Batch 6 were high due to matrix interferences associated with the first replicate sample.

QA/QC SUMMARY/PCBs and PESTICIDES (continued)

SRMs	Not applicable.
MISCELLANEOUS	All pesticide and PCB congener results are confirmed using a second dissimilar column. RPDs between the primary and confirmation values must be less than 75% to be considered a confirmed value.

REFERENCES

Krahn, M.M., C.A. Wigren, R.W. Pearce, L.K. Moore, R.G. Bogar, W.D. MacLeod, Jr., S-L Chan, and D.W. Brown. 1988. *New HPLC Cleanup and Revised Extraction Procedures for Organic Contaminants*. NOAA Technical Memorandum NMFS F/NWC-153. National Oceanic and Atmospheric Administration, National Marine Fisheries, Seattle, Washington.

EPA (U.S. Environmental Protection Agency). 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. SW-846. U.S. Document No. 955-001-00000, U.S. Environmental Protection Agency, Washington D.C.

QA/QC SUMMARY

PROGRAM: New York/New Jersey Federal Projects-2
PARAMETER: Polynuclear Aromatic Hydrocarbons (PAH) and 1,4-Dichlorobenzene
LABORATORY: Battelle/Marine Sciences Laboratory, Sequim, Washington
MATRIX: Clam and Worm Tissue

QA/QC DATA QUALITY OBJECTIVES

<u>Reference Method</u>	<u>MS Recovery</u>	<u>Surrogate Recovery</u>	<u>SRM Accuracy</u>	<u>Relative Precision</u>	<u>Detection Limit (wet wt)</u>
GC/MS/SIM	50-120%	30-150%	≤30%	≤30%	4 ng/g

SAMPLE CUSTODY A total of 68 worm and 68 clam samples was received on 6/15/94 in good condition. Samples were logged into Battelle's log-in system and stored frozen until extraction.

METHOD Tissue samples were extracted with methylene chloride using a roller under ambient conditions following a procedure which is based on methods used by the National Oceanic and Atmospheric Administration for its Status and Trends Program (Krahn et al. 1988). Samples were then cleaned using silica/alumina (5% deactivated) chromatography followed by HPLC cleanup.

Extracts were quantified using gas chromatography/mass spectrometry (GC/MS) in the selected ion mode (SIM) following a procedure based on EPA Method 8270 (EPA 1986).

HOLDING TIMES Samples were extracted in seven batches. All extracts were analyzed by GC/MS/SIM. The following summarizes the extraction and analysis dates:

<u>Batch</u>	<u>Species</u>	<u>Extraction</u>	<u>Analysis</u>
1	<i>M. nasuta</i>	7/28/94	9/9-9/12/94
2	<i>M. nasuta</i>	8/3/94	9/13-9/15/94
3	<i>M. nasuta</i>	8/17/94	9/23-9/25/94
4	<i>N. virens</i>	8/19/95	9/26-9/30/94
5	<i>N. virens</i>	8/26/94	9/8-9/11/94
6	<i>N. virens</i>	9/6/94	9/17-9/19/94
7	<i>M. nasuta/N. virens</i>	9/26/94	9/15-9/17-94
8	<i>M. nasuta</i> MDL study	10/10/94	10/25/94

DETECTION LIMITS Target detection limits of 4 ng/g wet weight were met for all PAH compounds except for fluoranthene and pyrene, which had method detection limits (MDL) between 4 and 6 ng/g wet weight. MDLs were determined by multiplying the standard deviation of seven spiked replicates of a background clam sample by the Student's t value (99 percentile). These MDLs were based on a wet weight of 20 g of tissue sample.

QA/QC SUMMARY/PAHs (continued)

Aliquots of samples that were analyzed in triplicate, used for spiking, or were re-extracted, were generally less than 20 g due to limited quantities of tissue available. Because MDLs reported are corrected for sample weight, the MDLs reported for these samples appear elevated and in some cases may exceed the target detection limit.

In addition a method detection limit verification study was performed, which consisted of analyzing four spiked aliquots of a background clam sample received with this project. The standard deviation of the results of these replicate analyses was multiplied by 3.5. Detection limits calculated in this way were all less than the target detection limit of 4 ng/g wet wt.

METHOD BLANKS	One method blank was extracted with each extraction batch. Benz[a]anthracene was detected in blanks from all batches and benzo[b]fluoranthene was detected in the blank from Batch 3. Two method blanks were analyzed with Batch 7 and in addition to benz[a]anthracene, three other compounds were detected in at least one of the two blanks; naphthalene, benzo[a]pyrene and indeno(123-cd)pyrene. All blank levels were less than three times the target MDL of 4 ng/g wet wt. Sample values that were less than five times the value of the method blank associated with that sample were flagged with a "B."
SURROGATES	Five isotopically labeled compounds were added prior to extraction to assess the efficiency of the method. These were d8-naphthalene, d10-acenaphthene, d12-chrysene, d14-dibenz[a,h]anthracene and d4-1,4-dichlorobenzene. Recoveries of all surrogates were within the quality control limits of 30% -150% with the exception of low recoveries for d4-1,4-dichlorobenzene in one sample from Batch 1 and Batch 4 and two samples in Batch seven. In addition, d8-naphthalene recovery was low in two samples in Batch seven.
MATRIX SPIKES	One sample from each batch was spiked with all PAH compounds. Matrix spike recoveries were generally, within QC limits of 50% -120%, with some exceptions. The recoveries for benzo(b)- and benzo[k]fluoranthene were variable due to the poor resolution of these two compounds. Spike recoveries quantified as the sum of these two compounds were within QC limits. Spike recoveries for a number of PAH compounds in Batches 4 and 7 were out of control due to high native levels, relative to the levels spiked. Spike concentrations were from 2 to 20 times lower than native concentrations. Recoveries for a number of compounds in Batches 4 and 6 were slightly above the upper control limit. These recoveries were all between 120% and 140%.
REPLICATES	One sample from each batch was extracted and analyzed in triplicate. Precision was measured by calculating the relative standard deviation (RSD) between the replicate results. All RSDs were within $\pm 30\%$.
SRMs	Not applicable.

QA/QC SUMMARY/PAHs (continued)

MISCELLANEOUS

Some of the compounds are flagged to indicate that the ion ratio for that compound was outside of the QC range. This is due primarily to low levels of the compound of interest. Because the confirmation ion is present at only a fraction of the level of the parent ion, when the native level of the compound is low, the amount of error in the concentration measurement of the confirmation ion goes up. The compound is actually quantified from the parent ion only, so most likely this will not affect the quality of the data. For sample values that are relatively high (>5 times the MDL) it may be an indication of some sort of interference.

REFERENCES

Krahn, M.M., C.A. Wigren, R.W. Pearce, L.K. Moore, R.G. Bogar, W.D. MacLeod, Jr., S-L Chan, and D.W. Brown. 1988. *New HPLC Cleanup and Revised Extraction Procedures for Organic Contaminants*. NOAA Technical Memorandum NMFS F/NWC-153. National Oceanic and Atmospheric Administration, National Marine Fisheries, Seattle, Washington.

EPA (U.S. Environmental Protection Agency). 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. SW-846. U.S. Document No. 955-001-00000, U.S. Environmental Protection Agency, Washington D.C.

Table G.1. Metals in Tissue of *N. virens* (Wet Weight)

Sediment Treatment	Replicate	Batch	% Dry Weight	N. virens Metals (µg/g wet weight)							
				Ag ICP/MS	As ICP/MS	Cd ICP/MS	Cu ICP/MS	Hg ICP/MS	Cr ICP/MS	Cu CVAF	Ni ICP/MS
COMP BU	1	1	14.51%	0.026	2.10	0.065	0.281	1.74	0.011	0.213	0.447
COMP BU	2	1	14.29%	0.024	U ^(a)	1.93	0.057	0.209	1.47	0.008	0.188 U
COMP BU	2	1	14.29%	0.024	U	2.01	0.057	0.209	1.54	0.009	0.188 U
COMP BU	2	1	14.29%	0.024	U	2.00	0.059	0.209	1.53	0.008	0.188 U
COMP BU	3	1	14.69%	0.024	U	2.09	0.044	0.214	1.16	0.006	0.193 U
COMP BU	4	1	14.46%	0.028		2.08	0.056	0.211	1.20	0.009	0.190 U
COMP BU	4	1	14.46%	0.028		2.02	0.052	0.211	1.21	0.011	0.190 U
COMP BU	4	1	14.46%	0.026		2.11	0.058	0.211	1.24	0.010	0.190 U
COMP BU	5	1	14.47%	0.024	U	2.08	0.055	0.211	1.22	0.005	0.190 U
COMP BU											0.290 U
R-MUD	1	1	13.12%	0.022		1.86	0.063	0.191	1.64	0.011	0.173 U
R-MUD	2	1	14.94%	0.029		2.29	0.079	0.218	10.8	0.013	0.197 U
R-MUD	3	1	15.21%	0.025	U	2.18	0.053	0.222	1.11	0.010	0.200 U
R-MUD	4	1	14.00%	0.026		2.11	0.062	0.204	1.58	0.011	0.184 U
R-MUD	5	1	13.24%	0.022		1.91	0.053	0.193	1.34	0.015	0.174 U
R-MUD											0.297
C-NV	1	1	14.84%	0.025	U	2.37	0.056	0.217	1.23	0.011	0.195 U
C-NV	2	1	12.32%	0.020	U	1.71	0.048	0.180	1.02	0.010	0.162 U
C-NV	3	1	14.51%	0.024	U	2.02	0.077	0.212	1.51	0.016	0.191 U
C-NV	4	1	13.67%	0.023	U	2.16	0.062	0.199	1.35	0.012	0.180 U
C-NV	5	1	14.91%	0.025	U	2.03	0.085	0.218	1.76	0.014	0.196 U
C-NV											0.416
N. virens Background	1	1	12.86%	0.021	U	1.84	0.051	0.247	1.61	0.011	0.240
N. virens Background	2	1	12.94%	0.021	U	2.02	0.045	0.189	1.24	0.016	0.170 U
N. virens Background	3	1	12.05%	0.020	U	1.57	0.055	0.180	1.78	0.018	0.172
N. virens Background											0.241 U
N. virens Background											0.997

(a) U Not detected at or above detection limit shown.

Table G.2. Metals in Tissue of *N. virens* (Dry Weight)

Sediment Treatment	Replicate	Batch	% Dry Weight	N. virens Metals (µg/g dry weight)							
				Ag ICP/MS	As ICP/MS	Cd ICP/MS	Cr ICP/MS	Hg ICP/MS	Cu ICP/MS	Cu AF	Ni ICP/MS
COMP BU	1	1	14.51%	0.180	14.5	0.446	1.94	12.0	0.077	1.47	3.08
COMP BU	2	1	14.29%	0.166 U ^(a)	13.5	0.396	1.46 U	10.3	0.055	1.32 U	2.30
COMP BU	2	1	14.29%	0.166 U	14.1	0.401	1.46 U	10.8	0.064	1.32 U	2.43
COMP BU	2	1	14.29%	0.166 U	14.0	0.416	1.46 U	10.7	0.058	1.32 U	2.54
COMP BU	3	1	14.69%	0.166 U	14.2	0.300	1.46 U	7.87	0.038	1.32 U	2.00 U
COMP BU	4	1	14.46%	0.195	14.4	0.388	1.46 U	8.30	0.065	1.32 U	2.18
COMP BU	4	1	14.46%	0.195	14.0	0.362	1.46 U	8.34	0.074	1.32 U	2.19
COMP BU	4	1	14.46%	0.182	14.6	0.404	1.46 U	8.55	0.066	1.32 U	2.19
COMP BU	5	1	14.47%	0.166 U	14.4	0.377	1.46 U	8.46	0.038	1.32 U	2.00 U
COMP BU											66.5
R-MUD	1	1	13.12%	0.168	14.2	0.478	1.46 U	12.5	0.086	1.32 U	2.45
R-MUD	2	1	14.94%	0.196	15.3	0.531	1.46 U	72.6	0.089	1.32 U	4.33
R-MUD	3	1	15.21%	0.166 U	14.3	0.347	1.46 U	7.27	0.067	1.32 U	2.00 U
R-MUD	4	1	14.00%	0.186	15.1	0.444	1.46 U	11.3	0.075	1.32 U	68.3
R-MUD	5	1	13.24%	0.166	14.4	0.397	1.46 U	10.1	0.116	1.32 U	2.00 U
R-MUD											57.7
C-NV	1	1	14.84%	0.166 U	16.0	0.376	1.46 U	8.26	0.074	1.32 U	2.00 U
C-NV	2	1	12.32%	0.166 U	13.9	0.387	1.46 U	8.28	0.082	1.32 U	2.00 U
C-NV	3	1	14.57%	0.166 U	13.9	0.530	1.46 U	10.4	0.112	1.32 U	2.17
C-NV	4	1	13.67%	0.166 U	15.8	0.454	1.46 U	9.86	0.086	1.32 U	2.38
C-NV	5	1	14.91%	0.166 U	13.6	0.573	1.46 U	11.8	0.097	1.32 U	120
C-NV											66.2
<i>N. virens</i> Background	1	1	12.86%	0.166 U	14.3	0.398	1.92	12.5	0.089	1.87	2.00 U
<i>N. virens</i> Background	2	1	12.94%	0.166 U	15.6	0.349	1.46 U	9.58	0.120	1.32 U	62.9
<i>N. virens</i> Background	3	1	12.05%	0.166 U	13.0	0.459	1.49	14.8	0.148	1.43	2.00 U
<i>N. virens</i> Background											82.7

(a) U Undetected at or above given concentration.

