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ABSTRACT -

This compilation has been prepared in order to pro-
vide a comprehensive unified summary of the principal ele-
ments of the design, operation and nuclear characteristics
of the Argonaut Reactor. Its primary content is made up of
the theoretical and experimental evaluations of basic reac-
tor parameters, both static and kinetic, whichhave beenmade
to this date. The Databook includes also some practical in-
formation on the reactivity worths of fuel, moderator, and
absorbers, as well as some data on radiation in the reactor
vicinity.

A worldlist of Argonaut-typereactorsand a bibliog-
raphy of Argonaut work is included.

INTRODUCTION

This report is a compilation of experimental and theoretical results
of work done on, or with, the Argonaut Reactor up to July 1960.

Since the initial operation of the Argonaut in late 1956, numerous
investigators have performed experimental and theoretical work with the
Argonaut. Designedfor university training, the reactor was assigned to the
International School of Nuclear Science and Engineering (ISNSE) at Argonne
National Laboratory upon its completion. The ISNSE staff, in most cases
with the cooperation of the international and American students, set avout
answering the problems of characterizing the reactor and developing a
series of reactor experiments to fulfill its pedagogical needs. The extent
to which this was an international cooperative effort can be estimated from
a cursory study of the bibliography.

Some form of written record is at hand for much of the pertinent
work, and this compilation was made to provide a comprehensive review of
the Argonaut literature in a unified and generally accessible form. It is
expected to be an aid in the orientation of students and in the planning of
staff and student training and research work. It may also be helpful to the
growing number of institutions which have their own Argonaut-type reactors.



The scope of the Databook is limited to a reproduction of a represent-
ative series of the main results of Argonaut work. For details and discussion
of a particular study by Argonne staff, reference must be made to the original
published source. All student and some staff work was performed using es-
tablished techniques and materials,and publication other than in this Databook
is not generally available. There is given reference for each curve and table
that includes original work and author as given in the bibliography, and in-
cludes in addition the reactor core description.

In general, the annular core region of the reactor can be loaded with
fuel in any one of several ways to producea critical system. Much of the
work reported has been with the single slab, in which but one quadrant of the
annulus contains fuel; other work characterizes the two-slab reactor, involv-
ing two loaded quadrants diametrically opposed. In the annular loading, fuel
completely surrounds the internal thermal column. All data are identified
as pertaining to one of three loading systems.

A modified bibliography arranged according to subject matter is pro-
vided as a guide to work areas that have been investigated to date. This bib-
liography includes both formally published reports and general work projects
whose results are considered to be of a preliminary nature. Also this bibli-
ography serves as an author credit list for the data included in this Databook.
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Section A

CHARACTERISTICS OF THE ARGONAUT

The Argonaut Reactor was designed for training in both nuclear
engineering and research, and the experience of nearly four years of opera-
tion has proved the design to be practical. The reactor, because it is simple
to operate and extremely safe, is well suited for training people without
previous reactor experience. Safety is a primary design feature. As a re-
search tool, the usefulness of the reactor is enhanced by the fact that the
core is readily accessible and that the core geometry is flexible. A graph-
ite thermal column and a large water tank are integral parts of the reactor,
and numerous types of experiments can be done in these media.

The 10-kw maximum operating power of the reactor prohibits certain
types of experiments, but this disadvantage is far outweighed by the fact that
fuel does not become a serious radiation hazard. For all the experiments
whose results are presented in this compilation, the operating power was
less than 100 watts and for most less than 10 watts.

This section lists some general nuclear and engineering data of the
Argonaut Reactor in order to present the basic design. The data cover
only the main points of a broad area, but this will be expanded in later sec-
tions. The nuclear data given in this section are the result of the first
theoretical calculations and preliminary critical studies.
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A.l.

A.2.

General (Ref. I-7)
Type:
Design power:
Normal operating power:
Normal operating schedule:

Principal uses of reactor:

Fuel

Nominal fresh loading:

Total fuel inventory:
Fuel element shape:

Fuel mixture:

Fuel dimensions:
Cladding thickness:
Cladding material:
Type of subassembly:

No. of elements per
subassembly:

Subassembly dimensions:

Normal number of
subassemblies in core:

Normal arrangements of
subassemblies:

Normal lifetime of standard

Training reactor

10 kw

~ 100 watts

8 hours a day, 5 days a week

Education and training

1 slab: 2.0 kg U
2 slabs: 3.6 kg U?*
3-in. annular: 4.0 kg U*%*

24 x 2.84 x 0.098-in. plates

39 w/o Al, 7.8 w/o U3%0g, 31.2 w/o
U%%04; Al matrix.

24 x 2.84 x 0.094 in.
0.002 in. (avg)
Aluminum

Stacked parallel plates

17

6 x 3x 24 in.

1 slab: 6-9 subassemblies
2 slabs: 12 subassemblies

3-in. annular: 24 subassemblies

1 slab, 2 slabs, or full circle in
cylindrical annulus.

subassemblies: Indefinite
A.3. Reactor
Overall active core dimensions: 1 slab: Annular sector - 30 in. OD,

24 in. ID, 24 in. high, sub-
tending a 90° angle.

2 of above, diametrically
opposed.

2 slabs:



Core-containing vessel:

Moderator:

Reflector:

Biological shield:

Reactor control:

II.

I1I.

13

2 concentric aluminum tanks, one
30 in. in diameter, 48 in. high; the
other 24 in. in diameter, 48 in. high.
Material: Aluminum
Mean operating

pressure: atmospheric
Mean operating

temperature: Room temperature

H,0 between plates; graphite between
subassemblies.

Vertical: 1 ft of water
Radial: 1 ft of graphite

Ordinary concrete block on sides;
heavy concrete top plug, masonite
and steel in some experimental
facilities. Present shield is suf-
ficient for normal operating power
of approximately 100 watts.

Control and safety mechanisms:

a. Three 7 x 7-in. cadmium ver-
tical safety blades with steel
cladding; motor driven.

b. Three 7 x 7-in. (or less) cad-
mium vertical control blades
with steel cladding; motor
driven.

¢. Water moderator and reflector
dumping.

d. Inert gas injection in core.

Scram-initiating features:

a. High-level, low-level, and
period trips.

b. High-background monitors, and
personnel alarm.

c. Experimental facilities and top
shield interlocks.

d. Manual

Startup:
Manual; automatic operation at
power available.



A.4. Primary Coolant

Fluid: Water

Circulation:

a. Direction of flow: Upward

b. Flow induced by forced

circulation.

Heat dissipation method: Water to water heat exchanger.

Avg core heat flux: 360 Btu/ftz/hr at 10 kw.

Ratio of maximum to average

heat flux: 3

Means of purification: Mechanical filter and ion-exchangz
column.

A.5. Nuclear Data

Fuel Loading:

a. Minimum critical mass: 1980 gm U?% for 1-slab loading.
b. Normal fresh fuel loading: 2010 gm U?*® for 1-slab loading.
. c. Excess k, fresh loading: 0.5%

Fluxes:

a. Avg thermal flux: 2 x IO“n/cmZ/sec at 10 kw

b. Peak thermal flux: 5 x lO“n/cmz/sec at 10 kw

c. Avg fast flux: 4 x 10“n/cm2/sec at 10 kw

d. Peak fast flux: 5 x IO“n/cmz/sec at 10 kw

Reactivity Coefficients:

a. Temperaturz: -1x 1074 Ak/k/°C
b. Void: -2 x 1073 Ak/k/% void




15

Section B

DETAILS OF REACTOR DESIGN

An expanded view of the system design and layout is presented in
this section. The physical relationship between the various components
is shown, together with dimensions in some cases. This information will
aid in visualizing the location and understanding the data of the experi-
ments discussed in the following sections.

Some of the safety philosophy in the reactor design can be realized
from a study of the drawing of the interlock system. The interlock system
requires that startup operations follow a definite order and prohibits pos-
sibly unsafe steps in the subsequent operation, because the electrical power
required to perform a step is available only if all the required previous
steps are completed. During reactor operation, an attempt to undo a nec-
essary completed step partially will automatically cause the reactor to shut
down. The interlock system partially assures safe startup procedure and
operation. Period meters and power level instrumentation complete the
assurance, practically regardless of the capabilities of the reactor operator.

The period meter limits the maximum rate of change of reactor
power to be less than a factor of 2.7 in 10 seconds. The power level in-
strumentation requires an instrument range change for every change of a
decade in power or the reactor will automatically shut down. This instru-
mentation requires that the reactor operator be aware of the power level
at all times, and it finally limits the maximum power.
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B.2. PLAN SECTION OF CORE LATTICE AND REFLECTOR ( Ref. I-7)
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~—~————+—— 24" 0D. INNER TANK
6" ANNULUS
= S~ | 36" 1D OUTER TANK

Yo——t— GRAPHITE REFLECTOR
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B.3. LOCATION CODING OF THE
CORE AND THERMAL COLUMNS

’NORTH
J-10 STRINGER
1 L GE
ET9 ?—1 ———————— 253.9¢m
|
|
ETS (')_. ————— —_~ — — -2338cm
|
|
ET7 o|_4 —_— -— — — - — — —2138%5cm
l
|
ETE ?—o—-——-—-—— — — —1929cm
{
|
ETS ?—-4 ———————— i72.7cm
I
|
ET4 ‘l’- ————————— 152.4 cm
|
|
ETS ?_. —_ —_ — — = — — = |3]1.9cm
|
|
ET2 ol-. ———————— — HL.7Tcm
|
|
ETI ?__—-————'—9'4C"\
15 1 16
—_ — — — 610cm
— — — 46 2cm
— — — 388%cm
— — 355cm
—_ — — 25.5cm
— — — 10.2cm



B.4. INTERLOCK SYSTEM
(Ref.I-7)

HO V AC
LINE POWER

CONTROL POWER
Y iT

MANUAL  NITROGEN PEROID ,——mo«rwx TRIP
SCRAMS PRESURE TR -

CONTROL
[ 9] SWTCH CRM MIGH LEVEL TRIP ®i SOURCE
1 5
LOW SOURCE DRIVE IN
(LEVEL TRIP
LOW LEVEL SOURCE | N HIGH MULTIPLICATION SAFETY
Ched TRIP UMIT SwiTCH / nP ROD POWE
I AXILARY />zf
3 SAFTY ROD T — INTEllooc DUMP VALVE -
|¢ua7 Ty KEY SWITCH DUMP VALVE
-SYCHES - L POWER
—— b —
' 3
NATURAL | w3 NATURAL COOLI NG
3 CONTROL ROO CONVECTION -

b l "
" DUMP VALVE PUMP POWER

| i v —
CONY! . sw 1 ¥ SN
TR RSO * PuNP HiGH LEVEL for
POSITIONS T oN FLOAT SwiTCK =
L wn}{;(vu
Hl ——————e +
ToPERATING Ks
LEVEL FLOAT REACTOR TOP ' 1iGH
SWITCH | PERSDNNEL ' uuunucnaou rRoL
I ALARM 0
— i e ‘F"“‘*“ | AREA MONITORY /\frng
s o~ )
r—’——-ﬂ}E—
oUMP TANK L !

