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SUMMARY 

. . In considering peaceful applications for nuclear explosions detonated 

underground, one i s  concerned .with the action of strong shocks which proceed 

, q f rom the center of detonation into the surrounding medium. The propagation 

of such shocks and"their effect on the medium a r e  direct ly related to the us.e- 

ful purposes to which nuclear explosives can be put. Fur thermore ,  in plan- 

ning experimental explosions i t  i s  highly desirable  to predict with good a c -  

curacy the effects of the shock. Predict ions .are  based part ly  on a knowledge 

of the Hugoniot equation of state.  . 

For  these reasons,  the equations of s tate  of several  common rocks have 

been measured  by Alder 's  group a t  Livermore.  Plane hydrodynamic shocks 

were  produced by conventional high explosive techniques and t ransmit ted to 

pellets of the rock by aluminum plates.  Shock t imes-of-ar r iva l  a t  aluminum 

and rock surfaces,  and f r e e  -surface. velocities were  r e c 0 r d e d . b ~  an  argon 

flash-block technique and a, sweep camera .  This method has  been discussed 

by various authors.  Shock velocity and f ree-surface  veloc,ity . a re  measured  

in these experiments.  

Measurements  have been made at.  p r e s s u r e s  ranging f r o m  '10 kb to 900 kb. 

Rock sal t ,  granite,  tuff, marble ,  dolomite, ,limestone, basal t ,  and other rocks  
i 

have been studied; severa l  points on the P -V curve for each have been- m e a s -  

ured. Par t icu lar ly  interesting . . data for grani te  and basalt  have been obtained.. 

Fur ther  work i s  in progress .  

The desirabili ty of making in  situ peak p r e s s u r e  measurements  on shocks -- 
generated by actual nuclear expl.osions h a s  led to the development of an  instrub- 

rrient which employs pin-contactor's 'to measure  shock velocity and f ree-surface  

velocity a t  locations in the rock medium not f a r  f rom the explosion. 'The in-  

s t rument  has  performed satisfactorily in  high explosive tests .  It i s  hoped that 

shock s t r e s s e s  f rom below 100 kb to over 1 Mb ,can be measured  in this lashio11. . . 
. .  . 

>k 
Work was performed under auspices  'of' th'e U. S .  Atomic Energy Commission. 
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The Hugoniot Equation of State of Rocks 

David B. Lombard 

Lawrence Radiation Laboratory, University of California 

Livermor  e, California 

I. INTRODUCTION 

In developing ideas  for  nonmilitary applications of nuclear ex,plosives, ' 

one becomes concerned with the b"ehavior of s t r o n g  shocks in solids. The 

shock s t r e s s e s  involved range f rom a few ki lobars  to severa l  megabars ,  and 

their  duration can be a s  long a s  severa l  mill iseconds. Most of the benefits 

which can be obtained f r o m  such explosions a r e  attributable wholly o r  par t ly  

to thr3 effects of 'shock's on the surrounding rock. Crushing, cracking, a n d  

heating a r e  among these effects. Fu r the rmore ,  the effects of the shock on 

existing underground s t ruc tu res  such a s  mines  and  tunnels must  be considered 

when nuclear  devices a r e  detonated underground; the action of shocks i s  a l so  
1 important  in  the theory of c r a t e r s  caused by buried charges.  An understand-  

ing of strong shocks in solids i s  therefore  prerequis i te  to the efficient design 

of underground explosions for  peaceful industr ia l  purposes,  and a lso  prerequi -  

s i te  to accura te  predictions of the effects of such explosions. 

In describing the propagation of hydrodynamic shocks through a solid 

mater ia l ,  one must  know the isentropic  equation of s ta te  for the mater ia l ,  

i. e. , the dynamic pressure-volume relationship. The theory of s t rong shocks 
2 in solids i s  d j s r ~ ~ s s e d  at length by Rice,  McQueen, .and .Walsh. Thei r  review 

a r t i c l e  a l so  des'cribes var ious experimental techniques by which the dynamic 

equation of sta.te i s  measured .  It i s  assumed that many of those to whom th is  

paper  i s  addressed  a r e  famil iar  with these techniques and the theory of hydro-  

dynamic shocks. F o r  those who a r e  not, a very  brief review of techniques and 

theory will be helpful in view of the ma te r i a l  to be disc.ussecl. 

