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ABSTRACT

The formulation of field theories by means of Vlightman functions is studied* 

It is shown that, given two field theories that satisfy all th© axioms, one can 

construct a family of Nightman fields with the same properties by a process of 

superposition of Nightman functions. The condition of unitarity is formulated 

without reference to asymptotic conditions, and it is proved that the Nightman 

fields constructed by the above superposition process (starting with "unitary» 

fields) fail to preserve unitarityj and a forteori, the standard asymptotic

condition,



1« Introduction

In the search for a dynamical scheme for describing elementary particle 

phenomena consistent with relativistic invariance and quantum mechanical principles^ 

the theory of quantized fields has been favoured with more study and has provided 

more insight than any other scheme. The use of manifestly covariant local Lagrangians 

as a starting point and the use of perturbation expansions lead to questionable 

mathematical operations with infinite quantities. In view of this, during the last 

few years the study of general field theories without starting with any specific 

Lagrangian has received much attention.^ The more fundamental part of such a 

program concerns the study of an abstract axiom system more or less suggested by 

earlier Lagrangian theories® In such a study it is worthwhile to know if the 

axioms are independent and whether they are compatiblej while the axioms are 

•'related" to general physical requirements their truth is neither "self evident" 

nor can one trust intuitive "physical" justifications for the compatibility of 

these axioms.

Among the set of axioms usually taken as characterizing as quantized fields, 

these caments apply particularly to the so-called "asymptotic condition" 

which enables one to relate the field operators to particle scattering amplitudes.

The somewhat provisional nature of this axiom has been noted beforej and perhaps 

not unconnected with this is the fact that the other "field axioms" have been the 

subject of a structure analysis by Nightman. Making use of the tools developed 

in this brilliant study we show in this paper that the "asymptotic condition" is 

an independent axiom and that one can construct systems satisfying all other axioms 

but not this axiom provided that at least one quantum field theory yielding a 

nan-trivial scattering matrix exists# In the course of this study we have been 

able to construct several examples of fields with a trivial scattering matrix*

In sec. 2 we review Nightman’s theory and construct certain elementary 

families of Nightman fields using the technique of vacuum expectation values*

Sec. 3 discusses the weak axiom of asymptotic particle interpretation and the



normalization of the field. The main result of the present paper is to shew that 

almost.all members of the families of fields constructed in sec, 2 do not 

satisfy the (weak) sodom of asymptotic particle interpretation; this result is 

stated and proved in sec* li» Certain related comments are made in the concluding 

section*

29 Families of V/ightman Fields

According to Wightman^', a quantum field theory is defined in terms of a 

Hilbert space and a set of hermitian linear operators f [*) labelled by a 

four-vector provided the following conditions are satisfied*

1) Lorentz invariances there must exist unitary operators U(aa /\ ) such

tnat f (f\X tex) - U(ajf\) f(x) [J V A)

for every proper orthochroncus inhoiaogeneous Lorentz transformation,

2) Absence of negative energy states: the spectrum of the Hamiltonian 

operator must be nonnegativ©^ the Hamiltonian being defined as the hermitian 

generator of time translations,

3) Local commutativity: the commutator of two field operators at space like 

points must vanish:
[ fix) j (/-(•j)]-O for (x-y)l<Q

U) The existence of the "vacuum" states there exists a state

invariant under all U (a5 A )»

If we now form the vacuum expectation values of products of n field operators 

labelled by the points Xj;- ^ Xa *

f(x<) ~
It can then be sheem that as a consequence of the conditions imposed on the 
Hilbert space and the linear operators p (x) that this set of functions

labelled by the four-vector variables (hereafter called Wightman functions) has

the following properties:

a) /uta]) = [Ixi) invariance)



(ii) ^( 1*1) is tiie boundary value of a conplox function W { [ Z'jJ
analjdiic for j m ( Z. J in the backward light cone (absence

-3-
f")

of negative energies).
./'>)/c.. \ \A/a)/(iii) W*nY| X 3 ) - Wn](lxl$) where t ^ Y is ^-7 pernutation

of the n variables ^ X 3 i provided the pensuted variables have space-like 

separations (local connutativity).

(iv)
0^ (2)

cl9*!-' d9xr ^4tj£ > a

where f’r are suitable arbitrary functions, (positive definite metric) 

Wightman has also shown^^ that these conditions are sufficient: that is, given 

a sot of functions \^/ ^ J satisfying these conditions one can construct

a theory of a (neutral scalar) field satisfying the four conditions stated at 

the beginning of this section which has these functions for its vacuum expectation 

values.

Before the field theory so defined can be used to describe a model of relativistic 

quantum theory of particles one must introduce some particle concepts. The 

structure satisfying only the conditions introduced in this section is a mors 

general systemj we shall refer to this structure as a "Wightman field."

