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SIMMS!

The effect of plasticity, including work hardening, on decoupling 

underground explosions has been studied both for cavities designed to give 

full decoupling according to the Geneva specification (?0 cubic meters per 

ton of explosive energy) as well as small (overdriven) cavities designed to 

give partial decoupling, An important result is that plasticity plays no 

role whatsoever for full-decoupling cavities, even those at great depth in 

which some plastic flow occurs during construction of the cavity. For 

overdriven cavities at great depth plasticity affects the decoupling factor 

by an amount which depends upon the degree of overdriving and the depth 

as well as the detailed stress-strain curve of the medium. A further 

result of the study is that for cavities at a depth of about one kilometer 

and in a medium like salt, which exhibits a reasonable amount of work 

hardening, the decoupling factor will be at least as great as that obtained 

in the overdriven Cowboy experiments and could be appreciably greater.

To obtain more quantitative conclusions better stress-strain data are 

needed for loading conditions appropriate to the decoupling problem.

Plastic flow associated with pressure transients, ignored here, should also

be examined
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I. INTRODUGTIOH

This report grew out of a number of questions concerning the influence 

of plasticity on the seismic signal from decoupled explosions. First, it 

is well known that around cavities at great depth where the overburden 

pressure is comparable to the yield stress of the medium, there is a zone 

in which plastic flow occurs during the making of the cavity. The question 

arises: how does the presence of this plastic zone affect the decoupling 

factor?

Secondly, we recall that the volume of a decoupling cavity (in salt 

at a depth of about 1 kilometer) was set at 7xl(A cubic meters per kiloton 

by requiring that the medium respond elastically to the explosive forces. 

There are two kinds of inelasticity which are important: cracking and 

plastic flow. To avoid making cracks, the hoop stresses must remain 

compressive because rock-like materials have little or no strength in 

tension, and this requires that the average pressure in the cavity be less 

than three times the overburden pressure. If the medium is already cracked, 

the average pressure in the cavity must be less than the overburden 

pressure itself in order to keep the crack from opening up and propagating. 

Finally, to avoid plastic flow, stress differences must not become large 

compared to the yield stress of the medium, even during the passage of the 

large pressure pulse associated with the reflection of the shock wave from 

the cavity wall. This latter effect—plasticity due to the pressure
*

spike—imposes the most stringent limit and fixes the volume quoted above.

At a depth of about a kilometer the volume requirement of 7xlcA cubic 
meters per kiloton is equivalent to requiring that the average pressure in 
the cavity not exceed one-half of the overburden pressure.

:04
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However this volume could clearly be reduced if the pressure spike were

(2)eliminated, as in fact it can be by methods already suggested. In 

this case, there would be a new limit on the volume due to plastic flow 

associated with the average pressure in the cavity. The question then
r

arises: at what depth does this limit become more stringent than the 

cracking limit?

Finally we note that the Cowboy experiments were conducted at a 
depth of *»250 meters, where the overburden is only 50 bars. Therefore, 

even at five times the overburden—the greatest overdriving in Cowboy—the 

pressure barely exceeds the elastic limit of the salt and plasticity plays 

essentially no role in reducing the decoupling. However, for the nominal 

cavity at a depth of 1 kilometer, five times the overburden is «*«*1000 
bars—clearly exceeding the elastic limit of salt—and therefore plastic 

effects cannot be ignored. The question is: how can the results of 

Cowboy for the overdriven shots be extrapolated to deeper cavities?

The reduction in decoupling observed in the overdriven Cowboy 
experiments implies inelastic behavior of the medium, but this inelasticity 
was most probably due to cracking.



II. STRESS AND STRAIN DISTRIBUTION BEFORE THE EXPLOSION

It Is convenient to state the equations in a form which applies to 

both plasticity and elasticity. Throughout we make the infinitesimal 

strain approximation.