TABLE G.3. Quality Control Summary for Metals in Tissue of *N. virens*

Sediment Treatment	Replicate	Batch	N. virens Metals (μg/g dry weight)						Pb	Zn
			Ag	As	Cd	Cr	Cu	Hg		
Method Blanks										
Blank-1	1	0.166 U ^(a)	3.39 U	0.081 U	1.46 U	6.86 U	0.001 U	1.32 U	2.00 U	10.8 U
Blank-2	1	0.166 U	3.39 U	0.081 U	1.46 U	6.86 U	0.001 U	1.32 U	2.00 U	10.8 U
Blank-3	1	0.166 U	3.39 U	0.081 U	1.46 U	6.86 U	0.001 U	1.32 U	2.00 U	10.8 U
Blank-4	1	0.166 U	3.39 U	0.081 U	1.46 U	6.86 U	0.001 U	1.32 U	2.00 U	10.8 U
Matrix Spikes										
COMP BU	2	1	0.166 U	13.9	0.404	1.46 U	10.6	0.059	1.32 U	2.42
COMP BU, MS	2	1	1.90	61.6	4.34	9.63	57.6	1.02	10.3	6.66
Concentration Recovered			1.90	47.7	3.94	9.63	47.0	0.96	10.3	4.24
Amount Spiked			2.08	52.1	4.17	10.4	52.1	1.04	10.4	4.17
Percent Recovery			91%	92%	94%	93%	90%	92%	99%	102%
COMP BU	4	1	0.191	14.3	0.385	1.46 U	8.4	0.068	1.32 U	2.19
COMP BU, MS	4	1	2.06	63.4	4.45	10.2	57.4	1.18	10.4	6.13
Concentration Recovered			1.87	49.1	4.07	10.2	49.0	1.11	10.4	4.75
Amount Spiked			2.08	52.1	4.17	10.4	52.1	1.04	10.4	4.17
Percent Recovery			90%	94%	97%	98%	94%	107%	100%	114%
COMP EC-A	3	1	0.178 U	14.7	0.476	1.46 U	10.2	0.059	1.32 U	2.79
COMP EC-A, MS	3	1	0.968	61.3	4.28	9.84	56.8	1.04	10.1	6.95
Concentration Recovered			0.968	46.6	3.80	9.84	46.6	0.98	10.1	4.16
Amount Spiked			2.08	52.1	4.17	10.4	52.1	1.04	10.4	4.17
Percent Recovery			47%	89%	91%	95%	89%	94%	97%	100%
COMP HU-A	5	1	0.173 U	15.8	0.5313	1.46 U	11.0	0.077	1.32 U	2.77
COMP HU-A, MS	5	1	1.91	63.8	4.56	9.78	58.7	1.05	10.3	7.13
Concentration Recovered			1.91	48.0	4.03	9.78	47.7	0.973	10.3	4.36
Amount Spiked			2.08	52.1	4.17	10.4	52.1	1.04	10.4	4.17
Percent Recovery			92%	92%	97%	94%	91%	94%	99%	105%

TABLE G.3. (contd)

Sed Code ID	Replicate	Batch	Ag	N. virens Metals (µg/g dry weight)						
				As	Cd	Cr	Cu	Hg	Ni	Pb
<u>Standard Reference Material</u>										
Certified value			1.68	14.0	4.15	1.43	66.3	0.0642	2.26	0.371
Range			±0.15	±1.2	±0.38	±0.46	±4.3	±0.0067	±0.44	±0.014
SRM 1566a	1	1	1.62	13.2	4.25	1.23	63.6	0.064	2.13	0.369
SRM 1566a	2	1	1.54	12.5	4.01	1.00	58.3	0.057	3.05	0.389
SRM 1566a	3	1	1.47	11.9	4.00	0.921	57.9	0.058	1.86	0.369
SRM 1566a	4	1	1.51	11.9	4.01	0.948	60.4	0.061	1.65	0.363
Percent Difference	1		4	6	2	14	4	0	5	1
Percent Difference	2		8	11	3	30 (e)	12	11	36 (e)	5
Percent Difference	3		13	15	4	36 (e)	13	10	17	1
Percent Difference	4		10	15	3	34 (e)	9	5	27 (e)	2
<u>Analytical Replicates</u>										
COMP BU, Replicate 1	4	1	0.195	14.4	0.388	1.459	U	8.30	0.065	1.32 U
COMP BU, Replicate 2	4	1	0.195	14.0	0.362	1.459	U	8.34	0.074	1.32 U
COMP BU, Replicate 3	4	1	0.182	14.6	0.404	1.459	U	8.55	0.066	1.32 U
RSD			4%	2%	6%	NA	2%	7%	NA	0% (f)
COMP EC-A, Replicate 1	3	1	0.166 U	13.6	0.472	1.459	U	9.66	0.059	1.32 U
COMP EC-A, Replicate 2	3	1	0.166 U	15.4	0.466	1.459	U	10.8	0.061	1.32 U
COMP EC-A, Replicate 3	3	1	0.166 U	15.1	0.491	1.459	U	10.3	0.058	1.32 U
RSD			NA	7%	3%	NA	6%	3%	NA	6% (f)
COMP BU, Replicate 1	2	1	0.166 U	13.5	0.396	1.459	U	10.3	0.055	1.32 U
COMP BU, Replicate 2	2	1	0.166 U	14.1	0.401	1.459	U	10.8	0.064	1.32 U
COMP BU, Replicate 3	2	1	0.166 U	14.0	0.416	1.459	U	10.7	0.058	1.32 U
RSD			NA	2%	3%	NA	2%	8%	NA	5% (f)
COMP HU-A, Replicate 1	5	1	0.166 U	16.3	0.568	1.459	U	11.4	0.071	1.32 U
COMP HU-A, Replicate 2	5	1	0.166 U	15.7	0.490	1.459	U	11.1	0.090	1.32 U
COMP HU-A, Replicate 3	5	1	0.166 U	15.5	0.536	1.459	U	10.6	0.069	1.32 U
RSD			NA	3%	7%	NA	4%	15%	NA	3% (f)

(a) U Undetected at or above given concentration.

(b) Outside quality control criteria (75-125%) for matrix spike recovery.

(c) NA Not applicable.

(d) NS Not spiked.

(e) Outside quality control criteria (± 20%) for SRMs.

(f) Outside quality control criteria (±20%) for RSD.

TABLE G.4. Pesticides and PCB Congeners (Wet Weight) in Tissue of *N. virens*

Treatment	Dup				Trip		
	COMP BU	COMP BU	COMP BU	COMP BU	COMP BU	COMP BU	COMP BU
Replicate	1	2	3-1	3-2	3-3	4	5
Batch	7	4	7	7	7	5	4
Units	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	14.51	14.29	14.69	14.69	14.69	14.46	14.47
Heptachlor	0.42	0.19 U ^(a)	0.43 U	0.44 U	0.45 U	0.19 U	0.20 U
Aldrin	0.95	2.39	2.42	2.74	2.20	2.01	2.08
Heptachlor Epoxide	0.17 U	0.13 U	0.31 U	0.31 U	0.32 U	0.13 U	0.30
2,4'-DDE	0.34 U	0.26 U	0.61 U	0.62 U	0.64 U	0.26 U	0.28 U
Endosulfan I	0.23 U	0.18 U	0.42 U	0.42 U	0.44 U	0.18 U	0.19 U
<i>alpha</i> -Chlordane	1.74	0.99	1.13	1.46	1.11	0.66	0.69
<i>trans</i> -Nonachlor	0.89	1.06	0.54	0.77	0.35 U	0.77	0.79
4,4'-DDE	2.51	2.09	2.01	2.54	2.23	2.26	1.95
Dieldrin	1.73	1.56	1.43	1.84	1.58	1.16	1.37
2,4'-DDD	2.24	1.19	0.59 U	0.60 U	0.62 U	1.13	1.79
2,4'-DDT	0.23 U	0.18 U	0.42 U	0.42 U	0.44 U	0.18 U	0.19 U
4,4'-DDD	2.80	2.75	2.24	2.56	1.85	2.15	4.03
Endosulfan II	0.23 U	0.18 U	0.42 U	0.42 U	0.44 U	0.18 U	0.19 U
4,4'-DDT	0.74	0.15 U	0.35 U	0.36 U	0.37 U	0.15 U	0.16 U
Endosulfan Sulfate	0.23 U	0.18 U	0.42 U	0.75	0.44 U	0.18 U	0.19 U
PCB 8	0.53 U	0.41 U	0.95 U	0.97 U	1.00 U	0.41 U	0.44 U
PCB 18	1.79	2.38	1.00 U	1.01 U	1.05 U	1.80	1.82
PCB 28	4.29	3.88	2.34	3.19	2.54	3.56	3.28
PCB 52	5.86	5.96	3.94	5.27	4.37	5.13	5.24
PCB 49	3.58	3.44	2.09	2.79	2.14	3.24	2.96
PCB 44	1.67	1.10	1.07	1.44	1.18	1.41	1.03
PCB 66	0.12 U	0.09 U	0.22 U	0.22 U	0.23 U	0.09 U	0.10 U
PCB 101	5.15	4.51	3.09	4.17	3.26	3.76	4.11
PCB 87	0.56	0.54	0.37 U	0.41	0.39 U	0.28	0.19
PCB 118	2.70	1.92	1.51	2.05	1.68	2.16	2.09
PCB 184	0.31 U	0.24 U	0.55 U	0.56 U	0.58 U	0.24 U	0.25 U
PCB 153	5.51	4.43	3.89	5.28	4.33	4.32	3.72
PCB 105	1.46	1.09	0.95	1.33	1.08	1.01	1.14
PCB 138	4.79	3.34	3.06	4.33	3.44	3.21	2.92
PCB 187	1.63	1.51	0.99	1.51	1.13	1.23	1.03
PCB 183	0.71	0.67	0.55 U	0.65	0.58 U	0.55	0.50
PCB 128	0.80	0.64	0.52	0.68	0.56	0.53	0.57
PCB 180	1.83	2.34	1.39	1.97	1.55	1.71	1.46
PCB 170	0.92	1.18	0.73	0.96	0.79	0.87	0.95
PCB 195	0.13 U	0.10 U	0.23 U	0.24 U	0.24 U	0.10 U	0.15
PCB 206	0.15 U	0.69	0.42	0.57	0.45	0.46	0.52
PCB 209	0.33	0.40	0.23	0.31	0.26	0.29	0.25
Surrogate Recoveries (%)							
PCB 103 (SIS)	62.5	69.7	81.1	65.5	74.2	64.1	74.5
PCB 198 (SIS)	72.7	124	83.1	67.2	78.7	54.0	121

TABLE G.4. (contd)

