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A GENERATING OPERATOR FOR SOLUTIONS OF

CERTAIN PARTIAL DIFFERENCE AND DIFFERENTIAL EQUATIONS

t>y

Joan R. Hundhausen

ABSTRACT

Let M be a partial difference operator of the form
M = V a XV , where a sire complex constants and X and Y 

mn ' mnm.n
are the fundamental translation operators. A related operator

is shown to commute with M and may be used to generate

a sequence of solutions of the equation Mf = 0 from a known
solution. A parallel theory is developed for the partial

n '.n
differential, operator ^ a —-2-—_ . Examples are

s=0 s Sx Sy
presented for both the discrete and continuous cases.

I. INTRODUCTION
This report concerns an algebraic method for

generating a sequence of solutions of certain types
of partial difference or differential, equations from

a known solution. In the discrete case, the theory
is applied to complex-valued lattice functions
(those functions f(x , y) defined at discrete points
of the complex plane) that satisfy the difference
equation Mf(x , y) = a X^Y11 f(x , y) = 0 , where 

m,n
are complex constants and m and n range over 

a finite set of integers. The generating operator 
Z., is defined in terms of certain "derived" opera­

tors associated with M.
Algebraic generating processes for harmonic and 

polyharmonic operators have been studied by Duffin 
and Shelly.1 Other types of generating processes 

(as intended here) have been devised for various

special forms of discrete operators; these include
2

methods of differentiation, integration, and convo- 3
3 4lution of solutions. ' The process described in 

this report has quite general applicability in both 

the discrete and the continuous versions.
The approximation relationship between M and

fit is discussed in Sec. Ill and provides a transi­

tion between the treatments of the discrete and the 
continuous cases. In the continuous case, the dif­

ferential equation has completely linear homogeneous 
form, namely,

with Ctg complex constants. Again a generating 

operator ^ is introduced. Although the more 

orthodox approach is to derive discrete analogs 

from the better-known continuous theorems, this 
case exemplifies a statement appearing in the Edi­
tors* Foreword to the text by Miller. "It is pos­
sible to derive theorems about differential equa­
tions from theorems on difference operators, and 
the methods might be more transparent in the latter 

case." Therefore, the discussion of the discrete 
case precedes that of the continuous case in this 

report.
Several applications of the generating process 

are presented in Sec. V. In the continuous case, 

the effect of upon one form of the general
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solution of the pertinent differential equation is 

shown. A particularly interesting application in 

the discrete case lies in the context of the theory 
of discrete analytic functions. Here a modification 

of the generating operator coincides with an opera­
tor introduced ty Duffin,1 which is useful to gener­

ate a sequence of discrete analytic polynomials.

IX. THE GENERATING OPERATOR IN THE CONTEXT OF
DIFFERENCE EQUATIONS

A, Partial Difference Operators and Their Derived
Operators
In preparation for development of the theory in 

the discrete case, we place a square grid of width 
h upon the complex plane, and designate as lattice 
functions cp(x , y) those complex-valued functions 
defined at the points (x , y) where x = kh , 

y = Ih, k, 1 integers. The equivalent expression 
of cp(x , y) as a function of the single complex 
variable z (where z = x + iy) is also often con­
venient.

The fundamental translation operators Xn and 
Y11 are defined by

Xncp(x , y) = tp(x + nh , y) ; y'Vx , y) = ep(x , y + nh) ,

Noting that M r g(l) = a mr nS , and recalling 
x y m,n 11111

the standard form for the Taylor series expansion 

of a function of two variables, we may exhibit the 
relationship between M and its derived operators
M as follows, r s 

x y

Mf(xy) = a e mn
h(m^ + n Sy' f(x,y)

X amn Z 5^ + “If) f<x ’y)

m,n k=0

dfM(l) f (x , y) + hMx(l) ^
(x,y)

+ h\(l) §7df i. 2W ,,,a2f
+ o h M p(l) —p

(x,y) x ax (x,y)

+ h2

i,2„ a2f
+ 2 h ^ p (^-) 2

y dy

(x,y)

(x,y)
(2)

or equivalently,

Xncp(z) = cp(z + nh) ;

Yncp(z) = cp(z + inh), n = 0, ±1, ±2, ...

The translation operators are clearly linear and 
commutative, and X^cp = Y^cp = Icp = cp .