The stress equilibrium equation, assuming spherical symmetry, is

(1)

where is the radial and the tangential stress. The stresses and 

o^ are related to the displacement I (which is purely radial) in the

following ways
(2)

where k, the incompressibility, is assumed to be constant and the same 

for both elastic and plastic deformations. Equation (2) merely states 

that the incompressibility times the dilatation is equal to the average 

stress.

In addition it is assumed that the shear stress 0 - o, is a functionr \f
of the shear strain e only, i.e..

(3)or- ot - o(e).

The shear strain is of course just the difference between the radial and 

tangential strains:

(4)
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In the case of elasticity o(e) is given by

o(e) - 2(j.e# (5)

where y. is the modulus of rigidity. Since for small enough strains the 

medium is elastic, any actual function o(e) must approach 2pe near the 

origin. It should also be noted that Eq. (3) implies that the shear 

strain is independent of the average pressure, which is only roughly 

true for real materials.

It is mathematically convenient to approximate the stress-strain 

relation o(e) by a pair of straightline segments as shown in the solid 

lines of Fig, 1. In this approximation

f
2pe

where 0Q is the elastic limit, and a is a constant less than p, chosen

to give a reasonable fit to the measured stress-strain relation 0(e),
The approximation of Eq, (6) exhibits the essential elastoplastlc 

features of our problem and includes * * ideal11 plasticity (a®0) as a 

special case.
Equation (3) applies for processes in which the shear stress does 

not decrease. The forming of a cavity by excavation or washing is such a 

process. However, for an explosion, which involves Increasing the 
pressure in the cavity and therefore decreasing the existing shear stress, 

Eq. (3) Is not applicable. In this case, experience shows that the shear 

stress decreases along a line paralleling the elastic portion of the
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Fig. I-—The approximate stress-strain relations given by Eqs. (6) and (7). 
The solid portion applies to unworked material. The dashed 

line to the point B shows a typical unloading path.
Beyond B plasticity sets in again.
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stress-strain curve, so that

o - o. » 2u(e-e ) + o(e ),r t ^' mair' ' mav'»max max (7)

where ^ is the same modulus of rigidity as before, and is the 

maximum strain reached by the medium at the location in question.

Equation (?) is a simple description of the work-hardening process and 

means that the medium behaves elastically on stress reduction but 

relative to a permanent strain state. The dashed line in Fig. 1 

represents Eq. (7), with arrows appropriately indicating the loading 

path. Note that plasticity occurs again at the break point B where 

o(c) - - o(e ).

To calculate the stresses resulting from the creation of a hole,

the above equations must be solved subject to appropriate boundary

conditions. We assume that the radius a of the hole is small compared to

its depth and that the stress in the medium before the existence of the

hole is hydrostatic and equal to -p , that is, the negative of theo

lithostatlc pressure at that depth. It follows that far from the hole 

the stress becomes hydrostatic and equal to -po, i.e..

a ® a,r t Pc (r» a). (8)

A second condition is that at the boundary of the (empty) hole the radial 

stress is equal to zero, i.e.,

a <r 0 (r » a) (9)
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We assume that Initially the medium is everywhere at the origin of the 

stress-strain curve, i.e,, that there are no shear stresses or shear strains 

prior to the formation of the hole. In forming the hole each point of the 

medium moves along the stress-strain curve o(c) to some final state e 

which depends upon the radius r of the point and the hydrostatic pressure

Po-

The maximum shear stress (c - a ) occurs of course at the cavityJT w

surface r * a. If the lithostatlc pressure pQ is less than some critical 

value, the shear stress at r * a is less than a and the entire medium is 

elastic. For pQ greater than the critical value there is a radius 

p( >a) at which the shear stress is exactly oo, beyond which the medium 

is elastic, and inside which the shear stress is determined by the plastic 

branch of the stress-strain curve. Requiring stresses and displacements 

to be continuous across the radius r " p completes the specification of 

the boundary conditions.

