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A GENERATING OPERATOR FOR SOLUTIONS OF

CERTAIN PARTIAL DIFFERENCE AND DIFFERENTIAL EQUATIONS

Joan R. Hundhausen

ABSTRACT

Let M be a partial difference operator of the form

M=V a XV . where a

mn mn

sire complex constants and X and Y

m.n
are the fundamental translation operators. A related operator

is shown to commute with M and may be used to generate

a sequence of solutions of the equation Mf = 0 from a known

solution. A parallel theory is developed for the partial
n .n

differential, operator

/\a

—2— Examples are

. s=0 s Sx Sy
presented for both the discrete and continuous cases.

I. INTRODUCTION

This report concerns an algebraic method for
generating a sequence of solutions of certain types
of partial difference or differential, equations from
a known solution. In the discrete case, the theory
is applied to complex-valued lattice functions
(those functions f(x,y) defined at discrete points
of the complex plane) that satisty the difference
equation Mf(x ,y) = a X'Vl f(x,y) = 0, where

are complex ConsTérrllts and m and n range over
a finite set of integers. The generating operator
Z., is defined in terms of certain "derived" opera-
tors associated with M.

Algebraic generating processes for harmonic and
polyharmonic operators have been studied by Duffin
and Shelly.1 Other types of generating processes
(as intended here) have been devised for various
special forms of discrete operators; these include

methods of differentiation, integration, and convo-3

3.4 The process described in

lution of solutions.
this report has quite general applicability in both
the discrete and the continuous versions.

The approximation relationship between M and

fit 1s discussed in Sec. Ill and provides a transi-
tion between the treatments of the discrete and the
continuous cases. In the continuous case, the dif-
ferential equation has completely linear homogeneous

form, namely,

with C(Ctg complex constants. Again a generating
operator - is introduced. Although the more
orthodox approach is to derive discrete analogs
from the better-known continuous theorems, this
case exemplifies a statement appearing in the Edi-
tors* Foreword to the text by Miller. "It is pos-
sible to derive theorems about differential equa-
tions from theorems on difference operators, and
the methods might be more transparent in the latter
case." Therefore, the discussion of the discrete
case precedes that of the continuous case in this
report.

Several applications of the generating process
are presented in Sec. V. In the continuous case,

the effect of upon one form of the general



solution of the pertinent differential equation is
shown. A particularly interesting application in
the discrete case lies in the context of the theory
of discrete analytic functions. Here a modification
of the generating operator coincides with an opera-
tor introduced ty Duffin,1 which is useful to gener-
ate a sequence of discrete analytic polynomials.

IX. THE GENERATING OPERATOR IN THE CONTEXT OF
DIFFERENCE EQUATIONS

A, Partial Difference Operators and Their Derived
Operators

In preparation for development of the theory in
the discrete case, we place a square grid of width
h upon the complex plane, and designate as lattice
functions c¢p(x , y) those complex-valued functions
defined at the points (x,y) where x = kh,

y = Ih, k, 1 integers. The equivalent expression
of cp(x,y) as a function of the single complex

variable z (where z = x + iy) 1is also often con-

venient.
The fundamental translation operators Xn and

Yl are defined by
Xnep(x , y) = tp(x + nh,y) ;Y'"VX,y)=epkx,y + nh) ,
or equivalently,
Xnep(z) = cp(z + nh) ;
Ynep(z) = cp(z + inh), n = 0, *+1, +2, ...

The translation operators are clearly linear and
commutative, and X%p = Y%p = Icp = ¢p .
Let M represent a linear difference operator

of the form

M = V a XmYn , 1)

m,n

where the coefficients a are conrolex constants
mn

and the indices m and n range over a finite set of

integers. We are concerned with the family of solu-
tions of the homogeneous difference equation
Mtp(x,y) =0.

Anticipating a form of Taylor series expansion
for the operator M, we introduce the associated or

derived operators

-~ amnmxrnSXmYn, r, s = 0, 1, 2, ...

