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" ABSTRACT

An attempt is made to élarify tﬁe'strubtufe of pion-
‘nucleus gcattering taking.intq,account the fact thét the
pions in'scattering and iﬁ nucleér forces'are identical.
To understand the éssential points, a simple pion plué
two-nucleon system‘is chosen. The processes considered
are TNN->TNN aﬁd TNN«+NN. Both relativistic and non-
‘relativistic approaches aré adopted. 1In the relativistic
approach Taylor's method is used, whefeas in the non-
relativistic apéfoach a Hamiltonian (Schrodinger éqUation)
method is utilizedﬁtogethex with a projection'technique. |
Both approaches give a finite set of amplitude~equations
regpectively, and the formal correspondence between these
sets of equatiéns,is observed. Due to the proper con- .
sideration of pions, the prpblem of pion ovegcounting does

nbt occur and the amplitudes are shbwn to satisfy at least
two- and three—particle,unitarify.

| Through the study of the scattering in the 7NN system,
sg§era1 important aspects common in general pion-nucleus
scattering have been observed, which would not be possible
through commbnly used approaches in the study of pi-nucleus
iﬁteractions. For instaﬁge, this Qbservatibn gives some

new insight into the ‘proper structure of pion-nucleus

optical potentials.
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For praétical applications the non-relativistic TNN
amplitudes are reduced in angular mbmentum—isospin éigen-
stafes together with'the inclusion of bound states.

The reduced amplitudes are then used to Study the
pion absorption effect on phe pion—deuferop scattering
lgngth.' The result is consistent with experiment. Some

possiblé fuﬁure applications of the formulations developed

in the ‘thesis .are discussed.
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CHAPTER I
INTRODUCTION

A, -Pion-nucleus Interactions

'Thére has recently been a growing interest in the
éfudy 6f pion—nuéleﬁs interactions. This‘ié due to the
fact that (1) pions are quite useful candidates in
probing nuclear structure including basic nucleon-nucleon
interactions and,- (ii) on the practical side, high inten-
sity pion beams are now available at several "meson
factories", which is of'pnimary importance for a better
undexstahdiﬁg gf;piQQudiEusiphenomena}

There are géverél otﬂer particles use%uigfor probing

nuclear structure} the electron, photon, nucleon, muon,

ete., ‘Each particle can claim 'its own merit as a nucléar.

probe, and pion's usefulness in the study_of.nuélear
structure can be. understood through its physical proper-
tieé(l) including the interaction with the nucleon. For
é#ample,«the pioﬁ intef;cts stféngly ﬁith nucleons, but
it -also interacts with them electromagnetically. -So.
neéative>fiéns caﬂ form pi~mesic atoms whose Bohr orbits

are éBout l/250vdf those in the usual "electronic" atoms

due to the mass ratio of pions and electrons (mﬂ/me~250).



Those orbital pioens then can see the. hadronic surface

structure of the nucleus“throﬁgh s;rong'interactions;

- which is impossible.for the leptons. Since plons have

chargg states; +, 0, -, it is possible (1) in principle

to separate the electromégnétic intergct{yp<f§om Fhe strong
interacfion in pi-nucleus scattering to see the pure strong
interaction effect and (2) to have pi-nucleus. double-
charge exchange scattering to observe some exotic nuclear
states, Another important feature is that thfough the
basic coupling, N+>N+m, pions can be produced or absorbéd
by the nucleus. Since the pion absorption (or production)
is accompanied by-at least ~;40 MeV of energy transfer to

or from the nucleus, it mdy be useful to obtain some in-

formation about short range correlations of the nucleons

" Iinside the nucleus (as well as basic N-N interactions),

There are several other nice features with pi-nucleus in-
teractions which make pions attractive nuclear probes.
However, we shall not discuss.them here, For details,

see several articles.(2-4)

B, Our Studies in Pi-nucleus Interactions

It is well known that the long range part of thé N-N
interaction is mediated by the one-pion-exchange (OPE)
mechanism which_comes from the basic N+=»N+T process men- 

tioned in the last section. (Multi-pion exchanges are’
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- Glauber's

- and of current algebra techniques

expected to contribute to the shorter range part of the

N-N interaction.) Therefore, when Qe consider the scatter-
ing of a pion by the nucleus, there should be no difference,
in pringiple, betwéen scattered and exchanged pions in the
nucleus,

There are several commonly used methods for de-

(5)

scribing pi-nucleus scattering. Both Watson's and

methods belong to the multiple scattering

theory. Eéséntially the description in those methods -

is in terms of two-body T-N and N-N t-matrices (or.poten-
tials) which are assumed to be given from outside, There-
fore, although they could include nuclear dynamics in a
proper way, an equivalent treatment of the scattered and
exchanged pions is not possible. |

(7)

.On the other hand, the use of dispersion relations

(8)

seem to take a correct

account of the pions because they do not begin with two-

body.inputs. However, the inclusion of proper nuclear

dynamics is awfully difficult; even practically impossible,
in these methods.
In this thesis, we make an attempt to take a proper

account of the pions in pi-nucleus scattering, i.e., the

"pions in scattering and in N-N interactions are considered

on the same basis.

To understand the point easily and transparently, we



',dde to Taylor

have‘chosen the TNN scattering problem, iﬁcluding TNN->TNN

.and TNN<->NN processes.. The methods adopted are (1) one

(10’11)'for our relativistic approach and

(2) a non-relativiétic Hamiltonian approach equipped with

the prdjection'technique of the type utilized, for example,

(23) ‘Thgse methods have allowed us to treat

by Feshbach.
the scatfered ;nd exchanged pions in the nucleus equally,
and‘we have obtained a finite set of amplitude equations,
These equations may Be coupled or uncoupled depending upon
what are given to them as known'input'functio&s-(or sub=-
amplitudés). |

We'then reduce ﬁhe non—relativistic equations for the

TNN amplitudes to the form useful for practical applica-

tions. With a suitable set of input functions, they are

~of the same'degreé of difficult& in numerical procedure

as the non-relativistic Faddeev equations._

The reduced equations are applied with some approxima-
tions to obtain the contribution to the m-d scattering
length from the intermediate pion absorption process in'w
ﬂ-d elaétic scattéring. The célculation is new ekcebﬁ '

(28)

for the recent one by Afnan and Thomas using the

Faddeev equation,




c. Outline of the Chapters

The organization of the chapters is as follows:
In Chapter I, we describe our motivation more in detail
by reviewing the ﬁethodsfrequently used in pi-nucleus
scattering pfoblems.b Then several questions are raised
as to the appropriateness of the potential description
of the 7N interaction in the multipie scattering method,
howﬁto t;eat“pion production problems, étc.frmnthepohm‘of~
:vie;-of.ﬁhe éiépe& accéunt.of pions, Some discussion is
given for the problem of pion overcounting.

Chapter III is rather long but is the central part
of our'formal stuhies. We have chosen the TNN system as.
the simplest representative of pi-nucleus system to étudy
the structure of the'scattepiﬁg.amplitudes. First we
.adopt Iaylof's method . in ourspgiativistic approach to the
pfdbiém,jaﬁﬂ second.; non-relativistic Hamiltonian‘approacﬁ
‘is used where we make use of the pion number projection
fbpééacvré;;o:obtain'a set'bﬁ_coqpledFunations;  Finally
.a.set of t-matrix eqﬁation;;.describing the processes
TNN-+TNN and TWNN<«->NN, are obtained for both relativistic
and non-relativistic methods, which for given suitable.
input functions are effectively decoupled. In connection
with this chapter we_éive a proof of unitarity for our

relativistic amplitudes in Appendix C,



In Chapter 1V, wé first make a comparison between the
relativistic and non-relativistic TNN amplitudes that we
have obtained in Chap. IiI. }Formal ohe-to-one correspbﬁd?
'encé is pbsérved. 'Then we answer the questions raised iﬂ

Chap. II. Finally, from an observation of the structure

of MTNN amplitudes so far obtained, we make'a plausible
guess on the possible structure of general pi—nucleus
amplitudes.

For some praétical applications, the non-rélativistic
TNN amplitudes are put into a reduced form in Chapter V,
First we make an isobar apéroximation to the two-Body in-
put t-matrices. Then the ampiitudes are antisymmetriéed
with respect to two nucleons and are decomposed in angular
momentum-isospin eigenstates.

Chapters VI, VII and VIII constitute the second part
of the thesis, and are aimed at the application of our
non-relativistic formulation of 7NN scattering. For this
purpose we have.ehosen'to study the effect of intermediate
'pion absorption, in the elastic md+>mTd process, on the
pion-deuteron scattering length; amd. This effect is
expected to be rather'sensitive to the details of N-N in-
teractions, but so far has only been studied a iittle;

As the effect of pion multiple scattering seems less im-
portant there in comparison with that of pién absorption,
the problem is Qell suited for the application of our

formulation,



In Chapter VI we review the theory and»experiment on
the pi-deuteron scattering length; amd, with a spebial
emphasis on the effect of pion absorption contribution to
it; Aamd.

Chapter VII is aimed at describing the method qf cal-
cilating Aamwd, and in Chapter VIII we summarize the re-
sult of the calculation.

. Finaliy_we,ﬂraw some conclusions on our studies
conﬁained in this‘fhesis, in Chapter IX. A selection of
auxilliary topics, and some extensions and details of the
subject matter of these chapters, are given in the

B4

appendices,
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CHAPTER 1T

THE MOTIVATION OF OUR STUDY

" A. Introduction

One day a friend of'mine asked me "Why are you sthdying nuclear
physics? It's'useless because we don't know the Basic structufg of
nucleon-nucleon interactions in field theory". Of course he was in
theorefical particle physics. My answer was then, "If you actually
show.me how to determine the orbit of the moon around the earth, as

acbufately as possible by solvihg'the Schrodinger equation, then I may '

'_ stop doing nuclear physics."

We take it for.granted that at least the physical world possesses .
a structure with several strata, and each of them looks more or less
closed in itself;"As may be'known, classical mechanics cén predict
the positién of the moon around the’earth within a few meters in
accuracy without‘any help of "Quantﬁm Mechanics". Low energy nucleaf'
physics is also self consistent, apart from possible electromagnetic
and weak interactions involved, in that it can describe many low
energy nuclear phenomena very beautifully without asking any help
from particle physics, especially in. the aspect of strong interaction.
| Sometimés, however,.the structufe belonging to one stratum

happens to appear explicitly in anoghér. Superconductivity (or



superfluidity) is a macroscopic phenomenom which, however, is totally

governed by quaptum microscopic principles without understanding them,
nothing can be said to explain it.

Now we get into the problem of pion-nucleus scattering. Then
what do we know about its features? A nucleus is a substance in
which we assume some forces acting among its constitueﬁt nucleons to

bind them together. By itself it does not seem that a nucleus has to

- ‘have any other explicitjdegrees of freedom to be taken into account

ap#rt from electromagnetic,property. But oﬁce we try to consider the
interaction of pions with nuclei, we have to look at things more micro-
scopically. We know that the pion can be absorbed and emitted by a
nucleon in many-body -systems. We also know that the long range part

of the nucleon-nucleon force is carried by one pion exchange (OPE)

and its shorter range.part, possibly by multi-pion exchanges. Then

if, we. hit a. nucleus with a, plon, how can we dlstlnguish the scattered

'pion from those plons exchanged among the nucleons in the nucleus?
2;This necess1tates us to regard a nucleus not only as an ensemble of

.pien 'scatterers but also as an. ensemble of sources and sinks of pions. .

0f course it is practlcally impossible to solve.pion-nucleus
problems by taking "fundamentalist's attitude", to start with "basic"
Lagrangian or Hamiltonian to generate everything; N-N force, mw-N

scattering etc. at the same time. But looking at problems in this

. manner may provide some new important aspects which would otherwise

never appear. So we shall take an attitude which is a little cioser.
o "fundamentalist's point of view" but not equal in order not to

become sterile.
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B. . A Look at Some Conventional Approaches to Pion;nucleus Scattering
| (1) Let us 1oek at the most common method in elastic pi-nucleus

scatterieg which also is used to construct pi-nucleus optical poten-

tials for the applications to pi—production.or absorption problems.

It usually begins with a Hamiltonian of the form

(4) .
H= /<+Z U'*‘ZV,,W - (28-1)

)

where K; kinetic energy of the pion and nucleons

Vi
V#N; potential between the pion and i-th nucleon.
Then writing H = K + g VNN’ and with the t-matrix equation for the
pion and i-th nucleon :cittering under nuclear effect; |

potential between i-th and j-th nucleons

- . . . t _ H --
tan = Vi + Uy [E*-H,) "'ﬂtu, C(2B-2)

‘the Watson multiple scattering series(s) is derived which takes the

form

. (2B-3)

.‘7-,:-'7!14; eus Z\f,w "“Z\ tIN [E Ho] f‘KN cosonce

(¥)

This series is approximated in practical calculations; for example,
by keeping at most up to the second term, which allows one to include
some nuclear dynamics.

Looking at.(ZB-l) we normally wonder whether we can claim the
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possible existence of pion-nucleon pdtentials or not. Or we can ask:
(1) Whether the Hamiltonian makes sence, or not, from field

theoretical viewpoint?

(ii) We now turn to the problem of pion production and absorp-

tion by nucleus which has become very fashionable in recent years.

(9)

The common recipe is to adopt the distorted wave method used in

:direct nuclear reaction theory. According to that method, the initial-

- ‘and final-state Hamiltonians are taken, in a pion production problem

for example, as

) HI =Ko :+ Z V,JJN _ ' -(2B-4)

and &j / .
— ] C Sty
Hr =K +.Z:‘VNN '+Z\V7c~ "LZUL,;'* ht ), - (2841
v €>) t ; _
'q'l§here~ ﬁ ; initial state total Hamiltonian

I b4
HF ; final state total Hamiltonian

o kinetic energy of nucleons

hi(HI) ; pion absorption (emission) operator by i-th nucleon.
Other quantities are already used in (2B-1).
One then evalﬁates the t-matrix for the process using distorted

wave Born approximation(g) (DWBA) ,

=iz, e
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§+) ; outgoing scattering eigenstate of HI ' , _ N
wéi) s incoming écattering eigenstate of H in (2B-1) or of H

where ¢

F- - T
without 2 (hi+h1). This state corresponds to the pion '

distortion by the nucleus.

Hi seems reasonable bécégse in the initial state only nucleons

appear.(Strictiy speaking, in pion production problem, the initial
state should implicitly contain pion degrees of freedom. Otherwise

there is no pion production.) - On the other hand, the form of H, is

F

questionable. First of all, in DW approach HI should be equal to Hp,

which, however, cannot be shown without knowing an explicit pionic

structure of H_ and especially ©Or HF A careful look at Hg

I
shows that it is inconsistent in its own structure; both V;% and ViN
in'HF contain certain parts which can be generated from hi and h;.

‘'This inconsistency becémes more transparent when we try to obtain Tfi_
for pion production' by going beyond DWBA. Then we find that HF produce.s’
serious pion.overcounting as well aé nucleon self-energy which should
'Be'thought'tq.have been renopmélized; So we should ask the second

question:

(2) What is the correct approach and expression to describe

" the problem of pion production (and'absOrption) by nucleus?

(1ii) Let us notice the following fact; as pions can be absorbed
and emitted by nucleons, there should exist, even in elastic pi-nucleus
processes, some intermediate states with no explicit pion present. A

process like this cannot be taken care of by.a Hamiltonian of the type
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we have in (2B-1) even though we try to admit the existence of V;N'
Then we arrive at the. third question:

(3) How to include the effect of intermediate pion absorption

in elastic pi-nucleus scattering?

Connected with what is mentioned in (iii) is the fact that in
addition to zero pion intermediate state there are various multi-

pionkintermediéte states, for example, in elastic pi-nucleus ampli-

"ftudes.‘:Thereforégevéry:state with a definite number of pions should

' couple to others'éorfesponding to definite but different numbers of

ﬁions in a unitary way. This means that we have a coupled set of
equations with an infinite number of unknown amplitudes. So the
question'goes:~

(4) 1Is there any appropriate method which eliminates all those
amﬁiitudes‘that»ére‘nét 6f,our:diréct concern, to get an

effective setnofﬂQQuéﬁipns?l

C. Pion Overcounting and the Proper Structure of the Pion-nucleus
Amplitudes
Before going to the next chapter for a detailed study of 7NN
scattering kas a simbie model of genéral pi—nﬁéleus scafterihg), let
us have a brief look at the structure of pi-nucleus scattering in

connection with the problem of pion overcounting. As in later '

chapters, we have chosen the 7NN system for our study here. This

provides us a . basic insight into the proper structure of other

general cases of pi-nucleus.interactions.
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e Let us consider an elastic TNN scattering and pick up several

A processes in it where possible pion overcoﬁnting might creep in.
Here we do not assume any specific Hamiltonian to begin with but

- simply look ;t the diagrammatic structure of the whole proéess.

(1) Consider a process shown in Fig. 2-1.

A0 ' : ' ‘
Fig: 2-1 Fig. 2-2
As one may easily notice, this can be viewed in two different -
ways; (1) two successive direct Born ‘scatterings of a pion by two
nucleons, or (2) pion absorption by a nucleon + one pion exchange
N-N interaction + pion emission by the other nucleon. Similar dual

interpretation happens in other large classes of constituent process
(or graphs).

J AN

AN | \ /
\, \ /
] \ /
\
\
\
\
\ 1\
\
-\
\
(o) N 4)
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When we tgke thé viewpoint (1), then a graph like in fig. 2-1
belongs to the one sh&wn in Fig. 2-2 where hatched sguares mean total
7N t-matrices and hence we do not have ény explicit state With two
nucleons alone. However,Awe also have graphs like in Fig. 2-3 (the
processes shown are supposed to go off-shell in general) and these
processes force us. to take the viewpoint (2). Of coursé,‘if we adopt
both viewpoints ‘at the same time, there appears an ambiguity in

-¢lassifying the diagrams like .the ones in Fig. 2-1, and 2-3(b), which

-:.: hay:bézconSLdereﬂ to;belong;td the diagrams in. Fig. 2-4. There in

the figure, the circles represent the total N-N scattering t-matrices

including pion exchanges.

/
\ / \ \ /
\ JI =) RN 4
) —
/
. /
(0 SN G O
Fig. 2-4 Fig. 2-5

BV

(ii) The next thing to'be examinéd is whether -the:two-nucleon

. states with possible N-N interactiong‘gppear as many times aé possible
in TNN->TNN process.' In other words-§élshould;éék whether a process
represented in Fig. 2-5, which is avcombiﬁétion of'diagrams (é)'and
(b) in Fig. 2-4, .can happen in the total TNN-7NN amplitude. The
answer is "ﬁo", because every‘poésible process connecting initial

and final two-nucleon states in (a) and (b) in Fig. 2-4 is already



=16~

in the éircles~so the diagram in Fig.‘2-§ overcounts the pions as
well as othef mesons ekchanged. Therefore we may conclude that in
the.nNN elastic amplituée; the pure two-nucleon intermediate sfate
j(with possible N-N interaction) shogld éppear once and Qniy once.

of coﬁrse we also have the cbntribution to the elastic ﬂﬁN scattefing

from the process with no intermediate pi-absorption. Thus the total

TOT _

- SCAT ABS
NN TNNN + TﬁﬁN’ where the second

‘NN amplitude takes the form; T
term is the contribution from the pion absorption. This structure
seems also to be present in general.pifnucleus elaséic amblitudes.

Now the question.is how to obtain completé expressions with
the proper structure mentionéd.abové without pion overcounting.

First,‘if we begiﬁ with some adequate field theoretical
Hamiltonian containing the nuéleon field, several independent meson
fields and the interaction termsAamoné ﬁhem (its concrete form does
not necessarily have to be known), then the overcounting problem |
would never aﬁpear, in principle. All.we have to do in this case is.
to classify all possible processes properly to identify sub-amplitudés:
the 7-N t-matrices, N-N t-matfices etc. in the total amplitude. For
this purpose Ta&lor's method has been found useful and we.apply it
for the study of 7NN amplitudes.in the next chapter. Second, we may
ask if there is any apéroach.which has a similar formvof~Hamiltqnian
as appears in (2B-4') but is free from pion overcounting. As is ob-
vious, Hémiltonian (2B-4') counts proéesses 1ike'diagram "b" in Fig.
2-3 more than once¢A This is because the NjN potential is assumed to

contain the effect of pion exchanges. So if the N-N botential there



e v is replaced by the one without pion exchanges, it will become free

~ from the overcounting of piohs. - In our non-relativistic approach to the
TNN problem, we have adbpted this picture, which will be found also

in the next chapter.

LY




CHAPTER III

THE STRUCTURE OF nNN SCATTERING AMPLITUDES
.The aim of this chapter is to study the structure of
TNN amplitudes and through this study we shall find a set
of amplitudé equations. First we consider the problem in .
the framework of relativistic quantum field theory and

later we adopt a non-relativistic Hamiltonian model.

A, Relativistic Approach

The method adopped'here is due to Tayldr(lp’ll).who,
tried to have an alternative approach to relativistic quan-
tum field theory without any explicit use of Lagrangian

or Hamiltonian. ©Later this method was utilized by himself
in constructing relativistic three-body equations.in their -

most general form.(12)

Since the development there was
formal, the equations do not seem to have been studied
further nor applied. We have found that his method is

useful in studying the structure of pi-nucleus scattering;’

TNN problem here.

~18-
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I.A The Taylor Method (preliminaries)
The prototype of Taylor's method is found in §ymanzik's
.work(ls) on the many-particle structure of Green's func-
tioﬁs.' Symanzik's approach is to use functional differ-
entiation‘with respect t§ the source field in S-matrix
and obtain retarded Green's functions for which the struc-
ture is analyzed. 'Taylor extended this in order that
: causaL prdpagators;can:bg_used as well,
- f‘< : ZTﬁe reason wh} we havé adopted Taylor's method in our
study is as followé. As mentioned above it is developed
jg? . in the framewérk of relativistic field theory but as will
be mengioned, it &oés-not require any specific Lagrangian‘
nor Hamiltonian to start with, This is because the analysis
of scattering amplitudes in his approach is a combinatorial
.4.pfqﬁlemiagsqgﬁépedgwith'diagrams. This analysis is done
utﬁibugh:ﬁﬁé "£ht£ing'1emma" which will also be mentioned
:latéixénd;this'lemma:enables us to decompose a given ampli-
 4tp@eui£ tefﬁs of a combination:of more reduced amplitudes
in ca unique way and hence 1eads:to:the:amplitude‘withlﬁo
overcountihg. With the cutting lemma and the notion of
"complete unitarity" introduced later,it is possible to
reduce every possible amplitude on'and on (in principle
idfinite~number of times) and thus we éan construct a field
theory alternative to the Lagrangian approach, For our

purpose, however, it is not necessary to do that. Since
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Taylor's method gives’us'a'rélation among"vafious‘scatféfé
ing amplitudes, we are able to get the structufe of a
certain amplitude ih terms of a finite number of |
amplifddes which are more reduced.in their forms. Actually,
we shali see in the next subsection,Ai,e. eQuatioﬁs |
(3A-III~1) - (3A-IV=15'), that we can obtain a set of

equations for the scattering involving 7NN with a finite

number of given input amplitudes; TWNN vertex‘functions,

generalized NN'potential,propagators,etc.'all of them>may
be renormalized quantities, to be given.
In Taylor's approach to relativistic field theory.

there are several basic assumptions which are common to

every‘felativistic field theory. They are (i) existence

of fields, (ii) Lorentz covariance (iii) existence of

physical vacuum (iv) existence of asymptotic fields
(v) rendrmalizability etc. Just to know the structure of
a given scattering amplitude of to obtain a set of equa-
tions among scattering amplitudes in questién through
Taylor's method, we‘may,not_ﬁeed those assumptions above
because as has been said, it odly requires to solve a
combinétorial proBlem.

In order to éimplify bur analysis we consider.thét
particles.are all spidleés and diétinguishable. .This does
not lose any important points in actual ﬂNNAscattering_

that we try tounderstand 'as the essence in Taylor's
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method is in combinatorials but not in the detailed kine-
matics nor internal symmetries.

Let us remember some basics in qugntum field theory,
The S-matrix describes a scattering process, which is uni-

+ S+S = 1 and it is usually written as

tary, i.e, SS
S=1+R=1+1iT, (3A-1-1)

Its many~particle matrix element is

o ':'—'-';.#-)‘;' R O __) o o
S—ff = <77],;1)’1""‘%'m; 9W(l'l 77/ I"\> . (3a-1 2.)
When we use the reduction formula of Lehmann~Symanzik-

Zimmermann (LSZ),.we can relate S with a many-particle

f£i

causal Green's function (of course Sfi can be related to

retarded or advanced Green's function as well),

| S (1 . A ™ TT T foe o(‘*ﬂ«\‘t‘%‘?« ety e Ga1-3)
Y <0 I—r((P (55 ) caviee ?m(z ) ¢*(:(,) cnones ¢+ (A )) IO>

"”‘where Pex = P,X (four scalar product)
= 2 N
D#i-é>tjx.+mi; Kleln Gor@on operator

The.neéson ﬁhy we put "primes" to some operators is
to show that the field ¢i,can<be different from ¢,. Also
' t& make thihgs definite we should mention that the normal-

ization convention in which

1By = GPE ), (5= ),
<oIPwIPy = €T, e,
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is adopted.

Now because of (3A-I-3) the center of‘our study is in

.thé analysis of time-ordered many-particle Green's func~.-

tions (or sometimes called propagators)., We are most con-
cerned with the structure of their Fourier transforms after
multipiied by sevcral Klein—Gordon,operatoré and these"

quantities are expressed in terms of '"propagator - amputated

_ Green's functions"; T,which is defined through:

oI (e plen) leay - ¢t am)) 10 é)]l So@v;- a Uy

. (3A-1-4)
)([(:A’F; (’15 -E)J[L A’Fh' ('uh“in)] r't (ru" aness ’v"\\ ; ur... um))

where iAé(x—y)E<0|T(¢(x)¢+(y))|0> is a single-par;iclé

causal propagator, (Note a "free" causal propagator is de-

fined as iAF(x-y)E<6|T($(x)$+(y))|5>, where states and

operators are in Dirac picture).,. We then plug (3A-I-4)
into (3AQI—3) and obtéin the expression for R, In doing
so we regard those momenta in the exponent in (3A-I-3) to
be‘generél four~vectors; they are not necessarily on-mass-

shell. Thus utilizing the relation

ii L | :
SQ P&pr/ (1- )d?l = —f_*w\& AIR(P)/A P (3A-I-4") '
R A,
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]
where A; (p) etc. are Fourier transform of AF(X) etc., we

arrive at

R (% Fu s R Pm) = (,x)‘}g‘f(zzy—z_f)?‘)’(g;»_-ymp'm.Pu) (3A-I-5)
and
R L. SV YRS |
Weg b R-R) =T T tAFj “)’/AF; cff,p}{ Pt /A,;,e ™)
X (%l'"'%‘a\; B P'M-) . (3A-1I-5")

Here T is defined- as

w152 —ihdl A . & o4
R | e B s B P s\ (ze-X
(2, T, Tam 2 ) =/)4mqm S;(TEQ T (b Fms B b)) @707 (2 f),

(3A-I-5")

'SihdetA;(poAF(p) =.1 for 6n-hass—she11 p, the Fourier

».transform of the "propagator-amputated Green's function";

%,beumms4auml-U) R when all particles are on-mass-shell

A and therefore our study. finally converges to the point‘

where the;analySis is in the structure of T functions,
“Next %tep is to assume theipossibie clﬁster decomposi-

tion property of %, which is reasonable as lﬁng as the in-

teractions involved are of short range (we neglect Coulomb

iﬁtéraction). Then we may assume
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. . |
r%(%‘_ Fos R bn) = Mo (% fns B Pon) 7T W Fies P Prg)
. " (3A-1-6)
. XMM'&)*P ("rihlm %{m; Pk-pum Ph'n) .

In the above expression M"y is a complétely connected
b}

part of ?(rl‘. ceT 387> 'Sy) and the summation is over all possible

combinations (jl,...Ja;k "kB) where (Jl~--Ja) is a set of

1..
numbers arbitrarily chosen from (1,...,n) for a=1 up to
a=p-1 whereas (kl"'kB) is a similar set from (1,...,m) for
B=1 up 'to B=m-1. -

By "completely connected”" amplitude we mean the one '

which does not contain'any contribution associated with

spectator particles, nor can it be written in térms of a

4produét of several amplitudes which contain fewer particles

in them, It'is this connected amplitude Mnm (or connected
paerf ?nm) which is of physical importance and our task is
thus to study its' structure. and relate‘this toAthe S-matrix
through (3A-I-1)-(3A-I-6), The study.of the structure of
Mnm is done by exposing intefmediate states with a certain

number of particles by the method associated with "cutting

lemma". We shall study it in the next subsection.



II. The Taylor Method (exposing intermediate states

in the amplitudes):

We shall adopt.an approach in whicha given scatter-
ing am"plitude.Mnm is regérded as a formal summation of
graphs. This picture seems to be necessarily connected
with the pérturbation theory. So if the perturbation
series does not converge in a given field theo?y, it does

not ‘seem to work. .But as t'Hooft and Veltman stated,(ls)

-?if.may be appropriate to use the summation of graphs form-

ally to obtain amplitudes or amplitude equations and then
start with them. (O0f course all possible consistency
checks should be done with regérd to those amplitudes or
equations once obtained.)

As has been stated at theabéginning of subsection I,
no détziled ébgcifiqatibn:o?ﬁHé@ilgonian nor Lagrangian
is required. To go one step further‘into fhe method

several definitions may be due here which are due to Taylor.

'(i) A,graph'is‘defined‘to be a two-dimentional Feynman

type figure consisting of internal propagators, point ver-

"tiéés and .external particle legs. A graph should be
connected. For our purpose the initial and final states

. are to be.specified,but in the analysis we are going to

do,it is.nqt}hecessary‘to specify particle momenta etc.

