

CONF-750607-48

NOTICE

PORTIONS OF THIS REPORT ARE ILLEGIBLE. It
has been reproduced from the best available
copy to permit the broadest possible avail-
ability.

Eu_2O_3 and B_4C Worth Calculations in Fast Reactor Spectra

J. W. Daughtry

MASTER

To be presented at the 1975 Annual Meeting of the American Nuclear Society,
June 8-13, 1975, Marriott Hotel, New Orleans, Louisiana.

Hanford Engineering Development Laboratory, Richland, Washington, operated
by Westinghouse Hanford Company, a subsidiary of Westinghouse Electric
Corporation, for the United States Energy Research and Development Admin-
istration under contract number AT(45-1)-2170.

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
Research and Development Administration, nor any of
their employees, nor any of their contractors,
subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

flg

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

1. INTRODUCTION

Work is now in progress to design and fabricate europia (Eu_2O_3) control rods for irradiation testing in one of the early operating cycles of the Fast Test Reactor (FTR). These tests will provide data for evaluating europia as a possible control rod absorber material in fast reactors. Prediction of the reactivity worth of the europia rods is a necessary part of the design process. To improve the accuracy of these predictions, an experiment was performed in the FTR Engineering Mockup Critical (EMC) to determine the relative reactivity worth of Eu_2O_3 and boron carbide (B_4C) in control rod size quantities. Upon completion of the experiment, calculations were performed to obtain reactivity worths for comparison with the measured worths. From this comparison, calculation-vs.-experiment (C/E) bias factors were obtained for use in correcting the computed reactivity worth of europia in the FTR.

This report gives a brief description of the experiment (a detailed description is available in the references), the experimental results, a description of the analytical methods, the calculated results, and a comparison of the calculated and experimental results. Also included are discussions of the effects of resonance self-shielding and mesh spacing on computed absorber rod worths.

2. BACKGROUND INFORMATION

The initial FTR core will have natural boron carbide (B_4C) control rods. Other absorber materials have been considered primarily as a backup to the B_4C rods. Studies were conducted to evaluate tantalum (Ta) as a possible control material. However, Ta was found to be unsuitable primarily due to gamma heating problems. The isotopic composition of tantalum is greater than 99.9% ^{181}Ta . Absorption of neutrons produces ^{182}Ta which has a half life of 115 days. The gamma activity associated with the decay of ^{182}Ta is sufficiently high that gamma heating would present cooling problems during refueling and other shutdown operations.

Another absorber material that has been considered for use in fast reactors is europia (europium oxide, Eu_2O_3). Europia is attractive because its worth is comparable to that of boron carbide on an equal volume basis and it

does not produce helium.

Furthermore, neutron capture by either of the naturally occurring isotopes of europium, ^{151}Eu and ^{153}Eu , produces isotopes that also have relatively high neutron capture cross sections. This effect could result in a significant increase in the useful lifetime of a europia control rod.

In anticipation of the possible use of europia in liquid metal cooled fast breeder reactors (LMFBRs) and in the FTR, calculations were performed by Hanford Engineering and Development Laboratory (HEDL) personnel to determine the relative worth of boron carbide and europia. The results of the study were not in agreement with experimental data. A review of europium cross section data showed large differences in the measured capture cross sections reported by different experimenters. It was concluded that the knowledge of the europium cross section was not sufficient to properly assess the merits of europia relative to boron carbide. Consequently, in January 1973 HEDL proposed that a set of experiments be performed in the FTR-EMC to obtain integral data on the relative worth of europia and boron carbide in control rod-size quantities. The Division of Reactor Development and Technology (RDT) of the Atomic Energy Commission (AEC), now the Energy Research and Development Administration (ERDA), concurred with the HEDL proposal and directed HEDL to coordinate efforts to define and accomplish the appropriate experiment in the FTR-EMC. Concurrently, RDT directed Argonne National Laboratory (ANL), to take the necessary action to procure and fabricate the europia required for the conduct of the experiment.

A set of measurements to obtain the desired information was defined by HEDL and the experimental requirements were transmitted to ANL in April 1973. Based on these requirements ANL prepared detailed plans for the europia worth experiment to be conducted in FTR-EMC.

In the meantime, ANL procured the necessary europia and arranged for fabrication of the material into platelets suitable for use in the zero power critical facilities.

After final concurrence in the experimental plans and delivery of the fabricated Eu_2O_3 plates, the experiment was conducted in the FTR-EMC in September and October 1973.

Preliminary data from the experiments was transmitted to HEDL by ANL during the experiment and immediately after completion of the experiment. A final report on the europia worth experiment was transmitted to HEDL by ANL in January 1974.

3. DESCRIPTION OF THE EXPERIMENT

The EMC experiments for the FTR were performed by personnel of the Applied Physics Division of Argonne National Laboratory in the ZPR-9 critical facility. Initial criticality of the FTR-EMC was achieved in March 1971. For a detailed description of the mockup, see References 1 and 2.

The program of experiments performed in the EMC was divided into two phases. The first phase, designated Phase C of the FFTF critical experiments program⁽³⁾, was composed of experiments related to core and shielding design and to safety problems having direct impact on the design. The second phase of experiments, designated Phase D, consisted of measurements related to FFTF operations and safety.

The europia worth experiment was Part IV of Phase D. The purpose of the experiment was to evaluate the control properties of europia in a fast reactor environment. There were three specific objectives: (1) to compare the worth of europia with that of boron carbide on an equal volume basis, (2) to investigate self-shielding effects, and (3) to provide a basis for the evaluation of analytical methods for computing B_4C and Eu_2O_3 control rod worths and for the evaluation of europium cross section data.

A description of the reactor configuration for this experiment, the measurements that were made, and the results obtained are given, briefly, below. For further details see Reference 4.

3.1 Reference Core Configuration

The reference configuration for the experiment was designated BOL-REF-5S. It was an EMC configuration representing the FTR at the beginning-of-life. Figure 1 is a diagram showing the BOL-REF-5S configuration of the EMC as viewed at the midplane of the assembly. At the bottom right is a region added to the EMC for other experiments, representing a portion of the FTR

radial shield. The simulated peripheral shim, PSR-722 (shown with a dashed outline), was not part of the BOL-REF-5S configuration but is shown because it was one of the three locations at which europia worth measurements were made. In the BOL-REF-5S configuration the three simulated safety rods, SR-304, SR-308, and SR-312 were parked. A parked rod is one that is withdrawn 36" so that the absorber material is above the core, the bottom tip of the absorber is even with the top of the core and the safety rod channel is filled with sodium. Of the six control rods, CR-506, CR-514, and CR-522 were parked and CR-508, CR-516 and CR-524 were fully inserted. The excess reactivity of BOL-REF-5S configuration was measured on six different occasions from August 1973 to June 1974. The excess reactivity decreased gradually with time due to the radioactive decay of ^{241}Pu . Over a time span of this duration the decay of ^{241}Pu can be adequately approximated by a straight line. A least squares fit of the excess reactivity data to a straight line (see Appendix A) provided a curve of the excess reactivity of the BOL-REF-5S configuration at any time during the Phase D experiments. The excess reactivity of this reference configuration was between 80 and 100 inhours during the europia experiment.

3.2 Description of Absorber Assemblies

Europia and boron carbide worth measurements were made at three locations in the EMC: (1) the simulated row 3 safety rod location, SR-308, (2) the simulated row 5 control rod location, CR-514, and (3) the simulated row 7 peripheral shim rod location, PSR-722 (see Figure 1). In order to investigate self-shielding effects, four control material compositions were employed for both europia and boron carbide. The four europia platelet loading patterns are shown in Figure 2. Each simulated absorber rod (control, safety, or peripheral shim) was an array of four matrix tubes, two type A and two type B, arranged as indicated in Figure 3.

The diagrams in Figure 2 show the arrangement of sodium (Na) and europia (Eu_2O_3) within each matrix tube. The overall length of the absorber region of a simulated rod was 91.6 cm. The total volume of this length of four matrix tubes was 11.209 liters.

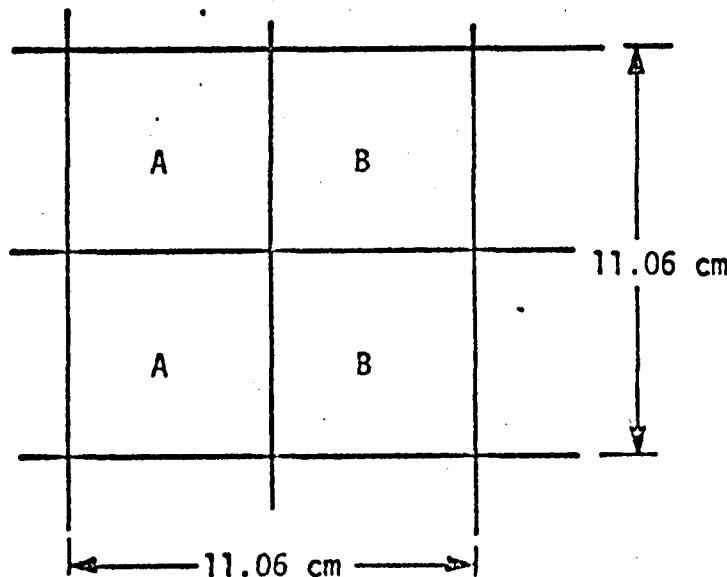
EUROPIA #1

Na							

EUROPIA #2

Na							

EUROPIA #3


Na							

EUROPIA #4

Na							

HEDL 7502-086.8

Figure 2. Europa Control Material Loading Patterns

HEDL 7502-086.9

Figure 3. Arrangement of Type A and Type B Tubes in a Simulated Absorber Rod

Table I. Atom Densities of Eu_2O_3 , B_4C and Sodium Channel Compositions

Isotope or Element	Eu_2O_3 Compositions ^a				B_4C Compositions ^b				Sodium Channel Composition
	#1	#2	#3	#4	#1	#2	#3	#4	
^{151}Eu	0.4511	0.9022	1.7993	3.6010					
^{153}Eu	0.4862	0.9724	1.9392	3.8810					
Fe	10.9398	11.3193	13.7504	13.5933	10.8920	11.2226	13.5550	13.2067	10.5612
Ni	1.4544	1.5104	1.8690	1.8459	1.4472	1.4960	1.8400	1.7884	1.3985
Cr	3.1274	3.2367	3.9367	3.8914	3.1135	3.2086	3.8800	3.7793	3.0184
Mn	0.2406	0.2487	0.3010	0.2976	0.2396	0.2467	0.2968	0.2892	0.2325
Mo	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099	0.0099
C	0.0316	0.0323	0.0362	0.0360	0.8063	1.5710	3.1258	6.1705	0.0310
Si	0.1977	0.2045	0.2482	0.2454	0.1969	0.2028	0.2447	0.2384	0.1909
Cu	0.0212	0.0218	0.0255	0.0253	0.0211	0.0216	0.0252	0.0247	0.0206
S	0.0021	0.0021	0.0027	0.0027	0.0020	0.0021	0.0027	0.0026	0.0020
P	0.0056	0.0057	0.0067	0.0066	0.0056	0.0057	0.0066	0.0065	0.0054
Co	0.0092	0.0093	0.0104	0.0103	0.0091	0.0093	0.0103	0.0101	0.0090
Al	0.0062	0.0068	0.0103	0.0101	0.0061	0.0066	0.0100	0.0095	0.0057
Na	17.2426	15.9569	12.3632	8.2421	17.2426	15.9569	12.3632	8.2421	18.5284
O	1.4060	2.8119	5.6075	11.2228	0.0008	0.0015	0.0031	0.0061	
H					0.0123	0.0245	0.0491	0.0976	
N					0.0027	0.0053	0.0106	0.0211	
^{10}B					0.5786	1.1494	2.3079	4.5826	
^{11}B					2.3780	4.7240	9.4852	18.8338	

