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INTRODUCTION

Extensive use of liquid metals as working fluids in various
reactor programs, i.e., SNAP 10A/2/8, necessitates a handbook
to correlate and present the current information which is available
to the engineer. The present work is not intended to be all inclu-
sive but contains important excerpts from commonly used refer-
ences along with recent developments, arranged for the convenience
of the design engineer. Data selected for presentation has passed
the test of being in reasonable agreement with the majority of pub-
lished work; some older data not well substantiated by recent experi-
ments has not been included. The liquid metals considered to be
the most useful for present and future applications are mercury,
sodium, sodium-potassium, potassium, rubidium, and lithium.

As additional information becomes available, periodic revisions

will be incorporated in this SNAP TECHNOLOGY HANDBOOK.
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The author expresses his appreciation to P. D. Cohn,
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suggestions.
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1.0 PROPERTIES

1.1 GENERAL PROPERTIES

1.1.1 Mercury (Hg; at. no. 80; at, wt 200.61)1’2’3’4’5

Mercury is a mobile, silvery-white liquid slightly heavier than lead.
It dissolves in nitric or concentrated sulfuric acids but is not soluble in non-

oxidizing strong acids or in strong bases. Mercury is the most dense liquid

"metal and exhibits the highest gaseous ionization potential of all elements, ex-

cluding the inert gases. It is also the most fusible and volatile liquid metal,
does not react with oxygen at room temperature, and is inert toward water.
Upon prolonged exposure to moist air, an oxide film (usually representing oxi-

dized trace impurities) may form on mercury surfaces,

Mercury readily forms alloys with the alkali metals, aluminum,
bismuth, cadmium, gold, lead, magnesium, silver, tin, and zinc; when mer-
cury comes into contact with sodium, NaK, or potassium, heat is given off.
Some of the properties of these sodium and potassium amalgams are given

below.

TABLE 1.1

HEAT OF FORMATION OF SODIUM AND POTASSIUM AMALGAMS

Meltin Heat of Formation
Amalgam Pointg Wt % of (from liquid
: (°F) Na or K mercury)
(Btu/lb-mol)
NaHg, 668 5.4 -29,200
?
Na),Hg;s 441 9.6 ,
NaHg 426 - 10.3 -20,550
NaHg, - 320 2.8 5
KHe, 518 8.9 -35,620
KHeg 3 392 6.1 -52,400
?
K, Heg 343 4,1 ,
KHgg 158 2.1 >
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Not all of the heats of formation are given due to lack of information
and experiments. Properties on the ternary compounds were unavailable. It
is important to note that the amount of liberated heat increases with increasing

mercury-to-NaK weight ratio.

Mercury is presently available commercially in 76-1b flasks @$208 to
$210 per flask with a purity of 99.7%. The principal producers (1949) are
Bonanza Mines, Inc., Cardero Mining Company, and Sonoma Quicksilver Mines,

Inc.

1.1.2 Sodium (Na; at. no, 11; at, wt 22.991;)2’3’6

Solid sodium is a relatively soft, silvery-white metal. Molten sodium
is also a silvery-white metal which has a high reactivity with most gases or
liquids other than the noble gases and nitrogen. Solid sodium does not burn in
dry air at ordinary temperatures, but owing to the formation of an oxide film,
it tarnishes rapidly in moist air, Molten sodium burns under atmospheric
conditions to form a dense sodium monoxide fume, but under an oxygen atmos-
phere a yellow flame of burning sodium results giving off sodium monoxide and
sodium peroxide. When sodium comes in contact with water, it reacts violently
and ignites the liberated hydrogen. One of the most violent reactions occurs
when alkali metals are brought into contact with carbon tetrachloride which
results in erratic detonation, This reaction will also occur when an alkali
metal is brought into contact with other polyhalogenated hydrocarbons. Vigorous
reactions between sodium and halogens, acidic oxides, mercury, or alloys with
lead, tin, zinc, or bismuth also occur. Reference 3 gives certain conditions
under which the combination of the above metals with sodium results in no

reaction.,

Alloy compounds of sodium with mercury, potassium, bismuth, cad-

mium, antimony, arsenic, gold, lead, tin, and some other metals are possible.

Commercial sodium (~99,.8% pure) — with common impurities such as
calcium, potassium, hydrogen, chlorides, and oxygen present in amounts ex-
ceeding 10 ppm — is produced by E, I. DuPontde Nemours and Company, Ethyl
Corporation, MSA Research Corporation (Commercial Division), and National
Distillers Chemical Company. Price ranges from ~16¢/1b in tank car lots to

50¢/1b for 1 or 2 1b bricks.
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1.1.3 Sodium-Potassium (NaI{)l’?”7’8

Above its melting point, NaK appears as a mobile, silvery liquid.

Although NaK reacts similarly to sodium and potassium, it is considered more
active than either of the two metals alone; because NaK is in the liquid state at
room temperature (composition of NaK ranges from 50 to 90 wt % potassium).
Because potassium is the most reactive of the two elements, it determines the
chemical properties of NaK to a great extent (see Section 1.1.4 for discussion
of potassium). Exothermic reactions occur when NaK comes into contact with
water forming oxides and hydroxides of sodium and potassium and also hydro-
gen gas. At room temperature NaK reacts with the oxygen in air to form a sur-
face scum of sodium oxide and potassium superoxide. The oxide precipitating

from the NaK at 392°F is entirely sodium monoxide.

Commercial NaK is manufactured by the same producers as those
listed for sodium, in addition to the Mine Safety Appliance Co. The cost was
60¢/1b for NaK-56; 80¢/1b for NaK-78 7 (The K wt % is given when referring to
NaK.), Common impurities in ppm in the distilled NaK are 20 iron, 20 copper,
20 silicon, 40 aluminum, 10 magnesium, and 20 ppm of calcium. NaK used for
reactor appiications is usualiy further purified prior tointroductioninto a system.
The above price varies greatly according to the purity desired.

1.1.4 Potassium (K; at.no. 19; at. wt 39.100)'?"3’7

Potassium is a soft, silver-white alkali metal which differs from
sodium in many ways. Unlike sodium, potassium combines with oxygen at
room temperature to form a superoxide which may cause explosions. The
cause of these explosions is not fully understood. Also, potassium forms an
explosive carbonyl when brought into contact with carbon monoxide. Further-
more, potassium detonates with liquid bromine while sodium and lithium only
react superficially. But similar to sodium, potassium reacts violently with
water and ignites the liberated hydrogen., Reference 7 lists the many organic

and inorganic reactions occurring with potassium.

Potassium is able to form alloy compounds with sodium, cesium,

lithium, rubidium, magnesium, aluminum, gold, antimony, zinc, and cadmium.

Commercial potassium is available from producers of NaK and Na

@~$1.00/1b in 150 ton quantities and @ ~$4.75/1b in 1 to 5 lb quantities (1961).

NAA-SR-8617
1.3



1.1.5 Rubidium (Rb; at. no. 37; at. wt 85.48)%23)7

Rubidium is a soft, ductile, silvery-white metal. Neglecting cesium
and francium, which is an unstable isotope, Rb is the most reactive alkali metal
and reacts violently with water, igniting the liberated hydrogen. Rubidium ig-
nites spontaneously in dry air characterized by a blue flame. The rest of the

chemical properties closely resemble the other alkali metals.

Characteristic of the alkali metals, with Rb being no exception, is
that the compounds formed are univalent. Rubidium can be alloyed with gold,

cesium, potassium, and sodium and readily amalgamates with mercury.

The principal producers of commercial Rb (~99+% purity) are
American Potash and Chemical Corporation, De Rerval Int. Rare Metals
Corporation, and Fairmont Chemical Company, Inc., @ ~$440/1b in 1 1b quanti-
ties or $350/1b in 6 to 25 1b quantities.

1.1.6 Lithium (Li; at.no. 3; at. wt 6.940; Valence ‘1)2’3

Lithium is a silvery-white metal and is the least dense and least
volatile of the alkali metals; however, Li is the hardest alkali metal. Below
212°F Li does not react with dry oxygen, but a freshly cut surface of Li turns
yellow in moist air. When Li is exposed to cold water, a slow reaction results
without igniting the liberated hydrogen. While other alkali metals are inert to
nitrogen, Li in the presence of moisture reacts exothermically with nitrogen at
ordinary temperatures, and at temperatures above its melting temperature, Li

reacts rapidly with nitrogen to form Li3N, a black hygroscopic nitride.

Lithium alloy compounds may be formed with magnesium, zinc, cad-
mium, bismuth, silicon, aluminum, tin, lead, mercury, silver, thallium,

sodium, beryllium, barium, and calcium.

The principal producers of commercial Li (99.5% purity) are Foote
Mineral Co., Lithium Corporation of America, Maywood Chemical Works, and
Metalloy Corporation @ ~$9.00 to $11,00/1b. Lithium is available as granular

particles, wire, or 8 by 1-1/2-in, diameter castings.

NAA-SR-8617
1.4

i
g



mwmmmmmmmmmmnmﬁmmrm

/

1.2 ENGINEERING PROPERTIES

The following sections contain engineering properties mostly from Ref-
erence 2 for Hg, Na, NaK, K, Rb, and Liand represent the most recent reliable data
available. The reader is referred to the above reference for other properties

and liquid metals not included in this report,

TABLE 1.2

ATMOSPHERIC BOILING AND MELTING POINTS
OF Hg, Na, NaK, K, Rb, and Li%

Metal elting '{‘f%r;perature Boiling }‘f;r;perature
Hg -37.97 674
Na 208 1630
NaK See Figures
1.1 and 1.2
K 145.8 1395
Rb 102 1295
Li 357 2430
1.2.1 Densityz

Figures 1.3 to 1.11 give the graphical representation of density vs
temperature for Hg, Na, NaK, K, Rb, and Li in the liquid and saturated
vapor states. The density of saturated NaK vapor was omitted because of the
unavailability of data.