Treatment	R-MUD	R-MUD	R-MUD	R-MUD	R-MUD
Replicate	1	2	3	4	5
Batch	4	5	6	7	6
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	13.12	14.94	15.21	14.00	13.24
Heptachlor	0.19 U	0.18 U	0.19 U	0.19 U	0.23 U
Aldrin	0.13 U	0.12 U	0.13 U	0.13 U	0.16 U
Heptachlor Epoxide	0.13 U	0.13 U	0.13 U	0.13 U	0.16 U
2,4'-DDE	0.26 U	0.26 U	0.26 U	0.26 U	0.32 U
Endosulfan I	0.18 U	0.18 U	0.18 U	0.18 U	0.22 U
a-Chlordane	0.10 U	0.09 U	0.10 U	0.10 U	0.12 U
Trans Nonachlor	0.43	0.61	0.67	0.39	0.61
4,4'-DDE	0.19 U	0.18 U	0.35	0.19 U	0.23 U
Dieldrin	0.94	0.71	0.52 U	0.66	0.64 U
2,4'-DDD	0.25 U	0.35	0.25 U	0.25 U	0.31 U
2,4'-DDT	0.18 U	0.18 U	0.18 U	0.18 U	0.22 U
4,4'-DDD	1.00	0.39	0.26 U	0.85	0.32 U
Endosulfan II	0.18 U	0.18 U	0.18 U	0.18 U	0.22 U
4,4'-DDT	0.15 U	0.15 U	0.15 U	0.15 U	0.19 U
Endosulfan Sulfate	0.18 U	0.18 U	0.18 U	0.18 U	0.22 U
PCB 8	0.41 U	0.40 U	0.41 U	0.41 U	0.51 U
PCB 18	0.43 U	0.42 U	0.43 U	0.43 U	0.53 U
PCB 28	0.20 U	0.20 U	0.20 U	0.20 U	0.25 U
PCB 52	0.36 U	0.35 U	0.43	0.36 U	0.64
PCB 49	0.24 U	0.23 U	0.24 U	0.24 U	0.29 U
PCB 44	0.17 U	0.16 U	0.17 U	0.17 U	0.20 U
PCB 66	0.09 U	0.09 U	0.09 U	0.09 U	0.12 U
PCB 101	0.15 U	0.81	0.44	0.45	0.54
PCB 87	0.16 U	0.16 U	0.23	0.16 U	0.20 U
PCB 118	0.29 U	0.29 U	0.29 U	0.29 U	0.37 U
PCB 184	0.24 U	0.23 U	0.24 U	0.24 U	0.29 U
PCB 153	1.76	2.35	2.20	2.08	1.66
PCB 105	0.11 U	0.11 U	0.24	0.28	0.27
PCB 138	0.92	1.44	1.17	1.36	1.03
PCB 187	0.38	0.53	0.60	0.58	0.43
PCB 183	0.24 U	0.24	0.24	0.24 U	0.29 U
PCB 128	0.19	0.22	0.20	0.20	0.90 U
PCB 180	0.45	0.69	0.60	0.56	0.59
PCB 170	0.17 U	0.37	0.33	0.27	0.34
PCB 195	0.10 U	0.10 U	0.10 U	0.10 U	0.12 U
PCB 206	0.30	0.23	0.23	0.11 U	0.31
PCB 209	0.16	0.15	0.16	0.17	0.15
<u>Surrogate Recoveries (%)</u>					
PCB 103 (SIS)	77	93	83	58	84
PCB 198 (SIS)	118	82	66	57	64

TABLE G.4. (contd)

Treatment	C-NV	C-NV	C-NV	C-NV	C-NV
Replicate	1	2	3	4	5
Batch	6	6	7	4	4
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	14.84	12.32	14.51	13.67	14.91
Heptachlor	0.19 U	0.19 U	0.31 U	0.19 U	0.19 U
Aldrin	0.13 U	0.13 U	0.21 U	0.80	0.13 U
Heptachlor Epoxide	0.13 U	0.13 U	0.22 U	0.13 U	0.13 U
2,4'-DDE	0.26 U	0.26 U	0.43 U	0.26 U	0.26 U
Endosulfan I	0.18 U	0.18 U	0.30 U	0.18 U	0.18 U
a-Chlordane	0.10 U	0.10 U	0.26	0.10 U	0.10 U
Trans Nonachlor	0.61	0.60	0.24 U	0.48	0.38
4,4'-DDE	0.22	0.29	0.31 U	0.47	0.19 U
Dieldrin	0.92	0.93	1.37	0.52 U	0.52 U
2,4'-DDD	0.42	0.40	3.25	1.67	0.25 U
2,4'-DDT	0.18 U	0.18 U	0.30 U	0.18 U	0.18 U
4,4'-DDD	0.71	0.83	10.5	5.21	0.26 U
Endosulfan II	0.18 U	0.18 U	0.30 U	0.18 U	0.18 U
4,4'-DDT	0.15 U	0.15 U	0.38	0.15 U	0.15 U
Endosulfan Sulfate	0.18 U	0.18 U	0.30 U	0.18 U	0.18 U
PCB 8	0.41 U	0.41 U	0.68 U	0.41 U	0.41 U
PCB 18	0.43 U	0.43 U	0.71 U	0.43 U	0.43 U
PCB 28	0.20 U	0.20 U	0.34 U	0.20 U	0.20 U
PCB 52	0.69	0.52	0.59 U	2.45	0.40
PCB 49	0.24 U	0.24 U	0.39 U	0.26	0.24 U
PCB 44	0.17 U	0.17 U	0.27 U	0.17 U	0.17 U
PCB 66	0.09 U	0.09 U	0.16 U	0.09 U	0.09 U
PCB 101	0.80	0.78	2.53	3.69	0.15 U
PCB 87	0.16 U	0.16 U	0.26 U	0.16 U	0.16 U
PCB 118	0.47	0.45	0.95	1.95	0.47
PCB 184	0.24 U	0.24 U	0.39 U	0.24 U	0.24 U
PCB 153	2.19	2.20	4.48	3.73	1.93
PCB 105	0.34	0.33	1.02	1.09	0.28
PCB 138	1.47	1.42	3.46	3.05	1.19
PCB 187	0.64	0.62	0.88	0.86	0.51
PCB 183	0.28	0.25	0.41	0.44	0.24 U
PCB 128	0.26	0.25	0.63	0.61	0.22
PCB 180	0.71	0.72	1.19	1.44	0.57
PCB 170	0.43	0.38	0.58	0.75	0.38
PCB 195	0.10 U	0.10 U	0.17 U	0.10 U	0.10 U
PCB 206	0.29	0.27	0.29	0.41	0.21
PCB 209	0.16	0.16	0.83	0.21	0.12
Surrogate Recoveries (%)					
PCB 103 (SIS)	83	87	81	71	41
PCB 198 (SIS)	68	69	84	124	63

TABLE G.4. (contd)

Treatment	<i>N. virens</i> Background	<i>N. virens</i> Background	<i>N. virens</i> Background
Replicate	1	2	3
Batch	7	7	7
Units	ng/g	ng/g	ng/g
Percent Dry Weight	12.86	12.94	12.05
Heptachlor	0.19 U	0.19 U	0.19 U
Aldrin	0.73	0.13 U	0.13 U
Heptachlor Epoxide	0.13 U	0.13 U	0.13 U
2,4'-DDE	0.26 U	0.26 U	0.26 U
Endosulfan I	0.18 U	0.18 U	0.18 U
a-Chlordane	0.10 U	0.10 U	0.10 U
Trans Nonachlor	0.44	0.15 U	0.46
4,4'-DDE	0.19 U	0.99	0.19 U
Dieldrin	0.52 U	1.01	0.65
2,4'-DDD	0.25 U	0.25 U	0.25 U
2,4'-DDT	0.18 U	0.18 U	0.18 U
4,4'-DDD	0.26 U	0.26 U	0.56
Endosulfan II	0.18 U	0.18 U	0.18 U
4,4'-DDT	0.18	0.15 U	0.15 U
Endosulfan Sulfate	0.18 U	0.18 U	0.18 U
PCB 8	0.41 U	0.41 U	0.41 U
PCB 18	0.43 U	0.43 U	0.43 U
PCB 28	0.21	0.20 U	0.20 U
PCB 52	0.36 U	0.36 U	0.36 U
PCB 49	0.24 U	0.24 U	0.24 U
PCB 44	0.17 U	0.17 U	0.17 U
PCB 66	0.73	0.09 U	0.55
PCB 101	0.58	0.45	0.44
PCB 87	0.16 U	0.62	0.16 U
PCB 118	0.29 U	0.29 U	0.29 U
PCB 184	0.24 U	0.24 U	0.24 U
PCB 153	2.24	1.97	1.72
PCB 105	0.26	0.23	0.25
PCB 138	1.60	1.35	1.19
PCB 187	0.63	0.54	0.41
PCB 183	0.24	0.24 U	0.24 U
PCB 128	0.24	0.20	0.17
PCB 180	0.49	0.43	0.43
PCB 170	0.17 U	0.21	0.19
PCB 195	0.10 U	0.10 U	0.10 U
PCB 206	0.11 U	0.11 U	0.11 U
PCB 209	0.10	0.09 U	0.09 U
<u>Surrogate Recoveries (%)</u>			
PCB 103 (SIS)	96	84	75
PCB 198 (SIS)	84	80	81

(a) U Undetected at or above given concentration.

TABLE G.5. Pesticides and PCB Congeners (Dry Weight) in Tissue of *N. virens*

Treatment	Dup				Trip		
	COMP BU	COMP BU	COMP BU	COMP BU	COMP BU	COMP BU	COMP BU
Replicate	1	2	3-1	3-2	3-3	4	5
Batch	7	4	7	7	7	5	4
Units	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	14.51	14.29	14.69	14.69	14.69	14.46	14.47
Heptachlor	2.9	1.3 U ^(a)	2.9 U	3.0 U	3.1 U	1.3 U	1.4 U
Aldrin	6.5	16.7	16.5	18.7	15.0	13.9	14.4
Heptachlor Epoxide	1.2 U	0.91 U	2.11 U	2.11 U	2.18 U	0.90 U	2.07
2,4'-DDE	2.3 U	1.8 U	4.15 U	4.22 U	4.36 U	1.80 U	1.94 U
Endosulfan I	1.6 U	1.3 U	2.86 U	2.86 U	3.00 U	1.24 U	1.31 U
alpha-Chlordane	12.0	6.9	7.69	9.94	7.56	4.56	4.77
trans-Nonachlor	6.1	7.42	3.68	5.24	2.38 U	5.33	5.46
4,4'-DDE	17.3	14.6	13.68	17.29	15.18	15.63	13.48
Dieldrin	11.9	10.9	9.73	12.53	10.76	8.02	9.47
2,4'-DDD	15.4	8.33	4.02 U	4.08 U	4.22 U	7.81	12.37
2,4'-DDT	1.6 U	1.3 U	2.9 U	2.9 U	3.0 U	1.2 U	1.3 U
4,4'-DDD	19.3	19.2	15.2	17.4	12.6	14.9	27.9
Endosulfan II	1.6 U	1.26 U	2.86 U	2.86 U	3.00 U	1.24 U	1.31 U
4,4'-DDT	5.1	1.05 U	2.38 U	2.45 U	2.52 U	1.04 U	1.11 U
Endosulfan Sulfate	1.6 U	1.26 U	2.86 U	5.11	3.00 U	1.24 U	1.31 U
PCB 8	3.7 U	2.9 U	6.5 U	6.6 U	6.81 U	2.8 U	3.0 U
PCB 18	12.3	16.7	6.8 U	6.9 U	7.1 U	12.4	12.6
PCB 28	29.6	27.2	15.9	21.7	17.3	24.6	22.7
PCB 52	40.4	41.7	26.8	35.9	29.7	35.5	36.2
PCB 49	24.7	24.1	14.2	19.0	14.6	22.4	20.5
PCB 44	11.5	7.70	7.28	9.80	8.03	9.75	7.12
PCB 66	0.83 U	0.63 U	1.5 U	1.5 U	1.6 U	0.62 U	0.69 U
PCB 101	35.5	31.6	21.0	28.4	22.2	26.0	28.4
PCB 87	3.9	3.8	2.5 U	2.8	2.7 U	1.9	1.3
PCB 118	18.6	13.4	10.3	14.0	11.4	14.9	14.4
PCB 184	2.1 U	1.7 U	3.7 U	3.8 U	3.9 U	1.7 U	1.7 U
PCB 153	38.0	31.0	26.5	35.9	29.5	29.9	25.7
PCB 105	10.1	7.63	6.47	9.05	7.35	6.98	7.88
PCB 138	33.0	23.4	20.8	29.5	23.4	22.2	20.2
PCB 187	11.2	10.6	6.74	10.28	7.69	8.51	7.12
PCB 183	4.89	4.7	3.7 U	4.4	3.9 U	3.8	3.5
PCB 128	5.51	4.5	3.5	4.6	3.8	3.7	3.9
PCB 180	12.61	16.4	9.46	13.4	10.6	11.8	10.1
PCB 170	6.34	8.26	4.97	6.54	5.38	6.02	6.57
PCB 195	0.90 U	0.70 U	1.6 U	1.6 U	1.6 U	0.7 U	1.0
PCB 206	1.0 U	4.8	2.9	3.9	3.1	3.2	3.6
PCB 209	2.3	2.8	1.6	2.1	1.8	2.0	1.7

TABLE G.5. (contd)