Strong shocks a r e  commonly generated in the labora tory  by high explo- 

sive charges  placed next to the specimen to be shocked. The t r ans i t  t ime  of 

the shock front  thr.ough the specimen (of known presh'ot density and thickness) 

i s  measured .  The shock velocity U i s  thus established. In a s imple exper i -  

ment  one a lso  m e a s u r e s  the f r ee - su r face  velocity a t  the side of the sample 
. . 

away f r o m  the explosive. In a m o r e  sophisticated ar rangement  a second m a t e -  

r ia l ,  one with a well-known equatibn of s ta te ,  i s  inser ted  between the H. E. 
' . 2 



and the specimen,:.and the f ree-sur face  velocity of the "standard" mater ia l  i s  

measured .  In ei ther  case ,  one uses  the f r ee - su r face  .velocity to compute the 

par t ic le  velocity u (or  m a s s  velocity) in the specimen. 

F r o m  the conservation of m a s s ,  energy, .and momentum one can derive 

the so-cal led "Rankine -Hugoniot1' conditions, 

where P, V, and E a r e  the p r e s s u r e ,  specific volume, and specific internal 

energy respectively,  the subscript  o r e f e r s  to preshot  conditions ahe.ad'o'f the 

shock front,  p I 1 / v 0 ,  and P has  been assumed negligibly smal l  compared 
0 

to P. 

The p r e s s u r e ,  compression,  and specific internal  energy associated 

with a par t icu lar  shock can  therefore be computed f r o m  a measurement  of p 
0 , 

U, and u. The locus of P, V points charac ter i s t ic  of a ma te r i a l  i s  called the 

Hugoniot (or  dynamic) equation of state.  The s t r e s s  P i s  a s sumed  to be i so-  

t ropic;  the theory i s  valid, therefore ,  only for shock e t r c s s e s  which f a r  ex- 

ceed the ability of the mater ial  to support shear .  Suck shocks alt: cdllcd 

"hydrodynamic. '1 

In solid ma te r i a l s ,  in cer ta in  shock s t r e s s  ranges,  (different for  each 

ma te r i a l )  U may be l e s s  than sound velocity in the unshocked material. Shncks 

of these magnitudes will t r ave l  a t  l e s s  than the sound speed and will be p r e -  

ceded by a sonic distur.bance called a n  "elastic p recur so r .  The amplitude of 

the p r e c u r s o r  i s  commonly taken a s  a m e a s u r e  of the dynamic yield strength 

uf  Lhe mater ia l .  k 'ur thermore,  some ma te r i a l s  under shock conditions under-  

go polymorphic t ransi t ions.  If the higher p r e s s u r e  phase has  a lower shock 

velocity than the lower p r e s s u r e  phase,  the well-known double - shock s t ruc  - 
2 - 

t u r e  will develop. However, if the p.ressure i s  high enough that U for the 

high p r e s s u r e  phase exceeds U for the other  phase,  the dis turbance will r e -  

v e r t  to a single-shock s t ruc ture .  

Equation of s ta te  measuremen t s  for seve ra l  rock types which have been 

made  a t  LRL during the p a s t  3 y e a r s  will be discussed in Section 11, and com- 

pared  with other published measurements . ,  Section 111 dea ls  with an  instrument  



.which has  been designed for measuring peak, shock p r e s s u r e s  in the rock  near  

underground nuclear explosions. 