We now state two obvious properties of a Wightman field in terms of its 

Wightman functions in the form of two theorems.
THEOREM I (Scale Change). If W^ j si’s a set of Wightman functions,

the set of functions K 0 'W ^ ^ ) define a Wightman field for every

real number k»

This statement is immediately verified by noting that if 'j C*)
Wightman field which corresponds to W ^ Y ^ X 3 } * then ^ corresponds

to i<A W"'1 tin) .
THEOREM II (Convexity). If ./! j''; ( £/U) end \Nl^(iXl) are two 

sets of Wightman functions, the convex set
/») / . -v \ y y-./M I $'/ \ \ . h W \a/(«)/< - \



defines a Wightman field provided the real number A lies between 0 and 1#

The theorem is proved by noting that tho functions Vs/ Vtf satisfy

all the conditions imposed on Wightman functions: Lorentz invariance, analyticity 

in the future tube, permutation symmetry for spacelike separated arguments and 

finally the condition specified by Eq, (2). Hence they defins a Wightman field.

Note that in this case it is not easy to construct the field operator in a simple 

manner but these functions satisfy all the conditions imposed on Wightman functionsj 

lienee they define a Wightman field. If is real but not necessarily in the 

interval 0 % ^ ^ \ then all conditions are satisfied except positive definiteness; 

even this last condition may bo satisfied in special cases (as is seen by 

considering ).

Thus given one Wightman field we can construct an infinite number of distinct 

Whitman fields using Theorem Ij however out of this infinite set a specific choice 

can be made by stating a normalization condition. We shall state such a condition 

in the next section. Theorem II allows us to construct an infinite set of Wightman

ields (normalized, if so required) from two (or more) distinct Wightman fields. 
Let us call the set of all Wightman fields W generated by VV j (

^ Wi Vi?*!) tbe ’'family"; every point in this family is labelled by a 

parameter A • Have remarked above that while (9 A I is allowed

in all cases, values of A outside this interval are not necessarily forbidden. 

It is then interesting to state the following theorem regarding the boundedness 
of the allowed values of A :

THEOREM III (Semi-bounded families). There exists either a lower limit A/ 

or an upper limit A^ (or both) such that for either A < A | or Ai</ 

(or both) the combinations
y"Yfx3)= > fL1.-*) ^ Uxi)

cannot be a set of Wightman functions«

To prove the existence of such limits, we use the p.ositive definiteness 

condition showing that for sufficiently large negative or positive values of

they are violated. Consider in particular
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vhich is nonnegativo according to (2). It cannot be everywhere zero without making 
tho field operator ^ i trivial; Choose any suitable testing function (y) 

such that
+7y) w[2)/x+Vz jx-a/i) f6) =/

and let
J f+ ~ a > o

Then
J

j f7y) V Vxt^ZjX-%
J \ a

which becomes negative for ^

) f ('y) ^ O-^'j

4
or for > A according

//-al .......... )c(~i)
as a is less than or greater than unity. Hence the statement made in the theorem 

is proved.

This demonstration however does not guarantee that provided A j c-.

the set V ^ £ X 3 j are Wightman functions since the positive definiteness 

condition in its complete form may still be violated} it may even be violated
\. , /(&)/ < y j? |

for other testing functions using k V C l, t' ^) only. However from Theorem II 
we know that there exists tho nontrivial family ^ A Sr / at least. In 

general the family is, of course larger.

It is also remarkable that of the original fields obeyed canonical commutation 

relations the family of Wightman fields so generated also satisfy canonic ad 

commutation relations. This statement is consequent upon the identification of 

all matrix elements of the commutator of the field and its time derivative (at 

the same time) in terms of the Wightman functions.

3. Asymptotic Particle Interpretation and the Scattering Matrix

If this field theory is to become a theory of interacting particles, one

must introduce particle variables into the theory and identify at least some 
subspace of the Hilbert space d’l, as being associated with the particle states.
Such a program^ has so far not been carried out except for free fields. There

is however another type of particle Interpretation which is less ambitious in

the sense that certain linear combinations of vacuum expectation values of the



fields are identified with a scattering amplitude for "asymptotically froo" 

particles* Since there are certain properties to be satisfied by the scattering 

amplitude this identification in turn imposes some restrictions on the Wightman 

fields. However tho scattering amplitudes themselves provide only an incomplete 

characterization of the fioldj and it appears that without the use of sufficiently 

strong additional postulates.* the scattering amplitudes do not determine the 

Wightman fieldIn support of thisa it is known that one can construct 
several distinct Wightman fields with a trivial associated scattering amplitude.^