The algebra is complex and uninstructive, but leads to the following 

equation for the elastic-plastic radius pi

in f ~ +1£L
20.

M4n/3 1(£)3_ £ol o (10)
k l-(a/^) L 3 20 J u*

Figure 2 shows the solutions for p/a as a function of po/20q for several 

values of a/p, and for a Poisson ratio equal to l/4. In the limiting 

cases a/p ** 0 and 1 (ideal plasticity and elasticity, respectively) p/a 

is independent of the Poisson ratio, as is evident from Eq, (10). Note 

that for a Poisson ratio of l/4 the factor (k+4M-/3)/k is equal to 9/5#
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All curves start out with the same slope at the critical pressure, the 

pressure at which p«a, which is equal to 20Q/3* Below this pressure 

there is no plasticity.

The quantities of interest can be obtained from the value of p/a 

and the following formulae:

<f>3 °0 (r>p)# (Ha)

(r<p)l (11b)

- P0 + 2o/3 (r>p). (12a)

- Po* 2°/3 * kT$73 (1 - t)ootn r p)s (12b)

" 67 (r)2 (r»p), (13a)

- * 3(1 ' $ i^75 ran r * 3> (r< p). (13b)

Of particular interest are the displacement f (a) and the shear 

stress o(a) at the cavity wall r ** a. These quantities are shown in 

Figs, 3 and 4 as a function of p0/20Q for various values of a/ji, again 

for a Poisson ratio of 1/4. In these figures the unit of displacement 

is the elastic value p0a/4^, and the unit of shear stress is the elastic 

value 3p0/2,
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Po
2a0

Fig. 2—The elastic-plastic radius as a function of p0/2c£ for 
various values of a//x and a Poisson ratio of 1/4
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Po
2a0

Fig. 3—The (inward) displacement at the cavity wall (r = a) as a 
function of p0/2(r0 for various values of a/fi and a Poisson 

ratio of 1/4. No*e that the displacement is given 
as a ratio to the elastic value p0a/4/i.
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0.8 -

0.7 -

Fig. 4*—The shear stress at r = a as a function of p0/2crQ for 
various values of ce/fi and a Poisson ratio of 1/4
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III. AFTER THE EXPLOSION

The explosion subjects the cavity wall to a pressure-time history, 

which can be calculated quite accurately from the equations of 

hydrodynamics assuming the cavity is a rigid spherical chamber. Typically 

the pressure as a function of time looks like that shown in Fig. 5 with 

a very short duration spike caused by the reflected shock wave, settling 

rapidly to a steady pressure p^,

P(t)

i

Fig. 5—Pressure vs time on cavity wall

If it were necessary to solve the time-dependent elasto-plastic 

equations in order to find the seismic signal corresponding to this 

pressure-time history, we would be faced with a very difficult mathematical 

problem. Moreover, we do not have the physical data needed to include 

the effects of strain rate, which are probably important for the transients. 

Fortunately, the seismic signal at a great distance from the explosion 

undergoes the filtering action of the earth, which allows only low 

frequency components of the signal to be transmitted. According to the 

theory of Latter, Martinelli and Teller^ the amplitude of this low
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frequency signal is simply proportional to the permanent volume expansion 

of any spherical surface which completely encloses all the inelastic 

behavior. It follows that to obtain a good approximation for the distant 

seismic signal all we need to do is solve the static elasto-plastic 

equations corresponding to a nonzero pressure in the cavity, specifically 

the pressure pQo (Fig, 5).