^a Isotopic composition of Eu_2O_3 : ^{151}Eu 41.28 w/o; ^{153}Eu 45.08 w/o; O 13.64 w/o.

^b Isotopic composition of B_4C : ^{10}B 14.00 w/o; ^{11}B 63.25 w/o; C 22.48 w/o; N, Fe, O, H 0.20 w/o.

$+ 0.0658 \pm .0039 \%$ $\Delta k/k$. At the CR-514 location the worth was $+ 49.9 \pm 4.3$ IH or $+ 0.0476 \pm .0041 \%$ $\Delta k/k$.

3.3.2 B_4C and Eu_2O_3 Rod Worths

The experimental data from the B_4C and Eu_2O_3 worth measurements are given in Table II. For each measurement of B_4C worth the number of grams of ^{10}B and the kilograms of B_4C are shown. The volume fractions were obtained by dividing the number of kilograms of B_4C by the mass that would occupy the 11.203 liter control rod at the theoretical maximum density of B_4C - 2.518 grams/cm³ (6,7).

In the set of data for B_4C at the CR-514 location one additional measurement is included. This is the worth of the EMC control rod composition, which has about 50% more boron carbide than B_4C #4. The data were obtained from the control rod interaction experiment (8). In order to make this result consistent with the other measured worths in the table, two adjustments were necessary. First, the core configuration was slightly different and calculations indicated that the worth should be reduced by 1.5% to account for this difference. Second, the worth of the rod was measured for withdrawal from inserted to parked. Therefore, to be consistent with the remainder of the worth measurements in the table, the worth of removing the parked rod was added to the reported worth. The adjusted worth is given in Table II.

The europia worth data are given in Part B of Table II. The theoretical maximum density of Eu_2O_3 that was used to obtain the volume fractions was 7.951 grams/cm³ (9).

As indicated in Section 3.2, the results given in Table II are the reactivity worths of each absorber composition relative to sodium channel composition.

The worth of B_4C and Eu_2O_3 as a function of volume fraction at the PSR-722 location is shown in Figure 4. The corresponding data at the CR-514 location are shown in Figure 5. The shaded region in each figure between 0.28 and 0.32 on the volume fraction scale corresponds to the amount of B_4C in an FTR absorber rod. A range is indicated because the

Table II
Measured Reactivity Worths of B_4C and Eu_2O_3 Compositions

A. B_4C Worths

B_4C		Control Rod Location	Composition No.	Mass of ^{10}B Grams	Mass of B_4C kg	Volume Fraction	Measured Worth		
Inhours ^c	% $\Delta k/k$ ^d								
PSR-722 1	109	0.769	0.0272	-	50.6 \pm 3.4	-0.0483 \pm .0032			
PSR-722 2	216	1.527	0.0541	-	75.2 \pm 3.4	-0.0718 \pm .0032			
PSR-722 3	434	3.066	0.1086	-	107.5 \pm 3.4	-0.1025 \pm .0032			
PSR-722 4	862	6.087	0.2157	-	154.9 \pm 3.4	-0.1478 \pm .0032			
CR-514 1	109	0.769	0.0272	-	206.5 \pm 3.4	-0.1971 \pm .0032			
CR-514 2	216	1.527	0.0541	-	369.3 \pm 3.5	-0.3525 \pm .0033			
CR-514 3	434	3.066	0.1086	-	632.9 \pm 4.8	-0.6041 \pm .0046			
CR-514 4	862	6.087	0.2157	-	1021.7 \pm 3.4	-0.9752 \pm .0032			
CR-514 a	1324	9.348	0.3312	-	1355.6 \pm 18.3	-1.2939 \pm .0175			
SR-308 4	862	6.087	0.2157	-	1492.3 \pm 12.8	-1.4243 \pm .0123			

B. Eu_2O_3 Worths

Eu_2O_3		Location	Composition No.	Mass of Eu_2O_3 kg	Volume ^b Fraction	Measured Worth		
Inhours ^c	% $\Delta k/k$ ^d							
PSR-722 1	3.062	0.0344	-	66.0 \pm 3.4	-0.0630 \pm .0032			
PSR-722 2	6.125	0.0687	-	93.3 \pm 3.4	-0.0891 \pm .0032			
PSR-722 3	12.214	0.1371	-	123.7 \pm 3.4	-0.1181 \pm .0032			
PSR-722 4	24.445	0.2743	-	173.7 \pm 3.4	-0.1658 \pm .0032			
CR-514 1	3.062	0.0344	-	290.0 \pm 3.5	-0.2768 \pm .0033			
CR-514 2	6.125	0.0687	-	477.4 \pm 3.5	-0.4557 \pm .0033			
CR-514 3	12.214	0.1371	-	768.9 \pm 5.0	-0.7339 \pm .0048			
CR-514 4	24.445	0.2743	-	1168.3 \pm 8.8	-1.1151 \pm .0084			
SR-308 4	24.445	0.2743	-	1700.8 \pm 16.4	-1.6233 \pm .0157			

a From Ref. 8 adjusted for parked rod worth.

b Based on theoretical maximum density of 2.518 g/cm^3 for B_4C and 7.951 g/cm^3 for Eu_2O_3 and 11.203 liter control rod volume.

c From Ref. 4 except as indicated in (a).

d 1047.71 inhours = 1% $\Delta k/k$ (Ref. 5).

rods have not yet been fabricated and the amount of B_4C can vary by the amount shown and still meet purchase specifications.

4. CALCULATIONS

The reactivity worths of the B_4C and Eu_2O_3 substitutions were computed for comparison with the experimental results. The purpose of the computations and comparison was to evaluate the analytical methods and europia cross sections and to obtain bias factors to use for adjusting the computed worths of europia rods in the FTR.

An outline of the computational procedure is shown schematically in Figure 6. Each step in this procedure will be discussed below. The reactivity worth ($\Delta\rho$) of each absorber composition was obtained from the difference in k_{eff} between the rod-in and rod-out configurations, as follows:

$$\Delta\rho = \rho_2 - \rho_1 = \frac{k_2 - 1}{k_2} - \frac{k_1 - 1}{k_1} = \frac{k_2 - k_1}{k_2 k_1} , \quad (1)$$

where the k 's are the computed eigenvalues.

4.1 Multigroup Cross Section Preparation

4.1.1 Europium Cross Section Data Evaluations

One of the objectives of this study was to compare the computed reactivity worths of europia control rods obtained from different sources of microscopic cross section data and to determine, if possible, which source of data is preferable. Europium cross sections from three sources were compared: (1) ENDF/B version 3⁽¹⁰⁾, (2) an evaluation by Schadel and Schenter⁽¹¹⁾, and (3) ENDF/B version 4⁽¹²⁾. In this study these three Eu evaluations are designated Eu-A, Eu-D, and Eu-H, respectively. Figure 6 shows the steps involved in the preparation of a 30-energy group cross section set from ENDF/B version 3 (Eu-A). The other two europium data evaluations were treated in the same manner and europia control rod worths were computed using each set of europium cross sections.

The platelet loading patterns for the B_4C rods were identical to those in Figure 2 with the Eu_2O_3 replaced with B_4C .

The atom densities of the eight control compositions are given in Table I. The reactivity worths of all eight compositions were measured at the CR-514 and PSR-722 locations. At the SR-308 location only the worths of Eu_2O_3 #4 and B_4C #4 were measured.

Before substituting the europia and boron carbide compositions in SR-308 or CR-514, the parked rod at each location was removed and replaced with materials representing the control rod plenum and drive shaft which are normally in the region above a simulated inserted control rod. The reactivity of the EMC was measured with each of the parked rods removed to provide the reference reactivity values needed in determining the worth of each absorber composition in SR-308 and CR-514. At the PSR-722 location a reactivity measurement was made with PSR-722 inserted but with the control rod composition removed and replaced with sodium channel composition to provide a reference for the absorber worths at that location. Thus, all boron carbide and europia worth measurements in this experiment were relative to sodium channel composition. The atom densities for sodium channel composition are given in Table I and the platelet loading was identical to the type B tubes shown for Europa #1 or #2 in Figure 2.

3.3 Results of the Experiment

The reactivity worths obtained in this experiment were reported in Reference 4 in units of inhours. The results are given in this section for easy reference and have also been converted to units of $\% \Delta k/k$ for comparison with the calculated reactivities. The conversion factor was 1047.71 inhours per $1\% \Delta k/k$ ⁽⁵⁾.

3.3.1 Removal of Parked Rods

As mentioned in Section 3.2, the parked rods of SR-308 and CR-514 were removed before the Eu_2O_3 and B_4C worth measurements were made at each location. Data were taken to give the worth of removing each parked rod and replacing it with control rod plenum and drive shaft compositions. At the SR-308 location this worth was $+ 68.9 \pm 4.1$ Ih.

4.1.2 ETOX Processing

Natural europium is 47.8 atom percent ^{151}Eu and 52.2 atom percent ^{153}Eu . Microscopic cross section data for both isotopes were available from each of the three evaluations mentioned in the previous section. The microscopic data were processed using the ETOX code⁽¹³⁾ to provide multigroup data in the "Russian" or Bondarenko⁽¹⁴⁾ format. The ETOX code provided "infinitely dilute" group cross sections, inelastic transfer matrices, and tables of self-shielding factors as a function of temperature and σ_0 (see Appendix B).