1.2.2 Thermal Conductivityz’“’12

Figures 1.12 to 1.21 graphically represent the thermal conductivity
of Hg, Na, NaK, K, Rb, and Li. Again data were not available for saturated
NaK vapor. For liquid Rb between 102 and 300°F, the thermal conductivity
data were obtained from Reference 10.

1.2.3 Electrical Resistivityz’ 10,13, 14

All available data are shown in Figures 1.22 to 1.25 for the liquid
metals in the liquid state. Electrical resistivity properties for liquid metals

in the saturated vapor state were omitted due to lack of experimental results.
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1.2.4 Specific Heatz’ 15,16, 17

All of the available data on the specific heat of liquid metals are
shown graphically in Figures 1.26 to 1.34, The specific heat of saturated NaK
vapor was omitted due to the lack of data on this alloy.

1.2.5 Surface Tensionz’ 18,19

Figures 1.35 to 1.40 graphically represent the surface tension prop-

erties of the selected liquid metals.

1.2.6 Vapor Pressure2

Figure 1.41 compares the vapor pressure properties of the selected
liquid metals.

1.2.7 Absolute Viscosityz’ 10, 12

Viscosity properties of the selected liquid metals are shown in Fig-
ures 1.42 to 1.50 with the exception of NaK in its saturated vapor state. Little

interest has been shown by researchers in the saturated NaK vapor properties.
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1.3 HAZARDOUS PROPERTIESl’ 10,20

This discussion is presented to briefly describe the hazards involved

with liquid metals and should be used only as a guide.

The possibility of aleak ina nuclear-powered system presents many prob-
lems. For a mercury-coolant system the major hazard created due to leakage
is the toxicity of mercury vapor. Even when the concentration of mercury
vapor in air is low, over long periods of time chronic mercury poisoning will
result. After absorption it circulates in the blood and is stored in the bone,
liver, kidneys, and spleen. The chief effect is upon the central nervous system
and upon the mouth and gums, similar to the effect caused by tetraethyl lead.
There are several symptoms indicating the possibility of mercury poisoning;
stomatitis, tremors, psychic disturbances, excessive salivation, and pain on
chewing are among the common ones while gingivitis, loosening of the teeth,
and a dark line on the gum margins (resembling the ''lead line'') are among the

ones in severe cases.

Another important fact should be noted at this time. Lessthanone ounce
of mercury compounds when swallowed can cause death; this indicates that
mercury compounds formed with eating material and mercury can be more

dangerous than metallic mercury if one is careless.

Anevengreater hazardis created whenhot alkalimetalleaks outofa sys-
tem, because the alkali metals will ignite in air or water resulting in severe
alkali burns to personnel if contacted with the liquid metal.* The oxide smoke
produced by combustion is very irritating to the throat and lungs but is not
poisonous. Injury to the throat and lungs will be largely due to the inhaling of
the hydroxide mist produced by the alkali metal-water reaction. Armour
Research Institute has indicated that NaK will react explosively at room tem-
perature with certain fluorinated and chlorinated hydrocarbon compounds (such

as stopcock grease and Teflon). 20

It should also be noted that under some circumstances ithasbeen re-
ported that the products of the apparently innocuous reaction between the clean-

ing fluid trichloroethylene and alkali metals can explode violently without warn-

ing.

*Atomics International presently employs a company developed NaK loading
cart which combines a purification, loading, and closure system for loading
NaK into a system. NaK technology has progressed to the point where NaK
loops are operated in an open laboratory utilizing only the usual chemical fire
precautions.
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2.0 HEAT TRANSFER

2.1 NATURAL CONVECTION

The problem may arise where a component ina reactor systemneedstobe
cooled by natural convection, such as during shutdown. The cases considered
in this section, unless otherwise specified, will be where the liquid metal flow
in the assembly is not dependent on the hydraulic and thermal characteristics of
the external circuit. The cooling characteristics will be dependent on the gen-
eration of heat in the element, or on the geometry of the cooling system, the
properties of the cooling medium, and its constant temperature. Transient sys-
tems and boiling natural convection will not be considered here; however, tran-
sient calculations may be made with the data presented. The following subsec-
tion contains the best correlated heat transfer equations that are presently

available.

21 . . . . . . e
Ostrach™ ~ presented an analysis which takes into consideration friction

heating. His parameter which determines whether or not frictional heating is

of any significance when analyzing convection heat transfer is

BfiL

L ¢
P

K= Gr ... (2.1)

If the quantity [(BfiL) /cp] > 1.0, the Nusselt number should be determined as a

function of K in addition to Pr and Gr.

Inordertodetermine whether natural of forced convection is the dominat-
ing heat transfer process, the ratio C:r/Re‘2 should be examined. If Gr/Re2 << 1.0,
natural convection can be neglected; if Gr/Re2 >> 1.0, natural convection will be

2

the dominating heat transfer process; and if Gr/Re” = 1.0, natural convection
should not be neglected.21 The equations in the following sections are recom-
mended for use in calculating Nusselt numbers for various geometries. Unless
otherwise stated, the fluid properties should be evaluated at the film temperature
EI‘f = (TW + Tb)/Z]. Also the entrance region is usually neglected, because it is
quite small (Le << lOOI;g; it is a function of the Reynolds number, which is small

in natural convection.

NAA-SR-8617
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2.1.1 Vertical Plates and Cylinders

Eckert22 derived the average Nusselt number equation for a vertical

plate at constant temperatures in laminar natural convection flow, RaL<5 x 108,

which is

/zGrL1/4

1/4

. 0.667Pr?

NuL =

.(2.2)
(0.952 + Pr)

using the characteristic dimension (L) as the height of the plate. Equation 2.2

. . . 2 .
agrees satisfactorily with Ostrach's 3 exact solution.

Siegel24 obtained Equation 2,3 for a constant surface heat flux and laminar

flow occurring

0.727Pr!/%Gx /%
Nu, = . ... (2.3)
L (0.800 + )t/
Eckert and Jackson25 developed an equation for turbulent flow (RaL>5 X 108)
with the vertical plate held at constant temperature which is,
. O.0246Pr7/ISGrLZ/5
NU.L: 2/3 2/5 ...(2.4)

(1 +0.494Pr )

Equation 2.4 inherently is in error due to the assumption that the surface heat
flux varies as Pr-z/3 which is not always true at low Prandtl numbers, but be-
cause of the lack of experimental results, its usage is still recommended (Equa-
tion 2.4 was developed only for liquids having a Prandtl number close to one;
therefore its usage may not be valid for liquid metals, however no data are avail-
able to prove this hypothesis so that it is still useful as a last alternative for

predicting the heat transfer coefficient).

For constant heat rate instead of constant wall temperature, Equa-

tion 2.4 becornes2

0.0246GrL2/5pr7/15

Nu, = . ... (2.5)
L1+ 0.444pr273)2/5

NAA-SR-8617
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There seems to be a general consensus among various authors that the equations
for vertical plates also hold true for vertical cylinders. This approximation is
conservative because as the radius of an element becomes smaller, its Nusselt

number inc:rea.ses26 (the characteristic length is the height of the cylinder).

2.1.2 Horizontal Cylinders and Flat Plates

Hyman, Bonilla, and Ehrlich27 did experimental work on the heat
transfer about a horizontal circular cylinder — characteristic length (D) being
the diameter of the cylinder — at constant wall temperature for laminar natural
convection flow (Ra<5 x 108) and they recommendedthe following average Nusselt

equation for cylinders larger than 1/8 inch in diameter;

O.53Pr1/2GrD1/4

D" (0.952+ pr)l/*

Levy,28 using an integral method, obtained an equation for a constant wall tem-
perature horizontal plate facing upwards with laminar natural convection flow
occurring. The characteristic dimension (L) refers to the small side of the

rectangular plate. The equation is

Nu, = 0.371Pr%/ °Gr 1/5 7z (2.7)
(0,762 + Pr)
For turbulent flow in the above case, the Nusselt equation becomesl
~ _ 0.0727pr?/ 33g 4/ 1!
Nup, = 2/3,4/11 +e - (2.8)
(1 +0.441Pr )

Equations 2.7 and 2.8 should be used with caution, because verification of these
equations has not thus far been accomplished. Also, experimental data for
cubes, spheres, etc., have not been obtained. Reference 28 gives the differ-
ential equations for such configurations, but Levy's equations need to be veri-

fied experimentally before they may be used with confidence.
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2.1.3 Vertical Pipe or Parallel Plates

Shown below in Figure 2.1 are schemeslo which were considered by

various investigators.

LLLLLLL

2

—

& HEATED OR
w COOLED

z

]

w 7 INSULATED
o w

5=

5 w

o>

« 3 TIT7777 7

oo

(a) (b) (c) (d) (e)

Figure 2.1. Schemes Considered in-Natural Convection Flow

Ostrach29 derived exact solutions for case (a) for fully developed laminar
natural convection flow of fluids with and without heat sources and constant
wall temperatures, Figure 2.2 shows his results for walls at equal tempera-

tures as a function of a heat source parameter,

2

Qd
G=m——= , ... (2.9
k(TW - Tb)

where Q, d, and k are; respectively, the heat added by the heat sources, spacing
between plates, and thermal conductivity of the fluid. Ostrach30 and Lietzke,3
whose results are shown in Figure 2.3, derived similar solutions when one wall

was heated and the other cooled uniformly.