The approximation here amounts to Ignoring work hardening caused by 

the transients. Because of the nonlinearity of plasticity, this 

work hardening can affect the static solution and hence the distant 

signal. The magnitude of this effect is being investigated, but at the 

present time we believe it to be small and it will be Ignored in what 

follows, For our purposes then we will start with the stresses and strains 

existing around the empty cavity as calculated in the previous section 

and then turn on the adiabatically and monotonely, each point of the 

medium moving in the stress-strain diagram along paths similar to those 

shown dashed in Fig, 1,

Evidently if p^ is small enough, the point B of Fig, 1 will not be 

exceeded anywhere in the medium, in which case the entire medium responds 

elastically, and the plasticity which occurred during the making of the 

cavity is irrelevant to the distant seismic signal. The stress and strain 
distribution around the cavity is affected by the plastic zone, and can 

be obtained by adding to the plastic solutions of Section II the 

appropriate elastic solutions, namely

Or “ - p(~)^ (14a)

o - - 3/2.p(”P. (14b)
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We hare now answered the first question raised in the introduction,

concerning the influence of the plastic zone around the oarity, by showing

that it has no effect whatsoever on the decoupling factor provided the

pressure in the hole is small enough. This leads naturally to the second

question, namely what is the maximum pressure in the hole so that the

point B (Fig. l) is not exceeded anywhere in the medium? As the pressure

in the hole (p ) is increased, each point of the medium moves toward oo
(its) point B on the stress-strain diagram, but clearly the radius r « a 

gets there first; we denote the value of p^ at which this occurs by p^. 

From Fig, 1 and Eq, (14b) we see that

- 2 Ppl * 0<a) - ‘ °M’ (15)

and hence, referring to Eq. (lib) for o(a),

20. 3
Y&M/l) 2 +___k-
\k+la./y ia k+Ua/j (1 (16)

The quantity p/a is a function po/2oo through Eq. (10) (cf. Fig. 2). 

Values of Ppl/20Q are plotted in Fig. 6 as a function of po/20o for 

various values of oc/ja and a Poisson ratio of 1/4. Referring to the 

figure, we see that if pQ 400/3,Ppl is greater than pQ for all values 

of o/jx. If a/|x is greater than about 0.1, pp^ is greater than pQ for

any pQ



Fig. 6 — Pressure (Ppj) in the cavity at which the medium stops
responding elastically to the explosion pressure, as a 

$ function of p0 /2cr0 for various values of a//i
and a Poisson ratio of 1/4
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To understand the significance of these results we must know the 

stress-strain diagram quantitatively. Since salt is a medium of 

particular interest for decoupling cavities, we have plotted its stress- 

strain diagram as given by Handin^ in Fig, 7. Handin’ a data are actually 

for many different cases of triaxial loading and we have chosen the 

curve that seems to us most appropriate to our problem (but see the 

section on recommendations below). Handin’s data are not adequate to 

determine the elastic portion of the stress-strain curve and for this 
purpose we have used some measurements from the Bureau of Mines, ^ 

specifically, a value p wlOO kilobars, and a Poisson ratio of 1/4. A 

reasonable two-segment fit to the curve in Fig. 7# assuming o’s of 

interest do not exceed a few hundred bars, is oq about 150 bars and a/jj, 

roughly equal to 0.1.
With these values of 0 and a/u it follows from the results in theo

last paragraph that plasticity sets a less stringent limit on the cavity 

volume than the requirement that the average pressure in the cavity be 

less than pQ (a fortiori if the average pressure is less than l/2.po). 

Therefore the answer to the second question in the introduction is that 

for fully decoupled explosions, plasticity is unimportantrat any depth.
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' 400

Strain in percent

Fig.7—Stress-strain cufve for rock salt (after Handin)
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IV. OVERDRIVEN HOLES

We come now to the last question, concerning the effect of 

plasticity on decoupling with overdriven holes. As was mentioned in the 

introduction plasticity did not play an Important role in the Cowboy 

experiments because of their relatively shallow depth. However for the 

same degree of overdriving, l.e,, the same value of Pqq/Pq* fo** cavities 

at a depth of ^ 1 km, plasticity cannot be ignored. In this case the 

reduction in the decoupling factor may be due to plasticity rather than 

to cracking*

That plasticity can lead to a big reduction in decoupling can be 

seen from the following simple argument. Because of plasticity the value 

of the stress differences jo^ J is limited to something in the 
neighborhood of the yield stress oo* If is large compared to c»0, as 
it will be for overdriven shots at great depth, it follows that will 

be approximately equal to —which is the characteristic property of a
liquid. For a liquid,(static) pressures are transmitted virtually without 

attenuation, which Implies large displacements.