'l ' N
FLOAT 1 |~r::c)$‘~ NITROGEN
SWITCH CONTROL ROD '

ALVE (N O)
o POWER RESET swTcH C (
e Ll v i ——
! VENT FAN
[

POWE
— Yy /\/_
o "e
HOLOD
SOURCE ORIVE OUT

WATE VALVE
OOWN LiMIT | Vi b
SWITCHES CONTROL SWITTH .
P—~———4}———T————<\

SOUACE
i] REY SwiTCH

NOTE:

THE SEQUENCE OF STEPS DURING STARTUP
IS FROM TOP TO BOTTOM.
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B.5. FLOW DIAGRAM
OF THE WATER SYSTEM

(Ref. I-7)

i
U U SR

| ouMP LINE

Wy .(’ N CYLINDER {;GF L“w ""?""“f‘"ﬁ
30‘ Lo s N INDICATOR
TMMERSION U
[ O(@m”@ X HEATER it _1
! M
_ IMMERSION
C\ £ HEATER ' . L
1 eny J Y e
o) rex e[ i
il ———
~4
1 Y |
; i
; \ ) .
& ~\ ST OF |
CONDUCTIVITY - .,.@ — 4y
 AORLE B fa
E § j e \=
AR OUMP TANK
i Ridaard {ro swauins
ower




N V.

—WENAL =

DUAL

TIMER

SCALE

2% A
SI8NAL PREAMP POWE R #1
Al1D
y SMAL ~> AMPL,
PREAM P v --,I
|
SIGNAL ~> }
PREAMP® — #2|
A1D !
5 sienay - | AMPL. :
— PREAMP owih e
DUAL H.V.
SUPPLY
r‘___ so"_—.]
L ]
i
: SNIELDING
1
7 1 —*N
Tl‘

L

| -

200"

AUDIO
PANEL

C.R. M.

COUNTERS B AND D ARE COVERED WITH Cd

CROSS SECTION OF EAST FACE TAKEN OUTSIDE THE
REFLECTOR WHERE THE DETECTORS ARE LOCATED

LOW LEVEL TRIP
0-100 C/M

HIGH LEVEL TRIP
0-102 C/M

BROWN
RECORDER

NOTE:

THE COUNTER RATE METER CAN BE
CONNECTED TO #1AMPIA-8) OR
R24MP(C~0)

AlL THE CHASSIS ARE IN TWE NORTNH
RACK EXCEPT TME PREAMAS WHICH
ARE LOCATED IN THE REACTOR SHIELDING

B.6.BF; PROPORTIONAL COUNTER CHANNELS

(Ref.I-7)
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B.7. BIo {ON CHAMBER CHANNELS (Ref.I-7)
o
ERLPNITE
ReFLECTOR SHIELO'NG
SAFETY TRIP 1 —E—
a8
SAFETY TRIP 2 1@ Sy 7: ) LOG. CHANNEL
— )
3 ) SAFETY TRIP 3
— Y rooR LuNE
r< -ﬁ g et —— - - 1
SOUTH REFLECTOR ELEVATION 1000 Q00 g Q ]_Tl
SHOWING LOCATION OF CHAMBERS 14—t grEE -
IN REFLECTOR FACE LG PREAMP. Ir i,
Lk J
L |

a‘“c :zc L‘ q PEL&?agD h\l;ﬁ:?‘l;/‘: POSYTIVE

A P METER HALM“ . voLTaaE

Jusn e \1 s [ “leeiv | | SOERY

TRIP TAIP REMOTE

BROWN £ PERSR
AECOADER Loa
RECORLER

ALL CHASSIS IN THE SOUTH RACK EXCEPT LOG PREAMP,
REMOTE PERIOD METER & THE LOG LEVEL RECORDER
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B.8.BORON CHAMBER LOCATIONS IN SOUTH FACE OF REACTOR (Ref. ¥-i2)

CHAMBER SIZE : —————
2"DIA.x 9'/," LONG,

NORTH END OF CHAMBER . #
168" FROM SOUTH FACE | \™[2%4
OF REFLEGTOR

SHOr—- 5
Aaz"%
CHAMBER S|Z
GHAMBER SI2E / 4"DIA. x i LoNG,
x 9/,
NORTH END"OF CHAMBER
NORTH END OF CHAMBER #2 LoG 22"FROM SOUTH FACE
15, FROM SOUTH FACE OF REFLECTOR
OF REFLECTOR
+ - — K~ B 1 - CHAMBER SIZE :
3 H3 2"DIA.x 9'," LONG ,

NORTH END OF CHAMBER
16 FROM SOUTH FACE

¢— ¥ OF REFLECTOR

I8lI

HOLE“:Z'IZHDIA.—/
x15Y4' DEEP

134
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Section C

REACTOR OPERATIONS

This section outlines in some detail the procedures to be followed
during checkout, startup, operation, and shutdown of the reactor. Many
principles of safe operation are implied. The typical behavior of the
multiplication meter during startup is shown. Also, the use of the meter
as a safety device is presented by showing how its reading is related to
koy during startup. A calculated curve showing the expected neutron flux
behavior after step reactivity insertion and consequent power level trip is

included to point out the essential safety of the system.
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C.l.

Reactor Checkout (Ref. I-7)

B Wy

(S5}

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

Renew, standardize and date log level chart.
Renew Brown recorder charts if necessary.
Turn on high voltage to BF; counters.

Turn pulse height, band width and gain controls in pulse
amplifiers to operating positions.

Set all linear channels and CRM to most sensitive ranges.
Clear high-level, period and multiplication trips.

Obtain keys for reactor control power, dump valve clutch,
and source-hold.

Obtain control power by turning key switch to start position.

Determine trip condition in low-level trips. Attempt to reset
trips. If resetting is not possible, proceed to next step.

Insert source-hold key and energize circuit.

Turn master selector switch to source position, push control
switch forward to drive source in until period meter reads
about ten seconds. If period trip occurs at that time and con-
trol power is lost, proceed to next step.

Reset period trip, regain control power and drive source all
the way in.

If, with source in, safety rod clutches are not energized (orange
light off) before resetting low-level trips, proceed to next step.

Clear low-level trips; set high-level trips at normal operating
conditions (90% of full scale).

Turn master selector switch to #1 safety rod position and
drive rod out for about 15 sec, until orange light goes off.

Induce trip condition in CRM and linear channel #1 by chang-
ing trip setting. If control power is lost as indicated by orange
light, proceed to next step.

Move trip settings back to normal, reset trips, regain control
power.

If orange light indicates that safety rod #1 has dropped, proceed
to next step.

Turn master selector switch to #2 safety rod position and drive
rod out for about 15 sec, until orange light goes off.



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.
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Change trip setting in linear channel #2 to induce trip condition.
If control power is lost and safety rod falls all the way in, pro-
ceed to next step.

Take trip settings back to normal, reset trips, regain control
power.

Turn master selector switch to #3 safety rod position and drive
rod out for about 15 sec, until orange light goes off.

Change trip setting in linear channel #3 to induce trip condition.
If control power is lost and safety rod falls all the way, proceed
to next step.

Move trip settings back to normal, reset trips, regain control
power.

Drive each safety rod out. Insert dump valve clutch key and
turn to start position. Close dump valve by turning master
selector switch to dump valve position and by pushing forward
on the control switch until green light turns on.

Close main nitrogen supply valve; bypass dump tank float switch
by depressing button in pit.

Depress scram button. If dump valve opens freely and if
nitrogen pressure reading in pressure gage falls to zero,
proceed to next step.

Watch green light at console for indication of nitrogen pressure.
If light is off and control power cannot be obtained with key
switch, proceed to next step.

Open main valve for nitrogen supply; regain control power with
key switch.

Drive out all three safety rods, close dump valve and pump
water until normal operating level is achieved, as indicated
by green light. Plug in photo cell. Pumping time: about
12 min.

Withdraw shim control rod for about 15 sec,until orange light
goes off.

With hand gamma source induce trip condition in North area
monitor. If power to control rod clutches and the heating and
ventilating fans is lost, and if shim rod falls all the way in,
proceed to next step.

Reset area monitor trip.

Withdraw coarse control rod for about 15 sec, until orange
light goes off.
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35.

36.
37.

38.

39.
40.

41.

With hand gamma source induce trip condition in West area
monitor, if power to control rod clutches and the heating and
ventilating fans is lost, and if coarse rod falls all the way in,
proceed to next step.

Reset area monitor trip.

Withdraw fine control rod for about 15 sec, until orange light
goes off.

With hand gamma source induce trip condition in South area
monitor. If power to control rod clutches and the heating and
ventilating fans is lost, and if fine rod falls all the way in,
proceed to next step.

Reset area monitor trip.

Withdraw any control rod for about 15 sec, until orange light
goes off.

Interrupt light beam to photocell. Power to control rod clutches
should be lost if alarm system is working properly.

C.2. General Startup Procedure (Ref. I-7)

The following is a condensed version of the process as described
in ANL-6036, Operating Manual for the Argonaut Reactor.

1.

11.

Secure the keys for reactor control power, and dump valve
clutch.

Turn on both the high-voltage supplies to the four BF; counters.

Turn the pulse-height selector and the gain controls in the
AlDamplifiers to their normal operating positions.

Set range-selector switches of all three linear trip channels
to their most sensitive scales (107!® amp full scale).

Reset the four high-level, the positive period and the high-
multiplication trips.

Turn on the nitrogen pressure.
Insert both keys and turn the control power on.

Turn the master selector switch to the "Source" position.
Insert the source by pushing forward on the control switch.

Make log book entries in the appropriate columns.

Reset the low-level trips in the source interlock and the
count rate channels.

Raise each safety rod.



12.

13.

14.
15.
16.

17.
18.

Turn the selector switch to the "Dump Valve" position; energize
the "Dump Valve Clutch" key switch and push forward on the
control switch to close the valve.

Turn selector switch to "Water Level" position. Turn pump
switch to "Pump on." Hold control switch in the forward posi-
tion, admitting water to the core.

Make the appropriate log book entries.
Raise the control rods as required for criticality.

To increase the power to a desired operating level, a control
rod (coarse or fine) should be withdrawn further to produce a
conveniently short positive period. When the reactor power
nears the desired level, minor readjustments needed to main-
tain criticality can be made.

Make the appropriate log book entries.

Additional log book entries should be made when reactor power
level is changed; any other significant event occurs; or run is
terminated.

C.3. Shutdown (Ref. I-7)

The following is a condensed version of the process as described
in ANL-6036, Operating Manual for the Argonaut Reactor.

—
°

AW N

Depress the scram button (manual scram).
Turn off the high voltage to BF; counters.
Make appropriate entries in the log book.

Determine that the experimental facilities are plugged and
locked, that power to the crane is shut off and locked, and
that the keys are put away in the key safe.