So the specification may be just the number of particle
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lines in. the initial and final states. We assign a graph as
in Fig. 3A-1, where the external legs may or may not -be

explicitly shown, i.e.:.

qt{giif }nn o M an.

Fig. 3A-1

(ii) A diagram is Qefined to beAa formai summa;ion of all
possible connected; topologically distinct (perturbation)
graphs (as defined in (i)); which are associated with a

process undér conﬁideration. We identify a diagram as a

connected amplitude Mnm' A diagram is depicted as:

‘ fn{ }'"L m m
or S
Fig. 3A-2 |

‘The reason why we distinguish a diagram from a graph is
that we may need that distinction when we discuss thé
last cut lemma and things connected with it.

It may be adequate to stress here that the outer

legs in graphs and diagrams are generally off-mass-shell."

(ii1) A cut is defined to be an arc with no multiple

points and intersects particle lines in a given graph (or



- a diagram) to separate the initial and final states. It may

intersect several external lines but should intersect at
least one internal line. It should not intersect one

particle line more than once.

(iv) An r-cut is a cut intersecting r lines in a graph

(or a diagram).

(v) A graph (or a diagram) is called r-irreducible (or
r~paﬁtic1e irreducible) if no k—cut (k<r) can be drawn
in it. This is éxpressed as in Fig. 3A-3 (graph) and

Fig. 3A~3' (diagram).

r ~ S
‘Fig. 3A-3 © . ...  Fig. 34-3"
. We éhéll-use cuts to expose intermediate particle
lines in a given graph,which leads to the structure analy-
sis of the graph.. :For.this purpose we need the "last cut

lemma" of Taylor. It.ié'explained briéfly in Appendix A

~_and;here:we just state thg result. [Last cut lemma] For a

given'graph‘n ‘|m, in whch we can draw r-cuts, it.'is

always possible to find a unique r-cut which is nearest
either n or m, provided the graph is already r-1 irre-

ducible.
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As 1is statéd in'Apﬁendix A, a giveﬁ graph n[I]m whiéh‘
is r-1 irreducible bélongé to;pne of thé éeveral geté; one
without rfcut,Aone admitting r-cuts intersecting r internal
lines, one in which any r-cut intersects external lines
from m, eﬁc. A careful study shows that to any case this
"last cut lemma" applies. S S S S

Now using the lemma just stateq, we can expose inter-
mediate barticle lines uniquely; particle lineé are ex-
poéed where they are cut by the last cut., Let us consider
a graph shown in Fig.3A-4 which is r-1 irreducible and admits the

existence of r-cuts intersecting r internal lines. Then

the '"last cut lemma" leads to the unique

r r.
m m = m m—=—=m m
r~1 r -1 1 T
Fig. 3A-4

exposure -of intermediate r particles (either closest to n.
or m) as shown in Fig. 3A—4., When we sum all similar

graphs, admitting r-cuts cutting r internal lines, we obtain

o
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Here in Fig. 3A-5 we only have diagrams but not graphs.
Si@ilar exposure can be‘done in those r-1 irreducible
-graphs in which r—cuts intersect at least one external
line. We classify.all Ehese (r-1) irreducible graphs
according to the "last cut" structure. When we sum all
these classes of graphs (by this time each class is ex-
pressed in terms of diagrams only) including n gr_lm, we
obtain an exposure .of r—l irreducible diagram n ?_1m
(=Zfr$r_lm)-in terms of thépcombinationAof other irre-
duciblé diagrams. .

As it is difficult to write down~an exposed form (or
we shall call it .a cut structure) of a diagram in general,

we show some examples in Fig. 3A-6.

(i)
w L + '
1£€hr<m-1 m-P ORI
, f\ . Fig.,3A46, - ‘ 4
We should note here that;‘for example —’Il Tm in
1

(1

& fig. 3A~6 (1i) can be different from M2.m’ which is a one-

particle ‘irreducible part of the connected m+2 amplitude

M2 o defined in a manner shown in (3A-I-6). This happens
»
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o if "free" propagators are exposed by the last cut. There~
fore our cutting is understood to expose "dressed" propaga-

' 2,m
: careful, however, in adopting this‘viewpoint; we should .
replace—(Z)m by -+<1>m ﬁhere-—ﬂ——-is a dressed propagator

1 .
since this dressed propagator pulls out”~w1th"it “one= "

tors from now on. Thus .we obtain :(Dm = M(l), One should be
. . 1 . N

particle reducible part from-—<:)m.

Equipped with the last cut lemma, a.study of the
structure of given amplitudes starts with exposing single-
particle intermediate ~state,  two-particle state, and on

and on to expose higher-particle sectors in princ1ple.

There is one-more step for us to take to complete
Taylor's‘method; We are changing our former derinition -
of diagrams. lIt now goes as follows. A phySical ampli-'
tude is defined to be a diagram and a d1agram is then de-
fined as an all possible summation of topologically dis—‘
tinct perturbation diagrams. A perturbation diagram is
defined in terms of a'perturbation graph, by'feplacing
(1) every point vertex by a diegram with corresponding
number of legs and (2) free propagators by corresponding
dressed propagators, - The replacement just mentioned
above is, according}to Taylor, a requirement fron "complete
unitarity". ThlS complete unitarlty means that phy31ca11y,
all possible 1ntermediate states occur in any given pro~
cess. The cut structure of diagrams does not change by this

reduirement. But this complete unitarity makes it possible



to expose any higher—particle intermediate states in any

amplitude and connect that amplitude with other amplitudes.
Taylor has emphasized that it is possible to accept the
"last cut lemma" and "complete unitarity" as two basic
guiding principles and forget about the perturbafion con~
aept’utiiized to establish the lemma to start with the

field theory; Actually, he has shown, in the case of self

couplimg field,'that when approximating ~<1>2 and —{1)3
, S 3

v 3
by constants Al and Az, a canonical form of field equation

(or equation in terms of t-matrix) which would have been
obtained from the current operator j=)\1A2 + AZAB can be

derived. -

One thing whichwe want to see is if the last cut

_lemma.plus.complete unitarity leads to the unitary structure

of the amplitudes. 'Taylor-didiit for. some simpler cases
like 2+2 amplrtudes. We give an explicit and probably
an original proof of the unitarity of the amplitudes de-
r1ved from Taylor's approach for the case of TNN amplitudes
including those for ﬁNNﬁMJat least in the alastlc.regxon
of NN and 7NN states. (This is shown in AppendixlC.)

To epd this section we should ﬁake a couple of re-
mapks;

(i) ‘The cutting can be 'done in every possible channel,

vs;t,u epc.. So we could in principle get equations of

"scattering aﬁplitudes which exhibit explicit crossing
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symmetry. But as may be expected, the equations will be-

come non—linear and very3complicatéd,‘
(1i) The concept of particle irréducibility is not very
new. For example, it is (often implicitly) adopted to de-~-
rive Bethe-Salpeter equation(lg). Also it wasAused in a
less rigorqus manner by‘Zachariasggf}6)vandulgggp_by |
demas(l7).

III. The Structure of TNN Amplitudes

By means of Taylor's approach we can expose inter-
mediate states of varioﬁs TNN amplitudes; amplitudes for
TNN-+TNN, and ﬂNNIN?, and the result is a set oé,relations
or equationg which expresses‘ﬂm amplitudes in quéstion in
terﬁs of the combination of several higher irreducible
ampiitudes} As has been mentioned in subsection I, if we
regard tﬁese higher irreducible amplitudés as given im-
puts, we then can solve the equations to get‘tﬁe amplitudes
for those processes stated above. For our purpose the BRI
intermediate states to be exposed should be two-nucleon
with no pion, and two-nucleon plus one-pion states.

First we.set up a convention connecting amplitudes

and diagrams. The rules are as follows:

@ u¢ : =
‘ nmw ql...qn’p.l...pm o 7’:’0\. = Pm

(2) d(P)AﬂA%(p)E.—,Hﬁ:



4
- (3) each internal line carries I_Q—RZ
(2m)

(&) four-momentunm conservation.factor'(2ﬂ)4(2q—2pf

carried by eacﬁ amplitude

Properly speaking we should use different lines‘for
-pions and nucieons respectively. For diagrammatic simplicity
we shall not use two different lines unless required for
clarity.
' ;gﬁe;shailfStart”our_cuﬁ'structure analysis affer oné
apprspriate definition.
[Definition] A generalized n-body potential is defined as
11(£2 n; n outer legs both initial and final state of an n-
particle irreducible amplitude. As will be gnderstood,this
is consistgnt with our ﬁictune af'nuclean—nuéleoﬁ potentials,
‘ fhejlowgst'prder qontfibutibngwhich comes from single pion
: éxcﬁaﬁéé;ﬂ9fg£§Eis?téa&iij seen to be a tﬁo~partic1e ir-
| rédﬁéiﬁiéfz4ifgréﬁh.
M i“ifiEirst we should.kﬁbw the struc#ure ofﬂfwo;particle
“}émplitddes‘which;ane expééﬁé&ré&rappear in tﬁfé;;bodf

amplitudes. The cut structure analysis gives

L= ::Z:]::[:"F::K:I::}“{z:[:i:: (3A-III-1)
: 1 1 1
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1 2. ‘ z T _ (3A-1I11-1")

ey (O uECTE SN
1 .

In (3A-III-1) the second tarm on the righthand‘side
disappears for the case of N-N amplitudes as we expose only
nucleon and pion intermediate lines; In (3A-iII -1') we
Avimmediately notice that the relation is of Lippmann-

(18) ’ s : (19)

Schwinger form or more precisely of Bethe-Salpeter
type equation and:I]:Z acfually corresponds:to'thé poteh-.
tial in non—relativigtiq séattering there.
Next we try to axpose three-particle (mNN) amplitudes.
s ﬁ: m and' :@ :qz (same for - ﬁ)
in our 7NN amplitudes we fihd the follow1ng structure:

(1) decomposition of one-particle irreducible amplitudes

: o 2
-3<D3 = 3<D3+ 3@3:(1)3-+ I ! |)3+3<Dﬁ
o1 A | T 2 1
: ‘ (3A-1II-2)
Qs+ e % %

i
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Q(DB: zc 3+2<D::< _

{ (3A-I11-3)
4 Dz

)w(])::()m .

il
F\

3(i[>2f has a similar expression to (3A~III-3).
On the-ri;hthand side of both (3A-III-2) and (3A-III-3)
the first line is -due to the last cut nearest the initiél
state and second line due to the last cut nearest the.
.ﬁf' final state. ©Note that there is no appearance-of éotentials

here. -

'(ii) decomposition of two-particle irreducible amplitudes

. : 1
| .
l--. . . . . . y L -
3@3: 3CD3'+3 "'- 3+3d@+@3 :%z
. - : 2
DT T T 1 AN E 2

(3A-111-4)

: 1
) o 2 . S— |
B 3 2 3 2 2 A

o

(3A- III -5)

(5 0
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' 3(J;>l has a similar expression to (3A-IV-5).
"Note that throughout (3A-I11I-2) t¢ (3A ~ITI- 5) %

etc. mean Z where j is a label for a pair or a
spectator,

At this point 1let us‘lbok at those ampli;udes which
are cut analyzed. Especially (3A—III—2) shows that the
amplifude contains a pure'two nucleon (+N+N interaction)
intermediate state explicitly just once. This 'is in ;gree-
ment with the result of our qualitative study on the struc-
ture of m-nucleus elastic amplitudes at the end of the last

chapter.

Iv. Equations. for 7NN émplitudes
We set up a "dictionary" for the translation from

diagrams to standard expressions. 'The translation scheme

is as follows: ‘ <12
4 (U

wenQy g

r 4 : 4

~

:C):} i=th fai‘r (xN) R M= M o™
«(k) = 2(1)2_ ' ) , thi ﬁi(h)di-)
~1 :(D- ' i mi -l
Yrsi{]Ih . T EREL
Ei‘ = 3;: = %"; dt—

SV

Gri = djde (5,040) G

il

ioady
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T nucleon propagator resulting from a pion ébsorbed by
a nucleon; either "k" or "&" indicates the pion and
""" or "k" the absorbing nucleon

d.d

G;3d5dug

Using these notations, we write down the relations
among amplitudes depicted in (3A-III-1)-(3A-III-5).
(i) (3A-I1I-1)-(3A-I11I-1")

N~ S Fi :
/th = M? + Ve olre ¥ (3A-1V-1)

M= FP + HIPq:i; (3A-1V-1")
- 1A At 10]
=AY+ G S
~ o S ~F .
T.; = +L + Mi GI'L %.: . (3A-1V-1").
atl

= A )
%f + bqigﬁ:W;-
. 4?f has:é similar éxp&ééSion to (3A-IV-1")."~
For duf iater purpose the following expressions are
- more useful for the three-body amplitudes as we shall see

. so0n.

M= MY+ ¥ Gyt
ME + MG, M
r4?’*T4?GBPﬁ”
MG
=% M

X
I

L
]

(3A-1IV-2)
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(i1) (3A-III-4)

<

m@==m?+mﬁeﬂw”+m%%ZM?+ZM&%MW+;Mﬂ%ﬂ?-
t ) :

= m@) + m(ﬂc_n 772(3) + 712(2)65 Z\M ?) t Z-‘ ME,)CTJ m(-’) + é M:',C‘E Mwo
' i 2 *

(3A-1V-3)

' . N (@)
When we define ZQ

i

/\3 -
¢ i [3
NI A . (3A-IV-3) becomes _

3A-IV-3")
= RO+ RO G, A ‘
4 3 .

This 1s of Lippmann-Schwinger or Bethe-Salpeter type equa-
~(3)

tions with m being the generalized potential. 1In its

~ 3 . ;
cut structure m( ) indeed is consistent with our conven- .

tional notion of potentials. We now try to obtain an ex-

pression fm:ﬁ(z) (or m(z)) analogous to the non-relativistic

J=0 J=0 4 (3A-1V-4)

Faddeev equations(21)(see Appendix B). We first decompose
3(2) as
’7;\10) .__._i-,ﬁ.&) = i ,7??‘(2.) .
S - ks " Vo)



Aq2),

where

~(2)

; a part of m in which the final state inter-

J'
action occurs among j-th pair (j=1,2,3) .
ﬁéf); similar to m(z) (j=1,..3) but the final state

interaction is due to three-body potentials.

~(2)

Similar deflnltlons apply for m *u(u=0,..3) except that

the specifications are concerned with the initial state in-

teraction. Then with UOEm(3) and Uj (j=1,..3)EM§2) we ob-

. tain from (3A-IV-3') and (3A-IV-4) that

> P A @) N
M =Uj+ Ui, MY = Uy + my e, MO

@)

, " \ .
’m., =Ui+ mPGY = i+ mOG m(J)
()=0,1,2,3)

(3A-1V-5)

Usinéﬁ(3A-IV-Z) and the conYéﬁbidnalftechnique to eliminate

v

"ﬁbtentialéfin'non;relafiVistic Faddeev equétion formulation

“{see. Appendix B), (3A-IV-5) is modified to become

=m0 ) , '(n ~@) . |
M + M 6’3%‘,% + Mj €3 Mp. (j=1,2,3)

M = Mo+ Mo Germw o (3A-TIV-5")
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and similarly

me =mp Z GraM"’ + me C-raM“’CJ -133)

k% ),0

"g = Mo + 29: m") GTst . (3A-1IV-5")

k=1 )

= . - _TU_G&? '__n
where M0 U0+U0G3Mo UO+MOG3UO. (3A-IV-5') and (3A-IV-5")

are of '"Faddeev type'".

(i) (or

We next try to eliminate m

~(2)
*]

ﬁé?)) from the

integral equations- for m and'mgg) (j-1,2,3). The re-

J
sult 1is

M =MP+ MV, Z ( o5+ MG ) T + MY M,

(j=1,2,3)
(3A-1V-6)
'm,,. = Mo +Z’M063mh. , )
RS
(§;P§:1-£%)
and
MG =m0+ Z’m n(swcﬁm)&a M;’ +MyG, M
(j=1,2,3)
M =M + L RE GyM, (34-1v-6")"

k=1 . )




A
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where Gk =1-8, .. (3A-1IV-6) and (3A-1IV-6") show that 322)

kj
and m( ) can be obtained Just by integrations once we solve
“for mgf) and m( ) respectively.
We may decompose ﬁj ’ o i etc. further:
At il . _—
g = va My, (j=0,1,2,3), (3A-1V-7)
and

A G . v
772-0‘}' = Zm (J=011)2)3)) '(3A'IV 7")

)

with the similar meaning to be given to the second suffices
as explained in connection with (3A~IV—4) When we put: .
(3A-IV-7) and (3A IVv-7"') 1nt0 (3A IV-6) and (3A IV-6') we

obtain:

A i
m;é = MU)S)h— + MJ CTQZ (SJL +M CT) (f:. ())h—: 1,2,3)
;S = Z’m(” Mo, Cj=1,2,3) " L

Mop = MoGr3 me ) (h=12,3)

. . . : (3A-1V-8)
'.00" MO+ MOGTSE\ ()' .. :

]
¥
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Expression (3A—IV 8) shows that we have only to solve the first equa-
~(2)

tion for m. there and other amplitudes are obtainable

from ﬁgi) (3j,k=1,2,3) by integrations.

When physically significant'conneqted part only is

" - considered, the equation to be solved for it is

me = MO)(:r, (5 + m.,qa)m +m“’c-f,2(r,¢+mo%) ‘m"’

(jk=1,2,3), = (3A-IV-9)
The rest are
()
Mok =MoG My + M, cT,Z Mon
m-Mg,)fa‘;Mo*Z. (Z)Gral“lo -  (3A-1V-10)
Mo —M,,+M,,C7,Z ‘”—MwZ%L}’q,m .
R=f
(k=1,2,3)

Eduation(3A—IV—9) is a Faddeev=-like equation which is ob-

tained by replacing sz with 3j£+MOG3;putting‘the effect of the

three?body potential.(zz)' Of course the connected tofal

amplitude is

; |
m® =73, m

MY=0 P
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(iii) (3A-III-5)

We define ff?)srf2)+ ] ¥, and L+=P£3)+X gz. Then

T j=1,2 -k
(3A-1I1I-5) and similar relation forEE{]EI:are written as
B 2

( ‘ ’
f_”) L. tL. G,—'mw ‘ (3A-IV-11)

J
*

and

f‘:ﬂ) = L4+ 7?1(2)&3 La .

(3A-1IV-11")

(3A~IV-11) and (3A-1V-11') show that both ffz) and fiz)
4¢2)

can be calculated rather easily (by integrations) once

and hence m(k) (j,k=1,2,3) has been. obtained. It is possible

(2)

that we can set up some integral equations for P as

Taylor did, but it is less pract1ca1 to do. that.

'(1v) Expre331on for (3A III 3) “and (3A ITI- 2)

Introduc1ng P(l)‘F(1)+2 Y+ . 1t ‘is easy to show that
... . : k| '
‘they‘aré'written as
0 o@ "mf A - - Y I‘BA IV-12)
Tz =r_7_ -+ M GTz.rl_ ‘) ’ » .

and

A A A
[10):= [:h)_+'719<%1,1?

(3A-1IV-13)

s

3

"As,foff(3A4III—2), it can be expressed as-
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M =m0+ erer,r."’+ e Z.r’ (3A-1V-14)

Introduction of ﬁ(l)" (1)+ Z M§1)+zyiczyi makes (3A-1IV-14)

j=1 b
written as '

A A A s oA Y, Po 7 0
m ) = m®? + chﬁz T'-m = mcz + P all®, (3A-1IV-15)

"This expression is at least more compact.

V. Summary

Physical 3+3.and 372 processes in TNN system are one-
particle irreduc1b1e and the structure of the amplitudes
corresponding to them is shown in (3A-III-2)-(3A-III-5) or
more compactly in (3A-IV-3')-(3A-IV-15). As for the corres-
ponding two-particie irreducible émplitudes, cut structure
analysis, i.e. exposure process of intermediate states, has
lead to the equetions that those amplitudes should”satisfy.
Notice that the unique cut structure due to the iast cut
lemma leads .to the correct counting of pions and thus makes
the amplitude operoounting—free; For m(z) the equation is
of extended relativistic Faddeev.equation'wiﬂlathree-body
potential in it. This could be solved in.principle for
(1) (2) .. (3) |

given M and M° (or M and m""7). But of course these

inpﬁts have complicated structure that can be exposed if




we try to continue the cutting analysis further.

As,we‘look at those relations; (3A-1V-1)-(3A-IV-15),
we understand that the amplitudes describing WNﬁ+wNN;and
NNZN can be obtaiﬂed by first solving relativistic Faddeev
equation apd laterwby integrating that Faddeev solution;
4m(2), with given input gi (or Yi) and Fi.’B). So the
cgntral problgm is to solve the Faddeev equation.

In ;he relations or equa;ions for these amplitudes
. we notice ﬁhaﬁ‘we'do ndéihave-po have any renormalization
to be done because it is hidden in higher irreducible
structure of the amplitudes as well as of p;opagators.

For our purpose we do not need to haye the exposure of
the amplitudes where more than three particles are ex-
posed. ﬁ

., Im the process of oﬁr analysis it seems to be true
'that~T;ylor's mggﬁéd réa11y}ﬁ5y'be an alternative approaéh
toia specific'field theory. So as has been mentioned,
we;try fo see 1if it ac;ually;can give unitarity structure
iﬁ ; given amplitude;';Wémexamine:it-by deriving the
(generalize&) ﬁnitarity of'thé amplitudesiassociated with‘
.our: TNN system.“That'is shown -in Appehdix‘c.ulour final
remark is that glthougﬁ.we Iéggéiout‘spin structure, it
seeﬁs rather easy to put it in becaﬁse what we.have done

is more of combinatorials ‘than kinematics.
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What we shall study next is the non-relétivistic
version of NN problem. it seems that with some suitable
‘approximaﬁions and assumptions we could reducé our equa-
tions for relativistic amplitude; to the ones in non-
relativistic domain. Or we can use .cut analysis in non-
relativistic field thebry.* But we shall také a differ-
ent approach to obtain non—rel;tivistic scattering equa--

tions for WNN system.

fWhen cut analysis or irreducible decomposition of the
amplitudes is éonsidered in the framework of using global
propagators, the concept of irreducibility changes slightly
in some diagrams. The reason is that the time order is
essential there and hence a cut should be drawn "perpen-

dicular" to time coordinate axis.




a3

B. Non-relativistic Construction of TNN Scattering

Equations

Our approach in this section is through Hamiltonian-
Schrﬁdigger or Lippmann-Schwinger equation method. We
first start with a non-relativistic model Hamiltonian
which includes pion emission-absorption vertices;. We then

use.a projection technique and obtain an infinite set of

coupled equations where the quantities ‘to be solved are

the wave functions for two physical nucleons plus n pions
(n=0,1,2,...). The next procedure is to eliminate two-
nucleon plus n—pibn §tates for n22 to obtain an effeétive
operator describing the effect cbming from those multi-

pion states and the coupled-equation reduces to the one where

~only two-nucleon state and two-nucleon plus one pion state

Jc&ﬁfle}j,Togavoidythe problem of pion overcountion we

should;startwwith a Hamiltonian where N-N interactions are

,éééumed:td'ﬁéspurély non-pionic. For simplicity we regard

this non-pionic N-N interaction to be given in terms of a

static potential. (For simplipity we;shallmnot consider

"non-pionic" W-N dinteractions.. This, however, can be 'in-.

cluded rather easily.) 1In connection with our non-rela-
tiyistic.approach there is a pfoblem of Galilean invariance

assoqia;ed with .the particle emission and absorption.(27)

This will notfbe discussed in this thesis but will be
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reported elsewhere.

I, Preliminaries
Our assumptions on the form of the Hamiltonian are as
follows:

1. For simplicity nucleons are considered distinguishable;

we can put the effect of particle identity rather
easily afterwérds.

2, Spineisospin degrees of freedom are not explicitly
considered as this also can be taken into account
easily,

3. T-T direct interaction is not considéred; This ﬁay--
be taken int; account in the form of heavy-meson ex-
changé. | |

4, TN interaction.is only through Yukawa type TNN
coupling.

5. N-N interaction by heavy meson exchanges are taken

care of by a static potential.

There is an additional thing that we should keep in
mind which is connected with the non—relatiﬁiétic treat-
ment; anti-nucleons are ruled out because they correspond
to the small components of the spinor in positive energy

which disappear in the non-relativistic limit.



I1 Non-relativistic Hamiltonian Approach

Our Hamiltonian is assumed to take the form,
e f
H=Ho+twt U+t U (3B-II-1)

where H

we

kinetic energy of pions and nucleons

= 0

heavy meson exchange static N-N potential

wse

+ .
o(u ); U= ihi) hi is a pi-absorption vertex for i-th
L
nucleon
U+52 h;)ﬁ; is a pi—emissionlvertex for i-th

nucleon

This Hamiltonian'is essentially what we have meptioned in”v
Chap. 2. In our development from now on,no detailed forms
are Eequiréd.for hi (h:) and W, The only réstriction upon
thé‘form of hi (h;) is Eh;t it%should_correspénd at least to
u twotpargi;le irreduciblé'ﬁNN mertex, i.e. its irreducibility
::iézﬁoéyioge;lﬁhéﬂ'one. The‘éésiest realization of this
;regﬁirement is thatlhi.(hl)is ipdependent of gnergy and
o dgpénds only .upon momep%pm‘£rgnéfer (rélative moment.um),
‘"etc. Whenever necessary, nucleon self-energy counter
tefm may be explicitly added aqd subtracted in (3B-II-1),.

We now begin with the Schrodinger equation:

(E - ,’_,)’?7= O L " (3B-II-2)
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where |Y> contains, as an initial incoming-stafe, two
nucleons with or without a pion, and all of them are in
plane wave states, '|W> also includes an-out-going state
with two ﬁucleons and in principle an arbitrary number
of pions. We then introduce a set of pion number projec-
tion operators-{PN}. The projection opeéerator techniqué‘
in general is fairly cémmon in nuclear reaction‘theory.as
well as in the theory of effective interactions in nuclei
(see, for example, Feshbach).(23_iii)

We define our‘set of projection operators as follows:
A projection operator PN picks up from |W>,aq asymptotic
state that contains N pions at large distance from two.
physical nucleons., This definition is not unique since:
it does not specify the separation of states or in other
words channels at short distance., This ambiguity is fixed
only in the final model where sevéral input sﬁbamp;itudes‘
.or potentials are given for the amplitude equations. The

set of projection operators satisfies when acting on |W>:
oo _

Fpo1
J=0
PrnPm = Sambr

Setting'Pn|W> = l¢n>, we obtain from (3B-I1I-2):

(3B-11-3)

(E—FLHF%”‘P“ =—Z¥AP%HPm,¢m7)- | (3B—II-4).
MEN

- (’YL=0)1_}.....) . '




Since W does not contain pion variables,
Also P _H
n

P WP =§
n . m
P =6 HUP

WP holds.
nm n
and we set H P
m nhm o n

Eh *
n
+
P UP we know that-
n m

As for P UP and
n, m

PrUPm=0 (n¥m=)

and

B UTR =0  (mamt1),

Thus we set

RNLIRM.EE R, Sm, mei

(3B-II-5)
P UtPm = R 8,001 )
When setting ﬁnzhh+ﬁPn

which is defined in 2N+nTm Hilbert
space,

a set of projected equations are obtained by Jﬁst
rewriting (3B-II-4),

(E =) 16,7 = Rua )757

(- ﬁg l‘A? ——R”_(¢ S+ Ro1l‘}b>

(3B-11-6)

This obviously is a set of :infinite number of coupled
"‘equations for |¢n> (n=0,1,...%).

What we try to do next 1s to eliminate |¢ > (nx2) and
obtain an "effective'" set of coupled equations between
|¢0> and |¢l>.

he procedure is similar to what is



-52~

practiced in the theory of effective nuclear ihteractioné

(23) First, let ﬁs set

or in optical potential theory.
|¢k>=0forION and see what we can get. Then (3B-II-6) can
be solved algebraically and we find (taking into account’

the fact that there is no incoming wave with pion numbers

more than one)that we can eliminate |¢j> for §>2 and obtain

= (=t ] -1 -
_l¢2> = (E'Hz,“p.?,) th/‘ﬁ,?) - (3B-I11-7)
< o 1 o+ .
where Dj_Rj,j+1 Ef_H o Rj,j+1 (j=2,,..,N) and
j+1775+1

D#¥0 for k2N+1.- l¢0> and |¢l>'satisfy the equations in
A(3B—II-6). We suppose-then»that (3B-11-7) is valid fqr”
N+® although thef; séems no way to establish it with
mathematical rigor especially in operator relations.
Physically, as long as the energy of the process in a given
si;uation is finite, we can expect that |¢k> for large k
has a very small norm and this may justify our“assumption.
Then D2 can be expressed as a.continued fraction'in terms
of operators, (Note thaf this continued fraction form

can be obtained without assuming |¢k>=0 for k>N)., So if

. , +
we go one step further and define D, =R — 1 R R
. 1 71,2 _+ 1,2
" E —Hz--D2

the effective coupled equations become

(E—ﬁo)l%? = Ro,1 I¢,> (33-11-1'3')
(E—Q-Q)M7=RLJ%> ) |

and

DJ = Rj;jfl(E+- p‘}." "‘DJ'“)_I R.?,ﬁ‘i , ()-='1l 2) ......) .
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‘Formally what we have done is to set

R iy = 518>, (35-11-8")

~and thus put every information coming from |¢k> (k>1) in
-Dl(E)' (3B-1I-8') may be compared with the definitionm of

' s =t F .
scattéring t-matrix; T|¢>=V]w >, or that of the effective

interaction in nuclear shell model; v|¢>=V|W>,where ¢ and

+
Yy are plane wave and the total scattered plus incoming

waﬁé féspective1y, whereas 5 and ¥ are the finite model
space wave function and the éxact eigenstate of the
problem,

The coupled-éequation (3B~II-8) is closed if our
"effective interaction" Dl is known and given fromﬁout—

side. In practice D, cannot be calculated exactly because

. D, has to be known in the first place, which is impossible.