4.1.3 Cross Section Libraries and Group Structure

Two multigroup, neutron cross section libraries, FTR Set 300⁽¹⁵⁾ and FTR Set 300-S⁽¹⁶⁾, have been employed for the analysis of the EMC experiments. Set 300 is a 30-energy group library generated from ENDF/B version 2 data but modified to be essentially equivalent to an ENDF/B version 3 set. Set 300-S is a 42-energy group library developed primarily for shielding calculations. The cross section data contained in the 25 highest energy groups (10 MeV to 275.4 eV) of cross section sets 300 and 300-S are identical. However, the energy range between 275.4 eV and thermal neutron energies is divided into four groups in Set 300 and 12 groups in Set 300-S. Europium-151 and -153 cross section data from Eu-A, Eu-D and Eu-H were prepared in 30 groups with the ETOX code and added to FTR Set 300 using PUPX, a code that prepares cross section data tapes from the ETOX output in the format needed by the HEDL reactor neutronics codes. In addition, the europium cross sections were prepared in 42 groups and added to FTR Set 300-S. The 30-group cross sections were used for the SR-308 and CR-514 worth calculations.

However, at the PSR-722 location, a comparison of the computed worth of the europia #4 composition in 30 groups and 42 groups showed that the 42-group calculations gave a worth 3% greater than that obtained in 30 groups. As a result all subsequent calculations of absorber worths at the PSR-722 location were done in 42 groups.

Infinitely dilute ^{151}Eu neutron capture and total cross sections in 42 groups are listed in Table III for Eu-A, Eu-D, and Eu-H. The corresponding cross sections for ^{153}Eu are listed in Table IV. Table V gives the energy and lethargy structure for the 42-group cross section set.

4.1.4 Eu Resonance Self-Shielding

Resonance self-shielding in the europia platelets was investigated to determine the best method to obtain effective cross sections for computing the worths of the four europia compositions employed in this study (see Appendix B). The investigation of this effect showed that resonance self-shielding was significant in the europia platelets; i.e., "infinitely dilute" europium cross sections would give computed europium reaction rates and worths that would be too high.

Several approximations were considered for determining the proper self-shielding effect. The "isolated lump" approximation seemed best suited for the europia #1 and #2 platelet configurations. For europia #3 and #4 the self-shielding should be greater than the isolated lump case but less than in an "infinite heterogeneous medium" of platelets with the europia #3 and #4 spacing. It was found that there was no significant difference between the computed europia worths obtained with the "isolated lump" and the "infinite heterogeneous medium" cross sections. Furthermore, the same reactivity values were obtained when homogeneously resonance self-shielded cross sections were used.

In summary, resonance self-shielding effects were found to be important but not very sensitive to the different approximations considered. The cross sections used for the calculation of europia worths were shown to be equivalent to those obtained by using homogeneous resonance self-shielding of the europia #4 composition.

4.1.5 One-Dimensional Model for Elastic "Down-Scattering" Cross Sections

In order to obtain effective cross sections for the transfer of neutrons from one energy group to the next lower energy (i.e., "down-scattering"), it is necessary to know the neutron spectrum. A one-

Table III
Eu-151 Capture and Total Infinitely
Dilute Neutron Cross Sections

Group No.	σ_c , barns			σ_t , barns		
	Eu-A	Eu-D	Eu-H	Eu-A	Eu-D	Eu-H
1	.014	.018	.005	4.835	4.839	4.828
2	.021	.047	.031	5.407	5.432	5.393
3	.041	.115	.201	6.507	6.582	6.490
4	.090	.270	.457	7.317	7.497	6.733
5	.197	.443	.687	7.508	7.754	6.947
6	.252	.624	.762	7.689	8.061	7.524
7	.336	.819	.864	8.097	8.580	8.136
8	.452	1.110	.961	8.321	8.979	8.624
9	.720	1.500	1.169	8.772	9.552	9.594
10	1.207	1.990	1.407	9.504	10.287	11.136
11	1.863	2.630	1.678	10.515	11.282	12.911
12	2.508	3.470	2.238	11.677	12.639	15.130
13	3.589	4.580	3.327	13.049	14.040	17.017
14	4.691	5.660	4.564	14.353	15.322	18.842
15	5.316	6.720	5.672	15.695	17.098	20.806
16	5.965	8.690	6.957	18.207	20.933	23.669
17	7.908	11.900	10.343	21.908	25.901	28.907
18	11.149	16.200	14.555	26.491	31.542	34.820
19	13.921	19.700	13.148	30.166	35.945	39.538
20	15.569	21.700	20.280	32.265	38.396	42.227
21	17.397	24.000	22.642	34.543	41.147	45.141
22	21.739	29.400	28.244	39.777	47.438	51.825
23	29.976	39.000	38.847	49.318	58.342	63.989
24	40.968	51.000	52.958	61.546	71.579	79.560
25	55.508	66.300	71.582	77.233	88.024	99.517
26	74.598	84.000	95.984	97.360	106.762	125.113
27	99.515	105.000	127.785	123.195	128.680	157.959
28	131.826	131.886	126.602	156.363	156.363	155.315
29	173.786	173.785	238.505	198.941	198.941	285.089
30	234.946	234.945	200.632	258.905	258.905	219.048
31	166.956	166.955	188.882	177.050	177.050	201.176
32	226.779	226.779	240.137	235.744	235.744	251.487
33	382.746	382.746	410.987	394.376	394.376	427.349
34	852.713	852.713	776.741	874.451	874.451	797.536
35	189.613	189.613	193.059	192.723	192.723	200.154
36	186.505	186.515	208.933	192.983	192.983	222.100
37	968.372	968.372	1058.321	979.586	979.586	1071.782
38	9946.753	9946.753	9946.750	10037.175	10037.175	10037.172
39	6315.660	6315.650	6315.668	6335.918	6335.918	6335.926
40	1904.782	1904.782	1904.797	1903.483	1903.482	1903.493
41	1843.263	1843.263	1843.258	1845.402	1845.401	1845.397
42	9377.206	9377.205	5193.921	9380.588	9380.588	5196.625

Table IV
Eu-153 Capture and Total Infinitely
Dilute Neutron Cross Sections

Group No.	σ_c , barns			σ_t , barns		
	Eu-A	Eu-D	Eu-H	Eu-A	Eu-D	Eu-H
1	.009	.029	.003	4.839	4.860	4.794
2	.015	.058	.022	5.406	5.448	5.401
3	.029	.107	.110	6.503	6.580	6.429
4	.066	.179	.267	7.321	7.434	6.824
5	.141	.256	.403	7.502	7.617	6.712
6	.181	.346	.430	7.794	7.959	6.721
7	.242	.481	.449	8.097	8.336	6.942
8	.326	.657	.482	8.331	8.661	7.180
9	.520	.895	.591	8.775	9.150	7.740
10	.978	1.120	.939	9.654	9.796	8.802
11	1.351	1.410	1.444	10.520	10.579	10.090
12	1.806	1.960	1.814	11.690	11.844	11.696
13	2.586	2.860	2.298	13.074	13.348	13.694
14	3.372	3.760	3.036	14.365	14.754	15.611
15	4.124	4.620	3.448	15.434	15.930	16.711
16	5.257	6.260	4.444	16.892	17.895	18.527
17	5.578	8.670	6.333	17.897	20.990	21.495
18	7.868	11.700	8.904	21.267	25.099	25.134
19	9.838	14.100	11.099	23.970	28.232	28.035
20	11.013	15.500	12.403	25.515	30.002	29.687
21	12.320	17.000	13.847	27.191	31.872	31.477
22	15.434	20.700	17.276	31.044	36.310	35.582
23	21.369	27.300	23.026	38.069	44.000	43.053
24	29.327	35.900	31.028	47.075	53.648	52.814
25	39.898	46.900	42.230	58.630	65.632	64.869
26	53.824	60.300	56.935	73.457	79.934	80.586
27	72.050	76.500	76.297	92.491	96.941	100.754
28	95.779	95.779	95.453	116.927	116.927	121.730
29	126.541	126.541	151.494	148.297	148.297	177.334
30	153.817	153.816	80.177	174.068	174.068	91.750
31	238.876	238.875	240.439	260.202	260.202	261.353
32	297.605	297.605	309.875	313.655	313.655	328.715
33	96.357	96.357	83.851	100.978	100.978	91.790
34	640.032	640.032	626.050	652.323	652.323	641.604
35	906.989	906.989	1023.501	919.703	919.703	1042.573
36	113.035	113.035	111.869	115.206	115.206	116.404
37	35.240	35.240	36.262	38.512	38.512	41.029
38	188.659	188.659	188.659	192.498	192.498	192.498
39	105.384	105.384	105.384	109.242	109.242	109.242
40	105.261	105.261	105.261	109.479	109.479	109.479
41	146.977	146.977	146.977	151.410	151.410	151.410
42	453.905	453.905	290.094	458.662	458.662	294.751

Table V
42-Group Energy and Lethargy Structure

<u>GROUP</u>	<u>LOWER ENERGY BOUNDARY^a (ev)</u>	<u>LETHARGY INTERVAL</u>
1	6.065 + 6	.5
2	3.679 + 6	.5
3	2.231 + 6	.5
4	1.353 + 6	.5
5	8.208 + 5	.5
6	4.979 + 5	.5
7	3.877 + 5	.25
8	3.020 + 5	.25
9	1.832 + 5	.5
10	1.111 + 5	.5
11	6.738 + 4	.5
12	4.087 + 4	.5
13	2.554 + 4	.47
14	1.989 + 4	.25
15	1.503 + 4	.28
16	9.119 + 3	.5
17	5.531 + 3	.5
18	3.355 + 3	.5
19	2.840 + 3	.167
20	2.404 + 3	.167
21	2.035 + 3	.167
22	1.234 + 3	.5
23	7.485 + 2	.5
24	4.540 + 2	.5
25	2.754 + 2	.5
26	1.670 + 2	.5
27	1.013 + 2	.5
28	6.144 + 1	.5
29	3.727 + 1	.5
30	2.260 + 1	.5
31	1.371 + 1	.5
32	8.315 + 0	.5
33	5.043 + 0	.5
34	3.059 + 0	.5
35	1.855 + 0	.5
36	1.125 + 0	.5
37	6.826 - 1	.5
38	4.140 - 1	.5
39	2.511 - 1	.5
40	1.523 - 1	.5
41	9.237 - 2	.5
42	Thermal	.5

^a Highest energy is 10 MeV.

dimensional model of the EMC was prepared to obtain the approximate neutron spectrum in the row 5 rod and row 7 rod locations. Table VI gives the dimensions, mesh spacing, and compositions used in the IDX⁽¹⁷⁾ code for this calculation. Cross sections for the removal of neutrons from each energy group due to elastic scattering were obtained for ¹⁵¹Eu, ¹⁵³Eu, and ¹⁶O. The row 5 cross sections were obtained in 30 groups, the row 7 cross sections were in 42 groups.