Treatment	R-MUD	R-MUD	R-MUD	R-MUD	R-MUD
Replicate	1	2	3	4	5
Batch	4	5	6	7	6
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	13.12	14.94	15.21	14.00	13.24
Heptachlor	1.45 U	1.20 U	1.25 U	1.36 U	1.74 U
Aldrin	0.99 U	0.80 U	0.85 U	0.93 U	1.21 U
Heptachlor Epoxide	0.99 U	0.87 U	0.85 U	0.93 U	1.21 U
2,4'-DDE	1.98 U	1.74 U	1.71 U	1.86 U	2.42 U
Endosulfan I	1.37 U	1.20 U	1.18 U	1.29 U	1.66 U
a-Chlordane	0.76 U	0.60 U	0.66 U	0.71 U	0.91 U
Trans Nonachlor	3.28	4.08	4.40	2.79	4.61
4,4'-DDE	1.45 U	1.20 U	2.30	1.36 U	1.74 U
Dieldrin	7.16	4.75	3.42 U	4.71	4.83 U
2,4'-DDD	1.91 U	2.34	1.64 U	1.79 U	2.34 U
2,4'-DDT	1.37 U	1.20 U	1.18 U	1.29 U	1.66 U
4,4'-DDD	7.62	2.61	1.71 U	6.07	2.42 U
Endosulfan II	1.37 U	1.20 U	1.18 U	1.29 U	1.66 U
4,4'-DDT	1.14 U	1.00 U	0.99 U	1.07 U	1.44 U
Endosulfan Sulfate	1.37 U	1.20 U	1.18 U	1.29 U	1.66 U
PCB 8	3.13 U	2.68 U	2.70 U	2.93 U	3.85 U
PCB 18	3.28 U	2.81 U	2.83 U	3.07 U	4.00 U
PCB 28	1.52 U	1.34 U	1.31 U	1.43 U	1.89 U
PCB 52	2.74 U	2.34 U	2.83	2.57 U	4.83
PCB 49	1.83 U	1.54 U	1.58 U	1.71 U	2.19 U
PCB 44	1.30 U	1.07 U	1.12 U	1.21 U	1.51 U
PCB 66	0.69 U	0.60 U	0.59 U	0.64 U	0.91 U
PCB 101	1.14 U	5.42	2.89	3.21	4.08
PCB 87	1.22 U	1.07 U	1.51	1.14 U	1.51 U
PCB 118	2.21 U	1.94 U	1.91 U	2.07 U	2.79 U
PCB 184	1.83 U	1.54 U	1.58 U	1.71 U	2.19 U
PCB 153	13.4	15.7	14.5	14.9	12.5
PCB 105	0.84 U	0.74 U	1.58	2.00	2.04
PCB 138	7.01	9.64	7.69	9.71	7.78
PCB 187	2.90	3.55	3.94	4.14	3.25
PCB 183	1.83 U	1.61	1.58	1.71 U	2.19 U
PCB 128	1.45	1.47	1.31	1.43	6.80 U
PCB 180	3.43	4.62	3.94	4.00	4.46
PCB 170	1.30 U	2.48	2.17	1.93	2.57
PCB 195	0.76 U	0.67 U	0.66 U	0.71 U	0.91 U
PCB 206	2.29	1.54	1.51	0.79 U	2.34
PCB 209	1.22	1.00	1.05	1.21	1.13

TABLE G.5. (contd)

Treatment	C-NV	C-NV	C-NV	C-NV	C-NV
Replicate	1	2	3	4	5
Batch	6	6	7	4	4
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	14.84	12.32	14.51	13.67	14.91
Heptachlor	1.3 U	1.5 U	2.1 U	1.4 U	1.3 U
Aldrin	0.88 U	1.1 U	1.4 U	5.9	0.87 U
Heptachlor Epoxide	0.88 U	1.1 U	1.5 U	1.0 U	0.87 U
2,4'-DDE	1.8 U	2.1 U	3.0 U	1.9 U	1.7 U
Endosulfan I	1.2 U	1.5 U	2.1 U	1.3 U	1.2 U
α -Chlordane	0.67 U	0.8 U	1.8	0.7 U	0.67 U
Trans Nonachlor	4.1	4.9	1.7 U	3.5	2.5
4,4'-DDE	1.5	2.4	2.1 U	3.4	1.3 U
Dieldrin	6.2	7.5	9.44	3.8 U	3.5 U
2,4'-DDD	2.8	3.2	22.4	12.2	1.7 U
2,4'-DDT	1.2 U	1.5 U	2.1 U	1.3 U	1.2 U
4,4'-DDD	4.8	6.7	72.6	38.1	1.7 U
Endosulfan II	1.2 U	1.5 U	2.1 U	1.3 U	1.2 U
4,4'-DDT	1.0 U	1.2 U	2.6	1.1 U	1.0 U
Endosulfan Sulfate	1.2 U	1.5 U	2.1 U	1.3 U	1.2 U
PCB 8	2.8 U	3.3 U	4.7 U	3.0 U	2.7 U
PCB 18	2.9 U	3.5 U	4.9 U	3.1 U	2.9 U
PCB 28	1.3 U	1.6 U	2.3 U	1.5 U	1.3 U
PCB 52	4.6	4.2	4.1 U	17.9	2.7
PCB 49	1.6 U	1.9 U	2.7 U	1.9	1.6 U
PCB 44	1.1 U	1.4 U	1.9 U	1.2 U	1.1 U
PCB 66	0.6 U	0.7 U	1.1 U	0.7 U	0.6 U
PCB 101	5.4	6.3	17.4	27.0	1.0 U
PCB 87	1.1 U	1.3 U	1.8 U	1.2 U	1.1 U
PCB 118	3.2	3.7	6.5	14.3	3.15
PCB 184	1.6 U	1.9 U	2.7 U	1.8 U	1.6 U
PCB 153	14.8	17.9	30.9	27.3	12.9
PCB 105	2.3	2.7	7.03	7.97	1.9
PCB 138	9.91	11.5	23.8	22.3	7.98
PCB 187	4.3	5.0	6.1	6.3	3.4
PCB 183	1.9	2.0	2.8	3.2	1.6 U
PCB 128	1.8	2.0	4.3	4.5	1.5
PCB 180	4.8	5.8	8.20	10.5	3.8
PCB 170	2.9	3.1	4.0	5.5	2.5
PCB 195	0.7 U	0.8 U	1.2 U	0.7 U	0.7 U
PCB 206	2.0	2.2	2.0	3.0	1.4
PCB 209	1.1	1.3	5.7	1.5	0.8

TABLE G.5. (contd)

Treatment Replicate Batch Units Percent Dry Weight	<i>N. virens</i> Background	<i>N. virens</i> Background	<i>N. virens</i> Background
	1	2	3
	7	7	7
	ng/g	ng/g	ng/g
12.86	12.94	12.05	
Heptachlor	1.5 U	1.5 U	1.6 U
Aldrin	5.7	1.0 U	1.1 U
Heptachlor Epoxide	1.0 U	1.0 U	1.1 U
2,4'-DDE	2.0 U	2.0 U	2.2 U
Endosulfan I	1.4 U	1.4 U	1.5 U
a-Chlordane	0.78 U	0.77 U	0.83 U
Trans Nonachlor	3.4	1.2 U	3.8
4,4'-DDE	1.5 U	7.7	1.6 U
Dieldrin	4.0 U	7.81	5.4
2,4'-DDD	1.9 U	1.9 U	2.1 U
2,4'-DDT	1.4 U	1.4 U	1.5 U
4,4'-DDD	2.0 U	2.0 U	4.6
Endosulfan II	1.4 U	1.4 U	1.5 U
4,4'-DDT	1.4	1.2 U	1.2 U
Endosulfan Sulfate	1.4 U	1.4 U	1.5 U
PCB 8	3.2 U	3.2 U	3.4 U
PCB 18	3.3 U	3.3 U	3.6 U
PCB 28	1.6	1.5 U	1.7 U
PCB 52	2.8 U	2.8 U	3.0 U
PCB 49	1.9 U	1.9 U	2.0 U
PCB 44	1.3 U	1.3 U	1.4 U
PCB 66	5.7	0.7 U	4.6
PCB 101	4.5	3.5	3.7
PCB 87	1.2 U	4.8	1.3 U
PCB 118	2.3 U	2.2 U	2.4 U
PCB 184	1.9 U	1.9 U	2.0 U
PCB 153	17.4	15.2	14.3
PCB 105	2.0	1.8	2.1
PCB 138	12.4	10.4	9.88
PCB 187	4.9	4.2	3.4
PCB 183	1.9	1.9 U	2.0 U
PCB 128	1.9	1.5	1.4
PCB 180	3.8	3.3	3.6
PCB 170	1.3 U	1.6	1.6
PCB 195	0.78 U	0.77 U	0.83 U
PCB 206	0.86 U	0.85 U	0.91 U
PCB 209	0.78	0.7 U	0.7 U

(a) U Undetected at or above given concentration.

**TABLE G.6. Quality Control Summary for Pesticides and PCB Congeners
in Tissue of *N. virens* (Wet Weight)**

<u>Blanks</u>	Blank	Blank	Blank	Blank
Treatment	Blank	Blank	Blank	Blank
Replicate	1	1	1	1
Batch	4	5	6	7
Wet Wt.	NA	NA	NA	NA
Units	ng/g	ng/g	ng/g	ng/g
Heptachlor	0.20 U ^(a)	0.19 U	0.19 U	0.21 U
Aldrin	0.13 U	0.13 U	0.13 U	0.15 U
Heptachlor epoxide	0.14 U	0.14 U	0.14 U	0.15 U
2,4'-DDE	0.28 U	0.27 U	0.27 U	0.30 U
Endosulfan I	0.19 U	0.18 U	0.19 U	0.21 U
a-Chlordane	0.10 U	0.10 U	0.10 U	0.11 U
Trans Nonachlor	0.15 U	0.15 U	0.15 U	0.17 U
4,4'-DDE	0.20 U	1.90 U	0.20 U	0.22 U
Dieldrin	0.55 U	0.53 U	0.54 U	0.60 U
2,4'-DDD	0.27 U	0.26 U	0.26 U	0.29 U
2,4'-DDT	0.19 U	0.18 U	0.19 U	0.21 U
4,4'-DDD	0.28 U	0.27 U	0.27 U	0.30 U
Endosulfan II	0.19 U	0.18 U	0.19 U	0.21 U
4,4'-DDT	0.16 U	0.15 U	0.16 U	0.18 U
Endosulfan Sulfate	0.19 U	0.18 U	0.19 U	0.21 U
PCB 8	0.44 U	0.42 U	0.43 U	0.48 U
PCB 18	0.46 U	0.44 U	0.45 U	0.50 U
PCB 28	0.22 U	0.21 U	0.21 U	0.24 U
PCB 52	0.38 U	0.37 U	0.37 U	0.42 U
PCB 49	0.25 U	0.24 U	0.25 U	0.27 U
PCB 44	0.17 U	0.17 U	0.17 U	0.19 U
PCB 66	0.10 U	0.10 U	0.10 U	0.11 U
PCB 101	0.15 U	0.15 U	0.15 U	0.17 U
PCB 87	0.17 U	0.16 U	0.17 U	0.19 U
PCB 118	0.31 U	0.30 U	0.31 U	0.34 U
PCB 184	0.25 U	0.24 U	0.25 U	0.27 U
PCB 153	0.13 U	0.12 U	0.13 U	0.14 U
PCB 105	0.12 U	0.11 U	0.12 U	0.13 U
PCB 138	0.31 U	0.30 U	0.30 U	0.34 U
PCB 187	0.13 U	0.13 U	0.13 U	0.15 U
PCB 183	0.25 U	0.24 U	0.25 U	0.27 U
PCB 128	0.16 U	0.16 U	0.16 U	0.18 U
PCB 180	0.20 U	0.19 U	0.19 U	0.21 U
PCB 170	0.18 U	0.17 U	0.17 U	0.19 U
PCB 195	0.11 U	0.10 U	0.10 U	0.12 U
PCB 206	0.12 U	0.12 U	0.12 U	0.13 U
PCB 209	0.10 U	0.10 U	0.10 U	0.11 U
<u>Surrogate Recoveries (%)</u>				
PCB 103 (SIS)	68	82	86	104
PCB 198 (SIS)	106	79	79	110

TABLE G.6. (contd)

