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ABSTRACT

Negative mu-mesons from the Carnegie Institute of Technology 

Synchrocyclotron have been used to study some of the interactions of 

these particles in various materials. Information concerning the 

interactions has been obtained by an analysis of the time distri­

bution of the electrons resulting from the decay of muons which have 

been brought to rest in the material under study. In particular, the 

"isotope effect" in the nuclear capture of negative muons has been 

studied in separated isotopes of chlorine. The results are that the 

ratio of the capture rates in the two stable isotopes is

X (C137)A (Cl33) = 0.694 + 0.034 . This is an even larger effect 
c c ~

than predicted by the general theory of Primakoff, which gives 0.782 

for this ratio. Unfortunately, no specific calculations for this 

effect in chlorine are available. Studies have also been made of the 

validity of the Fermi-Teller "Z-law", which predicts the probability 

of a negative meson becoming bound to a particular atomic species when 

the mesons are brought to rest in a chemical compound. These studies 

indicate that in AgCl, the muons are captured in equal numbers by the 

Ag and Cl atoms and not in the proportions predicted by the "Z-law".

As a by-product of these investigations, the lifetimes of negative 

muons have been measured in Ag, Cl, and F. The results are 

= (91.5 + 2.3) nsec., = (0.437 + .022) fisec., and

Tp = (1.217 + .080) psec.

■»
(•
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I. INTRODUCTION

In 1936, during investigations of the energy loss of cosmic

ray electrons, it was noted that the observed data showed a difference
1 2 3 A- 5in character among those particles'L, . Anderson and Neddermeyer;>

hypothesized the existence of particles of unit charge, but with a mass

larger than that of an electron and much smaller than that of a proton.

In 1937 Street and Stevenson^ reported the detection in a cloud chamber

of a particle with a mass approximately 130 times that of the electron.
7

Neddermeyer and Anderson later reported a value for the mass of this 

particle as 240 me, where me is the mass of the electron.

This particle was at first identified as being the barytron
g

predicted by Yukawa's theory of nuclear forces . However, measurements
9

by Johnson and Pomerantz showed that the observed particle had a lifetime

of 2.5 x 10 ^sec., and Nordheim^ showed that the Yukawa particle should

have a lifetime much shorter than this.

During the period from 1939 to 1947, further effort was made to

identify the meson, as the particle had come to be called, with the
11

Yukawa barytron. In 1947, Conversi, Pancini, and Piccioni studied the 

absorption of separated positive and negative mesons in iron and carbon.

They showed that the capture rate of negative mesons was approximately
12 12 10 times less than the expected value for the Yukawa particle .

13Marshak and Bethe then proposed the existence of a heavy meson which

interacts strongly with nuclei (i.e., the Yukawa particle) and which can

decay into the light or normal mesons observed in cosmic rays. This
14, 15theory was supported by the data available from cosmic ray studies 

and the heavy and light mesons came to be known as the tt and p mesons 

respectively.
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With the discovery of the rr-meson and its identification as 

the particle necessary for an understanding of nuclear forces, the 

p-meson was relegated to the position of being merely a heavy electron, 

a particle for which there seemed to be no need in nuclear physics. The 

physical properties of the p-meson may be summarized as follows:

Mass: (206.76 + .03)me Charge: + e

Free Lifetime: (2.211 + .003) psec Spin: 1/2
+ + _

Decay Process: p*”—*■ e— + v + v

Gyromagnetic Ratio: 2(1.00113 + .00016)

Quantumelectrodynamical Value for

Spin 1/2 Particle: 2(1.00116) .

17The hypothesis, in 1957, by Lee and Yang of the violation 

in weak-interactions of the principle of conservation of parity led to 

renewed interest in the p-meson. It was quickly shown'*‘®,‘*‘^ that the 

decay chain tt—*-p—».e provided ample proof of the violation of the 

parity principle.

Following the overthrow of the parity principle, interest

arose again over the possibility of a Universal Fermi Interaction

involving the processes of [3-decay, p-decay, and p-capture. It had

been known for some time that the coupling constants in these processes
20were all of the same order of magnitude . In the work of Feynman and 

21
Gell-Mann on a Universal Fermi Interaction, it was shown that a 

universal coupling probably existed for 3-decay and p-decay. At that 

time, little was known of the details of the p-capture interaction.

The disappearance reaction is most easily understood in terms
30of a process of the type P + p—*»N + v where the v represents a neutrino . 

The transition probability between a proton in state m and a neutron in



4

i»
<•

state j is
* = (2rT/fi)Kl(j|2 Pf ,

where ef is the density of final states and the matrix element for 

this transition,, M . is of the form

M - 'C ciV°C °4)dV «

where is a Dirac operator, is the appropriate coupling constant, 

and n, p, v, p, refer to neutron, proton, neutrino, and muon, respectively.

From measurements of the electron-neutrino correlation in 

p-decay, the p-decay interaction has been determined to be "V -A" .

In the p-decay of the neutron, the ratio of the coupling constants was 

determined to be g^ = - (1.21 + .03) g^. g^ and g^ are not equal because 

of virtual pion effects. If the Universal Fermi Interaction does exist, 

then the p-capture reaction would also be of the fora "V - A" . It has 

been pointed out * that in p-capture there should also be an '‘induced'1 

pseudoscalar interaction, although in the non-relativistic limit the 

direct pseudoscalar interaction is zero. The interaction arises from 

processes such as the one shown in the following diagram. The tt+ is a 

virtual pion, and the N,N represents a virtual nucleon-antinucleon pair.

Goldberger and Treiman , using dispersion theory techniques to take 

account of the reaction P*-*-N + tt , showed that a "V - A" interaction
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becomes a "(V + (weak magnetism)) - (A + cP)11 interaction. Detailed 

calculations of the effects of virtual pions give the following results:^

1) gp(,l)-8gA^

where g. is the value of g measured in p-decay.iv A
2) g/^ - .97 g^

%CP) ' 3*7 ^(P)

where g^ is the value of the coupling constant due to the weak 

magnetism term.