Withdraw the reactor keys and store them in the key safe.
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MULTIPLICATION METER
o

o
2

JlM C4BEHAVIOR OF MULTIPLICATION METER DURING STARTUP OF REACTOR

(One-slab Loading)

CRITICAL
|
WATER PUMPING (MINUTES) | COARSE ROD
| POSITION
|
n |
> -
|
|
I
|
| kox OF CORE 0.45%
I ex
|
|
| ] i 1 | : | | | |
2 4 6 8 10 12 20 40 60 80

-0

TIME , minutes ROD POSITION, scale divisions

|
| 0|0

0¢



RELATIVE MULTIPLICATION METER READINGS

20

| [ ] | /°|

C5

MULTIPLICATION METER READINGS vs kgy
FOR VARIOUS LOADINGS (Ref.I-il)
(ONE-SLAB LOADING & TWO-SLAB LOADING)

kex VARIED BY MOVING FUEL FROM AN
AREA OF LOW SPECIFIC WORTH TO A
REGION OF HIGHER SPECIFIC WORTH

3SYMBOLS AND INTERPRETATION_|

t- FUEL MOVEMENTS IN OUTER
PERIPHERY OF CORE

2- FUEL MOVEMENTS NEAR RADIAL
CENTER OF CORE

3-CHANGES MADE IN A TWO-
SLAB CORE

A-FUEL MOVEMENTS IN BOX I3

B-FUELL MOVEMENTS IN BOX 16
/ C-FUEL MOVEMENTS IN BOX 18
L]

I | | l l

n

3 4 5 .6 7
POTENTIAL K EXCESS %
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Ce.

POWER LEVEL TRIP; SAFETY
ROD SHUTDOWN AFTER
POSITIVE STEP REACTIVITY
INSERTION (Ref. IX - 2)

THEORETICAL CURVES OBTAINED WITH
THE ANALOG COMPUTER

FLUX RATIO n, =n/n,vs TIME
Positive step input kg, = kex /ﬁ. Trip at
P/Pg = 1.5 followed by insertion of -3.0
dollars of reactivity

I*= 2x10™% seconds , B = 0.00755

DELAYED NEUTRON PARAMETERS

Group Fraction Decay Constant
B Ai, Seconds ~!
0.00025 0.01246
0.00166 0.0315
0.00213 0.1535

0.00241 0.4560
0.00085 1.612

0.00025 14.30

O OdbwWN -

MACHINE SCALING

20 b
|0 e

Qo
nn

CURVES

.05 dollar + step
0.90 dollar + step

0.50 dollar + step

No trip

3.00 — step

3.00 delayed - step
3.00 delayed with 0.28 second rod _
profile drop

HDOUIN- O

0.2

0.4 0.6 0.8 1.0
TIME , seconds
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Section D

REACTOR CONSTANTS

The nuclear and engineering constants of a reactor are basic to the
initial design work. After the reactor construction, they are of fundamental
importance in the design of experiments and in the understanding of the
results.

Various constants for the core and reflector of one-slab, two-slab,
and annular core loadings are given. Most of the data is the result of
theoretical calculations using two-group theory and assuming a homog-
enized core, with the remainder being experimental values.
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D.1l. One Slab - Theoretical Two-group Constants for the Homogenized
Argonaut One-slab Loading. (Ref. I1I-4)

The constants given below were used to calculate the critical mass
(kg U?%) of the Argonaut one-slab loading when located on the North side of
the annulus. A PDQ code on the IBM-704 was used to make the calculation.
The annular one-slab loading was approximated by a straight slab of volume
equal to six fuel boxes plus five graphite wedges. The critical mass of U2
obtained from this calculation was 1.90 kg; the experimental value was
1.93 kg for a loading with even distribution of U?®,

U235

W35 = kilograms of in Argonaut

D.l.a. Core Constants

Volume Fractions

f(graphite) = 0.211170 £(Al) = 0.205380 - 0.0133114 W5
£(H,0) = 0.583450 £(U304) = 0.0133114 Wy,
Temperatures

Tmoderator = 20°C

D.1.b. Thermal Group Constants (including disadvantage factors
and temperature effects)

Disadvantage Factors

QSH O
2 1.0577 (P-3 calculation assuming 20 g U?*

per plate)

Pfuel plate

5‘ .
_ graphite _ 1.097 (diffusion theory)
Pfuel plate

£, =0.013545 +0.025273 Wys cm™!
v Zfigs = 0.0518305 Wp5 cm ™

_ 1 2
T 0.064073 +0.11955 Was

LZ

Dth = 0.21503
th cm approx. independent of Wy

S =1.5502 cm™!

i

v
K_ = : = 1.5996 for Wps = 1.90 kg

M

S figg = 0.020984 Wps cm™!



Fast Group Constants

T = 61.3 cm?
D¢ = 1.300 cm
E_=0.181 ev
Z¢=0.02120 cm™!

Reflector Constants

Graphite

L%h = 1700 cm? (experimental)
T = 385 cm?

D¢y = 0.916 cm

D¢ =1.14 cm

%, = 0.000539 cm™!

5S¢ =0.002961 cm™!

Water

B% = 0.00176 cm~?
T = 31.8 cm?

Dyp = 0.142 cm

D¢ = 1.19 cm

%, =0.0195cm"!
¢ =0.0374 cm™!

Total Reflector Savings (theoretical)

R, = 14.0 cmm z
Ry = 22.9 cm T
Ry = 28.5 cm |
|
|
1
t
|
|
|
) -
/
/
/
/
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D.l.e. Miscellaneous Constants (Ref. II-1)

Volume fraction per kg U*® = 9.86060 x 10'4/kg

at 2 kg at 2.2 kg

Sy  0.05641912 cm-! 0.06206097 cm™!
Sam 0.01303442 cm-™! 0.01303186 cm™!
L? 3.92866935 cm® 3.63363576 cm®
B? 0.01038971 cm™? 0.01089301 cm~?
k 1.6896420 1.71903181

D.2. Two Slab

D.2.a. Miscellaneous Thermal (Ref. II-1)

at 2 kg at 2.2 kg
%, 0.05641912 cm™! 0.06206097 cm~™!
Zapy 0.01303442 cm™! 0.01303186 cm™!
L? 3.92866935 cm? 3.63363576 cm?
BZ 0.00983 cm™? 0.01089301 cm™?
K, 1.6896420 1.71903181

D.2.b. Miscellaneous Experimental (Ref. IV-6)

1957 ASEE-AEC Summer Institute Report

Two-slab loading of 12 fuel boxes

Reflector saving 9.9 cm
Vertical buckling 0.01 cm~?
Peak flux at 10 kw in
thermal column center 1.16 x 10%! n/cmz/sec

Average flux = 0.618 peak flux

D.3. Annulus - Theoretical Two-group Constants for a Homogenized
Annular Loading

D.3.a. Core Constants (Ref. II-1 and II-6)

2

T = 65 cm Za:0.07715 cm™!

D,, = 0.27286 cm %,y = 0.06412 cm™!



D.3.b.

D.3.c.

D.3.d.

Df =1.27 cm
ke = 1.72868

5 — -1
% am = 0.01303 cm

a

% af = 0.01953 cm™!

B2 = 0.00175 cm™?

7 -

Core volume fraction per kg U = 5.603x107* (M in kg)

Inner reflector: Dyf = 1.1

W25 = 4.0 kg
— [«]
TM = 20°C
V. = 87.003 liters

C

Dth - 0.903

Thermal Group Constants

5, =0.014701 +0.016226 W5 cm~*

Z’fiss
L2 = 2.657 cm?

Fast Group Constants

T = 58.8 cm?

D¢ = 1.315 cm?

Zg =0.022364 cm=-!

Reflector Constants

Graphite

T = 385 cm?

Df =1.14 ¢cm

D¢p = 0.916 cm

g =0.002961 cm-!
%, =0.000539 cm~!

= 0.033223 W, cm™!

H,0

T = 31.8 cm?

0
0

1.19 cm

2,.=0.0374 cm™!

Dy, = 0.142 cm
Z‘a =0.0195 cm

Concrete

T = 205 cm?

D¢

2 ¢

= 1.51 cm

= 0.00737 cm™!

Dth =0.707 cm

Z
a

= 0.00736 cm™}
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D.3.e. Materials outside Graphite Reflector

2/3 concrete, 1/6 graphite, 1/6 H,0

T = 140 cm?

Df =1.37 cm
Z¢=0.00979 cm~!
D¢p = 0.439 cm
za = 0.00822 cm™!

D.3.f. Fluxes and Reactivity Effects

b (th) = 6.5 x 10%° n/cmz/sec

core

for 10-kw operation

©

(th)max

(th)core

= 2.22

©

where the maximum is in the internal thermal column
Worth of Al tanks and thin H,O shell ~-1.3% Ak/k
Worth of control plate voids ~-0.3% Ak/k

D.4. Six Sets of Two Boxes

ke = 1.76062 B%=0.01161 cm™?

2, =0.8484 cm™! B2 =0.00175 cm™?
2 _ 2 _ -1

1/1% = 0.31092 cm %, =0.07182 cm

1/L% + 1/7 =0.32758 cm™? T = 60 cm?
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Section E
KINETICS

A series of theoretical curves interrelating neutron density, time,
and the magnitude of step changes in reactivity is presented. One important
use of this series is for control rod calibration; a calibrated control rod is
a basic reactivity standard for other reactor experiments. The following
section (Section F) deals with rod calibration.

The sensitivity of the above curves to the basic assumptions of
neutron lifetime and choice of delayed neutron parameters is shown. One
curve is included that compares the theoretical and experimental determina-
tions of flux ratio with time after a negative step change in reactivity. Theo-
retical and experimental curves of the effect of nitrogen injection on reactor
power are given. The effect of introducing a negative reactivity step when
the reactor is on a positive period has been studied experimentally and with
the analog computer; the results are included.
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E.l.

Flux-time Dependence (Theoretical)



POSITIVE REACTIVITY p, DOLLARS

1.0
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ﬁ E.l.a. 3
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i ASYMPTOTIC PERIOD (REF. IX-8) | -
- PROMPT NEUTRON LIFETIME = 2.00 x 10°4 sec ]
i DELAYED NEUTRON PARAMETERS ]
- DECAY CONSTANTS, X ; -
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- 2 160 % 105 3.150 X 10_° -
- 3 213105 1535 x 10 i
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FLUX RATIOQH (t)kB(0)

10

10

10

10

1.0

[ 1 1 1 1 I i ] i | | | | | -
- —
- -
- 200 sec/ /100 50/ 30/ 20/15/ 10/ 8/ 6/ 4/ -
N i
" 2
— —
B PROMPT NEUTRON LIFETIME = 200 x 104 sec 7]
— DELAYED NEUTRON PARAMETERS -~
DECAY CONSTANTS, X .
— GROUP |  FRACTION 3, sec ! —
1 250% 10 1206 x 1072
2 16010, 3150 %10,
[— 3 213x10_ 1535x 10 -
4 240x 10, 4560 x 10
5 850107, 1612
6 25010 14300
| l ] ] | ] | | ] | ] | 1
0 0.12 024 0.36 0.48 060 072 0.84

Positive Reactivity p , dollars

E.Lb.
FLUX RATIO VS POSITIVE REACTIVITY STEP FOR VARIOUS
TIMES (REF. PRIVATE COMMUNICATION - AUTHORS OF IX-8)
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Flux-time Dependence as a Function of Delayed Neutron Parameters

(Theoretical)

E.2.a. Delayed Neutron Parameters (Ref. IX-2)

Hughes Delayed Neutron Data

Group Fraction Decay Constants
1 2.50 x 1074 1.246 x 1072 gec™!
2 1.66 x 1073 3.150 x 1072 sec™!
3 2.13x 1073 1.535 x 107! sec™!
4 2.41 x 1072 4.560 x 107! sec™!?
5 8.50 x 10™* 1.612
6 2.50 x 10°% 14.300