. 0O

ln:analogy;wiﬁﬁfﬁﬁatfhé5haﬁé-ih the last séétfon, to know
(o]

D is to.expose in a given diagram every intermediate state

up until an infinite number of intermediate particles

‘appear. So in. our spirit, what is necessary is to know

the structure of D, :

13 its connectedness structure -and ir-

- reducibility. This can be observed without a good deal

of ‘painful expansion of Dj by its perturbation (or itera-
tion) expansions. We think this to be plausible physic-
ally and shall put the ;study in Di in Appendix D’thus only

quote .the result here. It says that we can write;
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" DE)= Z Qﬂ);’rJ;(E)H;,;ﬁ, () + C(E)/ (3B-II-9)
- J=1,2 : :

whereA(i) GiN(E) isAan operator in TNN Hilbert space which
is two-particle irreducible if restficted to TN
Hilbert space. This we maymrégérE‘SEAa“ENi
A botential (between a pion and j-th nucleon).
(ii) GEN(E) is identified as a N-N potential cominé
from pure pi exchanges ana also ffom the mixed
pi dnd heavy meson exchanges. GEN(E)Ais also
Py in NNN Hilbert space,
| | (iii) C(E) 1is - regarded as a three-body nNNlpotential

as it is three-particle irreducible,

Note that because these operatofs are identified in terms
of particle irreducibility, GﬂN does not contain contribu-
tions 1like direct Born term. Note also that they are
energy dependent and dff-energy—shell in'géneral. One
point to be mentioned before going forward is that we may
use the same notations for operators both in two-particle
and threé-particle spaces, ‘There will not occur any in-
cdnvenieﬁce due to tha; conventibn, but in the case whére
it introduces some confusion, we shall differentiate two
dperatqrs actipg in different spaces.

When D, is added to ﬁ, we obtain

1

P



V3(E) = Vn (®) +Z ﬁz(ﬁ} +CE),  (3-11-10)
' ¢

where

]

Van (£) \27 + \7,3; (E) (3B-II-10")

is the total N-N potential. Now (3B-II-8) becomes

~ (E-H,) 197 =R, 19,> (3B-II-11)
(E-hi=®)1$,7= g}, 14,>
This 1s the basis towards our next step; obtaining various

TNN amplitudes.

III. Wave Function Description of Var10ué TNN Processes
(i) Wave functions for 33 and 3+2 processes
‘ 'Werake,the iAitial State'to be of TNN plane waves
déﬁgggdﬁégé*iéé;Z.Létﬂghelédlution to‘[Ethévg(E)]|¢l>=0

Awifhfincomingﬂ|i3} be |X;>. IXI> then satisfies
| . -
] + : N
115’7 =17 + [E*=h-Vs®) ViB) |5y, (3B-111-1)

We éall"rxz> a "Faddeev staté"; Inlterms:ofgthis Faddeev

state’l¢l> ié exﬁressed as
I‘f.? =iy + [E*-—h-"%(“—)ﬁ&ﬁ‘/%?j, (3B-111-2)

and %he*eduation for |¢o> becomes
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(E-F)IB = Ry 2Ly + Ros[EL -y @] R, 14>, (38-111-3)

=1+
1 Ro,1

study its structure. First it should effectlvely be an

In (3B-III-3) we pick up X(E)ER l[E ~h. -V (E)] and

operator in two-nucleon Hilbert space, Its structure can

be examined by utilizing the relation:

—

(B -h-VE) ™ = [E+—h,]—l + {E“-h.]f1 TFeE) [E*—h,Ti) (3B-111-4)

where "Faddeev" amplitude TF(E) satisfies

&

ey = . Citiae
TE)=V, () + V.?(E)[E"—hl] 1TF(E). | (3B-IIIX 4‘ ).
As TF(E) is written as (see Appendix B)

T'®) = Z.‘tm €) + tuw(e) +T°(E),  (3B-IIi-5)

whereT GD is the connected part of~TF, we can calculate X(E)
and separate it into two parts (for detailed caiculations,

see Appe@dik E).
X(E) = Xu®) +X (5 . (3B-I11-6)

Here Xu(E) is an unlinked part and can be identified as
the self—eﬁergy of two nucleons, whereas XQ(E) is a linked
part and is connected with N-N inﬁeraction. The structure

of Xu(E) and XQ(E)-will be more easily understood in Fig.
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Fig. 3A-9

Di@grammatic structure of Xu(E)-and XQ(E)



'tinuity relation which is appropriate to the two-body

A
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3A-9. Since xz(E) is two-particle irreducib¥e, it should
be re}ated to some part of the N-N potential, i.e.ﬁgN(E);
If we compare several lowest order diagrams for VgN(E)
with those for XQ(E), we find that they agree term by
term. We may identify them as identical two-Body oper-
a;ors,'that is GEN(E) = XQ(E), if we understand E now
to be the energy in the two-body channel. This identi-
fication is reinforced by the fact, to be discussed

later in this chapter, that XQ(E) satisfies a discon-

potential, ' (E). So adopting this identification,

™
NN
(3B-III-3) now is expressed as

. [E - h.o —VNN(E) ——X'\;.(.E)J'¢°7= Ro,il’Lt) (3:]3_111_7)

In (3B-III¥7) VNN(E) also is understood to be in two-
nucleon Hilbert space since it acts on the NN state, - We

may write'VNN(E) for both NN and TNN HilbertAspace with

the same E. Strictly speaking the energy‘dependence
should be differentiated for each case. But for simplic-—
ity we use the same Efdependenée. We expect that there
is no confusion. (The reason to keep the'E-dependenée
is‘solely because we want to stress its depéndence on
energy.) |

1

Writing éz(E)E[E+-hO—Xu(E)]_ which will turm out to

be a propagator for two free, dressed nucleons (see section

L@




e v ' C for the dispersion expression of EZ(E)), (3B-I1I1I-7) is

rewritten: As will become clear later,the reason.why we
keep fhe'self—energy operator Xu(E) even after a supposed
cancellation by mass counter term is to keep the TNN

unitarity. Now equation (3B-III-7) becomes:

1%,7 = [ &= Vin® ] Roa 170, (3B-111-8)

This. is substituted back into (3B-III-2) and we find

A o 1$7 =11ty +[E*'—h.-—V3(£)j"'kfll [C',;;‘(E)—VNN(‘E)]_‘quf'XjEZ (3B-III-9)

This shows that the Faddeev state is distorted by
explicit pion absorption and emission to produce |¢l?;

pion absorption-emission being expressed in terms of an

L + ~=-1 . -1 . .
,operator;RG’l[qu(E) VNN(E)] RO,l' Also (3B-III-8) and

(3B-I11-9). show that we have only to solve an integral

equation for Ixi> and ‘use ‘it -as an input to obtaim both

|¢O> and |¢l> by integrations.

(ii) Wave functions for 2*3 and 2*2 processes

THe boundary condition here is the one in which two
nucleons are incident in a plane wave state. The wave func-
tiéns for final NN and TNN states are denoted as |¢8> and
|¢i> respectively which satisfy (3B-II-11). The boundary

. t . .
condition requires that |¢l> is of the form:
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1$/> = [Et—h-Vs® -1Ri,1 18>,  (3B-III-10)
whereas ‘ .
.I¢o/> = |5y + (E“—-ﬁ,,)"-1 Ro,1 ltf,’)’ (3B-III-11)

where |T2> is a solution of
s -0
(E*-H)I1$» =0,

with an outgoing wave boundary condition.

Combining (3B-III-10) and (3B-III-11) leads to
—_ 7 . R /
) =Gy (E-RYIXEIE . (3B-I1I-12)
This is easily transformed into

1877 =107 + [E*=H-X@X@157, (3B-T1I-12")

We now remember that |i2> is expressed in terms of free

two-nucleon state |iz> by
[ard . 4 ~ _’N . . '
1oy =1y + (B-H,)'w lc;)) A (3B-III-13)

and also remember an identity

~

(E-H)" = (& —Ho'-)(_)-'- (e- Ho— X)X (e-Fp)" . (3B-III-13")

When all these expressions are put into (3B-III-12'), we

find:
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87 =1i,7 + [E=H-X@®] ™ (X + W) liay (3B-III-14)

As has been mentioned, Xu(E) in X(E) is a nucleon
self-energy operator. So when a suitable counter term is
added and subtracted iﬁ H, it is expected that Xu(E)
vanishes on-energy-shell, Thus we require Xu(E)|12> to

vanishj X (E)l =0 is of course a requirement

on-energy-shell

Ain analogy with the similar situation in relativistic
quantum field theory where the self-energy-part vanishes

“of~mass-shell.

Keeping in mind what we have discussed above and re-

membering that VNN(E)=X2(E)+ﬁ, we arrive at

q‘/> =lg7+[e- ka—v,m(;.) Xu(E)] Vin(e) 14>

. “4'"{— ,L1>+ G‘ (E)me('E) 1¢ > (3B-II1-14")

from (3B—III¥lz). This is of‘Lippménn-Sclenger type.

As for |¢i> we obtain it using (3B-I1II-10) once

*ﬂ(jg_rrl;lb')-is solyed for_1¢6>

Looking at (3B-III-8), (3B-III-9), (3B-III-10) and

. :(3B=III-14"') we find that .although we started with a

'>tdup1edfé§ua£i0n, it has formally decoupled. By decoupling -

' +
we mean that only Faddeev state |Xi> and two-nucleon state
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|¢6> should be obtained by solving integral equations. -
Once this is done, other necessary wave functions are
gained by integrations, This however, does not mean the

complete decoupling since VNN(E)‘in (3B-III-14"') is im-

plicitly related to the Faddeev scattering state. So the
decoupling is trﬁe ifvwé-éfe ;Bié éb épegif§.§hﬁ(E)ﬁb§
other means.

This may be compared with the relativistic expressions
for various amplitudes fér the TNN system shéwn in the 1last

section, A detailed discussion will be given in the next

cﬁapter.

Iv; t-matrix Equations

In this section we shall transform the wave function
expressions into those in terms of tfmatrices. There are
several ways in defining the t-matrix using.wave function
equations, which after allAturn out to be equivalent.(s)
We shall adopt a definition in which the t-matrix elémenﬁ

is identified as a residue of the free propagator which

can be identified in the homogeneous part of the equation

"when the éduation is multiplied by a suitable state vector

" from the left,

(i) 3+3 process
(a) Faddeev state

From (3B-III-1) we can easily identify the

oyt st ot s s s e s



t-matrix TF as

&b TR lasY = LoV ) 1LY, (3B-1v-1)

In (3B-IV~1l) subscript 3 indicates that the state is that

of three particles, Note fhat TE(E) thus identified does

satisfy (3B-III-4').
(b) t-matrix associated with |¢1> (ET33(E))
Making use of (3B-III-~1l) and (3B-III-4) we find

that

<*3|T3, E)ha> <H VBT + <51 R (&7 @) -V R 117

<4 T [e- hl]d‘ Ro,i LCT, (E) ~Vw (B~ Ro,'l 0%
= LBV ENGY HLLINEITY

+2<+,|T @47 (B ENTLING LY.
: (3B 1v-2)

. < P T P S .
S S - T

In. (3B IV 2) we have used N(E)= R0 l[G (E)—VNN(E)]—IR

When tNN(E) is defined to satisfy

0,1°

:ENN () = Vin (&) + Viw(E) gfz(ﬁ) tun (E), (BB-IV-B)

Ain . analogy with usual N-N t-matrix equation;

£ (5) =VAN(E) + Vi () G5 () Ehn (B) (GuE)=(E*-h)"),
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then N(E) becomes

N(g)= R;}l [@T',(E) +§,(1=.)€NN (E)’C:T,(E)] Roa . (3B-1V-2')

. - + —1: :+' =
This and [E -h1] _G3(E), W,_Ro’l and Y.RO,l lg; (3B-1V-2)

become

BT E) LY = & TRE) 1y + <HBIN@EBY

+ % {{,l T'®17 G, (5,) LINE AL

and

-

(BIN®Ig = 3 <hlwiky e { Sy y + RO
e

(3B-1V-4)

x &0l )

where G3(E,Q)=<2I(E+—h1)-1|2> and |b2> represents a_two—fn.~“"

nucleon plane wave state. A more transparent form will be

given after we ©btain t-matrices for 32 process.

(ii) t-matrix for 3+2 process

Noting that [Ezl(E)-vNN(E)]f1=62(E)+62(E)ENN(E)§2(E)

as in (3B-IV-2'), (3B-II1-8) is reexpressed to be

‘1’.7 = [@;(E)* GE(@E.ME)%&)]Y‘I%}?.’ (3B-IV-5)



From this expression the corresponding t-matrix is straight-

‘forwardly derived,

LlTs®iy = <-9=IY 1Y + Z,(ﬁ)tm () Hr?c‘fz(ﬁﬂ’)@ Y 145,

(3B-1V-6)

If we express |x:> in terms~of‘li3> (see (3B-III-l)), it

~ is- clear ‘that

LAY = <Y+ Zﬁz' Yies7 S (=e)es | Te)) 137) (3B-1V-7)
S € _ .

“which is plugged into (3B-1V-6) and we find

<-§z sz3 (E)l L37 <le‘{ lg} +. ZG:IYles? G,(E, e)(egl-r“(aug

(3B IVv-6"')
4 z,<5zlf,w ©)H7 G B, 0) | £l Y 15>
43 Al 167 G (B 0ol T ey
z .
We‘symbolicaliy write thisiéé
Ta (E) = Y*YGBTF-%- Rty GTg (\(+YC’T3TF) . (3B-1V-6")
Furthermore, if we define o
(3B-1IV-8)

To =Y+ YGT
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the expression for T23 becomes

7;3 _753 +-tNNGrz -T23 . (3B-1V-9)
Note that this expression is of the same form as that of
ﬁfl) and also the expression for TZB is the.same as that

of f(z) in their forms.

(iii) T33(E) in more compact form
We can express T33(E) in a simpler way just using.-

(3B-1V-4) and (3B-IV-6). The result is
- &)=T" G Tos(8) + THE)G, WG, TS (E) _—
TuE)=T E) +WaTE) + TE)GWE, ) (3B=1V-4')
which will be further simplified later using EBZ(E) and

(iv) 2+2 process

The t-matrix for this process is easily found to be

<Ly = <Ko |V (219>
= <‘f’zWNN (&) {7 'f.'A é 2l Vw (B8) 1620
X & &%) <Bal Vi (£) 47

(3B-1IV-9)

This means that

TE)= tw @), (3-1v-9")
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(v) t-matrix for 2+3 process

- From (3B-III-10) we obtain

/ S VN - ) - i
18/> = (E'~h) Roa 19,7 + (k)" TF =) (B h) ,R;ﬂ?’oa (3B-1V-10)

from which it is easy to find that

Tl iD= lwidy> + 2.4 7E) 376, 5, 0) LWl Y, (3B 1V-11)

With the help of (3B-III-14') and (3B-IV-9), (3B-IV-ll)

is transformed into

LTy = <hIWlia7 + <5 wlan G (2 @B i
e o .@.?xt ‘
‘..f%Gs.lTﬁfge)fl SEACT 1).{<c3 Iwlis>  (3B-1v-11")

P +.Z\<C3_]WIQ2>'§3 (%,a) <612’2;4N ()) L2>} )
a

which is further simb&ifiedgﬁy infrbducing

"The result is

o~ N o N
T = Toot Telntw. (38-1-13)
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Note that there also is a correspondence between (§32,T32),

and (fiz), fil)) as is the case with (f ).

23° 723

(vi) T33 in a'simpler form

When we look at the expressions for T23,fz3, etc., it
is rathef easx to see that T33 can be expressed in a more
compact way., We just write down the result because it is

easy to obtain it.

TnE) = The) + —’f\:sz,(ﬁ)aacg)—ﬁa(‘i) . (3B-1V-14) |
= ',TF(F) =+ ng(E)G;(E)%a(E). (3B-IV-14')

Note that the form of T33 thus obtained does saﬁisfy the
required form imposed on the amplitudé when pion absorption .
occurs in intermediate states as has Been stated at the
end of Chapter II.

Before closing this éection it would be better to
summarize the result. By means of projection'téchnique
applied to Schrodinger type equation, we have dbtained-a
set of (infinite number of) coupled equations, each ampli-
tude which is the solution of these coupled equations de-
scribes a state containiﬁg two physical nucleons and ;
certain number of pions. Through defining the effective
interaction Dl,we have reduced the eQuations to the ones(

which couple only NN and 7NN states. The equations were



then convérted into the ones for the t«matrices. As we

sfarted with a Hamiltonian which does not include any
danger of pion overcounting, the resultant amplitudes are
free from it. As we closely look at the equations for
them, the overcounting-free nature should be easily ob-
served.

As for the form of the derived relations or equations
.fdf the%amplitu&es,Ait should be mentioned that Thomas(17)
in his theéis, obtained the expfession for the non-rela-
tivistic NN » 7d t-matrix which is essentially the same
as our'T32 in (3B-IV-13)., His method was a diagram count-
ing which may be regarded as a less sﬁringent.Taylor's
method, As Thomas did not seem interested in the uni-
;téfity of the‘amplitude,thg“bffashell nucleon self-energy
"LéffeﬁﬁfﬂngfﬁeJNsN;p@opaéapéxs;&id'ndt¥;ppear ﬁhere.

C. Studies in X(E), VNN(E), az(E) and tﬂN(E)

B;féfé gding gb the next chapter, we have a close
look at several points in our non-relativistic amplitudes.
Here we use the discontinuity éxpression (1) to see Fhat
- our assertion of XQ(E)EggN(E)(see the last chapter) is
| ﬁlausible, (2) to obtain a possible form of the N-N
G‘potenﬁial VNNfg)bwhich is valid aboye single pion pro-

_duction threshold, (3) to obtéin'é'simpler form for éz(E);
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two-nucleon free propagator which contains an off-energy-
shell nucleon self -energy effect and (4) to give explicit

forms for the m-N t-matrix 1ncluding the direct Born term.

I. X(E)

In the previous section we defined X(E) which consists
of tﬁo distinct parts (see Appendix E for details); Xu(E)
and XZ(E)' It is easy to see that Xu(E) should be identi-
fied. as ghe self-energy of two nucleons. Buf as for XQ(E)
its identification with ﬁ;N(E) was not very obviocus in the
last section.

It. now seems;that there is a better way to establish
the equality X (E)= VNN(E); we look at the unitarity (or
discontinuity) structure of XQ(E). According to (C2-21)
of Appendix C, a relativistic two-particle irreducible
22 amplitude has an off-mass-shell three—péxticle dis-
continuity relation shown there, Since the two—particlé
irreducible amplitude should be regarded as a two-body

potential, (C2-21) may be considered as a relation that a

'two—body potential is expected to satisfy., We think that.

a similar relation should be satisfied by the non-rela-

tivistic potential. Therefore we are trying to obtain the
disqontinuity A3X2(E) across the TNN elastic unitarity cut.
First, we may assume that the heavy meson exchange parﬁ of
N-N potential does not contrlbute to A,V (E). This seems

3NN

to be a reasonable assumption; even if it has cuts, they



would be far from TNN elastic threshold. So we may have

A3[ﬁ+X2(E)]=A3X2(E). As X(E) is written in the following

form
XE) = Y(Ehytw + Y (@0 TR® W, (3e-1-1)

and using the discontinuity relation for the Faddeev ampli-

tude?

A3 TH®) = ThE) L, TTCE) (3¢-1-2)

where 13572n16(E—h1), it is straightforward to show that

A3 X (E) =ﬁv‘23 (é)‘13%2(g) . (3C-1-3)

On the other hand, using the expression for Xu(E) in

Appendix E (E=11), we find that

T Xty = DAL T, (3¢-1-4)

=02

"In (3C-I-4) we-adopted the definitionm in Appendix E;

N@ Y, + Y6, th,m

. (3C-I-5)
Ti(®) = Wi+t &wW; , ‘
and their discontinuity relations
A; Ni(B) = A E) Tyt &) ) (3C-1-6)

AT (E)=ty EDLTE(® ).
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Note that (Ai’ri) corresponds exactly to relativistic
(Yi,Yi). From (3C-I-3) and (3C—I_4) we readily_fiﬁd;
AyXe®) = T L T=E) - 2 A=)

n i<l | (3C-I-7)
= [T @)L T®)],

whlch exactly corresponds to (C2 21) " So we ca ()
fidently take XQ(E)=§SN(E) to be relevant.

As will be mentioned in the next subsection, XQ(E)
has other cuts than that from TNN elastic unitarity, one
of which is due to 7md elastic scattering that starts
slightly below the branch point of 7NN cut,

II. N-N Potential

As has been mgntioned in Chapter III, section A,
generalized potentials, which are defined in terms of par-
ticle irreducibility, are consistent withtthose which.we
aétually encounter, e.g. realistic nuclear potentials, etc,
The former are more general than the latter in that they
are energy dependent and in general off-shell (éee, for

(23_111))_ This means that they may

example,.feshbach
well have some singularity structure which is associated
with many-particle unitarity éuts,etc. The notion of

off-shell'(off—energy or off-mass) potentials may not be

new but this seems necessary espeéially for N-N potentials

used in pi-nucleus scattering problems at relatively high

- moréTeon=""" oo



energy. The reason is that, as has been repeatedly ﬁointed
out, there is no. distinction in principle between “scattered"
and "exchanged" pions. Thus the "off-shell-ness" of N=N

potentials is a natural direction. This off-shell nature

of N-N potential allows in a natural way the introduction

of inelasticity due to the virtual pion production.
In our non-relativistic model N-N potential is identi-

fied as

Vi (E) = W + \7;@ (), - (3C-11-1)

where GEN(E)=XE(E)‘(seé thé last subsection), Here ﬁ is a
pure heavy meson part. As GEN(E) is off-energy shell, so
is VNN(E).

We may construct W oon a semi-empirical basis, for
exampleﬁqby,adoptihg_models‘Qf Héavy'mesohé. .But. . the

difficult&hfs.that we should fit VNN(E) but not W to known

physical quantities associated with N-N. Also we should

keep in mind that VNN(E)Ais an off-energy-shell potential. "
Therefofe the deterﬁination of VNN(E) seemé ratﬁer diffi-
cult.

As shown in (3C-I-3), there should be a definite dis-
continuity relation for off-energy-shell GEN(E) (or XQ(E))

across the TNN elastic cut;

| A3 \7;;4 (E) = [-’1\:23(:5')132,?31(5)]1 (3Cc-11-2)
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valid at least below the second pion production threshold.

As is discussed in Appendix C, general AGEN(E) below the

second pion production threshold has another discontinuity -

coming from m-d elastic cut. This is written as
~‘K ~ n .
AgVin(E) = Joq (B9 1y Ua(‘é)) (3C-I1-3)

where 3;2 (]Ed) is a two-particle irreducible NN->Td (md>NN)

~t-matrix and Id is a delta-function factor for an elastic

Td process (see Appendix c).

_Remembering our assumption on ﬁ, we can write
AVNN(E)=AGEN(E). AVQN(E) is the qgantity that we can cal-
culate in terms of TF(E) and TNN vertices. So we may ob-
tain V. (E) by dispersing it with respect to off-shell-

energy E; using once subtracted form we obtain

o~

VNN(E)=VNN(R) -r.?.:B.S AV (2) d2 +P(E) —P(R (3C-I1I-4)
T reshild (F-RYEEY PE =PI,

where R is a subtraction point and P(E) is dueAto possible
"left hand cuts" and states with more than threé particles.
When the ‘left hand cuts are rather far from Td threshold,('
P(E)-P (R) is expected to be small as long as R is not far
from physiéal region, This may actﬁally be made possible
by choosing R to be real, not far frop.but below the

threshold. Then we could regard VNN(R) to be some
; :

phenomenological stétic potential. - This is why once sub-

tracted form is used. So finally we have obtained as a
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possible form of off-energy

~75=

:éhéil}ﬁfNiﬁotegﬁial,

' SR oy L
VNNCE) = ?INN -+ u‘.g (z_R)(z__Eo-) . (3C-11-5)
thresholdd

In the above expression VS; is some phenomenological po-

tential,

What ‘we have described is just one possible con=-
struction of off-energy-shell potential and this will not
be carried §ut further in our study here in the thesis.

It may be worth while to find some other possible con-

- struction. Théré'héVeVBeeh'Several works on the con-

.°stfuctibn of N-N potential via Bethe-Salpeter equation with.

some reductions(24) like using Blankenbecler-Sugar kernel(zs)
in fhe propagator part. This may be one possible direction
that we ‘should pursue,

111, §,(8)

Our gim here is to obtain the expression for 52(E)
withouf containing Xu(E) as it is often convenient that
we eliminate its explicit appearance,

We first nbte that we can write that7since

~ + -1
G, (E)=[E"-hy-X (E)]™7,

gra (B) =G ()« G,.(8) XwCE)gfz(E) (3C-I1I-1)
=Cp(e)+ az(ﬁ) Xu(E) &, (E) ;
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where»Gz(E)=[E+-h0]_l. After some algebra it is not diffi-

cultvto show that

A'C\a"z(s) =§,(E’)AX£E)’€};(E) +f1+ GQ(E')XM_(E‘)} Afr,(E)  (3C-111-2)
X {14 Xa®) G @, |
In (3C;III-2)A may mean a general discontinhiiijguzlin our

present case A means A=A2+53; the discontinuity across NN

‘and TNN elastic cut..

: : £
Since AGZ(E)=-2ﬂi6(E-hO)EIZ, Xu(E ) in (3C—II—2?

-should be evaluated on-energy-shell, which means that there

is no contribution from them (see the discussion between

(3B-III-14) and (3B~-ITI-14') in section B), So we arrive

at the expression

‘ ~ .
AGE® =1, +&®) ), ASLTEGE, - (c-111-3)
=02 '
Again'we fiﬁd that (3C-II-3) correspon&s to the discon-
tinuity relation of d(s); relativistic dressed single-
particle propagaforf (See (C4-4) of.Appendix C;)

We have noticed that Aaz(ﬁ) does not explicitly con;
tain Xu(E); Therefore it may be used to obtain EZ(E) which
is free from xu(E). In a proper expression Qhere the
matrix element of (3C-III-3) is taken (in two-nucleon cen-

ter of mass éystem), (3C-III-3) becomes
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mamn_-nwm-ﬁw+@®n&%2mwn&)

? 2

X[-25i§ (E-"T"‘J*‘m szw 2p )]
X T, (&7, %) G, &, F),

(3C-111-4)

where m,lu are nucleon and piocn massas respectively, u' pi-
nucleon reduced mass and Fi (and Ai) is abbreviated in its

momentum dependence; properly speaking Fi(E,f,Z) should be’

PZ .P2

-> .
I (m+yu) " Im -2m,q) etc. Note that we in-

replaced by T, (E
clude rest masses in total energy.

When we assume that the "Hermitian analyticity" or
"reality" holds for Ai(E) and Pi(E), which(is quite reaéon—
able (see (Cl-11) of Appendix C and the discussion im-
}ﬁmediately before it, see also Appendi# F): we have the
>

;relatlon A (E ~Z)=A*(E‘3,a) and therefore EZ(E_,P) =

.G (E P) through X (E) (s1nce X (E7): X (E7)). Then

‘ *-.(3C II 4) 1s now

Ve 9

AGrz(E) _—Q:ru SCE“'»\,) 2'7t11672(1=_,r)l A (3c III-5)

So{zg’g““/“ Z(W/A) :m —‘)ZIVCE,P,?,)I

+

In (3C-III-5) we write €ZE-2m,
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We next apply dispersion relation to (3C-III-5) and,f:‘

obtain az(E,F). First we set

fa 7 =GEP e Go-tiroe) -
~ > p2
Then as.GZ(E,P) has a simple pole at E=2m+a~ with unit
residue, we have a condition'og ﬁz; ﬁ2(2m+£3,3)=1.
" Now the discontinuity of ﬁz becomes

~ | . -
Al 5Py = (=B i) §8. 517 2 B 1 2
‘ C

P
X8 (=2 = Ry "2 ) )

(3C~-I11-7)

St and we have solved this to find

-

Fae) ) =1+ (e~ ) S”?Z ITERD 1 o)t L ac-111-8)
t )

where :
A pr P %
E =2m4 4+ &m.+tuﬂyo'*3u"

Finally (30-1I1-6) is used to obtain 62(E,§).

Iv, ~ﬂN t-matrix

In solving the Faddeev equation for TF(E), we put into
the equation either ﬁwo—particle TN amplitudes'(i.e. TN
potential) or more practically one-ﬁarticle irreducible
TN amplitudes (i.e. TN t—m;trix) as known functions to-

~gether with similar quantities for N-N interaction.
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On the other hand there also exists single-particle
reducible TN amplitude because of pion absorptien.end re-
emission through 7NN vertices. This part may be called
the generallzed Born term as may have been termed else~
where We write this contrlbutlon as BTN and see what
it looks 1like,.

Experimental mN scattering informetion can be related

to the total TN t-matrix which is
Oxn (E) = Ban(E) + £ay (E). (3C-1V-1)

tnN(E) in the above expression is a one-particle irreducible
t-matrix that satisfies Lipﬁmann—Schwinger equation;

N(E)=VWN(E)+VWN(E)GztﬂN(E) and is an imput to the equa-
tion for TF(E).