Solutions for case (b) were proposed by Light;hill32 and Levy28 for
flow in a pipe or between parallel plates with either end assumed closed and with
constant wall temperatures, but the results are not entirely valid for low Prandtl

numbers. For estimation purposes their results may be extrapolated to include

liquid metals.

Only special cases of case (c) can be analyzed. Ostrach30 obtained

results shown in Figure 2.4 for heat sources in a completely enclosed region
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with equal and constant wall temperatures. Also shown in Figure 2.4 are ap-
proximate results by Hamiiton, Poppendiek, and Palmer33 incorperating a

simplified velocity distribution.

Cases (d) and (e) do not lend themselves readily to theoretical solu-

tions. If the sidewall spacing is very small, solution for a thin vertical annuli

by Timo, discussed in Section 2.1.5, may be used.!?

2.1.4 Horizontal Pipe or Parallel Plates

Cases (c) and (e) in this section are identical to cases (e) and (c),
respectively, of the previous section and need not be mentioned again. The rest
of the cases have been considered only on the basis of melting or freezing a

liquid metal. S‘ceiner34 and Tidball and Ciarlariello35 have considered these

problems.lz

2. 1.5 Thin Vertical and Horizontal Annuli

37

Experimental investigations by Tirno,?)6 Mausteller and McGoff,
and Powledge38 on vertical annuli were correlated by Mausteller and McGoff
on the conditions of convection and conduction heat transfer up the annulus,
solid sodium at the top, and an open chamber of molten sodium at the bottom.

The empirically correlated equation is

D

_ -6 0.73
Nu = 6.5x 10 GrD Pr , ... (2.10)
m m

where Drn is the log mean diameter of the annulus (ft).
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NOMENCLATURE

Specific heat at constant pressure, Btu/lb-°F
Spacing between parallel plates or annulus width
Diameter, f{t

Acceleration component in the i direction (parallel to vertical
plate or perpendicular to horizontal plate), ft/hrz.
‘- 2
Grashof number {GrL = [Bfi(Tw - Tb)L3] /v }, nondimens:ional, Sub-

scripts D, L, etc., means that the Grashof number is based onthis dimension.

s
Heat source parameter defined by Equation 2.9, nondimensional
Local heat transfer coefficient, Btu/hr-ftZ-OF

Averaged heat transfer coefficient over a length, Btu/hr--ftz-"F
Thermal conductivity, Btu/hr-ft-°F

Frictional heating parameter defined by Equation 2.1, nondimensional

Length of plate, pipe, or annulus, ft

Average Nusselt number over a surface [NuL = (hL/k) ], nondimen-

sional. Subscript D or L means that the Nusselt number is based

upon this length,

Prandtl number [Pr = (cpu/k) = (p Cpu/k)], nondimensional
Heat transfer rate, Btu/hr

Rayleigh number (Ra = GrPr), nondimensional

Reynolds number [ReD = (va/u)], nondimensional. Subscript L

or D represents length used in definition of Reynolds number.

Temperature, °F. Subscripts w, b, or f represent wall, bulk fluid,

or film temperature

Average velocity of fluid bulk, ft/hr
Coefficient of volumetric expansion, °F_1
Absolute viscosity, b _/ft-hr

Kinematic viscosity, ftz/hr

. 3
Density, lbm/ft

NAA-SR-8617
2.9



2.2 FORCED CONVECTION

Externally caused fluid motionhas three zones associated with it— laminar
(ReD< 2100), transitional (ZIOOSReD_<_ 10,000), and turbulent (ReD> 10, 000).
Most of the experimental results on liquid metals have been obtained within the
turbulent regime. These results have been correlated by finding the average
Nusselt number as a function of the Peclet number which has proven to be very
satisfactory, In the following subsections the recommended and best presently
available equations for finding the average Nusselt number and resulting heat
transfer coefficients will be given for various geometrical environments with
the fluid properties evaluated at the film temperature. The entrance region
(amounting to 20 to 40 diameters in length) has been neglected in most caseé,

39

because it affects the average Nusselt number by only 0 to 5%.

2.2.1 Circular Pipes

One of the most widely used of the semi-empirical equations for uni-

""" form wall heat flux and turbulent flow is Lyon's40 equation (neglecting entrance

effects):

— 0.8
Nup = 7.0 +0.025 Pe ) .. (2.11)

Dwyer4l proposed to modify Lyon's equation in order to bring it into better
agreement with experimental results by obtaining an equation for the average
effective value of the ratio of the eddy diffusivity of heat transfer to that for
momentum transfer which was considered equal to one in Lyon's equation.

Dwyer's relationships, which apply only for PeD>4OO, are as follows:

— — 0.8
Nup, = 7.0 + 0.025(% Pe) , ... (2.12)
- 1.82
p=1- T4 - ... (2.13)
Pr(cM/V) ’
max

Values of (GM/V) , ¥, and -N_uD are given in Figures 2.5, 2.6, and 2.7 re-
m

ax
spectively. Note that in Figure 2.5 (GM/V) is given for pipes, annuli, and
max

rod bundles. The latter two geometries will be discussed in later sections.
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Dwyer compared his equation with the experimental results by Brown et a142 and

Kirillov et al43 for mercury under ''wetting'' conditions in the high Peclet number
range (PeD> 103) and found that good agreement was evident. In the intermediate
Peclet number range Equation 2.12 was compared to the discrepant experimental
results of Kirillov43 and Khabakhpasheva44 with NaK, and Novikov et al45 with
Na and was found to be a compromise between their results. The author com-
pared Equation 2.12 with the results of Baker and Sesonske39 for forced convec-
tion in a horizontal concentric tube in the Peclet number range, 300<Pe <2500,
with NaK-56 as the fluid and found that Equation 2.12 agreed quite well with their
results. In the low Peclet number range, 10<Pe <600, Dwyer compared a fam-
ily (Pr as the variable) of extrapolated curves between Equation 2.12 and the
known limiting laminar Nusselt number, ﬁuD = 48/11, with the disagreeing ex-
perimental results of Pirogov46 with Na and Petukhov and Yushin47 with Hg
(lower results occurred with Hg than with Na) and found that his equation was
again a compromise between the two different results. Additional expe rimental
results are neededto properly evaluate the accuracy of the extrapolated Equation2.12
in the low (laminar) Peclet number range, butitsuseinall rangesis recommended

s
until such data are available to warrant the use of an improved equation.”

For the uniform wall temperature case with turbulent pipe flow, Segan

and Shimazaki48 obtained the equation,

= 0.8
Nup = 5.0 + 0.025 Pe , ool (2.14)

which gives results about 5 to 10% lower than Equation 2.12, but Baker:‘s9 found
experimentally that there existed no difference between a Nusselt number for
uniform wall temperature or for uniform wall heat flux. Therefore, Equation 2.12

may be used for both cases.

2.2.2 Parallel Plates

Seban49 approximated a solution for turbulent flow between two wide

parallel plates with heat transfer through one side only and obtained the equation,

0.8
NuDe = 5.8 + O.OZQDeDe> . ... (2.15)

*See B. Lubarsky and S. J. Kraufman's report (NACA-TN-3336) for older liquid
metal work and R. Herrick's report (TRG Report 546R) for a recent heat
transfer survey.
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4 .
Forthe case of parallel plates with heat through both sides, Seban 9 obtains anapprox-

imationbythe principle of superposition whichisbest understood by reviewinghis
paper.

2.2.3 Concentric Annuli

Dwyer and TuSO obtained a semiempirical equation for constant wall

heat flux through the inner wall only and fully established turbulent flow which is:

C
Nuann,D = A+ B(Q()PeD > ... (2.16)
e e
where,
o
A:4.63+O.686—Ij— s ... (2.16a)
i
T
B =10.02154 - 0.000043 ?9 , and ...(2.16b)
i
2

1 1

iy I
C=0.752 + 0.01657<r—0> - 0.000883<-r—(1> ) ... (2.16¢)

Values of GM/U and  are obtained from Figures 2.5 and 2.6, respectively.
Dwyer compared Equation 2.16 with the experimental results of Subbotin et al51
for mercury flowing through an annulus of ro/ri = 1.09 and of Petrovichev52 for
mercury flowing through annuli of ro/ri = 1.55 and ro/ri = 1.67 and found that
Equation 2.16 agreed quite well with the data, Figure 2.8 contains a plot of

Equation 2,16 for various ro/ri values.

