

LA-UR-96-3405

CONF-960850-17

Title:

Progress in Superconducting Performance of Rolled
Multifilamentary Bi-2223 HTS Composite Conductors

Author(s):

Q. Li, ASC
G.N. Riley, Jr., ASC
R.D. Parrella, ASC
S. Fleshler, ASC
M.W. Rupich, ASC
W.L. Carter, ASC
J.O. Willis, STC
J.Y. Coulter, STC
J.F. Bingert, MST-6
V.K. Sikka, ORNL
J.A. Parrell and D. C. Larbalestier, ASC, Univ. Wisconsin,
Madison

Submitted to:

Applied Superconductivity Conference
Pittsburgh, PA
August 26-30, 1996

RECEIVED
NOV 14 1996
OSTI

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Form No. 836 R5
ST 2629 10/91

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Progress in Superconducting Performance of Rolled Multifilamentary Bi-2223 HTS Composite Conductors

Q. Li, G. N. Riley, Jr., R. D. Parrella, S. Fleshler, M. W. Rupich, and W. L. Carter
American Superconductor Corporation, Westborough, Massachusetts 01581

J. O. Willis, J. Y. Coulter, and J. F. Bingert
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, NM 87545

V. K. Sikka
Oak Ridge National Laboratory, Oak Ridge, TN 37831

J. A. Parrell, and D. C. Larbalestier
Applied Superconductivity Center, University of Wisconsin, Madison, Wisconsin 53706

Abstract—Significant enhancements in critical current densities in rolled multifilamentary Bi-2223 HTS composite conductors have been achieved using the powder-in-tube (PIT) technique. At 77 K and self field, oxide critical current densities (J_c) of 55 kA/cm², overall or engineering critical current densities (J_e) of 15 kA/cm², and critical currents (I_c) of 125 A have been achieved in different rolled multifilamentary composites. Progress in achieving such high electrical performance is believed to stem in part from an improvement of grain connectivity by reducing weak links. The J_c dependence on magnetic field (B) and the degree of c-axis texture of these high quality conductors have been investigated at various temperatures. Our results also demonstrate that the critical current retention in magnetic field can be independently controlled from the self field critical current density, suggesting that flux pinning improvements and weak link reductions can be separately engineered into Bi-2223 composites fabricated using manufacturable processes.

I. INTRODUCTION

A tremendous amount of effort has been made to improve the critical current densities of commercially interesting Ag sheathed Bi-2223 HTS multifilamentary conductors using a scalable powder-in-tube process. For rolled multifilamentary composites, J_c values in the range of 40 to 44 kA/cm² at 77 K and self field have been reported [1] - [2]. In contrast, J_c values of 50 to 69 kA/cm² have been reported for pressed monofilamentary samples, [1], [3] - [5]. Although the J_c performance of the pressed monofilaments is higher than that of the rolled multifilaments in these previous works, there are compelling reasons to further pursue the latter option. Rolling is a scalable and practical process for making long and continuous lengths of HTS conductor. Moreover, the strain tolerance of multifilamentary composites is superior to that of monofilamentary composites. As a final consideration for the practical use of HTS wire, high J_e and I_c performance is required across long lengths in a magnetic field.

To enhance the self field J_c of the Bi-2223 composites, the connectivity between grains must be improved by reducing the number of weak links. A high degree of c-axis texture and clean grain boundaries are the most effective means of mitigating weak links [5] - [8].

Due to the relatively poor flux pinning of current generation Bi-2223 composites, their J_c decreases markedly in high magnetic fields as temperature increases. Therefore, application of Bi-2223 conductors in high magnetic fields is currently limited to low temperatures. To enhance the in-field J_c of Bi-2223 composites, improvements in the capacity to pin magnetic flux, either by enhancing electronic coupling between Cu-O layers or introducing appropriate defect structures, must be made. The introduction of splayed columnar defects, dislocations, and secondary phase precipitates are thought to enhance flux pinning [9] - [11]. In addition, coupling may be modified via intrinsic doping effects [12]. Recently, Parrell et al. [8], [13] reported that slow cooling during the final heat treatment improves both flux-pinning and connectivity of Bi-2223 composites.