Let M represent a linear difference operator 
of the form

M = V a XmYn , (1)

m,n

where the coefficients a are conrolex constantsmn
and the indices m and n range over a finite set of 
integers. We are concerned with the family of solu­

tions of the homogeneous difference equation 

M tp(x , y) = 0 .

Anticipating a form of Taylor series expansion 
for the operator M, we introduce the associated or 

derived operators

r s 
x y

^ amnmrnSXmYn, r, s = 0, 1, 2, ... 

m,n

This is a corresponding expansion for the derived 
operators themselves.

M r sf(x’y) = M r s^ f(x > y) 
X y x y

hM r+l s(l) 5f

x y

hM _ .(l)

(x,y)

Sf
r s+i^ 1 §y l \ 

X y J (x,y)

1„. ' S2f
+ 2M r+2 s^1’) . 2 

x y dx

+ h M
a2f

r+l s+1 dx Sy x y

(x,y)

(x,y) (3)

The above representations clarify the essentiSLl 

role played by the derived operators in the deter­

mination of the differential form which M approxi­
mates. This relationship will be discussed further 

in Sec. III.
B. The Generating Operator 

The simple relations

XmYn(xcp) = xX™!11? + mXmYncp

and XmYn(ycp) = yXmYncp + nXmYncp

2



may be used to derive the general formula

M r s (xPyq'P(x 
x y '

,)) I I (!) (3) ^ yq_J M

i=0 j=0
r+x s+j x y d

9(x , y)

Given a partial difference operator M of the form 
used in Eq. (l), we define a related partial dif­

ference operator in terms of certain derived 
operators of M as

Z„. s y M - x M M x y

The following theorem shows that the operator Z^ 
is useful in generating additional solutions of the 
difference equation Mf = 0 when a solution is 
known. Our proof is based upon the condition that 
the relation Mf (x , y) = 0 holds in a suitably ex­
tensive region of the complex plane; to simplify, 
we will assume that it holds in a sufficiently ex­

tensive region.
Theorem: If Mf(x , y) =0 in a sufficiently exten­

sive region of the discrete plane, then 
m(zm f(x , y)) =0 also.

Proof: Using the formula of Eq. (!+), we have

ZM2 = ^x " _ ^

= x2(My)2 - 2xyMxMy + y2(Mx)2 + yM^

+ xM M - yM 0M - xM „M
xy y x2 y y2 x

Likewise, the notation Vp indicates that the opera­

tor M is to be applied p times in succession; for
example, M2 = £ S amn \s Xm+^ Yn+ s , 

m,n k,s
where m and k,n and s have the same ranges, re­
spectively. The theorem above generalizes easily 

to the
Theorem: If f(x , y) =0 in a sufficiently ex­

tensive region of the discrete plane, then

MP(ZMf^X,y)) =° alS0•
Finally, we display the Taylor series expansion

for ZM , wherein the role played by the derived

operators of M is again enphasized.

M(ZMf) = M(yMx - xMy)f

= yMM f + M Mf-xMMf-M Mf x y x y x y

= (yMx - xMy) Mf

= ZuMfM
= 0 .

The latter conclusion is drawn on the assumption 
that Mf = 0 in a region containing at least each 
point (x + mh , y + nh) where the pair (m , n) 
appears in the summation formula [Eq. (l)] for M. 

Corollary: If Mf(x , y) =0 in a sufficiently ex­
tensive region of the discrete plane, then 
M(zkf(x ,y)) = 0 , k = 2, J, 4, ... .

The proof, again depending upon an extension of the 
assumption mentioned above, follows easily by induc­
tion. Indeed, this assumption is clearly sufficient 

in all cases, although it may not be necessary in 

certain special cases.
The powers of the operator ZM may be devel­

oped with the aid of the formula in Eq. (4). For 

example,

zMf(x,y) = (y^1) ■ xMy(1))f(x >y)

D)df+ h (yM 2(1) xMxy(1'/3£
(x,y)

h(yMxy(l) - xM 2(1))
¥ (x,y)

a2f|h2(yM (1) - xM 2 (l)) t~2 
x x y dx

+ h (yM 2 (1) - "M 2w)£h
x y xy Sx c3y

b2f|h2(yM 2(1) - xM 3(1)) ^2
xy

(x,y)

(x,y)

(x,y)

(5)

III. DIFFERENCE AND DIFFERENTIAL OPERATORS 
A. The Nature of the Approximation

Let represent a completely linear homoge­

neous partial differential operator of order n ; 

that is,

ft =

nz
K=0

as
bnf

Sxn_sSys
(6)

3



In this context, the word "homogeneous" refers to 

the fact that all terms contain derivatives of the 
same order. The expansion given in Eq. (2) illus­
trates the fact that a difference operator M is 
always an approximation to a differential operator 

57! ih the following sense.