2.2.4 Noncircular Ducts

Hartnett and Irvine53 proposed an equation for finding the Nusselt
number in turbulent flow for various geometries and boundary conditions by

using a slug Nusselt number given by various experimenters, which is;

N _ N 0.8
NuDe —(2/3)Nu.s + 0.015 PeDe s .o (2.017

where the various boundary conditions are givenin Figure 2.9 and the slug Nusselt
numbers for simple geometries are givenin Table 2.1 (see original paper for more

complex geometries).
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Figure 2.9 Boundary Conditions of Importance
For Noncircular Ducts
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TABLE 2.1

SLUG NUSSELT NUMBERS FOR SIMPLE GEOMETRIES

* Slug
Geometry goundgry Nusselt
onditions
Number
Circle A 5.80
B 8.0
Square A (m)%/2 = 4.93
B : 7.03
Equilateral A ?
triangle B 6.67
Infinite slot A (m)2 = 9.87
B 12
Infinite slot with A (m)2/2 = 4,93
one wall insulated B 6
90°isosceles A ?
triangle B 6.55

*See Figure 2.8
2.2.5 Shell Side Heat Transfer

Very few experiments have been conducted with liquid metals flowing
parallel through equilateral triangular tube bundles. In fact Friedlandet a154
and Dwyer and Tu55 seem to be the only experimenters that have published re-
producible results for the above case. Dwyer41 modified Dwyer and Tu's

equation (1.375<P/D<2.20),

2 0.273

Nup, = 0.93 + 10.81(5) - 2.01(%) n 0.0252@;) FPe)”® ... (2.18)

Ry

which was for full-established turbulent flow (102_<_ Pe< 104) and constant heat
flux, by using Figures 2.5 and 2.6 to obtain a value for ¢ other than 1.0. Com-
parison of Equation 2.18 by Dwyer with the results of Friedland et al for mer-
cury not wetting the tubes (no difference was found between wetted and unwetted
walls if no entrained gas is present) showed excellent agreement between the
two. Figure 2.10 gives a plot of Equation 2,18, for various P/D values, extrap-
olated into the streamline zone by Dwyer. Since Equation 2.18 was found only
for mercury, it may also be used for the alkali metals (in other geometries the
correlations hold for alkali metals as well as for mercury) until such data are

available to warrant the use of a different equation.
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Some work has also been done on cross-flowing liquid metals in equi-
lateral triangular tube banks. Rickard, Dwyer, and Dropkins6 obtained results
with nonwetting and wetting mercury (no gas entrainment) under conditions of
constant axial, not angular, heat flux (electrically heated tubes), and P/D equal
to 1.37 and published the following equation:

Nu,, = 4.03 + 0.228 Pe 0.67 . ... (2.19)
D D

McGoff and Maus‘celler57 obtained results for NaK-56 heating the tubes on the
inside and cooling by crossflow on the outside for a P/D ratio of 1.25, The

author correlated their results into the following equation:

- 0.8
Nup = 0.068 + 0.25 Pery

... (2.20)
Equations 2.19 and 2.20 are plotted in Figure 2.11. Since Rickard, Dwyer, and
Dropkin could not explain why the mercury results varied according to the 0.67

power of the Reynolds number as compared to McGoff and Mausteller's results,
which varied according to the 0.8 power and because the mercury results differ
to such a great extent from the NaK results, Equation 2.19 is recommended for
mercury systems and Equation 2.20 for alkali metal systems until further ex-

perimental results are available to prove otherwise,
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NOMENCLATURE

Specific heat at constant pressure, Btu/lb-°F
Diameter of tube, ft

Equivalent diameter of a conduit other than a tube
[De = 4 (cross sectional area/wetted perimeter)],ft. For two
wide parallel plates close to each other, De equals two times the

width of one plate.
Local heat transfer coefficient, Btu/hr-ft2-°F
Averaged heat transfer coefficient over a length, Btu/hr-ftz-"F

Thermal conductivity of fluid, Btu/hr-ft-°F

Average Nusselt number over a surface [N_uD = (hD/k) ], dimension-

less. Subscript s will indicate the Nusselt number is for slug flow.

Tube pitch, i.e., distance between tube centers in a bundle, ft
Peclet number (Pe = RePr), dimensionless

Prandtl number [Pr = (cp p/k)], dimensionless

Radius, ft

Inner radius of annulus, ft

Quter radius of annulus, ft

Reynolds number [ReD = (pvD/u) ], dimensionless. Subscript D
represents the geometrical dimension used in the definition of the

Reynolds number.

Average velocity of fluid bulk, ft/hr

Eddy diffusivity for heat transfer, ftz/hr
Eddy diffusivity for mass transfer, ftz/hr
Absolute viscosity, lbm/hr-ft

Kinematic viscosity, ftz/hr

Density, lbm/ft3

Average value of €H/ €y ratio, dimensionless
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2.3 BOILING

Considerable attentionhas been givento boiling liquid metal heat transfer
within the last few years. There exist only limited amounts of data on this mode

58, 59, 60

of heat transfer. Recently several authors have published literature

surveys, while othersél’ 62,63, 64, 65,66 have presented results on boiling lig-
uid metal heat transfer. However, no adequate correlation has been developed
to predict the local boiling heat transfer coefficient, mainly because programs
were conducted to produce data for specific projects and conditions. What is
needed to break through the barrier produced by the many variables — increased
surface roughness, boiler pressure, or exit quality (for x, < 50%) increases
the heat flux at a fixed temperature difference — in boiling heat transfer is an
extensive experimental program conducted with the sole purpose of developing
correlations that will adequately predict local heat transfer coefficients in two-

phase flow. The following subsections contain information and conclusions

formed by the author from the known available data on boiling heat transfer.

2.3.1 Pool and Forced Convection Boiling

Figure 2.12 contains all the known pool, nucleate boiling, heat flux
data on liquid metals that are available. Lyoné? performed a pool boiling ex-
periment with pure mercury and mercury containing additives to promote wetting
in order to obtain pool boiling heat flux data, which are shown in Figure 2.12 as
a line to within #10%. Lyon used a 3/4-in. diameter, horizontal, stainless steel
cylinder to boil mercury over the outside surface at a saturation pressure of one
atmosphere., The sodium data were obtained from Shulman63 and Noyes
where sodium was pool boiled over a 1/4-in. diameter horizontal cylinder at
various saturation pressures. Shulman used stainless steel heaters, while
Noyes used both stainless steel and molybdenum heaters, and found a difference
in heat fluxes existing at a given temperature difference which could not be ex-
plained. The potassium data were obtained from Reference 60 where potassium
was pool boiled over a lapped and polished nickel plate at various saturation
pressures. No significant spread in data existed over the range of pressures
used, resulting in the data being represented in Figure 2.12 as one line to within
*15%. No boiling data were available for rubidium or lithium; however, a
company-sponsored program on boiling rubidium is being conducted at Atomics

International with the sole purpose of obtaining local heat transfer coefficients
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as a function of pressure and quality in single and multirod flow channels. The
range of variables are as follows: boiling temperature ranging from 1200 to

1800°F; heat fluxes up to 500,000 Btu/hr-ftz; and quality ranging from 0 to 50%.69

Figures 2.13 to 2.15 represent a proposed method (formerly presented
by Forster and Grief65) of determining saturated, forced convection, nucleate
boiling heat fluxes in liquid metals for which saturated, pool boiling data are
available (only mercury with additives, sodium, and potassium data were cur-
rently available). The major assumption involved in this method is that there
exists a point along the pool boiling curve beyond which force convection has no
effect on the existing heat flux; therefore, beyond this point the forced convection
boiling heat flux is exactly equal to the pool boiling heat flux. This point can be
determined by extending a constant Reynolds number forced convection curve
(Figure 2.15) until it intersects the pool boiling curve. The heat flux at the inter-
section point (qo in Figure 2.15) is multiplied by the factor, 1.3, resulting in a
heat flux of 9 which is the minimum heat flux for \(;V;liCh pool boiling controls andv> '
determines the forced convection boiling heat flux. At some finite amount be-
low this point the forced convection boiling heat flux is exactly equal to the heat
flux produced by forced convection only. A transition exists between these two
heat flux producing mechanisms where both processes, forced convection and
pool boiling, produce the forced convection boiling heat flux (Figures 2.14 and
2.15). Of course, if the forced convection Reynolds number is low enough so
that it never intersects the pool boiling curve, as shown in'f‘igure 2.13, the
forced convection boiling heat flux will be controlled entirely by the pool boiling

mechanism.

Essentially, the above method inplies that at small temperature dif-
ferences the bubble activity is so low that negligible heat is transferred by this
mechanism as compared to the forced convection mechanism. As the tempera-
ture difference increases, a transition is reached where the pool boiling mecha-
nism begins to overcome the forced convection mechanism. At still larger tem-
perature differences, the bubble activity is so great that it completely nullifies
the forced convection mechanism. The author feels that this method of predicting
forced convection boiling heat fluxes can not be used at high qualities (xe > 50%);
slug or mist flow might exist thereby preventing a liquid film, by which bubbles

transfer energy, from contacting the entire heat transfer surface.
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Figure 2.13. Superimposed Forced Convection Heat Flux and Pool Boiling Heat
Flux Data For Prediction of Forced Convection Boiling Heat Fluxes in
Mercury With Additives

NAA-SR-8617
2.26




L

BOILING DATA RANGE
——— — —=  POOL BOILING Na, 120 (REF 63 AND 68)
FORCE CONVECTION ONLY, ID = 1/2" (EQ. 2.12)
5= ) 14.5-15.5 Dsio} FORCED CONVECTION BOILING DATA, ,
= i AT
g A 21-26 psio Re =10°, X, = 13-31% (REF 70 ) 5 oo e e
: ; RANSITION {5
S h it SRS T :
i
L BEREaan REREREERY 1
&= ;
~ 11 i
& | i
< 10° B
i : HE
< ESEEE: -
e }
p |
w T
[
< 2
u SSSFcensts
T SEEEEEEsECtE
H
Re = 10° i
- -
10°
1 : . 10}
1]
4-1-64 TEMP. DIFFERENCE, T\\~Tc,y, °F 7569-01409

Figure 2.14. Superimposed Forced Convection Heat Flux and Pool Boiling Heat
Flux Data For Prediction of Force Convection Boiling Heat Fluxes in Sodium

NAA-SR-8617
2.27



BOILING DATA RANGE
——— ———— POOL BOILING K, $15% (REF, 60)
FORCED CONVECTION ONLY
N ID = 1/2% (EQ. 2.12)
:
~
2
s8]
< -
S 10°
<
s
-
L
—
<
- : TRANSITION
» : s fn eane : HH
1 10 102
TEMP, DIFFERENCE, T\,-T oF
4-1-64 + W7 SAT, 7569-01410

Figure 2.15. Superimposed Forced Convection Heat Flux and Pool
Boiling Heat Flux Data For Prediction of Forced Convected
Boiling Heat Fluxes in Potassium

NAA-SR-8617
2.28




L W

Very little data on forced convection boiling heat transfer are available
for comparison to the above hypothesis. L-ongo70 presented some forced con-
vection boiling results (xe = 13to 31%; Re = 105) on sodium which are presented
in Figure 2.14 for comparison. One can see that Longo's results are somewhat
lower than would be expected for forced convection boiling, since the boiler
pressures are higher than the pool boiling results. But at least the results do
indicate that the proposed method predicts saturated, forced convection, boiling
heat fluxes to within experimental accuracy; as more data are obtained this con-

clusion will be proven more precisely.

