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THE INTEGRAL EQUATION FOR A HIGH GAIN FEL

N. A. Vinokurov *

Introduction

The theory of a high gain free electron laser (FEL) is now well developed (e.g., see [1]). In this
paper I derive the equation for the electron distribution function, which is valid for FELs with a
longitudinally inhomogeneous magnetic system (which may include, in particular, dispersive
sections, quadrupole lenses, and simply empty spaces between the undulator sections), magnetic
field errors in undulators, and some other options. The integral form of the equation may be useful
for numerical calculations.

Calculation of the Radiation Field

Consider the electron beam propagating inside a long planar undulator. The Fourier transform A,
of the transverse horizontal component of vector potential (Lorentz gauge) is given by [2]

ikF -]

Ax(7)=%‘[jx(r )e;:,l dsr,'l‘on(;:) , (1)

|7 —

where ¢ is the light velocity, k = @/c is the wave number, J, is the component of a current
density, and A,, describes the external electromagnetic wave. In the paraxial approximation

(x_x1)2+(y_y')2

= =] ’
[F=Flz=2'+ 2(z-2') ’ *
and the electric field is
. o ,.k(x—x')2+(y’-y')2
E=ikA, = E@JH J(7) T e - - dx'dy’dz’ + E,. 3)
c ) Z—2Z

The fast particle motion along the Z axis (i.e., the varying of j_(7’) almostlike €** ) was taken
into account in Eq. (3). If the equation for the equilibrium trajectory in the undulator is

dx _ K(z)

dz

sinlk,z+ ¢(z)] , @
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where ¥ is the Lorentz factor for the equilibrium particle, kw and K are the wavenumber and the
dimensionless vector potential amplitude of the undulator, then

Je =1, ;Z) Sln[sz + (D(Z)] ®
and
iz it EE L=y P
. Z ) . ’ 3 (o—t’)
E= iliJ'J.J‘ : K sm(sz - ¢)e, dx’dy’dz’ + Eo . 6)
¥ 0 Z—2Z

The Vlasov Equation

To calculate the current density j, , we may use the unperturbed (by the radiation field) particle
trajectories:

x(z) = &2, %y, %4, Y45 Vo) = %,(2, %4, %5, Yo Vo)

1 K 04 , . . 1_a , . D . ’ ’
+J7[1+—2—ijf(z ’xo’xo’yo’yo)"'—z_ k;%)’lz(z s Xos X5 Yo Yo ) sin(k,z’" + @) dz
0 ,

Wz)=y(z,%,%4, ¥y, Vo) - (7

Here and below, point notation (i.e., X or y) is used for the derivative with respect to z , which
will be an independent variable (instead of time), and "0" indicates the initial conditions (at

Z=0). a =0 for the planar undulator without sextupole focusing. In the more general case,
these trajectories depend also on the initial energy, but for the paraxial motion we may neglect this
dependence. As the interaction of particles with light changes essentially only the particle energy,
the 6-dimensional distribution function may be written in the form:

Fo(x,%,,9,t,A,z) =
. . . ¢ .. . )]
JF(T,A,Z,xo,xo,yo,yo)5(x—51)5(35—51)5(}’_)’1)5()’—yl)dxodxodyod)’o,
where
z £2 ’ ) ’ ’
th_J‘[H 12+§1(z)+y1(z)}dz ©
’ 2y 2 c ,




JF6 dxdidydydAdt =1 , (10)

and (1+ A) 7 is the Lorentz factor. For the unperturbed motion at the equilibrium energy, T

denotes the moment of time when the particle enters the undulator. Therefore 7 is a convenient
longitudinal coordinate of a particle. The "mixed" distribution function F obeys the Liouville
equation:

3F+ aF{l 1(1_1_ 1 + 512"')’12):]_*_ aFeEx(él’yI’z’t)él =0,

Jz drlv, cl 297 2 AN ymc

(11)

where m is the electron mass, and E, is the component of the wave electric field. Defining the
slow varying amplitude of the electric field as

E (x,y,7,t) = A(x,,2,t) """ +c.c. (12)
ko =2 ¥k, (13)
Y

SR (14)
n N1+ K22

and neglecting all but the slow (by Z ) part of longitudinal force, one can obtain

8F_ A OF
0z ')/"20 oT -
o Sy E g
_9Fe(JJ)K Im| A(xy,y,2, T+t )elq’ lk0(£ 2 d“cr)ﬂsz—lko{z?’uz
JA ych2 b 21e% !
(15)
where
K? K?
J)=J,| — |- J,| —— 16
(47) °(4+2K2) 1(4+2K2) (16)

is the standard combination of the Bessel functions, which describes the reduction of the particle-
wave interaction due to the longitudinal velocity modulation in the planar undulator, and
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Wave numbers k, and ky describe focusing by the inhomogeneity of the undulator field:

k, =V&k’£§, k,=+1-o b, K

\2 N2y .

