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ABSTRACT

The formulation of field theories by means of Vlightman functions is studied*
It is shown that, given two field theories that satisfy all th© axioms, one can
construct a family of Nightman fields with the same properties by a process of
superposition of Nightman functions. The condition of unitarity is formulated
without reference to asymptotic conditions, and it is proved that the Nightman
fields constructed by the above superposition process (starting with "unitary»
fields) fail to preserve unitarityj and a forteori, the standard asymptotic

condition,



l« Introduction

In the search for a dynamical scheme for describing elementary particle
phenomena consistent with relativistic invariance and quantum mechanical principles”
the theory of quantized fields has been favoured with more study and has provided
more insight than any other scheme. The use of manifestly covariant local Lagrangians
as a starting point and the use of perturbation expansions lead to questionable
mathematical operations with infinite quantities. In view of this, during the last

few years the study of general field theories without starting with any specific

Lagrangian has received much attention. ©~ The more fundamental part of such a
program concerns the study of an abstract axiom system more or less suggested by
earlier Lagrangian theories® In such a study it is worthwhile to know if the
axioms are independent and whether they are compatiblej while the axioms are
*'related" to general physical requirements their truth is neither "self evident"
nor can one trust intuitive "physical" justifications for the compatibility of
these axioms.

Among the set of axioms usually taken as characterizing as quantized fields,
these caments apply particularly to the so-called "asymptotic condition"
which enables one to relate the field operators to particle scattering amplitudes.
The somewhat provisional nature of this axiom has been noted beforej and perhaps
not unconnected with this is the fact that the other "field axioms" have been the
subject of a structure analysis by Nightman. Making use of the tools developed
in this brilliant study we show in this paper that the "asymptotic condition" is
an independent axiom and that one can construct systems satisfying all other axioms
but not this axiom provided that at least one quantum field theory yielding a
nan-trivial scattering matrix exists# In the course of this study we have been
able to construct several examples of fields with a trivial scattering matrix*

In sec. 2 we review Nightman’s theory and construct certain elementary
families of Nightman fields using the technique of vacuum expectation values*®

Sec. 3 discusses the weak axiom of asymptotic particle interpretation and the



normalization of the field. The main result of the present paper is to shew that
almost.all members of the families of fields constructed in sec, 2 do not
satisfy the (weak) sodom of asymptotic particle interpretation; this result is
stated and proved in sec* li» Certain related comments are made in the concluding

section*®

29 Families of V/ightman Fields

According to Wightman”™', a quantum field theory is defined in terms of a
Hilbert space and a set of hermitian linear operators f/*) labelled by a
four-vector provided the following conditions are satisfied™

1) Lorentz invariances there must exist unitary operators U(aa /\ ) such
tnat S (f\Xtex) - U(aif\) f(x) [JV A)

for every proper orthochroncus inhoiaogeneous Lorentz transformation,

2) Absence of negative energy states: the spectrum of the Hamiltonian
operator must be nonnegativ©” the Hamiltonian being defined as the hermitian
generator of time translations,

3) Local commutativity: the commutator of two field operators at space like
points must vanish:

[ Six) j (/~()]-O Jor (x-»I<Q

U) The existence of the "vacuum" states there exists a state
invariant under all U(a5 A )»

If we now form the vacuum expectation values of products of n field operators
labelled by the points Xj;- & Xa *

J(x<) ~

It can then be sheem that as a consequence of the conditions imposed on the
Hilbert space and the linear operators p (x) that this set of functions

labelled by the four-vector variables (hereafter called Wightman functions) has

the following properties:
a) /auatal]) = [/ Ixz) invariance)



_3-
(i1) N 1 *17) 1s tiie boundary value of a conplox function Wf) { / Z,]J

analjdiic for jm (ZJ in the backward light cone (absence

of negative energies).
(i11) W*/I'l§icx3 )\ - Wrﬁﬁxlé@) where ¢ Y is ~-7 pernutation

of the n variables "X 3 i provided the pensuted variables have space-like

separations (local connutativity).

(iv)

O/\ 2
)
Clg ./— ’ dQXI /\4ti£ = a

where f’r are suitable arbitrary functions, (positive definite metric)
Wightman has also shown™" that these conditions are sufficient: that is, given
a sot of functions \/ ™ J satisfying these conditions one can construct
a theory of a (neutral scalar) field satisfying the four conditions stated at
the beginning of this section which has these functions for its vacuum expectation
values.

Before the field theory so defined can be used to describe a model of relativistic
quantum theory of particles one must introduce some particle concepts. The
structure satisfying only the conditions introduced in this section is a mors
general systemj we shall refer to this structure as a "Wightman field."