X
y m,n

Noting that M r g(1) = a mrnS, and recalling

Xy m,n_ |l
the standard form for the Taylor series expansion

of a function of two variables, we may exhibit the

relationship between M and its derived operators

M as follows,
rs
Xy

X amn Z 5° + ““Ip) fx ’y)
m,n k=0

M) f(x ., y) + hvx(l)y 9L

*.y)
A2V ., ,a2f
N + o h M p(ly —p
(X,y) X ax (x,y)
+ h2
*.y)
i.2,. a2f
+2h ~p() 2 '®)

y dy xy)

This is a corresponding expansion for the derived

operators themselves.

Mr sf(x’y) =Mr s™ f(x>y)
Xy Xy

M r+1 s(D) St
Xy xy)

Sf
hM o161 syl o)
Xy xy)
1,.. ' S2f
+ 2M 142 M) . 2
Xy dx  (xy)

a2f

*hM r+1 s+1 dx Sy
X y

(X>Y) (3)

The above representations clarify the essentiSLI
role played by the derived operators in the deter-
mination of the differential form which M approxi-
mates. This relationship will be discussed further
in Sec. III.

B. The Generating Operator

The simple relations

XmYn(xcp) = xX™!11? + mXmYnep

and XmYn(ycp) = yXmYnep + nXmYnep



may be used to derive the general formula

Mr s '(xqu'P(x ) I I (!) (3) N\ yat Mxr+xys+a 9x . y)
=0

Y i=0 j
Given a partial difference operator M of the form
used in Eq. (1), we define a related partial dif-

ference operator in terms of certain derived

operators of M as

ZN/I s yMX - XMy

The following theorem shows that the operator Z*
is useful in generating additional solutions of the
difference equation Mf = 0 when a solution is
known. Our proof is based upon the condition that
the relation Mf(x,y) = 0 holds in a suitably ex-
tensive region of the complex plane; to simplify,
we will assume that it holds in a sufficiently ex-
tensive region.

Theorem: If Mf(x,y) =0 in a sufficiently exten-
sive region of the discrete plane, then

M(zM f(x , y)) =0 also.

Proof: Using the formula of Eq. (!+), we have

M(ZMf) = M(yMx - xMy)f
= yMM_f + M. Mf-xMM{-M_ Mf
X y X y X'y
= (yMx - xMy) Mf
= ZgaMf
=0

The latter conclusion is drawn on the assumption
that Mf = 0 in a region containing at least each
point (x + mh,y + nh) where the pair (m, n)
appears in the summation formula [Eq. (1)] for M.
Corollary: If Mf(x ,y) =0 in a sufficiently ex-
tensive region of the discrete plane, then
Mizkf(x ,y)) =0, k=2, J, 4, ...
The proof, again depending upon an extension of the
assumption mentioned above, follows easily by induc-
tion. Indeed, this assumption is clearly sufficient
in all cases, although it may not be necessary in
certain special cases.

The powers of the operator ZM may be devel-
oped with the aid of the formula in Eq. (4). For

example,

= x2My)2 - 2xyMxMy + y2Mx)2 + yM~"™

+xM M -yM OM - xM ,M
X X2y

yy 2 x

Likewise, the notation JVp indicates that the opera-
tor M is to be applied p times in succession; for
example, M2 = £ S amn \s Xmt" Ynt+s

m,n k,s
where m and k_n and s have the same ranges, re-

>

spectively. The theorem above generalizes easily
to the
Theorem: If f(x ,y) =0 in a sufficiently ex-
tensive region of the discrete plane, then
IDIFXy) = aS)

Finai y, we display the Taylor series expansion
for ZM, wherein the role played by the derived

operators of M is again enphasized.

Mx.y) = (¥ ) 1 My(D)Hf(x >y)

xMxy( P)/%d:é

(x,y)

+ h(yM 2(1)

h(yMxy(1) - xM 2(1))
x.y)
[h2M (1) - xM 2 (1) 223

X Xy dx (x,y)

+h (nyzy(l) . "Mxy2W)£ély -

h2oM  2(1) - xM 3(1)) 2%%
Xy xy)
%)
ITI. DIFFERENCE AND DIFFERENTIAL OPERATORS
A. The Nature of the Approximation

Let represent a completely linear homoge-

neous partial differential operator of order n ;

s
ft - a <4 ©)
£ S Sxn_sSys

that is,



In this context, the word "homogeneous" refers to
the fact that all terms contain derivatives of the
same order. The expansion given in Eq. (2) illus-
trates the fact that a difference operator M is
always an approximation to a differential operator
51 ih the following sense.