11. EQUATION O F  STATE DATA 

, The in teres t  of Plowshare in underground nuclear explosions has  led 

Alder ' s  group a t  Livermore to undertake measurements  of the Hugoniot equa- 

tions of s ta te i for  several  common rocks.3 Their experimental method i s  de-  
4 

scr ibed in Chris. t ianls report.  However, the work on rocks i s  not finished 

and many m o r e  experiments must  be performed before the data can be called 

complete. Resul ts  to date a r e  being published now a t  the request  of seve ra l .  . 

workers  in the rock mechanics field. A note of caution i s  in o rde r  for those 

who.would in terpre t  the data.   here i s  sometimes considerab1.e variation in. 

experimental resul t s  f rom one specimen to the next, even when both speci-  

mens  come f rom the same piece of ,rock; this i s  especially t rue  of -rocks with 

coa r se  grain s t ruc ture  and other g r o s s  inhomogeneities. These empir ical  

variations a r e  frequently a s  l a rge  a s  variations between samples of the same 

general  type f rom different locations. A mineralogical and chemical descr ip-  

tion of the samples has  been omitted he re  except where part icular  pr0pertie.s 

of a rock could be correlated with the resul ts .  
3 Alder ' s  data for severa l  rock types i s  tabulated a s  an Appendix to this 

repor t ,  and discussion of some of i t  s eems  in order .  Equation of state data 

obtained in shock experiments can be - and commonly i s  - graphically summar  - 
ized in severa l  ways; but the plot of shock velocity vs  par t ic le  velocity ha.s 

s.evera1  advantage.^. Where the data i s  good in the hydrodynamic region and 

where no t rans i t ions  occur ,  the points always appear to l ie  on a straight line, 

although no explanation of why this should be so has  yet been advanced. Where 

polymorphic transitions exist ,  the points for each phase l ie  on a separa te  line; 

each ,charac ter ized  by a different slope. Transi t ions a r e  thus easy  to spot in 

such a plot. (Within the pas t  three  yea r s ,  two polymorphic t ransi t ions in rocks 

havebeen  repo,rted, one in gabbr? by Hughes and ~ c Q u e e n , ~  the other in  

marb le  by Dr emin and ~dadurov . ' )  

The LRL data for rock sal t  of var ious  puri t ies  (including New Mexico 

r e d  potash o r e )  are,pld.tted in Fig. 1. The data  seem to l ie  about a s t raight  

line bu,t the sca t te r  i s  too g rea t  to show the t ransformation in pure  NaCl sug- 
4 

gested by Chris t ian 's  work. Figure 1 a lso  shows some equation of state data 

for Louisiana rock salt ,  obtained a t  the Stanford Research  Institute by Grine, 7 

using the wedge method for lower pressures .8  The la rge  grain s ize of the 



rock sa l t  probably accounts for a s  much of the. sca t te r  evident in Fig. 1 a s  do 

variat ions between rock types. Grine i s  planning fur ther  low -pre.s s u r e  ex-  
7 per imen t s ,  some of which incorporate  technological improvements.  

In Fig. 2, the work in  marb le  recent ly published by the Soviet workers  

Dremin  and Adadurov i s  contrasted with data f rom two types of marb le  m e a s -  

u r e d  a t  LRL. The Soviet marb le  had a density of 2.70 g / c k 3 ;  the LRL marble  

var ied  between. 2.84 and 2.90. Note that the Soviet data can be fitted nicely 

with two straight  l ines ,  indicating a polymorphic t ransi t ion between 146.5 and 

155.8 kilo'bars. The LRL marb le  evidently has  a different equation of state.  

But the sca t te r  suggests that the experiments  must  be repeated; perhaps a 

modification of the method will be necessary ,  a s  will a careful selection of 

samples  to a s s u r e  optimum homogeneity. Needless to say, fur ther  work i s  

under way. 

A plot of grani te  data (Fig. 3), taken a t  LRL and by Grine a t  SRI, te l l s  

a different story.  Most of th i s  ma te r i a l  came  f rom a formation a t  the AEC 

Nevada T e s t  Site. Above 330 kb the points l ie  nicely about the expected 

str.aight line. Below this  p r e s s u r e  the sca t te r  i s  extremely bad; there  a r e  

seve ra l  possible reasons ,  and the poor experimental . resul ts  ' a r e  probably 

due to a combination of c i rcumstances .  Grine has  repor ted  a 29- to 36 -kb 
9,7 elast ic  p r e c u r s o r  in grani te  ; this  means  that t he re  i s  a two-wave struc.t~l.re . 