Keepin Delayed Neutron Data [Phys. Rev., 107, (4)]

Slow fission:
Group Index
i

Oy Ut b W IN =

Fast fission:
Group Index
i

N Ut b W N

N UL W N

Relative
abundance,
Half-life, T a;/a
U*% (99.9% 235;
n/F=0.0158% 0.0005)
55.72 * 1.28 0.033 = 0.003 0
22.72 % 0.71 0.219 * 0.009 0
6.22 *0.23 0.196 * 0.022 0
2.30 *0.09 0.395 + 0.011 0
0.610 * 0.083 0.115 + 0.009 0
0.230 £ 0.025 0.042 + 0.008 0
Relative
abundance,
Half-life, Tj a;/a
U?35 (99.9% 235;
n/F=0.0165%0.0005)
54.51 + 0.94 0.038 + 0.003 0
21.84 *0.54 0.213 * 0.005 0
6.00 *0.17 0.188 * 0.016 0
2.23 +0.06 0.407 * 0.007 0
0.496 * 0.029 0.128 + 0.008 0
0.179 + 0.017 0.026 * 0.003 0
U%® (99.98% 238;
n/F=0.0412 £ 0.0017)
52.38 % 1.29 0.013 * 0.001 0
21.58 + 0.39 0.137 + 0.002 0
5.00 +0.19 0.162 * 0.020 0
1.93 +0.07 0.388 + 0.012 1
0.490 + 0.023 0.225 + 0.013 0
0.172 + 0.009 0.075 * 0.005 0

.063
.351
.310
.672
211
.043

Absolute

group
yield (%)

.052 +0.005
.346 £0.018
.310 *0.036
.624 £0.026
.182 +0.015
.066 £0.008

Absolute
group
yield (%)
(for pure
isotope)

.005
011
03
.00
.00
.00

Lo & & s o o S

.054 £ 0.005
.564 * 0.025
.667 %
.599
.927
.309

0.087
0.081
0.060
0.024

[ & b



n

E.2.b.

IN THE CALCULATION OF FLUX RATIO VS TIME AFTER
A NEGATIVE STEP. (REF. IX-2)

COMPARISON OF HUGHES AND KEEPIN DELAYED NEUTRON DATA

1.0 |

T I I ]

THEORETICAL WORK WITH AN ANALOG COMPUTER

FLUX RATIO n* ning VS TIME

Negative step kg, Keff 1
1e = 2x 107 sec
DELAYED NEUTRON PARAMETERS

KEEPIN HUGHES
A B
B = 0.0064 B = 0.00755
FRACTION DECAY CONSTANT FRACTION DECAY CONSTANT
GROUP 3, X, sec] 8, A, sec]
1 00002112 00124 0.00025 001246
2 0.00140 0.0305 0.00166 0.0315
3 0.001254 0.111 0.00213 015%
4 0.00528 0.301 0.00241 0.456
5 0.000736 L13 0.00085 1.612
6  0.0002688 300 0.00025 14.3

A MACHINE SCALING a=1, b=d;=10, e=20

SECONDS

100
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E.2.c.
COMPARISON OF HUGHES AND KEEPIN DELAYED NEUTRON DATA
IN THE CALCULATION OF FLUX RATIO VS TIME AFTER
A POSITIVE STEP (REF. IX-2)

FLUX RATIO np = niny VS TIME
Positive step kgy = kgt 1
10 2x10 4 sec
DELAYED NEUTRON PARAMETERS

THEORETICAL WORK WITH AN ANALOG COMPUTER

Machine scalinga =1 b=d; - 10 e= 2

0 | ! ! !
0 20 40 60 80 100

SECONDS

A B
B = 00064 B - 000755
FRACTION DECAY CONSTANT ~FRACTION DECAY CONSTANT

GROUP B, A, secl B, A sec

1 00002112 00124 000025 001246

2 00040 00305 000166 00315

3 000154 01 000213 0153

4 000528 0301 000241 045

5 00007% 113 0 00085 1612

6 00002688 300 000025 143



E.3.

Flux-time Dependence as a Function of Neutron Lifetime (Theoretical)
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n

E.3.a.

FLUX RATIO VS TIME FOR SHORT TIMES AFTER

NEGATIVE STEP INSERTIONS, COMPARISON OF
EFFECT OF NEUTRON LIFETIME (REF. IX-2)

T T T
THEORETICAL WORK WITH AN ANALOG COMPUTER
FLUX RATIO n, = ning VS TIME
- step kjgy * koy/ Bldollars)
1*+05x1074, 2x 1074
1x10°> sec, 8 - 0.00755
DELAYED NEUTRON PARAMETERS
DECAY CONSTANTS,\ |

GROUP  FRACTION, B, sec?
1 0.0005 0.01246
2 0.00166 0.0315
3 0.00213 0.1535
4 0.00241 0.4560
1* - 1000 : DOOCES Lotz
1,0 200 Machine scalinga =5, b=dj = 10, e= 20
50 _ .
N Kiey = -05
1000
\ 200
0.8 50
1000 %
200
50
0.6 4
1000 5
200
50
0.4 |- 1000 10
200
50
1300 2.0
0.2 "K
4.0
0 . | |

SECONDS



E.3.b.

FLUX RATIO VS TIME FOR SHORT TIMES AFTER

POSITIVE STEP INSERTIONS, COMPARISON OF
EFFECT OF NEUTRON LIFETIME (REF. IX-2)

| f !

.9/50
1* in psec

.9/200 K, in dollars

lex

1150 7/1000
.9/1000 71200 650
12 |
61200

10 - -

.6/1000

.51200

4 |+ .5/1000 —

Z THEORETICAL WORK WITH AN ANALOG COMPUTER  GROUP  FRACTION £, w sec ! .
FLUX RATIO n; ning VS TIME i
1 0 000025 001246
+ step klex kEX/B (doliars) 000166 00315

4 4 000213 0153%
I+ 5x10 " 2x10

000241 0 4560
1x10 > sec B 000755 0 00085 1612
DELAYED NEUTRON PARAMETERS

000025 43
Machine scalinga =5 b d 10 e 2
0 DECAY CONSTANTS XI
i | |

0 ] 2 3 4
SECONDS

s wN —




Flux Ratio, ® (t)/@(0)

1.0
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0.1
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0.02

0.01

E4

COMPARISON OF THEORETICAL AND EXPER IMENTAL VALUES
OF FLUX RATIO VERSUS TIME AFTER INTRODUCTION OF STEP

CHANGE IN REACTIVITY (Ref. IX-8)

0-slab Loading of 2010.3 Grams of 2%
® Experimental Results From Argonaut Reactor

o Theoretical Results

p = -.21 dollars

I
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1 1
100 150
Time t, Seconds After Rod Drop
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l | |

E.5

EXPER IMENTAL AND THEORETICAL CURVES OF
THE NEUTRON LEVEL BEHAVIOR DURING AND
AFTER NITROGEN INJECTION INTO THE CORE.
(Ref. IX-6)

Note
(A) Theoretical curves computed with the
Page Analog Computer.

(B) Nitrogen Injection Pressure - 15 psi.

-0.20

-0.30

-0.40

I ]

I
Reactivity generating functions
for the analog computer

TIME, sec

30
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Log n

E.6

THEORETICAL CURVES AT NEUTRON LEVEL VS TIME FOR VARIOUS NEGATIVE REACTIVITY

STEPS INSERTED WHILE THE REACTOR WAS ON A _POSITIVE PERIOD (Ref. IX-7)

+.05

I

L

l

CRITICAL

-.05

+.0

CRITICAL

-.05

100
TIME, sec
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Section F

CONTROL ROD CALIBRATION

A calibrated control rod is one for which there exists a curve of
reactivity versus the rods vertical position. The particular curve is
dependent on the core geometry and conditions that existed during cali-
bration. A representative series of control rod calibration curves for a
number of loadings is given. Some effects on the calibration curve of
small changes in core makeup and type of measurement employed have
been investigated and the results are presented. Composite curves show-
ing the relative worths of the various rods are included.

Control rod calibration is a standard student experiment. The
common procedure is to start with a critical reactor at a relatively high
power, then the rod to be calibrated is dropped, and the neutron level
change with time observed. From the observed results and the kinetics
curves, the magnitude of the negative reactivity step can be determined.
An alternate method is to withdraw the rod from its critical position and
to measure the period of the reactor. The period is converted to reac-
tivity with the aid of the kinetics curves.
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F.1.

One-slab Control Rod Calibrations




INTEGRAL ROD WORTH (% A k)

0.450

0.400
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— INTEGRAL FINE ROD WORTH —
(Ref. Private Communication
L. Lawyer) (One-slab Loading)
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INTEGRAL ROD WORTH (% EXCESS REACTIVITY)

0.30

0.25

0.20

0.15

0.10

0.05

T l I | l l | l

F.1b.
FINE

CURVES FOR VARIOUS LOADINGS
(Ref. T¥-2) (One-slab Loading)

Loadings:

CONTROL ROD CALIBRATION

1-2003.15

1-1999.87 |

—

1-1994.97

1-1990.82

10

20 30 40 50 60 70 8 90 100
FINE CONTROL ROD POSITION (Indicator Divisions)



0.50

0.40

0.30

A KK (%)

0.20

0.10

This point
assumed for
curve 2

F.l.c

INTEGRAL FINE ROD WORTH AS
DETERMINED BY FOUR D IFFERENT
METHODS OF MEASUREMENT
(Ref. X-6) (One-slab Loadings) -

Curvel -———-—-
Curve 2
Curve 3
Curve4f ————-

o This point assumed
for curve4

Curve 1 By Rod Drop - Variable Coarse
Curve 2 By Period Meas - Variable Coarse
Curve 3 By Rod Drop - Stationary Coarse
Curve 4 By Period Meas - Stationary Coarse

l I | | I I |

20 30 40 50 60 70 80 90 100

ROD POSITION (Divisions)
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AkK/k (%)

-0.1
-0.2

-0.31

-0.4

-0.5
-0.6

-0.7
-0.8

-0.9
-1.0

1 l 1 1 I I I T

NOTE
Fuel in boxes 13+18

Shim Coarse

| ]

0 40 60 80 20 40 60 80 20 40

F.1Ld. Rod Position

COMPOSITE CONTROL ROD CALIBRATION
(Ref. X-9) (One-slab Loading)

60 80




F.2.

Control Rod Calibrations, Annular Loading

65



Q

0.2

0.1

in. x7 in. Cadmium Rod
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COARSE ROD INTEGRAL WORTH
(Ref. X-7) ANNULAR LOADING
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0 3300
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F.2.b.
COMPOS!|TE WORTHS OF ALL SIX RODS
(Ref. X-7) (Annular Loading)
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Section G

RAMP STARTUP

Usually, reactivity changes introduced into the Argonaut are step
changes because they are easier to understand and perform. A step
reactivity change is assumed to take zero time, while during a ramp input
the reactivity is changing with time, usually linearly. Very little work
has been done with the experimental study of ramp inputs to date at the
Argonaut.

Curves of power level versus time for various rates of removal
of the fine control rod (ramp input of reactivity) are presented, but because
of the shape of the rod calibration curve, this is not a linear ramp input.
The time to reach criticality depends on the removal rate of the control
rods, which in turn depends on the Variac setting of the rod speed control.
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10' 10

w

Log N meter reading

10‘ 11

G.L
LOG N VS TIME FOR VARIOUS
RATES OF REMOVAL OF THE FI

NE| |

CONTROL ROD (Ref. IX-3) (One- /

slab Loading)

NOTE

The Variac setting determines
the rod removal speed, and the
setting of 90 is the maximum
speed.