Matrix Spike Results

Treatment	Matrix Spike				Matrix Spike			
	COMP SB-A		COMP SB-A		COMP EC-A		COMP EC-A	
	Replicate	1	1	Amount Spiked	Percent Recovery	1	1	Amount Spiked
Batch	4	4	ng/g	ng/g	ng/g	5	5	ng/g
Wet Wt. Units	20.08	20.02	ng/g	ng/g	ng/g	20.08	20.05	ng/g
Heptachlor	1.39	2.45	2.50	42 (b)	0.19 U	3.10	2.50	124 (b)
Aldrin	1.57	3.16	2.50	64	2.08	2.72	2.50	116
Heptachlor epoxide	0.13 U	2.10	2.50	84	0.13 U	2.33	2.50	93
2,4'-DDE	0.26 U	NA (c)	NS (d)	NA	0.26 U	NA	NS	NA
Endosulfan I	0.18 U	1.96	2.50	78	0.18 U	2.23	2.50	89
a-Chlordane	0.84	NA	NS	NA	1.29	NA	NS	NA
Trans Nonachlor	0.83	NA	NS	NA	1.40	NA	NS	NA
4,4'-DDE	5.68	8.14	2.50	98	2.68	7.38	2.50	188 (b)
Dieldrin	2.56	4.63	2.50	83	1.58	6.23	2.50	186 (b)
2,4'-DDD	2.52	NA	NS	NA	0.25 U	NA	NS	NA
2,4'-DDT	0.18 U	NA	NS	NA	0.18 U	NA	NS	NA
4,4'-DDD	14.4	19.3	2.50	196 (b)	2.16	13.2	2.50	442 (b)
Endosulfan II	0.18 U	1.50	2.50	60	0.18 U	1.52	2.50	61
4,4'-DDT	0.15 U	2.59	2.50	104	0.15 U	2.55	2.50	102
Endosulfan Sulfate	0.18 U	1.95	2.50	78	0.18 U	1.72	2.50	69
PCB 8	0.41 U	NA	NS	NA	0.41 U	NA	NS	NA
PCB 18	11.8	NA	NS	NA	1.58	NA	NS	NA
PCB 28	14.5	21.1	3.18	208 (b)	3.24	9.65	3.18	202 (b)
PCB 52	17.0	30.4	6.65	202 (b)	5.08	19.5	6.65	217 (b)
PCB 49	10.0	NA	NS	NA	3.10	NA	NS	NA
PCB 44	6.29	NA	NS	NA	1.28	NA	NS	NA
PCB 66	14.3	NA	NS	NA	0.09 U	NA	NS	NA
PCB 101	10.6	17.7	4.51	157 (b)	5.24	18.2	4.51	287 (b)
PCB 87	1.71	NA	NS	NA	0.48	6.62	5.70	108
PCB 118	5.18	NA	NS	NA	2.84	NA	NS	NA
PCB 184	0.24 U	NA	NS	NA	0.24 U	NA	NS	NA
PCB 153	6.10	9.64	2.64	134 (b)	5.61	12.0	2.64	242 (b)
PCB 105	2.52	NS	NS	NS	1.33	NS	NS	NS
PCB 138	5.36	9.10	2.04	183 (b)	4.40	14.6	2.04	500 (b)
PCB 187	1.79	NA	NS	NA	1.56	NA	NS	NA
PCB 183	0.90	NA	NS	NA	0.74	NA	NS	NA
PCB 128	1.05	NA	NS	NA	0.69	NA	NS	NA
PCB 180	3.21	NA	NS	NA	2.34	NA	NS	NA
PCB 170	1.55	NA	NS	NA	1.13	NA	NS	NA
PCB 195	0.31	NA	NS	NA	0.10 U	NA	NS	NA
PCB 206	1.85	NA	NS	NA	0.50	NA	NS	NA
PCB 209	0.92	NA	NS	NA	0.21	NA	NS	NA
<u>Surrogate Recoveries (%)</u>								
PCB 103 (SIS)	73	49	NA	NA	86	94	NA	NA
PCB 198 (SIS)	131	83	NA	NA	78	87	NA	NA

TABLE G.6. (contd)

Matrix Spike Results

Treatment	Matrix Spike				Matrix Spike			
	C-NV	C-NV	Amount	Percent	COMP	HU-C	COMP	HU-C
Replicate	2	2			1	1		
Batch	6	6			7	7		
Wet Wt.	20.08	20.17	Amount Spiked	Percent Recovery	12.96 ng/g	12.71 ng/g	Amount Spiked ng/g	Percent Recovery
Units	ng/g	ng/g						
Heptachlor	0.19 U	2.71	2.50	108	0.28 U	4.76	3.95	121 ^(b)
Aldrin	0.13 U	2.23	2.50	89	1.77	4.88	3.95	79
Heptachlor epoxide	0.13 U	2.48	2.50	99	0.20 U	3.45	3.95	87
2,4'-DDE	0.26 U	NA	NS	NA	0.40 U	NA	NS	NA
Endosulfan I	0.18 U	2.40	2.50	96	0.28 U	2.93	3.95	74
a-Chlordane	0.10 U	NA	NS	NA	2.21	NA	NS	NA
Trans Nonachlor	0.60	NA	NS	NA	0.68	NA	NS	NA
4,4'-DDE	0.29	2.11	2.50	73	3.87	7.30	3.95	87
Dieldrin	0.93	2.96	2.50	81	2.50	6.10	3.95	91
2,4'-DDD	0.40	NA	NS	NA	0.39 U	NA	NS	NA
2,4'-DDT	0.18 U	NA	NS	NA	0.28 U	NA	NS	NA
4,4'-DDD	0.83	3.5	2.50	105	4.66	10.1	3.95	138
Endosulfan II	0.18 U	1.71	2.50	68	0.28 U	3.00	3.95	76
4,4'-DDT	0.15 U	2.31	2.50	92	0.23 U	4.23	3.95	107
Endosulfan Sulfate	0.18 U	2.23	2.50	89	0.28 U	3.71	3.95	94
PCB 8	0.41 U	NA	NS	NA	0.63 U	NA	NS	NA
PCB 18	0.43 U	NA	NS	NA	9.95	NA	NS	NA
PCB 28	0.20 U	3.98	3.19	118	14.30	21.78	5.04	148 ^(b)
PCB 52	0.52	7.4	6.65	104	19.31	31.6	10.51	117
PCB 49	0.24 U	NA	NS	NA	10.00	NA	NS	NA
PCB 44	0.17 U	NA	NS	NA	4.98	NA	NS	NA
PCB 66	0.09 U	NA	NS	NA	15.27	NA	NS	NA
PCB 101	0.78	5.7	4.51	109	9.92	19.7	7.13	137 ^(b)
PCB 87	0.16 U	NA	NS	NA	0.88	NA	NS	NA
PCB 118	0.45	NA	NS	NA	5.30	NA	NS	NA
PCB 184	0.24 U	NA	NS	NA	0.36 U	NA	NS	NA
PCB 153	2.20	4.5	2.64	88	7.80	11.3	4.17	83
PCB 105	0.33	NA	NS	NA	3.38	NA	NS	NA
PCB 138	1.42	5.6	2.04	202 ^(b)	7.19	10.4	3.22	99
PCB 187	0.62	NA	NS	NA	2.51	NA	NS	NA
PCB 183	0.25	NA	NS	NA	1.21	NA	NS	NA
PCB 128	0.25	NA	NS	NA	1.28	NA	NS	NA
PCB 180	0.72	NA	NS	NA	3.05	NA	NS	NA
PCB 170	0.38	NA	NS	NA	1.45	NA	NS	NA
PCB 195	0.10 U	NA	NS	NA	0.22	NA	NS	NA
PCB 206	0.27	NA	NS	NA	1.23	NA	NS	NA
PCB 209	0.16	NA	NS	NA	0.82	NA	NS	NA
<u>Surrogate Recoveries (%)</u>								
PCB 103 (SIS)	87	83	NA	NA	64	77	NA	NA
PCB 198 (SIS)	69	61	NA	NA	68	80	NA	NA

TABLE G.6. (contd)

Analytical Replicate Results

Treatment Replicate Batch Wet Wt. Units	DUP			TRIP			DUP			TRIP			
	COMP	HU-A	5	COMP	HU-A	5	COMP	HU-A	2	COMP	SB-B	2	
			4			4			5			5	
	14.57		ng/g	13.76		ng/g	13.79		17.11		17.25	17.13	
Heptachlor	1.02	0.89		1.00	7		0.21	U	0.21	U	0.21	U	
Aldrin	3.64	3.48		3.65	3		1.67		1.72		1.64	2	
Heptachlor epoxide	0.18	U	0.19	U	0.19	U	0.15	U	0.24		0.15	U	
2,4'-DDE	0.36	U	0.38	U	0.38	U	0.3	U	0.3	U	0.3	U	
Endosulfan I	0.25	U	0.26	U	0.26	U	0.21	U	0.21	U	0.21	U	
a-Chlordane	0.13	U	0.14	U	0.14	U	0.8		0.89		0.85	5	
Trans Nonachlor	0.54	0.21	U	0.21	U	NA	0.86		0.96		0.94	6	
4,4'-DDE	6.42	6.41		6.43	0		1.9		2.05		1.95	4	
Dieldrin	2.00	1.69		1.85	8		1.80		1.9		1.81	3	
2,4'-DDD	0.93	1.12		1.38	20		5.42		5.91		5.86	5	
2,4'-DDT	0.25	U	0.26	U	0.26	U	0.21	U	0.21	U	0.21	U	
4,4'-DDD	6.97	6.32		6.62	5		10.30		11.7		12	8	
Endosulfan II	0.25	U	0.26	U	0.26	U	0.21	U	0.21	U	0.21	U	
4,4'-DDT	0.21	U	0.22	U	0.22	U	0.18	U	2.33		0.18	U	
Endosulfan Sulfate	0.25	U	0.26	U	0.44	34 ^(e)	0.65		0.45		0.3	38 ^(e)	
PCB 8	0.57	U	0.60	U	0.60	U	NA	0.48	U	0.48	U	0.48	U
PCB 18	8.28	8.45		8.44	1		1.18		1.34		1.21	7	
PCB 28	8.87	8.92		9.03	1		2.39		2.46		2.30	3	
PCB 52	9.39	9.06		9.43	2		4.22		4.32		3.85	6	
PCB 49	5.31	5.21		5.38	2		2.23		2.27		2.07	5	
PCB 44	3.08	3.02		3.05	1		0.79		0.86		0.86	5	
PCB 66	0.13	U	0.14	U	0.14	U	NA	0.11	U	0.11	U	0.11	U
PCB 101	5.04	4.93		5.10	2		4.37		4.52		4.09	5	
PCB 87	0.91	0.99		0.82	9		0.19	U	0.28		0.33	27	
PCB 118	2.51	2.44		2.54	2		2.79		2.72		2.23	12	
PCB 184	0.33	U	0.34	U	0.34	U	NA	0.27	U	0.27	U	0.27	U
PCB 153	4.40	4.40		4.47	1		5.28		5.19		4.11	13	
PCB 105	1.25	1.11		1.18	6		1.42		1.41		1.16	11	
PCB 138	2.92	2.91		2.91	0		4.06		4.1		3.41	10	
PCB 187	1.39	1.32		1.36	3		1.32		1.29		1.03	13	
PCB 183	0.65	0.54		0.60	9		0.62		0.6		0.48	13	
PCB 128	0.60	0.50		0.56	9		0.69		0.69		0.56	12	
PCB 180	1.71	1.69		1.65	2		1.94		2.01		1.78	6	
PCB 170	0.23	U	0.24	U	0.24	U	NA	0.98		1.01		0.88	7
PCB 195	0.17	0.17		0.15	U	NA	0.17		0.12	U	0.12	U	
PCB 206	1.25	1.29		1.24	2		0.49		0.51		0.42	10	
PCB 209	0.87	0.77		0.83	6		0.32		0.31		0.25	13	
<u>Surrogate Recoveries (%)</u>													
PCB 103 (SIS)	75	74		66	NA		65		81		72	NA	
PCB 198 (SIS)	116	115		102	NA		61		73		66	NA	

TABLE G.6. (contd)

Analytical Replicate Results

Treatment Replicate Batch Wet Wt. Units	DUP			TRIP			DUP			TRIP					
	COMP	HU-C	COMP	HU-C	COMP	HU-C	COMP	BU	COMP	BU	COMP	BU			
	4	4	4	4	3	3	3	3	3	3	3	3			
	6	6	6	6	7	7	7	7	7	7	7	7			
Wet Wt. Units	17.18	17.51	16.38		8.6	8.47	8.21								
	ng/g	ng/g	ng/g	RSD%	ng/g	ng/g	ng/g					RSD%			
Heptachlor	2.5	2.43	2.33	4	0.43	U	0.44	U	0.45	U	NA				
Aldrin	2.42	2.25	2.29	4	2.42		2.74		2.2		11				
Heptachlor epoxide	0.15	U	0.15	U	0.16	U	NA	0.31	U	0.31	U	0.32	U	NA	
2,4'-DDE	0.3	U	0.3	U	0.32	U	NA	0.61	U	0.62	U	0.64	U	NA	
Endosulfan I	0.21	U	0.21	U	0.22	U	NA	0.42	U	0.42	U	0.44	U	NA	
a-Chlordane	1.83		1.78		1.66		5	1.13		1.46		1.11		16	
Trans Nonachlor	1.65		1.61		1.52		4	0.54		0.77		0.35	U	NA	
4,4'-DDE	16.8		7.5		6.89		53	(e)	2.01		2.54		2.23	12	
Dieldrin	0.60	U	4.31		4.16		69	(e)	1.43		1.84		1.58	13	
2,4'-DDD	7.71		7.61		7.11		4		0.59	U	0.60	U	0.62	U	NA
2,4'-DDT	0.21	U	0.2	U	0.22	U	NA	0.42	U	0.42	U	0.44	U	NA	
4,4'-DDD	26.00		22.5		21.3		10		2.24		2.56		1.85	16	
Endosulfan II	0.21	U	0.21	U	0.22	U	NA	0.42	U	0.42	U	0.44	U	NA	
4,4'-DDT	0.18	U	0.17	U	0.18	U	NA	0.35	U	0.36	U	0.37	U	NA	
Endosulfan Sulfate	0.21	U	0.21	U	0.22	U	NA	0.42	U	0.75		0.44	U	NA	
PCB 8	0.48	U	0.47	U	0.50	U	3	0.95	U	0.97	U	1.00	U	NA	
PCB 18	19.8		19.3		18.5		3	1	U	1.01	U	1.05	U	NA	
PCB 28	25.70		24.30		23.80		4	2.34		3.19		2.54		17	
PCB 52	37.10		34.00		31.8		8	3.94		5.27		4.37		15	
PCB 49	17.80		16.7		16.5		4	2.09		2.79		2.14		17	
PCB 44	11.60		10.6		9.58		10	1.07		1.44		1.18		15	
PCB 66	27.20		25.10		24.1		6	0.22	U	0.22	U	0.23	U	NA	
PCB 101	20.80		19.3		18.70		6	3.09		4.17		3.26		17	
PCB 87	20.60		2.04		1.82		132	(e)	0.37	U	0.41		0.39	U	NA
PCB 118	18.40		10.5		9.87		37	(e)	1.51		2.05		1.68		16
PCB 184	0.27	U	0.27	U	0.29	U	NA	0.55	U	0.56	U	0.58	U	NA	
PCB 153	17.90		13.60		12.8		19	3.89		5.28		4.33		16	
PCB 105	6.30		5.72		5.38		8	0.95		1.33		1.08		17	
PCB 138	13.30		12		11.5		8	3.06		4.33		3.44		18	
PCB 187	3.62		3.2		3		10	0.99		1.51		1.13		22	
PCB 183	1.85		1.68		1.57		8	0.55	U	0.65		0.58	U	NA	
PCB 128	2.64		2.46		2.27		8	0.52		0.68		0.56		14	
PCB 180	3.77		4.79		4.46		12	1.39		1.97		1.55		18	
PCB 170	2.44		2.44		2.25		5	0.73		0.96		0.79		14	
PCB 195	0.25		0.39		0.12	U	NA	0.23	U	0.24	U	0.24	U	NA	
PCB 206	1.53		1.24		1.14		16	0.42		0.57		0.45		17	
PCB 209	0.92		0.90		0.88		2	0.23		0.31		0.26		15	
<u>Surrogate Recoveries (%)</u>															
PCB 103 (SIS)	89		82		88		NA	81		66		74		NA	
PCB 198 (SIS)	81		67		70		NA	83		67		79		NA	

