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SUMMARY

The effect of plasticity, including work hardening, on decoupling
underground explosions has been studied both for cavities designed to give
full decoupling according to the Geneva specification (70 cubic meters per
ton of explosive energy) as well as small (overdriven) cavities designed to
give partial decoupling, An important result is that plasticity plays no
role whatsoever for full-decoupling cavities, even those at great depth in
which some plastic flow occurs during construction Qf the cavity, For
overdriven cavities at great depth plasticity affects the decoupling factor
by an amount which depends upon the degree of overdriving and the depth

- as well as the detailed stress-strain curve of the medium, A further
result of the study is that for cavities at a depth of about one kilometer
and in a medium like salt, which exhibits a reasonable amount of work
hardening, the decoupling factor will be at least as great as that obtained
in the overdriven Cowboy experiments and could be appreciably greater,

To obtain more quantitative conclusions better stress-strain data are
needed for loading conditions appropriate to the decoupling problem,
Plastic flow associated wiﬁh pressure transients, ignored here, should also

be examined,
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I, INTRODUCTION

This report grew out of a number of questions concerning the influence
of plasticity on the selsmic signal from decoupled explosions, First, it
is well known that around cavities at great depth where the overburden
pressure is comparable to the yield stress of the medium, there is a zone
in which plastic flow occurs during the making of the cavity. The question
arises: how does the presence of this plastic zone affect the decoupling
factor?

Secondly, we recall that the volume of a decoupling cavity (in salt
at a depth of about 1 kilometer) was set at 7x10h cublic meters per kiloton
by requiring that the medium respond elastically to the explosive forces.(l)
There are two kinds of inelasticity which are important: cracking and
plastic flow, To avoid making cracks, the hoop stresses must remain
compressive because rock-like materials have little or no strength in
tension, and this requires that the average pressure in the cavity be less
than three times the overburden pressure, If the medium is already cracked,
the average pressure in the cavity must be less than the overburden
pressure itself in order to keep the crack from opening up and propagating.
Finally, to avoid plastic flow, streas differences must not become large
compared to the yield stress of the medium, even during the passage of the
large pressure pulse associated with the reflection of the shock wave from
the cavity wall, This latter effect--plasticity due to the pressure

3
spike--imposes the most stringent limit and fixes the volume quoted above,

*® At a depth of about a kilometer the volume requirement of 7xlOA cubic
meters per kiloton is equivalent to requiring that the average pressure in
the cavity not exceecd one-half of the overburden pressure,
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However this volume could clearly be reduced if the pressure splke were
eliminated, as in fact it can be by methods already suggeated.(z) In
this case, there would be a new limit on the volume due to plastic flow
asgoclated with the average pressure in the cavity, The question then
arises: at what dépth does this limit become more stringent than the
cracking limit?

Finally we note that the Cowboy experiments were conducted at a
depth of ~ 250 meters, where the overburden is only 50 bars, Therefore,
even at five times the overburden-~the greatest overdriving in Cowboy--~the
pressure barely exceeds the elastic limit of the salt and plasticity plays
essentially no role in reducing the decoupling.% However, for the nominal
cavity at a depth of 1 kilometer, five times the overburden is . 1000 v
bars--clearly exceeding the elastic limit of salt--and therefore plastic
effects cannot be ignored, The question is: how can the results of

Cowboy for the overdriven shots be extrapolated to deeper cavities?

* The reduction in decoupling observed in the overdriven Cowboy

experiments implies inelastic behavior of the medium, but this inelasticity
was most probably due to eracking,




RM-2665-AEC
3

II, STRESS AND STRAIN DISTRIBUTION BEFORE THE EXFLOSION

It is convenient to state the equations in a form which applies to
both plasticity and elasticity, Throughout we make the infinitesimal

strain approximation,

The stress equilibrium equation, assuming spherical symmetry, is

do
Ty

ACEEN RN @

where Or is the radial and Ot the tangential stress, The stresses or and
o, are related to the displacement & (which is purely radial) in the
following way:

'35“ (0% 20,) = k (%% * 2}‘?‘) s (2)

where k, the incompressibility, is assumed to be constant and the same
for both elastic and plastic deformations, FEquation (2) merely states
that the incompressibility times the dilatation 1s equal to the average
stress,

In addition it is assumed that the shear stress 9" 9 is a function

of the shear strain ¢ only, i.e,,
or"' o‘b = 0(6). (3)

The shear strain is of course just the difference between the radial and

tangential strains:

8::5-1:—%, (l&)
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In the case of elasticity o(e) is given by

a(e) = 2ue, (5)

where y is the modulus of rigidity, Since for small enough strains the
medium is elastic, any aétual function o(e) must approach 2ue near the
origin, It should also be noted that Eq, (3) implies that the shear
strain is independent of the average pressure, which is only roughly
true for real materials,

It is mathematically convenient to approximate the stress-strain
relation o(e) by a pair of straightline segments as shown in the solid
lines of Fig, 1, In this approximation

2uE (oru o

< 0)

+tS o

Ip™ O = (6) .
t

o
20840 (1~ ) (0.~ 0,2 9.),

where % is the elastic limit, and @ is a constant leass than u, chosen
to give a reasonable fit to the measured stress-strain relation o(e),
The approximation of Eq, (6) exhibits the essential elastoplastic
features of our problem and includes '?idealt? plasticity (a=0) as a
special case,

Equation (3) applies for processes in which the shear stress does
not decrease, The forming of a cavity by excavation or washing is such a
process, However, for an explosion, which involves increasing the
pressure in the cavity and therefore decreasing the existing shear streas,
Eq. (3) is not applicable, In this case, experience shows that the shear

stress decreases along a line paralleling the elastic portion of the ‘
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Fig. |—The approximate stress-strain relations given by Egs. (6) and (7).
The solid portion applies to unworked material. The dashed

line to the point B shows a typical unloading path.
Beyond B plasticity sets in again.
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stress-strain curve, so that

o~ 0 = zp(e-am&x) + 0(smax), (7)

where u is the same modulus of rigidity as before, and tmax is the
maximum strain reached by the medium at the location in question,
Equation (7) is a simple description of the work-hardening process and
means that the medium behaves elastically on stress reduction but
relative to a permanent strain state, The dashed line in Fig, 1
represents Eq, (7), with arrows appropriately indicating the loading
path, Note that plasticity ocours again at the break point B where
o(e) = - ol ).

To calculate the stresses resulting from the creation of a hole,
the above equations must be solved subject to appropriate boundary
conditions, We assume that the radius g of the hole is small compared to
its depth and that the stress in the medium before the existence of the
hole is hydrostatic and equal to ~Pys that 1a, the negative of the
lithostatic pressure at that depth, It follows that far from the hole

the stress becomes hydrostatic and equal to ~Pgs i.e.,
o= 0 =~ p, (r>> a). (8)

A second condition is that at the boundary of the (empty) hole the radial

stress is equal to zero, i,e,,

o= 0 (r = a), (9)

r
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We assume that initially the medium is everywhere at the origin of the
stress-strain curve, 1,e,, that there are no shear stresses or shear strains
prior to the formation of the hole, In forming the hole each point of the
medium moves along the stress-strain curve o(e) to some final state emax
which depends upon the radius r of the point and the hydrostatic pressure
Pge

The maximum shear stress (Grm Gt) occurs of course at the cavity
surface r = a, If the lithostatic pressure P, is less than some critical
value, the shear stress at r = a is less than oo and the entire medium is
elastic, For P, greater than the critical value there is a radius
p(>a) at which the shear stress is exactly Oy beyond which the medium
is elastic, and inside which the shear stress is determined by the plastic
branch of the stress—-strain curve., Requiring stresses and displacements
to be continuous across the radius r = p completes the specification of
the boundary conditions,

The algebra is complex and uninstructive, but leads to the following

equation for the elastic-plastic radius p:
p /3 P

- -l + k+) .—(%LE/‘)_S[.];(.Q)B,‘ oL+ ] - 0* (10)
20 k 1-(o/p) L 3%a 200

Figure 2 shows the solutions for p/a as a function of po/20o for several

Jo)
f(,na*f

W

values of a/u and for a Poisson ratio equal to 1/4, In the limiting
cases a/p = 0 and 1 (ideal plasticity and elasticity, respectively) p/a
is independent of the Poisson ratio, as is evident from Eq, (10). Note

that for a Poisson ratio of 1/ the factor (k+4u/3)/k is equal to 9/5,
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All curves start out with the same slope at the critical pressurs, the

pressure at which p=a, which is equal to 200/3. Below this pressure

there is no plasticity,

The quantities of interest can be obtained from the value of p/a

and the following formulae:

o= (830 (r>e),
.ﬁ—%ﬁoo [_l_g:*_f:&[ﬂ (%)3*5‘*4 (rgp)s
0= - p,* 20/3 (r>0),
= - p* 20/3 + m%% a- ﬁ)ootnﬁ . (r<p)s
£ Sof (2)2 (r>0),

¢ p ¢
k+ o 2, 2 a 0
- -l o @)% 20 - %) em rn 24 D) (o).