We now state two obvious properties of a Wightman field in terms of its

Wightman functions in the form of two theorems.
THEOREM I (Scale Change). If W~» j si’s a set of Wightman functions,

the set of functions KO0 'W* A ) define a Wightman field for every

real number k»

This statement is immediately verified by noting that if 5 C%*)
Wightman field which corresponds to W "Y *X3| * then * corresponds

to <A W' tir)
THEOREM IT (Convexity). If .//3";( £/U) end \NI™(ZXZ) are two

sets of Wightman functions, the convex set
M 1. v\ y y- /MIS/\\ . A W A< -\



defines a Wightman field provided the real number A lies between 0 and 1#

The theorem is proved by noting that tho functions VW Vitf satisty
all the conditions imposed on Wightman functions: Lorentz invariance, analyticity
in the future tube, permutation symmetry for spacelike separated arguments and
finally the condition specified by Eq, (2). Hence they defins a Wightman field.
Note that in this case it is not easy to construct the field operator in a simple
manner but these functions satisfy all the conditions imposed on Wightman functions;j
lienee they define a Wightman field. If is real but not necessarily in the
interval 0 % ~ 7™ | then all conditions are satisfied except positive definiteness;
even this last condition may bo satisfied in special cases (as is seen by
considering ).

Thus given one Wightman field we can construct an infinite number of distinct
Whitman fields using Theorem Ij however out of this infinite set a specific choice
can be made by stating a normalization condition. We shall state such a condition
in the next section. Theorem II allows us to construct an infinite set of Wightman

ields (normalized, if so required) from two (or more) distinct Wightman fields.
Let us call the set of all Wightman fields W generated by VVj (

-~ Wi Vi?*!) tbe "family"; every point in this family is labelled by a
parameter A ¢ Have remarked above that while (9 A [ 1s allowed
in all cases, values of A outside this interval are not necessarily forbidden.

It is then interesting to state the following theorem regarding the boundedness

of the allowed values of A

THEOREM IIT (Semi-bounded families). There exists either a lower limit A/
or an upper limit A" (or both) such that for either A < A| or Ai1</

(or both) the combinations

VY Ffx3)= > JfL.-*) — Uxi)

cannot be a set of Wightman functions«

To prove the existence of such limits, we use the p.ositive definiteness

condition showing that for sufficiently large negative or positive values of

they are violated. Consider in particular
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vhich is nonnegativo according to (2). It cannot be everywhere zero without making

tho field operator ™ i trivial; Choose any suitable testing function (y)

such that
+7y) w/2)/x+V=z jx-a/i) t6) =/

and let
J + ~a = O
J
Then
' A7 0/ ) TOY) ~O-"Y
| £7y) V VXUZiX-%
J a
hich becomes negative for % fe > A accordin
W sty seal ST e—i) &
as a is less than or greater than unity. Hence the statement made in the theorem
is proved.
This demonstration however does not guarantee that provided Aj c-
the set V ~£X3j are Wightman functions since the positive definiteness

condition in its complete form may still be violated} it may even be violated

: : : N (&) <y
for other testing functions using kV> CL#”) only. However from Theorem IT

we know that there exists tho nontrivial family ~ ASr / at least. In
general the family is, of course larger.

It is also remarkable that of the original fields obeyed canonical commutation
relations the family of Wightman fields so generated also satisfy canonicad
commutation relations. This statement is consequent upon the identification of
all matrix elements of the commutator of the field and its time derivative (at

the same time) in terms of the Wightman functions.

3. Asymptotic Particle Interpretation and the Scattering Matrix
If this field theory is to become a theory of interacting particles, one

must introduce particle variables into the theory and identify at least some
subspace of the Hilbert space d’/, as being associated with the particle states.

Such a program” has so far not been carried out except for free fields. There

is however another type of particle Interpretation which is less ambitious in

the sense that certain linear combinations of vacuum expectation values of the



fields are identified with a scattering amplitude for "asymptotically froo"
particles* Since there are certain properties to be satisfied by the scattering
amplitude this identification in turn imposes some restrictions on the Wightman
fields. However tho scattering amplitudes themselves provide only an incomplete
characterization of the fioldj and it appears that without the use of sufficiently
strong additional postulates.* the scattering amplitudes do not determine the

Wightman fieldIn support of thisa it is known that one can construct

several distinct Wightman fields with a trivial associated scattering amplitude.”