up to about 350kb, abo've which U exceeds the sonic velocity; no p recur so r ,  

therefore ,  will p recede  shocks g rea te r  than about 350 kb. Fur the rmore ,  i f  

a polymorphic t ransi t ion exis t s  somewhat above 50 ki lobars  (which i s  likely 
10 

s ince such a t ransi t ion is known in  quartz  . ), a three-wave s t ruc ture  will de-  

velop which could fur ther  confuse m e;t.siir emcnt s. Additional complications 

a r i s e  f r o m  different dynamic: s t rengths along differe'nt quartz  axes.  If there  

a r e  t ransi t ions i n  other mine ra l  components of grani te  in this  p r e s s u r e  range, 

even m o r e  complications could develop. The c o a r s e  gra in  s t ruc ture  d.ol.l.bt- 

l e s s  contributes to the difficulties. Variations f r o m  sample to sample a r e  

l a r g e  and i t  i s  not surpr i s ing  that our experiments  to date have not given a 

c l e a r  picture  of the eqyation of s ta te  a t  the lower p r e s s u r e s .  Gr ine ' s  observa-  
7 ,  

t ions of grani te  suggest a r a the r  .complicated wave s t ruc ture ,  which .var ies  

f r o m  sample  to sample. Equation of s ta te  data for  three  rocks  (granite,  ba-  

sa l t ,  and l imestone)  a r e  plotted in Fig. 4. A comparison of the l imestone and 

basa l t  i s  especially interest ing,  'because their  equations of s ta te  a g r e e  quite 

well, in spite of their  d i s s imi l a r  compositions,  a t  p r e s s u r e s  above about 230 

kb. It ' seems probable that these two equations of s ta te  do not a g r e e  a t  lower 



p r e s s u r e s ,  .but fur ther  investigation must  precede a m o r e  meaningful analysis.  

Granite has  been included in Fig. 4 because,  even though grani te  i s  m o r e  

nearly like basal t  in composition and density than i s  l imestone, i t s  high- . 

p r e s s u r e  equation of s ta te  i s  very  definitely different,. 

Basalt  i s  an  interesting rock, s imi lar  in composition,to gabbro but with 

a relatively fine gra in  s t ructure.  Basal t  i s  typical of ha rd  rocks , in  which 

Plowshare might c a r r y  out nuclear crater ing experiments.  The smal l  amount 

of basalt  data present ly available i s  plotted again in Fig. 5 along with the Los 
2 

Alamos results '  for gabbro.. The LOS Alamos data were  taken f r 0 m . a  graph 
5 

in the Hughes and McQueen ar t ic le ,  and i t s  accuracy  may  have suffered in 

the transposition. Gabbro and basalt  a r e  s imi lar  above the gabbro transit ion 

but different below. It i s  not c lear  why this should,be so. 

Our information on tuff i s  somewhat mor'e complete than that on basa l t ,  

(Fig.  6).  . Tuff . i s  noteworthy because most  of our experience with underground 

nuclear explosions i s  in this  medium. The equation of s ta te  i s  strongly de-  

pendent upon water  content. The la t te r  was about 5 percent  by weight fo r  the 

d r i e s t  of the tuff shots and over 20 percent  for the wettest. However, the 

densit ies for  both "wet" and I'ldry" tuff, a s  measured  before the shots, fluctu- 

a ted severa l  percent.  Fur the rmore ,  this  s e r i e s  of shots had been.completed 

before it was discovered that oven-dried tuff samples  racpldly abso rb  water 

f rom the atmosphere.  Some of the I1dry" samples  were  doubtless wetter than 

suppose,d when the shots were  f i red,  since their  densi t ies  were  measured  i m -  

mediately af ter  oven drying, m o r e  than 2 4  hours  before shot t ime. It i s  prob-  

able also that some of the, ,ltsaturatedl1 samples  dr ied  out somewhat p r io r  to 

shot time. The water coptent of in  situ tuff a t  the Nevada Tes t  Site va r i e s  -- 
f rom 7 to 35 percent  within the space of a 'few feet in the same  formation. 