(11a)
(11b)
(12a)
(12v)
(13a)

(13v)

Of particular interest are the displacement ¢ (a) and the shear

stress o(a) at the cavity wall r = a, These quantities are shown in

Figs, 3 and / as a function of pc,/:zco for various values of o/u, again

for a Poisson ratio of 1/, In these figures the unit of displacement

is the elastic value poa/hu, and the unit of shear stress is the elastiec

value Bpo/ 2,
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Fig. 2—The elastic-plastic radius as a function of p,/2¢;, for
various values of a/u and a Poisson ratio Qf | /4
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Fig. 3—The (inward) displacement at the cavity wall (r=a) as a
function of py/20;, for various values of a/u and a Poisson
ratio of 1/4. Note that the displacement is given
as a ratio to the elastic value pya/4u.
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Fig. 4 —The shear stress at r=a as a function of po/20'o for
various values of a/p and a Poisson ratio of 1/4
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IIXI, AFTER THE EXPLOSION

The explosion subjects the cavity wall to a pressure-time history,
which can be calculated quite accurately from the equations of
hydrodynamics assuming the cavity is a rigid spherical chamber, Typically
the pressure as a function of time looks like that shown in Fig, 5 with
a very short duration spike caused by the reflected shock wave, setiling

raplidly to a steady pressure P ®

&
p(t)

Fig. 5—Pressure vs time on cavity wall

If it were necessary to solve the time-dependent elasto~plastic
equations in order to find the seismic signal corresponding to this
pressure-time history, we would be faced with a very difficult mathematical
problem, Moreover, we do not have the physical data needed to include
the effects of strain rate, which are probably important for the transients,
Fortunately, the seismic signal at a gfeat distance from the explosion
undergoes the filtering actlon of the earth, which allows only low
frequency components of the signal to be transmitted, According to the
theory of Latter, Martinelli and Teller(B) the amplitude of this low

g
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frequency signal is simply proportional to the permanent volume expansion
of any spherical surface which completely encloses all the inelastic
behavior, It follows that to obtain a good approximation for the distant
seismic signal all we need to do is solve the gtatic elasto~plastic
equations corresponding to a nonzero pressure in the cavity, specifically
the preasure p_ (Fig. 5).

The approximation here amounts to ignoring work hardening caused by
the transients, Because of the nonlinearity of plasticity, this
work hardening can affect the static solution and hence the distant
signal, The magnitude of this effect 18 being investigated, but at the
present time we believe it to be small and it will be ignored in what
follows, For our purposes then #e will start with the stresses and strains
existing around the empty cavity as calculated in the previous section
and then turn on the Poo adiabatically and monotonely, each point of the
medium moving in the stress-strain diagram along paths similar to those
shown dashed in Fig, 1,

Evidently if Poo is small enough, the point B of Fig, 1 will not be
exceeded anywhere in the medium, in which case the entire medium responds
elastically, and the plasticity which occurred during the making of the
cavity is irrelevant to the distant seismic signal, The stress and strain
distribution around the cavity is affected by the plastic zone, and can
be obtained by adding to the plastic solutions of Section II the

appropriate elastic solutions, namely
0 = - p(g')3 (14a)
r r

o = - 3202, (14b)
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We have now answered the first question raised in the introduction,
concerning the influence of the plastic zone around the cavity, by showing
that it has no effect whatsoever on the decoupling factor provided the
pressure in the hole is small enough, This leads naturally to the second
question, namely what is the maximum pressure in the hole so that the
point B (Fig. 1) is not exceeded anywhere in the medium? As the pressure
in the hole (poo) is increased, each point of the medium moves toward
(its) point B on the stress-strain diagram, but clearly the radius r = a
gets there first; we denote the value of Poo at which this occurs by pp .

From Fig. 1 and Eq, (14b) we see that

- 'g Pry * o(a) = - o(a), (15)

and hence, referring to Eq, (11b) for o(a),

Pol 2 |kt o (£y3 k - 2]
%, "3 [(k+aa53) o W7 e G- (16)

)