L

/ Critical Rod Positions

Fine -70
Shim - out
Coarse - 44

X - Indicates the time the

reactor became critical

A - Variac set at 50
F - Variac setat 70
G - Variac set at 90

|

|
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|
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Minutes
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Section H

TRANSFER FUNCTION (ONE-SLAB GEOMETRY)

A typical series of curves obtained performing the student automatic
reactor control experiment are presented together with measurements of
the reactor transfer function. This transfer function describes the relation
between a sinusoidal input reactivity disturbance, &k(s), and the resulting

neutron level behavior, 6n(s):
G(s) = <5n(s)/c5k(s)

The phase shift and magnitude of G(s) depend on the frequency of the reac-
tivity disturbance. The curves of the phase shift and magnitude of G(s)
versus frequency constitute the transfer function.

Work to date has only been with the one-slab core.



% Ak

0.44

0.43

0.42

0.41

0.40

0.39

0.38

H.1.
REACTIVITY WORTH VS
ANGULAR POSITION OF
REACTIVITY OSCILLATOR
(Ref. III-5) (One-slab
Loading)

0 160 20 A0 B0 30 XD
Degrees of Rotation

(43



% AK

0.46

0.44 —

0.43

0.41

0.40

0.39

0.38

H.2.

REACTIVITY WORTH VS ANGULAR
POSITION OF REGULATOR (Ref. ITI-5)
(One-slab Loading)

| | |

210

1 |
230 250 210 290 310
Degrees

330

|
350

73



fond
(=)
|

T T T TTTT] |

OPEN LOOP

CLOSED LOOP
WITH CONTROLLER

TACH. - 9.0

TACH. - 6.5

] L4 11l I

I

I

I TTTT] I T TIiT TTTT] I T T T T7T7

TACH. - 1.0 \

H.3.

ARGONAUT TRANSFER FUNCTION GAIN VS FREQUENCY
(One-slab Loading) (Ref. Private Communication -

G. Pawlicki)

Ll ! Lo p il i NN

-110.0

0.1

L0 10
FREQUENCY, cps

ABSOLUTE SCALE, db

¥L



Degrees

+90
+75
+60
+45
+30

+15

T I T T TTT] T { | T T TTT1 | [ I T T T TT | ] | ] I T 17
| H.4. ARGONAUT TRANSFER FUNCTION PHASE SHIFT | S
VS FREQUENCY. (REF. PRIVATE COMMUNICATION -
- G. PAWLICKI) (One-slab Loading) ~
L Closed Loop -
with Controller
B Tach. - 1.0 ]
- Tach. - 9.0 Tach. - 6.5 .
o i
B Open Loop a
o4 11l I bbbl | Lol ! Lo 411y
.01 0.1 1.0 10 100

Frequency in cps

qL



76



77

Section I

FLUX PLOTS (RELATIVE)

Relative flux means that the experimental points have not been
determined in absolute units of neutrons per cm? per second, but rather
in other units, such as counts per minute per gram of foil weight. Rela-
tive flux then is the neutron distribution in arbitrary units. The deter-
mination of the total, fast, and slow neutron flux distributions in the core,
reflector and thermal columns is a standard student experiment. Because
knowledge of the various distributions is basic to the design of experiments
and in the study of experimental results, much early student effort has been
directed to this measurement. Although it is clear that there is room for
better work to be done, the following curves at least indicate the results of
the theoretical and experimental effort made to date.

The results were obtained with bare and cadmium-covered gold and
indium foils, but other techniques are possible.
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I.l.a.

I.1. Core

Flux Distribution in the One-slab Core
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I | |
Box 15 Ila.(1)
RADIAL TOTAL FLUX
DISTRIBUTION IN
-240 - BOXES 15 AND 16 _
(Ref. X-7) (One-slab
) Loading)
-2% -
Box 16 .
<r
=
>
£
>
=
=y
-230 —
=225 [ —
| I ] ] | I ] l ] ]
2 4 6 8 10 12 14

DISTANCE FROM SOUTH END OF FUEL BOX, CM.
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NORMALIZED RELATIVE FLUX

015

0-4‘

0.3

+ :IN BOX NO.: 13 (TOTAL FLUX)
@ : IN BOX NO.: 5 (TOTAL FLUX)
X i IN BOX NO.: 16 (TOTAL FLUX)
@ :IN BOX NO.: 16 (SUBCADMIUM FLUX)

1 A O

4 5 6 7 8 9 i N 12 13 14 15
FUEL PLATE NUMBER

I.1.a.(2)

RADIAL TOTAL FLUX DISTRIBUTIONS DETAILED
IN FUEL BOXES (Ref. Private Communication -
A. Cilesiz and G. S. Klaiber)




I.1.a.(3)
RADIAL FLUX DISTRIBUTION,TOTAL AND EPICADM [UM,
DETAILED IN FUEL BOX 16 (Ref. ¥-8) (One-slab Loading)

Measured with 3/4 in. Indium Foils Located
11-1/8 in. Down from Top of Fuel.
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) * T . . .TOTAL
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RELATIVE TOTAL FLUX

[.La.(4)

ANGULAR TOTAL FLUX DISTRIBUTION BETWEEN
PLATES 1 AND 2 (Ref. X-8) (One-slab Loading)

Measurement Made with Gold Wire between

Fuel Plates 1 and 2
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RELATIVE TOTAL FLUX
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[.1.a.05)

ANGULAR TOTAL FLUX DISTRIBUTION BETWEEN
PLATES 8 AND 9 (Ref. X-8) (One-slab Loading)
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RELATIVE TOTAL FLUX

L.1.a.(6)

ANGULAR TOTAL FLUX DISTRIBUTION BETWEEN
PLATES 15 AND 16 (Ref. ¥-8) (One-slab Loading)
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RELATIVE EPICADMIUM FLUX
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I.1.b. Flux Distributions in the Two-slab Core
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I.l.c.

Flux Distributions in the Annular Core
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L.2.

Flux Distributions in the Thermal Columns
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RELATIVE NEUTRON FLUX
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1.3. Flux Distributions in the Water Shielding Tank
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NEUTRON DISTRIBUTION NORMAL TO AXIS OF WATER TANK

Q
S
I

?

[a—
\n
Q
o

b

2
1

SATURATED ACTIVITY (cpm/gm)

I

i ! | I |

SOLID CURVE IS PLOT OF 2150 COS (0.106 y)
« EXPERIMENTAL POINTS

| | I | I

]

LEFT

16

12

8 4 0 4 8
DISTANCE FROM AXIS OF TANK (in.)

12

16

RIGHT

701



105

I.4. Flux Measurements in Beams and Beam Channels



I4.a.

MEASUREMENT OF RELATIVE FLUX IN BEAM HOLES
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Foil activity in cpm as a function of position.
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I.4.b. Effect of Cadmium Next to Beam Hole. (Ref: II-6)

The neutron beam from a l-inch square beam hole in the
J-10 stringer was monitored using a BF; long counter outside the biologi-
cal shield. The effect measured was the reduction in neutron flux when
8 square inches of Cd was replaced by 15 square inches placed next to the
beam hole at the reactor face.

Reduction in thermal neutron current 4.6 *1.1%.

Reduction in epicadmium neutron current 11.2 * 2.5%.

1l in. of Beam \I =4"
hole not covered

i

A+B

@ 15 sq in.

8 sq in.

[}
S

Core Face

. of J-10
1 in. sq.
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Ld.c.
THERMAL NEUTRON BEAM EXTERNAL TO REACTOR SHIELD
FROM J-10 (Ref. XTTI-51Two-slab Loading)

| | | 1 | | 1 T ] | | I i | ]
* 8.9 watts Counter 14 cm from .066 in. thick Cd slab with 34 mm diameter hole in front
of J-10 stringer. (distance between slab and reactor shield 4 cm)
o 40 watts  Counter 127 cm from Cd slab and wrapped in .044 in. Cd, except front facing reactor;
Cd slab with hole close against reactor shield.
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BmF3 counter (12 cm pressure, 14 in. long, 1 in. diameter) parallel
to beam.

Beam through 1 in.2 hole in J-10 stringer.
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I.4.e.
THERMAL NEUTRON BEAM FROM J-10 TRAVERSED WITH TWO D IFFERENT
RESOLUTIONS OF THE DETECTOR (Ref. XITT-5)(Two-slab Loading)

l | | I ! ! | f ] ! I | [ !

Side of BF, counter covered with .044 in. Cd.

.049 in. thick Cd with 3/8 in. hole on front of counter.
2. normalized to 1.

Vertical flux map.
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Power: 40 watts. Beam through 1 in.2 hole in J-10 stringer in line with
3/8 in. hole in .066 in. thick Cd plate against reactor shield.
BF3 counter 127 cm from reactor.



Section J

ABSOLUTE FLUX MEASUREMENTS

The experimental results of absolute thermal-neutron-flux meas-
urements in the core and external thermal column are given. Also, one
measurement of the gamma flux in the operating reactor has been made
and the results presented in terms of r/hr/watt. The absolute flux is a
basic bit of knowledge in the design of and in work with the reactor.

An absolute flux measurement is one which determines the flux at
a certain point in units of neutrons/cmz/sec. The absolute flux is propor-
tional to the reactor power level as indicated by ion chamber current
readings; hence, the ion chamber readings are given with the flux. Also,
this measurement will strongly depend on the core geometry and condi-
tions that exist during measurement.

The technique involves the irradiation of a gold foil at a steady
power for a known time. A comparison of the activity of this gold foil
to one irradiated in the Argonne standard pile yields the absolute flux.
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J.1. Absolute Flux at Head of J-10 Stringer with a One-slab Core

(Ref. V-11)

Core Loading:

Foil Location:

Instrument

Reading (amp):

Thermal Flux:

Cadmium
Ratio:

Core Loading:

Foil Location:

Instrument

Reading (amp):

Thermal Flux:

Core Loading:

Foil Location:

Instrument

Reading (amp):

Absolute
Thermal Flux:

One slab, north side of reactor, containing six fuel
boxes with 1896.08 grams.

In first hole of J-10 measured from core end of J-10.

Log 1 x 1075

#1 - 0.69 x 1076

#2 - 0.12x 1073

#3 - 0.23 x 1076

Power level - 230 watts

2.05 x 10% cm ™% sec™!

4.5

One-slab loading of six fuel boxes on north side of
reactor. (Ref. V-6)

On core end of J-10.

Log 1 x 1073

#1 - 0.89 x 1078

#2 - 0.16 x 107°

#3 - 0.36 x 1076

Power level - 360 watts

3.61 x 10 cm ™2 sec™!

One-slab, north side of reactor, containing six fuel boxes
with 1898.59 grams. (Ref. V-12)

In pocket 2 in. from core end of J-10 stringer.

Log 8 x 1078

#1 - 0.16 x 1077

#2 - 0.22x 1077

#3 - 0.06 x 1077

Power level - 5.7 watts

5.90 x 107 cm™? sec™}




113

J.2. Absolute Flux at Center of One-slab Core (Ref. V-13)

Core Loading: One slab, north side of reactor, containing six fuel
boxes with 1898.59 grams.