11 

The g rea t  variabili ty in water content of in situ. tuff complicates the calcula- -- . 

t ions for nuclear explosions i n  this  medium. It i s  interest ing to .note in Fig. 

6 that the "wett.' tuff point A was the sample.with the lowes t  preshot  density of 
3 

the "wetv samples  (1.7.9 g/crn ). Point B of the "dryt1 tuff group in . Fig. - 6 
3 

r ep resen t s  the densest  of the "dry" samples  (1.88 g /cm ). . . 

It should again be emphasized that this equation of s ta te  work i s  st i l l  in  

p r o g r e s s  a t  LRL, and imperfect  though i t  i s  a t  the p resen t  t ime,  i t  i s  being 
. . 

presented he re  in response to reques ts  f rom our  colleagues in  rock mechanics ,  

and for the purpose of setting forth..some of the difficulties encountered in 

measuring the dynamic equations of s ta te  of r o c k s .  



111.. PEAK PRESSURE M.EASUREMENTS NEAR NUCLEAR EXPLOSIONS 

In planning subsurface nuclear explosions, one i s  faced with the problem 

of predicting their  e'ffects. For ,  reasons  of economy and safety i t  i s  nece'ssary 

to es t imate-ahead  of t ime such .parameters  a s  the shock strength a t  var ious 

dis tances,  the extent of crushing and cr.acking, and the s ize of the cavity. 

John Nuckolls a t  LRL has  constructed a t h e o r y 1 2  which, with the aid of digital 

computers ,  can make' such Unfortunately, there  i s  a t  present  . 

only a limited amount of empir ica l  data .with which to compare  the predictions 

of the code. While ' there  i s  goo.d agreement  to date for  explosions in volcanic 

tuff, i f  will be highly .desirable to make appropriate  measurements  on shocks 

generated by future nuclear  explosions in a s  yet untested media.  

One important  quantity which should be measured  i s  peak shock s t r e s s  

a s  a function of distance from, the center  of detonation. Various t r ansduce r s  

commonly employed in seis'mic work can 'be  used a t  g rea t  distances.  Closer  

in,  for  shock s t r e s s e s  up to a few ki lobars ,  s t r e s s  h i s to r i e s  can be measured  

with c rys t a l  t ransducers .  l 3  F o r  s t ronger  shocks, where such t ransducers  

fai l ,  the only in situ measuremen t s  known to the author have consisted of -- 
shock t ime-of-ar r iva l  t r ansduce r s  placed a t  var ious dis tances f rom the shot. 14 

If the equation of s ta te  of the medium i s  known, the ' t ime-of-ar 'r ival data can 

be  used  to determine' peak .p res su re  as  a function of distance. The accuracy 

of this  method,'  however, i s  not high, since peak p r e s s u r e  i s  not a strong 

function of shock velocity. ( F o r  instance, as the s t r e s s  inc reases  by a factor 

of 8.'5 the shock velocity U inc reases  by only 1.8.) 

A technique which suggests'  i tself  for accura te  in si.tu peak-pressur  e -- 
measuremen t s  i s  that adapted f rom the one employed in the Laboratory for  

equation of s ta te  determinations.  A simultaneous measurement  (on the native 

medium)  of shock velocity and f ree-sur face  velocity shnu1.d yield good p r e c i -  

sion. The difficulty of recovering film frnm a . . ~ e ~ o r d i r i ~  c a m e r a  near  a n  un-  

derground explosion precludes the u s e  of optical techniques. Signals f rom 

self-short ing pin-contactors,  however, can be t ransmit ted by cable and/or 

t e l eme te r  to recording stations a safe distance away. P ins  have heerr. widely 

used  for  equation of s ta te  measuremen t s  in the .labokafory.r Oscillographic 

methods a r e  employed to r eco rd  the t ime  of a r r i v a l  a t  each pin of the shock'  

front' o r  the free-surface. .  