It is conventional”™ to state the requirement of an asymptotic particle

interpretation in terras of an appropriately stated "asymptotic condition" and
then to "derive" the scattering amplitude in terms of certain linear combinations
of vacuum expectation values* WQ shall follow the alternative method of stating
the connection between the scattering amplitude and the vacuum expectation values
as the additional axiom* This apparently arbitrary procedure has certain advantages*
first of allp unlike the othsr axioms of quantum field theory, the asymptotic
condition has so far been stated only in unsatisfactory forms and their plausibility
is not immediately obvious* The best defence seems to be that it leads to a
covariant expression for the scattering amplitude; but the expression itself could
be obtained by other means, say for example by a formal summuation of the perturbation
series,”™) Secondly the question of completeness of the particle scattering states
which is generally a prerequisite to the axiomatization of the asymptotic condition
seems too strong; it is conceivable that the field Hilbert space is considerably
larger than the particle Hilbert space*

We shall hence take as an axiom the following condition?”)

The scattering matrix element related to the transition to a state containing

r particles with four-momenta Pij Jpr from a state containing S particles
v with four-momenta ™|)'* j.cZ& (with p,lw -~ - 7~ ) is given by the

expression:

S5 (hr JFxr~d*Xr t/V- A(fr)Xi)

AFiXr) AHuwuii) - A(-iiJls) T {#)mm#*) 1fi).-



uhera N | p*
A[/PIX)= 1
[Ttrf (Ub)

and n is a "nass" parameter. Here the T product vacuum expectation value is

defined in terms of the Wightman functions by the equations

<ol 7 [H?,) -= /x- /[0>= —jXn
Jor V>/AZx—=———y >

<ol T £ f(h) — viof, <ol T D>  <¥)

where X/3 "' M are any permutations of Xj\ —j *  (Asymptotic

(Sa)

Particle Interpretation)

Given any Wightman field we can now calculate the particle scattering matrix
in terms of this identification; but there is no guarantee that the scattering
matrix so defined satisfies the conditions imposed on a scattering matrix, in
particular unitarity. It is considered further necessary that the one-particle
states are “steady” so that the S“matrix elements connecting one-particle
states to any other state vanish identically (and that the two-particle scattering
is elastic below the three-particle threshold). This condition can be used to

normalize the field operators

Jd™ y) JU?)*) X)) ~ 12ri)f (pINILS (=)
" ©)
with p2 a q2 e xt then follows that if Vy (¥XjJ denotes the Wightman
functions for this normalized field of mass ~ then <

defines a field which is not normalized except for the special case k « + 1. The
fields defined in terms of two (or more) seta of normalized Wightman functions in
the form is also normalized in the above manner if

and only if the masses are identicall

The axiom of asymptotic particle interpretation introduced here is weaker than
the usual asymptotic condition in the sense that we do not assume either the
completeness of the many particle states nor the existence of asymptotic fields.

But if the asymptotic condition is postulated as an axiom of the theory in addition
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to the axioms for a Wightman field, we can derive the expression for the particle
scattering matrix yielding the so-called reduction formulae# ®) Thus the axiom
of asymptotic particle interpretation for a Wightman field yields a more general
system than the Wightman field with the stronger axiom of asymptotic condition.
Needless to say everything we have proved in the following sections apply
a forteori to fields satisfying the usual system of axioms including the
asymptotic conditions Wa now proceed to show that Wightman fields in general do

not have an asymptotic particle interpret ation*

iu  Wightman Fields without Asymptotic Particle @ Interpretation#
In terms of tho scattering matrix S one may now define the scattering
amplitude f in the standard mannerj and then note that the scattering amplitude

so defined is linearly related to the Wightman functions® The unitarity relation

imposed on T"P/) - /\j is %
fi Pir-jpo JSY tu-jUjPrjpr) ~ i 5.
mo U
¢ (7)
1t K) — UKI-M 6(k$i JPoO hirjkn

or symbohca?/f_fét)’ R

(71)
In the summuation most of the terms contribute nothing since energy and momentum
must be conserved if the scattering amplitude is not to vanish. Let f* and fg
be the scattering amplitudes for two Wightman fields with asymptotic particle

Wihn) and Wi («l

interpretation defined by their Wightman functions Wo

shall further specialize than to correspond to the same ‘ma3s,* If we now define
a field in terms of the Wightman functions

A WIN T (I-A)
in view of the linear relation between the Wightman function and the scattering

amplitude, it now follows that the scattering amplitude f for this Wightman field



is simply given by

foxrira s
Using the unitarity condition* Eq. (7)* twice it is now possible to derive the
relation