(a) U Undetected at or above given concentration.

(b) Outside Spike QC range (50-120%) for matrix spike recoveries

(c) NA Not applicable.

(d) NS Not spiked.

(e) Exceeds quality control criteria ($\pm 30\%$) for replicates.

TABLE G.7. MDL Verification Study for Pesticide/PCB Tissue Chemistry

Treatment	MDL	MDL	MDL	MDL	
Replicate	R1	R2	R3	R4	
Batch	8	8	8	8	
Wet Wt.	20.12	20.40	20.09	20.03	
Units	ng/g	ng/g	ng/g	ng/g	MDL ^(a)
Heptachlor	1.01	1.08	1.09	1.04	0.129
Aldrin	0.82	0.79	0.83	0.82	0.061
Heptachlor Epoxide	1.32	1.27	1.33	1.28	0.103
2,4'-DDE	1.18	1.2	1.24	1.19	0.092
Endosulfan I	NA ^(b)	NA	NA	NA	NA
a-Chlordane	0.94	0.96	0.95	1.1	0.264
Trans Nonachlor	1.43	1.49	1.46	1.61	0.276
4,4'-DDE	1.87	1.62	1.77	1.78	0.363
Dieldrin	2.27	2.38	2.39	2.32	0.196
2,4'-DDD	1.40	1.52	1.52	1.52	0.210
2,4'-DDT	1.07	1.02	1.17	1.18	0.273
4,4'-DDD	1.40	1.52	1.67	1.68	0.467
Endosulfan II	NA	NA	NA	NA	NA
4,4'-DDT	1.04	1.18	1.13	1.25	0.309
Endosulfan Sulfate	NA	NA	NA	NA	NA
PCB 8	0.56	0.57	0.54	0.56	0.044
PCB 18	0.84	0.80	0.85	0.84	0.078
PCB 28	1.04	1.01	1.07	1.10	0.136
PCB 52	1.20	1.20	1.27	1.31	0.191
PCB 49	0.24 U ^(c)	0.23 U	0.24 U	0.24 U	NA
PCB 44	0.96	0.90	0.93	0.94	0.088
PCB 66	1.47	1.42	1.47	1.44	0.086
PCB 101	1.59	1.54	1.62	1.55	0.129
PCB 87	0.79	0.81	0.79	0.97	0.305
PCB 118	1.02	1.00	1.05	1.10	0.152
PCB 184	0.24 U	0.23 U	0.24 U	0.24 U	NA
PCB 153	2.54	2.46	2.61	2.60	0.241
PCB 105	1.00	0.95	1.03	1.04	0.141
PCB 138	1.91	1.89	1.89	1.96	0.116
PCB 187	1.24	1.23	1.24	1.35	0.199
PCB 183	0.24 U	0.23 U	0.24 U	0.24 U	NA
PCB 128	0.87	0.87	0.88	0.92	0.083
PCB 180	1.18	1.34	1.22	1.17	0.273
PCB 170	0.98	0.93	1.01	1.03	0.152
PCB 195	0.82	0.80	0.84	0.89	0.135
PCB 206	1.03	1.01	1.09	1.13	0.193
PCB 209	1.00	0.95	1.03	1.06	0.164

(a) MDL Calculated by multiplying the standard deviation of the four replicates by Students-t (4.54).

(b) NA Not applicable.

(c) U Undetected at or above given concentration.

TABLE G.8. Polynuclear Aromatic Hydrocarbons (PAH) in Tissue of *N. virens* (Wet Weight)

Treatment	COMP BU		COMP BU		DUP		TRIP			
	Replicate	1	2	3-1	3-2	COMP BU	3-3	COMP BU	4	COMP BU
Batch	7	4	7	7	7	7	7	5	4	4
Units	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	14.51%	14.29%	14.69%	14.69%	14.69%	14.69%	14.46%	14.46%	14.47%	14.47%
1,4-Dichlorobenzene	2.42 U ^(a)	1.86 U	4.32 U	4.40 U	4.55 U	1.86 U	1.86 U			
Naphthalene	4.12 ^(b)	2.35	10.8	11.2	10.2	1.93	1.86 U			
Acenaphthylene	1.16 ^(b)	2.88	1.68 U	1.85 ^(b)	1.77 U	1.09 ^(b)	0.91 ^(b)			
Acenaphthene	3.62	2.84	5.01	5.63	5.95 ^(b)	1.71 ^(b)	1.85			
Fluorene	3.69 ^(b)	1.24 U	6.39	2.92 U	6.84 ^(b)	1.24 U	1.24 U			
Phenanthrene	4.25	3.05	7.61	8.28	7.52	2.56 U	2.56 U			
Anthracene	4.77 ^(b)	3.85	7.93 ^(b)	5.28 U	5.46 U	2.79 ^(b)	2.76 ^(b)			
Fluoranthene	24.1	19.8	16.3	19.6	17.6	16.3	20.9			
Pyrene	33.6	23.5	21.1	24.8	22.1	21.1	25.4			
Benz(a)anthracene	6.20	6.12 ^(b) B ^(c)	2.54 U	9.61 ^(b)	2.67 U	3.08 B	2.66 ^(b) B			
Chrysene	12.4	12.6	10.2	10.8	10.9	9.06	7.91			
Benzo(b)fluoranthene	8.36	8.01 ^(b)	11.9	12.6	12.5	3.78	4.21			
Benzo(k)fluoranthene	4.21	4.94	6.60 ^(b)	6.85 ^(b)	6.78 ^(b)	2.95 ^(b)	2.58			
Benzo(a)pyrene	4.33	9.01	6.06	6.67	6.38	2.39 ^(b)	1.74 ^(b)			
Indeno(1,2,3-c,d)pyrene	4.81 ^(b)	3.71	8.11 ^(b)	8.18	8.54 ^(b)	1.76 U	1.76 U			
Dibenz(a,h)anthracene	2.59 ^(b)	1.45	2.92 U	2.97 U	3.08 U	1.26 U	1.26 U			
Benzo(g,h,i)perylene	4.66 ^(b)	3.75	7.71	8.09	7.98	1.57 ^(b)	1.70 ^(b)			

Surrogate Internal Standards (%)

d4 1,4-Dichlorobenzene	50	46	50	41	50	42	54
d8 Naphthalene	64	68	60	50	60	60	73
d10 Acenaphthene	77	77	78	65	74	66	79
d12 Chrysene	70	75	83	67	77	62	72
d14 Dibenz(a,h,i)anthracene	89	80	104	85	99	64	80

TABLE G.8. (contd)

Treatment	R-MUD	R-MUD	R-MUD	R-MUD	R-MUD
Replicate	1	2	3	4	5
Batch	4	5	6	7	6
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	13.12%	14.94%	15.21%	14.00%	13.24%
1,4-Dichlorobenzene	1.86 U	1.83 U	1.86 U	1.86 U	2.31 U
Naphthalene	1.86 U	1.83 U	2.71 ^(b)	6.00 ^(b) B	11.9
Acenaphthylene	0.73 U	0.71 U	0.73 U	0.73 U	2.93 ^(b)
Acenaphthene	1.30 U	1.28 U	2.28 ^(b)	3.24	3.29
Fluorene	1.24 U	1.21 U	1.24 U	3.31	4.07
Phenanthrene	2.56 U	2.51 U	2.56 U	4.04	7.21
Anthracene	2.24 U	2.19 U	2.24 U	2.24 U	2.77 U
Fluoranthene	5.36 U	5.26 U	5.36 U	5.36 U	6.65 U
Pyrene	4.57 U	4.48 U	4.57 U	5.54 ^(b)	6.97 ^(b)
Benzo(a)anthracene	2.43 ^(b) B	2.47 B	3.68 ^(b) B	4.05 ^(b) B	4.51 ^(b) B
Chrysene	2.27 U	2.22 U	2.27 U	2.27 U	2.81 U
Benzo(b)fluoranthene	2.51 ^(b)	1.61 U	4.09 ^(b)	1.64 U	5.09 ^(b)
Benzo(k)fluoranthene	1.92 ^(b)	1.64 U	1.67 U	1.67 U	2.07 U
Benzo(a)pyrene	1.49 U	1.46 U	1.49 U	1.49 U	1.85 U
Indeno(123-cd)pyrene	1.76 U	1.73 U	1.76 U	1.76 U	3.66 ^(b)
Dibenzo(a,h)anthracene	1.26 U	1.24 U	1.26 U	1.26 U	1.56 U
Benzo(g,h,i)perylene	1.40 U	1.37 U	1.40 U	1.40 U	3.57 ^(b)
Surrogate Internal Standards (%)					
d4 1,4-Dichlorobenzene	69	63	64	12 ^(d)	66
d8 Naphthalene	82	85	76	28 ^(d)	76
d10 Acenaphthene	83	92	81	47	79
d12 Chrysene	72	93	77	54	78
d14 Dibenzo(a,h,i)anthracene	82	102	86	70	87

TABLE G.8. (contd)

Treatment	C-NV	C-NV	C-NV	C-NV	C-NV
Replicate	1	2	3	4	5
Batch	6	6	4	4	4
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	14.84%	12.32%	14.51%	13.67%	14.91%
1,4-Dichlorobenzene	1.86 U	1.86 U	1.86 U	1.86 U	1.86 U
Naphthalene	2.16 ^(b)	2.72 ^(b)	2.49	2.80	2.09 ^(b)
Acenaphthylene	2.04 ^(b)	0.73 U	0.73 U	0.73 U	0.73 U
Acenaphthene	1.30 U	2.34 ^(b)	1.30 U	1.40 ^(b)	1.30 U
Fluorene	1.24 U	2.76	1.24 U	1.24 U	1.24 U
Phenanthrene	2.56 ^(b)	2.76 ^(b)	2.56 U	2.56 U	2.56 U
Anthracene	2.24 U	2.24 U	2.24 U	2.24 U	2.24 U
Fluoranthene	7.87 ^(b)	6.80	11.1	5.46	5.36 U
Pyrene	9.30	7.20	14.7	4.95	5.01 ^(b)
Benzo(a)anthracene	3.95 B	1.09 U	2.45 ^(b) B	2.26 ^(b) B	1.09 U
Chrysene	3.21	2.87	3.77	2.27 U	2.27 U
Benzo(b)fluoranthene	5.00	4.44 ^(b)	3.53	2.60	2.70 ^(b)
Benzo(k)fluoranthene	3.19 ^(b)	2.81 ^(b)	2.48 ^(b)	2.02 ^(b)	2.05 ^(b)
Benzo(a)pyrene	2.64 ^(b)	1.49 U	1.49 U	1.49	1.49 U
Indeno(123-cd)pyrene	3.07 ^(b)	2.87 ^(b)	1.76 U	1.76 ^(b)	1.76 U
Dibenzo(a,h)anthracene	1.26 U	1.26 U	1.26 U	1.26	1.26 U
Benzo(g,h,i)perylene	2.96 ^(b)	2.78 ^(b)	1.40 U	1.40 ^(b)	1.40 U
<u>Surrogate Internal Standards (%)</u>					
d4 1,4-Dichlorobenzene	68	71	46	55	27 ^(d)
d8 Naphthalene	82	85	58	71	35
d10 Acenaphthene	89	88	63	76	38
d12 Chrysene	78	80	58	71	41
d14 Dibenzo(a,h,i)anthracene	85	92	61	77	38