In this article, we report new levels of J_c , J_e , and I_c performance for laboratory scale, rolled multifilamentary conductors (< 1 meter lengths). In addition, the $J_c(B,T)$ dependencies have been characterized in magnetic fields up to 10 T at temperatures between 4.2 and 77 K. Finally, we provide an interpretation of the enhanced self field and in-field performance in the context of connectivity and 'effective' flux pinning.

II. EXPERIMENTAL

Multifilamentary composites were fabricated using the powder-in-tube technique. The stoichiometry of our precursor powder is $\text{Bi}_{1.8}\text{Pb}_{0.3}\text{Sr}_{1.9}\text{Ca}_{2.0}\text{Cu}_{3.1}$. Sequential thermomechanical processing in which each iteration consists of a rolling plus a heat treatment sequence was used to promote Bi-2223 phase formation, texture, and densification.

Transport critical current (1 $\mu\text{V}/\text{cm}$) measurements in different magnetic fields and at various temperatures were

performed using a standard four probe technique. Transport J_c and J_e were determined by dividing the J_c by the total cross-sectional area of the oxide core and conductor, respectively. The dependence of J_c on the angular orientation of the applied magnetic field was determined using techniques described in [14].

III. RESULTS

A. Progress in J_c , J_e , and I_c

In the past year the superconducting performance of our rolled multifilamentary composite conductors has significantly increased. The results of Fig. 1 represent the improvement of laboratory scale Bi-2223 conductors made by a scalable rolling process at American Superconductor Corporation. On average the J_c results measured at 77 K in self field, has improved about 11 kA/cm^2 per year over a five year period. Given the complexity of the Bi-2223 PIT process, it is remarkable that the time rate of performance increase for multifilamentary composites made using scalable techniques is approximately linear over an extended period of time. Moreover, it is highly encouraging to HTS wire developers that there is no apparent decrease in the recent rate of improvement indicated in Fig. 1.

The best J_c performance has now reached the 55 kA/cm^2 level (77 K and self field) for rolled 85 filament composites. More importantly, the J_c standard deviation σ of 12 samples is less than 2 %. These results represent the first time that the electrical performance of commercially interesting multifilamentary wires has established parity with that of pressed monofilamentary samples [1], [3] - [5]. We have also achieved J_e values (77 K and self field) of 15 kA/cm^2 ($\sigma = 0.5\%$ for 8 samples) in rolled 85 filamentary composite conductors. High current capacity samples with I_c values of 125 A ($\sigma = 1.7$ A) have been measured at 77 K and self-field for 313 filament composite conductors. These high

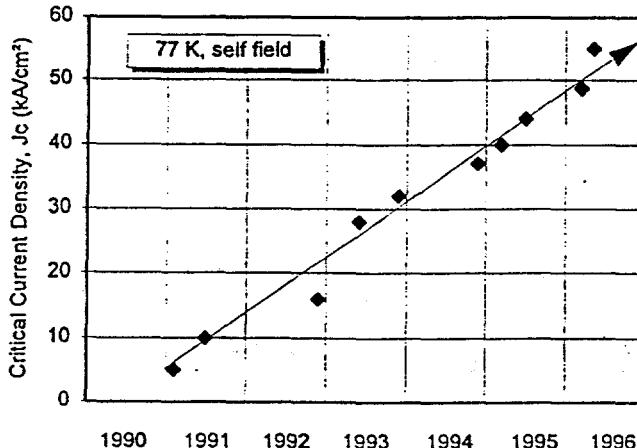


Fig. 1. Plot of J_c performance vs. time for rolled multifilamentary Bi-2223 conductors at American Superconductor Corporation.

I_c conductors have J_c values of 39.7 kA/cm^2 . All of these results are obtained at self field. The true zero field J_c , J_e , and I_c values are likely to be at least 10 % higher than the self field results [6], [15].