The peak-p ressu re  instrument  which we have developed cons is t s  0f .a  

5 - inch-diameter ,  1 -inch';thick disk machined f r o m  rock obtained f rom the 



formation in which the. experiment i s  to be ca r r i ed  out ( see '  Fig. 7). A cylin- 

dr ical  depress'ion i s  machined into the center of the disk. A plastic pin- 

holder supports .pins a t  various distances f rom the flat bottom of this depres-  

sion. Here,  these pins will measure  the f r ee  - surface velocity u. Other pins, 

installed in small  holes in the rock will measure  shock velocity U. The peak 

p r e s s u r e  i s  calculated with the aid of equation (1). Figure 8 i s  a photogkaph 

I of a .  completed pin assembly,  ready for testing with high explosives. 

For  field use  the kntire assembly,  suitably potted, will be inserted in a 

6-inch-diameter hole dril led radially toward the shot point. When the a s s e m -  

bly i s  near  the bottom of the hole, grout will be forced around it  to insure  

good contact with the surrounding rock (Fig. 9). A special grout must  be de-  

veloped for each medium in which the measurement  i s  made, since the shock 

impedance of the grout must  match that of the medium in o rde r  to insure  a 

reliable experiment. This impedance match i s  attained by adjusting the grout 

mixture until i t s  Hugoniot equation of s tate  matches that of the rock in the 

s t r e s s  range where the in situ measurement  will be made. -- 
Two peak p r e s s u r e  determinations will be made in connection with the 

Gnome experiment (a 5-kt nuclear explosion in bedded sal t )  which i s  planned 

f o r  sometime next winter (pending presidential  approval) near  Carlsbad, N. M. 

Two of these instruments ,  will be emplaced, one a t  about 600 ki lobars  and one 

a t  about 300 kilobars.  Laboratory t e s t s ,  using New Mexico r e d  halite rock 

and grani te  f rom the Nevada Tes t  Site have been successful in yielding ,data 

which ag ree  nicely with the measured Hugoniot equations of s tate  (Figs. :  1; 3.). 

An accuracy of 2% in p r e s s u r e  can be achieved in the laboratory. Accura-  

c ies  in the field may not-be quite a s  good due to degeneration of the signals 

by 3000 ft of cable, but barr ing unforeseen complications a precis ion of bet ter  

than * 5% can,be  expected. If the peak p r e s s u r e  measurement  i s  successful 

in Gnome, an  attempt will be made to per form a m o r e  comprehensive experi-  

ment  on a subsequent underground detonation. 

IV. CONCLUSIONS 

It i s  c lear  that m o r e  data must  be collected before we can have much 

confidence in our equations'of s tate  for most  of these rocks. It has  been 

shown that careful  work on very  fine grained rocks can yield good resul t s .  

Since water content has  a dras t ic  effect on experimental r e su l t s  in a t  leas t  

one instance, we must  evidently be m o r e  careful in the control of future ex- 

periments ,  a t  leas t  when dealing with permeable mater ia ls .  Fur thermore ,  



in planning experiments  with al l  kinds of rocks,  we should exe rc i se  g rea te r  

control in the selection of .specimens,  par t icular ly with r ega rd  to homogeneity. 

In situations ,where l a rge  elast ic  p r e c u r s o r s  o r  multiple shock.sys.tems 

exist ,  i t  may  be  necessa ry  to employ precis ion pin techniques.or other meth-  

ods  of,observing the appropriate  velocites,  in order: to obtain rel iableedata .  

At the lower s t r e s s  levels ,  where ma te r i a l s  behave plastically r a the r  than 

hydrodynamically, i t  will be. difficult to obtain and in terpre t  meaningful dy- 

namic equations of state. F o r  example, some experimental r eco rds  of some 
13  plast ic  shock f ronts  suggest that they may  not be ve ry  steep. . 

An instrument  for  measuring in s i tu ,peak pressi.lsss has been developed -- 
to a point where one can hope to do accura te  work by using pins to m e a s u r e  

the sllock and f r ee - su r face  ve'1nci.ti.e~. Experience in the ficld and further r e -  

finement of the instrument  will hopefully yield even better, precision. High 

explosive t e s t s  of the instrument  have yielded highly sat isfactory resu l t s .  
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Appendix. . TABULATION O F  EQUATION OF. STATE 'DATA 

FOR VARIOUS ROCK .TYPES . . .  . , . 