TABLE G.8. (contd)

Treatment	<i>N. virens</i> Background	<i>N. virens</i> Background	<i>N. virens</i> Background
Replicate	1	2	3
Batch	7	7	7
Units	ng/g	ng/g	ng/g
Percent Dry Weight	12.86%	12.94%	12.05%
1,4-Dichlorobenzene	1.86 U	1.86 U	1.86 U
Naphthalene	2.79	2.67	2.98
Acenaphthylene	0.73 U	2.79 U	0.73 U
Acenaphthene	2.12	2.24 ^(b)	2.09 ^(b)
Fluorene	1.24 U	1.24 U	1.24 U
Phenanthrene	2.56 U	2.56 U	2.67 ^(b)
Anthracene	3.49	2.24 U	2.24 U
Fluoranthene	5.36 U	5.36 U	5.36 U
Pyrene	4.57 U	4.57 U	4.57 U
Benzo(a)anthracene	4.22	3.86 ^(b)	3.77 ^(b)
Chrysene	2.27 U	2.27 U	2.27 U
Benzo(b)fluoranthene	1.64 U	1.64 U	4.49 ^(b)
Benzo(k)fluoranthene	1.67 U	1.67 U	1.67 U
Benzo(a)pyrene	1.49 U	2.59	1.49 U
Indeno(123-cd)pyrene	1.76 U	1.76 U	1.76 U
Dibenzo(a,h)anthracene	1.26 U	1.26 U	1.26 U
Benzo(g,h,i)perylene	1.40 U	1.40 U	1.40 U
Surrogate Internal Standards (%)			
d4 1,4-Dichlorobenzene	72	68	51
d8 Naphthalene	85	82	67
d10 Acenaphthene	91	89	84
d12 Chrysene	84	81	82
d14 Dibenzo(a,h,i)anthracene	105	103	104

(a) U Undetected at or above given concentration.

(b) Ion ratio out or confirmation ion not detected.

(c) B Value is < 5 times concentration in blank.

(d) Outside quality control criteria (30-150%) for surrogate internal standards.

TABLE G.9. Polynuclear Aromatic Hydrocarbons (PAH) in Tissue of *N. virens* (Dry Weight)

Treatment	COMP BU		COMP BU		COMP BU		COMP BU		DUP		TRIP	
	1	2	3-1	3-2	3-3	4	5	COMP BU				
Replicate	1	2	3-1	3-2	3-3	4	5					
Batch	7	4	7	7	7	5	4					
Wet Wt.	15.45	20.02	8.6	8.47	8.21	20.1	18.84					
Percent Dry Weight	14.51%	14.29%	14.69%	14.69%	14.69%	14.46%	14.47%					
1,4-Dichlorobenzene	16.7 U ^(a)	13.0 U	29.4 U	30.0 U	31.0 U	12.9 U	12.9 U					
Naphthalene	28.4 ^(b)	16.4	73.5	76.2	69.4	13.3	12.9 U					
Acenaphthylene	7.99 ^(b)	20.2	11.4 U	12.6 ^(b)	12.0 U	7.54 ^(b)	6.29 ^(b)					
Acenaphthene	24.9	19.9	34.1	38.3	40.5 ^(b)	11.8 ^(b)	12.8					
Fluorene	25.4 ^(b)	8.68 U	43.5	19.9 U	46.6 ^(b)	8.58 U	8.57 U					
Phenanthrene	29.3	21.3	51.8	56.4	51.2	17.7 U	17.7 U					
Anthracene	32.9 ^(b)	26.9	54.0 ^(b)	35.9 U	37.2 U	19.3 ^(b)	19.1 ^(b)					
Fluoranthene	166	139	111	133	120	113	144					
Pyrene	232	164	144	169	150	146	176					
Benzo(a)anthracene	42.7	42.8 ^(b) B ^(c)	17.3 U	65.4 ^(b)	18.2 U	21.3 B	18.4 ^(b) B					
Chrysene	85.5	88.2	69.4	73.5	74.2	62.7	54.7					
Benzo(b)fluoranthene	57.6	56.1 ^(b)	81.0	85.8	85.1	26.1	29.1					
Benzo(k)fluoranthene	29.0	34.6	44.9 ^(b)	46.6 ^(b)	46.2 ^(b)	20.4 ^(b)	17.8					
Benzo(a)pyrene	29.8	63.1	41.3	45.4	43.4	16.5 ^(b)	12.0 ^(b)					
Indeno(123-cd)pyrene	33.1 ^(b)	26.0	55.2 ^(b)	55.7	58.1 ^(b)	12.2 U	12.2 U					
Dibenzo(a,h)anthracene	17.8 ^(b)	10.1	19.9 U	20.2 U	21.0 U	8.71 U	8.71 U					
Benzo(g,h,i)perylene	32.1 ^(b)	26.2	52.5	55.1	54.3	10.9 ^(b)	11.7 ^(b)					

TABLE G.9. (contd)

Treatment	R-MUD	R-MUD	R-MUD	R-MUD	R-MUD
Replicate	1	2	3	4	5
Batch	4	5	6	7	6
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	13.12%	14.94%	15.21%	14.00%	13.24%
1,4-Dichlorobenzene	14.2 U	12.2 U	12.2 U	13.3 U	17.4 U
Naphthalene	14.2 U	12.2 U	17.8 ^(b)	42.9 ^(b) B	89.9
Acenaphthylene	5.56 U	4.8 U	4.8 U	5.2 U	22.1 ^(b)
Acenaphthene	9.91 U	8.57 U	15.0 ^(b)	23.1	24.8
Fluorene	9.45 U	8.10 U	8.15 U	23.6	30.7
Phenanthrene	19.5 U	16.8 U	16.8 U	28.9	54.5
Anthracene	17.1 U	14.7 U	14.7 U	16.0 U	20.9 U
Fluoranthene	40.9 U	35.2 U	35.2 U	38.3 U	50.2 U
Pyrene	34.8 U	30.0 U	30.0 U	39.6 ^(b)	52.6 ^(b)
Benzo(a)anthracene	18.5 ^(b) B	16.5 B	24.2 ^(b) B	28.9 ^(b) B	34.1 ^(b) B
Chrysene	17.3 U	14.9 U	14.9 U	16.2 U	21.2 U
Benzo(b)fluoranthene	19.1 ^(b)	10.8 U	26.9 ^(b)	11.7 U	38.4 ^(b)
Benzo(k)fluoranthene	14.6 ^(b)	11.0 U	11.0 U	11.9 U	15.6 U
Benzo(a)pyrene	11.4 U	9.77 U	9.80 U	10.6 U	14.0 U
Indeno(123-cd)pyrene	13.4 U	11.6 U	11.6 U	12.6 U	27.6 ^(b)
Dibenzo(a,h)anthracene	9.60 U	8.30 U	8.28 U	9.00 U	11.8 U
Benzo(g,h,i)perylene	10.7 U	9.17 U	9.20 U	10.0 U	27.0 ^(b)

TABLE G.9. (contd)

Treatment	C-NV	C-NV	C-NV	C-NV	C-NV
Replicate	1	2	3	4	5
Batch	6	6	4	4	4
Units	ng/g	ng/g	ng/g	ng/g	ng/g
Percent Dry Weight	14.84%	12.32%	14.51%	13.67%	14.91%
1,4-Dichlorobenzene	12.5 U	15.1 U	12.8 U	13.6 U	12.5 U
Naphthalene	14.6 ^(b)	22.1 ^(b)	17.2	20.5	14.0 ^(b)
Acenaphthylene	13.7 ^(b)	5.9 U	5.0 U	5.3 U	4.9 U
Acenaphthene	8.76 U	19.0 ^(b)	9.0 U	10.2 ^(b)	8.72 U
Fluorene	8.36 U	22.4	8.55 U	9.07 U	8.32 U
Phenanthrene	17.3 ^(b)	22.4 ^(b)	17.6 U	18.7 U	17.2 U
Anthracene	15.1 U	18.2 U	15.4 U	16.4 U	15.0 U
Fluoranthene	53.0 ^(b)	55.2	76.5	39.9	35.9 U
Pyrene	62.7	58.4	101	36.2	33.6 ^(b)
Benzo(a)anthracene	26.6 B	8.85 U	16.9 ^(b) B	16.5 ^(b) B	7.31 U
Chrysene	21.6	23.3	26.0	16.6 U	15.2 U
Benzo(b)fluoranthene	33.7	36.0 ^(b)	24.3	19.0	18.1 ^(b)
Benzo(k)fluoranthene	21.5 ^(b)	22.8 ^(b)	17.1 ^(b)	14.8 ^(b)	13.7 ^(b)
Benzo(a)pyrene	17.8 ^(b)	12.1 U	10.3 U	10.9	9.99 U
Indeno(123-cd)pyrene	20.7 ^(b)	23.3 ^(b)	12.1 U	12.9 ^(b)	11.8 U
Dibenzo(a,h)anthracene	8.49 U	10.2 U	8.68 U	9.22	8.45 U
Benzo(g,h,i)perylene	19.9 ^(b)	22.6 ^(b)	9.65 U	10.2 ^(b)	9.39 U

TABLE G.9. (contd)

Treatment	<i>N. virens</i> Background	<i>N. virens</i> Background	<i>N. virens</i> Background
Replicate	1	2	3
Batch	7	7	7
Units	ng/g	ng/g	ng/g
Percent Dry Weight	12.86%	12.94%	12.05%
1,4-Dichlorobenzene	14.5 U	14.4 U	15.4 U
Naphthalene	21.7	20.6	24.7
Acenaphthylene	5.7 U	21.6 U	6.1 U
Acenaphthene	16.5	17.3 ^(b)	17.3 ^(b)
Fluorene	9.64 U	9.58 U	10.3 U
Phenanthrene	19.9 U	19.8 U	22.2 ^(b)
Anthracene	27.1	17.3 U	18.6 U
Fluoranthene	41.7 U	41.4 U	44.5 U
Pyrene	35.5 U	35.3 U	37.9 U
Benzo(a)anthracene	32.8	29.8 ^(b)	31.3 ^(b)
Chrysene	17.7 U	17.5 U	18.8 U
Benzo(b)fluoranthene	12.8 U	12.7 U	37.3 ^(b)
Benzo(k)fluoranthene	13.0 U	12.9 U	13.9 U
Benzo(a)pyrene	11.6 U	20.0	12.4 U
Indeno(123-cd)pyrene	13.7 U	13.6 U	14.6 U
Dibenzo(a,h)anthracene	9.80 U	9.74 U	10.5 U
Benzo(g,h,i)perylene	10.9 U	10.8 U	11.6 U

(a) U Undetected at or above given concentration.

(b) Ion ratio out or confirmation ion not detected.

(c) B Value is < 5 times concentration in blank.