3) g( (d)
g,

(P)

The total capture rate depends almost entirely upon the magnitude and 

sign of an effective Fermi and an effective Gamow-Teller coupling constant:

n — (d) V ( „ + Oft? + er ^d)\ N
^ Sa ~ "6^ gP 2 Sm % ^ #

where v is the neutrino momentum.

The purpose of the work in measuring muon capture rates is to

1) Test the validity of a Universal Fermi Interaction

2) To detect the virtual pion effects.

The interpretation of measured muon capture rates is complicated by the

fact that such measurements must, at the present time, be made on

complex nuclei. The calculated capture rates are effected not only by

the assumptions made about the interaction between muons and nucleons,

btrt also by the particular model chosen to describe the nucleus.
22Wheeler calculated the capture rates of d’-mesons by nuclei 

using phenomenological arguments which are independent of the interaction 

mechanism. He assumed that the probability of absorption increases 

directly with the number of protons, and that the probability for
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absorption by a single proton was proportional to the probability, 

II ^ , for the meson to be in the neighborhood of this proton. The 

probability per second for absorption is

^ = constant xc
ST (at each protoft)I' 
all

protons

For light nuclei, he used hydrogenic wave functions and found that
2 2

Xc = constant x (Z/rr)(Ze p/ft P , 

where p is the meson mass. The constant has the dimensions of a 

volume, and is taken to be

constant = (l/t^) (fi/pe^)^ (tt/Z^) ,

where tQ is the natural mean life of the meson and ZQ is a pure number. 

Then

x0 - (i/toXz/z0)4 .
For heavy nuclei, the hydrogenic approximation is not justified, and 

the capture rate is proportional to yV(r)/2 ^ (r)dr , where ^ is the 

density function of protons in the nucleus. (r) is the muon wave

The density functionfunction normalized such that /H 2 3dr = ftao

is normalized such that dr = Z . Wheeler found that the capture rate 

could be expressed as

^ - (i/tj(zeff/y4,

where

(Zeff)4 •

He evaluated this expression using approximate solutions of the Dirac 

equation for the muon wave function and assuming a uniform nuclear charge 

distribution, obtaining the following formula for ,

Z
eff

- Z(1 ♦ (Z/37.2)1-54) -171-54
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23The measurements of the capture rates agreed with Wheeler's 

(^eff^"aW ^°r elements up to Cu . For the heavier elements,

the observed capture rates were much smaller than predicted by Wheeler.

A qualitative understanding of the deficiencies of Wheeler's 

theory can be gained by considering the kinematics of the decay process.

A free nucleon at rest takes up about 5.5 Mev kinetic energy from the 

annihilation of the meson, while the remainder is carried off by the 

neutrino. A nucleon with 25 Mev kinetic energy cannot acquire more than 

about 22 Mev, while the neutrino will take off at least 85 Mev . If we 

consider the shell theory of the nucleus, in the ground state all of the 

lowest energy levels for protons and neutrons are occupied. If now, one 

of the protons becomes a neutron,because of the Pauli exclusion principle 

the neutron must be in one of the previously empty neutron levels, or 

else be ejected from the nucleus into an unbound state. In the heavier 

nuclei, where there is an excess of neutrons over protons, the effects of 

the Pauli exclusion principle become more pronounced, and the result is 

a capture rate less than that predicted by Wheeler's theory.

Various authors have improved upon the calculation of capture 

rates by considering the total absorption probability as the sum of 

contributions from individual particle transitions, in which a proton 

in some initial state is transformed into a neutron which must be in a 

state which was previously unoccupied.
04

Tolhoek and Luyten ° have evaluated the ratio of the capture 

rates in Ni, Fe, Mn, Cr, V and Ti to the capture rate in Ca using shell 

model wave functions to evaluate the matrix elements. A potential well 

of infinite depth and of radius equal to r Al/3 , where A is the atomic

weight of the nucleus, was used. This is the radius of the well, and
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not the radius of the matter distribution. The latter is considerably

smaller than the radius of the well. In order to see the effect of the
3

radius on the capture rate, two values of r0 were used, r =1.40x10 cm. 

-13and rQ=l. 15x10 cm. It is expected that the larger radius will

correspond to a matter distribution which is closer to reality.
28Sens has measured these ratios and finds reasonable

agreement with the theory if one uses equal amounts of Fermi and

Gamow-Teller interaction and also adopts the '•small" radius. The pure

Fermi interaction, with "large" radius, cannot, however, be excluded.

Quaranto has measured the ratio of Fe/Ca and finds agreement with the

Gamow-Teller interaction and the "small" radius, although the mixture

of equal amounts of Fermi and Gamow-Teller interaction with "small"

radius cannot be excluded. These results are not very conclusive as

to the type of interaction involved in the p-capture process.

31Primakoff has made extensive calculations of the total muon 

capture rate using a closure approximation. The interaction hamiltonian 

used incorporates both the principles of non-conservation of parity and 

the assumption of a Universal Fermi Interaction. The interaction is 

taken to be of the form "V - A" and neutrinos are assumed to be emitted 

with unit negative helicity. An "induced" pseudoscalar interaction is 

also included. The calculation is quite complex, but straightforward.

The transition probability from a proton in an initial state, a, to a 

neutron in the final state, b, is calculated using the assumptions 

indicated above. This transition probability involves the sum over all 

energetically accessible final states of the product of the square of 

the matrix element and a kinematic function of the neutrino momentum.

Both of these quantities depend upon the final state, b. The closure
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approximation extends the sum over all energetically accessible states 

b to a sum over all states b without restriction, and replaces the 

explicitly E^-dependent quantities by suitable averages which do not 

depend upon E^. The result of such a calculation gives

= (Zeff)4(<7>a)2(272 sec-^Rd-I^ .

<•7)3 is the kinematical factor averaged over the final states.