Of course a plastic medium has more strength than a liquid, but how 

muoh more depends on the detailed stress-strain diagram or, in our 

two-segment fit, on the values of a/p and To obtain a value for the 

reduction in the decoupling factor, l.e., the ?’undecoupling factor,’* 

due to plasticity, we have to go through an analysis similar to that of 

Section III but with p^greater than Pp^, The algebra is complicated. 

Involving bookkeeping on the zones in which plasticity has occurred once.
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twice or not at all,and we merely quote the results here. The details 
are to be given in a separate report.

Table 1
UNDECOUPLING- FACTOR FOR OVERDRIVEN CAVITIES 

AT A DEPTH OF 1 KM (p0 - 200 bars)
WITH VARIOUS STRESS-STRAIN RELATIONS APPROXIMATING THAT OF SALT

Case**
p /proc/ i0

1 2.5 5

1. ■ o •« 150,
0

o-/\i m 0,1 X 2.8

2. aQ m 150, a/jj, « 0,02 <~*1 1.8 8.2

3* * 150, a/|i » 0 (ideal) 2.0 no.

4. Cowboy (p * 50 bars) «*1 ^10

Table 1 gives the undecoupling factor for cavities at a depth of 1 km 
in salt, assuming several different fits to Handles^ stress-strain 

diagram given in Fig, 7. As is evident in Fig. 7 the best value of a/u 

depends on the value of and hence on the degree of overdriving. For 

a small amount of overdriving a reasonable value of a/p, is «*0.1, For 

the greatest overdriving a better value of a/jj. is "■>•0.02. The extreme 

plastic behavior, a/ji « 0, has also been included for comparison. Finally 
the table contains the undecoupling factor experimentally determined in 

the overdriven Cowboy shots,
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In interpreting the data of Table 1 it is important to inquire 

whether in Cases 1 to 3 the medium has at any time gone into tension, 

i.e., > 0, since in that event cracking as well as plasticity would

have to be considered, A detailed examination of the plastic solutions 

shows that the medium does not go into tension for values of p^/v 

between 1 and 5, and therefore cracking due to tension does not occur.

We note in passing that in the case of ideal plasticity, a/jj, * 0, the 

medium never does go into tension no matter how large poQ/poi in Case 2, 

a/|j, m 0,02, tension occurs when Pot/po “ 12,51 and in Case 1, a/^ * 0,1,

tension occurs when p„/p^ >* 7.5.00 o

Besides cracking due to tension, there is the possibility previously 

mentioned of crack propagation due to the explosion gases penetrating 

into pre-existing cracks, which sets a limit for elastic behavior at 

PQO/po~~'l. If this mechanism was the controlling form of inelasticity 

in Cowboy and if the mechanism continues to operate for overdriven shots 

at a depth of —^1 kilometer, then the appropriate undecoupling factor is 

probably close to that observed in the Cowboy experiments. If, however, 

the Cowboy inelasticity was due to something else, for instance the large 

transient pressure, or if the occurrence of plasticity has a sealing 

effect on the pre-existing cracks, which seems possible, then the 

appropriate undecoupling factor is determined by plasticity. In this case 

Table 1 shows that the undecoupling factor for deep overdriven cavities 

may be even smaller than that observed in the Cowboy experiments.
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V. COWBOT IHEUSTICITY

We have said a number of times that the tindecoupling observed in the 

Cowboy experiments was probably due not to plasticity but rather to 

cracking either because the medium was subjected to tension or because 

gases leaked into pre-existing cracks. In this section we will support 

this statement by showing that the actual observed undecoupling factors 

are consistent with this picture.
(■a)