M - M(l)I = 57! + 0(h)

so that lim
h -* 0

M - M(l)I
= 57! (7)

Here the exact value of q and the exact form of 5?! 
are uniquely determined hy the values s(l) ,
r, s = 1, 2, ... , again emphasizing the essential 
role played hy the derived operators of M. The 
uniqueness follows from the stipulation that the 
mesh width he the same in both directions; if the 
mesh length were permitted to vary as some other 

function of the mesh width, the differential form 
approximated by M would not necessarily have the 

homogeneous character of 57!.
Conversely, a given differential form 57! may 

always he approximated hy a difference operator M, 
which may he accomplished in a straightforward man­

ner hy simply approximating each term of M by re­
peated differencing of the function and finally 
forming a linear combination of these results. In­
deed, the great variety of difference expressions 
(and translations thereof) that may he used to 
approximate derivatives makes possible the approx­
imation of 57! hy many different forms of M .
B, Example of the Approximation

The approximation of 57! hy M using the expan­
sion of Eq. (2) has both analytic and synthetic 
aspects.

1. If M is given in the form of Eq. (l) or 
in the equivalent form of a stencil — a diagram 
depicting the points at which functional values are 
to he computed together with appropriate coeffi­
cients — the values M (l) = z. a mr nS may

r s^ ' Ar-A mn ^x y m>n
he easily computed and inserted into Eq. (2) to as­

certain which differential form 5?j is approximated.

2. If a form 57! and the set of points (m , n) 

or the set of points comprising a stencil are given, 
Eq, (2) may he used constructively to determine the 

coefficients a . Of course, success in the lat- 
ter case is not always assured and depends upon a

judicious choice of the set of points (m , n) . This
constructive aspect is particularly well treated hy 

7
Collatz. Many examples depicting stencils to ap­

proximate operators of the form 57! a-*-6 also pre -g
sented hy Hidaka.

An example featuring the use of M as qp ap-^
proximation to the Laplacian operator A = -^-5+-^-5

. . bx by
will he instructive. From Eq. (2) we see that M
approximates A [in the sense of Eq. (7)] if, and 

only if, M(l) = Mx(l) = My(l) = 1^(1) = 0 , whereas 

M o(l) M 2(1) ^ 0 . In particular, consider the
x y

case where M is a standard five-point approximation 
to A .

XY + X-1!"1 + XY-1 + X-1Y - 4, I ; 

XY - X-1Y-1 + XY-1 - X-1Y ;

XY - X~1Y"1 - XY-1 + X-1Y ;

D 2 = XY + X--1^'1 + XY-1 + X_:LY ;
X

XY + X-^y'1 - XY-1 - X_1Y .

Note that the conditions mentioned above are satis­
fied, and specifically, D 2(l) = D 2(l) = 4 . More­
over, Df (x , y) = h2 A f(x ', y) + 0(hlt') .

Note also that

D(xcp) = xDcp + Dxq)

and D (yf) - D (xf) = yD f - xD f , xw ' y ' J x y

of which the continuous analogs are 

A(x <p) = xA cp + 2

^ |[ (yf) - (xf) = y §f - x sf ’

respectively. Indeed, it may be readily verified
from Eq. (3) that —■ is truly an approximation to 
3 h

as h -♦ 0 and may thus be regarded as a discrete 

analog of this partial derivative.
Finally, it is interesting to examine the form 

of ZD using Eq. (5).

v = K - ^
= 4h(yS-xl) + o(h3)

so that lim ^ =4(yg-x|) .

4



IV. THE GENERATING OPERATOR IN THE CONTEXT OF 
DIFFERENTIAL EQUATIONS

From the preceding discussion about approxima­

tion, it is strongly suspected that the theory of 

the generating operator in the discrete case has 

a parallel in the continuous case. Given a partial 

differential operator of the form in Eq. (6), we in­
troduce the related partial differential operator

n-l n_1
^ E ^ Z [yar(n ' r) • xar+l(r + 1}] "'nll-rg

r=0
-r^ r

Sy

Note that is homogeneous but has variable coef­

ficients. The main feature of ^ is that it com­

mutes with Wl and is useful in generating a related 
sequence of additional solutions of the differential 
equation TTff = 0 from a known solution. The proof 
in the continuous case is sufficiently interesting 

to warrant at least the presentation of an outline 
in this section. In the following discussion we 
assume that fee n "Hr] , where R is some region of 

the plane.
Lemma:

77? |

Proof:

f(x’y)) = ^(57!f(X'y)) ’

r—n sn

^ = Z ~
n-l

The lengthy expression in parenthesis is easily 

seen to vanish.
Theorem: If f(x , y)e C2n-1[R] and 77!f = 0 in R , 

then 77!(/^f) =0 in R . The above lemma readily 

establishes the proof of this theorem, and the cor­

ollary follows by induction on k,
Corollary: If f(x , y) e [r] and 7??f = 0

in R , then f) = 0 in R , where k may vary

over the natural integers.
The operator ^ remains linear with order 

k(n -1), but is no longer homogeneous. The expli- 
cit form of /L may be established with the aid of 

Leibnitz's rule; for example,

n-l n-l

f = ^ Z Z [yar(n ‘ r) " xar+l(r + 1}] *
n r=0 s=0

yas(n - s) - xas+1(s + 1)J

,2n-4

-v 2n-2-r-s-s. r+s ox Oy ^an-J-r-s^r+s-1

(as^ s)r S ' as+l(s + l)(n - 1 - r) °f
5y

s=0

( - y' fya (n - r) - xa (r + 1)1 ———
s axn-says jn A L r r+1 J dx11-1-^

n n-l

■ s I I
r=0 r=0

n-! ( /

-JZ (vn-

a (n - r)

.n-l

an / _J^if_\ „ , an ( a11-1! \
:n-sSys Vy axn-1_rayr/ " r+1 r + axn-says V axn-1-rayr j

L s axn-SoySr)y ------ -------------a , (r + l)x^ n-l-r~. r r+1^ ' ^ jdx dy dx

Zas(s0!r(n '

= ^(^f)

s=0

n-l n

=11
r=0 s=0

/n-l n-l

dx'

?12n-2f' ^2n-22-----1--------- - (n - s)a .(r + l) -+r—2----- ---------
2n-r-s-lN r+s-1 ' ' r+l ' . 2n-s-r-2. r+sdx dy

a a s(n - r) s r ' ‘ dx

>2n-2
5—2— ------------ - a a (n - s)(r + i) —5—2——£------
2n-r-s-l^_jr+s-l s r+l ' ' 2n-s-r-2-N r+sdy ^x dy

= V5/!f) + n Z Z as+iar(s + - r)
d211-2!

ir=0 s=0
dx2n-r-S-2dyr+S

n-l n-l

L L s r+1
r=0 s=0

a « ■, (n - s) (r + 1)
a2"-2!

N 2n-s-r-2. r+s dx dy

5



Repeated application of the lemma yields the 
slightly more general
Theorem: If f(x , y) e and 7rpf = 0 in

R , then = 0 in R , where p may vary over
the natural integers.
V. EXAMPLES AHD APPLICATIONS
A. The Continuous Case

Because the form of the general solution of the
n -.n.

partial differential equation 57Jf = Va ——g- = o 
o s^O 3 Sx ~ 9y

is kno'S'ni, it is a straightforward matter to examine

the result of applying the corresponding ^ to the 
general solution. Having done this, we focus atten­
tion again upon the special case ty = A .

The general solution of the equation ftff = 0 is

obtained by examining the roots of the auxiliary al-
n

gebraic equation P(t) = Y] a tS = 0 . The form of
s=0 s

the general solution varies accordingly as the n 
roots of P(t) = 0 are real, distinct, repeated, 
complex, or some combination of these. For the sake 
of brevity, we consider only the situation in which 
the roots of P(t) =0, namely, m^, m^, ... , m^ , 

are real and distinct. Then the general solution is

fG(x , y) = A1(y + m^x) + A2(y + m^)

+ •••+A(y+mx) ,n n ’

where the A^ are arbitrary but sufficiently differ­
entiable functions of the variables indicated.
Now

and application to the general solution yields, 
after some algebraic manipulation,

Vg = n {^“l^ + mlX) 4n’l) (y + mlx)

+ P'(m2)(y + m2x) A^11'1^ (y + m^)

+ •••+ P'(mn)(y + mnx) A^n_1\y + mnx)| .

Consider now the special case

¥ 5

,y) = A(x + iy) + B(x - iy)

= A(z) + B(z) .