U, mm/p,sec u, mm/p,sec p,, g/;m3 P ,  ~ b a r i  V / V ~  Source 
:# 

ROCK SA.LT (severa l  sources) :  , . 

4.652 0.891 2.155 0.089 0.8.09 . 1 
5.018 1.170 2.1 4.3 .126 .767 2 
5.382 ' 1.392 " ' 2.142 . I609 ' .741 2 
5.325 . '1.377 . . 2.145 ,162 . .755 . 2  
5.51 1 1.400 2.151. ,166 ,796 2 
5.874 1.747 2.152 .220 .7026 2 

. . 5.870 1.79 2.155 . . 2  26 ,695 1 

6 ,07  ': .' 1.'99. .. a 2 .145. , . .258 . .6 72 2 
6.122 1.98 2.145 .26 0 ,6 77 2 
6.088 1.996 2.1 56 .26 2 .672 2 
7.07 2.87 2.155 .437 .594 2 
7.10 2.85 2.157 .4 36 .599 2 
7.17 2.96 2..1 58 .457 .587 2 
7.46 5 2.98 2.152 .479 .601 2 

8.24 . 3.49 2.155 .620 ,577 1 
8.425 3.90 2.1 56 .709 .537 1 
8.73 3.92 , 2.148 .735 .551 2 
9.118 4.445 2.151 .8 56 .5089 2 
9.157 4.596 2.053 ,865 .498 3 
9.025 4.54 2.153 .882 .49 7 3 

96 
1. Louisiana dome sa i t ;  Carey  Mine. 2. Origin undetermined. 3. New 

Mexico r e d  potash ore.  - - - - - - - - - - - - - - - - - - -  a , * - - - '  - - - - - - - - -  ' - - ' " ' - - - . .  

GKANI'I'E (two o r  m o r e  sources) :  

5.38 3 0.485 2.614 0.068 0.915 1 
5.37 1.31 2.6 12 ,182 .7 56 1 

2.220 . . 2.614 .6189 1 5.825 .337 
5.71 0.490 2.6 76 .0'143 .914 2 
5.58 .822 2.683 .123 .853 . 2  
5.48 .96 0 2.695 .143 .8 26 3 
5.506 1;15 2.669 .148 .79 1 4 
5.6 58 1.63 2.669 ,246 4 
5.64: 1.625 2.683 .247 .tli 3 
5.6 1 1.715 2.674 .2565 .693 4 
6.31 2.63 ' 2.676 ,446 .584 3 
7.64 3.35 2.680 .680 . .558 4 
8.27 4.00 2,673 .884 .5164 2 

-. . .--- 
*:k . 

1. Pink quartz  monzonite, surface,  NTS Area  15. 2. Origin undeter-  
mined. 3. SRI .exploratory co re ,  1005 ft ,  NTS Area  15. 4. Gray 
granodiori te ,  surface,  NTS Area  15. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



U, mm/psec  u , 'mm/psec  Po g/cm 3 P, Mbar s V / V ~  Source 

*c 

T U F F  (two sources) :  

>:c 
1. Tunnel U12A, NTS. 2. Tunnel U 12B, , NTS, mined n e a r " ~ a i n i e r .  

. . 
3. Origin undetermined; 

DOLOMITE ( f rom sur face ,  NTS Area  12): 

LIMESTONE ( f rom grd Fragmenta l  formation, Pony Creek  No. 2 co re ,  
Richfield Oil Co. ,  Alberta,  Canada): 

3.707 0; 570 2.505 0.053 0.846 
4.927 . 1.055 2.501 .130 . .786 
5.83 2.01 2.508 .294 .6 5 5  
6.56 2.64 2.532 .439 .598 
8.0 5 3.3 1 2.596 .692 . .589 

. 8.60 3.6 7 2.589 .817 .57 3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . 

ANDESITE (quar r ied  in  Mar in  County, California):  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - .  