Foil Location: Central, vertically, radially, and azimuthally.

Instrument Log 5.0 x 1078
Reading (amp): #1 - 0.28 x 1078
#2 - 0.8 x 1078
#3 -0.11x 1078
Power level - 1.05 watts

Absolute
Thermal Flux: 1.47 x 10" cm ™% sec™!

J.3. Absolute Flux at Center of Each Slab of a Two-slab Core (Ref. V-16)

Core Loading: Two-slab loading of six fuel boxes. 1918.67 grams
U?® in north slab and 1935.79 in south slab.

Instrument Log 8.0 x 10~7

Reading (amp): #1 - 0.18 x 1077
#2 - 0.075 x 107°
#3 - 0.12x 1077

Results: Power Level - total = 2.64 watts
north slab = 1.330 watts
south slab = 1.313 watts

Thermal North slab - 2.080 x 107 n/cmz/sec

Neutron Flux: South slab - 2.275 x 107 n/cmz/sec

Cadmium North slab gold foil - 1.79

Ratios: South slab gold foil ~ 1.98

North slab in fuel plate - 15.95
South slab in fuel plate - 16.72



114

J.4,

ABSOLUTE THERMAL NEUTRON FLUX
| IN J-10 STRINGER (Ref. ¥-11)
(one-slab loading)

Power level: 7.5 watts

N

T

NJOOOS
AS L B - ) 24

F =3

ABSOLUTE THERMAL NEUTRON FLUX (n cm™2 sec™])

108 | | | | | |

2 10 18 2% 34 42 50
DISTANCE FROM END OF J-10 STRINGER (in)
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J.5. Gamma-ray Intensity in the One-slab Core during Operation
(Ref. Y-13)

At the power level of 0.1 watt the following reactor instrument
readings (amp) were observed.
Log - 4x 1077 Linear #2 - 0.06 x 1078
Linear #1 - 0.19 x 107° Linear #3 - 0.05 x 1077

Results:

(1) At the approximate center of reactor core the intensity is
270 r/hour/watt.

(2) At thehead of the J-10 stringer the intensity is
50 r/hour/watt.

These values can probably be taken as reliable within £50%.
They were obtained with film packets loaded with duPont type 535 film,
and the packets were procurred from and purchased by R. S. Landauer

and Company.
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Section K

TEMPERATURE COEFFICIENT

If the temperature of core changes, the critical reactor will become
supercritical or subcritical, depending on the sign of the temperature
coefficient of reactivity. Low-power research reactors like the Argonaut
are usually designed to have a negative coefficient as a safety measure. In
such a case an accidental reactor power increase would tend to be self-
limiting.

The temperature coefficient is an important concept in reactor theory
and in practice, especially with power reactors. A measurement of this type
is a common student experiment and the results presented are mainly their
work. The coefficient has been measured in the one-slab, two-slab, and
annular core loadings.

The technique employed to determine the coefficient is to observe
the critical rod positions and the core (water) temperature. The core tem-
perature is changed (increased or decreased) and the new critical rod posi-
tions observed. From previously determined rod calibration curves the
corresponding reactivity change can be calculated. Because of thermal
time-lag effects in the graphite moderator and reflector, the nonequilibrium
temperature coefficient will depend on whether the water was being heated
or cooled; in sufficient time (approximately 1 hour) equilibrium will be
reached and a terminal net coefficient can be measured.
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K.2.

NEGATIVE REACTIVITY VS TEMPERATURE

(Ref. XI-3) (two-

slab loading)
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Section L

VOID COEFFICIENT (ONE-SLAB GEOMETRY)

Because safety is an important aspect of the Argonaut reactor, it
is designed to have a negative void coefficient. Then should the reactor
power increase sufficiently to raise the core temperature to 100°C, the
water moderator will boil (form voids) and negative reactivity will be
effectively inserted. The power rise will thus tend to be self-limiting.
It follows that the void coefficient is an important consideration of water
or liquid-moderated reactors.

Because the flux distribution in the core is not flat, the void
coefficient will be dependent upon position. The coefficient as a function
of position in the reactor is determined as a standard student experiment.
Lately, the investigation has been broadened to seek a more basic under-
standing of the nature of the void coefficient, and some studies of the
effect of fuel plate spacing on the magnitude and sign of the coefficient
have been made. The results of these experiments are shown with some
typical results of the spatial void worth experiments.

The experimental technique is to determine the critical rod posi-
tions of the bare core, or with the void holders filled with water. Then
the control rod critical positions are redetermined after the voids are
in position. The change in critical rod positions is converted to a reac-
tivity change with the aid of the rod calibration curves.
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Normalized Void Coefficient
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L2.
VOID COEFFICIENT VS ANNULAR
VOID LOCATION (Ref. XTI-1)
(one-slab loading)
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Annular Void Location, Fuel Box No.
3-1/4-in,voids placed between
plates 6-7, 7-8, and 8-9 for each box
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L3.

VOID COEFFICIENT AS A FUNCTION OF FUEL PLATE

SPACING (Ref. XII-1) (one-slab loading)

Voids 17 in.long x 3/4 in.at center of Box 16.
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Section M

NEUTRON LIFETIME

The neutron lifetime is the average time that elapses from the
fission capture of a neutron in one nucleus until one of the neutrons re-
leased in the subsequent fission suffers a fission capture by another
nucleus. It is a fundamental reactor parameter, but, unfortunately, it
is difficult to measure. Relatively little effort has been made in this
category to date.

One of the two quoted values is the result of a pile noise
measurement. The other is from transfer function measurements. It
is hoped that more results will be obtained from work with the pulse
neutron source experiments that are now being considered.
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M.1l. Results of Pile Noise Measurement (One-slab) (Ref. XIII-2)

. P +295
Assuming B_.. = 0.0070, the lifetime was 142 _53 microseconds.

M.2. Neutron Lifetime for the One-slab Loading Determined from Transfer
Function Measurements (Ref. Private Communication - G. Pawlicki)

The neutron lifetime was determined to be 1.80% 0.05 x 10 sec.

The value of the lifetime was determined by comparing the shape of
the experimental transfer function magnitude with digital computations of
the linearized kinetic equations, using the Hughes data for delayed neutron
parameters. The comparison of experiment and computation was made in
the frequency range from 1 to 30 cps. The digital computation was done on
IBM 650 using the BUM code.

It has been shown experimentally that the measured phase shift of
the Argonaut transfer function does not agree with the phase shift of the
lowest mode bare reactor kinetic equation. The discrepancy in the phase
shift becomes extremely large at higher frequencies when the ion chamber
is located in the external thermal column at large distances from the fuel
region. Even if the ion chamber is cadmium covered in measuring the trans-
fer function, there is some measurable difference in the phase-shift curve
when compared to the 180-microsecond lifetime phase-shift computation.
Regardless of the chamber location or cadmium covering, the shape of the
transfer function magnitude agrees with the digital computation within
0.5 db at all frequencies.
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Section N
POWER CALIBRATION

The Argonaut reactor power level is indicated by B'% coated ion
chambers. The current output in amperes is not a convenient unit for
analyzing or understanding all experimental results; in addition, the
reading itself is dependent upon the chamber location, voltage, and the
associated electronic circuits. A more useful unit is the watt, because
the reactor power in watts is directly related to the fission rate and neu-
tron flux. Some effort to relate the ion chamber readings to power in
watts has been made, and the results are reported in this section.

The experimental techniques require determining the core flux
distribution and the irradiation of a gold foil at a steady power (indicated
by the ion chambers) for a known time. The counting of this gold foil and
one irradiated in the Argonne standard pile, enables the absolute thermal
flux to be determined. With knowledge of the absolute flux and the fuel
mass, the power in watts is calculated, assuming a homogeneous core.
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N.1l. One-slab Power Calibration Data (Ref. V-12)

Core Loading: One-slab, north side of reactor, six fuel boxes with
1898.59 grams

Foil Location: Central vertically, radially and azimuthally.

Instrument Reading:

Current Reading

Chamber No. (amp x 10%) Chassis Serial No.
1 0.28 56267
2 0.8 Special test unit
3 0.11 56269
Log 5.0 56266

The detectors were located as shown in diagram on page 23, Section B.

Reactor Power Level: 1.05 watts * 8.7%

N.2. Two-slab Power Calibration Data (Ref. V-14)

Core Loading: Two slabs of six boxes in each slab. Fuel weight in
north slab is 1918.67 grams, and in the south is
1935.79 grams.

Instrument Reading:

Current Reading

Chamber No. (amp) Chassis Serial No.
1 0.18 x 10~7 56267
2 0.075 x 10~° 56268
3 0.12 x 10~7 56269
Log 8.0 x 1077 56266

1.33 watts

Reactor Power Level: north slab

south slab = 1.31 watts
total = 2.64 watts

The error is believed to be *13.9%.
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N.3.
CALCULATED POWER AND MEASURED ABSOLUTE THERMAL FLUX
DISTRIBUTIONS IN A TWO-SLAB CORE (Ref. V-14)

P =1.33 Watts
nv =1.47 neuts/cmz-sec
U?% = 1918.67 grams

S SLAB

P =1.30 Watts
nv =1.44 neuts/cmz-sec
U?% =1935.79 grams
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Section O

REACTIVITY WORTHS

Any change in the core or reflector composition or geometry will
introduce a reactivity disturbance that will affect the reactor. This fact
is a basic consideration of reactor safety, and of research into reactor
physics and reactor engineering, i.e., kinetics, control rod design, fuel
worth, and compensation for burnout and poison buildup. Also, numerous
other types of experiments such as cross-section and danger coefficient
measurements make use of the sensitivity of the reactor to perturbations.
It is obvious that there is a large number of these cause and effect
relationships to study.

Some reactivity worths of fuel, moderator, and reflector have been
measured in various core geometries. The fuel worth has been measured
as a function of core position, fuel mass, and worth relative to graphite.
The worth of the graphite moderator has also been determined as a func-
tion of position. Integral and differential worths of the water and graphite
reflector and moderator have been measured. The reactivity effects of
gold foils and other absorbers placed in the core or thermal columns have
been determined, and the results are presented.
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0O.1. Fuel and Core Graphite (One and Two-slab Data)

O.l.a. Reactivity Worth of Fuel at Various Locations in the
Core (Private Communication - W. E. Carey)

Reactivity

Fuel Worth

Location of Change Reactivity of Fuel,

Date Fuel Change M, gm  Change, $ $/gm

4/19/58 Box 16, Position 2 4.52 0.093 0.0206
near outer edge

4/10/58 Box 16, Position 9 4.52 0.040 0.0088

in middle
4/11/58 Box 16, Position 16 4.52 0.080 0.0177

near inner edge

(one-slab loading. )
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Kexcess VS MASS OF U235 IN CORE
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] L |
1.85 1.90 1.95 2.00 2.05
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AKIK (%)
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0.15 -

0.10 -

0.05 -

n

| | T

O.l.c.