The method of determlnlng the form of BTN (E)$ the

:generallzed dlrect Born term, is’ to make use of. unltarity

(or. dlscontlnuity) as has been adopted to study X (E) etc.

in the previous subsection, First we assume the form of

BTN(E) to be
By () =L(E)T(E)K(E) |

(3C-1v-2)

as it should be similar to the bare Born term; the amplitude

should have the form corresponding to the process: pi-

absorption * nucleon propagation * pi-emission,

Two-particle unitarity requires
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Aq Oxn (B) = Opn () I, O (E) , | .(3C—IV¥-3)

and as

Agten (E) =t (BT, tun (5), (36-17-4)

which is easy to see, we obtain the following relations

from (3C-Iv-3)

Az L(E) = '{:-m.‘ (E—)Iz L-(E)
A; K(E) = K(E") Izt (E)
AL TH(E) =T (&) K(E)T,L(E)TI(E)

(3C-1v-5)

As 1is eaéily observed, the first two reiations are satis-
fied by T(E) and A(E) respectively (see (3C-I-6)) when these
vertices are restricfed to N and 7N Hilbert-space.
In our present theory we assume that we may simply
identify:
L(E) =T(E)
and | © (3C-IV-6)
K (E)=AE) : " o
Now we are left with only the third relation in
(3C-1IV-5). We should remember that TM(E) has a pole at the
physical nucleon mass in TN center of mass system, The
method of obtaining W(E) from these pieces of information
is just the same as used to find EZ(E,F). So in TN center

of mass system we obtain
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_TrCE) = (E"’m-)’LH' (E)'l)

where
" | H;dgﬁ' _ 7(E, Feo, D)
H'I ('E) =4+ (_‘E—-'M) S (.E_E+)(g-w.z , P (EJ P=0, )’)

R

(3C-1IV=-7)

(3¢c-1V-8)



_ CHAPTER 1V
SUMMARY OF OUR FORMAL STUDIES

"In this chapter we first make a comparison between
our relativistic and non-relativistic formulations; Then we sum-
marize our studies of TNN interaction by answering the questions
appearing in Chapter II. Lastly we extend the conclusions
obtained for 7NN scattering to genéral pi-nucleus scatter-

ing.-

A, . Comparison of Two Formulations

When we look at those relativistic and non—relativisticﬁ
amplitudes of section A and B in Chapter 3, together with.
the equations that the amplitudes do satisfy, there seéms
to be a formal one to one correspondence between relativis-
tic and non-relativistic amplitudes. Below, weilist the
correspondence among them (the bracketed numbers following

the - amplitudes are their addresses in Chapter 3).

41, (3a-Iv-15) <+ T (3B-1V-14)

33°

CT,,: (3B-1V-13)
l): (3A-1V-12,13) ++ { 32°

T23: (3B-1V-9)

e
Iy
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5 o T..: (3B-IV=12)
PL2) 0 (3a-1ve1l,117) < {32 |
: T23: (3B-IV-8)
~(2) ' . A F .
i :(3A-IV-3"')-(3A-1IV-10) <+ T  (Appendix B)
ﬁ(l)' (3A-IV-1") **{tﬁN (Obtai d £ v d v
N 4 ) ~ aine rom V. . an NN
NN

by L-S equation)

~

~(2) o VN L , ~
M : (3A-1IV=1"') <= [defined in V3(E),(3B—II-1O)]
NN

g, t (3A-III-1",3A-IV-1") <> {¥

23, (3a-1v-3') > c: (3B-II-10) see also Appendix B.

etc.

In Appendix C we also show unitarity rélatiqns fbr

relativistic and non-relativistic amplitudes. Those re-

lations. .also show a ‘formal. oné-to-one correspondence

Lo

between the two Formulations. Thus, although two formu-

" lations are differeﬁt'in~kinematics (relativistic, vs.

non—relatiﬁiétic) and in propagators (single-particle and
global),'they look similar in a formal sense.‘ This is
jusﬁ like the formal similarity between Bethe-Salpeter and
non-relativistic Lippmann-Schwinger equations,

When we closely look at the correspondence listed
above and.the expressions in Chapter 3, we notice one point

which needs some examination. In our relativistic formu-

- lation there are terms L+ [(see (3A-1V-11) and the
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definition of[,i-above it] ‘which are three;particle ir-
reducible 3«2 amplitudes. However we do not havé such
amplitudes in our non~relativistic formulation. This is
due tb the fact that in our non-relativistic model (1) we
have.assumed a static heavy meson exchanée N-N potential
and (2) the global propagators are used, which always
allows us to find a cut intersecting less than four par-
ticle lines in any 3+*2 graphs. Note that this solely
comes from our choice of a specifiélﬂamiltonian.

In connection with the formal similarity bet&een two
formulations, we find that neither of them show éxplicit
coupled‘structurevamong the amplitudes. Since our non-
relativistic model started with a set of coupled equations
we shall trace it and see how it has ended up with the un-
coupled result. The coupled-equation (3B-II-6) was first
reduced in the number of equations by pushing all the in-
formation due to higher number pion states into the effec-
tive ' two- énd three-particle irreducible operator Dl(E) écping ip TNN
Hilbert space'(this procedure may be called "nesfing")}: 
Then the coupled equations are made to connect NN and TNN
states only, This "reduced" coupled-equation -generates
X(E) in which we can identify nucleon self—energy part;
Xu(E), and N-N potential wifhout pure heavy meson exchanges;

XQ(E). The identification of these functions has made the

coupled-equation effectively decoupled, since they are
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‘assumed to be given.

In our relativistic formulation we take the opposite

path to the non-relativistic reduction mentioned above.

Up to the exposure of three-particle states, the amplitudes

under consideration are decoupled. When we expose higher
pérﬁicle sectors as we parﬁly did in the proof of unitarity
(see Appendix C), we find that the amplitudes are coupled
inAa unitary manner.f

It iS‘neéessary to have coupled equations to solve
thé problem from the first principle, but that is practically
iﬁposéible,- Therefore_for,most,p;actical purposes, we may
leave the coupledﬂnatu?e of the amplitudes anouchéd. How-
ever, it may be necessary to takg'info account. some aspects
of the coupling when one'wants, for exaﬁble; to'study the
effect of pi-production in N-N collision. Especially in
connection with generél nuclear pidhfproduétion pfoblemé,-
we'may have to start thinking about such coupling aspects,

When we consider a pfactical application of the de-
rived amplitudeé, and their equations, of course the formal
similarity between relativistic and non-relativistic ampli-
tudes is not very important. In the non—relativistic case,
the integration involved is of three dimensions whereas it
is of four dimensions in the relativistic case. In

addition, although there are several approximations in-

volved in changing the product of single-particle propagators

to a relativistic (Lorentz invariant) global propagator.
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(see the'diécussion‘in Chapter‘S), there stiil are .

several difficult problems remaiﬁing for practically solv-

.ing the problem in the relativistic formﬁlation. So as

we shall seg';ater, our practical application is workea
out in non;relatiQistic form, But due to the formal corres-
p&ndence between rélativisfic~and non-relativistic ampli-
tudes as we have seen, our understanding of the structure
of WNN scatfering is more transparent by adopting.several
gseful concepts in the relativistic analysis of section A,

Chapter 3.

B.- Answers to the Questions in Chapter II

We now return to the quéstions raised in Chapter 2
with the results of Chapter 3, The description here may
sometimes be either in terms of the relativistic or non-
relativistic formulation we have in Chapter 3 because one
formulation is better than the other in some caseé.for thé
purpose of easier presentation., But as we have seen,there
is no formal difference between.them. . So ‘we can guesé,
by looking at some conclusions using one of the formula-
tioné,_similar-(or same) conclusions using the other. We
believe'that there will not be any confusion in this
description. Also we should point out that although the
conclusions are for ﬁNN pfocess, they are also true with
processes with md (the problem of bound states is dis-

cussed in the next chapter).
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(i) Potential Description of Elastic TNN Scattering
Without Pi-absorption
The process is-to bg described by the connected
"Faddeev" amplitude; 3(1)3 (3A-I1I-4) or TC (Appendix B).
If we regard an n-body irreducible amplitude for n*n pro-
cess as an n-body potential, then the heuristic method of

assuming TN potential in some Hamiltonian to calculate

" TNN amplitude does not seem to be wide of the mark. Note

that here the potentials (7N and NN) are, properly speaking,
energy dependent andoff -energy-shell. In addition 7N

trmatrix:used in the Faddeev equation is one-particle ir-

" reducible and thus should not contain "generalized"

direct Born term; represented by the diagram;;(I>—+—<II_

A ~ ]
which is equal to T(E)W(E)A(E) in non-relativistic case.

(li) Descrlptlon of P10n Productlon and Absorption

PR

o
B N

e proeesses by Two Nucleons
Dlagrammatic representation in (3A-III-3) or expressions
(3A—IV—12')»and (3B-1V~-9) give a correct t-matrix for
NN -« NNTmT processes. In order to see the structure more
transparentlyj.ne teke expression (3B-IV-6) which is re-

written as

<'§le2,3(5)“37 =<7y 7, (48-1)



-88~

where

1595 = 15,7 ('::’TQ’('E-) T ) 15,
=15,7 + @) Ve [55y (4B

In (4B-2) lfé-)> is a wave function with possiblé nucleon
self—gnefgy in EZ(E-) and ineiasticity due to pion ﬁro-
duction which is included in VNN(E-). Ix;> is a Faddeev
state in TNN scattering. We Obtain a similar expression
. to (4B-1) for the relativisticlcase.

Expression (4B-1) is of the "distorted ane“ form
for a pion absorption process. This shows that a "nafve"

DWBA expression (2B-5) is correct if one uses the one-

‘discussed above that is the TN

particle irreducible toN

t-matrix without'generalized direct Born term for the pion
distortion included in IXI>. If this state were to con-
tain TN Born termé, it would lead to the pioﬁ overcount-
ing. On tﬁe other hand,as has been mentioned above, the
final two-nucleon state.should include the effect of |
virtual pion emission because the energy 1is aone the
single pion produﬁtion threshold.
Similar conclusions may be drawn for NN > NN

amplitudes.

(iii) Pion Absorption Effect on the Elastic 7NN
Scattering

The contribution to the total WNN > TNN amplitude
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from intermediate pidn absorption process is expressed as
(9.)C -[70) ' ‘ )
rz “Ta - in (3A-IV-14) (relatiyistic)
or

'7;2(5) G® T23 (E) in (3B-1V-14') (non-rélativistic)

The expression (3B~IV-14') can be re-expressed using wave

functions:

<X (:.)’WQ'(E)Y,(Z/L> - (4B-3)

" ‘where -

‘éra(e) =G () + GEetwEGE) : Bt )

is a complete N N propagator with N-N 1nteractions in-

:';cluded Slmllar expre531on ~can be obtalned for (3B IV 14)

and there, 1nstead of G (E) we have G (s) defined as the

Fourier transform of

. ___—<olT(<#~(au)(f’(az)cF(m) (F(ﬁg,))=lo>) . (4B-5)

which is a two-nucleon Green's function in Heisenberg

““picture. Formally this is .more familiar but not easier

to'calculate.

(-

In (4B-3), Ix > and IX > are Faddeev states with-

~out the pion absorption effect as defined in (3B-III-1)
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. (Ixé-)> is a time~-reversed solution of IX;>).

As may be obvious, the total TNN -.TNN amplitude 1is

then

TasE) = ThE) +<APIWEDY LY . a-6)

Incidentally the answer to question'(Q) is to be

found in the last section.

C. Possible Forms of General Pi-nucleus Amplitudes

Heré we try to see possible forﬁs of pi-nucleus
aﬁplitudes in analogy with what we have learned in TNN. -
scattering, It is obvious thét Taylor's cut structuré
analysis can be applied'h1general pion-nucleus amplitudes
although it will requife more care and patience. For a
system with a pion and N-1 nucleons (or a nucleus with

N-1 nucleons) we'may expect to have the following t-matrix

.expression.

(i) m-nucleus Elastic Scattering Amplitude with no
Intermediate pi absorption
The t-matrix for this process is a solution of

generalizéd Faddeev equation for N particles, which is

£ (N-1)

(N-1) irreducible. We write this as in relativistic

in non-relativistic formulation) the

 (N-1)
5 X

approach (or Tg

connected part of which may be written as m

We then introduce
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(n) | .
Z N—J w (4C-1)
J

where (a) mj(Z)is a j-irreducible amplitude for j»j pro-
cess and % represents a label attached to a

group of j particles selected arbitrary out of

N particles.
(b) GN—j(Q) is a product of N-j single particle

propagators which do not belong to group "&"
(GO(Q):I).

We may write the "potential part" as

N | :
A .
w (m : o
my = 2, H; C we2)
J=1
»and the equatlon for gql)will,becgme'
e mN mN +772 CNmN ; (4C-3)

which is a generallzatlon of (3A-IV-3'). When the inte-

.gral equation-is made to have a compact kernel only

connected part; m(N l), should appear in the equation.

N
.In that equation the input amplltudes are m(J -1

(V)

.N-l)’in addition to mN s, for all possible combinations

(i=2,

of j particles out of the total system. So the procedure
is to start with solving the two-body scattering and go
step by step to three-, four-, ... up to N-particle

scattering problem. The important thing to note in our
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pi-(N-l nucleon) problem here is thatno pion absorption process
appears in any input amplitudes for subsystems. A similar

result will be reached in the non—relativistic'apﬁroach.

(ii) Single Pion Absorption (or emission) Process
and Elastic Pi—nucleﬁs Scattering with Intermediate
Pion Absorption

The amplitudes corresponding to the processes men-

tioned above are expected to have the following forms:

Loy 5 oD 5 (1) CN 2
T VM m GTN-i N-1

) P 0D L o2l 3 (N-1 .
T;:- = Iy- m-1 q-N-i ) (4C-4)

s
X
|
Y
=3
4
TV
?
=
l
\A
g
&

where, for example,

(N-1) () (N— (N)
r = Ly '*'m . 1)GTNL+

(4C-5)
L‘”’ ZZ oo
-t ‘—-
and A( =2) is an amplitude for the scattering of nucleons

TN-1
only. The meaning of F;iiz) should be clear in analogy

_ , (2) - =]
with the Fhree pgrtlcle case (P2+(i) gy etc.). A similar

‘form will be oBtained in the non-relativistic approach. Again
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as may be clear, ﬁéN—l) (4C-5) should not contain the
effect of intermediate pion absorption. In the "distorted

wave' language this.is equivalent to saying that the opti-
cal potéhtial describing the pion distortion in nucleaf pi
production of absorption problems should not cdntain,the
intenmédiate pion absorption. The expression (4C-5) can
also be written wusing wave functions and hence in dis-
torted wave forms.

There ére severél articles on the formél aspect of
many—particle scattering (non-relativistic potential
scattering) using the multi-particle versibn of the Faddeev

(26)

equation. They may be referred to in connnection with

what we studied in this subsection."
. The final remark in this subsection is on the differ-

ence between the Watson and Faddeev type of approaches(36-l).

We shall ‘here restrict our discussion within non-relativistic

potential scattering, for simplicity. In the Watson
formalism,.degrees of freedom associated with interactions
among nucleons in the nucleus are made implicit by adopting

propagators of.the form [E+—ﬁo]—l, where ﬁo contains N-N

‘potentials in the nuclear system. On the other hand, the

Faddeev type formalism uses the free propagator [E-’--Ho]"l
“such that H =H + Z vid. In other words 7N t-matrix in the
o o NN

i>j
Watson series does not express a free scattering but con-

tains some nuclear information (remember that 7N t-matrix
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t ).

+ -1,
—Ho] TN

in the Waston theory takes the'form t —V'!TN+V [E

of ceurse tbe final Tﬂ-nucleus contains the.same.informa-
tion independent oﬁ which formalism one may choose. It is
less convenient to adopt the Watson type'approach to derive
the pi-nucleus amplitudes since we have the pion absorp-
tion effect and the p10n exchange nature of nucleon-nucleon
potentials to be taken into account. They seem naturally
treated in the Faddeev picture where the propagators are
ftee from the nuclear information. Once the expfessions.
like (4C-4) etc.Aare derived,then we may regard the ampli-

tudes appearing there to be re-expressed in the Watson

form. - -




CHAPTER vV
REDUCTION OF mNN AMPLITUDES

The purpose of this chapter is to obtain more practical
forms. of our TNN amplitudes.

 In Section A we shall first describe how to treat bound
states in many-body scattering. This is because physically
;iﬁtereéfihg;manyfbody écattérimg is always of bound state
plus particle the- Especially we are concerned with bound-

A | f . péfﬁicle scattering in three-body systems here.
“ Next'we introdﬁce an approximation which considerably
simpiifies the solution of many-body séattering-problem;
ivthe 1sobar approx1mat10n to two body sub- ambllLudes

Because of clarlty and 81mp11c1ty, our descrlptlon w111 be

(..
&

glveg‘mostly .in. terms of what is used in non- relativistic
pofentlal scatterlng. But almost parallel argument is
true, at least formally, in the relativistic treatment of
-tHeAproblem. Actually the notion of isobars has been most
fréﬁUeﬁtiy used in relativistic field theory as well as in
S-matrix theory.(30)

In‘section B we shali@réduce'our TNN amplitudes to the
form éuitable'fér aétu;i-cbﬁb;gdtions. 'fhe reduction in-
cludes (1) the isobar approximation (or separable approx-

imation) to input two—bddy t-matrices, (2) antisymmetrization

-95-
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of two nucleons and (3) the angular momentum-isospin decom-
position. A detailed produce for (2) and (3) is shown in

Appendix G.

A. Bound States and the Isobar Approximation .

I. Bound State-Particle Scattering

.The amplitudes M(l), P+(l)

. T33, T23, etc, in Chapter 3
are those describing processeé: three-body plane wave
state;——a fhree—body plane wave state,and three-body plane
wave state «€£—>two-body plane wave state. What we should
have in order to describe physical processes involving three
particles are those amplitudes which treat the scattering
between a bound state and a particle. Our purpose is to

see how to obtain éuch bound-particle amplitudes from
aﬁplitudes describing free three-particle scattering.

As has been mentioned, we are mainly concerned with
non-relativistic potential scattering. For the description
of relativisitc bound state problems see articleé on the
Bethe~-Salpeter equation.(lg)

First consider a two-body problem. We remember that
bound‘states can be‘regarded as real poles (below the
unitarity cut in the complex energy plane) of. the s-matrix
or T—ﬁatrix. Note that fesoﬁancés and virtual states also
can be identified as poles of these matrices. It is well

known that at. such a pole (bound state or resonance) the
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t-matrix factors. Let us assume that the pole is at
E = Eﬁ. Then what is meant by the above statement is
that

. &5 > > 4>// ,
T(3,EF) ~ mBDIWP)/(g-E,), (5a-1-D)
when EVE .
n
gn(a) is called a form factor and in the case of a bound
state it is related to the bound state wave function} wn(a)

througﬁ.
%.w@;’) = (E“—Eg,)'\}f%(?) (5A-1-2)

Next let us consider a bound-particle scattering among

‘"three particlés)two of which. are bound in the entrance as well
“as. in .the exit channels@Hetégwe shéll'describe how to obtain

. a.bound-particle §ca;teriﬁg t-matrix from the t-matrix for

free three~body scattering. We consider a process

(@a+4),+ C ——>A a+ Gf»-&c),,,,_ .

By bracketed pairs we mean bound states formed by those pairs,

”ahd,m, n, etc. designate the bound state levels. The process

is shown schematically in Fig. 5-1.

Fig. 5-1
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The derivation of the t-matrix for'the process under consid-=

eration is as follows:

Consider a connected Fa@deé?'amplitude’for three-

body scattering in the three-particle center of mass

G3T® PR,

‘system;
> : .
where q: relative
channel
g . .
p: relative
channel
< N
s relative
channel
>

r: relative

channel

momentum of a

momentum of ¢

momentum of b

momentum of a

and (b+c) in

and (a+b) in

and ¢ 1in the

and b in the

(5A-I-3)

the exit

the entrance

exit

entrance -

and as usual subscripts in T® indicate spectator particles

in the entrance and exit channels,

Then we can write-

(5A-1-3) in terms of two-body t-matrices;

<3 T @IEF = 53“‘3"- F £, - 5,%:: ©)&, &F)
0 <58l Py @ IBF Gole, P SasBep
oL

where llﬁa

b e
x te(f, E_—}/%—:}, |")/ (5A-1~3")

1/ma + 1/mb+mc,.etc. and { g%B} is a
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different set of three-body t-matrices introduced by Alt,

Grassberger and,Sandhas(3Z) (AGS), which satisfies

=G's. + .6, 5.8, ‘ (5A-1-
F}“*(’ 3 549 ‘{G,’BZrA 43'})79 ) 5A-T-4)

and it is rather easy to show that ggs is related to the Faddeev

amplitude TZB (see Appendix B) through

‘(92"({3 =G 8 T 2t e Sep . (54-1-47)
Te
S - - e Toa o e
.-In (54 ¥ 3" (54 I-4') GGB stands for 6@8 1 6a8'
In (5a-I-3') we let E - (q2/2ua) - Embc and
E - (p2/2ﬁc) - Ena'b where Ebab, etc. are.negative bound
state energies of a+b system, etc. With this limiting

" “procedute, t, and St fdctor,as in - (5A-I-1) respectively..

S e

Theréfore obtain as the residue

am || et 3G D) 25<TR 1 Fp@IETy
X-§}¢<35(E[?5i3:(¥3 '3:(1?5.

(5A-1I-5)

‘And the bound-particle scattering t-matrix is obtained

* >
by eliminating gam(g) and gcn (r) from (5A-I-5). ©Note

that this can be written also as
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W . ‘L» S ey 2T YN
T @ <Jeess 1O L5 GAR PR
(5A-1-6)

In (5A—I-6)'wcn(?), etc, are momentum space bound state
wave functions,
‘ bound ,»

Using T ac (q,E ,p), an elastic bound-particle

scattering amplitude is given as

:fbmmd hm«((

aa (%E’?)—_(m)/u“T ?’JE/P) (5A-1-6')

where uais the reduced mass of bound plus particle system,

_ Similar procedure can be applied, in principle, to obtain
a bound-particle amplitude from general many-body amplitude

‘but we shall not discuss that subject here.

II. The Isobar Approximation

When we try to study a two-body elastic scattering
problem through Lippmann-~Schwinger equation, we have to
soive an integral equation involving three-~dimensional
integral., After decomposiﬁg.the'amplitude in angular

momentum eigenstates, the integral involved becomes
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one~dimensiohal. In three-body scattering problems

integral equations are two-dimensional even after ‘the
angular momentum decomposition. This tendency continues

as the ﬁumber of particles involved in the scattering

gets larger. Practically éolving many—body scattering
problem thus becomes difficult. In addition, increasé in
the number of particles (l) increases the number of .channels
to be c§upled Amoﬁg themselves and (2) makes the kerﬁels of
intégral equations non-compact; the compactness is essen-

tial for integral equations'to be soluble. Some tech-

‘niques like Faddev's procedure may be available to make

non-compact kernels compact but even if this is performed,

to solve many-body scattering problems analyticélly is

practically impossible. Even numerically that is very

’fydiffiGUlf. So-some, reasonable approximation should be

adbpted by dll means.

S e e
In éﬁb-gécfiég i ﬁe mentioned théf’ﬁeaf a bound state
or a resonénce bole the t-matrix factors. Because of
this factorization it is expected that the scatfering in-
tegral equations are reduced in the dimension of inte-
grations. Actually adopting factorized form of two-body

t-matrix makes the dimension of integration in two-body

'scattéring equation down to zero. What this approxima-

tion means .is that a two-body system is regarded as an

Ceffective oné—body system and thus makes problems easier.
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This effective one-body system; eitherlbo;nd Oor resonance
stateAis called an isobar or a quasi-particle;‘ 6£ course
an isobaf also caﬂ-be a correlated many-body system like
a nucleus. Also a set of particles can have many "isobar"
states.

When sub-t-matrices in the multi—parficle scatter-
ing equafions,for example ta in (SA;I-4), are approx-—
imated by a summation of factorized terms .like in (SA-I-l);f
the isoﬁar approximation is made, then the eduations may'
be simplified considerably. Most calculations in three-

body scattering do adopt this approximation.(ZO) We

also shall use 1it.

IITI. Unitarization of Ispbar Amplitudes

Adopting the isobar approximation a two-body

t-matrix is expressed as

=y i // _ ‘
tFEET) =2, 9@ 3P /(-Ew),
m _ '

(5A-111-1)
where the'summation is over some finite number of bound
states and resonances. Better approximation is possibie .
when the number of terms in (5A-III-1) is increased.

Moreover we can improve the approximation by unitarizing
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the”expression because (5A-III-1) does not satisfy two-
bddi unitarity. We shall show how to unitarize a’
féctorized form oﬁ“t—mattix in a simplest example.

For simplicity we assume that one angular momentum

state has at most one bound state or resonance,and we

- pick up one specific angular momentum state in which we

have, for example, a bound state; angular momentum = J,
third components m, m' etc. and EJ; bound state pole.

Then -the isobar approximation is

tom BED =D,/ e-xy). .
: (5A-111-2)

As we can write ng(a) = hJ(q)YJm(ﬁ)ﬂwhe;e YJm(ﬁ) is an

eigenstate of the total angular momentum J(hJ(q) is usually

"’%ealﬁg‘(5£51ii%2) is;nedﬁ6ed and becomes

- .t P

(5A-IT1I-2"')

. ( N _t:rqr) 'E] P ) g "LJ(?’) l‘{)’(f) A-E_ EJ)

which is free from angular variables. We then assume the

" form of the unitarized amplitude as

-(_-:TCZ.J'E,P) — hj(q,.)’t'v(e)hj(?). (5A-ITI-3)

‘ Two-body unitarity. sets a restriction on TJ(E); it should

satisfy
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-1 2 2
Im T () = fzst‘ds S(E—S/zm)hJ €s), .
(5A-1II-4) -
where M is a two-body reduced mass. Taking into account
" the cxistence of the pole at E = EJ(EJ<0) and assuming
TJ(E) to decrease sufficiently rapidly as lE[+w, we can

use a dispersion relation to find:

oo .
_ ’tgcz)-:“'}?[ S sashyty 7
| O FE U (B (Tt
- ‘ . - (5A-I11-5)
A similar procedure can be applied when thé isobar is
a resonance. Note that we have not used anything asso-
ciated with "potentials". Also note that unitarized two-
body isobar t-matrices used in three~body problems
gﬁarantee three—particle unitarity as well as bound-
particle unitarity of the three-body amplitudes.
To close this sub-section it may be adequate to
remark tﬁat (5A-I1I-5) can also be derived from a

separable potential of the type

(U}('Z*, r) = ).J’lJ(z'.)hJ(P)-.: o (5A-111-6) '

Through LippmaanSchwinger equationrvg(q,p),gives




TN

integral kernel (= two-particle irreducible amplitude).
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LY
. r

T (E) whlch can be made to have a bound state or a

resonance. pole by a sultable clioice of the strength AJ

B. Reduction of the Amplitudes

Our practical reduction of the nNN scattering

. amplitudes is given for the non~-relativistic ecase.

Nevertheless it seems necessary to say some words on the

reduction of relativistio,amplitudes. So in I we shall

" discuss it briefly. 1In II we present our practical

)

. reduction of non-relativistiic ‘amplitudes.

w

o

I. On the Reduction of~RelativiStic'Three%Body

Amplitudes

t

It is. practlcally very dlfflcult to solve off-mass=~

i -
,“.*

;shell three body scatterlng equatlons in relat1v1st1c.

s

4f1e1d theory. ~.This could be understood through the

fact that even the simplest two-body scattering .is

exceedingly difficult to solve; the Bethe-Salpeter

.equation can be solved approximately only in the case of

‘'scalar particles with the ladder approximation to the

(19)

In the case of splnor particles it has not yet been proven

' whether the chk rotatlon 1s possible or not.

I N

The flrst thing -to . be done in order to solve three-

N
HEIES

'*»gbody equatlons 1s, as 1n the case of non—relat1v1st1c

L



problems, to adopt :the isobar approximation.  This will
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reduce ‘the integration from twelve to eighf dimensional,
Relativistically co&ariant angular momentum reduction is
necessary to reduce the dimension of integration further
down. Normally one then expects to use helicity decompo-
sition.  But helicity is well-defined only for on-mass-
shell particles. To overcome this difficulty 6ne may
introduce three-dimensional solid harmonics to expand the
amplitudes. This may be formally interesting but not
practical. 1Instead, if the equtions can be madé'on—mass-
shell yy some tecﬁnique, then one can use helicity expan-
sion. This is ac;ually possible when the products of

single-particle propagators are replaced by Blankenbecler-

Sugar type Green's functionQ(zs) This replacement

reduces the dimension of integration'by one, since

particles are now on-mass-shell. The price we have to.

pay, however, in adopting this technique is that the

dynamical left-hand cut structure ié missing. Also 'all

the amplitudes now becomne off-energy-shell, which is not con-
venient 5ecause they are not directly cpnnecfed with what we
have in S-matrix theory nor in conventional quantum field theory.
Nevertheless, there have been some attempts along this line.
Detailed discussions and reductions are to be found in

some articles;(ZIfii%(33) We shall try to reduce our

relativistic amplitudes in the near future to apply
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them to NN problem.

II. Non-Relativistic TNN Equations ‘in Isobar

Approximations

" (a) isobar'approximation
(1) The connected Faddeev amplltudes TJk (E) (see
Appendlx B) satlsfy the equation of ‘the same form that
the relativistic three-body (connected) amplitudes do;

equations (3A-IV~9) and (3A-IV-10) with G4 to be

" interpreted»as'a non—relativispic_gldbal propagator.

" Conventions Withregard to the subscripts in TC are

standard ones; they specify initial and final spectator

particles or label interacting péirs in the initial and final

states and subscript Zero -indicates an interaction. due

bto'thneéébody potentials.