The quantity p/a is a function p0/200 through Eq. (10) (ef, Fig. 2).
Values of ppllzoo are plotted in Fig, 6 as a function of po/zoo for
various values of o/u and a Poisson ratio of 1/4., Referring to the
figure, we see that if Pb"-“°o/3’Pp1 is greater than P, for all values

of afu, If o/u is greater than about 0.1, ppl is greater than Pq for

any poo
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To understand the significance of these results we must know the
stress-strain diagram quantitatively, Since salt is a medium of
particular interest for decoupling cavities, we have plotted its stress-
strain diagram as given by Handin(h) in Fig, 7. Handin's data are actually
for many different cases of triaxial loading and we have chosen the
curve that seems to us most appropriate to our problem (but see the
section on recommendations below), Handin?s data are not adequate to
determine the elastic portion of the stress-strain curve and for this
purpose we have used some measurements from the Bureau of Mines,(5)
specifically, a value p 0100 kilobars, and a Poisson ratio of 1/4. A
reasonable two-segment fit to the curve in Fig, 7, assuming o's of
interest do not exceed a few hundred bars, is % about 150 bars and a/p
roughly equal to 0,1,

With these values of O_ and a/p it follows from the results in the
last paragraph that plasticity sets a less stringent limit on the cavity
volume than the requirement that the average pressure in the cavity be
less than p_ (a fortiori if the average pressure is less than l/z.pc).
Therefore the answer to the second question in the introduction is that

for fully decoupled explosions, plasticity is unimportant .at any depth,
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Fig.7—Stress—strain curve for rock salt (after Handin)
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1V, OVERDRIVEN HOLES

We come now to the last questlion, concerning the effect of
plasticity on decoupling with overdriven holes, As was mentioned in the
introduction plasticity did not play an important role in the Cowboy
experiments because of their relatively shallow depth, However for the
same degree of overdriving, i.,e,, the same value of poo/po’ for cavities
at a depth of ~ 1 km, plasticity cannot be ignored, In this case the
reduction in the decoupling factor may be due to plasticity rather than
to cracking,

That plasticity can lead to a big reduction in decoupling can be
seen from the following simple argument, Because of plasticity the value
of the stress differences ‘drn Ot! is limited to something in the
neighborhood of the yield stress oo. ir or is large compared to oo, as
it will be for overdriven shots at great depth, it follows that o will
be approximately equal to otmwwhich is the characteristic property of a
liquid, For a liquid, (static) pressures are transmitted virtually without
attenuation, which implies large displacements,

Of ocourse a plastic medium has more strength than a liquid, but how
much more depends on the detailed stress-strain dlagram or, in our
two~-segment fit, on the values of o/p and 00. To obtain a valus for the
reduction in the decoupling factor, i,e,, the *tundecoupling factor,??
due to plasticity, we have to go through an analysis similar to that of
Section IIT but with poogreater than ppl‘ The algebra is complicated,

involving bookkeeping on the zones in which plasticity has occurred once,
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twice or not at all,and we merely quote the results here, The details
(6)

are to be given in a separate report,

Table 1

UNDECOUPLING FACTOR FOR OVERDRIVEN CAVITIES
AT A DEPTH OF 1 KM (py = 200 bars)
WITH VARIOUS STRESS~STRAIN RELATIONS APPROXIMATING THAT OF SALT

Poo/Po
Case 1 25 5
1. -9, = 150, afu = 0,1 -l 1.4 2.8
2, 0 = 150, a/p = 0,02 ~L 1.8 8,2
3. 9, =150, &/u = 0 (ideal) ~1 2.0 110,
Lo Cowboy (p = 50 bars) ~) ~ly ~10

Table 1 gives the undecoupling factor for cavities at a depth of 1 km
(

in salt, assuming several different fits to Handin's 4) stress~strain
diagram given in Fig, 7., As is evident in Fig, 7 the best value of a/p
depends on the value of Peo and hence on the degree of overdriving, For
a small amount of overdriving a reasonable value of a/u is ~0,1, For
the greatest overdriving a better value of o/u is ~0,02, The extreme
plastic behavior, a&/u = 0, has also been included for comparison, Finally

the table contains the undecoupling factor experimentally determined in

the overdriven Cowboy shots,
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In interpreting the data of Table 1 it is important to inquire
whether in Cases 1 to 3 the medium has at any time gone into tension,

i.e., ¢, > O, since in that event cracking as well as plasticity would

t
have to be considered, A detailed examination of the plastie solutions
shows that the medium does not go into @ension for values of poo/p0
between 1 and 5, and therefore cracking due to tension does not occur,
We note in passing that in the case of ideal plasticity, o/u = 0, the
medium never does go into tension no matter how large poo/pog in Case 2,
a/u - 0,02, tension occurs when poo/po = 12,5; and in Case 1, a/p = 0,1,
tension occurs when poo/i)o = 7,5,