272 sec-^ is the value of the quantity

^/rae)5 Tr

(137)3 (ft1/2)neutron

R is the ratio of the assumed p-capture coupling constants to the 

coupling constant for the p-decay of the neutron. The quantity 

I (l„> 0) describes the inhibitory effect of the Pauli exclusion 

principle on the p-capture process. This is the inhibition arising 

from the fact that the resultant neutron cannot be produced in occupied 

states of the parent nucleus. I„ may be expressed in terms of 

appropriate nucleon-nucleon correlation functions in the parent nucleus.

Primakoff obtains Ia = ^~a 0 is a "nucleon-nucleon correlation

parameter", and is estimated from the experimental values of the Coulomb

energy difference of various nuclei. The estimated value is £ = 3.0 .

Thus, the effect of the Pauli exclusion principle is proportional to the

fraction of nucleons which are neutrons.
28Sens has made a least squares fit of his data to Primakoffs 

formula for the capture rate. He finds reasonable agreement, although 

there are some elements for which the disagreement is quite significant. 

This is to be expected because this theory should only predict the 

general trend of the capture rate as a function of Z and A, and not give
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an exact value for any given nucleus. The values of the parameters 

obtained by Sens are:

= 3.15 j (<^>a)2(272 sec"1^ = 188 sec"1 .

The expected value for ((V|<)a)^(272 sec 1)R is 161 sec-1 .

Thus, one finds support for the assumptions on which the theory rests, 

viz.: a) that a "universal" interaction exists, and b) that two-component 

neutrinos are involved in p-capture, i.e., parity is not conserved. The 

agreement between theory and experiment involves only the strength of 

the coupling, and does not supply any information about the detailed 

structure of the interaction, e.g., the ratio between the Gamow-Teller 

and the Fermi interactions.
26The theory of Tolhoek and Luyten can, as we have seen, 

provide information on the structure of the interaction. They have also 

calculated the ratio of the capture rates in and Ca^. The ratio

for these two isotopes turns out to be independent of the type of 

interaction. A measurement of this ratio would provide a test of the 

nuclear part of the theory, i.e., determine the proper value of rQ , and 

could eliminate the uncertainty in the comparison of theory to experiment.

In many experiments involving negative mesons, it is necessary 

to bring the mesons to rest in a chemical compound, e.g., bubble chamber 

liquids or nuclear emulsions. The interpretation of these experiments 

often requires knowing the relative probability of a meson being captured 

by the different kinds of atoms. In their paper on the capture of negative
34mesons in matter, Fermi and Teller made the prediction that this capture 

probability is proportional to the nuclear charge, Z. They assumed that 

the capture probability was proportional to the energy loss of the meson 

in the vicinity of a given atomic species. On the basis of an expression
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for the rate of energy loss by mesons in metals, they arrived at the 

prediction which has since come to be known as the "Z-law'1. The authors 

themselves considered the estimates made by them as crude, and pointed out 

that they are only reliable for metals. The case of insulators differs 

from that of metals because the amount of energy that may be delivered to 

electrons in a metal canbe arbitrarily small, whereas in an insulator it 

must be at least as large as the gap between two Brillouin zones. The 

loss of energy to electrons will be thereby reduced in those cases in 

which energy is transferred in small individual amounts. In hydrogenous 

compounds, if the meson is captured on a hydrogen atom, the neutral 

mesonic atom may readily permeate to any part of the lattice. As a 

result, the meson may be caught in the field of a more highly charged 

nucleus.

Several groups of workers have made measurements testing the 

validity of the ,,Z-law*,‘^*36,37,38j39s Two measurement3-^5were made 

on hydrogenous materials and do not test the "Z-law" hypothesis. The
35calibration method used in reference 37 has been questioned . Of the

36remaining work, except in the case of the metallic compound AgZn , it 

was found that the "Z-law" was not obeyed. In the work on AgZn it was 

found that, within the limits of the experimental error, the Z-law was 

obeyed.

Because of the importance of the "Z-law" to the interpretation 

of experimental data, it would be very desirable to further investigate 

the validity of this law in insulating materials, as well as in some more 

metallic compounds.
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II. EXPERIMENTAL METHOD

A. GENERAL METHOD

The high intensity negative mu-meson beams available from

present synchro-cyclotrons, along with the present day fast pulse and

computer techniques, make the measurement of microsecond lifetimes

possible with a hitherto unthought of accuracy. The measurement of the

p,+ lifetime to an accuracy of approximately .13 percent is an example of

40
the precision attainable . The measurement of the lifetimes of the

(i - meson in condensed materials is somewhat more difficult because the

lifetime is shorter, and also because a significant number of the mesons

may be captured by the nucleus before they can decay. For example, in

silver, only 4 percent of the stopped muons decay, the rest are captured

by the nucleus. This element has a meanlife which, in the present

apparatus, corresponds to 1 channel, or l/lO microsec.

In these experiments, we study the time distribution of the

appearance of decay electrons from muons which stop in some target

material. It will be shown below that such a distribution consists of

a sum of exponential terms, and that the disappearance rate for each

term is related to the rate at which mu-mesons are captured by a certain

type of nucleus. Also, the relative amplitude of each exponential term

is related to the relative number of muons which are bound in the

K-orbit of each type of atom.

If a beam of negative mu-mesons is brought to rest in a

suitable target material, No(Z) of these will be captured by atoms with
'21

atomic number Z. Fermi and Teller have shown that the time required

for a muon to slow down from 2 kev and become bound in the K-orbit of an
-13atom is of the order of 10 sec. This is much less than the lifetimes
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we are considering here, and we may assume that the time at which the muon 

reaches the K-orbit is the same as the time that it entered the target.

At time t=0 we have N0(Z) muons bound to atoms of atomic number Z. The 

rate at which muons disappear from the K-orbit is proportional to the 

number of muons present, and to the .sum of the decay rates and capture 

rates. Thus,

dN/dt = - £\d(Z)

or

N(t) = N0(Z) exp [‘-\t(Z)t} ,

where + \c . The number of muons that decay at any time, t, is

proportional to the number present and to the decay constant. The 

observed time spectrum, y(t), of electrons arising from muons bound to 

atoms of atomic number Z is proportional to the number that decay at any 

time, t, and to the detection efficiency, E, of the counter telescope. 