It is conventional^ to state the requirement of an asymptotic particle 

interpretation in terras of an appropriately stated "asymptotic condition" and 

then to "derive" the scattering amplitude in terms of certain linear combinations 

of vacuum expectation values* Wq shall follow the alternative method of stating 

the connection between the scattering amplitude and the vacuum expectation values 

as the additional axiom* This apparently arbitrary procedure has certain advantages* 

first of allp unlike the othsr axioms of quantum field theory, the asymptotic 

condition has so far been stated only in unsatisfactory forms and their plausibility 

is not immediately obvious* The best defence seems to be that it leads to a 

covariant expression for the scattering amplitude; but the expression itself could 

be obtained by other means, say for example by a formal summuation of the perturbation 
series,^) Secondly the question of completeness of the particle scattering states 

which is generally a prerequisite to the axiomatization of the asymptotic condition 

seems too strong; it is conceivable that the field Hilbert space is considerably 

larger than the particle Hilbert space*
We shall hence take as an axiom the following condition?^)

The scattering matrix element related to the transition to a state containing

r particles with four-momenta Pij J pr from a state containing S particles
• with four-momenta ^|)' * j.ci & (with p,1 w - ~ - ^ ^ ) is given by the

expression:

5 (hr j4Jixr~d*Xr f/V- A(fr)Xi)

Aff'jXr) A Hu ii) - A(-iiJLjs) t {#*,)■■#*,) tfi,).-



■7'

uhera
A[PjX)= i

~ L \ p* /
[I’trf

\
(Ub)

and n is a "nass" parameter. Here the T product vacuum expectation value is 

defined in terms of the Wightman functions by the equations

- (If x.'-<ol 7 [H*,) - - /0>= —jXn'j
for V>/At>->y;

(Sa)

<ol T f f(h) - } l of , <ol T{ I D> <*)
where X/j " ' ^m are any permutations of Xj \ — j • (Asymptotic

Particle Interpretation)

Given any Wightman field we can now calculate the particle scattering matrix 

in terms of this identification; but there is no guarantee that the scattering 

matrix so defined satisfies the conditions imposed on a scattering matrix, in 

particular unitarity. It is considered further necessary that the one-particle 

states are “steady” so that the S^matrix elements connecting one-particle 

states to any other state vanish identically (and that the two-particle scattering 

is elastic below the three-particle threshold). This condition can be used to 

normalize the field operators
Jd^ y ) fU?)*) ^x) ~ I2ri)f (pl^lS(‘p)

^ (6)

with p2 a q2 e. xt then follows that if Vy ({XjJ denotes the Wightman 

functions for this normalized field of mass ^ then <-n

defines a field which is not normalized except for the special case k • + 1. The 

fields defined in terms of two (or more) seta of normalized Wightman functions in 

the form is also normalized in the above manner if

and only if the masses are identical0

The axiom of asymptotic particle interpretation introduced here is weaker than 

the usual asymptotic condition in the sense that we do not assume either the 

completeness of the many particle states nor the existence of asymptotic fields.

But if the asymptotic condition is postulated as an axiom of the theory in addition
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to the axioms for a Wightman field, we can derive the expression for the particle
(9)scattering matrix yielding the so-called reduction formulae# ' Thus the axiom 

of asymptotic particle interpretation for a Wightman field yields a more general 

system than the Wightman field with the stronger axiom of asymptotic condition. 

Needless to say everything we have proved in the following sections apply 

a forteori to fields satisfying the usual system of axioms including the 

asymptotic conditions Wq now proceed to show that Wightman fields in general do 

not have an asymptotic particle interpret ation*

iu Wightman Fields without Asymptotic Particle «■ Interpretation#

In terms of tho scattering matrix S one may now define the scattering 

amplitude f in the standard mannerj and then note that the scattering amplitude 

so defined is linearly related to the Wightman functions* The unitarity relation 

imposed on T^P/) -j ^ j is ^

f i Pir-jpo fY'tu-jUjPrjpr) ~ i 5.
mo U

c (7)
ttK) - UkI-M 6(k$i jPo hir.jkn

or symbolically,
(f-f4)’ ^ H' t

(71)

In the summuation most of the terms contribute nothing since energy and momentum 

must be conserved if the scattering amplitude is not to vanish. Let f^ and fg

be the scattering amplitudes for two Wightman fields with asymptotic particle
(«1

interpretation defined by their Wightman functions Wfn) and W5 Wo

shall further specialize than to correspond to the same ‘,ma3s,,* If we now define 

a field in terms of the Wightman functions

A Wj^ i (I-a)
in view of the linear relation between the ’Wightman function and the scattering

amplitude, it now follows that the scattering amplitude f for this Wightman field



is simply given by

f " X f l r (I" fx
Using the unitarity condition* Eq. (7)* twice it is now possible to derive the 

relation
£ Aft 3 l = Xfj f^lhAjr^p (8,)

which may be written* oo
A - M la [dHt £1 Ht-ri 6 / V) - J j? Hrx s (6 A/J

9(f/) Jl°rj kjj-jr'n) ^ {'ill-J^sj kij-jhn)

with

Sc
r
J i

rfl'