M- ML _ g 4 oy

so that Iim M- MODI

h-*0

= 3 ()

Here the exact value of q and the exact form of §!
s(D ,

r, s =1, 2, ... , again emphasizing the essential

are uniquely determined hy the values

role played hy the derived operators of M. The

uniqueness follows from the stipulation that the

mesh width he the same in both directions; if the
mesh length were permitted to vary as some other

function of the mesh width, the differential form
approximated by M would not necessarily have the
homogeneous character of 57!

Conversely, a given differential form §! may
always he approximated hy a difference operator M,
which may he accomplished in a straightforward man-
ner hy simply approximating each term of M by re-
peated differencing of the function and finally
forming a linear combination of these results. In-
deed, the great variety of difference expressions
(and translations thereof) that may he used to
approximate derivatives makes possible the approx-
imation of §7 hy many different forms of M.

B, Example of the Approximation

The approximation of §7 hy M using the expan-
sion of Eq. (2) has both analytic and synthetic
aspects.

1. If M is given in the form of Eq. (1) or
in the equivalent form of a stencil — a diagram
depicting the points at which functional values are

to he computed together with appropriate coeffi-

cients — the values M (1) = =z. a mrnS may
r s A=A mn ~

he easily computed and Xir%]serte:d gltré) Eq. (2) to as-
certain which differential form ) is approximated.
2. If a form §7 and the set of points (m, n)
or the set of points comprising a stencil are given,
Eq, (2) may he used constructively to determine the
Of course, success in the lat-

coefficients a

ter case is not always assured and depends upon a

judicious choice of the set of points (m, n) . This
constructive aspect is particularly well treated hy
Collatz.7 Many examples depicting stencils to ap-
proximate operators of the form 57! a*6 also pre -
sented hy Hidaka.

An example featuring the use of M as qp ap-"
proximation to the Laplacian operator A = -"-5+-"-5
will he instructive. From Eq. (2) we see {)ﬁat bI\?Y
approximates A [in the sense of Eq. (7)] if, and
only if, M() = Mx(1) = My(@d) = 1™~(1) = 0, whereas
M o(l) M 2(1) ~ 0 . In particular, consider the
C);SQ WhereyM is a standard five-point approximation

to A .
XY + X-11"1 + XY-1 + X-1Y - 41
XY - X-1Y-1 + XY-1 - X-1Y ;
XY - X~1Y"1 - XY-1 + X-1Y

D2 =XY + X1 + XY-1 + X LY
X
XY + X-Ay'l - XY-1 - X_1Y

Note that the conditions mentioned above are satis-
fied, and specifically, D 2(1) =D 2(1) =4 . More-
over, Df(x,y) = h2 Af(x',y) + O(hl")

Note also that
D(xcp) = xDcp + Dxq)
and ng)yf), - Dy(xi) = aszf - nyf s
of which the continuous analogs are
Ax<p) = xAcp + 2

-~ |L oD - xf) =y §f - x sf °

respectively. Indeed, it may be readily verified
from Eq. (3) that — is truly an approximation to
as h -¢ 0 and may thus be regarded as a discrete
analog of this partial derivative.
Finally, it is interesting to examine the form

of ZD using Eq. (5).
vK-
4h(yS-x1) + ofh3)

so that

lim —~ =4y s-x]D



THE GENERATING OPERATOR IN THE CONTEXT OF
DIFFERENTIAL EQUATIONS

From the preceding discussion about approxima-

IV.

tion, it is strongly suspected that the theory of
the generating operator in the discrete case has
a parallel in the continuous case. Given a partial
differential operator of the form in Eq. (6), we in-

troduce the related partial differential operator

n-1 n_1

~E N Z [yar(n ' r) - xar+tl(r + 1}] "'nll-rg
- T

=0 Sy

Note that is homogeneous but has variable coef-

ficients. The main feature of - is that it com-
mutes with # and is useful in generating a related
sequence of additional solutions of the differential

equation TIff = 0 from a known solution. The proof

The lengthy expression in parenthesis is easily

seen to vanish.