Making use of the theory of Latter, Martinelli and Teller, we can 

write the undecoupling factor as

U
Apr;
p a *00

Si
y (17)

where r@^ is the smallest radius outside which the medium is elastic, and 

Ap is the increase in pressure at the radius r@^| p^ is the average 

pressure in the cavity and a is the radius of the cavity, as previously 

defined. The quantity Ap—the maximum radial stress which the medium can 

sustain without becoming inelastic—for rock-like materials which have no 

strength in tension, must be something in the neighborhood of the overburden 

pressure pQ, i.e.,

Ap « k p0, (18)

where k «-l.

To relate r , to Ap and p we must know how the radial stress depends el co
on the radius. If we assume that the pressure varies inversely with the 

n-th power of the radius, the connection for given p^is given by
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(19)

where the exponent n may itself depend on p^ • From Eqa. (17), (18) and 

(19) the undecoupling factor becomes

(20)

By inserting the values of the Cowboy undeooupling factors (Table l) 

we obtain an equation for each of the two cases in which Pco/pQ m 2,5 

and 5. These two equations are not sufficient to determine uniquely the 

value of k and the two values of n. However, for a reasonable value of k, 

in the range p0/2 to 3P0/2, it turns out that the two values of n are 

roughly equal to each other and lie in the range 1 to 1,5.

What does such a value of n, between 1 and 1,5, imply? From Eq, (l), 

assuming the power-law dependence for the radial stress, we see that the 

ratio of the hoop stress to the radial stress is simply

(21)

Now there are two well-known cases in which the power-law dependence of

the radial stress on distance is exact. One of these is elasticity, for

which n » 3 and therefore a /a *■ - 1/2. At the other extreme is (liquid)
r

hydrostatics for which n * 0 and o./a « 1, Between these two cases ofT» I*
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an elastio solid and a liquid (n - 3 and n « 0) one can imagine all kinds

of media with varying degrees of strength leading to values of n between 

0 and 3* In particular if n ■ 2, a^/°r m i»®»? the hoop stress is zero, 

which in some ideal sense describes a medium with open cracks such as 

might be constructed with building blocks,

We are now in a position to interpret a value of n which lies in the 

range of 1 to 1.5* Such a value of n Implies that a^/°r is between 1/3 

and 1/2 and corresponds to a medium which is intermediate between the 

building-blocks model and a liquid. We take this result to be evidence 

for cracking of the medium either with a little plasticity or more probably 

with some leakage of the gas into the cracks to provide the small amount 

of compressive hoop stress corresponding to °^/ar lying between l/3 and 

1/2.
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W© have shown that there is a possibility that plasticity plays an 

important role in decoupling with overdriven cavities. To estimate how 
important this effect may be it is necessary to know the stress-strain 

relation of the medium under appropriate loading conditions. Handin*s 

work^ provides some stress-strain data for salt, which is a medium of 

particular interest, but this data is not directly applicable to decoupling 

because the loading conditions were not appropriate.

In order to get directly applicable stress-strain data, an experiment 

should be made, preferably in the laboratory, to determine directly the 

dilatation of the volume of a cavity subjected to internal pressure. It 

is important that the cavity be under the influence of a confining 

pressure, and that this pressure be sufficiently large in some cases so 

that plastic flow occurs during the construction of the cavity. The 

results of such an experiment can be used in conjunction with the theory 

developed in the previous sections to infer the proper stress-strain 

relationship.

In addition, in order to learn more about the transient effects, 

which have not been studied in this report, small HE explosions should 
be conducted. In our opinion such a facility would be extremely useful 

in studying many phases of the decoupling problem, in particular for 

obtaining criteria for the onset of inelastic behavior. For instance, 

the influence of cracks could be investigated by using a medium which 

has been precracked in a deliberate and controlled way.
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