Thus,

y(t) » E dNd/dt = E \d(Z)No(Z) exp .

Now, in the time measuring apparatus used, we count the 

number of pulses from an oscillator which occur during the time interval 

to be measured. If T is the period of the oscillator, we use units of 

time where T=1 . If the time interval is of length nT + x , then the 

number of pulses counted can be either n or n + 1 , depending upon the

■*— time interval -*■— time interval -*■■H
| 1 1 1 1 1 1

Time Interval = 3T + l/4

relative phase between the beginning of the interval and the oscillator



H

pulses. This measuring system also has the effect of transforming the 

continuous decay spectrum into a histogram. The grouping of the spectrum 

into a histogram may be taken into account in the following manner. Let 

P(t) be the distribution of time intervals of length t. If the phase of 

the clock pulses were synchronized with the beginning of the time 

interval, then the histogram would be of the form

^n+1
'n-J 1

/ n
P(t)dt o

However, if there is a phase difference, (0<^<l), between the clock 

pulse and the beginning of the time interval, the histogram will be of 

the form

fn+1-^
y_(?0 =/ P(t)dt . 
n W

This is illustrated in the diagram.

01234 01234
Clock Pulses Clock Pulses

y^(0) would be the shaded area shown in the diagram to the left. If

there were a phase ^ / 0, then y^(^) wotild be the shaded area shown in

the diagram to the right and is seen to be the integral in the above

equation. Since all values of <f> between 0 and 1 are equally probable,

the observed curve is obtained by averaging 7n(^) over all values of

i.e.,
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i* We may illustrate this by considering a distribution of time 

intervals which all have the same length, N+x , corresponding to 

P(t) =^'(t-(N+x)) , where ^(t) is the Dirac delta function. We then 

obtain

/n+1ynW -J
*n-p

n+1-^ -x < fit < 1-x n=N
P(t)dt =1 , 1-x <2-x , n=N+l

0 , all other values of <f> and n

We may calculate y , and find that

j y (fOdjrf = 1~X > n N
n Jo n x j n=N+1

This is interpreted as follows, if we make many measurements of 

the time interval of length N+x , a fraction (l-x) of the measurements 

will give N pulses, and a fraction (x) of the measurements will give 

N+1 pulses. The same result may be obtained by less sophisticated 

methods.

If we take for P(t) the time spectrum of electrons obtained 

before, y(t) = E\,(Z)N (Z) exp (-\.(Z)t) = Ke“U ,

✓ n
then 7nW =1

/TOr

n+1-^
Ke~Udt - K ^ e-* ^ ,

and y
n =/ yn 

/ o

. (l-e-hteVl) „ -nX
Ke

I*

= F(\)EXd(Z)No(Z) exp (-n^(Z)) 

The factor F(\) is given by

(;l-e~X)(e^-l) = _2_
F(^) \2 (coshk -1)
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F(\) may be expanded in powers of and is found to be

A plot of F(X.) versus X is shown in Figure 8.

The effect of background counts in the electron counter 

telescope upon the form of the experimental curves must now be 

considered. These background counts arise from the random counting 

rate in the telescope due to neutrons and gamma-rays from the cyclotron. 

Consider first the following situation. If S(t) is the probability of 

having no counts from time t=0 to time t, then S(t+dt) is the probability 

of having no counts from time t=0 to time t+dt . The difference between 

these two quantities is the probability of having a count during the time 

interval dt . Hence, the probability per unit time of having the first 

count at time t is

S(t) ~ S(t+dt) = _ dS(t)limit
dt*^o dt dt

We must now evaluate the quantity S(t) . For random counts with the 

average rate R , the probability per unit time of having a count at 

time t is just R . If S(t) is the probability of having no counts from 

time 0 to time t , then the probability of having the first count at time 

t is S(t)R . This, however, is also given by - dS/dt . Hence, we may 

equate these two quantities to form a differential equation for S(t) ,

- i •
This is easily integrated to give

I S(t) = e~Rt ,

which is the probability of having no random counts during an interval 

of length t .
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We must now consider the effect of the 20 microsec deadtime

circuit in the electron telescope circuit (see Fig. 4). Since the

maximum time interval which can be measured is 12 microsec, the deadtime

circuit insures that there can only be one stop pulse during the 12

microsec interval in which a measurement may take place. Therefore,

the probability of detecting a count from a decaying muon is just the

product of the probability of such a count occurring, and the probability

that there was no random count in the interval of length T=20 microsec

before the count occurred. A random count in the 20 microsec interval

before the muon decayed would have activated the deadtime circuit,

preventing the detection of the count from the muon. If we denote by

a , the probability per unit time of detecting a count from a muon, then 
-RT„. -Xta = e

The probability of detecting a random count will be the product 

of the probabilities of a random count occurring, the probability of no 

random counts occurring in the interval of length T before the random 

count occurred, and the probability that no count from a muon was 

detected in that interval. The probabilities are respectively

R, e

ability per unit time of detecting a random count, then

-RT and 1 - e
-RT j\EX,e~Xtdt 

d If we denote by b , the prob-

b = Re“RT(l-e_RTE4dA (l-e“Xt)) .

The probability of detecting either a muon count, a random count, or 

both simultaneously, in the interval of length dt will then be 

y(t)dt = a dt + bdt - ab (dt)^ ,

and the observed decay curve will be the limit as dt-^0 of y(t).
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which is just
y(t) = a + b = e“RT-^E\d(l + e~RTRA) e"Xt + R (1 - e“RTEXd/\)

In these experiments, R^5 x 10 ^ per microsec, and R/\^«l, l>e-R^>0.99 . 

Therefore, to an accuracy sufficient for our purposes, the decay curve 

may be assumed to have the form

y(t) = E^dN0(Z) e + constant .

B. BEAM

A beam of mesons was obtained from the C.I.T. synchrocyclotron 

by allowing the internal proton beam to bombard a beryllium target.