**TABLE G.10. Quality Control Summary for Polynuclear Aromatic Hydrocarbons (PAHs)
in Tissue of *N. virens* (Wet Weight)**

Treatment Replicate Batch Wet Wt. Units	METHOD BLANKS				
	BLANK 1	BLANK 1	BLANK 1	BLANK 1	BLANK 2
	4	5	6	7	7
	NA	NA	NA	NA	NA
	ng/g	ng/g	ng/g	ng/g	ng/g
1,4-Dichlorobenzene	1.98 U ^(a)	1.90 U	1.94 U	2.24 U	2.16 U
Naphthalene	1.98 U	1.90 U	1.94 U	2.24 U	2.24 ^(b)
Acenaphthylene	0.77 U	0.74 U	0.75 U	0.87 U	0.84 U
Acenaphthene	1.38 U	1.33 U	1.36 U	1.56 U	1.51 U
Fluorene	1.31 U	1.26 U	1.29 U	1.48 U	1.43 U
Phenanthrene	2.71 U	2.61 U	2.66 U	3.07 U	2.97 U
Anthracene	2.37 U	2.28 U	2.33 U	2.69 U	6.22 U
Fluoranthene	5.69 U	5.47 U	5.58 U	6.44 U	5.30 U
Pyrene	4.84 U	4.66 U	4.75 U	5.48 U	5.30 U
Benzo(a)anthracene	2.29	2.13 ^(b)	3.50 ^(b)	4.40 ^(b)	4.41 ^(b)
Chrysene	2.40 U	2.31 U	2.36 U	2.72 U	2.63 U
Benzo(b)fluoranthene	1.74 U	1.67 U	1.71 U	1.97 U	1.90 U
Benzo(k)fluoranthene	1.77 U	1.70 U	1.74 U	2.00 U	1.94 U
Benzo(a)pyrene	1.58 U	1.52 U	1.55 U	2.75	1.73 U
Indeno(123-cd)pyrene	1.87 U	1.80 U	1.83 U	4.02 ^(b)	2.04 U
Dibenzo(a,h)anthracene	1.34 U	1.29 U	1.31 U	1.51 U	1.46 U
Benzo(g,h,i)perylene	1.49 U	1.43 U	1.46 U	1.68 U	1.63 U
Surrogate Internal Standards (%)					
d4 1,4-Dichlorobenzene	59 ^(b)	76	78	89	59
d8 Naphthalene	70	91	84	91	65
d10 Acenaphthene	72	87	81	94	72
d12 Chrysene	81	75	83	105	77
d14 Dibenzo(a,h,i)anthracene	66	78	76	108	97

TABLE G.10. (contd)

Treatment	MATRIX SPIKES							
	COMP	COMP	COMP	COMP				
	EC-A	EC-A, MS	HU-C	HU-C, MS				
	1	1	1	1				
Replicate	5	5	7	7				
Batch		Amount						
Wet Wt.	20.08	20.05	12.96	12.71	pike	Percent		
Units	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	ng/g	Recovery
1,4-Dichlorobenzene	1.86 U	21.5	24.9	86	2.87 U	36.1	39.3	92
Naphthalene	1.86 U	23.5	24.9	94	7.42	47.9	39.3	103
Acenaphthylene	1.58 ^(b)	21.4	24.9	80	1.59	39.3	39.3	100
Acenaphthene	6.17	27.8	24.9	87	3.75	47.6	39.3	112
Fluorene	1.90 ^(b)	23.2	24.9	86	1.90 U	46.1	39.3	117
Phenanthrene	6.07	25.1	24.9	76	5.24	52.6	39.3	121 ^(c)
Anthracene	4.07	27.1	24.9	92	3.45 U	51.3	39.3	131 ^(c)
Fluoranthene	45.0	133	24.9	353 ^(c)	19.0	73.9	39.3	140 ^(c)
Pyrene	65.0	134	24.9	277 ^(c)	22.7	69.9	39.3	120
Benzo(a)anthracene	6.87	30.0	24.9	93	6.61 ^(b)	55.6	39.3	125 ^(c)
Chrysene	25.7	46.0	24.9	82	10.3	54.0	39.3	111
Benzo(b)fluoranthene	7.13	32.6	24.9	102	8.74	54.5	39.3	116
Benzo(k)fluoranthene	4.61	28.4	24.9	96	4.77 ^(b)	54.7	39.3	127 ^(c)
Benzo(a)pyrene	6.27 ^(b)	27.9	24.9	87	5.14	53.8	39.3	124 ^(c)
Indeno(1,2,3-cd)pyrene	1.76 U	23.0	24.9	85	5.85 ^(b)	47.6	39.3	106
Dibenzo(a,h)anthracene	1.26 U	22.8	24.9	87	1.94 U	47.8	39.3	122 ^(c)
Benzo(g,h,i)perylene	2.91	22.1	24.9	77	5.28 ^(b)	43.5	39.3	97
<u>Surrogate Internal Standards (%)</u>								
d4 1,4-Dichlorobenzene	56	70	NA	NA	41	52	NA	NA
d8 Naphthalene	75	90	NA	NA	53	63	NA	NA
d10 Acenaphthene	86	97	NA	NA	66	77	NA	NA
d12 Chrysene	92	96	NA	NA	67	81	NA	NA
d14 Dibenzo(a,h,i)anthracene	101	103	NA	NA	85	102	NA	NA

TABLE G.10. (contd)

Treatment	MATRIX SPIKES							
	COMP SB-A	COMP SB-A, MS	mount	Spiked ng/g	Percent Recovery	C-NV	C-NV, MS	Amount ng/g
Replicate 1	Replicate 1	Batch 4				Batch 6	Batch 6	Wet Wt. Units
20.08 ng/g	20.02 ng/g	20.08 ng/g	Spiked ng/g	Percent Recovery	20.08 ng/g	20.17 ng/g	Spiked ng/g	Percent Recovery
1,4-Dichlorobenzene	1.86 U	20.2	25.0	81	1.86 U	24.1	24.8	97
Naphthalene	3.79	27.5	25.0	95	2.72 ^(b)	30.5	24.8	112
Acenaphthylene	1.92 ^(b)	23.0	25.0	84	0.73 U	27.1	24.8	109
Acenaphthene	23.2	52.2	25.0	116	2.34 ^(b)	31.1	24.8	116
Fluorene	11.1	36.9	25.0	103	2.76	28.1	24.8	102
Phenanthrene	62.7	101	25.0	153 ^(c)	2.76 ^(b)	30.4	24.8	111
Anthracene	14.4	42.8	25.0	114	2.24 U	30.2	24.8	122 ^(c)
Fluoranthene	152	218	25.0	264 ^(c)	6.80	40.1	24.8	134 ^(c)
Pyrene	146	208	25.0	248 ^(c)	7.20	35.8	24.8	115
Benzo(a)anthracene	12.6	38.8	25.0	105	1.09 U	33.9	24.8	137 ^(c)
Chrysene	33.8	63.8	25.0	120	2.87	31.0	24.8	113
Benzo(b)fluoranthene	10.3 ^(b)	33.7	25.0	94	4.44 ^(b)	32.5	24.8	113
Benzo(k)fluoranthene	4.84	29.4	25.0	98	2.81 ^(b)	32.5	24.8	120
Benzo(a)pyrene	7.74	32.4	25.0	99	1.49 U	31.3	24.8	126 ^(c)
Indeno(123-cd)pyrene	2.45	24.1	25.0	87	2.87 ^(b)	29.1	24.8	106
Dibenzo(a,h)anthracene	1.26 U	24.1	25.0	96	1.26 U	29.8	24.8	120
Benzo(g,h,i)perylene	3.53	25.4	25.0	87	2.78 ^(b)	27.4	24.8	99
<u>Surrogate Internal Standards (%)</u>								
d4 1,4-Dichlorobenzene	60	37	NA	NA	71	59	NA	NA
d8 Naphthalene	76	46	NA	NA	85	69	NA	NA
d10 Acenaphthene	82	50	NA	NA	88	77	NA	NA
d12 Chrysene	80	49	NA	NA	80	73	NA	NA
d14 Dibenzo(a,h,i)anthracene	87	53	NA	NA	92	83	NA	NA

TABLE G.10. (contd)

Treatment	ANALYTICAL REPLICATES							
	COMP HU-A	COMP HU-A Dup	COMP HU-A Trip	COMP HU-C	COMP HU-C Dup	COMP HU-C Trip	COMP HU-C Trip	COMP HU-C Trip
Replicate	5-1	5-2	5-3	4-1	4-2	4-3		
Batch	4	4	4	6	6	6		
Wet Wt. Units	14.57	13.76	13.79	17.18	17.51	16.38		
	ng/g	ng/g	ng/g	RSD	ng/g	ng/g	ng/g	RSD%
1,4-Dichlorobenzene	2.57 U	2.72 U	2.72 U	NA	2.16 U	2.12 U	2.27 U	NA
Naphthalene	4.51	3.53	3.67	14	3.01 ^(b)	3.22	3.50 ^(b)	8
Acenaphthylene	2.97 ^(b)	3.18 ^(b)	2.79 ^(b)	7	2.59 ^(b)	2.84 ^(b)	2.71 ^(b)	5
Acenaphthene	23.5	22.8	23.6	2	4.77	4.59	4.75	2
Fluorene	9.15	9.0	9.20	1	3.39 ^(b)	3.40 ^(b)	3.96	9
Phenanthrene	53.3	53.7	55.1	2	6.43	5.66	5.74	7
Anthracene	17.6	17.4	18.0	2	4.34 ^(b)	4.12 ^(b)	3.75 ^(b)	7
Fluoranthene	263	258	264	1	46.1	44.8	43.5	3
Pyrene	295	289	292	1	59.7	57.6	56.3	3
Benzo(a)anthracene	34.7	34.4	34.6	0	7.37 B	7.18 B	7.30 B	1
Chrysene	79.1	76.9	79.2	2	20.7	19.8	19.2	4
Benzo(b)fluoranthene	24.5	34.1	24.6	20	9.45	9.35	9.07	2
Benzo(k)fluoranthene	10.1 ^(b)	2.44 U	11.1	NA	5.05	4.69	5.29	6
Benzo(a)pyrene	19.2	19.5	20.1	2	5.87	5.72	5.79	1
Indeno(1,2,3-cd)pyrene	5.01	5.09	5.03	1	3.95	3.77 ^(b)	4.12	4
Dibenzo(a,h)anthracene	1.98 ^(b)	1.84 U	2.07	NA	2.14 ^(b)	2.14 ^(b)	2.23 ^(b)	2
Benzo(g,h,i)perylene	6.20	6.44	6.52	3	4.23	4.09	4.28	2
<u>Surrogate Internal Standards (%)</u>								
d4 1,4-Dichlorobenzene	63	60	52	NA	63	62	68	NA
d8 Naphthalene	77	77	67	NA	74	77	81	NA
d10 Acenaphthene	80	82	70	NA	79	81	86	NA
d12 Chrysene	73	75	65	NA	76	79	81	NA
d14 Dibenzo(a,h,i)anthracene	82	85	73	NA	82	88	90	NA

TABLE G.10. (contd)

Treatment	ANALYTICAL REPLICATES							
	COMP SB-B	COMP SB-B Dup	COMP SB-B Trip	COMP BU	COMP BU Dup	COMP BU Trip		
Replicate	2-1	2-2	2-3	3-1	3-2	3-3		
Batch	5	5	5	7	7	7		
Wet Wt.	17.11	17.25	17.13	8.60	8.47	8.21		
Units	ng/g	ng/g	ng/g	RSD%	ng/g	ng/g	ng/g	RSD%
1,4-Dichlorobenzene	2.24 U	2.24 U	2.24 U	NA	4.32 U	4.40 U	4.55 U	NA
Naphthalene	2.33 ^(b)	2.31 ^(b)	2.33	0	10.8	11.2	10.2	5
Acenaphthylene	1.76 ^(b)	1.62 ^(b)	1.40 ^(b)	11	1.68 U	1.85 ^(b)	1.77 U	NA
Acenaphthene	7.39	6.96	6.72	5	5.01	5.63	5.95 ^(b)	9
Fluorene	2.21	2.02 ^(b)	1.83	9	6.39	2.92 U	6.84 ^(b)	NA
Phenanthrene	6.73	7.08	6.61	4	7.61	8.28	7.52	5
Anthracene	4.76	4.92	4.99	2	7.93 ^(b)	5.28 U	5.46 U	NA
Fluoranthene	49.4	50.7	45.6	5	16.3	19.6	17.6	9
Pyrene	69.5	70.2	63.8	5	21.1	24.8	22.1	8
Benzo(a)anthracene	7.72 B	7.14 B	6.68 B	7	2.54 U	9.61 ^(b)	2.67 U	NA
Chrysene	21.1	21.7	19.1	7	10.2	10.8	10.9	4
Benzo(b)fluoranthene	7.70	7.49 ^(b)	6.76	7	11.9	12.6	12.5	3
Benzo(k)fluoranthene	4.59	4.44	3.98	7	6.60 ^(b)	6.85 ^(b)	6.78 ^(b)	2
Benzo(a)pyrene	6.38 ^(b)	5.52 ^(b)	5.18	11	6.06	6.67	6.38	5
Indeno(123-cd)pyrene	2.11 U	2.11 U	2.11 U	NA	8.11 ^(b)	8.18	8.54 ^(b)	3
Dibenzo(a,h)anthracene	1.51 U	1.51 U	1.51 U	NA	2.92 U	2.97 U	3.08 U	NA
Benzo(g,h,i)perylene	2.82	2.68	2.53	5	7.71	8.09	7.98	2
Surrogate Internal Standards (%)								
d4 1,4-Dichlorobenzene	44	61	53	NA	50	41	50	NA
d8 Naphthalene	60	80	71	NA	60	50	60	NA
d10 Acenaphthene	64	83	76	NA	78	65	74	NA
d12 Chrysene	64	83	75	NA	83	67	77	NA
d14 Dibenzo(a,h,i)anthracene	71	92	82	NA	104	85	99	NA

(a) U Undetected at or above given concentration.

(b) Ion ratio out or confirmation ion not detected.

(c) Outside quality control range (50-120%) for matrix spike recovery.

(d) NA Not applicable.

TABLE G.11. Lipids in Tissue of *N. virens*

Sediment Treatment	Replicate	Sample Weight	% Dry Weight	% Lipids (wet weight)	% Lipids (dry weight)
<i>Nereis</i> Background	1	5.04	12.86	1.98	15.4
<i>Nereis</i> Background	2	5.07	12.94	2.17	16.8
<i>Nereis</i> Background	3	5.13	12.05	2.14	17.8