Similar computations were done to obtain the down-scattering cross sections for ¹⁰B, ¹¹B, and C.

4.1.6 Flux Depression in Absorber Platelets

In diffusion theory calculations, reaction rates are computed for each mesh interval from the product of the neutron flux and the macroscopic cross section in the mesh interval. Cross sections are input by zone. When strong absorbers are present in platelets smaller than the dimensions of a zone, the average flux actually seen by the absorber atoms may be less than the average flux in the zone due to local flux depressions caused by the strong absorber. This effect tends to make the computed absorber worth too large.

To determine the magnitude of the reactivity error, transport calculations were made using the DTF-IV⁽¹⁸⁾ computer code and a one-dimensional model of the Eu₂O₃ compositions shown in Figure 2. Similar calculations were made for the B₄C compositions. The results⁽¹⁹⁾ showed that the calculated worths could be as much as 4.6% too high for the Eu #1 loading, but not more than 1.2% too high for the Eu #4 loading. The boron carbide platelets used for B₄C loading #s 1-4 were a lower fraction of theoretical density than the europia platelets and consequently had lower worths and smaller flux depression effects, ranging from a maximum of 2.7% down to about 0.8%. Since the calculations were done in one-dimensional slab geometry they were intended to establish an upper limit to the reactivity error caused by the flux depression in the absorber platelets. However, additional studies have raised some doubts about the validity of the transport calculations. Due to these uncertainties, the

Table VI
Radial One-Dimensional Model of FTR-EMC

<u>Outer Radius cm</u>	<u>Number of Mesh Intervals</u>	<u>Zone Number</u>	<u>Material^a</u>
6.319	4	1	ID
16.719	5	2	68% ID, 16% MT, 16% GP
27.545	6	3	76% ID, 24% NA
38.439	6	4	73% ID, 16% MT, 5.5% GP, 5.5% SP
42.533	3	5	OD
45.200	4	8	50% CR, 50% NA
49.356	3	5	OD
60.581	5	6	OD
65.294	3	7	RR
66.205	2	9	PS
89.145	7	7	RR
91.685	2	10	NG

a Material Notation:

ID Inner Driver
 OD Outer Driver
 RR Radial Reflector
 GP General Purpose Loop
 NA Sodium Channel

CR Control Rod
 PS Peripheral Shim
 MT Material Test
 SP Special Purpose Loop
 NG Sodium Gap

calculated control rod worths have not been adjusted to account for these spatial flux depressions. Further studies are planned to validate or correct the transport methods to account for this effect.

4.1.7 EMC Cross Sections Other Than Eu_2O_3 and B_4C

The discussion of multigroup cross section preparation methods in this report has been concerned with the Eu_2O_3 and B_4C cross sections. The preparation of 30-group and 42-group cross section sets for the EMC has been described in an earlier report⁽²⁰⁾. The Eu_2O_3 and B_4C cross sections were combined with the other EMC cross sections using the code, SORTXS, as indicated in Figure 6. The end result was one set of cross sections for the EMC in 30 groups containing Eu_2O_3 and B_4C cross sections prepared for the row 5 location and another set in 42 groups with Eu_2O_3 and B_4C cross sections prepared for row 7. To check the effect of 42 groups vs. 30 groups in the row 7 location, Eu_2O_3 cross sections were also prepared for row 7 in 30 groups. The results of this comparison were discussed in Section 4.1.3.

4.2 Calculational Model

4.2.1 Geometry of 2-D X-Y Model

The computation of k_{eff} for each reactor configuration assembled in the experiments was done with the two-dimensional diffusion theory code, 2DBS⁽²¹⁾. The computations were done in X-Y geometry because the experiment included only configurations with the absorber rods either fully inserted or fully withdrawn. No configurations were assembled with partially inserted rods.

The model of the EMC used for the computations in this study is shown in Figure 7. The type of material in each zone of the figure is given in Table VII. The atom densities for Zones 4, 5, 6, 13 and 14 are given in Table VIII. Atom densities for all other numbered zones are given in Reference 1. The shaded zone in Figure 7 contained a combination of sodium gap and radial reflector, shield type 1 or shield type 2 composition. The zones labeled A, B, and C were the three locations

Table VII
Compositions Used in Two-Dimensional
X-Y Calculations

<u>Zone No.</u>	<u>Composition</u>
1	Inner Driver
2	Outer Driver
3	Radial Reflector
4	Empty Matrix Tubes
5	Outer Driver Type A Partial Drawer with ZPR-9 Safety Rod Cavity
6	Outer Driver Type B Partial Drawer with ZPR-9 Safety Rod Cavity
7	Special Purpose Loop
8	General Purpose Loop
9	Material Test
10	Sodium Channel
11	Control Rod
12	Peripheral Shim Rod
13	Shield Type 1
14	Shield Type 2

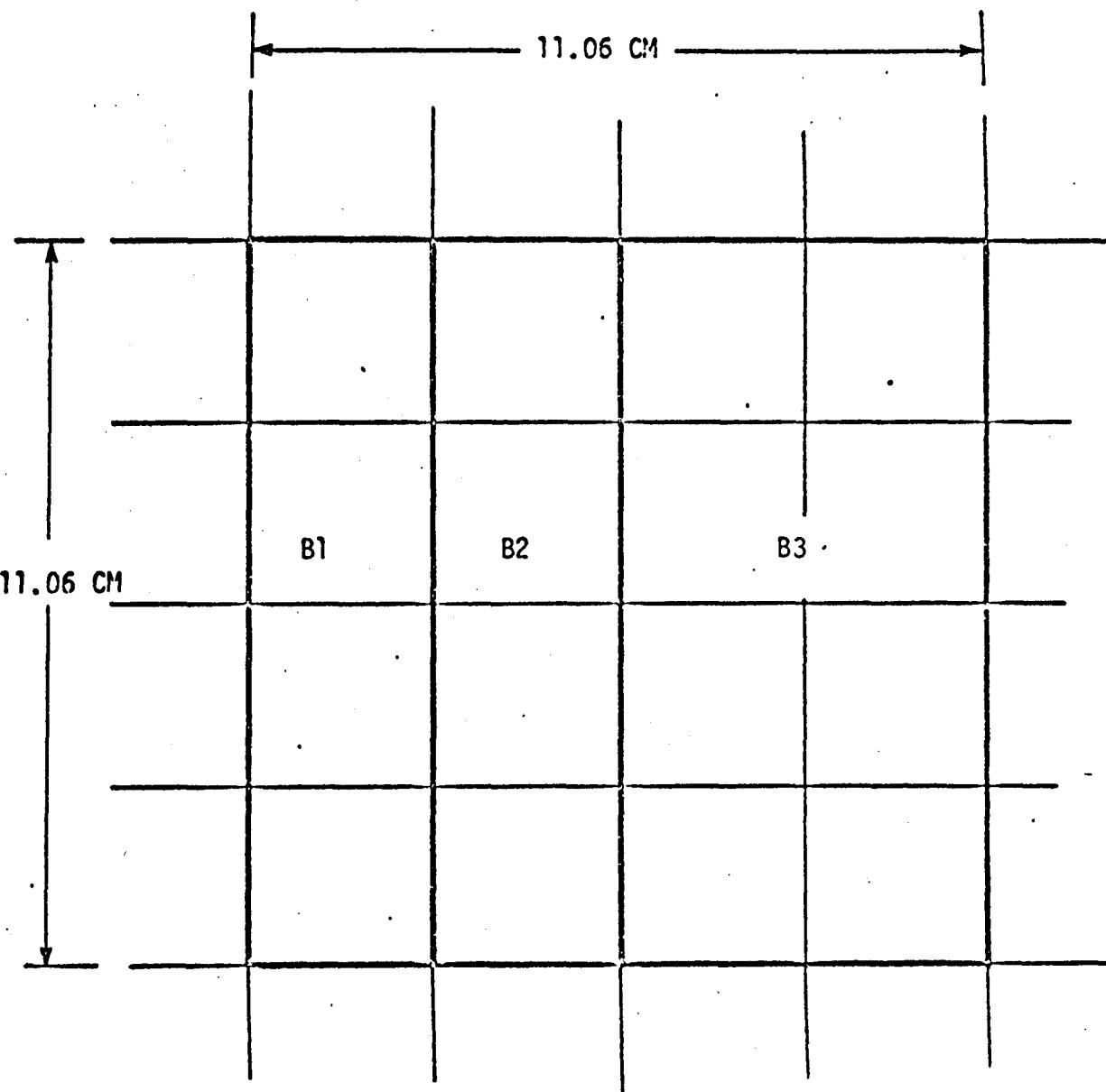
Table VIII
EMC Atom Densities (Zones 4, 5, 6, 13 and 14)

<u>Isotope or Element</u>	<u>10²¹ atoms/cm³</u>				
	<u>Zone Numbers</u>	<u>#4</u>	<u>#5</u>	<u>#6</u>	<u>#13</u>
²³⁸ Pu		0.001		0.0095	
²³⁹ Pu		1.763		1.478	
²⁴⁰ Pu		0.233		0.174	
²⁴¹ Pu		0.031		0.019	
²⁴² Pu		0.004		0.002	
²³⁵ U		0.011		0.012	
²³⁸ U		5.008		5.117	
O		8.113		8.113	
Na		6.666		6.666	1.052
Fe	4.1516	13.719	13.443	53.265	46.344
Cr	1.1763	2.972	2.893	14.905	12.937
Ni	0.5096	1.376	1.340	6.188	5.335
Mn	0.0902	0.233	0.227	1.190	1.035
Mo	6.0059	0.461	0.440	0.082	0.072
C		1.070	1.069	0.178	0.151
Al				0.001	6.962

at which the Eu_2O_3 and B_4C worths were measured. Zone A is SR-303, Zone B is CR-514 and Zone C is PSR-722.