We adopf separable forms (isobar approximation) for

our two-body input t-matrices, which means
o—zg'jftf‘jj* ()=1,2,3) 5
ok

where j and o specify a pair and its 'quantum state

respectively. Then utilizing (5A-I-4') ~ (5A-I-5)

" together with the expression for the Faddeev amplitudes,

(see Appendix B) we obtain:
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X)*'hf’ U,a kp T Z J4, Ly r X,cr'kf (j/k=/'2/3)/

(5B-11-2)

where

Jh. Zad’f’ X),‘ hF /Cp 8

U}a hp’-‘-’-‘ s, kg ¥ Zd;k@ ’

Ziuy =96 3“ .

T = M (3-12-9)

When labels o and B signify bound states of certain

- pailrs de kg is equal to the bound-particle amplitude
>

bound -
in (5A-1I-6); T = X - and (5B-I1I-2) is the
» kB ja’kB’ ( )

equation for that amplitude. SinceATojc T ©and T ¢

'’ "ko 0o
can be obtained easily from Tjkc(j,k=1,l,2,3)'which are

obtained through (5B-II-2) and (5B-II-3), we shall not

write down their expressions in isobar approximated forms.
The'equation (5B-I1-2) is of the Amado-Lovelace

type (20) (31) yiehn ﬁjd,kB as a driving term. For our

TNN problem, the solution of this equation.is the

central problem in that the ampliﬁudes T23; Tq,

and T34 may allAbe obtained directly from the resulting

functions X jo,kg and the ' 7NN vertices, T .and A (or W
H H .
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and Y) when Vyy(E). is assumed to be known.n However, if

VNﬁ(E) iefalso to.belcalculated, then one needs Té3 nd

NSZ for it. Then ZNN(E) is obtained from VNN(E) through
Llppmann-Schwlnger equation, and it is used to

calculate T23, T32 and thus T33.

Before going on to the next step,we present the con-
nected part of T3, Tyqs 523, etc. (defined as X33(l),
XN3(1),~X c(Z), etc. respectively) belo&. i, k — are

~used as- labels for spectators (for two-nucleon case
cﬁose sufflces mean nucleons which do not take part in
‘ the emission- absorptlon processes) The expressions are

R : iy
“°”~Ig%n terms of A, T, Xia,jB’

etc.

( U) Zui, )N = 3«%3[” (z(ﬂ,jp -——/l CT3 ‘3’ )

). .
(-“)X(:ﬂ )p = th,_)ﬁ + ZZLN hdrcd XMJP

. (31m11ar for X(mij)

(2)

(Nl) X in, k3 (= Comcteal part of sz) = ZX h

(31m11ar for Xﬁg) )

= A | ' — 2

Gv) X?N,h.‘} (= commected part of TZB) = (z” ks "f'ZfNN(N}G{ XZN b3
(1) "'--'bm(“) CT‘,.A Ok
" (similar for X. i3, kN

_ | (z)
Xca J3( = (onnected raﬁ: of 753) ’TL *ZXB k.N’CTi )i
(5B~-II-3')

+ZF % X“‘ 93 Z-Xg,hngra/\j,
R




differential craoss section for NN-+md (note that nucleons

gt

" and uﬂd)Pﬂd are the reduced mass and relative momentum.
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With these expressions, we obtain, for gxample; the

are treated non identical at this 'stage)

detwsrd) _ 4 - P | |
@& )/‘m/'(nn IZ ™, m (5B-11-3"')

where

‘w _ @) '
Xvwl,c‘n _ Wd,LN + ZXM N’ GT '@wm)

of T and d, etc.

(b) antisymmetrization and angular momentum reductions
It is rather tedious to present here all the details of
the antisymmetrization and angular momentum decomposition.

Instead we shall put that part in Appendix G, so it is

suggested to have a glance at it. We therefore.present

only the - final results ready for practical computations.

Some explanations are due which are mostly associated

with the notations used in expressing the reduced forms.
Let us choose an example; consider a reduced

amplitude B A(j)JT.

a,b
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Here i) J,T: total angular momentum and total isospin

specifying (N+m)+N states -

ii) a,b: d,84étc.

m,n etc. specifying (N+N)+m states

N,N' etc. = specifying two-nucleon states
3,3'" etc. = specifying TWNN uncorrelated
states

These labels also stand for all quantum numbers like

sub-angular momentum, channel spin, etc.

iii) A: this means that the amplitude is antisymmetric
o - . e .
T with respect to two nucleons. In this connection we

“also use a notation defined through
ATt i : Syt Tl B Tt
Bas = [1=c0"WT BT

~ _This occurs when . at least one of a and b is in

Sl et @ty

',fwdfnuéiéon state. SN,ZN are the total spin and orbital
aﬁgular momentum of that channel. ©Note that when both

a and b are in two-nucleon states, S, = Sb = SN~and
St +T Sy Ry +T

L, = L4 (mod 2))and‘thd§'{l—(»15 a P = {1-(-1) }.

iv) (j) which is next to A indicates that the
aﬁplitude is j-irreducible. (This may be omitted when
it is.perfeCtly clear).

‘v) P;rticle masses are specified as mi(i=l,2,3)
and ré&ucéd masseS'are‘defined éS'

R | l

‘ | . e Z: = 7»'9‘* '_,;;; | (i,),k cachc)
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The pion will be considered as particle "3".

vi) Normalization of single-particle state.

> : _ 1_ o ikx
IR = 8(kk) —> (TIE> = =i

vii) Rest masses are included in the energy.

Now we can write down the reduced equations.

(1) The Faddeev (Amado-Lovelace) equation. For our

st later purpose we drop the contribution coming from

three~-body potentials. Then an isobar-particle t-

matrix is given:

It 3 2, =TT
Xa,.(, (Pa,Ps, E) = ZZ; (Pa, Ps, E) + ;5&"% ac (E‘;P‘-,E)

C . Pcz ._Ef: XU’C
X (E’%’mt‘zuc— -'I/Mc) C,‘ﬂ-(ﬁ:’/&’ E))
(5B-11-4)
where a, b,'c are a,8, m,n, etc. Note that although we
do not show explicitly by putting "A"s, nucleons in Z

and X above are already antisymmetrized.

(2) Exchange terms for a(o or n) < NN



|
1
|
4
I
!
|
5

L S A

I

,A&j{ . "7 |
Z an (Fa,,E) {1- (_l)smwt} Z;N CPa, Pn,E) ,

(5B-II-5)

where

A
> TT . A8 JT
ZQ)N' - (fz—) M\'zaﬂq.

Z is similar to Z_ the difference being the form

a,n aa{

factor of o replaced by 7TNN vertex. We have similar

expressions for 2 A,JT and 2 JT

' sa N,a
A(2),Jt 4 X, £(2),37T (a=qa,n)

These are the connected part of T}Z and T23 in

isobar approximation.

e RO ) = VD T ) X )

“ g PG L
. IR
BNV

b AN TP B
XT e 2w 30 L (&,&,E}}L (5B-11-6)

A(Z)JT'

. o (2)a
xa,N is related to X

a,N
(5B-II-5). A similar expression is obtainable for

~ (2)J7t

XN,a
A(2),JT -
(4) X3,a (Pl’PZ’S’Pa’E) (a = a,n)

in a manner shown in

" This is diagrammatically shown as in Fig., 5-2.
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—y
-2 ~Fa
d a
-
ry N
S Pe.
Fig. 5-2

The resultant t-matrix is S T T T T e e

A(‘) JT a2
X3,°— (P,R,S; P,,,E) =) '{.Zﬁ (u.)'t (E-Zm-5 I z/.
e | X X0 By, E) —Z Go) TV (e - O ,z)
| | T (F R, E) J_{ZQN(V)T(E‘ZW‘Zq‘%)
m

31 ‘ ‘ _
X M,a,-(slﬁuﬁ)}, (5B-11-7)

>

- -
Here (ul, u2, v) are relative momenta between (nucleon 1

and pi, nucleon 2 and pi, two nucleons) in the exit
channel. 8g etc. are form factors in the separable

form of two-body t-matrices. We obtain similar

express1on for X A(z)’JT,

‘a,3
A(2),JT A(2),JT
(5) X3,N and XN,3

(A(2),J7

Diagrammatically X3 N is depicted as
b

(Fig. 5-3)




__-'X_j:33;‘,_N

Awhere t

The expression goes as

A(’),TC P2 ),Jt
XM CB,Fy S, Py, E) = Z\{ji(u,)'c (E-Zm; - 2,:, 3,,) X «)u (h,M,E)

e P
— Gyl THE-ZMi— o %) ‘”K(ﬂ,m,s)}
ZZQm("’)'t(E =2 - 2««3 /J)Xw' (S,Pn,E) .

(5B-11-7)

where u

v are defined in a similar way as in (4).

(2)JT

Similar expression is obtained for ﬁN 3
’
A(2),JT o~ (2),J7

A(2),JT _ 3 .
N, 3 and XZ,N from XN,3

(2),J1

1° Yoo

We can ob-

tain. X and

respectively.

AJTS
(6 tNN 2,8

| 2/
“tg:;l(ﬁ‘ﬁ)g)— [1+( 1) ﬂJ .ENN 1.2

I PRy LY JTs
Vi ,wm),;——,-_ 2 (e VT,

Defining

/

A

NN 8,8 satlsfles

g S JTSw
tnit Jil (h4,E)= N:Zt,eh" (m)E) +ZS'MY Vi N )LD (P TE) % ®&r)
' l’l
A
X TSN ,
'(:N,,),q,gf'%ﬁ) (5B-II-8)
A, JTS _ JTS

{1 - (-1)2+s+1} tNN’Q,’R

The
\
factor [1 + (-1) +2] just serves for the parity conserva-

tion. Note that the total spin S is conserved’.

N
(1) ,J7 (1),JT
a,N - an N,-a

(7) X (a-= a,n)
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XaN (&,ﬂ,,E) xa N (P“)PN E) +Z$"rer( )Jn(f’a, KLE)

T SN
x(y,(E IR~ b, 4, By (v, Py, E) 5:,(,5,.. (5B-11-9)

§N a(l)’JT is obtained in a similar manner.
, .
s (1),Jt 2 (1),JT ;
(8) X3,N (P 2,S P sE) and XN,3. ) (PN’Pl’PZ’S’E)'
2,3t O, T

A(?)I.Tt ’ . a /)
3[“ Cn)rz) S, P”jE) = X3,N (n) les) FN;E) —*.% S"ydy\xajnl' (ﬂ, P:.,S)
' TTS
)(G]:L(E *)t N, by T s Py, E)

+ Ftu?)E-th—ig‘—‘-g)C-ﬁ (‘E,ﬁ)Zf TSN (ﬂ,& E)

NN, 2f, By
=+ (similay term with 1—)2_)}
(5B-II-10)
and we have similar expression for iN 3(1)’TN.
A(l),JdT
9 x, AT e < am

AW, JT 4-. &0, 7 C
a)% (P“)& E)= Xa_ 4 (Pa,ﬁt, E) +%J7dr Xa,N CFa, Y)E)QQ(E)P‘)
xw’ﬁ (v, B,,E) ii (—1)JN+S"1T} . (5B-11-11)

We shall not present'X3 3A(1)JT because the expression
. s _

- ~ is lengthy. But it is quite easy to obtain it from

A(Y) 3T -

Xa b . To clarify the normalization of our reduced

amplitude, we give an expression for an elastic scattering

%E)
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amplitude;
A(l):r*t AW, TT
qa,CP)%)E):—?[/uaXQ,a. (R4, )) (5B-11-12)

where'ua is the reduced mass of isobar "a" and the spectator. In
Appendix F, we present a reduced form of the total TN t-matrix
in Pll partial wave. It is easy to fit the t-matrix to

the experimental phase shift in angular momentum decomposed

form. In this case, upon choosing some suitable form

factor or TNN vertices we hope to reproduce the correct
phase -shift while taking into account the effect of the

.jnucleonfpolé.



CHAPTER VI
PION ABSORPTION'EFFECT ON ELASTIC w-d SCATTERING

From this' chapter on until Chapfer 8 we shall
consider some pfactical use of the formulation that we
have developed so far. There are several processes aéso-
ciated with the 7NN system. We shall briefly sketch
some features of these processes and later concentrate

on the problem of the effect of pi-absorption on the

1
TN

Taal

s-wave T-d scattering length.,

A. Processes Associated with the TNN Svstem

Physically meaningful processes associated with the

TNN system are as follows:
(i) md » wd
(ii) =md - TNN )

NN (6A-1)

+4

(iii) md
(iv) - NN > 7NN
(v) NN > NN

‘A1l the processes above are related to one another through

-118-~



uniﬁafity. So learning one specific process above will -
heip us understand other processes there. For example, as
will be mentioned later, a study of m-d scattering may
give us some important information about N-N interactions.
The main feature of the scattering problems associated with

the 7NN system, from a point of view of their theoretical
description, is that various kind of approaches are
possible. This is not always true with general pi-nucleus
problem in which we have more particlea to be taken care
of. " Let us take Tm-d elastic scattering as an example.

_ﬁ:i o Methods Which have been used include: (a) the Watson

}malmipleLSCatfering method(BA)

“which usually is calculated
up to the impulse .(or single scattering) term or double
scattering term at the most, (b) the Glauber theory

caltulations including other fixed scatterer approxi-

' matlons(3§) (e)--the Faddeev three body approach (27)(35)
o (d) the dlsper31on relatlon approach based upom’ unitarity-
' | analytlclty,< ) etc. There is another exampleﬁ In process

(iv) we can find a calculation using current algebra

(8)

technique. So in this respect the TNN system may serve
for ethdying the interrelation among various theoretical
approaches as well as clarifying their range of applica-
bilicy.'~However)it is not our subject to look into that

.problem.so .we ,5hall not discuss it in the thesis.

With regard to the theoretical calculation, it seems
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that there are a couple of interesting features: (1) In
the calculation of processes involving the pioﬁ; t.e.
(i)v(iv) of (6A-1), an approximation iﬂcluding the single
plus douBle pion scattering gives quantitative.agreement
with experiment in many cases, which is rather independeht
of energy and the theofetical‘methbd adopted. For some
processes, the single scattering approximation gives an
adequate qualitative explanation (for example, m-d elastic
aifferential cross section). But this is not always true

as we shall see, for example, in the calculation of the

pion absorption contribution to wd scattering length that

we willnpresent in the later chapters. (2) Processes
involving thé deuteron require an inclusion df the deuteron
D-state in many cases for good quantitative predictions.
This ié because at high momentum, the deutefonAD—state wave
. function becomes comparable in magnitude with the S-state

‘ component.

B. Pion Absofption Effect on m-d Scattering Length

I. .Introduction

We now choose to concentrate on the problem of m-d

elastic scattering at very low energy. Specifically we
study m~d scattering length; a = lim f__(E). Since
- ‘ md E>0 Td

Td+NN is an exothermic reaction, it always occurs even at

. «‘fyz'h.’



md threshold. So in md elastic scattering, there always

is a contribution from the process: Wd+NN+wd even at very
low energy. 1In this process the intermediate N-N state

has at least V136 MeV in the center of mass system (as is

mentioned abové))and thus has a corresponding high momentum com-

ponent. This means ‘that the threshold md+nd process may give
some short distance information in nucleon-nucleon
interactions. In potential scattering tﬁeory, the thres;
hold scattering gives a real quantity; the real scattering
lengith. But as the N-N intermediate state in m-d
:sgatteringAis far above its elastic threshold,
;i&ﬂdevéiaps aﬁ‘imaginary part and theref@fe'the W—d scat-

tering length a becomes complex. Note that Ima

md wd

results solely from the two-nucleon intermediate state.

Due to unitarity’wé:caﬁnreLate3 Ima to the integrated

md
] CLoss sectibn o (md<NN) or O(NN;ﬂdj} A simple calculation -

shows that Ima

nd is related to the threshold m-d production

cross section through

| R .
o-(mhpn)| | = 67T 7R

where m is the nucleon mass, as before.
As for the reailpart of the scattering length, we

write

- - 7
Re aml = Qnil + Axl. N (6B-1-2)




o
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where a comes from the pion scattering part; coming from

wd
the Faddeev part of X ACL) and a' is the contribution
md,d ’ md ‘

from the intermediate pion absorption; from the residual

A(l)

nd.md after the Faddeev part is subtracted
. :

part of X

out (see Eq. (5B-II-11)) for a = b=(md)). 1In contrast to

Imand, a'"d does not have any especially simple relation

with other quantities in other channels. It can be expres-

sed in terms of o(nd<«NN) by dispersion relation on the grounds

of the analyticity of the scattering amblitudes.(37) However,

we would have to have 0(md«NN) at all physical energies and

also in some unphysical energy range where we should have
to assume its value, for example, by extrapolations. So

through T

it seems that the direct calculation of a'Trd

(1)
3,3

relativistic formulation is easier than the dispersion

33

[see (3B-1V-14)] (or X in Chapter 5) of our non-

.

approach. e

II. A Review of Theory and Experiment on a'1Td and

ImaTrd

(i) ImaTrd |
Most studies on this quantity so far are for the
equivalent 0(ﬂd+NN)‘th or its inverse O(NN+Trd)|th both

in theory and experiment. So our review will be on

o(nd+NN)lth.



_polatlon to* Zer.o energy.
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ﬁUsually low energy NN=»7d reactions are fitted to

(6).

phenomenological expression by Gell-Mann et. al.

~ ‘ :-:.O( =+ 3
O~ (. &—NN) (2 ?87« ) (6B-II-1)

where 0 and. B are constants and N is the center-of-mass

gystem pion momentum in pion mass unit. It is usually

assumed that the first term is due to the s-wave production,

and the second term being due to the pFwave production. The
form of (6B-II-1) essentially is a result from the combi-
nation of threshold behaviour of the production t-matrices
aqd theyphase space factor. What we. are concerned with is
: Tﬁéte has been an.argument that we can relate the fol-

lowing thﬁee;moceSSes,iall belng near threshold by detailed

Bhlénce, charge 1ndependence and the technlque of extra-

@) Y+Pp --—a'n’f—-*’%
) TCHp —> 7t P o (6B-11-2)
c) PP —> 7w

Reactions (a) and (b) are found to be consistent

within experimental error. The results of (a) and (b) sug-

 gest that the threshold reaction should give a = 250 ub.

But‘és-wilI,be‘membioned'soon7most experiments .as well as
model calculations indicated smaller valuesof a.  So it

is interesting to know the "correct" value of o both
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experimentally and‘theoretically to see whether those as-
sumptions leading to & = 250 pub are plaqsible or not, which
may be important in 1ow energy particle physics. Also
once a "reliable" a can be determined from experiments,
it will be compared with those values obtained ie model
calculations using various N-N interactions (potentlals%
and thus hopefully we will be able to de;er;lne theh‘g N
interaction (potential) is the best.

Thete have been several calculations and experiments,
to determine o and B. WOodruff(39) improved Lichtenberg's(SS)
calculations and was able to get B consistent with experi-

(40)

ments but was not -for a. Koltun and Reitan tried
similar calculation and obtained o which was in good
agreement with the value deduced from experiment at that

(41)

time (anv138 ub). They adopted some Hamiltonian and
performed a perturbation calculation. fhe pion-nucleon
interaction used in the Haﬁiltonian consists of two parts;

(i) a modified static TNN vertex‘which approximately satisfies
Galilean invariance and (ii) the s-wave direct ﬂN interaction
which is a kind of scattering length appro#imation to the low
energy TN scattering (this corresponds, in our modern
language, to p and O meson exchanges in TN interaction).

The Deuteron wave function and the initial state'N—N scattering
wave function were obtained ftom the Hamada-Johnson potential.

What they showed in the calculation is that (1) the direct

production term is small compared with the term containing
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" the pion rescattering after production and (2) the direct
term gets smaller due to the cancellation between
contpibutions from deuteron S-state and D-state.

(42)

Later Rose performed«aﬁ experiment and obtained
a = 240 ub rather different from old values but is close
to what is suggested from reactions (a) and (b) in (6B-II-2).
(43)

Reitan recalculated 0 using Koltun-Reitan (KR) method
with séyeral_réfineménts and found o Vv 201 pb which is
close to Rose's value.. Reitan ‘also found that o is not

a constant but varies with energy. However the energy de-

pendence _.was observed to be weak.

\KRfmerhpd'was'further applied later by Thomas and

(44) (45) The former

Afnan and by Pradhan and Singh.

group uéed several dlfferent deuteron‘models with dif-
.’ferent ‘D- state probablllty as. well és dlfferent short
mf?ﬁfange behaVLor.‘ Theyufound o to‘be qﬁlte ééﬁ51£1ve ‘to the
duetefén models. With éupposedly most realistic deuteron, ob-
tained from the Reid soft-core potential, and also most recent
ﬁN écattering_lengthsfaG) they obtained a v 114 ﬁb, which
is amazingly small. The latter group also adopted several
different deuteron models as well as different N-N
;pdtentials"for the”initial’N—Nsdisbortion, They then

L T t

T*@perfotﬁéd\s&veral;phasewequ£Vhlent transformations on the

-

upotentlals whlch modlfled the off shell behav1or of N-N

el Ao

interactions. _The, result was. that local N- N potentlals

seem to be rather rigid tp tbe phase~equmvalent transformations

RERS . K .
IR . .. P
. R

A5 Lot

A
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whereas 'separable ones are sensitive to th€ transforma-

tions, judging from the resultant o values. When the Reid

- potential is used (without any transformation) they ob-

tained a v 150 yb.

Lazard, Ballot and Bgcker(47)

took a similar but dif-
ferent approach to evaluate G(md<NN) from threshold up to
about 300 MeV in-pion energies and found o ~ 300 pb dif-
ferent from any result obtained from KR method. Afnan and
'Thomas(zs) used the imput informations used by Lazard et.
al. in their KR calculation and found a%203 ub. Those
theoretical results mentioned so far seem to indicaté that
aAmay be sensitive to every piece of input function as well
as fhe approximations made in the propagators, etc.

"Since KR méthod shows that the.direct production term
is far smalier than the rescattering term, Afnan and Thomas(2
questioned the convergence of the perturbation treatment.

As KR method would introduce pion overcounting in going

to higher order calculation, they set up a three-body Faddeev
type model to calculate md->7d, NN+ﬂd, étc. This model with
the Reid soft-core deuteron gives av220ub consistent with
Rose's value, but different from more recent value bf

.(48)'of av180 ub. Afnan and Thomas

Richard-Serre et. al
then observed the difference in experimental values

together with Reitan's result suggesting the energy'de—'

pendence of a. They noticed that older experiments giving

)




smaller values of o were performed at higher energies than

where newer experiments were done. So they suggeéted o to
be a decreasing function of the energy; the dependence
being not so weak; Their model three—body calculation
ac;ually showed this tendency. Recently Spuller and

Measday(ae)

reanalyzed the data used by Richard-Serre et.
al. not based uﬁon constant a,B assumption but adopting
‘somé'poééible energy ﬁependencé together with a resonance like
behavior in some pa?t of the parametrization in the cross
section; the form is

O ot LT T Res

i ) (6B-11-3) '

where Res is of the Lorentzian type resonant form represent-
-ing the p-wave'contriﬂu;i&h'from?3~3»resonance. The analysis
Shpwsgthitﬁqb'(d_a;"égpd,é&&n;énergy) may stay somewhere
Hét&één?ibb>ub“amdt30b-u£t.;£icﬁzis:cbnsiétent with'Rose's
value as well as the value suggested from the consistency §

among (a), (b) and (c) in (6B-II-2) at very low energy.

(ii) a'Trd

Experimentally this quantity cannot be measured directly.

The same is true of a_, which comes from pure Td scattering

md

" without pion absorption: 'The .only measurable quantity is

s e . Y RS _ ' .. (50)
‘the Fota% Reawd‘ Ay %”Wd)“: The most recentAmeasure@ent
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of R.eaTrd gives

- Ke Qrd = —0.052 (fg;zf;) 7l

The negative sign here corresponds to weak, repulsive
interaction. As is easily seen, the uncertainty in the
above value is about 50%.- e e e

With regard to the value of 2 there have been a

(28),(51)

md "’
number of calculations along the multiple
scattering approach; from the impulse type to the three-
body Faddegv type calculations. It seems that from those
calculations the inclusion of single ana double pion
scattering is sufficient quantitatively; the multiple
scatteriﬁg effect higher than the second order is rather
small. However, the calculated value of Ewd is sensitive
to the TN scattering length. The S31 scattering length;

| l; the SllscatteringAlengfh.
The lowest ordér contribution to a#d comes from the

and although both a

a3, is less well known than a

combination of a_+2a

1 3 and g are of

3

the same order, they have opposite signs and a1+2a3 tends

to get very small. Thus a"d is known to the same extent as a

(28)

1

1

and a,. According to Afnan and Thomas, the calculated

3

value of a4 using recent a; and a, and taking into account

+ . . .
several corrections like 7 -7° mass difference, etc. is

-0.037 + 0.005 p~ L.

As for a'Trd there have been few calculations. More
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,fhan*tén years ago, Brueckner
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(52)

estimated the effect of

" pion ‘absorption on the level shifts of pionic atoms. Using

a simple‘Born type approximation, he found that the level
'shiffé are negative (as in a weak repulsion) and are of
the same order of magnitude as the level width (in terms
AA"‘. E a .. VR . 3 < - alt =
of a md and Imand it says that a md 0 and a md 0 (Imand)).
(53)

Th@uless . includéd:the effect of crossed absorption in the

Brueckner's calcﬁlatioq,‘but'the essential feature was not

" changed. Using the. available values of « (see the discus-

#+sion in Iman_d in the last sub-section) for ImaTTd their

estimate gives that a'  =-0.005v-0.003 (u™1).
ui.gLater;Beder(3J)~éval@&ted,alﬁd using ;the unsubtracted .

'}dispef§i5ﬁ fé1ation'ébpliea tb C(NN+md) data. He obtained.

itive value for a'nd,‘tdhﬁfany;td‘BpueqknerYs

a large.p

r sq = ~0:005 Tt wnich is. comsistent with

 » "Brueckner's value. However, we have obsérved that the

accuracy -of their calchlatidn is limited by their own model.
Théfefpre_we‘shall use our formulation in Chap. 3%5 to

nd? which is considerably more general.

calculate a"
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CHAPTER VII
METHOD OF CALCULATIONS

In this chapter we present our method of calculating
a'md and Imawd; the real and imaginary parts of the md
scattering length contributed from the intermediate pion

absorption.

A, Equations and Approximations

The total md - md amplitude is given in (5B-11-11);

Xg(%);JT where "a" and "b" should stand for wd. When we
b4
write
XA(I)) JT — It + AW, Tt (7A-1)
Ki)Td» ﬂdﬂw‘ Wdlﬂd )
Xi; md is the Faddeev part which describes 7d elastic: -
1]

scattering without intermediate pion absorption. At

threshold this gives Eﬂ

. . LA(L),JT
1nterest-is in Jnd,ﬂd

d (see Chapter VI), Our present

which comes from the contribution

from the pion absorption in intermediate states., Explicitly:

| L
AD, I, 2 A(l) JT, ~ '
Jm,m P"F’E):Z MrXMtN(P,T,E)C;g(E,r) (7A-1")
N % /
A
@®,7T - An+Sy+T
X Ky g (BHE) {1 @ }/
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733fﬁlan§ f, and - (for X

S oam- o

SN,Td.

;gﬁ&ére .
| (1) #i)NJQP',P,E) ié émra;plitude for ﬁN*ﬂd'with the
,1nitia11N~N.interaction
(2)."3\((2) JT(P'v P 'E) is fo.-r md->NN without the final N-N

1nteract10n
(3) GZ(E,r) is a.two-nucleon propagator with off-shell

"nucleon self;ehergy effect.

L isrexpressed:

AU, TT

a‘m(-i- (,Itm.a:r = ﬂM‘A.ﬂ"’" J o, el (’) Py P) (_7A-—.‘2~);

4;% p->o0

In the above expression, J=T=1 and.€p=ma+u+cp where md§

deuteron mass, u, pion méss‘and.cp; the kinetic energy of

the plon and deuteronxln thelr center of mass system.- '
e (1 J'f ’ (l) JT ' A ' -
As for Xnd)N and XN ﬂd ., they can both be obtained

JT
a,b ?

This is easily understood

from the solution of Faddeev equation; X

(1),_JT).EJTS
“md,N- 7 NN

through (§B—II—6) and- (5B-11-9). - We should just remember

TNN vertices

that all the amplitudes'appéaring in (7A-~1"') have been
antysymmetrizéd and decomposed into angular momentum and
isospin eigenstates. This means that subscripts md, N etc.

in the amplitudes stand for, for example, mdZ(nd,ldsdjd

 ndtdjdtﬂ)}A qu‘deﬁails of this notation, see Chap. V and

lfﬁﬂppéd@ikgc;"~Wewhave adqpted'hexe.a normalization convention:
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<E|§'> = 63(k—k') (this is equivalent to séyipg-that

Y => Jd3k);

k

In our application of the non-relativistic 7NN
scattering formulation we do not solve the exact equations
but make the following'approximations.

(1) G,(E,r) in ﬁ#ifﬁJT

is replaced By G2(E,r), the free
two-nucleon propagator without off-shell nucleon self-
energy effect. This is a.reasoﬁablé approximafidn
at d threshold as real TNN process does not occur,

~JT . . o5(1),J1 s
tNN (also appearing in Xﬂd,ﬁ ), this is a t-

(i1)
matrix for N-N scattering, including the inelastic
effect coming froﬁ the virtual production of é pion.
For threshold md scattering this may be replaced b&

Jts

t

NN ° which only contains the elastic information.

(iii)The Faddeev amplitude is approximated by~its firétf

Jt . . s(1),JT (2),J1
a,b” This makes both Xﬂd,N and XN,ﬂd

term; 2Z
include one scattering of the pion before absorption
ér after emission, Since TN scattering at low energy
is weak, we expect that this approximation wofks

reasonably.