Fig. 2 summarizes the $J_c(B, T)$ dependencies of one of the high J_c samples in the $B \parallel$ tape plane (Fig. 2a) and $B \perp$ tape plane (Fig. 2b) orientations. At 75 K, J_c values of 45 kA/cm^2 in 0.1 T, 32 kA/cm^2 in 0.3 T, and 15 kA/cm^2 in 1 T are retained in the $B \parallel$ tape plane direction. Although the self field J_c value of this 85 filament conductor is lower than that previously reported for pressed monofilamentary samples (66 kA/cm^2 at 77 K) [5], its J_c at 1 T is similar to that of the pressed samples (14.5 kA/cm^2 at 77 K and 1 T). Our earlier study [1] suggests that this may be due to a smaller fraction of weak links in the rolled samples as compared to the pressed samples. At 64 K and $B \parallel$ tape plane, the self field J_c of the sample is 86.5 kA/cm^2 , and 42.3 kA/cm^2 is retained at 1 T. Even in the $B \perp$ tape plane direction, the sample has J_c of 18 kA/cm^2 and 42 kA/cm^2 at 0.1 T and 75 K and 64 K, respectively. In addition, the J_c is 295 kA/cm^2 at 4.2 K and

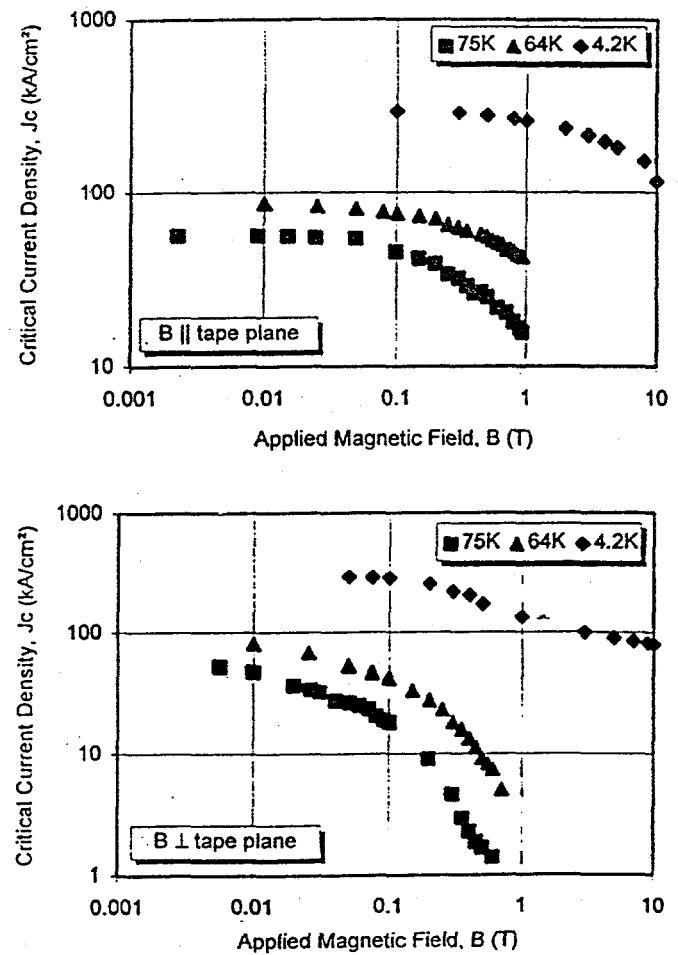


Fig. 2. The magnetic field dependence of J_c (a) for $B \parallel$ tape plane and (b) for $B \perp$ tape plane at temperature range from 4.2 to 75 K for the rolled 85 filament conductors.

self field. At 4.2 K and 10 T, the J_c is almost 80 kA/cm^2 for $B \perp$ tape plane. These results are very promising for many commercial applications. For example, transmission cables at 64 - 77 K and low field ($< 0.1 \text{ T}$), transformers at 50 - 77 K and moderate field ($0.1 - 0.3 \text{ T}$), and large motors at 20 - 30 K and high field ($> 1\text{ T}$).