BASALT ( ~ u c k b o a r d ' h o l e  No. 3,. 36 ft,  40-Mile Canyon, NTS):, 



MARBLE ( f rom sur face ,  NTS Area  15): 

0.913 2.840 0.171 0.862 
Light 7.347. '1.422 2.843 .297 ,8065 

. . 7.6 58 .. 1.93 2.846 .418 .748 0 

5.464..  0.983 2.905 .156 ,820 
Dark , { 7.304 1.425' 2.852 .296 .8 049 

7.737' 2.13 2.840 .46 8 .725 

;k 
TACONITE; (banded,Mesabi ~ a n g e ,  E r i e  formation):  

4.294 0.947 . 1.820 ' 0.074 .780 
Rock ' {4.23 ' 1.59 1.875 .200 .624 

7.409 4.05 2.41 3 .679 .453 

t 
Note:   he banding was of the s a m e  dimensions a s  the samples ,  hence the 

"ironI1 samples  a r e  a lmos t  pu re  i ron  while the "rock" samples.  contain l i t t le 
iron. 

4~ t c  
OIL SAND; (McMurray  formation,  Pony Creek  No. 2 co re ,  Richfield Oil Co. ,  
Alberta ,  Canada): . 

8.Lr ' 

Content somewhat var iable .  

OIL'SHALE (dry) ;  (Pony Creek  NO. 2 co rc ,  ~ i c h f i e l d  Oil Co. , Alberta,  Canada): 

5.30 1.09 ' 2.307 .119 .794 

Medium 5.274 1.43 . 2.350 .170 , .729 
1.7'5 . 2.250 .242 .713 
2.00 2.222 .279 . ,682 



Us rnm/psec u ,  rnrn/tJ.sec p,, g/cm3 P, M b a r s  V/V, 

OIL SHALE (dry)  (continued): 

:k 
Note: This i s  a qualitative t e r m  denoting the relat ive oil  yield pe r  unit 

volume' of rock. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

OIL SHALE (wet);  (Pony Creek  No. 2, Richfield Oil Co. ,  Alberta,  ~ a n a d a ) :  

OIL SHALE (mud); (Pony Creek  No. 2, Richfield Oil Co. , ' Alberta,  Canada): 
. . 

Wet 6:45 . . . 3.48' 1.533 0.'344 0.461 . ' . . 

Dry 5.90 3.49 1.656 .341 .409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



Par t i c le  v e l o c i t y ,  u, mm/psec - -12539 

10.0 

Fig. 1. Dynamic equation of state:  var ious rock salts.  
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Fig. 3. Dynamic equation of s ta te :  granite. 



3 , 7 ' , 9  . 
0 G r a n i t e ,  L R L ,  S R I  

n B a s a l t ,  L R L ~  

0, Limest -one ,  L R L  3  

- Best  f i t  o f  e x p e r i m e n t a l  p o i n t s  

0 

Q) (Basalt)  
> 

0 
103 k b  

Y 4.0, 
0 
0 Sonib-53 k b  
-t (Limestone 
m 

0 1.0 2 .O 3.0 4 .O 
P a r t i c l e ,  v e l o c i t y ,  u, mm/psec- m-12542 

F i g . .  4. D y n a m i c  e q u a t i o n  of sta te :  g r a n i t e ,  . b a s a l t ,  and l i m e s t o n e .  





, 
0 W e t  t u f f :  A l d e r ,  L R L ~  

0 D r y  t u f f ; A l d e r ,  L R L  3  
A 8 B  : P o i n t s  w i t h  a t y p i c a l  d e n s i t i e s  ( S e e  t e x t )  

- B e s t  f i t  o f  e x p e r i m e n t a l  p o i n t s  

6.0 

0 ' 1.0 2 .o . 3.0' . ' 

P a r t i c l e  vel .oci . ty;  u ,  mm/psec- -12544 

. . Fig. 6. Dynamic . . equation of state:  tuff. 



F r e e  

Shock v 
p in  

surface pin, 1 )$ 1 
M e t h a c r y l a t e  
p i n  - h o l d e r  

'elocity-, J I 

-3.2545 
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Fig. 8, Photo of peak pressure instrument. 
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