The pressure and quality effects on the forced convection boiling heat
transfer coefficient are shown in Figure 2.16 for informative purposes. The
data shown are from the preliminary results of Longo70 on sodium. One can
see that at low pressures the boiling heat transfer coefficient is affected very
little by quality. It is generally known that at high qualities the heat transfer
coefficient decreases with increasing quality; therefore, as more data are gen-
erated the curves in Figure 2.16 can be completed for sodium as well as other
liquid metals. It should be further noted that the data in Figure 2.16 were ob-
tained as a specific pressure by fixing the heat flux and varying the flow rate
which indicates that the quality and flow effects are compounded. Certain plans

are being made in future tests to eliminate the compounded effect.70

Bersenson and Killackey71 presented some film boiling results with

potassium; however, their results were not included in this handbook, because

their temperature differences were much too low for film boiling to occur.

Because of the complexity of designing a compact liquid metal boiler
for space applications, a brief description of the SNAP 2 boiler (being used in a
nuclear-powered Rankine cycle space system72) heat transfer characteristics is
in order. However, such a description from References 73 and 74 is classified.
The reader is referred to NAA-SR-8617 Vol I, Addendum I, which contains the

classified portion of this handbook.

Zero gravity effects were also studied under the SNAP 2 program.
Due to the high gravity force produced by the swirl wire insert, no noticeable

change in the boiler performance occurred under zero gravity conditions,
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2.3.2 Critical Heat Flux

¢« v

Many investigators: have proposed analytiéal expressions for predicting
the burnout (critical) heat flux in saturated, pool boiling water, while a few in-

75,76, 77

vestigators have extended their generalized correlation to boiling liquid

metal. However, these correlations predict burnout heat fluxes approximately

68,78 One of the most recent and somewhat

75% below the experimental results.
successful burnout correlation for liquid metals was presented by Noye s,68 who
modified Addoms' correlation79 in order to correlate the sodium, sulphur, lig-
uefied gas, and '""high-g'' data with water and organic data. Noyes' correlation

is as follows:

0.545
PE-D 1 P 1/12'
(%)c = 1.325 )\pv<—5——l’> . (ga) /3 (f) ... (2.21)

, P, sat v

-

Figure 2.17 contains plots of Equation 2.21 made by the author using the liquid
metal properties from Section 1.2 of this handbook and Reference 2. Noyes' re-
sult568 on saturated pool boiling sodium are represented in Figure 2.17 by the
Na curve to within £30%. Also contained in Figure 2.17 are preliminary burnout
results on saturated, pool boiling potassium, which were recently published by
Balzhiser.78 Some agreement can be seen to exist between Equation 2.21 and
Balzhiser's preliminary results, While more burnout results on liquid metals
are needed to determine if Equation 2.21 is general enough to predict the satu-
rated, pool boiling, critical heat flux for all wetting liquid metals, it shall be
used until results are made available which tend to prove whether or not Equa-
tion 2.21 predicts erroneous burnout heat fluxes. In order to obtain a conserv-
ative estimation of potassium burnout heat fluxes which is normally used for de-
sign purposes, the following equation developed by the author and based on
Balzhiser's data in Figure 2.17, should be used until Equation 2.21 is proven to

be correct for all liquid metals:

(%) = (3.962 x 102)p>- 173 ... (2.22)
C, P, sat

CO &) & W B & & B &8 8B B & 6 & =

¢
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It should also be noted that the author compared the burnout predictions of Zuber
and Tribus64 with Equation 2.21 resulting in 75% lower values. It was concluded

that Equation 2.21 was the best general correlation available.

The presence of forced convection and subcooling greatly complicates
the problem of predicting the burnout heat flux, which is ~20 to 150% higher,
depending upon the amount of subcooling and forced convection, thanthe saturated,
pool boiling, critical heat flux, Very little advancement has been made in
this area since experimental data are not readily available. Gambi1180 proposed
an additive method for the forced convection contribution and a multiplying factor
to take into account subcooling. Hoffman61 proposed to compare critical heat
fluxes in liquid metals to Lowdermilk's resuItSB1 on water., Some results were

82

obtained with potassium and compared favorably (within 10%) =~ to Lowdermilk's

correlations, which are as follows:

2
In the low-velocity high-exit-quality region, for G/(L/D) < 150,

-0.85
(SA) - 270(}0'85D'0'2(%) , ... (2.23)
C,F, sub
and in the high-velocity low-exit-quality region, for G/(L/D)Z > 150,
9_) - 0.5 —O.Z(£>—0.15
(A 1400G°*°D = ... (2.24)

C, ¥, sub

The range of variables used in Lowdermilk's experiment are as
follows: stable flow occurred; velocity ranged from 0.1 to 98 ft/sec; pressure
ranged from atmospheric to 100 psi; subcooling ranged from 0 to 140°F; tube
diameter ranged from 0.051 to 0.188 in.; and length-to-diameter ratio ranged
from 25 to 250. Until more experimental data becomes available, Equations 2.23
and 2.24 should be used to predict forced convection, subcooled, critical, boil-

heat fluxes with caution.

NAA-SR-8617
2.33



NOMENCLATURE
Cp = Specific heat at constant pressure, Btu/lbm—°F
D = Diameter, it
g = Local acceleration, ft/hr2
G = Mass velocity, lbrn/hr--f’c2
h = Local heat transfer coefficient, Btu/hr-ft2r°F
h = Average heat transfer coefficient, Btu/hr-ftz-"F

k = Thermal conductivity, Btu/hr-ft-°F

-
i

Length, ft

n = Number of local accelerations (g's), nondimensional

p = Pressure, psia
Pr = Liquid Prandtl number [ Pr = ([J,cp/k)], nondimensional
q = Local heat transfer rate, Btu/hr
q = Average heat transfer rate, Btu/hr
q/A,a/A = Heat flux, Btu/hr—ftz. Subscripts C, P, sat, F, and sub indicate

critical, pool, saturated, forced, and subcooled, respectively.

Re = Reynolds number [ReD = (pvD/p)], nondimensional

=
1

Temperature, °F. Subscripts w, b, f, sat, and v indicate wall,

bulk, film, saturation, and vapor, respectively.

v = Average velocity of fluid bulk, ft/hr

x = Quality, vapor wt %. Subscripts e and i indicate exit and inlet,
respectively.

o = Liquid thermal diffusivity [a = (k/pcp)], £t%/hr

A = Latent heat of vaporization, Btu./lbm

g = Absolute viscosity, lbm/ft—hr

p = Density, lbm/ft3. Subscripts £ and v indicate liquid and vapor,

respectively.
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2.4 CONDENSING

There exists, basically, two types of condensation — dropwise and
filmwise — by which vapor transfers heat to a wall. If a liquid metal wets the
wall, a film of liquid metal forms, resulting in filmwise condensation. Dropwise
condensation exists when the liquid metal is unable to wet the surface; the vapor
condenses in drops rather than as a continuous film. Somewhat higher heat
transfer coefficients are obtained in dropwise condensation as compared to film-
wise condensation, because the vapor transfers its energy directly to the surface
instead of through a film. Due to the high thermal conductivity of a liquid metal,
the advantage of dropwise condensation is somewhat suppressed as compared to
dropwise condensation for steam, which results in four to eight times higher
heat transfer coefficients than in filmwise condensation. However, dropwise
condensation rarely exists with liquid metals, except with mercury which has
the property of not wetting most metallic surfaces.

While very little data have been published on boiling heat transfer,
still smaller amounts have been published on condensing heat transfer. Cohn58
performed a literature survey on the heat transfer properties of mercury which
summarizes all work conducted prior to the year 1960. Bonilla and Misra83’ 84
obtained results for mercury and sodium condensing in a vertical, natural con-
vection tube (Figure 2.18)(sodium was condensed in a 45° inclined tube). No
explanation was given as to why the low-heat flux, air-cooled condenser gave
lower heat transfer coefficients than the high-heat flux, water-cooled condenser,
except that filmwise condensation may have existed in the air-cooled condenser.
Cohn85 obtained results for pure mercury and mercury with a sodium additive
condensing is a vertical, natural con¥ection, air-cooled condenser which almost
matched Bonilla and Misra's results.84 Filmwise condensation was assumed to
exist. No effect on the heat transfer coefficient was observed when the additive
was used; this is probably due to the sodium additive not being volatile enough in
the mercury vapor. Cohn's results are presented in Figure 2.18, Reed and
Noyes86 condensed sodium underneath a horizontal, natural convection, water-
cooled plate; their results are presented in Figure 2.18, No statement was
made as to whether the condensation was filmwise or dropwise, but it probably

. . . . 87
was filmwise, since sodium does eventually wet most surfaces. Brooks pre-

sented some preliminary results, which are shown in Figure 2.18, on potassium
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condensing in a vertical, downward forced convection flow, sodium-cooled tube.
No correlations have been developed from the data to accurately predict condens-

ing heat transfer coefficients in liquid metals.