Theorem: If f(x, y)e C2n-1[R] and 77f = 0 in R,

then 77!(/*f) =0 in R . The above lemma readily
establishes the proof of this theorem, and the cor-
ollary follows by induction on k,
If f(x,y)e [R]
f) = 0 in R, where k may vary

over the natural integers.

Corollary: and 7 = 0

in R, then

P

The operator remains linear with order

k(n -1), but is no longer homogeneous. The expli-
cit form of /L may be established with the aid of

Leibnitz's rule; for example,

n-1 n-1

f=~Z Z [yarln 1) " xarl(r + ]

in the continuous case is sufficiently interesting yas(n - s) - xast+lI(s + 1)J

to warrant at least the presentation of an outline

in this section. In the following discussion we ,2n-4

assume that fee n "HR] , where R is some region of ¥ 2n-2-r-s-so r+s ~an-J-r-s”r+s-1
ox y

the plane.
~ ' as+ + -1 - °

Lemma: (as S)r S "astl(s + D(n - 1 - 1) S}t]‘

™ fx’y) = ~GNMHXTy)
Proof:
Ly n-1
A e sn (->" fyam-1r) -xa (@®+D —
Jn AL r r+1 J dxll-1——"

= 2 NS axn-says
s=0

n-1
an

1s I
=0

/ JI~NEE N L,
I a(@m-1 5 gSys Vy axn-1_rayr/ " r+l r +
=0

all-11
axn-1-rayr}

an 4

axn-says

n-! (/
JZ -
= V- 0y xpprome-a @+ Dx A Z. s axn-Soy$
X
= as(s0lr(n ' 212n- A2n-
C ( 1-2-2—2 --------- (n - s)a .(r +1 -+r—2-2--11-% --------
d 2n-r-s-IN r+s-1 ' " r+1 ! d 2n-s-r-2. r+s
s=0 X X dy
n 5. 52 ( YWr+ i) —5—2 ¢
- _ —2—— - - a a n - s)(r + i) —5— e
=D — 1 1 asars(n ) d 2n-r-s-1°, jr+s-1 s T+l ’ N 2n—s—r—2—5 r+s
=0 50 * * Y
/n-1 n-1
d211-21
= V5/1f) + n Z Z astiar(s + - 1) dx2n-r-S-2dyr+S
ir=0 s=0

n-1 n-1
a2'"-2!

L L as«ﬁ_i m-s)@+ 1 l\ixzn-s—r—Zdyr-FS
=0 s=0



Repeated application of the lemma yields the
slightly more general
Theorem: If f(x,y) e and 7rpf = 0 in
R, then =0 in R, where p may vary over
the natural integers.
V. EXAMPLES AHD APPLICATIONS
A. The Continuous Case

Because the form of the general solution of the
partial differential equation 57lf= {lfa ig =o0

o s*O 3Sx ~ 9y

is kno'Sni, 1t is a straightforward matter to examine
the result of applying the corresponding - to the
general solution. Having done this, we focus atten-
tion again upon the special case #& =4 .

The general solution of the equation fiff = 0 is
obtained by examining the roots of the auxiliary al-

n
gebraic equation P(t) = Y] a tS = 0. The form of

s=0 s
the general solution varies accordingly as the n

roots of P(t) = 0 are real, distinct, repeated,
complex, or some combination of these. For the sake
of brevity, we consider only the situation in which
the roots of P(t) =O, namely, m*, m*, ... , m",

are real and distinct. Then the general solution is

fG(x ,y) = Al(y + m™x) + A2(y + m")
+ eeet —+
Aly+mx)

where the A" are arbitrary but sufficiently differ-
entiable functions of the variables indicated.

Now

and application to the general solution yields,

after some algebraic manipulation,

NG = n £N1 + mlX) 4n’D (v + mlx)
+ P'(m2)(y + m2x) AMI'IA (y + mP)

+ eee+ P'(mn)(y + mnx) An_1\y + mnx)| .