B. Connectivity and Effective Flux Pinning Improvements

To reduce weak links, the c-axis texture of the Bi-2223 polycrystals must be improved. The degree of c-axis texture of these Bi-2223 polycrystals can be described by their mean misorientation angle. An estimate for this misorientation angle (Φ) can be made using two different techniques. In the first method, the values of $B \parallel$ tape plane and $B \perp$ tape plane at 75 K (obtained in Fig. 2a and 2b) are rescaled by $\sin(\Phi)$ and $\cos(\Phi)$, respectively, to characterize the average c-axis component along the non-perfectly textured grains. The Φ value is chosen to collapse the I_c curves for the $B \parallel$ and $B \perp$ orientations onto each other, as seen in Fig. 3. In this manner, we obtain a misorientation angle of about 7° for the 85 filament sample with self-field J_c of 55 kA/cm^2 . In the second method, the I_c of the same sample is measured as a function of the angle θ between the magnetic field and the tape plane by physically rotating the sample in a constant amplitude magnetic field of 0.3 T and 75 K [14]. The I_c data are plotted against the component of $B \perp$ tape plane ($0.3T\sin\theta$). Thus, the misorientation angle is determined as the angle at which the $I_c - 0.3T\sin\theta$ curve deviates significantly from the previous two data sets, as shown in Fig. 3. This procedure yields a misorientation angle of about 8° , in good agreement with that obtained with the first method. For pressed monofilamentary samples with J_c in the range of $10 - 20 \text{ kA/cm}^2$ (77 K, self field), several groups [7], [13], [16] have reported typical Φ values in the

range of $9 - 12^\circ$ determined by both x-ray rocking curve and J_c - magnetic field angular dependence techniques. There is no obvious relationship between J_c and Φ values for these pressed monofilament samples. However, Kobayashi et al. [17] clearly showed that the J_c values for multifilamentary tapes increase from 15 to 33 kA/cm^2 as Φ decreases from 11 to 8° . The Φ value of their sample with a J_c of 33 kA/cm^2 (8°) is similar to our sample with a J_c of 55 kA/cm^2 . This indicates that the degree of texture is not the only reason for obtaining a smaller fraction of weak links.

Fig. 4 shows the magnetic field dependence of I_c for two rolled multifilamentary samples whose self field J_c differs by a factor of two (22.5 to 45 kA/cm^2). These two samples have the same oxide core cross-section area and total conductor cross-section area, and thus, the relationship between their I_c corresponds directly to that for the J_c . Using a technique similar to the one described above for determining Φ , the $B \parallel$ tape plane data have been scaled by the appropriate factor $\sin(\Phi)$, where $\Phi = 8.5^\circ$, which collapses that data set onto the I_c data for $B \perp$ tape plane. The scaling factor also characterizes the mean misorientation of the Bi-2223 platelets to the rolling direction [7], [14]. The Φ values are found to be about 8.5° for both samples. This is clear evidence that the degree of c-axis texture is not the only factor that affects weak links reduction, and hence, J_c performance. For the high J_c sample, it appears that modifications to the processing have substantially reduced the number of weak links, either by cleaning the grain boundaries or by otherwise better connecting the grains. In either case, the useful cross-section carrying currents has increased.

We have also improved the current carrying capability in magnetic field in our composites. At 64 K, the I_c magnetic field retention of three rolled 85 filament tapes with 77 K self field J_c values varying from 22.5 to 45 kA/cm^2 is shown in Fig. 5. These samples have the same oxide core cross-section

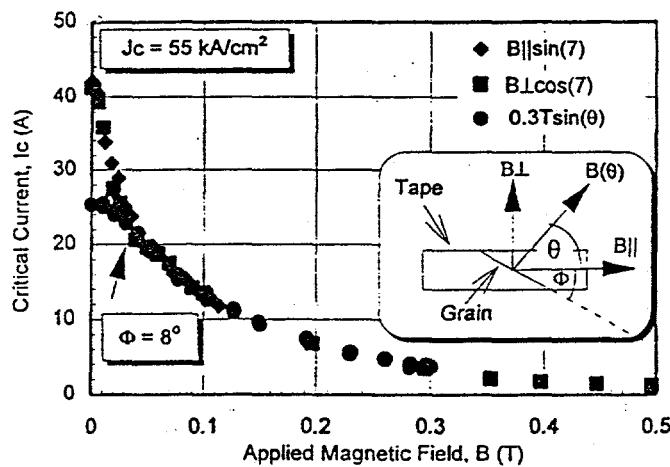


Fig. 3. I_c as a function of magnetic field angle in 0.3 T plotted against $B\sin\theta$ and of the two principal magnetic field orientations rescaled for 7° angle for the rolled 85 filament sample at 75 K, showing degree of texture via misorientation angle estimations.