Reed and Noyes86 and Misra and Bonilla84 studied the effects of non-
condensable gases being present in the condenser for sodium and mercury,
respectively. It can be concluded from their work that the condensing heat
transfer coefficient drastically decreasing (somewhat exponentially) as the
amount of noncondensibles increases. Figure 2.19 contains the results of

Reed and Noyes. The independent variable (effective noncondensable gaslayer) is

defined by the following equation:

L{p, -p,) p,D,,[p, - P G,L
t T2 ez T20)|) (.2 , ... (2.25)
P¢ GZ Pt P

[l
(

This method of correlation was used so that a gas heat transfer resistance

could be defined in terms of the effective thickness of the noncondensable gas.
However, the author feels that more work is needed in this field in order to
better understand and predict condensing heat transfer coefficients in a system
containing noncondensables.

It should be briefly noted that in forced convection systems zero

gravity has no effect on the condensing process, due to the dynamic force from

forced convection overriding the effect of gravity.
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NOMENCLATURE

Constant dependent on the noncondensable gas (0.0079 for helium and
0.00223 for argon)

Average binary diffusion coefficient, ftz/hr

Mass velocity, lbm/hr—ftz. Subscript 2 indicates liquid metal vapor.

2
Average heat transfer coefficient, Btu/hr-ft -°F

Distance between condensing surface and liquid metal vapor-liquid

interface, ft
Molecular weight. Subscript 2 indicates liquid metal vapor.

Partical pressure, lbf/ftz. Subscripts t, 1, 2, and 20 indicate total
system, noncondensable gas, liquid metal vapor, and liquid metal

vapor partial pressure at condensing surface, respectively.

Temperature, °R. Subscript t indicates mean system temperature of

gas mixture.
Effective noncondensable gas layer thickness, ft
Universal gas constant; = 1545 ft-lbf/lb mol-°R

. . B = 3
Density of liquid metal vapor [pz = (ptMZ/RTt)]’ lbm/ft

= Pressure independent effective diffusion coefficient (pzﬁlz = Cl v Tt)’
lb_ /ft-hr
m
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3.0 MATERIAL TRANSFER

3.1 MATERIAL COMPATIBILITY

Because ofthe ever increasing use of liquid metals inheat transfer sys-
tems, the problem of corrosionhas reacheda point where researchand development
on corrosion resistant materials is needed priortosystem construction. Materials
must be found which will be compatible at high temperatures and for long periods
of time. Unfortunately, no model has been developed to predict corrosion rates,
probably because of the many variables and types of corrosion that are present
in a system. Allowable corrosion rates should not be formulated, since the allow-
able corrosion will depend entirely upon the component's location in the system.

It should also be pointed out that extensive mass transport of the corrosion prod-
ucts to the colder portions of the system may result in '""plugging.'" The meas-
ured corrosion rate at the hotter portions may not give a good indication of how
much precipitation develops at the colder region; because as the corrosion prod-
ucts precipitate out chemically or physically, bonded materials from the coolant
stream may accompany the precipitation. Therefore, the possibility of ""plugging"
must also be considered, in addition to corrosion rates, when designing a dynamic

system,

The following three sections will briefly outline the mechanisms and preven-
tion of corrosion and a summary of dynamic corrosion data using mercury,
sodium, NaK, potassium, rubidium, or lithium. These sections are by no means
complete since there is currently much research being done in this field.

3.1.1 Corrosion3’88’89’90

Corrosion will be defined in the broad sense as the destruction of a
metal by chemical, electrochemical, or physical (such as erosion, solution, and
'\cavitation) means. There are in general two types of attack, intergranular
‘(metal is attached along the grain boundaries) and transgranular (metalis attacked
within the grains); these are controlled by four mechanisms of corrosion, which

will be discussed in the following paragraphs.

Dissolution of solid metal in liquid metal is the first mechanism which
is influenced by the chemical potential of A" in the solid metal relative to ""A"
in the liquid metal. Its rate is controlled by the diffusion rate of the solute and

the rate of reaction between the liquid and the solid. High energy regions, such
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as twinned regions {produced by the application of stress) and grain boundaries,
greatly accelerate the dissolution rate. The reader is referred to other

authors 91,92 for a detailed description of the process and variables involved.
The presence of impurities, such as oxygen, carbon, etc., in the grain and grain
boundaries greatly control the depth of penetration by the liquid metal by pre-
cipitating out at the grain boundaries and reacting with the liquid metal. Decar-
burization of low alloy steel by a liquid metal is an example of this leaching type

of corrosion mechanism.

Dissolution of liquid metals in solids is the second mechanism of
corrosion where the liquid metal, or its impurities, diffuse into the solid and
form compounds. This phenomenon can reduce the stability of a metal phase
or even change phases. The presence of nitrogen in the liquid metal can either
stabilize a metal (stainless steel) or produce a nitride as in a lithium system,

which is corrosive to most metal or ceramic containers.

Diffusion welding is another mechanism of corrosion which occurs
due to the presence of a liquid metal acting as a bridge between the two metals
tending to weld together. The presence of pressure holding the metals together,
or increases in system temperature, greatly increase diffusion welding. In fact,
the presence of valves, pumps, etc., may determine the upper temperature

limit due to the occurrence of diffusion welding in these components.

Erosion is another mechanism of corrosion. This mechanism is
exceedingly important in orifices and nozzles. It results from the flowing liquid
metal mechanically removing scale or particles from the metal and may create

cavities under extreme erosion.

The amount of corrosion is usually measured in two ways — depth of
penetration per exposed time and amount of material transport per exposed time.
There are two mechanisms that control the amount of transport through the liq-
uid metal; thermal-gradient mass transfer (also called solubility-gradient mass
transfer) and concentration-gradient mass transfer (also called activity-gradient
or dissimilar-metal mass transfer). Liquid metal systems automatically satisfy
the requirements of mass transfer, since the system cannot be isothermal, if
heat is to be obtained from it; and it seldom occurs that the metal loops are con-

/

structed entirely from the same material.
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Temperature-gradient mass transfer occurs due to a finite solubility
of one or more components of the structural material in the liquid metal, a tem-
perature effect on solubility, and an anisothermal liquid metal coolant. Material
that is being transferred dissolves into the liquid metal (usually in the "hot"
zone), is transported to another part of the system (usually the '"cold'" zone), and
""plates out'" onto the metal surface, The process is controlled by either the rate
of solution or deposition or by the diffusion rate of the transported material
through the metal to the liquid-metal interface. '"'Plugging'' is an excellent ex-

ample of this type of material transfer,

Concentration-gradient mass transfer will occur when different mate-
rials with different concentrations, which act as the driving force or potential,
of at least one constituent, are present. A constituent having the lower affinity
for a metal will dissolve into the liquid metal and be carried along until it ""sees"
a metal having a higher affinity. The constituent then leaves the coolant and
diffuses into this metal, thus completing the cycle, which continues until the
affinity for this constituent in both metals are equal. The rate of material trans-
fer may be controlled by the diffusion rates through each metal, by the rate of
transfer through the liquid metal coolant, or/and by the rate of solution or deple-
tion at the metal surface. An excellent example of this type of material transfer

is the transfer of carbon from low alloy steelto stainless steelin sodium systems.

3.1.2 Inhibition of Corrosion

There are only a few methods by which corrosion in a dynamic,
anisothermal system canbe reduced. The use of inhibitors (scavenging type or
diffusion-barrier type) may effectively reduce c:orrosion.93 The scavenging-
type of inhibitor acts by removing the impurities (oxides, nitrides, hydrides,
etc.) from the liquid metal that are responsible for accelerating corrosion, by
either ihcreasing the rate of mass transfer or reacting with the container mate-
rial, thus depleting the container of its constitutents., In order for this type of
inhibitor to be successful, its thermodynamic stability with the impurity must be
much greater than that of the impurity with the container. The scavenger may
be present as either dissolved atoms in the liquid metal or a solid suspended in
the stream of liquid metal, both methods of location having its advantages and
disadvantages.93 Examples of the scavenging type of inhibitors are magnesium,

94

titanium, and zirconium which are used to deoxidize liquid sodium. Hot trap-

ping would also be an example of this method of corrosion reduction.
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The diffusion-barrier type of inhibitor acts by forming a protective
surface film on the container, which prevents the container from coming into
contact with the liquid metal; which in turn decreases the rate of solution of the
container material, thus reducing corrosion. For successful reduction of cor-
corion by a diffusion-barrier type of inhibitor, certain requirements must be
met as follows: (1) large negative free energy of formation of the film layer must
exist; (2) the film must be chemically inert to all components of the system, in-
cluding impurities that may come into contact with the inhibiting layer; (3) sta-
bility of the film must exist; and (4) the container's solubility and diffusion rate
in the film must be low.93 Examples of the diffusion-barrier type of inhibitor is
calcium plus titanium or zirconium which is used to reduce mass transfer of iron

95

in liquid mercury.

Heat treatment may be used to reduce corrosion on materials contain-
ing carbon. If carbides exist along the grain boundaries of the solid, spheriodizing
heat treatment can effectively reduce intergranular attack by removing these

carbides from the grain boundaries,

Purification during operation by either cold trapping or hot trapping
(discussed earlier) can effectively reduce corrosion, if impurities are the cause
of such corrosion. Unfortunately in some systems, the impurity concentration
can not be reduced sufficiently to prevent excessive mass transfer (corrosion).
Davis and Draycot’c94 demonstrated that the oxide concentration could not be
- reduced to a tolerable level by cold trapping in a niobium or vanadium loop. Hot

trapping had to be incorporated into the system.