In particular, P^A(z) = -izA'(z) . An interesting 
result is elicited by choosing A(z) = zk = u^x , y) 

+ i vk(x , y) , where u.^ and v^ are real harmonic 
polynomials. Then, because ^ is a resil linear 
operator, from P^(z ) = -ik z = kv^ - ik , we 

may conclude that

^ = kVk 311(1 Vk = -kUk *

operating upon either member of the pair u^ , v^ 

yields k times the harmonic conjugate of that 

member.
B. The Discrete Case

To illustrate the discrete case, we discuss 
the application of first to the simple example 
of Pascal's triangle, and second in the context of 
the theory of discrete analytic functions.

The difference equation governing the numbers 
in Pascal* s triangle is

f (x + 1 , y + 1) - f (x + 1 , y) - f (x , y) = 0 , 

or Mf = (XY - X - I)f = 0 .

A standard operator technique ® for solution of 

such equations yields

f(x , y) = (y^t) cp^ *

The initial conditions f(x , 0) = 0 for x / 0 

while f (0,0) = 1 determine that cp(y) = f (0 , y) = 1 , 

yielding

f(x , y) = (Y - I)"X 1 .

Here, (Y - I)-1 is to be interpreted as indefinite 

summation with respect to the discrete variable y . 
It is the inverse operation of differencing and may 

be regarded as the discrete analog of indefinite 

integration. The standard rules of repeated in­
definite summation, together with the initial con­

ditions, yield the particular solution

6



ZM to

Finally, = y(XY - X) - xXY , and application of 
the particular solution (^j yields ^ ^ ,

which may be interpreted as a horizontal translation 

of the solution.
An interesting application of ZM lies in the

context of discrete analytic function theory. The

complex form of the Cauchy-Riemann equations is

i = 0 , and a complex function f is
termed analytic in the continuous theory when 
^ f*tp = 0. By analogy, a discrete analytic function 

f satisfies Lf = 0 in some region of the discrete 
plane, where L is termed a discrete analytic oper­
ator. For detailed treatment of the properties of 
such operators, see Duffin1 and Hundhausen;1'1' the 

property pertinent here is that L is a discrete
approximation to JL .

dz
From the expansion of Eq. (5), we find that

necessary and sufficient conditions for a discrete
operator L - L(l)l to simulate ^ in the sense of

dz
Eq. (7) are

L (1)y iLx(l) / 0 (8)

If these conditions are used to characterize a fam­
ily of discrete operators, it is found that the 

family thus characterized is identical with that for 
which the corresponding family of generating oper­
ators Z^ simulates multiplication by
z . Briefly, the expansions of Eqs. (2) and (5) 

become

[l - L(l)l]f = hLx(l) || + 0(h2) ;

ZLf = ZL-L(l)lf=-iLx(l)Zf + °(h) •

For the family of operators satisfying Eq. (8), the 
notation used throughout this report becomes partic­

ularly descriptive of the analogy between the dis­
crete and continuous cases. The theorems of Secs.
II and IV may be concisely phrased, respectively, as

Lf = 0 =5 L(Z f) = 0 ,

and
= 0 => 4(zf) = 0 .

dz oz

Therefore, the theory presented in this report be­

comes useful in generating a sequence of discrete 
analytic functions. We conclude with an important 

example of the generating process as developed by 
Duffin1 for the case of the discrete analytic 

operator L = I+ iX - XY - i Y . Duffin introduces

the operator

Z =^[z(l + X + XY + Y) - iz(l - X + XY - Y)]

and shows that if f is discrete analytic, then Zf 

is also discrete analytic. Algebraic simplifica­
tion and use of the relation Lf = 0 show that Zf 

is a variation of Z^f as treated in this report;
indeed, Zf = ( i - ii) ZTf , where Z = yL - xL .

’ \2 2 J L ’ L x y
To achieve greater symmetry relative to the point 

of application, Duffin forms a new operator Z from 
the average of Z applied at the four points 
z, z - 1, z - i, and z - 1 - i , and finally estab­

lishes the interesting relation

Zz(n)=z(n+1) _ (9)

(n)Here z' 1 is the nth member of the sequence of dis­

crete analytic polynomials, which were originally 
defined by a process of recursive indefinite dis­
crete integration with z^ = 1 ; Eq. (9) provides 

an alternate (and sinpler) method of generating 
this particular sequence of functions. It also may 

be considered a simulation of multiplication in the 
continuous case.
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