The forms we get after these approximations are:

laY

@),JT ~ I 2, (7A-3)
XM/N (BB "‘1/2—{ N PHE) T éSTM‘

A E’:lrl";‘,v( (B T E) rg( (E__Zc:'mt' ”E%J-E;TJ>ZZ: (,Y; %', E)}




3T

X::f: F’?r,E)— X'MLN(F)T"E) '*Z T‘”XMN ' (PT,E)

3¢S (74-3")
XG{(E r){:NNjM, ('r,z.,E)

.

»In.(7A~3) u‘stands-for a state of correlated TN pair. We also

o(2) JT

N md "
~(1l)y,JT
md, N

.have a similar eipression‘for
"We shall not calculate X independently for

U(ﬂd+NN)”but.nalculate (7A l) dlrectly under the approx-

L,

}'1mation discu séd 50" far Thenefore, o is obtalned from

Imaﬂd through (6B I- 1) The terms included in our cal-
i ,culation are shown diagrannatically~in Fig. (7—1). In

B this flgure dlagrams A and ‘B represent the processes .
'ithrough pion absorption re emiss1on w1thout any TN scatter-
finé,A On the other hand dlagrams C to F contaln at least

RES

;qne-vascattering:before*dxfafter pi—absorption. For each

.agram shown we also include the process where the pion

élfls emitted ‘by the nucleon whlch has not absorbed the pion,

4for‘example,.d1agram A is, considered to lnclude A' -Also
dlagrams C and E are: meant-to‘lnclude thelr‘conjugate dia—
grams in whlch ‘the.. order of the dlrectuplon absorptlon |
‘(or‘emlssion) and the plonAabsorptlon {or em1351on) after
(or before) single WN scatterlng is 1nterchanged (C in-
f‘cludes C,_for example).

It may be relevant here}tﬁ'make,SGme comparison be-

tween our method of calculatiom and that of Koltun and
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PN

A ' c

Fig. 7-1
Diagram; included in our calculation.‘ For. each diagram shown, we
'also include thelprocess where the pion is emitted by the nucleon which.
has nét absorbed the ﬁion (diagram A includes A', for example). Also
diagrams C and E are meant to include their conjugate diagrams in which
.the order of single and double pion scattering is interchanged

t

(conjugate of C; C is shown above).
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kel£5q;ikk)?£§f&. &he first;point is.that.of course we
shallfnot caleulape.c(ﬁﬁ*ﬂd)=directly5as KR did. 'The.bonds
of our'method,'hpmeVer,‘is that Wg.obtain' a'“d at the
same time, which is not possihde,in‘thé<KR method. Second,
within the approximation we have-adopted, the calculation
includes‘up to pion rescattering, which is the same as the

KR formulation does offer. There is a difference, however,

f:in the treatment of the rescattering, KR ‘adopted the S-wave

‘rescatterlng only, which is an extension of the scattering

length'approximation,.whereas we have used separable TN

>

interaction in. Sll’ gﬁi‘ 33 artial. 2

Third, within our non relat1v1st1c forms we: do not make R

i

“any approx1mation to the,intermediate.mNN'propagation'

KR adopted a certain kind of static closure approximation

there 1srm backward propagation of

ﬁipib&éi noourfmethod which would correspond to a four-body

'st-at-é. On the other hand 1t appears 1n the KR rescattering term,

which makes the analytic expression simpler.

B. Input Functions
(i) Deuteron Form Factor (wave function)

Since previous ctalculations have shown that the re-

.sults are sensitive to the deuteron structure, especially
to short range behavior, we try to see that tendency re-

fleeted in Imamd and a'md. For that purpose we have chosen

We' ‘also- 1ncludeu partial.wave-~



(a)

(b)
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N three different models;

The S-wave Hulthén deuteron which results from a simple
Yamaguchi type.S-wave N-N separable potential. This
choice is merely for its simple analytic form.

The Réid deuteron; obtained from Reid soft-core N-N

potential. We have used a separable form expression

(c)

to the Reid potential obtained from Pieper's ap-
Cas . . (55)
plication of the Ernst-Shakin-Thaler procedure.

The Reid potential has been considered to be one of

the best realistic N-N potentials as it is fitted to
several observed nucleon-nucleon and nuclear quantities.
Therefore this deuteron comes from N-N dynamics.

(56) This is similar to those con-

(56)

The McGee deuteron.
structed by Gourdin et al., which were obtained
from analytic properties of dpn vertex (the fit was
made to electron scattering, deuteron ﬁhoto disinte-
gration etc.). So alﬁhough this deuteron is very

similar to Reid deuteron in its momentum space be-

havior, its construction is not through N-N dynamics.’

As for the D-state probability; P the. Reid deuteron

D’

shows PD=6A9%whereas the McGee deuteron has P_=7.0%.

D .



cipartialiwave. -

(11) N N Potential for Two~nuc1eon Intermedlate State-

For calculational 31mp11c1ty, we have adopted separable

(57)

,potentials of Mog gan: The-potentials are of second

rank; Wlth repu131ve and attractlve parts. In the case

S of s-wave fd" elastlc scatterlng the resultant N-N inter-

<>med1ate state stays . in 3P1 partlal wave (the notation here

25+lL ). Among four dlfferent models of

stamds for J

.Mongan we, have chosen type R and 2 Type 2 potentlal in

e lwhappens to reduce to a rank 1 separable potentlal - Type

1 reproduces the experlmental phase'shift;better in this

BT

(iii) Pion-+nucleon ‘t*matrices

In our'calculatidn‘it:is.necessaIy~to-have TN t-matrices

in seVeral.pamtidl.waveeﬁ

‘whlch are found to be 1mportant
':\w energdes.‘ We p1ck ‘up- Sll’ 31 and P 33" partlal Waves

;whlch contrlbute to the rescatterlng term (other 7N

'P-waves are small at low energy). For the purpose of later
'comparlson with the Afnam Thomas result,( 8) we have adopted

their separable t—matrices for those partlal waves. Those

‘t—matrices are adjusted to reproduce scattering length

(or volume)and ﬂ)thethreshold behavior. For Sll and 531,

these. t—matrices fitwell to the low energy phase shifts. For P33

.-

wave,‘theft-matrix ié fitted'to the 3-3 resonance pole.
The forms of the 1nteract10ns or wave functions in (i)-(4iii)

-are 11sted in Appendlx H.
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A . ’ (iv) 7NN Vertices
The most general forms of 7NN vertices are A(E) and

'(E) with Hermitian .analyticity A*(E).= '(E), which satisfy

A B =YEHYE G, tmw ()

and - (7B-1)
o THE) =WE) b (B G W) ) ) I
ksee Appendix E and Chap. III, Section C), where Y(E) and
W(E) are two-particle irreducible 7NN vertices. However,
not much is known about the form of Y(E) and W(E) for non-
relativistic applications (in principle they can be de-
termined by Pll tétal TN scattering phase shift through
enN(E) of Chap. III, section C). The only information
available for Y(E) @nd W(E)) is that it has the form
~fg°i, where the coupling constant f may be determined by
the TN Born term'(through the residue of wN P11 scattering
amplitude)‘or the long range one-pion-exchange (OPE) con-
tribution to N-N scattering. With this in mind and also
taking into account the fact that tnN(E) in (73—1) comes
only fromAP1l m-N scattering (which we have neglected), we
consider A(E)=Y(E) (and T(E)=ZW(E)) to be given from the

following WNN coupling.

] = e .
Hy= L(47I4/7§°'{Vﬂ[’_c_'f(x)] +zm [P T (7B-2)

+ T WP ]}
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L

.:Inlthe-abonevexpression?¢(x)nand.E(x) are the pion field
and its conjugate momen tum respectively. Both of them are

isospin vectors, and their representations are:

<o lf‘(x) l t37= i[zuaz-r‘tm)‘f*]' * e b Xy (7B-3)

. ; . —L%
<om<xm,;7 =-i[ 3/ mf] s.

(7B-3")

where xg ‘i an. 1sosp1m elgenstate of the plon. The form

(7B 2) was- used for example in KR and we shall call it the’

'”ﬁealt approx1mate1y

standard" Galllean invarlant form s
keeps the Galllean 1nvar1ance 1n the process of reducing

;from the relat1v15t1c WN 1nteract10n Hamlltonlan.

j R cently there has been a series of dlscu851ons on

:“the no

(58)

“relat1v1st1c reductlon of relativistic TNN ver-
 tices. .ﬁsPecially; it has been shown that the nature
of the 1nteract10ns of a nucleon, whlch emlts or absorbs

‘the—plon, w1th the rest of the system ‘;seems'tojaffect
the redueed'form of TNN vertices. AWith this in mind, we -
introduCe another torm of TNN 90upling (or vertex) which

f{&epenﬂq‘uoon/the relative momentumnofjthehpion and the

'nncieon,beforeIebsorption-(or‘after emission) of the oion.

Its form for pion absorption is:

—.
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= . 1 - : :
K() =L(+F)%]‘~£ o T-Qr O"";) “(7B-4)

Q

where w_ is the pion energy (with momeﬁ;um ¥) and a_ is an’
isovector pion annihilation operator. We call (7B-4) the
"modified" Galilean invariant coupliné. Both (7B-2) and
(7B—4) give the saﬁé.sﬁatic limit of Chew-Low type. For
‘a more transparent undergtanding of both mWNN vértices we
have here; let us consider an absorption process in which

> >
an incoming pion and a nucleon have momenta r and p, re-

spectively (see Fig. 7-2).

¥

——>
25
<
~ =<
~
A
S T
Fig. 7-2

Then we have, as an absorption vertex:

> 1 : -
/\(S)_L(lf‘ﬁ)’-{ 1 fgg*ﬁs/ (7B-5)

MG,
where, for the "standard" form

~4 Wy W =2
S =(1-2)F — 72 F (7B-6)



“and,- for the "modified" form.

MW marwe -

(7B-7)

The difference'betweemA(fBbZ) and (7B~-4) coming from
the coefficients of r éhdf; is‘éf the order of w_/m, which
is small (~0.14) for_a'threshold pion but may mot be negli-
gible for a pion carfyingfa largetmmmntum whith actually

-~QCCur; 1n plon rescatterlng terms : There‘might be some
{%dlfference in the values of £ for (7B 2) and (7B-4) when
’k;lt is determlned from the. res1due of the m-N Born term.
(“ﬁowtver:'the dlfference in f for Eﬂé two vertlces turné

. out. to be O(U /m ) .-SO'we-may uSE_thegsame value of f fof

"both. | . S ; r

d,D .
U A(t)g (h) |
ARy (78-8)
¥ is given in (7B-6) or (7B-7) with the
. > > > >
‘Areplacement' r+q-and p#-(p+q) When we calculate (7B-8)

" in its angular momentum reduced form, A(t) reduced in

angular momentum-isospin takes the form:

(7B-9)

N oo dFt s
N ) = 5
AL AT w2y M
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Our numerical procedure is as follows. First the

driving terms,'{Zin} are evaluated for all channels con-
, .

cerned, using the formula (G2-3) of Appendix G. Then the
double scattering term is calculated by multiplying two
Z's and isobar propagators,and then we sum and integrate over

all possible intermediate states in that product. Lastly,

we form products of the double scattering terms, N-N t-

matrix, N-N propagator, etc., and momentum integrations
are carried out. Whenever a principal integration appears,
we use the identity

P i@ doc

'Z_Q'L
o}

|
o

and make a subtraction so that the integration becomes smooth.

We divide the region of integration .[0,«] into two parts.
In both regions we use Gauss~Legendre quadrature of order
38 which turns out to be accurate enough for our purpose.
(The final numbers are expected to have 2~3Y% numerical
uncertainty at the ﬁorst.) In the integration of higher
momentum we transform the integration variable from p to
x through p=tan[g(l+x)] to integrate with respect to x.
Lastly, typical physical constants to be used in the

calculation are



=
]

-F =

Ed

~143- ‘

wBo B = 938.9264 Mev

3

(m

+m _+m. )/3 = 138.034 MeV,
pt g el 17T Y :

0.0822

(dueteron binding energy) = 2.2246

Lo
o
S
¥ ¥
’ -t .
L R
- S T .
. v ¢ '
¥ .t Li L
: Eh s
g 3

MeV.



———r

CHAPTER VIII
RESULTS AND .DISCUSSION ON OUR CALCULATION

A, ~General Feature
The numerical calculation has been performed according
to the details discussed in the last chapter. The results;
a'md and Imamd, which come from those processes afe shown
in diagrams A to F of Fig., 7-1 and in Table 1 ~ Table 6.
For a later discussion we have also calculated a'md and
Imamd resulting from the Afnan-Thomas effective NN ver-

tex(28)

which is obtained from their separabie P N

11
t-matrix., These numbers are shown in Table 7.

In the tables we find entries SS, DS and DD. They
stand for the following5 (1) SS: comes from the process in
which deuteron's S-state contributes to both initial and final
states of the scattering, (2) DS: the ~S—state contributes in
the initial state while the D-state contributes in the final
state and its reversed process and (3) DD: same as SS ex-
cept that the D-state replaces the'S—state.(A'*"B) may be identi-
fied as the "impulse" term (or direct term) which includes
intermediate two-nucleon interactions and (C+D+.,.+F) is

identified as the "rescattering'" term.

Looking at the tables, we find that with realistic
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deuterons total SS contribution dominates over DS and DD.

But this should not:be'interpreted as due to the fact that
the deuteron D-state.probability is small. If we look:
we ‘see that it is due to internal

closely at the. tables,

L elta

,cgmcellatidnnofbkargé numﬁexs‘(caﬁcellation between impulse

" and rescattering.contributions). Another noticeable thing

. .

is that the "rescattering" term is far larger than the

: '"impuisé"hcont;ibutiQh iﬁﬂépéndent.ofh;he deuteron model

8

qséd;.win;DW iaﬂguage this is*éqﬁibaleht to saying that
the pion distortion has .determined the main feature of the
£ “+  result, This result comes from the pseudoscalar nature of

the pion, which isﬁreflecté¢;iﬁffhe'p—wave dominanpe'ofhé‘wf

the low energy pion abSorptidn or emisgion)'by the nucleon.

A_,;I- :-W;‘e -can,, Ext;de.rslt a&d Ehls ,.'é}"z-i.tﬁfrev“:':bz;y'_'~:~pbaserving tﬁe TNN vertex :
‘ in:(7%- "$£éasy‘f$ sée that the s-wave pion
-abs&éﬁ%&bn (or emission}‘éontributionlat low energy is abouf
. ; . {fku/@-of'the similar cpnt;ibucion coming from the p-wave.
;fiis tendency‘detetmine§szf im%p;ﬁgrfep@. qugver, in
T the ?ésultihg term théupibn canhhaVe the;puwévé compomént
. Tﬁaﬁgés‘géli aé%igféefﬁéméﬁtﬂﬁfdonﬁributiﬁn,tp.the s-wave part
v!.ﬁbefore‘ifsAeﬁissioﬂ or &fsorpt;on. ‘Tﬁis is because the
“a‘-éraggss is éding off-energy-shell. ihué the "u/m reduction"
[ gyatesppenrs there. .
.+Wﬂ;n realistic &éﬁteroﬁ;ﬂaré ﬁééd;:fhere is.éome
factor which further reduces fhe imﬁulse contribution,.
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That is, in A)(SS) for Imamd is amazingly émall, and in
(A+B) we can observe that the deuteron S and D states ‘tend to
cancel each other's contribution. This feature can be

understood partly in the following observation. Let us

look at the radial part of the deuteron wave function in

momentum space. It is normalized as follows

5}‘6‘%[5’2?&#75@)} =1 (8an1)

where ¢S and ¢D are S and D components respectively, When
we define the sign of ¢S(q) by requiring:¢s(q)>0, it turns“
out that ¢D(q) stays negative for allrvalues of q(>0).' On
the'otherlunm ¢Sﬁﬂ becoﬁes negative for q32.0‘f;l; it has a
zero at q;zp f;l., For large q both ¢S(q) and ¢D(q) behave
in a similar manner, So the difference in their signs at
low momentum seems to bring about the S-D cancellation in
(A+B). As for the smallness of the SS contribution to
Imand in A, we can understand its feature as follows. In
diagram A the contribution to the imaginary part is totally
determined by the quantity proportionai to ¢§(q) (j=S,D)

at the pole of the two-nucleon pfbpagatof. For md threshold
energy the pole is at qzﬁmu=(2.6u)2. So since the zero of
¢S(q) is around q=2.0 f;1=2.85u, ¢§(q) at the pole becomes
very small and thus a small contribution to Imamd results.
Since fhelhﬂxhén deuteron does not have any D-state nor any

zero in the wave function, it is free from any reduction



of the kind mentioned above.

In rescattering terms as a whole, what hés been ob=-
served in the impulse term does.noﬁfappeafg the overall
.structure of ¢S(q) and ¢D(q) (tﬁeir-inpegration over q)
is.reflected,more here. Notice, however, that some features
of the imﬁulse_térm appear in‘the contributiqns C and E
as “half" of these'diagrams is df impulse nature,

Amothgr'ingeresting tendency that Has been observed
is that for a given deuteron and a TNN coupling models, a'md
becomes larger and Imamwd becomes smaller when Mongan 1 po- -
tential is used than .the cdrresponding values obtained- .
from the use of Mopéan 2 potential. The &ifferenpe, ﬁ&wr“ I
ever, is generally'SMall;” When we look aﬁ a'Wd ;;a*lmaﬁd
together as a complex nﬁﬁber, the difference seems to be
,1in.theArotation angle in tﬁe complex amd plane;Mongan 1 re-
'fsﬁipjhés é.sﬁéiler rqtation angle meaéured from the reélA
i;iisf'WAétuélly it is easy to see that the norms of the
.two complex numbers are p;etty much the same.

We have chepkgdAthat thg,nelativé‘differenée in' the
phase shift values between the one obtained from Mongan 1
potential and the one from Mongan 2 potential is ~1/27.

We also have compared the rotation angles mentioned above
oﬁtainea from the two potentials,. Thg relative difference
tﬁrned out to be =1/8 ~ 1/10, depending upon the deuteron

models (excluding Hulthén). So the difference in the rotation



angles does not dominantiy come from the An—shell difference

.3 .
in Pll potentials.

In - this respect it would be worth having some more

calculations to be done with various types of N-N poten-

tials for 3Pl two~-nucleon state to see whether the

_"rotation!" nature persists or not.

B. Results

We now look at our results coming from different in-
put functions individually and make a comparison within
them as well as'with other results, and draw some con-

-

clusions.

First we find that for a given TNN veftéx and 3P1

N—N potential, the Pieper-Reid and McGee deuterons give
rather similar results as a‘whole. This is because both
deuterons behave in pretty much the same way with slight
deviations from each other; for example, the zero of ¢S(q)
in the McGee deuteron is at a slightly largér momentum
than for the Pieper-Reid deuteron, On the other hand, the
Hﬁlthén fesults are very different from both of them., Of
course we have used the Hulthén deuteron not to obtain. the
result which may be compared with experiméntal values but

to see the sensitivity of the calculation upon the input

data,



(1) ca'md

The maln contrlbutlon comes from SS in dlagram c.
'Thls has a negatlve 31gn and 1ts magnltude is somewhere

between 4 and 8 (1n 10 3

) dependlng upon the deuteron
modelvadopted.‘,This sugpbrts-the result of . Brueckner in

- his vety &ihple model. -The deéendence of this quantity
upon the typeseffdéuteron model, 3Pl NbN’potential and

? ﬂNN‘couPling'seems'td be rather sensitive like Imamwd. But
ftf»we comware.vaLﬁes‘ofiimaﬂd in-different dueteron models
.with:those ot‘arﬁ&tihelhding the Hulthén deuteron, a'md
2§is;le§3 seneitive te¢deetetoﬁ models-than,imaﬂd This:
ﬁe§ be the reflectlon thatvthe overall structure of the~i”
deuteron etc. the 1nteérated velue: bmt.hﬁt their Toéal
p‘rope.rties, determlnfe-s ‘a. 'TT-'d'-’-: When the P33 TN interaction is
‘3turned off in the rescatterlng term, it is fouhd that a'wd

”»bemmmslaxgmbln magnitu&e by 15~20%. As for the  difference
st Sk il 11ty . . |

‘ “iﬁ,dfnﬂuﬁesehting_from»different TNN vertices, it is not

latQE}tabOut 10% for, neali&tic deuterons.

In view of .the. fact that Hulthen ‘is not .a realistic

dedteron‘we have obtaimed that -7.3< a'md<-5. 2(10 Bu_l).
- Ihis#is not much different from the Afnan-Thomas value(zs)
of -4.9 (1053u ) obtalned from thelr three -body model.

(50) the contribution from

{So taklng Reand of Balley et -al.
dthenpmon absorption process to Reamd is estimated to be

" about 10%.
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(ii) Imamwd

The main contribution comes from two rescattering
diagrams without intermediate N-N ihteraction; D and C.
Diagrams E and F stand for the rescattering with N-N in-
teraction. Each of them separatély is non—negligible but

(E+F) becomes rather“spé%l_gnd even close to-the-contris=

bution from'the impulse term,

Except for the case in which the Hulthén deuteron and
standard Galilean invariant (G.I.) coupling are adopted,
the valué of Imamd stays within 4 and 11 in 10~3u-1. To-
gether with Imand we have calculated o for each set of in-
put functions. The values of o are listed in Table 8.

We have observed thét if the P33 TN écattering con-
tribution is turned off;Imaﬂd decreases about 20% in every

case with different input functions. Also Imamnd is larger

when the standard G.I. coupling is used as TNN vertices.

When we ignore those values associated with the Hulthén

deuteron as being unrealistic, the range of reliable values

is shown as 4.25 < Imand € 6.06 in 10-3u_l. When we use

realistic deuterons the difference due to deuteron models

is observed to be about 10%. If the Pieper—Reid(Sz)

deuteron is taken to be the most reliable, we find that

4,25 ¢ imaﬂd £ 5.61 (10_3u_l), which  corresponds to

241 € a € 318 (ub). This is consistent with Roseb(Az) and

(50)

Spuller-Measday's analysis. Note that our result is



' memt does not apply.

obtained-exactly at the md threshold. As for the,difference

in Imamd due to different TNN vertices, we have found that. for realistic

deuterons it is about 10/ Just ‘like a'md. - The big dif-

ference observed in- the Hulthen result may be 1nterpreted

3

'=as follow3° TheaHulthenvdeutemon'wave‘functmon in momentum

space remains large at hlgh momentum compared with the

S-wave Pieper Reid and McGee wave functlons. This could

-enhance t he dlfference of . 0(*3) between the "standard"

.and modlfled" HNN‘vert;ces;and:hence comes the difference.

For all the deuteron models the'difference due to a dif-

'}ferent ch01ce of nNN vertlces appears as a multiplicative

factor [m/(m+u)]4.1nthe case of 1mpu1se terms. ‘This ls'

ea311y understood from (7B 5) and‘(7B;6) when w_ is set

equal to U-. However,“ﬁoriuthe reScatterlng the “above argue-

es

*'At thls stage ‘we' are not ‘sure whlch is better, the-

_:d"or the4modified G.I. 7NN coupling. The standard

.é}I.Phas-beenvusedlmOSF:f??9ueﬁtly so“far, but as was

mentioned in the last chapmer;"the non-relativistic limit

0f the Lorentz invariant TNN vértex seems subject. to an

environment for the pion absorbing or emitting nucleon.

So the "standard" G.I. vertex does not have to be the

j].right one.

It may be worth while to compare our result with the

. "values obtained from the Koltun—Reitan,(KR) method. For




that purpose we have evaluated the values of Ij;(j=1,...6)

from our calculation. Ij's appearing in the KR type approach
. . " 2 .
are related to a; o « IZIjI . Our Ij values are shown in
J

Table 9. Note that I3 and IS’ as well as I4 and 16 are in-
separable 1n our calculation. When we compare our Ij values

X . (40,45)
with those in one of the standard KR type calculations,

it is found that our 13+I5 and 14+I6 are generally larger
even'when they are from the combination of the Pieper-Reid
deuteron and the modified G.I. 7NN vertex, which has pro-
duced the smallest Imanmd (or o) in our calculation. (We
have also found some difference in the valug of I2 which com~és
from thé deuteron D-state contribution to the impulse term.)
Both of these numbers are associated with the contribution
to o from the rescattering diagrams. The difference
between our method and that of KR is therefore mainly in

the rescattering part. As. has been reﬁarked,we obtained
smalle; Imand when the P33 N scattering'contribution wés_
switched off in the rescattering term. In the usual KR

type calculation, only S11 and 831 contributions are in-
cluded in.the rescattering part. Therefore the fact that
our I3+I5 and I4+16 |

standard KR result, may be attributed to our inclusion of
(43)

are large compared with those of the

P33 partial wave., Actually in Reitan's calculation
within KR formalism, o has become larger (o ~ 201lp) due

to some improvements among which was the inclusion of the 7N



| -I53-

: p’f-‘w-a-'.ve,. in. the pion ,resce't't-e“r-;ing'.Aterm,'. "H‘owevef, things do not
seem so simple, aé;én~im§r6ved KR type caleulation by
_ (4h)

Thomas and Afnan, in which more recent 7N 8,7 and 8

31
scattering lengths are ueed, showed a substantial decrease
in a (o ~ lldub). This decrease is in the rescattering
tern!, éo-we maf hane te WwOoTrry aboqt the sensitivity of
tne.tesuLt on evety_piece of inpnt<fwnctions.

:Cm;, Remarks on, the WNN Vertlces

As‘has been dlscussed in B of thls chapter, the

"sténdef&f_amd“"modified"'Galileen invariant vertices

3 ‘_‘
Logere !

' givewrather'Similar"feeuftéw(the7&ifference is,~IOZ).
"This means that when 1mtegrated oVer the Lnternal momentum,

;the difference of O(w /m)”'etweenpthe;gwo-uertices never be-

comes 1arge in the rescatterlng term. Thi's may be the case

’

.WhenA ‘other part of.the integrand function decreases
éufficiently rapidly for large momentum. If

we freEZe'Qq dependence in our ﬂNN_veftices at wq=u,,as
has been adopted in some nuclear pi—nroduction problems,

.what would happen7 It ié-easily gneésed that the relative’

"Q‘

..Jdlfference in the calculated results’ (using "standard"

Sk
Lo

and modifled" vertlces) w111 bc of o(u” /m ). The point
~of - 1nterest then is rather ~in the resultant a'md and Imamd
:iFl' this: "f{r.o‘zen 11m1t . The-refo-re we have calculated these

‘quantities using the "modified" Galileanm invariant vertex

A

-«



with quulusing the Pieper-Reid deuteron and Mongan 1 N-N

potential. The impulse terms are the same as what appear
in Table 4 as ;hey should be. This is because the outer
pion is in zero energy. On the other hand the contribu-
tions to a'nd and Imand from the rescattering terms are

approximately doubled. This resulg“g9g_pgﬁugggggtpgdwas_

foilb;g; When mq dependence is kept, the factor 1//5;
coming from the relativistic normalization at each TNN
vertex obtains a major contribution at the pole of the N-N
propagator (p2=mu) in'the momentum integration and this
gives 1//5; ~ 1//2u. This makes the values from the re-
scattering contribution about one-half of the ones from
the "frozen" wq. Thus we know that the dependence of l//ﬁ;»
should be kept in Galilean invariant 7NN vertices in order to
find Imamd consistent with experiments. This is rather
annoying‘because the factor 1//B;vcomes from the normal-
ization of the relativistic field operators. But as
particle emission-absorption processes éan be most naturally
understood in terms of relativistic kinematics,.some rela-
tivistic feature may well appear in non—relativisfic TNN
vertices. |

Motivated by the above result we also have adopted
another 7NN vertex in our calculation. The vertex is ob-
tained from the sebarable Afnan-Thomas 7N P t-matrix.

11

This t-matrix has a pole at e€=-u (the energy is measured



'enough to- reduce the results as the l/'

- non-relativistically excluding the rest masses) and there-

fc;r‘é-_'t:,he,-. effective TNN vertex can be identified as the

11

when the denomlnator is ident1f1ed -as (e+u) ‘The effective

square—réot of the numefator*function-in-the P t-matrix

\ 3

HNN vertex' thus’ obta1ned glves £ ff‘0.0SO at e=—u’which is

very close to our f value (=0. 082) Also the vertex turns

~out to be.aaverypelowlyjdecreasing,functipn of the relative

momentum. The resultant a'md and Imand are shown in Table

,7Tusing'the Pieper%Reid“deuteron; Because weak momentum

dependence remains in the impulse terms, they are slightly

Smaliervtham%thefmedified'Galileanyresult,l-But in the re-

:

scatterlng terms that weak momentum dependence is not

‘q‘. ‘actor does in our

’

"JGalilean invariant vertlces.;fT _the total Imanmd becomes

.f?aniQQt»Vertlces; As for a'md obtalned from the Afnan-

F—

”“;$h0maeﬁmNN vertex, it'does npt beepme so large. This may

be due to the overallﬂnatureWof the principal value inte-
gratlon of the 1nput functlons.' Inc1dentally, we have found

that 1n the'? Afnan-Thomas calculatlon, the amplltude

T(Wd*NN) 1s smaller than the one obtalned from the field

theory by a factor of /— (we: have found that ‘this comes

tlon proc'dur‘vwhmehAwe think is

ineorreét)fv The combination;pf“the;square of this factor -

and the Afnan—Thomas;effective'nNN vertex just used in our
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model might make the Afnan-Thomas value of.d& in their
Faddeev type calculation not very different from ours. 1In
conclusion it seems-necessary to find reliable WNN vertices

for nuclear pion production and absorption problems.