3.1.3 Choice of Material
2,3,88,96

Many authors have attempted to summarize the corrosion
results of other experimenters. Unfortunately test times, temperatures, and
metal surface conditions were in most cases not clearly reported. Because of
the numerous static tests conducted and reported elsewhere, only recent dynamic
and semistatic tests will be summarized in this report. The reader is referred
to References 2, 3, 88, 96, and 97 that summarize the early static and dynamic
tests. The following sections contain corrosion data on the six liquid metals con-~

sidered in this handbook.
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3.1.3.1 Mercury

Most of the material compatibility investigations with mercury have
been done for SNAP 2 program. One of the most extensive corrosion test598
conducted was done by first screening materials using bent reflex tubes at 900°F
or 1100°F and then using two-phase, natural circulation loops constructed from
the materials that proved satisfactory in the bent reflex tube (BRT) tests. The
reader is referred to Reference 98 for the discussion and results of the materials
tested (low- and high-alloy steels, 300 and 400 series stainless steels, precipi-
tation hardening steels, nickel- and cobalt-base alloys, and nonmetallics)., Fig-

ure 3.1 somewhat summarizes very briefly the results of Reference 98.

Ellis99 reported some bent reflux tube tests using mercury with
nickel-base braze alloys, which also was done under the SNAP 2 program.
Brazing was done in a vacuum and for 10 min attemperature. Table 3.1 sum-
marizes these scattered tests, from which no conclusions were drawn. Ref-
erence 100 is an extension of the work by Ellis and presents corrosion and sub-
sequent mass transfer results on materials that are being considered for use in
the SNAP 2 system. The reader is referred to NAA-SR-8617 Vol I, Addendum I

for the discussion on Reference 100, since it is classified.

3.1.3.2 Sodium

Davis and Drayc:ott94 reported on some extensive forced convection
loop tests conducted to determine the effect of sodium on material specimens,
such as stainless steel, various ferritic steels, nickel, titanium, zirconium
and alloys, niobium, vanadium, uranium and fission products, thorium, and
beryllium. The largest part of their work was conducted to determine the effect
of oxygen in the liquid metal on niobium (columbium) and vanadium which re-

sulted in concluding that the mechanism of excessive attack was oxide controlled.

Some tests were conducted using NaK instead of sodium which seemed
to pose no problem, since sodium is oxidized preferentiallyto potassium; however,
some potassium oxide might exist, because some kind of equilibrium would seem
likely to occur. Therefore, the corrosion results will have to be verified be-
fore it can be definitely stated that the oxide causing the corrosion is sodium

oxide only; However, it can be stated that misleading results are obtained if
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TABLE 3.1

Hg CORROSION RESULTS OF NICKEL-BRAZED SPECIMENS (PH15-7 Mo)
TESTED IN BRT FOR 30 DAYS AT 900°F (REF. 99)

Braze Weight .k
Br(ivzte%zf)xlloy Temperature Change Pen?itr:'a)’uon
(°F) (mg) )
Nicrobraze No, LC ‘ 2150 +0.2 0.0014
(Ni +13.5Cr +4.5 Fe +3.5B +0.15 C + 4.5 Si)
Repeated 2075 -10.6 0.0104
Repeated 2075 -5.0 0.0016
Nicrobraze No. LM
(Ni +65Cr +2.5 Fe +3.0B + 0.15 C + 4.5 Si) 1900 -9.3 0.0144
Repeated 1900 -5.6 0.0014
Nicrobraze No. 150
(Ni + 15.0Cr +3.5B + 0.15 C) 2150 -13.2 0.0076
Repz=ated 2150 -6.7 0.0094
Repzated 2075 -10.0 0.0063
Repeated 2075 -9.3 0.0076
Nicrobraze No, 130
(Ni + 3.0 B +0.15 C + 4.5 Si) 1875 -1.4 0.0055
Nicrobraze No. 30
(Ni +19.0 Cr + 0.15 C + 10.0 Si) 2175 -7.6 0.0041
Repeated 2175 -3.6 0.0096

**Penetration is defined as the maximum local surface recession due to the mercury test
environment.



the corrosion is dependent upon the formation of alloys or solutions with either

sodium or potassium; this does not seem to be the case with niobium, vanadium,
uranium, zirconium, and nickel materials. A summary of some of the corro-
sion results of Reference 94 is given in Tables 3.2 through 3.12.

101,102 also summarized some results which are

Hoffman and Manly
worth presenting for the sake of a very brief outlook upon the materials prob-

lem with sodium. Figure 3.2 is a representation of Hoffman and Manly's

conclusions.

Wagner and Klinelo3 tested some zirconium alloys in natural convec-
tion, cold trapped (O‘2 at 10 ppm) sodium for various lengths of time. Their

results are summarized in Table 3.13.

3.1.3.3 NaK

The eutectic sodium-potassium alloy has received considerable at-
tention due to the SNAP 2 program. Perlow104 presented results from corro-

sion studies conducted with NaK-78 which are presented in Tables 3.14 and 3.15.

Page89 made a literature search and presented results from the tab-
corrosion studies at Atomics International and mass transfer studies at the
Oak Ridge National Laboratory. From the data available, the conclusion was
formed that NaK corrosion with metals other than refractory materials was by
carbon transfer above 800°F, intergranular penetration between 1000 and 1400°F

induced by oxygen, and nickel and chromium transfer above 1400°F.
3.1.3.4 Potassium

Jansen and I—Ioffrnanlo5 have conducted some compatibility tests using
natural circulated, boiling potassium loops with two different materials., Their
results are classified; therefore, refer to NAA-SR-8617, Vol I, Addendum 1 for
this information. Tests with a Cb + 1% Zr alloy are being conducted, but as yet

have not been reported.

. 106
Hammond and Littman presented some corrosion results using

refractory material specimens inserted in a forced convection, boiling potas-

sium loop. Table 3.16 summarizes their results, which are very misleading

NAA-SR-8617
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TABLE 3.2

NIOBIUM CORROSION IN COLD TRAPPED CIRCUITS
(Reference 94)

Test | Buration | Temperanre | veiociey | SO0 T | wesgne Ghange | POngItr
(hr) (°C) (°C) (g/dm” /mo) (mil/ mo)
1 500 370 1.31 140 -0.093 0.042
2 500 370 2.07 140 -0.086 0.039
3 500 370 3.58 140 -0.099 0.045
4 500 370 5.86 140 -0.079 0.035
5 500 370 11.32 140 -0.090 0.040
6 500 405 1.32 140 -1.57 0.71
7 500 405 2.09 140 -1.83 0.82
8 500 405 3.62 140 -2.44 1.09
9 500 405 5.93 140 -2.70 1.22
10 500 405 11,42 140 -5.21 2.34
11 500 456 1.35 140 -7.77 3.49
12 500 456 2.13 140 -8.83 3.75
13 500 456 3.69 140 -15.7 7.07
14 500 456 6.04 140 -21.2 9.54
15 500 456 11,65 140 -49.2 22.11
16 500 500 1.36 140 -17.5 7.86
17 500 500 2.15 140 -25.9 11.68
18 500 500 3.73 140 -36.3 16.64
19 500 500 6.12 140 -47.4 21.37
20 500 500 11.79 140 Completely 30
corroded
21 350 600 5.5 120 -1.60 0.74
22 350 600 5.5 240 -2.92 1.34
23 336 600 16.2 125 -33.34 15,35
24 336 600 24.2 125 -42.75 19.63
25 336 600 27.1 125 -55.5 25.60
26 336 600 29.5 125 -71.6 32.90

NOTE: Liquid metal Tests 1 to 20, NaK-78; Tests 21 to 26, NaK-30,
Material Tests 1 to 20, tubes; Tests 21 to 26, sheets.

NAA-SR-8617
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TABLE 3,3

NIOBIUM — REDUCTIONS OF CORROSION RATE EFFECTED BY
INCORPORATION OF DEOXIDANTS INTO THE CIRCUIT
(Reference 94)

TI\?OSt Dol;r;tel;tn Zinslgzz?;t: \(/'f(:l/oscei(t:gr Method of Oxide Control N([)eisetxl;?d W(ei/g:t g/hang)e penfitalt.:ztlon
‘ {hr) (°C) (ppm) g/am®=/mo (mils/mo)
Deoxicllant-Magnesium*
1 250 500 1.34 120°C cold trapped for 72 hr. Specimens - -0.0347 0.0155
2 | oo 10 | then raised to fest condivion —loR ot |
3 250 500 3.64 - -0.138 0.0618
4 250 500 5.96 - -0.352 0.1571
5 250 500 11.46 - -0.145 0.0646
Preclean Conditions
Z 6 176 600 30 110°C CTS 4 hr Mg dispenser 185°C 24 hr - -0.0358 0.016
li 357 600 25 120°C CT§ 35 hr Mg dispenser 200°C 35 hr - +0.048 No loss
?: gu) 8 350 600 25 130°C CTY 124 hr Mg dispenser 200°C 29 hr - +0.040 No loss
© &' Deoxi<|ian1:-TitaniulrnT
S: Preclean Conditions
~ 1 12 550 30 120°C CTY 6 hr Ti HT™ 650°C 12 hr 10 -10.72 5.24
2 72 540 30 120°C CTY 24 hr Ti HT " 650°C 48 hr 3 0.7 0.33
3 302 - 550 30 120°C CTY 24 hr Ti HT™ 650°C 48 hr 3 -0.116 0.054
Deoxi<l:1ant-ZirconiumJr
Preclean Conditions
1 168 600 30 120°C CTS 24 hr 600°C Zr HT * 48 hr 49 -0.1334 0.061
2 163 600 30 120°C cTY 24 hr 600°C Zr HT* 48 hr 63 -6.34 2.92
3 168 500/600 30 120°C CT? 48 hr 500°C Zr HT " 72 hr 4 20.099 0.045
4 256 600 30 120°C CTY 48 hr 600°C Zr HT * 72 hr 28 -0.0575 0.025
5 162 600 30 120°C CTS 48 hr 600°C Zr HT X 72 hr 5 -0.161 0.074
*Liquid metal 1 to 5 NaK-78, 6 to 8 NaK-30
tLiquid metal Na
§CT = cold trapped
**HT = hot trapped
All material, tubes