REACTIVITY VS MASS OF U235 |N CORE
(Ref. I¥-2) (one-slab loading)

- — measured using control rod
calibration curves

o —measured using all rods out;

period measurement

1985

|
1990

l | i
1995 2000 2010
Mass of U235 (gm)
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0.1.d.
REACTIVITY VS FUEL LOCATION IN TWO-SLAB CORE
(Ref. I-8)
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O.l.e.
RELATIVE WORTH OF GRAPH ITE VOLUME VS MASS
OF U235 [N CORE (Ref. T¥-3) (one-slab loading)

1000 T 71 1T 1 T T T T 1

750 |- -

1 | | ] | ]l ] |

0 20 40 60 80 100
Total Mass of U235 Removed From Core (gm)

Total Volume (cu inch) of Graphite Added to Core
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1

[ [ | l I I [

0.Lf.
WORTH OF LARGE GRAPHITE WEDGE VS POSITION IN CORE
(Ref. TV-4) (one-slab loading)

Large Graphite Wedge Area = 56.358 in2
Regular Graphite Wedge Area = 37.047 in2

Description of Positions

1 2 ]3] Jo[ 5[ Js[ J7
13 14 15 16 17 18
Fuel Box Numbers

2 3 4 5 6 7
Graphite Wedge Position
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Excess k Added (%)
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| I L 1

0.1.g.

REACTIVITY WORTH OF UZ3% N THE
INTERNAL THERMAL COLUMN
(Ref. IN-15) (one-slab loading)

(North Rectangular Stringer)

Fuel Added (gm)

50
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O.1.h. Reactivity Worth of Fuel at Various Locations in the
Internal Thermal Column (Ref. IV-19)

Core geometry: One-slab on north side of reactor.

A fuel plate containing 21.01 grams U®® was placed at the
locations shown on the sketch, and the reactivity effect was determined
from control rod worth curves.

Total Excess
Reactivity of
Average Lattice in
Reactivity Specific which
Notation of Worth, Worth, Measurement
Fuel Plate % Ak/k %/gm Was Made, %
North stringer 0.29 0.014 0.29
North side of
East stringer 0.121 0.00576 0.298
South side of
East stringer 0.097 0.00462 0.319
East side of
South stringer 0.006 0.000285 0.319

INTERNAL THERMAL COLUMN

North

/T/ North Stringer

4%-1n O D Central
All Stringers Thimble
3fkx 1 i- in 103

East Stringer

West East

Outer Edge of the
Thermal Column
24-in O D

(dimensions 1in inches)
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O.2. Moderator and Reflector

O.2.a. Reactivity Worth of Moderator and Reflector (One Slab)
(Ref. IV-6)

The following data apply only to a specific experimental
test section in the graphite reflector, but perhaps they are of interest as
relative numbers.

(A) D,O compared to graphite = +260 Arbitrary Units
(B) D,0O compared to void = +260 Arbitrary Units
(C) Graphite compared to void = +100 Arbitrary Units

The loading was a 7-box, one-slab loading of 2273.90 gms.
(Ref. IV-17)

(1) The worth of reflector was found to be 11.6 x 1072 8k
for 22.3-cm reflector. The effectiveness of the
reflector about 15 cm above top of fuel was almost
negligible.

(2) The worth of moderator was found to be 0.86 x 1073 6k
for 31.2-cm moderator. This value corresponds to
31.2 cm below top of fuel. The total height of fuel
was 61 cm.

(3) In the Argonaut reactor the effective reflector is about
15 cm or 5 diffusion lengths, the diffusion length in
water being 2.88 cm.
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0.2.b.

(Ref, XITT-4) (two-slab loading)

REACTIVITY VS WATER LEVEL IN UPPER REFLECTOR

1

10

Integral Curve of Ak

Ak/mm by Period Method

Top of fuel
Element

1
90 95 100 105

Distance, cm

110

Akx 1073

%A



0.2.c. WORTH OF WATER MODERATOR AND REFLECTOR (Ref. TN¥-7) (one-slab loading)
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Ak x 1074
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T |
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<3

=
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_____________________ 10 <

°, Differential curve
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O.3. Absorber and Voids in J-10 Stringer (One Slab)

O.3.a. Some Reactivity Effects in J-10 Stringer (Ref. IV-14)

A series of measurements of reactivity effects on the
Argonaut reactor due to changes in the J-10 stringer and water tank were
performed and the reactivity effects observed are tabulated below.

One-slab Geometry (North) Lo, %

1. Reactor in integral condition: J~10 stringer
in; water tank in; no absorber or voids
involved. 0

Z. Same reactor system; J-10 stringer com-
pletely removed. -0.175

3. J-10 stringer reinserted with 4 x 4-in.
cadmium on front face. -0.370

4. Stringer completely removed; 4 x 4-in.
cadmium plate left at head of channel
(south); plane of cadmium normal to axis
of channel. The change was negative and
in extent, greater than the maximum
measurable under the conditions of the
experiment. >-0.399

5. J-10 stringer removed, 4 x 4-in. cadmium
plate drawn back 20 c¢cm from the south end

of the channel. -0.300

6. J-10 stringer removed, 4 x 4-in. cadmium
plate drawn back 40 c¢cm from the south end
of the channel. -0.212

7. The water tank was completely withdrawn,
its front face covered with cadmium
(w16 £t?), and reactivity effects measured
as a function of tank position relative to
the reactor core. In range of 4 ft with-
drawn to fully inserted no reactivity effect,
either positive or negative, was observable. 0
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| | T
0.3.b.
NEGATIVE REACTIVITY VS AREA OF
CADM [UM LOCATED AT END OF J-10
(Ref. TN-5) (one-slab loading)
0.4
0.3
4
<
®
0.2r
i Cadmium Sheets 40 mil Thick
0.1 of Square Geometry
] | 1

5 10 15
Area, in2



BAk

0.3

0.2

0.1

I I t 1 f |

0.3.c.
NEGATIVE REACTIVITY VS AREA OF
CADM UM LOCATED AT END OF J-10

(Ref. IV-3) (one-slab loading)

Note - Samples used were
sectors of a circle at
2-in. radius. The
center of the circles
were located at the
center of J-10

T in.2 10
|

L

| l I
60 120 180 240 300 360
Angle in Degrees
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0.3.d.
INTEGRAL VOID WORTH VS VOID VOLUME IN J-10 (Ref. IX-3) (one-slab loading)

-0.25- _
-0.20 .
® -0,15 B
/ Graphite
-0.10 -
Core Sk e J-10
/

Z_ Void
Area = 4-1/16 x 4-1/16 in.2]

I 1
0 100 200

st \

Volume, in.3

8%1
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% Ak/cu. in. x 10~

0.3.e.
DIFFERENTIAL VOID WORTH VS INCHES OF WITHDRAWAL
OF J-10 STRINGER (Ref. IX-3) (one-slab loading)

5 10 15
Distance, in.

6%1



150

O.4. Absorbers in Central Thimble (Two-slab Loading) (Ref. IV-8)

Experimental Reactivity Values for Various Absorbers

Geo-
Thick~ metric

Length, Waidth, ness, Area, Weight, Ak/k’
Absorber cm cm mils em? gm Location %o
1 Cadmium 31 2.5 20 77.5 36.85 Central thimble, 0 236
(sheet) 31 1.3 20 40.1 19.07 4 in. above mud- 0.146
31 0.61 20 18.9 9.00 plane, & wrapped 0.086
31 0.29 20 8.9 4.22 around graphite 0.046
15.5 5.0 20 77.5 36.85 cylinder 0222
2 Cadmium 256 30 61.2 Wire wound 0.141
(wire) around central
thimble with l1-cm
pitch
256 30 61.2 Wire wound 0.125
128.5 30 30 8 around central 0.080
381 30 91.2 thimble with 0.191
L 3-cm pitch
3. B,C 30.5 5.1 155.6 3.06 [ Powder sprinkled 0.207
30.5 5.1 155 6 0.70 on #471 tape. Re- 0 083
4 activity of tape
not included in
L Ak/k value
4, UP Al 28.6 6.7 20-2.5 191.6 3.38 Central thimble, 0 0041
5. #480 Tape 2.54 4 1n. above 0.0013 x 107°
6 #33 Black 2.54 mid-plane 0.020 x 107°
tape

The effective area for the wire: geometric area/4

The effective area for the sheet: geometric area/Z, or total surface area (2A)/4
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O.5. Reactivity Worth of Nitrogen Injection (One-slab Loading)
(Ref. Private Communication - L. Lawyer, R. Springer)

Nitrogen injection reactivity worth as a function of nitrogen pres-
sure, and also as a function of time. The reactivity vs pressure data is the
average of the values at 40 and 50 sec after start of injection.

Nitrogen
Core Mass Water Pressure,

Condition U?5, gm Temp, °F psi % Ak
Clean 1878.59 11 -0.115
Clean 1878.59 11 -0.165
Clean 1896.08 93 12 -0.056
Modified Fuel
Box #16 1900.19 89 14 -0.214
Clean 1896.08 93 16 -0.410
Clean 1896.08 93 16 -0.430
Modified Fuel
Box #16 1900.19 89 20 -0.503

Reactivity in % Ak (all changes negative)

Time after start Time, sec

of injection 0 10 20 30 40 50
16 psig - run 1 0 0.36 0.40 0.43 0.43 0.44
16 psig - run 2 0 0.32 0.35 0.39 0.41 0.42
12 psig 0 0.043 0.047 0.050 0.055 0.058
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0.6. Summary of Miscellaneous Reactivity Changes for a Two-slab Core

(Ref. I-1)

Configuration: Two groups of six clusters each, symmetrically
arranged.

Critical mass: 3.748 kg U
Void introduced into fuel cluster: -0.25% k/% void
Replace graphite with water at

edge of fuel cluster: -4.4 x 107*%k/cc water
Bubbles from gas injection sys-

tem introduced into one fuel

cluster: -0.09% k
7 x 7T-in. cadmium sheet cen-

tered on fuel midplane next

to reactor tank: -3.1% k
24 x 3-in. cadmium sheet:

next to tank: -3.7% k

1.5 in. away from tank: -2.7% k

3 in. away from tank: -1.9% k
Removal of stringer from

internal reflector: -0.22% k
Insertion of U?% at center of

internal reflector: +0.026% k/gm
1 x 1-in. cadmium sheet at

center of internal reflector: -0.11% k
Insertion of U?® next to outer

tank: +0.022% k/gm
Fuel box displaced vertically

1 ft: -3.2% k
4 x 6-in. void next to outer tank,

36 in. high: -2.2% k

Rise in temperature: -1.065 x 107* k/C
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O.7. Summary of Miscellaneous Reactivity Changes for a 6 x 2 Loading
(Ref. II-1)

Uniform addition of fuel to core  0.41906 x 10"4Az,fh(cm")

regions
- f

Addition of fuel to internal 1.105 x 107 *AZ 4 (cm?)
thermal column

Void at center of internal -0.702 x 10'7/cc
thermal column

Void in middle of annular -2.862 x 10"7/cc
graphite

Void in graphite at edge of fuel -20.24991 x 1077 /cc
box

Water replaces graphite at -1.62 x lO'é/cc
center of internal thermal
column

Water replaces graphite at -1.373 x 10_6/cc

middle of annular graphite

Water replaces graphite at -0.232 x 10-6/cc
edge of fuel box

Uniform temperature change -1.065 x 10'4/°C
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0.8. Sensitivity for Various Absorbers at Center of One-slab Core

(Ref. IV-17)
Reactivity | Reactivity
Weight, Area, Reactivity Change Change Sensitivity
Sample gm cm? Change, $ Due to Due to $/cm2
Holder,$ | Sample, $

Cd sphere | 1.468 |mr?=10.353 | 0.0329 - 0.0316 0.0895
Al holder 5.2 22.6 - 0.0013

mdl
Cd tube 0.368 4 " 0.314 0.0251 - 0.0238 0.0758
Al holder 5.2 22.6 - 0.0013

. hlw

Cd strip 0.1850 4 - 0.299 0.0247 - 0.0234 0.0746
Al holder 5.2 22.6 - 0.0013

1w
Cd plate 11.0686 > = 12.7 - - 0.555 0.044

1w
Cd plate 3.400 > = 3.94 0.2198 - 0.2185 0.055
Al holder 5.2 22.6 ~ 0.0013
Cu 35.994 25.0 - - 0.0735 0.058
Zn 27.607 25.0 - - 0.01750 0.065
Brass 35.455 25.0 - - 0.04795
Mn 1.336 20.5 0.0265 - 0.0188 0.093
Al 10.5 22.6 - 0.0077 0.051
Mg 28.693 25.0 - - 0.0055 0.123
Al *2 &7 20.435 22.6 0.00536 - 0.051
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Section P

CRITICAL MASS AND CORE LOADING

The amount of fuel required to sustain a nuclear chain reaction
is a function of numerous considerations, one of which is core geometry.
The Argonaut is designed to have a flexible core geometry in that the
fuel box location and fuel plate spacing are readily variable.