The Expression of Radiation Field through the
Distribution Function

For an electron bunch having total charge Q, the longitudinal current density is given by
J. = QJ FgdidydA,

or, using Eq. (8),

. 0 1 2(2)+ 92 (') |dz . .
JZ=QJF(t—J|:1+2y2+§‘( )2)’1( ) . A Z,%, %0, Y0, Vo)

0

X6(x - él)a(y —N )dxod*odJ’od).’o .

In the stationary case, it is more natural to normalize the average value of F, 6"

T
(Fg)= lim—zlijsdt, T — oo
0

I(Fﬁ)dxdfcdydydA=1 :
Then the longitudinal current density will be
J = IOJF6 dxdydA,

or

(17)
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where I is the average beam current.

The expression for the field amplitude A, defined in Eq. (12), is coming from Eq. (6):

A=A,
o 7 )2 + v’ )2 .
ik g~ kolz=ct) % AGEES cz = ;i( —(y') = Jsinlk,z+ )
4+ 0 ”_[ cle—z dx'dy'dy’
Z2—Z
(22)
Substituting Eq. (20') into Eq. (22) gives:
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ZI
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Assuming, that only the slow varying component of the function Fe' ¢ P07 makes a sufficient
contribution to the integral in Eq. (23), we may neglect some rapidly oscillating terms:
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Actually, we simply change Sin(k,z’ + @) to ie”™**?( JJ)/2 . Thus, the expression in Eq.
(23) is changed to

koloe—iko(z—ct) j‘J-F(t_E__ (x_xl(z/))z +(y_y1(z/))2
C
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— + A’ ,x 2 ’ ’ 25
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The Final Equation
Substituting Eq. (25) into Eq. (15), one can easily obtain the final equation:
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where K, and (JJ), are constant,
2 2
1+K0=2'}’kw , (27)
2 k,
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Equation (26) may be written as an integral equation:
F(7,A,2,%4, %y, Y9, Yy) =

F(r+2 diz,A,o,xo,xo,yo,y'o)+JR(T+
0

T A, Z')dZ' ,
ce

>

Afdz” (30)
c

where R(T,A,z) is the right-hand side of Eq. (25). The physical interpretation of Egs. (26) and
(30) is simple. We consider the electron beam as a set of thin beams, each having its own initial

conditions X, X;,Y,,Y, and corresponding trajectory X, (z, Xy, g Yo Vo) »

Y (z, XosX0s Yo Yo ). Electrons moving along the undulator do not change their trajectories (this

is an approximation). Therefore we have, in fact, one-dimensional motion along each trajectory
(see the left side of Eq. (26)). The right side of Eq. (26) contains the longitudinal force on the
electron, moving along the above-mentioned trajectory. The force is the sum of the contributions of

the other electrons, moving along other trajectories X, (2, Xy, %g, Yo, Vo)
Yz, x5, %5, ¥4, 95) -
The Case of a Small Signal

It is enough to put JF, /JA instead of IF/JA into right side of Eq. (26) to obtain the linear
equation for a small signal. We assume that F|, is the "smooth" part of the distribution function,

which does not make a contribution to the radiation field, and keep notation F for the small
variable component of the distribution function. Defining the current of the stream -

J=JFdA , 31)

one can obtain the linear equation for it from Eq. (30):




. . A fde . .
J(T,Z,xo,xo,yo,y0)=JF(T""‘E’J?,A,O’x()’xo’yo’yo)dA
|

-”8 {e(JJ)o 0 BA,(x,(2').y,(2'). 7, ¢+Ajdi:+tl(z’))
mc® A

zl

ikg[2'—cT-A j —2——ct1 ()] -
Xe “ e rdAdz’

2 % zk (z'-Z")
kD {BIB
4 7 -z"
0
” 124 ’ 7”312 ’ ”3y12
y J(HA " [ dz 2_[x1(z) x/(z”)] +[y1”(z) yi(z”)]
y LN 2e 2¢(z'=2")

+

” ’r ’ 7
,Z ’x()’x()’yo,y())

T2+ 32 -:-ij1 +k2y! dg™ ]‘xl’z + 307 + KX+ Y] dg
J 2 c 2

0 0 .

Xdxqdiidysdy.dz” YA dz,

(32)

The slow variable may be defined as follows:
F=fe ™ +c.c. (33)
J=je ™ +c.c. (34)




Then Eq. (32) gives:

. T TN -1 A
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(35)
where
[OF,
(k)= Jﬁe “dA . (36)
If, for example,
1 _(A—g)?
2 2
FO = 'Tﬂ:z)_—e d fO s (37)
where €, 0, and f are functions of z, T, X,, %, ¥y, ¥,» then
. kot
—iKg———
D(k)=ike 2 f,. (38)




If F,, does notdepend on 7 and z, the Fourier transformation of Eq. (35) gives:

e(JJ), K,

2 2
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where
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