£ Aft 3 1 = Xfj NhAjrp (8,

: -
which may be %rltten

A -M A [dHE STHEri§/V) - Jj2Hx s &« 6A/)

ot JI% Kjj-jr'n) A Lill-Jsj kij-jhn) )

with
Sc Ii S (8b)

If we now specialize to the case of elastic scattering, the integrand is nonnegative
and the vanishing of the integral implies that either g * 0 identically or
X (1=X ) BO» In tho first case the two Wightman fields must have the same
scattering matrix and all the Wightman fields in the allowed family
yield the same scattering matrix; the second case is trivial®* We may now prove
the following theorems

THEROEM IV (Equivalent Scattering Matrices): A Wightman field defined in

terns of the ‘“ightman functions
W'V J* m A< W._r! 2. X-1 =0

w N
the functions /V  admitting asymptotic particle interpretations with the

same "lajss”, has an asymptotic particle interpretation if and only if all the
Wightman fields have the same scattering matrix*
This more general statement is proved essentially the same way as used

above; one derives in place of (8J) the equation
LJ/s S A*¥ A

from which 1t follows that ™ unless ™ or vanishes provided
all the \ & are normegative. Note that unlike the case of two fields only,

here the condition Q cannot be simply relaxed; in general, on grounds

of continuity, one expects the domain of values of Ay (with sum unity) for which



10-
the theorem holds is somewhat larger in view of the demonstration above regarding

only two fields*

5, Discussion

We have thus shown that the axiom of asymptotic particle interpretation is
independent of the other axioms of field theory and is not derivable from it*

We have actually used only a weaker axiom in this connection in the sense that
we have neither required detailed properties of the field mass spectrum nor the
completeness of the many-particle states. Oar systems are correspondingly more
general and the 'unitarity conditions" are imposed only on the Fourier transforms
of the time-ordered combinations j £1X0) 1~ ~°f the Wightman
functions for momenta on the mass shell; without additional restrictions this is
not sufficient to determine the field in any sense* Yet here we see that the
unitarity requirement on the particle scattering matrix excludes most Wightman
fields from having an asymptotic particle interpretation.

Perhaps the weakest point of the present investigation is that 1t has not
provided any example of a field theory with asymptotic particle interpretation
with a non-trivial scattering matrix; rather it asserts that if there exists at
least one such theory there exists an infinity of Wightman fields not having an
asymptotic particle interpretation belonging to the family generated by this one
field together with the free field of the same mass.

We have worked here within the framework of the conventional axiomatization
of quantum field theory. If the purpose of the field theory is only to provide a
quantum theory of interacting particles invariant under the complex Lorentz group,
the conventional axiomatization is too rigid in that it imposes "physical

requirements" on tho field. This is most easily seen in the case of the axiom of

. positive definiteness: in a theory where the physical particle states do not form

a complete set of states in the generalized Hilbert space in which the field

operators are defined, 1t is sufficient of the particle states constitute a subspace



-Nn-
with positive definite metric. That these considerations are not devoid of physical
interest is seen from the example of the quantized Maxwell field. One of the
present authors has discussed(m) examples of quantum field theories formulated
in terms of a generalized Hilbert space with an indefinite metric where again the
physical particle states are not complete in tho generalized space but constitute
only a subspace with positive definite metric. In such theories the physical
interpretation requires an interpretive postulate and the precise form of this
postulate depends on the dynamics of the field.

Our investigations also provide several examples of Wightman fields with a
trivial scattering matrix. In addition to a trivial scale change fi*

we also have more generally;

W1<> /. A< _— ] l Xoc 'l? 0 )

which provide Wightman Helds* the functions VV S’" corresponding to known

theories; say either free fields with arbitrary masses, or the Wick polynomials of

free fields or terminating Haag expansions,” By a limiting procedure in forming

such linear combinations one can produce any two-point function
(@] 1 /Oo=*  fci/°(tni) do
(where Z (1*j k»vj] 1ig the two-point Wightman function for a free field of
mass m) by taking for the Wightman functions:
1/V) (ixl) - Jdftm3) w - >X"ixS] (n)
where VV4V / XJJ are the Wightman functions for a free field of mass m, and
to* 1s a nonnegative measure. But all these fields have a trivial scattering
matrix,
Finally the present study illustrates the validity of Wightmanls statement G)
that the consequences of positive definiteness are distinct from the consequences

of unitarity* The Wightman fields constructed above satisfy positive definiteness
but do not yield unitary scattering matrices, while certain indefinite metric

theories (including quantum electrodynamics) provided0" examples of theories in

which the field operators are defined in a generalized Hilbert space but the



scattering matrices are unitary#
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