The overall dimensions for the model were 204.64 cm in the horizontal direction and 193.58 cm in the vertical direction.

4.2.2 Mesh Spacing


A study was made to determine the effect of mesh spacing on the calculated worth of a control rod in the EMC (see Appendix C). The mesh spacing chosen for the europia worth experiment gave sixteen mesh points within a control rod. The primary advantage of this choice over one having four mesh intervals is the capability it affords to locate the absorber plates more accurately within the simulated control rod. Note, that in Figure 2, the europia platelets in compositions 1 and 2 are in the right half of the type A drawer.

Since the computer memory requirements and problem running time increase as the total number of mesh points in the problem increases, it was decided to have a lower mesh density over the remainder of the core. Thus, in Figure 7, in the horizontal direction from X_0 to X_1 and from X_2 to X_3 the mesh spacing was 5.531 cm. Between X_1 and X_2 the mesh spacing was 2.765 cm. Similarly, in the vertical direction the mesh spacing between Y_1 and Y_2 was 2.765 cm and was 5.531 cm over the remainder of the model. This mesh spacing gave 49 mesh intervals in the X direction and 41 in the Y direction for a total of 2,009 mesh intervals for the entire problem.

The zone labeled B in Figure 7, which is CR-514, was subdivided into three zones, as shown in Figure 8. Zone C of Figure 7 was also subdivided into three zones in the same manner as Zone B. Since only B_4C #4 and Eu_2O_3 #4 compositions were measured in Zone A, this zone was not subdivided.

4.2.3 Axial Buckling

In a two-dimensional X-Y diffusion theory problem, the axial, or Z, direction is treated by assuming an axial buckling. In this study an

HEDL 7502-086.10

Figure 8. Zoning of CR-514 For The Europa Worth Experiment

energy independent buckling of 0.000565 cm^{-2} was used in all computations for all regions of the reactor except the shield sector, Zones 13 and 14, and the empty matrix tubes, Zone 4. Zero axial buckling was used in these regions. The value of 0.000565 was obtained by determining the axial buckling in a 2-D X-Y problem that gave the same eigenvalue that was obtained in a 3-D X-Y-Z geometry diffusion theory calculation for the same assembly. This analysis⁽²²⁾ was done for the BOL-2 configuration which is very similar to BOL-REF-5. Another study was conducted to determine how much this effective axial buckling changes with changes in the number of safety, control or shim rods⁽²³⁾. In the analysis of the europia worth experiment, the reactivities obtained from the eigenvalue calculations, using constant buckling, were adjusted to account for buckling changes caused by changes in the absorber rod configuration. These adjustments are discussed in Section 5.1.

4.2.4 Convergence Criteria

The convergence criteria for the 2DBS eigenvalue calculations were set to insure that the maximum error in the computed rod worths would be less than the reported experimental uncertainties. The uncertainties in the computed values of k_{eff} ranged from 0.6×10^{-5} to 3.0×10^{-5} .

5. ANALYTICAL RESULTS

5.1 Buckling Adjustments

As pointed out in Section 4.2.3, the same value for the axial buckling of the FTR-EMC was used in all the two-dimensional calculations of k_{eff} for this study. It has been shown⁽²²⁾ that it is necessary to use different values for the axial buckling in two-dimensional X-Y calculations for different core configurations in order to obtain the same eigenvalues that are computed in three-dimensional calculations for the same configurations. From a study of buckling sensitivity to changes in core configuration⁽²³⁾, estimates were obtained for the change in axial buckling due to the withdrawal of a safety rod or control rod or the removal of a peripheral shim.

For the complete removal of a safety or control rod the change in axial buckling can be treated as the sum of two parts: (1) the buckling change produced by withdrawing the rod from inserted to parked, and (2) the buckling change produced by removing the parked rod. The first part was obtained from Reference 23 and the second from the experimental data given in Section 3.3.1. Table IX gives the calculated change in buckling for the withdrawal of a 1% $\Delta k/k$ row 3 or row 5 rod or the removal of a 1% $\Delta k/k$ peripheral shim. It was assumed for the purposes of this study that the change in the axial buckling due to an absorber assembly was proportional to the worth of the assembly. Table IX also gives the calculated reactivity changes caused by the tabulated buckling changes. By adding to this the reactivity change due to the removal of the parked rods one obtains the total buckling induced reactivity change for the complete removal of an absorber assembly. A negative buckling change of -10^{-6} cm^{-2} causes a positive reactivity change of approximately 0.18% $\Delta k/k$. This says that in a two-dimensional X-Y diffusion theory calculation of rod worths, the use of a constant buckling results in an undercalculation of the rod worth. Therefore, the rod worths obtained from Eq. (1) should be multiplied by 1.0746 for the removal of a safety rod, by 1.0734 for the removal of a control rod, and by 1.0169 for the removal of a PSR.

5.2 B_4C Worths

Table X gives the calculated worths of each B_4C substitution relative to sodium channel composition. The results in the first column under "Reactivity Worth" were obtained from Eq. (1) using constant buckling. The values in the second column have been adjusted for buckling changes using the multipliers given in Section 5.1.

5.3 Eu_2O_3 Worths

As discussed in Section 4.1.3, calculations of the worths of europia compositions in the EMC were done with three different sets of cross section data: Eu-A, Eu-D, and Eu-H. The calculated worths of each europia composition with all three sets of cross section data are given in Table XI. Part A of Table XI gives the results obtained with constant buckling and Part B gives the results adjusted for buckling changes.

Table IX
Effect of Rod Removal on Axial Buckling and Buckling Induced Reactivity Change

<u>Absorber Rod Type</u>	Buckling Change For Withdrawal of a 1% $\Delta k/k$ Absorber Rod $10^{-6} \text{ cm}^{-2}/1\% \Delta k/k$	Buckling Induced Reactivity Change For a 1% $\Delta k/k$ Absorber Rod % $\Delta k/k$ / % $\Delta k/k$	Reactivity Change Due to Removal of Parked Rods % $\Delta k/k$ / % $\Delta k/k$	Total Buckling Induced Reactivity Change For a 1% $\Delta k/k$ Absorber Rod % $\Delta k/k$ / % $\Delta k/k$
Row 3 SR	-2.11 ± 0.17	$+0.0379 \pm .0030$	$+0.0367 \pm .0022$	$+0.0746 \pm .0037$
Row 5 CR	-1.92 ± 0.04	$+0.0345 \pm .0009$	$+0.0389 \pm .0033$	$+0.0734 \pm .0034$
Row 7 PSR	-0.94 ± 0.38	$+0.0169 \pm .0069$	-	$+0.0169 \pm .0069$

Table X
Calculated Worths of B_4C

<u>Location</u>	<u>B_4C Composition</u>	<u>Reactivity Worth, % $\Delta k/k$</u>	
PSR-722	1	Constant Buckling	With Buckling Adjustment
PSR-722	2	$-0.0457 \pm .0031$	$-0.0465 \pm .0032$
PSR-722	3	$-0.0655 \pm .0031$	$-0.0666 \pm .0032$
PSR-722	4	$-0.0941 \pm .0031$	$-0.0957 \pm .0032$
		$-0.1332 \pm .0031$	$-0.1354 \pm .0033$
CR-514	1	$-0.1908 \pm .0021$	$-0.2048 \pm .0024$
CR-514	2	$-0.3426 \pm .0021$	$-0.3677 \pm .0026$
CR-514	3	$-0.6066 \pm .0021$	$-0.6511 \pm .0031$
CR-514	4	$-1.0015 \pm .0021$	$-1.0750 \pm .0041$
CR-514	a	$-1.3235 \pm .0042$	$-1.4260 \pm .0064$
SR-308	4	$-1.4124 \pm .0056$	$-1.5178 \pm .0079$

a EMC B_4C control rod composition (Ref. 8).

Table XI

Calculated Worths of Eu₂O₃A. Constant Buckling

Location	Eu ₂ O ₃ Compo- sition	Reactivity Worth, % $\Delta k/k$		
		Eu-A ^a	Eu-D ^b	Eu-H ^c
PSR-722	1	-0.0577 \pm .0005	-0.0667 \pm .0031	-0.0632 \pm .0009
"	2	-0.0757 \pm .0009	-0.0882 \pm .0031	-0.0818 \pm .0009
"	3	-0.1029 \pm .0009	-0.1235 \pm .0031	-0.1118 \pm .0009
"	4	-0.1363 \pm .0009	-0.1627 \pm .0031	-0.1467 \pm .0009
CR-514	1	-0.2466 \pm .0021	-0.3136 \pm .0021	-0.2764 \pm .0021
"	2	-0.4074 \pm .0021	-0.5105 \pm .0021	-0.4470 \pm .0021
"	3	-0.6918 \pm .0021	-0.8532 \pm .0021	-0.7462 \pm .0021
"	4	-1.0664 \pm .0021	-1.2840 \pm .0021	-1.1346 \pm .0021
SR-308	4	-1.5058 \pm .0021	-1.8194 \pm .0042	-1.5958 \pm .0021

B. With Buckling Adjustment

Location	Eu ₂ O ₃ Compo- sition	Reactivity Worth, % $\Delta k/k$		
		Eu-A ^a	Eu-D ^b	Eu-H ^c
PSR-722	1	-0.0587 \pm .0008	-0.0678 \pm .0032	-0.0643 \pm .0010
"	2	-0.0769 \pm .0010	-0.0897 \pm .0032	-0.0332 \pm .0010
"	3	-0.1046 \pm .0011	-0.1256 \pm .0033	-0.1137 \pm .0012
"	4	-0.1386 \pm .0013	-0.1654 \pm .0033	-0.1492 \pm .0013
CR-514	1	-0.2647 \pm .0024	-0.3366 \pm .0025	-0.2967 \pm .0024
"	2	-0.4373 \pm .0027	-0.5480 \pm .0029	-0.4798 \pm .0027
"	3	-0.7426 \pm .0034	-0.9158 \pm .0038	-0.8010 \pm .0036
"	4	-1.1447 \pm .0043	-1.3782 \pm .0049	-1.2179 \pm .0046
SR-308	4	-1.6181 \pm .0059	-1.9551 \pm .0080	-1.7148 \pm .0062

a Eu-151 and Eu-153 cross sections from ENDF/B, Version 3.

b Eu-151 and Eu-153 cross sections evaluated by Schadel and Schenter (Ref. 11).

c Eu-151 and Eu-153 cross sections from ENDF/B, Version 4.