(8a)

(8b)

If we now specialize to the case of elastic scattering, the integrand is nonnegative

and the vanishing of the integral implies that either g * 0 identically or

X ( l~X ) B 0» In tho first case the two Wightman fields must have the same

scattering matrix and all the Wightman fields in the allowed family

yield the same scattering matrix; the second case is trivial* We may now prove

the following theorems

THEROEM IV (Equivalent Scattering Matrices): A Wightman field defined in 

terns of the “ightman functions
W'V,J'* §■ A< W,r! 2.X-1 X=0

w ^
the functions /V ^ admitting asymptotic particle interpretations with the 

same ^lajss”, has an asymptotic particle interpretation if and only if all the 

Wightman fields have the same scattering matrix*

This more general statement is proved essentially the same way as used 

above; one derives in place of (8J) the equation
„J/s ^ A* ^

. from which it follows that ^ unless ^ or vanishes provided

all the \ ^ are normegative. Note that unlike the case of two fields only, 

here the condition Q cannot be simply relaxed; in general, on grounds

of continuity, one expects the domain of values of Ay (with sum unity) for which
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the theorem holds is somewhat larger in view of the demonstration above regarding 

only two fields*

5, Discussion

We have thus shown that the axiom of asymptotic particle interpretation is 

independent of the other axioms of field theory and is not derivable from it*

We have actually used only a weaker axiom in this connection in the sense that 

we have neither required detailed properties of the field mass spectrum nor the 

completeness of the many-particle states. Oar systems are correspondingly more 

general and the "unitarity conditions" are imposed only on the Fourier transforms 

of the time-ordered combinations j £ f/Xf) ■ ~ ^°f the Wightman

functions for momenta on the mass shell; without additional restrictions this is 

not sufficient to determine the field in any sense* Yet here we see that the 

unitarity requirement on the particle scattering matrix excludes most Wightman 

fields from having an asymptotic particle interpretation.

Perhaps the weakest point of the present investigation is that it has not 

provided any example of a field theory with asymptotic particle interpretation 

with a non-trivial scattering matrix; rather it asserts that if there exists at 

least one such theory there exists an infinity of Wightman fields not having an 

asymptotic particle interpretation belonging to the family generated by this one 

field together with the free field of the same mass.

We have worked here within the framework of the conventional axiomatization

of quantum field theory. If the purpose of the field theory is only to provide a

quantum theory of interacting particles invariant under the complex Lorentz group,

the conventional axiomatization is too rigid in that it imposes "physical

requirements" on tho field. This is most easily seen in the case of the axiom of 
. positive definiteness: in a theory where the physical particle states do not form

a complete set of states in the generalized Hilbert space in which the field

operators are defined, it is sufficient of the particle states constitute a subspace
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with positive definite metric. That these considerations are not devoid of physical

interest is seen from the example of the quantized Maxwell field. One of the
(10)present authors has discussed examples of quantum field theories formulated 

in terms of a generalized Hilbert space with an indefinite metric where again the 

physical particle states are not complete in tho generalized space but constitute 

only a subspace with positive definite metric. In such theories the physical 

interpretation requires an interpretive postulate and the precise form of this 

postulate depends on the dynamics of the field.

Our investigations also provide several examples of Wightman fields with a 

trivial scattering matrix. In addition to a trivial scale change /i*'

we also have more generally;

W1<>) Z. A < ^<2 l Xoc 'l? 0 (9)
Uwhich provide Wightman fields* the functions VV ‘S' ^ corresponding to known 

theories; say either free fields with arbitrary masses, or the Wick polynomials of 

free fields or terminating Haag expansions,^ By a limiting procedure in forming 

such linear combinations one can produce any two-point function
Ol /o>* fci/°(tni) do

(where Z ( r* j k» vj J ig the two-point Wightman function for a free field of 

mass m) by taking for the Wightman functions:

l/Vfn) (i xl) - J dftm3) w ^Yi xSJ (n)
where VV^A V / X j J are the Wightman functions for a free field of mass m, and

to*) is a nonnegative measure. But all these fields have a trivial scattering

matrix,
(3)Finally the present study illustrates the validity of Wightman1s statement ' 

that the consequences of positive definiteness are distinct from the consequences

of unitarity* The Wightman fields constructed above satisfy positive definiteness 
but do not yield unitary scattering matrices, while certain indefinite metric
theories (including quantum electrodynamics) provided0^ examples of theories in

which the field operators are defined in a generalized Hilbert space but the



scattering matrices are unitary#
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