Consider now the special case

X
Y) = A(x + iy) + B(x - iy)
= A(z) + B(»
In particular, P"A(z) = -izA'(z) . An interesting

result is elicited by choosing A(z) = zk = u™x ,vy)

+ ivk(x,y) , where u” and v* are real harmonic

polynomials. Then, because -~ is a resil linear
operator, from P~z ) = -ikz = kv” - ik , we
may conclude that

— = kVk 3111 Vk = -kUk *

operating upon either member of the pair u”, v»
yields k times the harmonic conjugate of that
member.

B. The Discrete Case

To illustrate the discrete case, we discuss
the application of first to the simple example
of Pascal's triangle, and second in the context of
the theory of discrete analytic functions.

The difference equation governing the numbers

in Pascal* s triangle is
fx+1,y+1) - fx+1,y) - fix,y) =0 ,
or Mf= XY -X - Df=0
A standard operator technique ® for solution of

such equations yields

fx,y) = (¥>1) 9 !

The initial conditions f(x,0) =0 for x / 0
while f(0.,0) = 1 determine that cp(y) = f(0 ,y) = 1,
yielding

fx,y) = - D"X 1
Here, (Y - I)-1 is to be interpreted as indefinite

summation with respect to the discrete variable y .
It is the inverse operation of differencing and may
be regarded as the discrete analog of indefinite
integration. The standard rules of repeated in-
definite summation, together with the initial con-

ditions, yield the particular solution



Finally, = y(XY - X) - xXY , and application of
the particular solution (*y yields ™ » s

M to

which may be interpreted as a horizontal translation
of the solution.

An interesting application of ZM lies in the
context of discrete analytic function theory. The
complex form of the Cauchy-Riemann equations is

i = 0 , and a complex function f is
termed analytic in the continuous theory when
;\g = 0. By analogy, a discrete analytic function
f satisfies Lf = 0 in some region of the discrete
plane, where L is termed a discrete analytic oper-
ator. For detailed treatment of the properties of

such operators, see Duffinl and Hundhausen;1'' the

property pertinent here is that L is a discrete

approximation to JL .
dz
From the expansion of Eq. (5), we find that

necessary and sufficient conditions for a discrete

operator L - L(1)1 to simulate - in the sense of
dz

Eq. (7) are

Ly (1) iLx() /0 1)

If these conditions are used to characterize a fam-
ily of discrete operators, it is found that the
family thus characterized is identical with that for
which the corresponding family of generating oper-
ators 7" simulates multiplication by
z . Briefly, the expansions of Egs. (2) and (5)

become

L - L(DIIf = hix() || + Oh2) ;

ZLf = ZL-L(DIE=iLx(1DZf + ©(h) -

For the family of operators satisfying Eq. (8), the
notation used throughout this report becomes partic-
ularly descriptive of the analogy between the dis-

crete and continuous cases. The theorems of Secs.

IT and IV may be concisely phrased, respectively, as
Lf=0 =5 L(ZH =0

and

Il
o

=0 = 4(=zDH
dz oz
Therefore, the theory presented in this report be-
comes useful in generating a sequence of discrete
analytic functions. We conclude with an important
example of the generating process as developed by
Duffinl for the case of the discrete analytic

operator L = I+ iX - XY - 1Y . Duffin introduces

the operator

Z ="[z( + X+ XY +Y) -izd - X+ XY - Y)]

and shows that if f is discrete analytic, then Zf
is also discrete analytic. Algebraic simplifica-
tion and use of the relation Lf = 0 show that Zf
is a variation of Z~f as treated in this report;

indeed, Zf = (1 - 11) ZTf, where Z =yL - xL .
’ \2 2J L~ L X y
To achieve greater symmetry relative to the point

of application, Duffin forms a new operator Z. from
the average of Z applied at the four points
z,z -1, z -1, and z - 1 - 1, and finally estab-

lishes the interesting relation

Zz(n)=z(ntl) _ 9

Here z(n) is the nth member of the sequence of dis-

crete analytic polynomials, which were originally

defined by a process of recursive indefinite dis-
crete integration with =" = 1; Eq. (9) provides

an alternate (and sinpler) method of generating

this particular sequence of functions. It also may

be considered a simulation of multiplication in the

continuous case.
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