The fringing field of the cyclotron focusses mesons of different 

momenta into various channels in the shielding wall. A sector magnet 

was placed outside the shielding to improve the momentum selection and 

to remove neutral particles from the beam. The general arrangement used 

for obtaining the negative meson beam is shown in Figure 1.

The energy of the beam was determined to be (43 +3) Mev after 

passing through the first two monitor counters. A Cerenkov counter has 

been used to determine the electron contamination of the beam, and the 

beam was found to contain 30 percent electrons. The pi-meson 

contamination is less than l/2 percent. The differential range curve 

of the beam is shown in Figure 5.

C. GEOMETRY

The experimental arrangement for the measurement of the 

capture rates in chlorine isotopes is illustrated in Figure 2. Counters 

1 and 2 in coincidence and 3 in anti-coincidence indicate that a muon 

has stopped in the target. Counters 3 and 4 in coincidence and 2 or 5 

in anti-coincidence indicate the detection of a decay ele ctron. The 

aluminum absorber between counters 3 and 4 reduces the efficiency of
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the electron telescope for detecting neutrons or gamma rays. Counters 

2 and 5 j in anti-coincidence with the electron telescope, reduce the 

possibility of identifying beam a ssociated particles as being decay 

electrons. This also prevents the detection of electrons from muons 

which decay immediately. This is taken into account by not including 

the first two channels in the analysis of the decay curves.

Although it is a standard practice to place a monitor counter 

directly in front of the target, it was found that such a counter 

greatly increased the carbon-background arising from muons which stop 

in the counters. Therefore, this counter was removed. The silver in 

front of the AgCl target was chosen so as to maximize the number of muons 

which stop in the target. Figure 6 shows the differential range curve 

of muons stopping in the AgCl-^ target. The Helmholtz coils were 

adjusted to buck out the fringing field of the cyclotron. This reduces 

the possibility of a sinusoidal modulation of the decay curve due to 

the precession of the muon spin about the field direction. The lead wall 

reduces the background rate in the electron telescope.

The experimental arrangement used for the test of the '’Z-law1’ 

is shown in Figure 3> The aperture in the lead wall was enlarged to 

take advantage of the larger target available, and counter 5 was moved 

in front of the lead wall to accommodate the Cerenkov counter. The 

Cerenkov counter is connected in anti-coincidence with the counters 1 and 

2 to prevent electrons from starting the clock mechanism. Figure 7 

demonstrates the effect of the Cerenkov counter on the differential

0
I*

range curve.
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D. COUNTERS

The scintillation counters were constructed using commercial 

plastic scintillant, optically coupled to lucite light pipes. The 

lightpipes were coupled to RCA 6810-A photomultiplier tubes. The tubes 

were operated according to the recommendations of the manufacturer, and 

were magnetically shielded from the fringing field of the cyclotron.

The Cerenkov counter was constructed of lucite, which acted 

both as a container for the radiator and as a light pipe. The radiator 

used was Fluorochemincal FC 75+ , which has an index of refraction of 

1.276 . The minimum value of beta for which Cerenkov radiation can 

occur is p = 0.784 . The minimum energy at which radiation will occur 

is 67 Mev for muons; 320 kev for electrons; and 87 Mev fa* pions. The 

counter was viewed by two RCA 6810-A photomultiplier tubes, the outputs 

of which were added to form a single pulse. The counter had an efficiency 

of (101 +2) percent for counting the electron contamination of the beam, 

and was (99.4 + 0.1) percent efficient when used as an anti-coincidence 

counter to discriminate against electrons in the beam.

E. ELECTRONICS

A block diagram of the electronic system is shown in Figure 4.

The coincidence circuit, which is not shown, was modeled after the design 

given in UCRL Report 3307 Rev. A second muon which stops within 200 micro­

sec. of the first one is prevented from interfering with the operation 

of the circuitry by the dead time circuit. The pulse forming circuit 

provides pulses of the proper shape to trigger the fast gate circuit, 

and also provides another pulse which is delayed by 15 microsec. This 

pulse is used to start the pulse height analyzer and also to close the

+ Minnesota Mining and Manufacturing Company
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fast gate for those cases where no electron is detected. The fast gate 

produces a rectangular pulse with a rise (and fall) time of approximately 

2 x 10"9 sec. An rf signal is provided by a 10 Me crystal controlled 

oscillator with a frequency of 10,001.6 kc. The variation of the 

frequency during the non was no greater than 0.1 kc. The rf signal 

from the oscillator, along with the pulse from the gate circuit, is 

fed into a coincidence circuit, the output of which is a pulse train 

whose length is the same as the length of the gate pulse. This pulse 

train is fed through a mixer circuit into a 10 Me discriminator which 

shapes the pulse train, and then into a 10 Me scaler. Fifteen microsec 

after the mu pulse, the delayed pulse from the pulse forming circuit 

initiates the storing process in the pulse height analyzer. First, a 

2 Me pulse train is fed to a scaler in the pulse height analyzer, and 

also through the discriminator and mixer into the 10 Me scaler in which 

the 10 Me pulse train has been stored. When the 10 Me scaler counts up 

to 200, the overflow pulse is fed to the pulse height analyzer. This 

pulse stops the 2 Me wave train and initiates the process in the analyzer 

which transfers the number from the internal scaler to the memory of the 

pulse height analyzer. The system is then ready to accept another muon 

pulse and start the analysis of the next time interval.

Two important characteristics of such a circuit are the 

linearity and the calibration. These two quantities have been measured 

in the following manner. The muon pulses are simulated by a pulse 

generator which has a large amount of jitter in the period of the pulses, 

and the electron pulses are simulated by pulses derived from the 10 Me 

oscillator by scaling down by a factor of 500. The time interval, t, 

between a simulated muon pulse and the first following simulated electron
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I

pulse has a distribution which is uniform for 0<t<T , and there are no 

intervals with t>T , where T is the period of the electron pulses. 