6. COMPARISON OF CALCULATED AND MEASURED RESULTS

Using the calculated worths with buckling corrections from Tables X and XI and the measured worths from Table II, ratios of calculated to experimental results were obtained and are shown in Table XIII. The percent deviation from a C/E of 1.0 was obtained, as follows:

$$\% \text{ deviation} = (C/E - 1.0) \times 100.$$

These values are plotted as a function of volume fraction in Figure 9 for the PSR-722 location and in Figure 10 for the CR-514 location.

7. CONCLUSIONS

1. In small quantities, Eu_2O_3 has a higher worth than B_4C on an equal volume basis, assuming the same percentage of theoretical density, at the CR-514 and PSR-722 locations.
2. As the volume fraction increases, B_4C becomes more reactive than Eu_2O_3 . This is true for both the CR and PSR locations. This indicates that self-shielding effects are greater for Eu_2O_3 than for B_4C .
3. The volume fraction at which the B_4C worth becomes greater than the Eu_2O_3 worth is about 0.22 at the CR-514 location. This corresponds to a B_4C mass of about 6.2 kg or a ^{10}B mass of about 880 grams.
4. At a volume fraction corresponding to the amount of B_4C in an FTR control rod, a B_4C rod at the CR-514 location is worth about 3 to 4% more than a Eu_2O_3 rod on an equal volume basis.
5. The experimental accuracy at the PSR-722 location was not as good as at the CR-514 location; however, the data for the PSR-722 location are consistent with conclusions 3 and 4 above.
6. Using the analytical methods described in this report, the calculated worth of B_4C is a few percent higher than the measured worth in the CR-514 and SR-308 locations and a few percent lower than the measured worth in the PSR-722 location.

Table XII
Ratios of Calculated (C) to Experimental (E) Results

Control Rod Location	Composition Number	B_4C	C/E ^a		
			Eu-A	Eu-D	Eu-H
PSR-722	1	0.963 ± .092	0.032 ± .049	1.076 ± .075	1.021 ± .054
"	2	0.928 ± .061	0.863 ± .036	1.007 ± .051	0.934 ± .035
"	3	0.934 ± .043	0.886 ± .026	1.064 ± .040	0.963 ± .027
"	4	0.916 ± .030	0.840 ± .018	0.998 ± .021	0.900 ± .020
CR-514	1	1.039 ± .021	0.956 ± .014	1.216 ± .017	1.072 ± .015
"	2	1.043 ± .012	0.960 ± .009	1.203 ± .011	1.053 ± .008
"	3	1.078 ± .010	1.012 ± .008	1.248 ± .010	1.091 ± .009
"	4	1.102 ± .006	1.027 ± .009	1.236 ± .010	1.092 ± .009
"	b	1.102 ± .015	-	-	-
SR-308	4	1.066 ± .010	0.997 ± .010	1.204 ± .013	1.056 ± .011

a Calculated worths include buckling adjustments.

b EMC B_4C control rod composition (Ref. 8).

7. At a volume fraction corresponding to the amount of B_4C in an FTR control rod, the C/E for B_4C is $1.102 \pm .015$ at the CR-514 location.
8. An extrapolation of the B_4C results at the PSR-722 location to a volume fraction corresponding to the amount of B_4C in an FTR PSR cannot be done very accurately; however, a C/E of $0.90 \pm .09$ appears to be a reasonable estimate.
9. The EU-A cross sections give C/Es consistently lower than those for B_4C , the Eu-D cross sections give C/Es consistently higher than those for B_4C , and the Eu-H cross sections give results very similar to those for B_4C at all three locations. On this basis it appears that the ENDF/B version 4 evaluations for ^{151}Eu and ^{153}Eu are preferable to the other two evaluations considered in this study.
10. Using the Eu-H cross sections and extrapolating to an FTR-type volume fraction, the C/E for the worth of a europia rod is $1.093 \pm .015$ at the CR-514 location and $0.89 \pm .03$ at the PSR-722 location.

8. APPLICATIONS AND RECOMMENDATIONS

The results obtained in this study can be used to adjust calculated worths of absorber rods in the FTR. For this procedure to be most effective the FTR calculations should utilize the same methods used for the EMC calculations as much as possible. However, there are differences between the EMC and the FTR that require some differences in calculational methods. The effects of some of these differences will be discussed below.

8.1 Heterogeneity Effects

The europia that was fabricated for use in the ANL zero power reactors (ZPR-6, -9, and ZPPR) was in the form of wafers with dimensions 0.200 in. x 1.955 in. x 5.700 in. These wafers were sealed in stainless steel cans with nominal outside dimensions 0.25 in. x 2.00 in. x 6.00 in. For the EMC these cans were then loaded into the ZPR-9 matrix, as indicated in Figures 2 and 3 with a total axial length of 36 inches.

For the FTR the europia will be fabricated into cylindrical pellets 0.379 in. in diameter and loaded into a stainless steel tube to make a

rod of europia 36 in. long. Sixty-one of these rods will be used in each hexagonal FTR europia absorber assembly.

Because of these geometric differences and the fact that ^{151}Eu and ^{153}Eu are resonant materials, the treatment of resonance and spatial self-shielding effects should be considered.

Europium resonance self-shielding was discussed in Section 4.1.4. For the EMC it was determined that a homogeneous resonance self-shielding treatment was adequate for the platelet geometries used in the experiment. In an FTR europia assembly the europia will be more homogeneously distributed than in the EMC. On this basis, homogeneous resonance self-shielding would also appear to be adequate for the FTR calculations of europia worth.

The spatial self-shielding effect was discussed in Section 4.1.6. This effect should be smaller in the FTR due to the more homogeneous distribution of the absorber material in the control rods. Since it was not accounted for in the EMC calculations and may be of different magnitude in the FTR, the bias factors cannot eliminate this effect as a possible source of error in FTR rod worth calculations. It is recommended, therefore, that future studies be made to determine if this effect is significant, and, if so, to determine the best method to account for it in rod worth calculations.

8.2 Mesh Spacing

Figure C-1 in Appendix C shows the effect of mesh spacing on calculated rod worths. The C/Es given in Section 6 of this report were obtained with sixteen mesh points per control rod. Since the FTR has hexagonal subassemblies, most rod worth calculations are done with six triangular mesh intervals per control rod.

Figure C-1 can be used to make bias factor adjustments for different mesh spacings (see Appendix C)

The adjusted bias factors for B_4C and Eu_2O_3 worths at the CR-514 location in a two-dimensional calculation with six mesh triangles per subassembly are $1.037 \pm .015$ and $1.067 \pm .015$, respectively. For the SR-308 location the adjusted bias factors are $1.051 \pm .015$ for B_4C and $1.031 \pm .015$ for Eu_2O_3 .

8.3 C/E For FTR Rod Worths

In the preceding section (8.2) C/E bias factors were given for the worth of B_4C and Eu_2O_3 control rod compositions relative to sodium channel composition in the CR-514 and SR-308 locations. These bias factors were based on the complete removal of the absorber material rather than withdrawing a simulated rod from the inserted condition to the parked condition. Both types of absorber rod manipulations will occur in the FTR, and therefore, bias factors are needed to adjust calculated rod worths for both cases.

In a previous study⁽⁸⁾ of control rod interaction effects, C/E's were obtained for B_4C control rod composition at four locations in the EMC. The C/E's were obtained for the withdrawal of the rods from inserted to parked using four mesh points per subassembly and constant buckling. The average C/E bias factor was 1.017. If the calculations are adjusted, using Figure C-1, to their expected values with six mesh intervals per subassembly, the average C/E becomes 1.026. If buckling adjustments are applied to the calculations (see Appendix D) the average C/E bias factor becomes 1.062 with a range of values from 1.008 to 1.116. The study showed that bias factors are spatially dependent, with differences within row 5 as large as differences between row 3 and row 5. With core conditions similar to those in the europia worth experiment, the C/E values from the rod interaction study at the CR-514 and SR-308 locations are $1.087 \pm .016$ and $1.059 \pm .011$, respectively (see Table D-I). These results are in good agreement with the values given in Section 8.2 for B_4C . This indicates that the C/E bias is the same for computing the worth of a rod removal or a rod withdrawal if the appropriate buckling adjustments are made.

The analysis of the europia experiments described in this report provides the only available information on C/E factors for europia rod worths. Based on the results given in Section 8.2, the C/E for in-core europia rods in the FTR using ENDF/B version 4 cross sections is about 2% less than the C/E for boron carbide rods.

The recommended C/E bias factors to apply to calculations of individual FTR safety rod (row 3) and control rod (row 5) worths are given in Table XIII.

Table XIII
Bias Factors For FTR Rod Worth Calculations

Type of Rod	Recommended C/E Bias Factor ^a			
	For Rod Withdrawal		For Rod Removal	
	With Constant Buckling	With Buckling Adjustment	With Constant Buckling	With Buckling Adjustment
B ₄ C	1.03	1.06	0.99	1.06
Eu ₂ O ₃	1.01	1.04	0.97	1.04

^a EMC bias factors were spatial dependent. Individual rod worths may differ by $\pm 5\%$ from calculated worths adjusted with these factors.

The C/E values are 4% lower for rod removal than for rod withdrawal with constant buckling because the experimental worth is 4% higher and the calculated worth is the same.

The bias factors in Table XIII are based on the following assumptions:

1. two-dimensional diffusion theory,
2. six triangular mesh intervals per subassembly,
3. 30 energy groups from FTR Set 300,
4. ENDF/B, version 4 europium cross sections,
5. calculated rod worths with constant buckling are increased by a factor of 1.074 for rod removal and by 1.035 for rod withdrawal.

The C/E of 1.03 for rod withdrawal with constant buckling is in agreement with results reported by Westinghouse Advanced Reactors Division (ARD) in the final design support document for FFTF control rods.

It should be noted, that the bias factors given in Table XIII are average values and that individual rod worths may differ by $\pm 5\%$ from the calculated worths adjusted with these factors.

For the computation of peripheral shim worths in the FTR, bias factors have been obtained by combining the results of this study with those obtained in the analysis of control rod interaction effects⁽⁸⁾.

There appears to be no advantage to be gained from the use of buckling adjustments in computing the worths of peripheral shims. The recommended C/E bias factors with constant buckling are 0.95 for B_4C or Eu_2O_3 shims using ENDF/B version 4 cross sections for europium. Individual rod worths may differ by $\pm 7\%$ from the calculated worths adjusted with these factors.