D. Summary

ﬁe.ﬁa§e obtained, in this chapter, the values of a'md
and ImamTd using the equations we have developed in earlier '
chapters. . These values have turned ouf to be in agreeﬁént
with experimentally available values (at least for Imand)
when realistic deuteron models are used. As has been re- -
marked in Chapter-VI, there are uncertainties in experi-
mental values. Therefore theoretical results in very good
agreement with experiments do not mean much at this stage.
It should be adequate to discuss some possible un-
certainties in our calculated values (as well as in most
of the other theoretical results). The first factor is a
numerical uncer;ainty. As has been mentioned in the 1last
chapter, this is estimated to be at most 2~3%. This un-
certainty can be eliminated rather easily. Second, we
used non-relativistic kinematics which brings in the non-
Galilean invariance. As our calculation is at the 7wd threshold,
this would cause an uncertainty of O0(u/m) (this uncertainty

may be called the one due to the non-relativistic treat-

ment). The third factor is due to the approximation to
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the mhltiple scattering. We have taken up- to the pion re-
scattering terms but the intermediate N-N interactions are
exéctly included. This treatment may bring in an uncer-
tainty of about 10%.

One may tend to think that if we use relativistic
formulations and solve the multiple scattering equation
exactly (if technically possible), we would get a reliable
result. But the thing is not that simple; there is the
- fourth .and probably. the most serious factor. At present
fwe:dd not know well the off-shell behavior of the input
-}fﬁnétions. | |

‘Input functions; potentials, sub-t-matrices and.wNN
vertices,lare thought to be realistic if they reproducé
>,é§ailab1e qn—shell"data well. For example, nuclear poten-
tials can‘use several on;shell data f&r their realistic
fits; N-N phase shifts, deuteron binding enefgy, nuclear
matter binding energy, certain quadrupole moments etc.
Each'on—shell information reduces the off-shell ambiguities
one by one. So in this respect we may say that-deuteron
wave functions in our calculationAcan be less ambiguous;
.pﬁe Reid deﬁteron can'reproduce many observed quantities
1ugﬁd ég itnﬁy bé"thoughg to be realistic. As for 3Pl N-N
potentials, our Mongan potentials are fitted to the phase

shift only. Therefore they are more ambiguous than the deuteron

wave functions. It may not be so helpful to use nuclear
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matter calculation for reducing their ambiguity. Phase
shifts are the only information at present for 7N't-
matrices wé have used. So their off-shell ambiguities are
not easily resolyed. Lastly, there does not seem to be

any direct information available to determine the TNN vertices.

e

.The _only way..-to-determine-thei¥ "form Seems to use an aséaﬁ;d
fofm to calculate séme physical quantities like a as we

have done! Therefore unless these ambiguities are removed
by some means,ip is not so easy to have improved calcula-

tions.



CHAPTER IX
- CONCLUSION

The aim of°0ur»étudyﬂwasto]clarifyuthe structure of

the pioﬁ*hucleus»ecatteriﬁg;amplitudesﬂwith a. proper
. account of'the-piqns in scattering and in nucleon-nucleon
", interactions.

-We chose the\wﬁN.system for our studies in pi-nucleus
' scattering because of its simple structure. But it has
turnedrout that’lt glves us_ several 1mportant aspects

1.

. whlch are common to the general plfDUCIQUS scatterlng

Eproblemu FOrAthls:mNNpsystem;ithfﬁbasic‘processes to be

considered are ﬂNN+nNN and WNN++NN fInﬂour‘felafivistic

approach to the problem,'we made use of the method due to

I
oS,

Taylor. &his allowed us to decompose}the TNN amplitudes
in a unique way so that we could identify the sub- ampli-‘
tudes appearlng in the- total amplltude unambiguously. On

the other hand, we adopted. an alternative approach; a

PN s
RS >N

‘QHaﬁiltoni&n(Schrﬁdinger'wave fudctiom)method, for the non-

%klati?iStic tneatmemtﬁofethelsame problem. Using the pro-

S - . '."- e
-t

Jectlon.technque, we obtalned an effectlve, finite set of

coupled equatlons for ﬂNN andVNNgstates. Both relativistic

o et g
PR ATOS T

B e
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equations for pfecesses; TNN->TNN, wNN<+->NN and'Nﬁ+NN, réf'
spectively, and we observed a formal correspondence be-
tween the.re3ults of relativistic and non-relativistic
fofmulafions.

With regard to the strucﬁure of TNN-+7NN and 7WNN<+->NN
amplitudes, our two formal approaches have clarified the
following poinfs: (1) as long as the intermediate pion
absorption process is not taken into account, the appli-
cation of Watson type multiple scattering approach to the
elastic nNﬁ seattering, where 7N potentials are assumed,
may be justified. The important point is that two-body
TN t-matriees in the multiple scattering series do not
include. the (generalized) direct Born terms. (2) For
TNN«+NN reactions, the distorted wave (DW) expression
which is familiar in nuclear reaction theory seems con-
sistent with the exact result that we have obtained, as
long as the part describing the pion scattering (or pion
distortion) does not contain the effect of intermediate
pion absorption. (In other words: the TN t-matriees in the
pion distortion part do not contain the direct Born term
mentioned above.) (3) The total elastic TNN scattering
contains the part describing the'intermediate pion absorp-
tion once and only once. These results are just the re-
flection of correct pion countiné and the unitary structure

of the amplitudes. We then observed that the same argument



. ,s‘

fpossmble amblgu1t1es 1n the calculated results due to the'_

m&j applyffb the srructuge‘of gqufal pi-nucleus scatter-

Werbserved that for a sultable set.of input functions,
the equatlons for the nNN amplltudes are effectlvely de~
coupled .W1th;thas in mlnd the,non-relativistic equations
for ﬂNN amplltudes were reduced to a practlcal form ready
for appllcatlons.v_ | o | ‘ |

We applled.thls reduced set of. equations to study the
effect of pion absorptlon on the real and 1mag1nary parts

of the p1on deuteron scatter1ng length ; a'nd and Imand.

The calculation was done w1th some sultable approx1mat10ns

~~and we. have obtalned the result con31stent w1th experlments K i' i

when reallstlc deuterons and Galllean 1nvar1ant HNN vertices

commonly adopted were used However we could observe

4250 200N

w-erent off shell behav1or of the 1nput functlons.

FIEDm.

It may be relevant to discuss some possible problems

' to which our TNN studies can now be applied. First, as

-ue.discussed in Chap. III, section C, we should have an

off-energ§?shell'N—N potential; VNN(E), expecially for

energies above the threshold of pion'production. This

uf;mseems necessary -inr ‘order to. (1) treat two.. klnds of pions

f(an scabterlng and in. N- N potentlal) 1mpart1ally and

:(11) con51stently keep the 7NN unltarlty even in NN->NN

and.ﬂNN*fNN amplitudes. We may‘evaluate;VNN(E) using the
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method described in that chaptef to knbw how important the
off-shell effect woﬁld be. Second, we can improve pi-
nucleus optical potentials used in many pionic-atom as

weli as pi production absorption problems. As may be clear
by now through our approach with correct pion countings,

the optical potentials for pion production and absorption

problems should not contain the effect of intermediate

pion absorption. This means that the P11 TN t-matrices

appearing in the optical potentials should be one-particle

irreducible; t but not eﬂ in Chap. III, section C,

TN
should be used there. On the other hand the optical

N’

potentials for pionic-atom problems should have the pion

absorption effect in them (but not through enN

). As shown
in Appendix F, we have a convenient representation for P11
TN t-matrix. This contains one particle irreducible part;

t N and the generalized direct Born term; B separately yet

™ TN

satisfies the two-particle unitarity. "So wé can fit this
t-matrix to the phase shift and make use of it to correctly
modify the pi-nucleus optical potentials. The modificafion
is to be ih the p—wave.part of the potentials which, in
conventionally used model optical potentiéls, contains

the gradient of the nuclear density distribution; Vp.

The change there would affect the result obtained from the
potentials non-negligibly as long as the energy of the

pion: E (in the Lab. system) is O<E<300 MeV. Third, we




“‘It has- been reported

e Coel (R [ v»," e

' could 1mprove our calculation Of a’ ﬂd and Imaﬁd by solving

thewcomplete Faddeev equation w1th an 1mproved V (E) to
be used. |

~. To end_this ohapter,we should mention here the prob-
lems which'stilllremain-unsolved in our studies. As far

astour formal de#eiopment_of the TNN problem is concerned,

ptherewwould not}bé many torbe*solved or clarified further.
We discuss one maJor p01nt concerned w1th ‘the formal part.
'The equations we have obtained do not show explicit cross-

'3ing symmetry."Therefore the-amplitudes.satisfying those

equations are; not exp11c1tly cr0531ng symmetric either

:uRalthough they 1mplic1tly contaln all the érossed contribu-i

'fnions.4 As has been remarked in Chap. III section A, the

- . . ,
explicit cr0331ng symmetrlc amplitudes may be obtained by

-fu51ng the cutting procedure 1n every possible channel
1but this makes 1t imposaible for -a many ‘particle amplitude

. to be . related to other amplitudes in a. transparent manner.,

(64)

that the incluSion of the ﬂ-nucleus

crossing.would be important at low energies, but it seems

inappropriate at the present stage to conclude that it
really is the case. If this turns out to be true, then we

Ymay‘have;to think about the crossing problem more seriously.

’1 There is»the problem'of Galilean invariance,in the

"non relativ1stic approach ‘to. pi nucleus scatterlng and

‘»‘,‘.».

this seems. to be more important in, practical appllcations



.
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of the formulation. The reason is simply because it is
almost impossible to perform a éomplete relativistic cal-
culation in pi-nucleus scattering problems. Therefore we
need to have a non—relativistic or semi-relativistic
appréach, which violates Galilean invariance. This would

not be so serious as long as the scattering that . one is

considering is at low energy, but would become non-negli-
gible in the higher energy region. It seems that we‘should
study this problem more seriously.

In connection with this Galilean non-invariance prob-
lem, there is. a problem concerned with the ambiguities in
thé forms of the non-relativistic limit of the mWNN vertices;
As we saw in our calculations in Chap. VIII, this affects
the calculation rather seriously. So until this problem .. .
is clarified all the calculated results are not very con-
vincing. 1In practical calculations, another annoying
factor is the off-shell ambiguity in the input potentials
or t-matrices. What we can do is to use the maximum
amount of information available (notimerely all ﬁbserved
quantities to be fitted) to reduce the degrees of the

ambiguity there.
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TABLE 1

amd and Imand using Pieper-Reid deuteron. 7NN coupling is of standard
Galilean invariant type. All numbers are in 10‘3mﬂ“l. As for the types
of diagrams see Fig. 7-1. ’

3pl N-N pot
Diagram Mongan 1 Mongan 2
ad Imand amd Imarmd
A SS - =2.202 0.071 :
DS " 2.725 -0.559 same as Mongan 1
DD 0.235 1.108
TOT | 0.758 0.620
B SS -0.363 0.384 -0.289 0.339
DS -~ -0.780 -0.314 -0.641 -0.351
DD 0.021 -0.343 0.087 -0.287
TOT -1.122 -0.274 ~0.843 -0.299
A+B $s -2.565 0.455 -2.491 0.410
DS 1.945 -1.005 2.084 -0.910
DD 0.257 0.762 0.322 0.821
TOT ~0.364 0.212 ~0.086 0.321
c SS -6.011 0.987
DS -3.292 -2.905 same as Mongan 1
DD -0.495 -2.488
TOT -9.798 -4.406
D SS -0.300 3.460 ,
DS 1.003 4,797 same as Mongan 1
DD 0.786 1.662
TOT 1.489 9.919
E SS 1.316 0.600 1.042 0.691
DS 0.732 1.091 0.395 1.067
DD -0.177 0.710 -0.251 0.626
TOT 1.860 2.401 1.186 2.384
F SS -0.005 -1.017 0.394 -0.785
DS -0.301 -1.610 0.326 ~1.305
DD -0.234 -0.613 0.013 ) -0.515
TOT -0.541 -3.240 0.733 ~2.605
L C to SS -5.001 4.031 -4.875 4.354
F DS ~1.859 1.373 ~1.568 1.654
DD -0.120 -0.729 0.053 -0.715
TOT -6.980 4.675 -6.390 5.293
r all -SS -7.566 4.486 ~7.366 4.764
DS 0.085 0.368 0.516 0.744
DD 0.137 0.033 0.375 0.106
TOT -7.344 4.888 -6.942 5.614

SS denotes the contribution in which the deuteron state is S state
both in initial and final states of scattering. Similar convention
for DS and DD. TOT is the total contribution,



~aWd and Imaﬂd using McGee deuteron

‘ 1Galllean 1nvar1ant type.

.,,-1,71,--__-;-;' T

TABLE

2

5 TNN coupllng is of standard
- Unit" is the same as- in Table 1.

|3py

Diagram =

N-N pot,

Moﬁgan 1

~ Mongan 2

DS

DD
TOT

DS

: _DD :

A+B 85

DS

“pD. . |
TOT

DS« -

DD
TOT

- DD
~TOT

DS

DD

TOT

DS

.. DD
TOT

IC to. F A
SS

. DS

" DD

TOT . -

DS

- .. DD
. TOT

afid
-2.543
2.271

0.305- -

0.033

-0.102"

~0.695

. =0.097 - .
~0.89%"

-2.645

. 1.575

0.208"

-0.861

24,932
~3.647 "
~1.649
+=10.228 "

© 1.646 . g

S =2.375 ¢
w0 0=3,337 o
k066, )

-0.198 .

2.03L. ¢
3,754

1.099
1.522
0.686

3.307

-0.229
-1.076
—0-887

-2.192

-4.260
-1.169
+0.071
=5.359

-6.905

C0.406 .-

1 0.279

" Imamd

0.218
-1.010

1.117 -
©0.325
0.307

-0.049

L =0u4010
20,143
0.525

-1.059

" 0.716
0.183

. amnd

Imand

same as Mongan 1

~0.067

-0.606

0,063
- 20.610

' ~2.610
- 1.664°

0.369

- =0.577

.282
<131
.325
74
+ 500
141
.792
0.

151

. same as Mongan .l

I 2 -
L02.3800
".;l0.933;
0.111

1.065
1.337

. 2.513

. -1.032

-6.220

-2.161 -

~1.040
~4.233

3.836
1.971
~-0.661

5.146
4,361
04913

0.055

5.329

same as Mongan 1

10.927

0.727
1 0.034

1.688

0.300

. 0.103
| -0.226

0.177

-3.903

-0.786
©0.080
. ~4.608

| =653

0.879

© 04649
.. -5.185

O S Lo NS

0.
0.

1

292
985

.088
+ 365

. 757
704
.865
.326

.292
+348
.735
.905
.792
.207
.057
057
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TABLE 3

and and- Imand with Hulthén S-wave deuteron. TNN vertex is of standard
Galilean invariant type. Because of no D-state, contribution DS and
DD are missing. :

3p1 NN pot Mongan 1 ' Mongan 2
Diagram 7
a%d Imawd a&d Imand

A SS -3.367 1.771 ‘ same as Mongan 1
B Ss 0.304 -0.162 0.424 -0.030
A+B Ss -3.063 1.608" -2.943 1.740
c Ss -6.312 11.067 - same as Mongan 1
D SS 2.266 17.294 : same as Mongan 1
E SS 1.084 -2.753 2.186 -1.817
F . ss -1.656 -5.974 1.201 ~4.603
ICto F

SS -4.617 19.635 ~-0.659 21.942
Z all Ss -7.680 21.243 -3.602 23.682
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" TABLE 4
-iféfd;énd.lmand..;Piépéf—Rei&f&eutefonﬂéﬁd modified Galilean invariant
NN coupling are u$ed. . ’ ‘ “ :

3p,N-N pot . Momgan 1 =~ Mongan 2
| Diagram . : ] :

o : afid o T Imand amd ’ Imand
1A SS w1.674 0.054
" DS - 2,071 -=0.425 | same as Mongan 1 case
DD 0.179.. 0.842 |

TOT * - - 0.576 - 0.471
B~ s§ ~0.276 . . 0.292 | -0.220 0.258
' DS -1 =0.593 - - =0.239 - ~0.487 =0.267
‘DD - 0..016- ~0.261 0.066 -0.218
TOT ~0.853 b -0.208 -0.641 =0.227

A4B SS -1.950 . 0.346 -1.894 - 0.312
~ . DS 1.478 ~0.764 - 1.584 ~0.692
DD 0.195 ' 0.581 ©0.245 0.624

TOT -0.277 . 0.163 "-~0.065 0.244

oG Ree88 il -4,608 0,794 : ;
a - DS - Co=1l.461° - 22,477 " same as Mongan 1 case

.. DD -0.121 . -1.487 . ' -

-~ TOT ' =-6.190 - - -3.170

D . SS ~1.562 2,942 ,
DS -0.555 - 3.031. same as Mongan 1 case
DD - | . 0.166: i 0.781. | - ' o
TOT -1.951 "~ 6.754

E . -S8S. " 0.675 : 0.772

e DS | 0.116 ¢ 0.614
DD - -0.134. 0.384
TOT 0.657 1.769 -

F ‘8§ - " 0.493 . =0.399
© DS . 0.273 .. -0.768

DD . -0.050 T -0.260

TOT » 0.716 =1.427

L2 CtoF ) ‘

SS ~5.002 4,109 -4.976 4,209
DS -1.627 - 0.400 -1.593 0.609

. DD -0.140 -0.582 -0.083 -0.580
TOT 1 -6.768 3.926 -6.652 4.238

.2 all SS -6.952 4.455 -6.870 4.521

DS -0.149 ' -0.364 -0.009 ~-0.083

Db . 0.055 _ ~-0.001 0.162 0.044
TOT ~-7.045 - 4.252 -6.717 4.482

581 . 70,761
.061 " 0.646
.179 0.336
340 1.743

.613 , -0.288
.485 -0.591
517 -0.210
.149 -1.089

HOOO oo o
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TABLE 5

coupling are adopted.

McGee deuteron and modified Galilean invariant TWNN

3p1 N-N pot Mongan 1 - Mongan 2
diagram )
aﬁd Imand and Imanwd
A SS -1.933 0.166 . -
DS 1.726 -0.767 same as Mongan 1
DD 0.232 0.894 :
TOT 0.025 0.292
B SS -0.077 0.233 -0.051 0.215
DS -0.532 -0.037 -0.461 -0.099
DD -0.074 -0.304 0.048 -0.247
TOT -0.614 -0.108 -0.463 -0.132
A+B SS -2.010 0.399 -1.984 0.380
- - DS . 1.262 -0.805 1.265 -0.867
DD 0.158 0.589 0.280 0.647
TOT -0.590 0.184 -0.439 0.160
c SS -4.258 1.470
DS -1.687 -2.564 same as Mongan 1 case
DD -0.657 =1.953
TOT -6.603 - =3.047
D SS -1.303 3.263
DS ~-0.079 3.742 same as Mongan 1
DD 0.454 1.073
TOT -0.928 8.078
E SS 0.751 0.387 0.689 - 0.439
DS 0.483 0.937 0.082 0.815
DD 0.248 0.710 ~0.063 . 0.575
TOT 1.482 2.033 0.709 1.829
F SS 0.392 -0.636 0.594 © -0.469
DS 0.057 ~-1.159 0.449 ' -0.897
DD -0.190 -0.409 0.866 -0.332
TOT 0.258 ~2.204 1.051 -1.698
LCtoH
SS =4.419 4.483 -4,278 4,702
DS -1.226 0.956 -1.235 1.097
DD -0.145 -0.580 -0.258 -0.638
TOT -5.579 4.859 -5.771 5.162
L all ss- -6.429 4.882 ~6.262 5.083
DS 0.037 0.151 0.030 0.230
DD 0.013 -0.009 0.022 -0.009
TOT -6.379 5.043 -6.209 5.332




‘QTABLEHG"
"Zféﬁﬁ;and Imaﬂd; Hulthen deuteron and mod1f1ed Galllean invariant

TNN coupllng are used.

-

3pl N-N pot M'ong'énnl S , Mongan 2
i . dlagram.' ’

éwd o Imamd™ . ) and Imamd
A : a2,359 ": 1.346 ~ same as Mongan 1

B . - 10231 -0.123 _'0;322  ~0.023
A+Blf_lw o Zaudes o 1.2  ;;(72;237 1.323
C ¥f; S v:~3 581::1:A“ ';3éi62.*-f_’_v * same as Mongan 1
‘tﬁﬁ r "j ¥‘ ‘ . =0, 429'.‘}i?;..tz;§50]:  “\'? .samépaé Mongan-l
E S 0.610 - -1.094 :i :41?062A L Z0.697
‘! §f7’ ) ":  -0.029 -1.469 0.579 -1.108

,‘-Fqﬂz Ctor F SR R YT 7550 | 2369 8.307- +

D T R 2 S 8.772 .| -4.606 9.630




-176~

TABLE

7

amd and Imamd. Pieper~Reid deuteron and Afnan—Tho@as effective TNN
vertex are used. Unit and notations ‘are the same as Table 1~6.

3p1 N-N pot . Mongan 1 Mongan 2
diagram
and Imamnd and Imand
A SS . -1.483 0.043
DS 1.666 -0.348 same as Mongan 1
DD 0.091 0.705
TOT 0.274 0.400
‘B - S8 -0.199 "0.216 -0.164 0.197
DS -0.439 ~-0.201 ~-0.371 -0.224
DD 0.009 ~0.205 0.070 -0.170
TOT -0.629 ~0.190 -0.465 ~0.197
A+B Ss -1.682 0.259 ~1.647 0.240
DS 1.227 -0.549 1.295 -0.572
DD 0.100 0.500 0.161 0.535
TOT -0.355 0.210 -0.191 0.248
C 8S ~6.164 1.144
DS -2.,222 ~3.595
DD ~0.268 -2.053 same as Mongan 1
TOT -8.650 -4.503
D Ss -2,114 7.622
DS 0.201 7.524° same as Mongan 1
DD 0.804 1.857
TOT -1.109 17.003
E SS 1.095 0.928 0.955 0.950
DS 0.375 1.015 0.019 0.961
DD -0.037 0.632 -0.202 0.518
TOT 1.433 2.574 0.735 2.429
F SS 0.977 -1.448 1.358 _ -1.140
DS 0.210 -2.275 0.882 -1.811
DD -0.289 -0.694 0.019 -0.572
- TOT 0.898 -4.417 2.259 -3.523
LCtoF :
Ss -6.207 8.247 -5.965 8.577
DS -1.431 2.669 -1.117 3.079
DD 0.210 -0.259 0.354 ' ~-0.249
TOT ~7.428 10.657 -6.729 11.407
L all SS ~7.889 8.506 -7.612 ' 8.817
DS ~0,204 2.120 0.178 2.507
DD - 0.310 0.241 0.515 0.286
TOT -7.783 10.867 -6.920 11.655
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“TABLE '8

The'vaiu§S of o (in unit of pb)

-

‘deuteron

t&ﬁeﬁof ﬁNN§ ”_. N-N pot.

“N-N pot
MONGAN 2

|B-R

|P=s R

McGee

,McGee‘

. |Hulenga,

¢coupling: | . = MONGAN 1.
VS;GaI. j.’ " f'.é77:f
S'f.,G.I".. i N 302 -
,M~¢-I-"v o 286 |
g:‘S;C;I; §; " 1;§;31L20§_L-
M;é-le;m*]1!»jfﬁufé9fiifj":

A

. E‘-;A.—_’I‘,,‘._‘ oy

318

.. 254

343

302

1341

545

' _6§0~ 

gPieﬁét¥Réi

'Standard Galilean invariant

Modified'Galilean:inva;iant

Effective AfnanfThomas

TR
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TABLE 9

Values of Ij

Zzgpling éeute:on 3p1 NN pot I1 12 I3+I5 . -I4fI6
S.G.I. P-R | M1 -0.071| 0.096 | -0.168 -0.108
$.G.I. P-R M2 |-0.068| 0.102 | -0.176 | -0.114
S.G.I. M~G M1 -0.077 | 0.093 | -0.153 -0.121
S.G.I. M-G M2 -0.076 | 0.098 | -0.164 -0.133
S.G.1. HUL M1 -~0.138 - ~-0.367 -
S.G.I. HUL M2 -0.143 | - -0.388 -

| M.G.T, ‘P-R ML -0.063 | 0.084 | -0.171 -0.077
M.G.I. P-R. M2 -0.059| 0.088 | -0.175 ~0.082
M.G.I. M-G M1 -0.067 | 0.083 | -0.176 ' | -0.088
M.G.I. M-G . ) ~0.066 | 0.086 | -0.182 -0.093
M.G.I. HUL M1 ~0.120| - ~0.203 —
M.G.I. HUL M2 -0.125| -- .-0.214 -
A-PT  P-R M1 -0.054 | 0.078 | -0.270 -0.115
A-PT P-R o -0.052| 0.081 | -0.274 | -0.122
S.G.I.*% RSC RSC ~0.070 | 0.078 | -0.120 ~0.035

Abbreviation S.G.TI.

Standard Galilean invariant type

M.G.I. - modified Galilean invariant type
A-T -~ Afpan-Thomas effective vertex
P-R ~ Pieper-Reid

M-G - McGee

HUL - HULTHEN

M1 - Mongan 1

M2 - Mongan 2

RSC - Reid soft core

*The last line in the table is from Koltun-Reitan type calculation

by Pradhan and Singh (45).

R
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TABLE 10
aTd and ImaTd obtained from the combination of
Pieper-Reid deuteron and modified Galilean

invariant TNN coupling with pion energy factor
1 . 1 A
Ywk set equal to /ﬂ . Mongan type 1 3pl N-N

potential is used. (unit is the same as in
- Table 1~7).

diagram and _ Imand

A+B ss * -1.950 0.346

Ds - 1.478 -0.764

DD 0.195 0.581

TOT © =0.277 0.163
LZCtoF

Ss -9.056 9.631

DS ~-3.118 . 0.860

DD -0.185 _ -1.129

TOT -12.359 .. 9.363

Z-all s§: -11.006'* " |. i...-'9.977

DS -1.640 "~ 0.096.-

DD - 0.010 - - ~0.548

TOT -12.585 . , 9.526

*The numbers here are the same as those
-appearing in Table 4.
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SV UAPPENDIX P

REDUCED FORM OF THE Pyy N t-MATRIX

In Section C of Chap: 3, we show that taking into
acgount -the pionAmbsqrptLonlin .. the 7N t-matrix takes

11’
“the Form [see (3C>I;Ili—3)m(3ch111_8)]:

(F-1)

O ) = ton®) -+ &) TENE,

.In this appahdixuwe‘decomposemit into explicit
o et Fdws e b Sofw L e e

‘angular momentum e;éénstates and pick. up the Pll.partl&Lf

Wéve.f‘Then we.étudy it-a little more in detail from a

) . - M ,' s : . ’ [ ’

L P

practicqlﬁwiewpoinﬁ;y

(1? Pl1NN t matrlx

.own 1“ (30 I 5) iwe deflne ‘one= partlcle 1r‘f¢"“

reduc1ble ﬂNN vertlces (1n WN HJ]bert Qpace)

A —“EY + Y,sztﬂ'N
ST EW ttmenw f o (FD)

We then put angular momentum reduced from of every
quanfity in (FrZ) ta find:

/\(e 7,) Y(s 1,) + S hth(i ) T £+ k/ 1‘:12.2 (k,%,€)

(F 3)

/

VV(E'Q

-231-
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5 JT
is ti - i ,
s the Pll N t-matrix (tLS

form of the angular momentum decomposed tTN) and

where tl,% is the general

€ZE-m-u.
We are réquired to have the Hermitian analyticity or
reality of ﬁ and T'; A*(e,q) = f(e_,q).. From (F-3) it is

easy to see that this condition is satisfied provided

A ~ .
(1) Y and W satisfy the reality condition and (2) t:l';v‘22
972
is a real function of € (this is the Hermitian analyticity
L o ~ :
for ty Lzz). Usually when a two-body t-matrix satisfies
s 72 :

Lippmann-Schwinger (L.S.) eduation with a real (or
Hermitian) potentiai, then it can be shown to be Hermitian

. ) . LY : : . . R
analytic. As tl’%22 satisfies L.S. equation with 2-particle
irreducible TN amplitude, which is Hermitian below the
pion production threshold, it satisfies Hérmitian analyticity.
As for ¥ and ﬁ, they are defined to be two-particle ir-
reducible. Therefore in the 7N elastic region, we could ignore
its energy dependence and this makes them satisfy Hermitian.
analyticity; ¥ and W in this case should be compléx
conjugate with each other, which is coﬁsistent with the

field theoretic TNN coupling.

The total P11 TN t-matrix then takes the form:

A th o A
Smrey =t anot Tegrofep, e

where
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CTE = eyt He) R
';aﬁd

L l/\ (W, wl* |
G L%)O"*P (F"é)

'H..(i) =1- (¢ /“)S

iﬁ'wﬁ'centé; o%”mass—syétemJ

| There 1sﬁa requlremeng-lmposedvon n(e) and hence on

H (e), W(E) should not have any other ‘negative poles than
thg‘one gqrrespondlné to thevnucleon. This means that H (e)
' shou1d ﬁdtLhéve ahyJZéro.for £<0. _We know that H (e) is.

an analitlc functlon 1n e w1th a cut élong the p081t1ve

-",“A

treal ax1s In addltlon 1t has the follow1ng propertlesﬁ;,
(I) H;(E) is 'reaﬁ 5—1» 840

@) H ) =1.

'\'4'

By dH dHi©®) S Ml%’dk/cv ~)‘(,a+ T)" >0, for £<0,

,Sihcé“Hl(E) is a monotonlcally increasing functiqn for
efb [ffb@ (3)1, it will‘hava'ona zero if and only if

Hl(-w)<0. 'So the'QOddition to be satisfied 1is

o 'g‘” ARl A (5 1
YT e kg 7% e

It seems that this condition may be related to the

" one Whiéh-restricts themm&gnitdde of the wave function
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(29)
renormalization constant of the nucleon (in the non-

relativistic sense). So if (F-7) is not satisfiea the
particle corresponding to the zero‘of Hl(e) may show its
:"ghost" nature.‘ This actually can be confirmed as follows:
‘SQppoée there is a zero of Hl(e) at € = n(n<=u); Hl(n) - 0.