Furthermore, the number of counts, n, per channel is related to the 

total number of simulated muon pulses, N, and the scaling factor,

S (S = 1/500), by the relation n = SN . It should be noted that the two 

oscillators providing the mu and electron pulses must be isolated from 

one another, otherwise there will be a tendency for them to lock in phase, 

producing a distribution which is modulated by a sine wave.

The electronic system was checked by this method periodically 

during the time the data was being collected. The results of these check 

runs are presented in Table 1. The data from each check run was fitted, 

using the method of least squares, to a function of the form
2

n^ = n0(l + bi), where i is the channel number. The values of X 

obtained were always consistent with the number of data points. The 

average value of b is less than the calculated standard deviation for 

this quantity, indicating that the system is linear to within + 0.012 

percent. n0 also agrees with the quantity SN, indicating that the 

calibration is that one channel equals one 10 Me oscillator period to 

within 0.06 percent. The only portion of the calibration data which 

displayed non-linearity was the first few channels, where the gate must 

be turned off shortly after it was turned on.. This difficulty was overcome 

by inserting the 2 l/2 microsec delay in the electron pulse line. The 

channel corresponding to zero time delay between muon and electron pulses 

was channel 30 .

The linearity and calibration were also checked by using 

calibrated delay lines. These measurements showed the system to be 

linear to within 0.1 microsec, which is the limit of this method.

The calibration obtained was again 0.1 microsec per channel.
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TABLE 1

RESULTS OF LEAST SQUARES FIT TO CALIBRATION DATA

FITTED FUNCTION: n± = no(l + bi)

Run No. SN ^o
b x IcA xf_

256 28,826 28,799 
+ 28

(2.4 + 2.8) 107

269 15,327 15,346 
+ 20

-(2.8 + 4.0) 102

274 41,252 41,322 
+ 40

-(2.6 + 2.8) 135

289 12,501 12,553 
+ 18

-(5.2 + 4.2) 91

301 12,267 12,270 
+ 24

-(2.2 + 6.0) 154

331 15,892 15,902 
+ 24

(2.3 ± 4.4) 132

342 19,577 19,586 
+ 24

(1.3 + 3.8) 93

343 13,544 13,559 
+ 22

-(0.2 + 4.6) 111

359 30,501 30,506 
± 32

(3.0 ± 3.0) 118

372 11,146 11,137 
± 18

(5.0 + 4.8) 105

397 22,748 22,729 
+ 28

(5.1 + 3.6) 121

Totals 223,581 223,709 
+ 84

(.55 + 1.22)

—--------  = 0.06 percent
no

= 115 + 6; Expected Value = 116 

Standard Deviation of = 19

Expected Standard Deviation = 16
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F. DATA ANALYSIS

The data recorded during the run was the number of muons

stopped, the number of electron counts, the frequency of the 10 Me

oscillator, and the muon decay curve stored in the memory of the pulse

height analyzer. The information on the time correlation between muons

and electrons is a histogram of the form y .= £ A.e-11^- . One of the
n . x

terms has A = 0, i.e., the background term. One or more of the terms 

may have 4^ equal to a known constant determined from other experiments. 

The carbon term is one of these, where X = (4.90 x 10^ sec' -1) 4°. The 

term arising from Ag, where AgCl is the target material, is another.

The histograms were treated by the method of least squares to obtain the 

A^ and any unknown 4^ . The least squares analysis is discussed in 

Appendix A. The computation involved was performed using an IBM type 

650 digital computer. The programming of this machine is discussed in 

Appendix B.

The data on the chlorine isotopes was obtained in the

following manner. The two isotopes were alternately studied for periods 

of four hours apiece. In this manner, approximately 35 thousand chlorine 

decays from each target were observed. The data from each four hour 

period were added together and fitted to the function

The a’s are the product of the factor F(4), discussed in 

Section II-A, and the isotopic concentrations in the target. For the
35 35Cl target, the isotopic concentrations were 96.8 percent Cl and

37 -27 37
3.2 percent Cl , for the G1JI target they were 76.0 percent Cl and
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35
24.0 percent Cl . The analysis was made in the following manner.

or
\(35) was calculated from the data on the Cl'''' target, using = 0 .
Then, this value of 4^(35)==^^^(35) , was used to calculate 4^ ^^(37)

(2)using the isotopic concentrations for the a's. Then '/(35) was

calculated using the isotopic concentrations for the a’s and using

4^^^(37) . This process was repeated, alternately calculating

^t^(35) and 4^^^(37) until the changes in the decay rates were

negligible. Then the values of F(4) were calculated from the final

values of the . Using a^FCx) x (isotopic concentration), the process

was repeated. It was found that the inclusion of F(\) made a negligible

difference in the calculated disappearance rates.

The data relating to the "Z-law" was analyzed in the following

manner. The AgCl decay curve from a target composed of the natural

isotopic mixtures of Ag and Cl was analyzed to determine the amplitudes

of the Ag, Cl, C, and background components. From these amplitudes the

quantities EN0(Z) may be obtained, and the ratio R=EN0(Cl)/EN0(Ag)

calculated. E is the efficiency of the electron telescope and is

assumed to be the same for electrons from Ag and Cl. The method of

calculating N0(Z) from the data is discussed in Section II-A . The

values of ^d(Z) used in calculating No(z) are taken from the paper 

41of Yovanovitch
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III. RESULTS

A. RESULTS OF THE "ISOTOPE EFFECT11 INVESTIGATION

The data from each of the chlorine targets were fitted to 

the histogram discussed in Section II-F. The results of these 

calculations are shown in the following table. The data, along with 

the fitted functions, are shown in Figure 9. This graph shows only the 

first six microseconds of the decay curves. The portion from 6 to 12 

microsec consists mainly of the carbon component and the constant term. 

The standard deviation on each point (which is not shown for purposes of 

clarity) is equal to the square root of the number of counts in each 

channel.