9. REFERENCES

- 1) J.W. Daughtry, C.D. Swanson, A.B. Long, R.B. Pond and G.K. Rusch, "ZPR-9 Assembly 27: The Fast Test Reactor Engineering Mockup Critical (FTR-EMC)," Applied Physics Division Annual Report for July 1, 1970 to June 30, 1971, ANL-7910, Pg. 32-39, January 1972.
- 2) A. Travelli, A.J. Ulrich and J.C. Beitel, "Planning and Analysis in Support of the Fast Flux Test Facility (FFTF) Critical Experiments in ZPR-9," Applied Physics Division Annual Report for July 1, 1970 to June 30, 1971, ANL-7910, Pg. 56-61, January 1972.
- 3) R.A. Bennett and P.L. Hofmann, "Rationale and Plans for the FTR Critical Experiments Program," BNWL-490, Battelle Northwest, Richland, WA, June 1967.
- 4) R.B. Pond, W.R. Robinson and R.J. Armani, "Europia Worth Measurements in the FTR-EMC," Reactor Development Program Progress Report for January 1974, ANL-RDP-24, Pg. 6.4-6.12, February 1974.
- 5) S.K. Bhattacharyya, R.B. Pond, D.M. Smith and W.R. Robinson, "Measurement of Control Rod Worths in the High-²⁴⁰Pu Fueled Sector," ZPR-TM-184, Table VII, Argonne National Laboratory, December 1974.
- 6) A.C. Larson and D.T. Cramer, "Reexamination of the Crystal Structure of 'B₄C'," Acta Crystallogr. A (Denmark), Vol. A28, Pt. 4, Suppl., Pg. S53, 1972.

- 8) J.W. Daughtry, J.F. Meyer and A. Travelli, "Control Rod Interaction Effects in Sodium Cooled Fast Reactors," Proceedings of the Atlanta ANS Topical Meeting on 'Advanced Reactors: Physics, Design and Economics', to be published.
- 9) A.E. Pasto, "Europium Oxide as a Potential LMFBR Control Material," ORNL-TM-4226, Pg. 12, September 1973.
- 10) ENDF/B Version 3 Cross Section and Nuclear Data Files. Available from NNCSC, Brookhaven National Laboratory, Brookhaven, NY.
- 11) H.M. Schadel, III and R.E. Schenter, "Europium Cross Section Calculations," HEDL Quarterly Technical Report, HEDL-TME 73-5, Vol. 2, Pg. A-4, October 1973.
- 12) ENDF/B Version 4 Cross Section and Nuclear Data Files. Available from NNCSC, Brookhaven National Laboratory, Brookhaven, NY.
- 13) R.E. Schenter, J.L. Baker and R.B. Kidman, "ETOX, A Code to Calculate Group Constants for Nuclear Reactor Calculations," BNWL-1002, Battelle Northwest Laboratory, Richland, WA, May 1969.
- 14) I.I. Bondarenko et al, Group Constants for Nuclear Reactor Calculations, Consultants Bureau, New York, 1964.

- 15) R.E. Schenter, R.B. Kidman and J.V. Nelson, "FTR Set 300, Multigroup Cross Sections for FTR Design," HEDL-TME 71-153, Hanford Engineering Development Laboratory, Richland, WA, October 1971.
- 16) R.B. Kidman and R.E. Schenter, "FTR Set 300-S, Multigroup Cross Sections for FTR Shielding Calculations," HEDL-TME 71-184, Hanford Engineering Development Laboratory, Richland, WA, December 1971.
- 17) R.W. Hardie and W.W. Little, Jr., "1DX, A One-Dimensional Diffusion Theory Code for Generating Effective Nuclear Cross Sections," BNWL-954, Battelle Northwest Laboratory, Richland, WA, March 1969.
- 18) K.D. Lathrop, "DTF-IV, A Fortran-IV Program for Solving the Multi-group Transport Equation with Anisotropic Scattering, LA-3373, Los Alamos Scientific Laboratory, Los Alamos, NM, November 1965.
- 19) J.W. Daughtry, "Analysis of Europa Worth Measurements in the FTR Engineering Mockup," HEDL Quarterly Technical Progress Report for July-September 1974, HEDL-TME 74-3, Vol. 3, Pg. A-3 - A-8, Hanford Engineering Development Laboratory, Richland, WA, October 1974.
- 20) R.M. Fleischman, "Evaluation of the Modified Source Multiplication Technique for Subcritical Reactivity Assessments in FTR," HEDL-TME 74-53, Appendix A, Hanford Engineering Development Laboratory, Richland, WA, October 1974.
- 21) D.R. Marr, "A User's Manual for 2DSS, A Diffusion Theory Shielding Code," BNWL-1291, Battelle Northwest Laboratory, Richland, WA, February 1970.
- 22) R.M. Fleischman and J.V. Nelson, "Three-Dimensional Neutronics Calculations for the Fast Test Reactor (FTR) and the FTR Engineering Mockup Critical Assembly (EMC)," HEDL-TME 72-42, Pg. 14, Hanford Engineering Development Laboratory, Richland, WA, April 1972.
- 23) J.V. Nelson and Q.L. Baird, "Three-Dimensional Buckling Calculations," HEDL Quarterly Technical Progress Report for April-June 1974, HEDL-TME 74-2, Vol. 3, Pg. 1-1 - 1-3, Hanford Engineering Development Laboratory, Richland, WA, July 1974.

APPENDIX A
REACTIVITY LOSS DUE TO ^{241}Pu DECAY

The FTR engineering mockup critical experiments were conducted in the ZPR-9 facility at Argonne National Laboratory from February 1971 through May 1974. In a time period of this magnitude, the radioactive decay of ^{241}Pu had an observable effect on the reactivity of the assembly. Pu-241 decays with a half life of $14.8 \pm .2$ years⁽¹⁾, primarily by β decay⁽²⁾ to ^{241}Am . A determination of the reactivity change due to the decay of ^{241}Pu was made by measuring the reactivity of the same reactor configuration several times over a period of approximately eleven months. Table A-I gives the dates of the measurements and the reactivities of the assembly⁽³⁾. Over a time span of one year, exponential decay with a 14.8-year half life can be adequately approximated by a straight line. A least squares fit of the reactivity data to a straight line gave a rate of reactivity loss of 0.205 ± 0.022 inhours per day.

A calculated value for the reactivity worth of ^{241}Pu was obtained from a pair of two-dimensional X-Y calculations for the BOL-REF-5 configuration of the FTR-EMC. The only differences between the two calculations were the concentrations of ^{241}Pu in the inner and outer driver zones. The computed rate of reactivity loss was 0.159 ± 0.005 inhours per day. The calculation was done in 30 groups using FTR Set 300⁽⁴⁾. Any effect due to the increase in the amount of ^{241}Am was ignored.

The experimentally determined value of 0.205 ± 0.022 inhours per day should be used to adjust experimental data when it is necessary to compare the reactivities of the assembly at different times during the experimental program.

Table A-1
Reactivity of FTR-EMC
Configuration BOL-REF-5S

<u>Date</u>	<u>Reactivity (Inhours)</u>
8-14-73	93.9 ± 2.4
10-15-73	77.9 ± 2.4
11-15-73	79.0 ± 2.5
12-17-73	73.5 ± 2.4
3-12-74	59.7 ± 2.4
6-26-74	25.2 ± 2.4

References:

- 1) ENDF/B-IV Cross Section and Nuclear Data Files. Available from NNCSC, Brookhaven National Laboratory, Brookhaven, New York.
- 2) C.M. Lederer, J.M. Hollander and J. Perlman, "Table of Isotopes," J. Wiley & Sons, New York, 6th Edition, Pg. 435, 1967.
- 4) R.E. Schenter, R.B. Kidman and J.V. Nelson, "FTR Set 300, Multi-group Cross Sections for FTR Design," HEDL-TME 71-153, October 1971.

APPENDIX B

EUROPIUM RESONANCE SELF-SHIELDING

A study was made to determine how to account for resonance self-shielding effects in the four europium compositions used in the europia worth experiment. The methods employed by the ETOX-1DX system^(1,2) to obtain shielded cross sections are described in Reference 3. Effective cross sections, $\bar{\sigma}$, are obtained from the product:

$$\bar{\sigma} = f \langle \sigma \rangle \quad (B-1)$$

where $\langle \sigma \rangle$ represents the infinitely dilute cross section (i.e., no resonance self-shielding) and 'f' is the shielding factor (or f-factor). The ETOX code provides the infinitely dilute cross sections in a specified group structure and tables of shielding factors. For a given isotope, shielding factors are determined for each energy group and cross section type (fission, capture, elastic scattering and total). The f-factors are a function of the temperature and the quantity, σ_0 , that depends on the composition, environment, and geometry of the material.

Europium cross sections were prepared for a temperature of 300°K. All experimental results were reported for a reactor temperature of 25°C, which is approximately 298°K. The difference between 298°K and 300°K was not significant in this study.

The 1DX code has been modified⁽⁴⁾ to provide a more accurate resonance self-shielding treatment for the platelet critical experiments performed in the ZPRs. In the modified 1DX, σ_0 is defined by:

$$\sigma_{0,k} = \frac{\sum_t \sigma_t(p)}{N_k} + \frac{(1-C) A}{\bar{\epsilon}(1+(A-1)C)N_k} \quad (B-2)$$

where,

$\sigma_{0,k}$ = effective total cross section per atom of isotope k,

$\Sigma_t^{(p)}$ = macroscopic total cross section in plate excluding isotope k,

N_k = atom density of isotope k in plate,

A = Levine parameter⁽⁵⁾,

C = Dancoff factor⁽⁶⁾,

\bar{x} = $4V/S$ = mean chord length of plate,

V = volume of plate,

S = surface area of plate.

The resonance self-shielding of a material is accounted for in this calculational scheme by reducing the infinitely dilute cross sections by the shielding factors, f. Once the temperature is specified, the f-factors are a function only of $\sigma_{0,k}$. In those energy groups of a material having resonances, as $\sigma_{0,k}$ decreases, the f-factors decrease which means an increase in the resonance self-shielding and a decrease in the effective cross section.

The first term in the expression for $\sigma_{0,k}$ (Eq. B-2) represents the macroscopic total cross section of all materials except isotope k in the platelet per atom of isotope k. This would be the value of $\sigma_{0,k}$ for an infinite medium of platelet material. The second term of Eq. (B-2) increases the value of $\sigma_{0,k}$ (decreases the resonance self-shielding) for the case of an isolated lump or a heterogeneous array.