Then

oo A 2 | 2
- _ KR A (R, v)|
Hi(e)= Hi(e)- Hilz) = (¢ ) go 9& ky,/()(q—k‘/%')(i*—kl/z/é)

(F-6)
So tﬁe residue of m(e) at e=n is found fo be
o A -1
i“ h‘dhl/\(k;@/.’,k)lz} <o
7‘.* sz’ —hY /)2 J
WL )o (pet 7;0.)('7 h/}u) (F-79

which corresponds to the non-Hermitian nature of the

basic Hamiltonian and thus the zero at €=n 1is a ghost.

(ii) Separable approximation to t1 Lzz(q,P,E) :
. =972 .
This is aimed for more practical purposes. Let us
- . By
suppose that t] L 1s separable;
2

A 4 pe) =h @)Y ) R®) (hivire) (F-8)

where VCE)-J' _ ,F _ SN Suds‘f:(s)
0 E+_,39§“, .

(r-8")
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- In (H-8') B is a real Acon'v'ét"ant; Then from (F-3) we

obtain -

| (" e YRR o
/l('a ‘lr) YC%)‘*S £ — K/ ,4‘(7’))}&); (F-9)

-&ﬁd.

T’(s‘t,) ww) S *‘Id"‘f‘@zw“) ABVE), (rogv

Slnce W(q), Y(q) and h(q) should shuw a 31m11ar threshold
‘"behav10r ccq for small q,'we may take another step ‘to

gassumeﬁthat

o
o

Y('t,)~ cm [W(?r) c‘*«&(p] (F-10)

}there C ‘isva complex cons nt to Be detérminedi(éftheﬁ_w

4l .'9 .

Axitfnneal or}pure 1mag1maty~ HThen weAan.easilyﬁfind,that'

A , ‘
At = pey©ns) | 1)
Ty =gt veyh®) ) |

. Note that in this expression Hermitién_analyticity is
.explicitly shown to be satisfied.

.Now we obtain

- ObRE)= (F-12)




-236-

and

+) — 2 2 2
K (e*) = )’(?) t frlelPme) YUce), | (F-13)

In (F-13) the second term comes from the generalized direct

- Born term. Note that for the calculation of the Faddeev

amplitude TH for ﬂNN,Qe should use v(e+) but not the whole
K(€+).

For a practical calculation we may, for example, take

q/(qziyz) and then vy(e), K(E,q) and m(r) can be calculated.

h(q)

To fit @(q,P,e) to the experimental P,

11 TN phase shift, there

are three parameters to be varied; vy, B and C. The data

to be used here may be the P scattering volume, the phase

11

shift at an arbitrary energy and possibly the position

of the "Roper resonance.'" Though the assumption in (F-10)

' may not be effective, we think it worth while to carry out

a numerical fit using (f—lZ) and (F-13). In our calcula-

tion of the pion absorption effect on md scattering length

"in Chap. 6 8, we do not use the result discussed in this

appendix.
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-propagator of J th palr. Together with Td

APPENDIX G

REDUCTION OF TNN AMPLITUDES

A Antlsymmetrlzatlon

e Phy81ca11y 1nterest1ng amplltudes are the connected

,parts of those imn (3B IV 8) ~ (3B-IV-14'), So the anti-
fsymmetrlzatlon of two nucleons are considered for those
fconnected amplltudes taklng 1nto account the isobar (or

(s

‘hseparable) approxxmatlon to our two body t matrlces' as

in (SB II l) two—body t matrlx is expressed as tJ*ZgiT;g;,

"where J 1s ‘a palr 1abel and o spec1f1es states 11ke

Jangular momentum 'ufgﬁmay be con51dered as an O-isobar

o

J we introduce

Y

gar _— = Jg SK*
.partlcle _exchange type’ dr1v1ng term',%jq}ks_quggB (see

SB II-3). As has been mentioned in Section B, Chap. 5,
we neglect possible WNN three~body forces hoping that their -

contribution is small.
: ' e o o (28)
-We, follow conventions used by Afnan and Thomas .

L Y

These;.are.. .

‘a:  -nucleom labels are "1" and "2" while particle "3"
megusitﬁefpioﬁ.
“b. o, B, Y...etc. represent pairwise interacting states

" between the pion “and nucleon while m,n... etc. denote

-237-
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pairwise interacting states between two nucleons. An

examplé is that o, means the 1lst 7N pair in the

1
o-state (with nucleon "1" staying as a specfatdr).
For pure two-nucleon states, N2 is a state.where
nucleon "2" has absorbed or is going to emit a pion.
df course after two-nucleon antisymmetrization'1abels
"1", "2" and "3'" disappear. Momentum and other quan-

tum numbers are explicitly shown in the amplitudes

whenever necessary.

(i) Faddeev Amplitudes

Because of the particle identity between "1" and "2"

and knowing the fact that two nucleons ("1" and "2") hawe

been

antisymmetrized in the form factors ( form factors

« wave functions), we first get the following relations.

(see

(5B-I1-3) for the definition of Z and X used below).

\
Zo(,m E'Zd.,m = ’Zo\,,'ms ( = "2',[ Zd,,mg - Zolz,ms ) \)
Z'IL,O’\ EZ%ajd‘r“"Z'ru,dz, (=’2'L,Lz'7l.3,°<| - :&m»"‘;{]» ? (G1-1)

Zag == 2 g= =2,

T
Tn

i

(t‘oh = TO(?.

2 Tn, )

M
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" We sﬁall make symmetric and antisymmetric combinations out
of xa,b (a,b=aj,ni).utlllglng (G1-1).
(a) Am?litudes Xo(,fm = (‘Xo{.,’m = Xdz,'m) /2.

satisfy

i

XeL, = -Zo(/m. +Z\Xo( vam. "'ZZ« nTC Xm,

(G1-2)
)(m,"" E;EEM¢JQ¢,X§3mLV - .
(61-2) is closed by itself. |
& :(..b») Yo( m= (Xd','mg + Xdz, 'Ma) /2, ' satisties
' '. (Gi-3>u

M .Yet, L Z\ Zot,p Tp Y,o,

v v ’ oa '

whlch also 1s closed by 1t b

'As (Gl 3) is homogeneous,

N

it w111 not correspo‘nd scatterlng phenomena

i e (9) Amplltudes

Ym,ck = (X%J 4+ XMJ"*")/&
Tap = (Xety o= Xt 00)/2
Vs, (fabpl‘ xthfL/2

show the equations théy satisfy,

| U“‘"@ : Z‘ z"( ¥ TT -T}/ '+ Zl Zd,"l T‘h Ym,p/a e (Gl"l*‘)
\gv ;=VEEAZme‘T¢ ( UQ@ +. —Fip) Y '
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?

Forming Ka BETG,BfUa,B shows that (Gl-4) becomes

Kap = éivﬂ'r T Krp '*‘é Zotyn T You,
Y'"‘;P = Z*Zﬁ\)d\ T KO(,P

(G1-4")

This (Gl-4') does not correspond to a set of scattering equa-

tions as upon eliminating Yﬁ‘B’it becomes a set of coupled
9

| agl
(d)  Amplitudes V«,p = (Xu,, p, + Xota, ) /2
Wb = O%,8, + Xea ) /2

homogeneous equations for {K

lead to

| (G1-5)
Vd,p = Zo(,p +éZdnYT? WY,p + %Zn{,‘n TM—X‘K;P /fa

. Wd,p = ézd.rTr vr,p -+ %—‘ z&l')\, T'rL X‘K./ﬂ/z

J

where X =(X

n,B° nq,Bl_Xn3,32)/2’ which turns out to satisfy

X, p = Zmp + ;Zn,u’& (Wi,p + Vayp) . (G1-5")

So X

- - ' 1
a,8 Va,6+wa 8 makes (G1l-5) and (Gl-5') to be rewritten

’

as

XO(,F =zo(,p + éZd,T’tTXY,B + Z\de,“ 't,“_ X"'LIF
Xo,p=Zm,g + %Zm,«'& X, p

which is closed.

(G1-6)

Our physical amplitudes turn out to be
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T(L & m) = J2, Xd, n )
T (< m) = 2 X'n,'m.
‘ (G1-7)
Timeo) =J2 Xau
T(&G—ﬁ) = x“(rp J
So we have only to solve (Gl-2) and (Gl1-6), and other com-
bi@atioﬂs.like Y;’d correspond to physically uninteresting
solutions, |
- - ..(ii) Two-particle Irxedﬁcible Amplitudes Including
- T‘ N-N.States. |

We work in C.M. System'df three or bound-particl& éys—
.:temg_gso for example;pZHf,N (q,p) corresponds ‘to the dla—
: oL "gram showii in Flg. “G=1. " With

o A;“A” , réspect to the momentum im two-
'gi e o, ’ nucleon states, we regard that

% it implicitly carries other

quantum numbers as well (spin

isospin, etc.)

(a) Amplitudes for (n or a z NN) processes

With the definitdion (a.=0. *or n.)

am (5, F) ,—z W (37 - (61-8)
ZNUQ') (.i) ?)

I

-p
ZN'}1 ( ‘?:; ?) /
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. + _> . ._ N t .
where p>-p also implies the interchange of the third com-.
ponent of spin and isospin between two nucleons,‘the‘anti—'
symmetric driving term for NN+n becomes (noting the rela-.

tions‘in (G1~-1)),

- A g 1 e ~ > - 5 = - é
Zan(§F) = ﬁ[im,, W(Th- oo, i @) + By, G F) g, ) |

= ™, > (G1-9)
Jz[z%}N“ZM,N](%P), - o
where z_ _Z7Z =-Z and superscript "A" means aﬁti-
, N nS,Nl n3,N2

S
symmetrized. Similar results are found for Zg n(q,g). Also
]

it is easy to see that

2T = [ Zan— Z«%] G| e1-10)
A 9o
Znt (B = [0 - 23) @)

Here we also define:

z!’()N = ‘Zﬁ(nNz =°2°(1, Ny 1
(G1-10")

DN = R e ==,

With those in (G1-8) - (G1-10') in mind, we find the

physical (antisymmetrized) amplitudes for aZNN (a=w,n),

v A am | : .
xa,n =Qﬂ—)8 [ (Za,y - Z,ae,xN) + %je m)fa,g Ty (Z;;,N—Z;:)] (61-11)
. Y

AR San ex e
na=02) ((Rua=Zio) * 2w By~ Tyt Ty Ny ) ,
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. where superscript A meaﬁsithat the'amplitudes are anti-
symmetrized ane.superscript fZ" in the Bracket'indicates
phat the amplitude is two=particle irreoucible;

(b) (n,o or NN = NNm) process
The processes are typlcally expressed diagrammatically

(Flg. G- 2) as follows (1n the case of (n > NNﬂ)),

. .." .

£
had”

R
7
?

Aal’

WFJrzslmp1101ty form fac ors at the dlSSOCLatlon of 1sobars

- (or correlated palrs)ia

-sobar propagators are 1abelled

by the momentum of the spectator particles. The amplitudes

for a =. o or n are,,

Az) P27

A‘ ' .a'n.’ S _!__ p
. XM( 223 =) ,[24 E DT ,nn C8) o119,
. , : B ‘ | | +Zigp “’a)TF(r')XP a,(ﬁ)?)
B ' - '3P(r,)”c(,t?)><p,uﬂ,1,)}]

<ﬂﬁAlsowit:isfeasyﬁ&o.show_thag.fo;'NNk?JNNﬁA

A(’I) A
xa N rU Fz. %') ;[gi(ﬁ),t&(n )Xﬂ N (rl)?)") go( (r")h(j") () Pz)%’)J

+23%(SJ'CM(S)XAW (?i’,)/z (61-13)
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We can write down the amplitude for NNW + d,n or NN in a
similar manner. Since these processes are not of physical

interest to us, we shall not write the results.

(iii) One-particle irreducible amplitudes
(a) (NN ».a or n) process

It is straightforward to show that for a=o or n

XA(I) = >(A(l) XA(;) Grq 'tnN /2/ (G1-14)

a,’N a-)N )

~A . ) . . . . .
where tNN is an antisymmetrized N-N t-matrix with inelastic-

ity., In a similar fashion we obtain
X:(Z = ':a(,zi + G z\@ia)—/ R (Gl-14")
(b) (a+*b) process for a,5=a,n
Ihe result just obtainéd above is used to obtain
XAy = oy + X & X0 /e

AR A(')

(G1-15)
XQ,‘G + N M2 N)‘{f /2’

0

where Xa b is a Faddeev amplitude appearing in (i).
?

(c) NN - 7NN amplitude
The process is understood in Fig. G-3. The resultant

amplitude is

U Al - Aﬂ).a - > o>
X3,N (P.,I’L,S; ‘—L’ )= X3‘2N (E;Z,?j‘lr) + ZAX;;,N ')‘:’13) ) 1(")*»»4“" 7”)/2,



+ra&dta @D - TOG® TR @ D).

(G1-~16)

A similar result is obtained for one-particle irreducible

7NN > NN amplitude.

“(d) (o or n > TNN) amplitude
The situation is similar to (c). The result is (for

a=o0,n)

i A o A D
e =Xya t [Wm% <?) fL Cr’.,fw F(PZ) @ X ’chl, D)

w

A(l)

Similar expression is for Xa 3
3
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(e) TNN - TNN amplitude

The structure is shown in Fig. G-4.

W— -‘-—Qﬂqr

We shall then- obtaln contributions from each diagram
A(L)

J

J%#w

‘%Bﬂau

separately by writing X3(§) = 'ZIQ§
s 3=

Al ) -
@ (%A"-Z[ o s 30 % 2B — X Gos Tt 34 8

(G1-18)
ZXA") REARL) T. ® 9.0
R') S’\M) ZX E)-’,:‘i)cﬁ(u) Nq(it) %’\:1’;) ) (G1-19)
©) ._ﬁm%mxw ”Ul) “&%WXM(mzkﬂ
(G1-20)

| A Aw S>> e y D
(0(.) (%‘4. = 3 h| (Fl) =) / )GTz (%'A)A(‘i"/ - Xg N (ﬁ)&/si%‘)éﬁci*)A (%ﬁ)'
‘ (G1-21)
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2. Ihe:Angular‘Momentum Reduction

We shall decompose our antisymmetrized amplitudeSinto
total angular momentum—isospin eigenstates. As we are
working in nonurelativiétic kinematics and we have couplings
ﬁo two-nucleon states where total spin is a good quentum

number, it is most convenient to adopt channel spin coup-

"Ling scheme.

(i) Faddeev part and two-particle irreducible
amplitudes

The central part of the angular momentum reduction in

| a,b (a,b

= o, n or N),. So we shall start with it. There are

sevefal works on this problem;ﬁ Wé:bere?adogp the method

(63) . '

due to Sloan and Aarons used in nrd“scattering problemn,

Since the wholeﬁproge&sgqffdepivation can be seen in their

paper (for three spin 1/2 particles) we just give here the

result for the general case; three particles with differ-

ent spins and isospins.

"(a). Kinematics and notations

The kinematics involved in Za b is shown in Fig.G-5,
’ .

where we consider an exchange process of i+(j,k)>k+(i,j);

‘(j,k) etc. represent correlated pairs and the label of

pair (j,k) is i([i,j,k] is made cyclic) as is commonly

accepted. Momenta are assigned as in the figure.
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S Relative momentalat tﬁé
k- t . vertices are

P > hERR R (s
TR T (i) R ‘. P = PB4 B (Pax _mi
= K _f- . P. = M

) .%'K. 2 PK ' Pt.. ( &K. f'“'i*'mj

© Fig. G-5 " (62-1)

jAngdlar~momenta.and isospin are expressed as follows:

.';j}fffsﬁin of a particle;

£ isospin of a particle,:

 ﬁ::: to£é1 spin of a pair system,

'{E=g'.§°ﬁéipis5spiﬁ of a péir éystem,

i}ﬁ%;7ofbitél angular momentum cof a pair,
';fj;:';tbtal aqgular momentum of a pair,

W~S$15+j[f channel 'spin

"inl'orﬁital angular momentum of a'pair—spectator.system.
QZJg ;'tofal éngular mbmentum'of fhe wholé system

T total isospin of the whole system

WithftheiaboVe convéhtion the form factor appearing in the

“ driving term is written as

: - 47ﬁ% ™ oA - : A' 3 : ‘l gi;:
_- 3«.(})%%31. “)};),Mmlw, S



where

m: third componeﬂt of 5
a: label specifying the quantum state of the pair

associated with the form factor

(a): angular momentum eigenstate of the pair associated
with the form factor

|t>: pair isospin eigenstate

ging(q): scalar part of the form factor, which is usually

real.

For the N «» TN vertex, we have

m , A » Ay ,—
N @ o= w0 Y50 <l
™ (1,,%) T"(‘tr, z)}j—mcwlb

€G22y

where n=j=t=1/2 and:A=l; Akso F(q;e*} =,A&(q,€) from reality.

(b) AThe-drivimg term .and Faddeev equation
An angular*momentum reduced driving term (not anti-
symmetrlzed) 1s given as follows
Z7° ( A EE TS o ,%{4:14:)%.;}
%y PK,n,E) (-1) 'tifl/-."z'-'ZIv.)‘)u,SLSnﬁiﬂh] t T

’ 4 U
e (2hi+)! ()] 30 \Yp .Y
x}%&( Vb Z‘ (2w)! A =29)] () (2! } () )

"z«.tk_h-'lt
X (PK)N-bV > )m.,w—vZ 0[] %r (P,L, P, E)Z [atd]
ade
(vmrva.)(v MrY'ﬂ Jha.w— 1p40v ac
o 00 0 00 2 0,1*1

X{Skc SL} M L Z(__ {cm/\‘k
IR f“’)“ &S S
_ RSV 4
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X{J{"'(;‘Q‘ Ji 72»19‘3 {’Jh."z;l-?'
A m;s.:“ 2 Siods Ji i)
" (G2-3)
" where
A = (U S AR I
B = (LS I e Editi)
[adc-] = (2an)@+1) (2c+) ~—

C= i+t +2tip v+ 2j0 +J; + 3jr+ 2704375 —7;+S¢+S£+1;+1;+3J

- - - it
e, Jone A “Sf“ *o0 G 9 0
32\0’@: (F"f) F‘:JE) E?J -111—}&-"&: — h* _ (FeEt +(€
/| - Am 27 ‘MJ [ 3
‘with x =‘cos(Pi Pi). Also standard angular momentum coupling

'coefficients are used in (G2-3).

| In order to get an angular momentum decombositiénfof~
Za,B etc, in connect;on with their definitionAin (G1-1), we
need to depért from the cyclic notation. . The change iJl'thé
ordering of i,j and k to meet our purpose will introduce
some additional phase factor in (G2-3) which comes frém
angular momentum coupling coefficients and spherical
harmonics; Yg(a). It then turns out [keeping an abbrevia-

tion aE(lsanjt + other quantum numbers)] that

ZJT is obtained fron ZJT
o,B

b . .
al’Bz y multiplying
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P X;+j,+j“:hf+tl+t:—5}
) _(_1) e R T Y} is taken,
S : : . ‘ _ Ad

(The- same 1s true when o or B is replaced by N)

JT - | 3 it
z A multlply z by (<1) * ;.
n,o ,OL s
. e R
it =X i+ s m %~ 7&"""& 2 +fn Tt
'ZJT this does not require any change in Z/JT s
,vd..,,‘n . ) . : . al’n'3

‘With the above prescriptions in mind a set of reduced anti-

symmetrized Faddeev equations is now

5 X =2 wre +ZSS‘“ Lo

XQ'Q(E Z’W\/&—I’; 7;,\:) (S F) E))

i

vwhere Aa. b ye=n,0 and u iémtﬁé‘féduceiyﬁdsé of .a pair . . =

assoc1ated w1th state "éﬁ whereas meuis the mass of the

spectator particle. Note that when both a and b are the
states of the nucleon pair, there is no inhomogéneous term
in (G2<%Y).,

(c) Amglifudes including N-N states

A(2) (A(2) LA(2)

N Xy, a0 %38 :etc.,lin (ii) of the pre-

' These are X
vious section. In ordeL_Evobtain "J T" representation of
' L A AL, i
them, the decomposition of Z_ .. and Z: into angular
C a,N N,a ,

©* momentum eigenstate is necessary, [sée,(G149)’and (G1-10)1].
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This is done as follows. Remembering that

Ma My -
Zan @,7) ; Ler GpeT (o) Y, Y, P, (c2-5)
) 3 aN :
a My

where a=(faSajanata) etc. and I1(C-G) means the products

of several Clebsch-Gordan coefficients. When we decompose

7% (Z,;,E)EZ» (E,-;,E) into J-T representation, it is
a,N a,N ,

easy to see that changes are in (1) some 6-j symbols in

ZETN(q,p,E), (2) some Clebsch-Gordan coefficients in I(c-G)

%mN

and (3) Y*mN(p)+YRN

A - 3 - + >
(-p), of the original Z (q,p,E).
a,N
It turns out after some observation,taking into
account the symmetry properties of 6-j symbols,that there

is no change in Z~ (q P>E). As for the change in nm(c-6),
S,+T

we get an extra factor (-1) coming from <3, J m ;m IS

i N N

> <Eiji-ﬁ.-mi|SN—MN> and a similar change in the Clebsch-

i
Gordan coefficient for isospin coupling (note that '.=5.=
1/2 here). The third factor; - *mN( -$) is equal to (- l)

YE?N(q). Collecting all these results, we obtain

fam St dy+T
= ) » P E
ZG)N (%,,E) (vZ) {1 -1 }Z (Y)P) ) (62-6)

» SN+£N+T
Note that the factor [1-(-1)

] is exactly the one
appearing in the angular momentum reduction of an amplitude

for two-fermion scattering (with isospin).A similar result
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AJT

'ls\obtalned for Z
"N, a

 We thus go on to decompose X A(2) and XA(Z).' If we
L . . a’N N a
define
VAR, TT

o = { 1-¢ 1)-£~'*5N+‘t‘} X(}) ,TT and also for )Cg’(az)JT

wg,eaSily get from (Glﬁll),

IR Sam '- e (g vt
X,;,T‘u, pe) =™ {2 P E) * %Sfds Rae®SE)

amepn 54 Sty gTT » |
X Ty (B=amop- o e ). 4/,4(5,?,5)}/ - (62-7)

.

AQLI ‘§}  Q
:3;-@??.,?,,@\ 7,,5) (f )g " I f-[g*‘“” ”QCE ”‘/“ %)Xi Jﬁ,’i» E)

~ 34(%) T (€ ?au 2/»4 ) Xd) 2 (F) 3, E)]
+ 2, o) T (B 2mpn = o Fom) X (S E)} >
po 7

(G2-8)
and
WoR: 7 @, It ‘
3),4 U’.,ﬁ, Z{jg(‘“)'ﬁ((‘é 7.'71/~ z,m yAJ)x.,( n ()},E)
g | B Q@ T
~ 9alt) Ty (B - m—a}:) FINUA Y E)}
| , D a,IT
+ LI T E g zm) Koot (55, -
o S (G2-8")
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where
uy , : , nucleon with momentum Pl and the pion
:?3 is a relative momentum between| nucleon with momentum P2 and»the pion
q . .
v two nucleons

(ii) One-particle irreducible amplitudes
(a) Amplitude for NN - NN
Note that in two-nucleon scattering the total spin is

conserved. So we obtain from Lippmann-Schwinger equation,

i ’ 2T
_L_Ni,i';s (PHE) = % {14«(—1)““}{_1—('1) } tr«::ti'; (p1,E), (62-9) |

where the first factor in the right-hand side of (G2- 9)

JtSs

serves for arit onservation and
°r. P y e NN

satisfies

oo
~JTS s 2 T3 ~~ AL
Tt CHE) = VagmtE) ;S'f AV gy BHE) GED T (BHE),

(G2-10)

As we have done in (i), we define

A, Tts LS4 IS
tn;ﬂw = {1'(‘1) } Yot
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ACL) L ACL) o A(L)

-(b) X X nd X

a,N » 3,N _ a,b

LJTs , i
Using tNNZ'l we rTeadily obtain

u,JT )7 : TT ym&
Xa,n (74,8 =X 1,5) +Z S'WX e GEn T, E)
(G2-11)

| Sw, I
X»'B:N (lPU .S, %E) x( ),'J"C(ﬁ)?z, $,%E) +Z srdr X3 N (F,Pz)s 5 E)

U’CSN

+T’(u. E- 2‘"‘/‘ z’c?;u‘) m)eﬁ cﬁ,m (62-12) %

Z_Afﬁs“,j (ﬁ,%,z)

7 NN U,

+(5wdqh£nm.wdk w—>uz2 and ﬁ**&))

and

MO, TT 5 | . WTT ~ W), TT
X, ag. (B%)E) Xa,-s (B%,E)*'ZS:MY‘ XQ:N BhE RED XN';G (%,E)
. N o

X { 1- iy | (62-13)




-256-

‘As the expressions get lengthy we shall not write down

'Xg(i)JT nor Xg(é)JT. But these are just obtained straight- -
’ . : « ’

forwardly.
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APPENDIX ‘H
INPUT FUNCTIONS FOR OUR CALCULATION

(i) Deuteron WaVé Fﬁnctipn_

(a) The Hulthen S-Wave Deuteron

The momentum‘space,Hqitﬁén wave function is of the
form, . |

- ¢(P) N

. (H-1)

2 3.% . _
where a° = €4m> B = 6.255 a and N = [aB(a+B) ]?%/m is the

1ﬂnormali2at10n constant ThlS wave'fﬁnction can be obtained

a;f:om a S—wave_s&panaﬁle’pamentialmof-the Yamaguchi typeﬁinni

(b) The Pleper Reld Deuteron(54)

G

This is constructed from Pleper s separable potentlals

wh“ch are obtalned by applylng the procedure of Ernst et.
(53) , . . ,
to_the,Reld soft core.potential. The deuteron
wave function thus bbtained is the same as what we get by

mumericallyfsolving Schrodinger equation using the Reid

potential up to several digits. We use Pieper's rank 1

potential and obtained (angular parts have been taken out)

» 2(7’) =- Cz\gﬂn‘%ﬂ(@/( P1*'°<z), ‘ (H-2)
L ® o m=1 ) : : B . . .

~257~-
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' L, 2, 2 . -2-2/2 - : -1
whe;e wzn(q) = q (q +a"n) , o = 3/2 n in fm ,

bln's are dimensionless constants (see Pieper's arficle
 for a detail) and C is the normalization constant. All thé
deuteron properties are in good agreement of what we can
get from Reid potential. For example the D-state probability.
is 6.49%.

(c)'Tﬁe McGee Deuteron(56)
The form of this wave function comes' from thevstudy

of analytic properties of the dpn vertex function. The

general forms of S and D state wave functions are of the

form (angular parts have been eliminated)

1 % (d
. s .
— —_— (H-3
¢9(?)/N P N S,(g\, (22 : ) ,
and - |
. 2 ) €0 A .
v(?) NP Prrd® it (H-3")
. LA N

where N: normalization constant

P: asymptotic D/S ratio

as(z), ap(z): spectral functions

A: minimum decay constant
In McGee's approximation, spectral functions are replaced

by a finite summation of delta functions and the result is



) (H-4)

?5(1’) ==N(2/u:)é'(?*u(,_ -+ Z

r+e

and

Y
B, 1r=-en A s 3¢ E—"Tclm). (H-41)

J=1

. ~L '
Hetre N = 0.8896 fm “ and p = 0.0269. The D-state prob-

ability is 77Z. . Cj’ sj etc. are found in McGee's paper.

f(xi) 3P N-N Separable Potentials of Mongan(57)

A After angular momentum dependence has been ellmlnated, :

the potentlals here take the form,-

O L S

V&=t [ e - k] @)
.Wherelthglfirst-fermvin the expressionﬁCOmes from the-
repulsivempart‘and the second'term,~ftem the attractive
part. h

For‘3P11 séatee 2'=2 and the forms get a little
simpler.

(a) Mongan type 1 potential

9 =Gt/ (Pxag) ke  hy® =G, P/ (p‘Mj)sz
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_ | : L
For P1 cR 3.498, cA 18.89 [in (MeV/fm) ?]

1

0.697, a 2.322 [in fm 7]

A

)
1]

(b) Mongan type 2 potential

LO= P aa ™ Ryt = Y e

3. _ . %
For Pl CR 45.63 CA = 0.0 [}n (MeV/£fm) ?]

- : -1
R 2.178 a, = 0.0 [in fm 7]

a
Mongan type 1 fits the experimental phase shift better in

P1 partial waves..

(iii) Pi-Nucleon Separable Potentials of Afnan and Thomas(zs)
The general form of the potentials here is v(g,p) =AX
g(a)g(p).

(a) Sll partial wave

' L
A=-1, g(p)=C/(p>+8%), where C=31.02 (MeV/fm)?
1

and B= 2.629 fm

(b) s partial wave
31
[ _pz 2 2
A=1, g(p) = C(1- 0.5048 e Y/ (p™+B7), where

1 -
C=100.6 (MeV/fm)? and B=3.045 fm L.




,;' . ¢ (c) P33 Partial Wave

A=1, g(p) = Cp/(p + B7), where
C=32.7047(MeV/fm)* and B=5.3344 fm L.

S11 and 831 potentials reprdddée observed low energy phéée
shifts quite well. P33 potentiél‘is adjusted to have the
correct 3-3 resonance pole and its low enérgy fit is not

so well as S11 and 831 potenﬁlals.