Table 2

Amp. Amp. Amp. Amp. 2
Target Cl ..As.,. c. Const. X_ Expected X

Cl35 7057 10,206 763 267 120 113 + 15
+350 +5,000 +30 + 2

Cl3? 5995 14,052 690 219 123 113 + 15
+240 +6,800 +35 i 2

V35>" (22.54 + .52) x 105 -1sec

M37) = (17.03 + .49) x 105 sec-1

The measurements of Yovanovitch^ show that in the region of 

chlorine, ^(Z) is the same as the decay constant of the free

muon. Using the value of 4.52 x 10^ sec-^- for the decay constant of the 

free muon^, we obtain the following values for the capture rates;

4 (35) = (18.02 + .52) x 105 sec-1
c ~

4C(37) = (12.51 + .49) x 105 sec-1 .
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The ratio A. (37)/A (35) is 0.694 + 0.034 , and the ratio of the 

difference in the capture rates to the mean value of the capture rate is 

4 (35) - 4c(37)
------------------------ == (36.1 + 4.6) percent .

4C

The only theoretical prediction which can be compared with

31the results of this experiment is the estimate of Primakoff for the 

capture rates. If these data are fitted to the formula of Primakoff,

Ac = (Zeff)4«V|)a)2(272 sec"1)R(l-^a , we obtain

= 3*3 i*P6

«lj/>a)2(272 sec-l)R = 303 + 36 -1sec

The expected values are 3.0 and 161 sec ^ respectively. This discrepancy

is not serious, however, since we expect individual nuclei to have

significant fluctuations from Primakoff’s formula. In fact, since in 

35 37going from Cl to Cl , we close the neutron shell in which many of the 

capturing protons originally were located, we expect to have an 

exceptionally large exclusion principle effect.

B. RESULTS OF THE ’’Z-LAW1’ INVESTIGATION

The results of the analysis performed on the data pertaining 

to the atomic capture of p-mesons in AgCl is presented in Table 3.

Table 3

Ag Amplitude: 2430 + 330

Cl Amplitude: 3010 + 250

No(Cl) Amp (Cl) F(\t(Ag))Ad(Ag)
N0(Ag)~ = F(At(Cl))4d(ci) Amp (Ag) 1-°9 1
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This result is in agreement with the results of Sens, et al,,-^ 

who found that the "Z-law" was not obeyed in insulating materials, but 

rather that the observed capture ratios follow more closely the simple 

atomic ratios, unweighted by the atomic numbers of the elements.

C. CAPTURE RATES OF NEGATIVE MUONS IN VARIOUS MATERIALS

During the course of these investigations it has been

necessary to measure the value of the disappearance rates of negative

muons in various materials. These rates are listed in Table 4, along

with the estimated values of the decay rates of negative muons in these

materials and the values of the capture rates. The decay rates have

been estimated using the values of Ad(Z)/4d(0) obtained by Yovanovitch^

and the value of ^d(0) obtained by Reiter, et al.^° For comparison,

42the values of the capture rates obtained by Swanson, et al*, are also 

listed.

Table 4

Material Natural Silver Natural Chlorine Natural Florine

ISiean(usec) .0915 + .0023 .437 + .022 1.217 ± 0.080

Vz> 109.2 + 2.7 22,9 + 1.1 8.22 + .54

R - Xd(Z) 
Ad(0)

0.90 + 0.05 1.00 + 0.03 1.00 + 0.02

yz> 4.07 4.52 4.52

yz> 105.1 + 2.7 18.4 + 1.1 3.70 + 0.54

\(Z)
Swanson

112.5 + 5.0 13.9 + 0.9 2.54 + 0.22

All rates are in units of 10 sec
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There is considerable disagreement between the values obtained 

for Cl and F. It should be noted that if the carbon background were not 

taken into account, the effect would be to decrease the disappearance 

rate, since what is being measured is an average between the carbon 

disappearance rate and the actual rate -under investigation. This was 

illustrated by analyzing our data without making allowances for the 

carbon. The results are values of A.^(Cl) and ^(F) which are much 

closer to the values obtained by Swanson, but the "goodness of fit" 

obtained is much poorer than that obtained when allowances are made 

for the carbon.
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APPENDIX A

METHOD OF LEAST SQUARES FOR FITTING DATA TO A SUM OF EXPONENTIAL TERMS

The problem is to make a least squares fit to a function which

is a sum of exponential terms, where both the amplitudes and the decay

constants may be unknown. Since no exact solution of this problem is

known, the following iterative procedure has been adopted. We wish to

make a least squares fit to a function of the form f^ = X a.g.. ,
j 3

where the a are the amplitudes and g„ = e x j . We expand the
ij

g. . as follows: 
J

gij(V Sij(V + V. gij(\j^
If X.. - X.. = v. , then 

J J J

__ (X... - X..) + ...
X.=K. 
J J

a. e-^j =* a. e ^\3 - (a v )i e
J J j j

In this manner, the problem is reduced to a linear least

squares fit, which is easily solved for the most probable values of the

a. and (a.v.) . From these results, we can compute v. = (a.v.)/a. ,
J J J J J J J

which is the correction to the decay constant. We then replace X..
<3

by X.. + v. and perform the calculation again. This iterative process 
J J

is repeated until the values of obtained are less than 10 ^xX.j .

The problem of making a linear least squares fit to a sum of 

exponential terms is solved in the following manner. We let y^ be the 

set of measured points, the standard deviation of the value of y^_ ,

and the function to which we wish to make a fit. The

N
quantity we wish to minimize is X = (y- ~ ) /a-t •

x=l
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pThe distribution of the quantity X has been studied
IO

extensively, and the following results may be stated4, . The average 
2

value of X (obtained from many sets of data) should be N-J-l , where 

N is the number of data points included in the summation, and J is the 

number of parameters which are determined from the data. The standard 

deviation of a measurement of is s.d.X^ =V2(N-J-l) , provided that 

(N-J-l )> 30 .