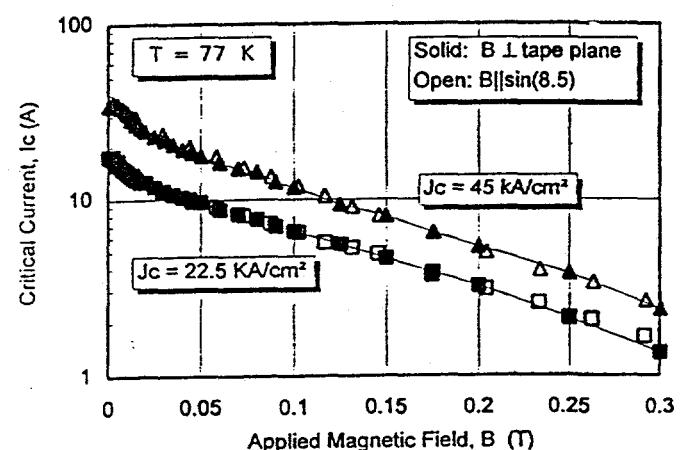


Fig. 4. The dependence of I_c on magnetic field for two 85 filaments for the two principal field orientations at 77 K, showing weak link reduction. The $B \parallel$ field magnitude has been scaled by $\sin(8.5)$ to account for the fitted misorientation of the grains.

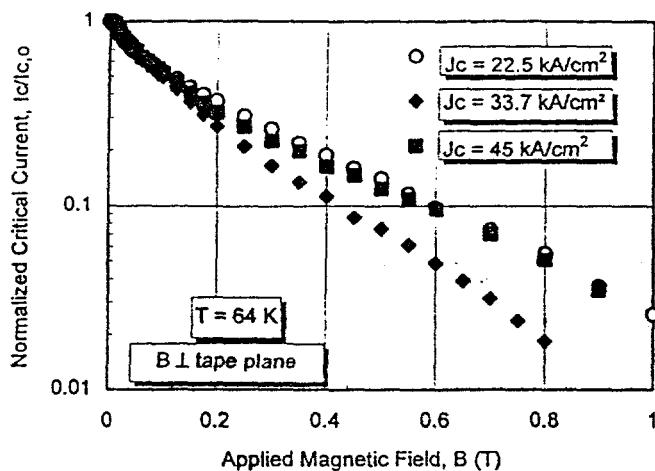


Fig. 5. The retention of critical current relative to the self field value at 64 K for three rolled 85 filamentary conductors with J_c values of 22.5, 33.7, and 45 kA/cm^2 , showing independence of connectivity and flux pinning.

area and total conductor cross-section area, and thus, the relationship between their I_c corresponds directly to that for the J_c . As seen in Fig. 5, the low J_c sample has $J_c(B)$ retention comparable to that of the high J_c sample. However, the median J_c sample has poor $J_c(B)$ retention. These three sets of data unambiguously show that the self field J_c can be decoupled from the relative level of retention in magnetic field. By understanding the mechanisms underlying these effects it should therefore be possible to independently engineer flux pinning improvements and weak link reductions in Bi-2223 conductors.

IV. SUMMARY

The superconducting performance of rolled multifilamentary Bi-2223 HTS composite conductors have been significantly improved using a manufacturable powder-in-tube technique. At 77 K and self field, oxide critical current densities of 55 kA/cm^2 , overall or engineering critical current densities of 15 kA/cm^2 , and critical currents of 125 A have been achieved in different rolled multifilamentary composites. These results represent the first time that the J_c of commercially interesting multifilamentary wires has established parity with that of the best pressed monofilamentary samples.

American Superconductor Corporation has also made rapid progress in translating these performance improvements into long length wires. At 77 K and self field, engineering critical current densities (J_c) of greater than 8 kA/cm^2 have already been achieved in consecutive long length production wires of over several hundred meters and further increases toward the short length level are expected.