Besides cracking due to tension, there is the possibility previously
mentioned of crack propagation due to the explosion gases penetrating
into pre-existing cracks, which sets a limit for elastic behavior at
poo/poauvl. If this mechanism was the controlling form of inelasticity
in Cowboy and if the mechanism continues to operate for overdriven shots
at a depth of ~1 kilometer, then the appropriate undecoupling factor is
prdbably close to that observed in the Cowboy experiments, If, however,
the Cowboy inelasticity was due to something else, for instance the large
transient pressure, or if the occurrence of plasticity has a sealing
effect on the pre-existing cracks, which seems possible, then the
appropriate undecoupling factor is determined by plasticity. In this case

Table 1 shows that the undecoupling factor for deep overdriven cavities

may be even smaller than that observed in the Cowboy experiments,
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V. COWBOY INEIASTICITY

We have sald a rmumber of times that the undecoupling observed in the
Cowboy experiments was probably due not to plasticity but rather to
cracking either because the medium was subjected to tension or because
gases leaked into pre-existing cracks, In this section we will support
this statement by showing that the actual observed undecoupling factors
are consistent with this picture,

Making use of the theory of latter, Martinelli and Teller,(B) we can
write the undecoupling factor as

3
Apral

Us= Py (17)
Paoa3

where Ty is the smallest radius outside which the medium is elastic, and

Ap is the increase in pressure at the radius To1’ Poo is the average
pressure in the cavity and a is the radius of the cavity, as previously
defined, The quantity Ap~-the maximum radial stress which the medium can
sustain without becoming inelastic--for rock-like materials which have no
strength in tension, must be something in the neighborhood of the overburden
pressure p_, i.e.,

Ap = k Poy (18)

where ka1,

To relate Toy to Ap and Poo We must know how the radial stress depends
on the radius, If we assume that the pressure varies inversely with the

n-th power of the radius, the connection for given poois given by
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n
e
o = b, (,el) , (29)

where the exponent n may itself depend on p_ . From Eqs, (17}, (18) and

(19) the undecoupling factor becomes

33
p_\n
U - ("Po) . (20)

By inserting the values of the Cowboy undecoupling factors (Table 1)
we obtain an equation for each of the two cases in which p»oo/po = 2.5
and 5, These two equations are not sufficient to determine uniquely the
value of k and the two values of n, However, for a reasonable value of k,
in the range po/2 to 3p0/2, it turns out that the two values of n are
roughly equal to each other and lie in the range 1 to 1.5,

What does such a value of n, between 1 and 1,5, imply? From Eq, (1),
assuming the power-law dependence for the radial stress, we see that the

ratio of the hoop stress to the radial stress is simply

. n

Now there are two well-known cases in which the power-law dependence of
the radisl stress on distance is exact, One of these is elasticity, for
which n = 3 and therefore ot/or = ~ 1/2, At the other extreme is (liquid)

hydrostatics for which n = 0 and Ot/Or = ], Between these two cases of
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an elastic s0lid and a liquid (n = 3 and n = 0) one can imagine all kinds
of media with varying degrees of strength leading to values of n between

0 and 3, In particular if n= 2, Ot/br = 0, i,8,, the hoop stress is zero,
which in some ideal sense describes a medium with open cracks such as
might be constructed with building blocks,

We are now in a position to interpret a value of n which lies in the
range of 1 to 1,5, Such a value of n implies that at/cr is between 1/3
and 1/2 and corresponds to a medium which is intermediate between the
building-blocks model and a liquid, We take this result to be evidence
for cracking of the medium either with a little plasticity or more probably
with some leakage of the gas into the cracks to provide the small amount
of compressive hoop stress corresponding to ot/or lying between 1/3 and
1/2.
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VI, CONCLUSIONS

We have shown that there is a possibility that plasticity plays an
important role in decoupling with overdriven cavities, To estimate how
important this effect may be it is necessary to know the stress-strain
relation of the medium under appropriate loading conditions, Handin's
(1)

work provides some stress-strain data for salt, which is a medium of
particular interest, but this data is not directly applicable to decoupling
because the loading conditions were not appropriate,

In order to get directly applicable stress-strain data, an experiment
should be made, preferably in the laboratory, to determine directly the
dilatation of the volume of a cavity subjected to internal pressure, It
is important that the cavity be under the influence of a confining
pressure, and that this pressure be sufficlently large in some cases so
that plastic flow occurs during the construction of the cavity. The
results of such an experiment can be used in conjunction with the theory
developed in the previous sections to infer the proper stress-strain
relationship,

In addition, in order to learn more about the transient effects,
which have not been studied in this report, small HE explosions should
be conducted, In our opinion such a facility would be extremely useful
in studying many phases of the decoupling problem, in particular for
obtaining criteria for the onset of inelastic behavior, For instance,
the influence of cracks could be investigated by using a medium which

has been precracked in a deliberate and controlled way,
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