The method of calculating the a proceeds as follows.
j

We set 3X^/ ^a. =. 0 , j = 1,2, ...J
<D

The set of equations we obtain is

= 0 , j=l,2,...J

Since = g.. , we may write equation (l) asJ

(1)

o j 1>2,•••J

or

y iti

If we interchange the order of the summation', we obtain

(2)

We may define
Gmj “ ^J^im^ij / °i ^ ~ ginrsri / °i >

then we can write equation (2) as a matrix equation,

F‘a,Gm. = V .
J mJ m
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This equation is solved for the a. by making use of the inverted matrix, 

^mj)""1 > then

-ZT(W
m

-1
V.m *

For the case where the y. are distributed according to a 
2

Poisson distribution, Oj_ = > anci

G - / yj. ;

It is desirable to know the standard deviation of the a.
J

determined in this manner. The standard deviation may be written as 

follows:

s.d.a, =
■y2 ^ CC • <

N-J-l 4- ^ i;

The first factor gives the dependence of s.d.a- on the variance, or 

goodness of fit, of the set of data. The second factor gives the 

s.d.aj due to the dependence of a. on the y. , and the inherent 

standard deviation of the y. . The second factor is calculated in

the following manner 
’3 = } (G -1a, = T~ (G .)' Vm 

'1 m" m

^a-i ^— -i ^G
J = > (Q T1 ■ .-m + ___ 2LL. V )

*71 ^ mJ ^7± ^^i m

-Z
m

-1 / 2 G . g. /a. mj i

a

^7i
?" °i ■ H Gmj
1 m
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^a. -1('37f“ 0i) ' ^ *i”/ “iHlpj* gA Aj^)
-1- HI p ' ^

^imgip / ai ^
m p

.2 -.—,— -1 -1
^ GPJ Gi dyi ~m~p FJ mP

= L sj1 C1-) .
nr mj

= GJj1

(l)mj is the diagonal matrix,, We then see that

-1
s'd°aj V N-J-l njO

The application of this method to the histogram obtained from 

the AgCl "isotope effect" data will be illustrated. The function to 

which we desire to fit the data is

fn = A(a35 e-nM35) + e“n^37^) + B e"n^Ag^ + C e"1*^ + D .

If we expand e-n^^5) as indicated above, we obtain

fn = A(aor + a e n ^37^) + (Av)(-a3cn e ^
'37 7 ■ v"‘'/' “351

+ B e-^CAg) + C e“nX^G^ + D .

The forms of the a. and g.. to be used are:j siJ

a-^ = (Av)

a2 = A

= B

a4 = C 

= D

3-nA(35)gnl = -a35n e

- = a -nA(35)
§n2 a35 e

Sn3 - 8'nMAg)

gn4 ’

gn5 ■“ 1

+ a e
37

-nX(37)

e -nX(C)

The method of calculating the a. is discussed in Appendix B.
0



34

APPENDIX B

COMPUTER PROGRAMMING FOR THE DATA ANALYSIS

The calculations involved in making a least squares fit to a

function containing four exponential terms and involving 150 data points

are quite tedious and extremely lengthy. For these reasons^ all of the

computation was done on an IBM type 650 digital computer. The programming

for this machine was done using the generalized algebraic translating

system GATE, written by the staff of the Carnegie Computation Center.

Because programs written for this system cannot be used directly with

most other systems, and since the language involved is highly specialized,

the programs, as such, are not described in this work. However, the

general method used in the calculation of X(35) and k(37) is described

with the aid of the appropriate flow charts. Figure 10a is the flow

chart pertaining to the overall system of the calculations. Figure 10b

is the flow chart pertaining only to the calculation of X, v, and a.
J

with a given set of initial guesses for the A. .

Figure 10a will be described first. The information read

into the computer is the data, initial guesses for At(35) and

values of A^(Ag) and A^(C), the convergence criterion C, and the

first and last data points to be used in the calculation. I is a

constant which tells the "compute" subroutine whether to use data from 

35 37the Cl or Cl targets and which A it is to calculate, etc. The 

"compute" subroutine is described in the next paragraph. For a given 

initial guess for A, "compute" will supply the v and a. . This process 

is repeated until v/A is less than the convergence criterion. After 

convergence of A(35) has been obtained, the results are stored and 

computation proceeds to A(37). When a final value of A(37) has been
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obtained, the results are stored. Next, the program compares the computed

values of X with the initial guesses. If there has been a large change

in \, the latest values of k are used as initial guesses and the

process is repeated. When a final convergence has been obtained, the
2

function f_ , the residuals v„ = y - f_ , and X are calculated. Then ii 7 n n n *

the standard deviations of the k and the a are computed. Finally all 

the pertinent quantities are punched on cards and the calculation is 

complete.

The "compute1* subroutine shown in Figure 10b proceeds as

follows. For a given value of n , the matrix elements G . and V are

computed, using the present value of I to decide as to which data, etc.,

are to be used. The inversion of the matrix is accomplished by

using a subroutine built into the GATE system. The values of the a.
J

and v are then computed, and control proceeds according to the flow 

chart in Figure 10a.
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I APPENDIX C

EVALUATION OF THE EFFECT OF SECOND MU'S ON THE DECAY CURVES

Suppose that the instantaneous muon counting rate is » 

Then, if at a time t = 0 we stop a muon in the target, the distribution 

in time of second, or the next arriving, muon will be 

P (t) = X e"^ .
p p

For a second muon which stops in the target at time t, the distribution 

of electron counts is

P (t,t') = E \ e ^ , t» ^t ,

P (t,t') = 0 
e

, t'<t ,

where t' is the time at which the electron is emitted. The distribution 

in time of electrons emitted by second muons, where zero time is when 

the first muon stopped, is given by 

~t'Pe(2)(t') ^ Pe(t,t') P(i(t)dt . 

The integral is easily evaluated to give

-AntV' (e"v ■ e’Ht) >
t p

where t' was replaced by t. The general features of thi^ function are

shown schematically in the following graph. In these experiments,

X X t «.l , and the function may be approximated byi. t * u max

I
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(2)
The interesting quantity is the ratio of the amplitude of 

(t) to the amplitude of the distribution function for electrons

from the first muon, P

by

(1)(t) - EX, This quantity is given

EX* V t

For the chlorine "isotope effect" experiment, the value of R was
-5

7 x 10 , and the effects of the second muons are certainly negligible.

4
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