In this section, data of the critical mass for various core geome-
tries and plate spacings are presented. Most of this data was obtained
by extrapolation from the multiplication experiments, and the rest from
critical reactor work. The results of the two sources are essentially
identical.
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P.1. Critical Mass (kg) as a Function of Core Geometry (Ref. I-1)

Data from multiplication experiments CK >
Two groups of six boxes each: 3.748
Four symmetrical groups of three boxes each: 5.2
Three symmetrical groups of four boxes each: 4.6

Slab loading on one side (8 boxes): 2.2
Homogeneous loading with 3-in. annulus on a
2-in. I.D. 4.3

Typical experimental reactor data

One-slab loading of six boxes 1.90
Two-slab loading of six boxes in each slab. 3.8
Annular loading 4.2

P.2. Critical Mass (kg) as a Function of Plate Spacing. (Ref. I-1)

Experimental data taken on one-slab loading.

Plate spacing (in.):

1/8
e

NoNW
~ N WD



Section Q

RADIATION SURVEYS

The radiation level about an operating reactor is a very important
aspect of the design. About a research and training reactor it is of special
importance that the radiation level be low because of the number of people
who are often in the reactor vicinity. Within the Argonaut reactor building
the gamma activity is continuously monitored whether or not the reactor is
operating, and eight-hour air filter samples are taken every working day.

The radiation level has been checked many times at various points
about the reactor over the years of its operation (Bibliography entries
VIII 1 and 4), but few complete surveys have been made. In this section
the results of these surveys are presented. More work in this category is
being planned.
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Q.l.
TOTAL GAMMA-RAY ISODOSE LINES ALONG MIDLINE N - S PLANE OF ARGONAUT
(Ref. YITT-2) (one-slab loading)
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Q.2.

TOTAL GAMMA-RAY ISODOSE LINES IN HORIZONTAL PLANE ABOUT ARGONAUT

(3 Feet above Floor Level) (Ref. YITI-2) (one slab loading)

— —
B o 2mrlhr .
B . rihr -
| Nominal power level, 250 watts 7
- ]
B Reactor -
B Core ]
e —
— _
n _L] . 7
= T N -
— 012345 —
B Feet 7
B S I T R I N T (N N N T Ot N T T T T S N O IO O B ]

661
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ft.

DISTANCE MEASURED FROM THERMAL COLUMN SHIELD,
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Q3.
COLUMN (Ref. VIII-3)

GAMMA [SODOSE CURVES AT EXTERNAL THERMAL

- 1.1 mr/hr

1

+15 Reactor power ~ 100 watts

—+—2.2

All Readings in mr/hr B
(Juno & G-M Meter Readings)
' Taken at 3' off Floor

| 0.5 0.7 1.5\ 58/10 |
- -
— _-100 at J-10 ]
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(N-S Midline, 20 in. from floor;
Power Level ~ 100 watts)
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Q4.
FAST NEUTRON FLUX ON
REACTOR TOP SHIELD ING
(Ref. YIII-3) (one-slab loading)
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Q.5.
SLOW NEUTRON FLUX ALONG MIDLINE N-S

PLANE ON REACTOR TOP SHIELD ING
(Ref, YIII-3) (one-slab loading)

(Power Level ~3.0 watts)
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Section R

WORLD LIST OF ARGONAUT REACTORS

Throughout the world there are about twenty-five reactors of the
general Argonaut type, either in operation or in some stage of the plan-
ning and construction. This is a relatively large number of reactors to
have basically similar designs, probably thus forming one of the largest
common design reactor groupings in the world.

This section was compiled in the interest of promoting informal
sharing of information by listing the various reactor locations and some
reactor data and the name of a representative for each research group.
When this section was compiled, all of the desired reactor information
was not available and numerous omissions are obvious. Yet, the infor-
mation is complete enough so that contacts can be made.
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R.1.

10.

11.

REACTOR LOCATION

Argonne National Laboratory
Argonne, Illinois
USA

Argonne National Laboratory
Argonne, Illinois
USA

University of Florida
Gainesville, Florida
USA

Iowa State University
Ames, Iowa
USA

Kansas State College
Manhattan, Kansas
USA

Virginia Polytechnic Inst.
Blacksburg, Virginia
USA

University of Washington
Seattle 5, Washington
UsSA

University of California
Los Angeles 24, California
USA

Comision Nacional
de Secuijia Atomica
Avenida Liberatador
Qeveral San Martin 8350
Buenos Aires, Argentina

Atomic Energy Establish-
ment, Winfrith

Dorset

Dorchester, England

Hawker Siddeley

Nuclear Power Co. LTD
Sutton Lane Langley

Nr. Slough Bucks
England

List of Argonaut Reactors

REACTOR NAME

Argonaut
10 kw - (Oper)
Annular Core

Juggernaut
250 kw - (Oper)
Annular Core

10 kw - (Oper)
Annular Core

UTR-10
10 kw - (Oper)
Two-slab Core

UTR-10
10 kw - (Oper)
Two-slab Core

Engineering Nuclear
Reactor

10 kw - (Oper)
Two-slab Core

RA-1
- (Oper)
Nestor
- (Oper)
Jason

10 kw - (Oper)
Annular Core

PERSON WHO WILL
ANSWER INQUIRIES

Dr. William J. Sturm
Reactor Supervisor

Mr. John Beidelman
Reactor Supervisor

Dr. Uhrig

Dr. Glen Murphy, Head
Nuclear Eng. Dept.

Dr. W. R. Kimel, Head
Nuclear Eng. Dept.

Mr. Andrew Robeson
Department of Physics

Mr. Thomas E. Hicks
Department of Engineering

Ing. Otto Gamba
Head, Nuclear Reactors Dept.




12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

AEG - Versuchsanlage
Grosswelzhelm/Unterfranken
Seligenstadter Strasse
Western Germany

Siemens

Reaktor Station Garching
Garching be1 Munchen,
Western Germany

Kernreaktor Bau-und
Betriebsgesellschaft
Karlsruhe, Western Germany

Reactor Centrum Nederland
Petten, Netherlands

Eng. School of Barcelona
Barcelona, Spain

(constructed by)

Junta de Energia Nuclear
Serrano 121

Madrid, Spain

Eng. School of Bilbao
Bilbao, Spain

{constructed by)

Junta de Energia Nuclear
Serrano 121

Madrid, Spain

Australian Atomic Energy
Commission

Lucas Heights

New South Wales,

Australia

Kinki University
Osaki, Japan

Rio de Janeiro University
Rio de Janeiro

Est. da Guanabbara
Brazil

Queen Mary College
University of London
London, England

AEG - Preufreaktor
- (uc)

Siemens Argonaut
Reaktor

10 kw - (Oper)
Annular Core

Siemens
10 kw - (UC)
Annular Core

Low Flux Reactor
10 kw - (Oper)
Annular Core

Argos
- (uQ)

Arbi
- (UC)

UTR-10 Moata
10 kw - (UC)
Two-slab Core

UTR-B
10 watts - (UC)
Two-slab Core

Argonaut
10 kw - (UC)
Annular Core

Jason Special
Source Reactor
10 kw - (planned)
Annular Core

Mr. Gerhard Riesch

Mr. Risse

Ir. J. H. B. Madsen
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22.

23.

24.

Universities of Manchester Jason

and Liverpool 10 kw - (planned)
UKAEA Site Annular Core
Risely, Lancashire
England
Institut National des Sciences ULYSSE

et Technique Nucleaires 100 kw - (UC)
Saclay France
(A total of three are proposed)

USA - AEC UTR-B
Traveling Exhibit 10 watts - (Oper)
Two-slab Core

SYMBOLS

UC - under construction

Oper - operational

Planned - proposed and being planned
Annular Core - core built in the annulus
Two-slab Core - core built in two slabs

Prof. Debiesse
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Section S

BIBLIOGRAPHY OF ARGONAUT WORK

This is a list of published reports and unpublished work directly
related to the Argonaut Reactor. Published reports are available through
the usual channels.

The reports have been separated into thirteen classifications
according to subject, and each classification is numbered separately.
Some of the reports listed contain detailed sections on each of several of
the thirteen classifications. These sections are listed as separate entries
in their proper classifications, and are marked with an asterisk. A refer-
ence is given to the main bibliographical entry.

To emphasize the international character of the efforts, the name
of the sponsoring country as well as the school session during which he
worked is included after the name of each author. Students from the USA
are similarly identified, and work done by Argonne National Laboratory
personnel is identified as "ANL Staff." The following coding is used in
this identification:

*] - First Session, ISNSE, March 14, 1955-October 14, 1955.

2 - Second Session, ISNSE, November 1, 1955-June 1, 1956.

3 - Third Session, ISNSE, September 10, 1956-Januaryll, 1957.
4 - Fourth Session, ISNSE, January 28,1957-May 24, 1957.

5 - Fifth Session, ISNSE, July 8, 1957-November 8, 1957.

6 - Sixth Session, ISNSE, February 4, 1958-May 29, 1958.

7 - Seventh Session, ISNSE, June 16, 1958-October 31, 1958.

8 - Eighth Session, ISNSE, February 4, 1959-May 29, 1959.

9 - Ninth Session, ISNSE, August17,1959-December 11, 1959.
10 - Argonaut Institute, Summer, 1957,

11 - Reactor Instrumentation and Control Institute, Summer, 1958.
12 - Specialized Nuclear Studies Institute, Summer, 1959.

13 - International Industrial Associate.

14 - Special Scientific Employee.

15 - Resident Research Associate.

*16 - Spring Term, IINSE, February 3, 1960-May 27, 1960.
17 - Summer Term, IINSE, June 8, 1960-September 30, 1960.

*The International School of Nuclear Science and Engineering (ISNSE)
was established at Argonne National Laboratory in March 1955. It
became the International Institute of Nuclear Science and Engineering
(IINSE) in February 1960.
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