For a homogeneous medium, C=1, and $\sigma_{0,k} = \frac{\Sigma_t}{N_k}$. (B-3)

For an isolated lump of material, $C=0$, and

$$\sigma_{0,k} = \frac{\sum_t^{(lump)}}{N_k} + \frac{A}{\bar{\lambda} N_k} \quad (B-4)$$

The isolated lump approximation was used in preparing cross sections for Eu#1 and Eu#2 with an A of 1.25 and an $\bar{\lambda}$ of 0.9696 cm and 2.0637 cm, respectively. These cross sections were used in computing the worths of the Eu#1 and Eu#2 compositions in this analysis.

For Eu#3 the resonance self-shielding is expected to be greater than for Eu#1 due to the presence of the other plates. Similarly, the resonance self-shielding should be greater for Eu#4 than for Eu#2. Eq. (B-2) can be used to obtain values of σ_0 for an infinite heterogeneous medium of absorber plates; however, for arrays such as Eu#3 and Eu#4, which consist of a few plates of finite size, Eq. (B-2) cannot be applied directly. It is obvious, though, that the σ_0 values for Eu#3 will lie between those for the Eu#1 isolated lump case and those for an infinite medium of plates in an array similar to that of Eu#3. Cross sections were prepared for the infinite heterogeneous medium of europia platelets assuming a Dancoff factor, C , given by

$$C = 2E_3 \left(\sum_t^{(d)} \frac{\bar{\lambda} V_d}{2V_p} \right) \quad (B-5)$$

where $\sum_t^{(d)}$ is the total cross section of the diluent material within a control rod and $V_d/V_p = t_d/t_p$. The ratio of diluent volume to europia plate volume is assumed to be equal to the ratio of their thicknesses. In this case, $\bar{\lambda} = 2 t_p$.

The reactivity worth of the Eu#3 composition was computed with these cross sections and with the Eu#1 isolated lump cross sections. The difference between the computed worths was negligible. A similar comparison was made for the Eu#4 composition with the same results. Further studies showed that homogeneously resonance self-shielded cross sections based on the Eu#4 atom densities could be used for all calculations without significant error.

This does not mean that resonance self-shielding is unimportant in this case; e.g., infinitely dilute cross sections give europia rod worths that are significantly higher than those obtained with cross sections prepared for any of the cases discussed above.

References:

- 1) R.E. Schenter, J.L. Baker, and R.B. Kidman, "ETOX, A Code to Calculate Group Constants for Nuclear Reactor Calculations," BNWL-1002, Battelle Northwest Laboratory, 1969.
- 2) R.W. Hardie and W.W. Little, Jr., "1DX, A One-Dimensional Diffusion Code for Generating Effective Nuclear Cross Sections," BNWL-954, Battelle Northwest Laboratory, 1959.
- 3) R.B. Kidman, R.E. Schenter, R.W. Hardie, and W.W. Little, "The Shielding Factor Method of Generating Multigroup Cross Sections for Fast Reactor Analysis," Nucl. Sci. Eng., Vol. 48, Pg. 189-201, 1972.
- 4) R.A. Harris and R.A. Bennett, "Improved Resonance Self-Shielding in 1DX," HEDL Quarterly Technical Report for April, May, June 1973, HEDL-TME 73-4, Vol. 2, Pg. 1-1, August 1973.
- 5) M.M. Levine, "Resonance Integral Calculations for ^{238}U Lattices," Nucl. Sci. Eng., Vol. 16, Pg. 271, 1963.
- 6) J.R. Lamarsh, "Introduction to Nuclear Reactor Theory," Addison-Wesley Publishing Co., Inc., Reading, MA, pg. 400, 1966.

APPENDIX C

EFFECT OF MESH SIZE ON COMPUTED ROD WORTHS

A series of calculations was performed to determine the effect of mesh size on the computed worth of simulated control rods in the FTR-EMC using two-dimensional diffusion theory. The analysis was done for both B_4C and Eu_2O_3 control rods at the CR-514 location. The EMC control rods had a square cross sectional area 11.0617 cm on a side. The two-dimensional calculations were done in X-Y geometry with the 2DBS code⁽¹⁾. The rod worth calculations were done with three different mesh spacings: 5.531 cm, 2.765 cm and 1.383 cm giving 4, 16, and 64 mesh intervals in the control rod. The mesh spacing that was used in the rod was also used outside the rod for a distance of 5.531 cm in both X and Y directions. The worths of two B_4C and two Eu_2O_3 compositions were computed. The results are shown in Figure C-1.

In every case the rod worth increases in a nearly linear manner with decreasing mesh spacing. The higher worth rods are more sensitive to mesh size than the lower worth rods, and the europia rods are more sensitive to mesh spacing than the boron carbide rods.

Since the calculated worth of a control rod depends on the mesh size used in the calculation, the C/E bias factors for control rod worth will also depend on the mesh size. The cross sectional area of a simulated control rod in the FTR-EMC was only slightly (about 3%) less than that of a hexagonal FTR rod. The most commonly used model for neutronics calculations of FTR core characteristics employs six triangular mesh intervals per subassembly. The cross sectional area of each triangular mesh interval is about 21 cm^2 . A mesh spacing of 4.58 cm in X-Y geometry would give the same cross sectional area. This mesh spacing is indicated on the graph in Figure C-1.

For application to the FTR, bias factors should be based on calculated rod worths that have been adjusted to this 4.58 cm mesh spacing. Table C-I shows how the mesh adjustment was determined for an in-core B_4C rod. The value obtained was 0.986. This means that the calculated worths of in-core B_4C control rods obtained with 16 mesh intervals per subassembly and the corresponding C/E bias factors should be reduced by 1.4% when the results

are to be used to correct FTR calculations using six triangles per subassembly. With this adjustment the bias factor of $1.102 \pm .015$ for B_4C at the CR-514 location given in Conclusion No. 7 of Section 7 becomes:
 $(1.102 \pm .015) \times 0.986 = 1.087 \pm .015$.

Table C-I
Mesh Spacing Adjustment for An In-Core B_4C Rod

<u>Control Rod Identification</u>	<u>^{10}B Content, grams</u>	<u>Mesh^a Adjustment</u>	<u>Source</u>
EMC- B_4C	1324	0.984	From Fig. C-1
B_4C #4	862	0.990	From Fig. C-1
FTR- B_4C (nominal)	1206	0.986	Interpolated ^b

a Ratio of calculated worth with six mesh intervals to worth with 16 mesh intervals.

b Assuming linear variation of mesh adjustment with ^{10}B content.

The amount of Eu_2O_3 in the first FTR rods of this type is to be chosen to give the same worth as an FTR- B_4C control rod. The nominal B_4C loading in an FTR rod is 1206 grams which corresponds to a volume fraction of 0.303 based on maximum theoretical density. Using the curves in Figure 5, a Eu_2O_3 volume fraction of 0.324 will give the same worth as the nominal FTR- B_4C loading. Table C-II shows that the mesh adjustment for an FTR- Eu_2O_3 rod should be 0.976 or a 2.4% reduction in the worths obtained with 16 mesh points per subassembly. When this adjustment is applied to the C/E for the CR-514 location given in Conclusion No. 10 of Section 7, this value becomes $(1.093 \pm .015) \times 0.976 = 1.067 \pm .015$.

Table C-II

Mesh Spacing Adjustment For An In-Core Eu_2O_3 Rod

<u>Control Rod Identification</u>	<u>Volume^a Fraction</u>	<u>Mesh^b Adjustment</u>	<u>Source</u>
Eu#4	0.2743	0.978	From Fig. C-1
Eu#3	0.1371	0.984	From Fig. C-1
FTR-Eu ₂ O ₃	0.324 ^c	0.976	Interpolated

a Based on maximum theoretical density.

b Ratio of calculated worth with six mesh intervals to worth with 16 mesh intervals.

c From Fig. 5 - this volume fraction of Eu₂O₃ gives the same worth as the FTR-B₄C rod with 1206 grams of ¹⁰B.

References:

- 1) D.R. Marr, "A User's Manual for 2DBS, A Diffusion Theory Shielding Code," BNWL-1291, Battelle Northwest Laboratory, Richland, WA, February 1970.

APPENDIX D

BIAS FACTORS FROM CONTROL ROD INTERACTION STUDY

A set of measured and calculated boron carbide absorber rod worths was obtained from a study of control rod interaction effects⁽¹⁾. The C/E values from that experiment are given in Table D-I. Using $1/\sigma^2$ weighting, the average C/E is 1.017. The experimental worths were for the withdrawal of safety and control rods from inserted to parked. The calculations were done using constant buckling and four mesh points per subassembly. If the calculated results are adjusted using Fig. C-1 to a mesh spacing equivalent to six mesh intervals per subassembly, the average C/E becomes 1.026. If, in addition, the data are adjusted for axial buckling changes using the factors from the third column of Table IX, the adjusted C/E values, shown in Table D-I, result. The weighted average of the adjusted C/E's is 1.062.

Table D-I

Mesh and Buckling Adjustments to Results of
Control Rod Interaction Study

	C/E ^a	Adjusted C/E ^b
SR-304	0.980 \pm .019	1.025 \pm .020
SR-304	1.037 \pm .014	1.085 \pm .015
SR-308	1.012 \pm .010	1.059 \pm .011 ^c
SR-308	1.031 \pm .014	1.079 \pm .015
SR-308	0.996 \pm .021	1.043 \pm .022
CR-514	1.010 \pm .015	1.054 \pm .016
CR-514	1.042 \pm .015	1.087 \pm .016 ^c
CR-514	1.069 \pm .011	1.116 \pm .012
CR-516	0.997 \pm .007	1.039 \pm .008
CR-516	1.001 \pm .019	1.044 \pm .020
CR-516	0.967 \pm .020	1.008 \pm .021
CR-516	1.032 \pm .012	1.077 \pm .013
Weighted Average	1.017	1.062

a From Ref. 1.

b Mesh adjustment = 1.0085 (from four to six mesh intervals) Fig. C-1; buckling adjustment for rod withdrawal (from inserted to parked) Table IX.

c These two measurements correspond to the conditions of the europia worth experiment.

References:

- 1) J.W. Daughtry, J.F. Meyer and A. Travelli, "Control Rod Interaction Effects in Sodium Cooled Fast Reactors," Proceedings of the Atlanta ANS Topical Meeting on 'Advanced Reactors: Physics, Design and Economics,' (to be published).