The enhancement of these self field values of the critical current density is believed to be due mostly to reducing weak links between Bi-2223 grains. In addition, we have made important progress in improving the critical current retention

in magnetic field by enhancing the 'effective' flux pinning of Bi-2223. Most importantly, we have shown that flux pinning and weak link phenomena can be decoupled, so that improvements in flux pinning and reductions in weak links in Bi-2223 composites can be separately engineered to a much greater extent than was previously believed.

Both high temperature, low magnetic field and low temperature, high magnetic field performance levels are reaching those required to impact cable, transformer, and motor applications.

ACKNOWLEDGMENT

The authors are greatly indebted to the R&D and Manufacturing Teams at American Superconductor Corporation and to discussions in the Wire Development Group including individuals affiliated with UW, LANL, ORNL, ANL, NIST, and ASC. Special thanks are also given to Dr. A. P. Malozemoff for his stimulating discussions.

REFERENCES

- [1] Q. Li, S. Fleshler, P. J. Walsh, M. W. Rupich, W. L. Carter, E. R. Podlubny, and G. N. Riley, Jr., ICMC Conference, Columbus, OH, USA, July 17-21, 1995, in press.
- [2] K. Sato, K. Ohkura, K. Hayashi, T. Hikata, T. Kaneko, T. Kato, M. Ueyama, J. Fujikami, K. Muranaka, S. Kobayashi, and N. Saga, Proc. Inter. Workshop on Supercond., 1995, pp. 234.
- [3] Q. Li, K. Brodersen, H. A. Hjuler, and T. Fretoft, Physica C, 217(1993) pp. 360.
- [4] Y. Yamada, M. Satou, S. Murase, T. Kitamura, and Y. Kamisada, Proc. 5th Inter. Symp. on Supercond. (ISS92), (1993) pp. 717.
- [5] M. Ueyama, T. Hikata, T. Kato, and K. Sato, Jpn. J. Appl. Phys., 30(1991) pp. L1384.
- [6] S. Fleshler, Q. Li, R. D. Parrella, P. J. Walsh, W. J. Michels, G. N. Riley, Jr., W. L. Carter, and B. Kunz, 8th IWCC, Kitakyushu, Japan, May 27-29, 1996, in press.
- [7] B. Hensel, J.-C. Grivel, A. Pollini, and R. Flükiger, Physica C, 205(1993) pp. 329.
- [8] J. A. Parcell, D. C. Larbalestier, G. N. Riley, Jr., Q. Li, R. D. Parrella, and M. Teplitsky, submitted to Appl. Phys. Lett., July 30, 1996.
- [9] H. Safar, J. H. Cho, S. Fleshler, M. P. Maley, J. O. Willis, J. Y. Coulter, J. L. Ullmann, P. W. Lisowski, G. N. Riley, Jr., M. W. Rupich, J. R. Thompson, and L. Krusin-Elbaum, Appl. Phys. Lett., 67(1995) pp. 130.
- [10] F. Marti, M. Däumling, and R. Flükiger, IEEE Trans. Appl. Supercond. 5(1995) pp. 1884.
- [11] K. Fossheim, E. D. Tuset, T. W. Ebbesen, M. J. Treacy, and J. Schwartz, Physica C, 248 (1995) pp. 195.
- [12] N. Adamopoulos, B. Soylu, Y. Yan, and J. E. Evetts, Physica C, 242(1995) pp. 68.
- [13] J. A. Parcell, D. C. Larbalestier, and S. E. Dorris, IEEE Trans. Appl. Supercond., 5 (1995) pp. 1275.
- [14] J. O. Willis, J. Y. Coulter, E. J. Peterson, G. F. Chen, L. L. Daemen, L. N. Bulaevskii, M. P. Maley, G. N. Riley, W. L. Carter, S. E. Dorris, M. T. Lanagan, and B. C. Prorok, Advances in Cryogenic Engineering, 40 (ICMC 1993) pp. 9.
- [15] L. Gherardi, P. Caracino, G. Coletta, and S. Spreafico, submitted to Mater. Sci. and Engin. B., 1996.
- [16] Q. Y. Hu, H. W. Weber, H. K. Liu, S. X. Dou, and H. W. Neumuller, Physica C, 252(1995) pp. 211.
- [17] S. Kobayashi, T. Kaneko, T. Kato, J. Fujikami, and K. Sato, Physica C, 258(1996) pp. 336.