TABLE 3.4

VANADIUM CORROSION IN COLD TRAPPED CIRCUITS
(Reference 94)

Test Temperature Velocity | Weight Change Penetration
No of Specimen (ft/sec) ( /dmz/mo) Rate
: (°C) g (mils/mo)
1 350 1.845 -0.828 0.53
2 350 2.91 -1.635 1.06
3 350 5.04 -2.670 1.74
4 350 8.24 -3.280 2.12
5 350 15.89 -5.230 3.38
6 394 0.85 -2.78 1.79
7 394 1.34 -3.31 2.13
8 394 2.33 -5.37 3.46
9 394 3.81 -7.51 4.84
10 394 7.31 -9.42 6.07
11 406 1.878 -5.46 3.52
12 406 2.96 -8.49 5.47
13 406 5.13 -12.82 8.27
14 406 8.38 -16.45 10.62
15 406 16.15 -21.94 14.12
16 460 0.875 -7.71 4,98
17 460 1.37 -11,52 7.58
18 460 2.38 -15.89 10.26
19 460 3.90 -20.30 13.20
20 460 7.57 -23.10 14.70
21 600 5.5 -9.12 5.8
NOTE: Duration of test 500 hr except for Test 21 (350 hr)

Cold trap temperature 141°C except for Test 21 (120°C)
Liquid metal NaK-78 except for Test 21 (NaK-30)
Material all tube except Test 21 which was sheet

NAA-SR-8617

3.11



(4 BR1

L198-9S-VVN

VANADIUM REDUCTIONS OF CORROSION RATE EFFECTED

TABLE 3.5

INCORPORATION OF DEOXIDANTS INTO THE CIRCUIT
(Reference 94)

BY

Test Duration | Temperature Velocit Measured Weight Ch Penetration
1\?: of Test of Specimen (ft/ sec{ Method of Oxide Control O Level (el/gdmz/nilol)ge Rate
: (hr) (°C) (ppm) g (mils/mo)

Deoxidant-Magnesium

1 350 600 5.5 120°C CT 24 hr 0.01% Mg added - -0.072 0.046
Deoxidant-Titanium

2 350 550 5.5 120°C CT 48 hr HT 700° - 24 hr - -0.019 0.012

3 136 600 25 120°C CT 48 hr HT 700° - 72 hr 8 -0.047 0.3
Deoxidant-Zirconium

4 127 600 25 120°C CT 48 hr HT 600° - 72 hr -0.298 0.190

5 216 550 25 120°C CT 48 hr HT 600° - 72 hr -0.036 0.023

6 393 580 25 120°C CT 48 hr HT 600° - 72 hr. - -0.033 0.021

NOTE: Penetration rate at same temperature

and velocity under CT conditions 5.8 for Test 1,

Liquid metal NaK-30 for Test 1, Na for other tests.
Material Tests 1 and 2, sheet; Tests 3 to 6, tube.
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TABLE 3.6

STAINLESS STEEL 18-1-1
CORROSION IN COLD TRAPPED CIRCUITS
(Reference 94)

Test Temperature Velocity | Weight Change Penetration
No of Specimen (£t/ sec) ( /dmz/mo) Rate
: (°C) g (mils/mo)
1 400 4 +0.0028 -
2 400 8 +0.0003 -
3 400 10 -0.0032 0.0017
4 600 5.5 +0.0022 -
5 600 0.1 -0.0138 0.0068
NOTE: Form of material for all tests, 18-8-1 SS sheet, except

Test 5 which was tube.
tests 130°C, except Test 5 (100°C).
all tests, Na, except Test 5 (NaK-78).

Tests 1 to 4, 350 hr, Test 5, 500 hr.

TABLE 3.7

Cold trap temperature for all
Liquid metal for
Duration of

URANIUM CORROSION IN COLD TRAPPED CIRCUITS
(Reference 94)

Test zfr;lg:criiiie Velocity Weight—(zlhange Pen;:::tion
Numb
umber (°C) (ft/sec) (g/dm” /mo) (mil/mo)
1 511 1.02 -6.53 1.33
2 511 1.67 -9.04 1.84
3 581 1.67 -13.95 2.85
4 581 3.21 -22.2 4.33
NOTES:

Form of material — quadrant of 1.5 in. disc, pickled.
Duration of test, 500 hr
Cold trap temperature, 180°C
Liquid metal, NaK-78

NAA-SR-8617
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TABLE 3.8

ZIRCONIUM CORROSION IN COLD TRAPPED CIRCUITS
(Reference 94)

Materia Temperstere | vetoeny | ST | g Change
No. (°C) (ft/ sec) (°C) {g/dm#=)
1 Tube-pickled 393 1.0 120 -0.012
2 Tube-pickled 393 1.6 120 -0.016
3 Tube-pickled 393 2.8 120 -0.013
4 Tube-pickled 393 4.6 120 -0.022
5 Tube-pickled 393 8.8 120 +0.006
6 Tube-pickled 467 1.05 120 +0.008
7 Tube-pickled 467 1.7 120 +0.015
8 Tube-pickled 467 2.9 120 +0.021
9 Tube-pickled 467 4.7 120 +0.013
10 Tube-pickled 467 9.0 120 +0.062
11 Tube-pickled 550 1.08 120 +0.028
12 Tube-picklied 550 1.7 120 +0.042
13 Tube-pickled 550 3.0 120 +0.046
14 Tube-pickled 550 4.8 120 +0.039
15 Tube-pickled 550 9.3 120 +0.006
16 Tube-pickled 481 2.1 180 +0.0563
17 Tube-pickled 481 3.4 180 +0.0527
18 Tube 481 3.4 180 +0.0461
19 Tube-pickled 523 2.2 180 +0.0727
20 Tube-pickled 523 3.5 180 +0.0725
21 Tube 523 3.5 180 +0.0593
22 Arc melted-pickled 550 3.5 150 +0.0463
23 Arc melted-pickled 550 2 150 +0.0500
24 Carbon melted as received 600 4.8 145 +0.225
25 Carbon melted-pickled 600 4.8 145 +0.156
26 Arc melted as received 600 4.8 145 +0.163
27 | Arc melted-pickled 600 4.8 145 +0.162
28 Arc melted-pickled 650 4.8 160 +0.309
29 Arc melted-pickled 650 3.5 160 +0.300
30 Arc melted-pickled 650 2.0 160 +0.294
31 Arc melted-pickled + 200 ppm N, 650 4.8 160 +0.339
32 Arc melted-pickled + 100 ppm N2 650 4.8 160 +0.329
33 Arc melted-pickled 650 3.5 160 +0.344
34 Arc melted-pickled + 50 ppm N2 650 4.8 160 +0.352
35 Arc melted-pickled 650 2.0 160 +0.325

NOTE: Liquid metal for Tests 1 to 21 (NaK-78), Tests 22 to 35 (Na)

Duration of Tests 1 to 5, 500 hr; Tests 6 to 15, 250 hr; Tests 16 to 21, 2288 hr,
Tests 22 to 27, 350 hr; Tests 28 to 35, 700 hr.

NAA-SR-8617
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TABLE 3.9

FERRITIC STEELS CORROSION IN COLD TRAPPED SODIUM
(Reference 94)

Weight Change

Test Type of Material Velocity 2
No. and Preparation (ft/sec) (g/cm®/mo)
400°C 550°C
1 Hitem: 1/2% Cu steel 5.5 -0.01302 ~0.0826
2 Hitem: 1/2% Cu normalized 2.0 -0.0127 ~0.0746
Hitem: 1/2% Cu normalized
and stress relieved 5.5 -0.00496 ~0.0816
4 C - 1% Mn steel -0.0124 -0.1068
5 C - 1% Mn steel normalized 2.0 -0.0093 -0.0988
C - 1% Mn steel normalized
and stress relieved 5.5 -0.00404 ~-0.0510
1% Cr - 1/2% Mo 5. -0.0149 -0.047
1% Cr - 1/2% Mo normalized 2.2 -0.01304 -0.0476
1% Cr - 1/2% Mo normalized
and stress relieved 5.5 -0.00404 -0.051
10 1/2% Mo -1/4% V 5.5 ~-0.00558 ~0,0498
11 1/2% Mo - 1/4% V
normalized and tempered 4.0 -0.0059 -0.0542
12 1/2% Mo - 1/4% V
normalized, tempered,
and stress relieved 5.5 -0.00992 -0.0506
NOTE: Unless otherwise stated, experiments were carried out to

18-8-1 SS loops, and all in sodium.

As decarburization

occurred in most cases at 550°C, conversions of weight

losses to penetration rates are worthless and are not
given. Duration of all tests 350 hr.

all tests 120°C,

NAA-SR-8617
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TABLE 3.10

2-1/4% Cr - 1/2% Mo STEEL CORROSION IN COLD TRAPPED CIRCUITS
{Reference 94)

Test . . Velocity Weight Change . . .
No. Material Preparation (£t/ sec) (g/dmz/mo) Metallographic Examination
1 As received -0.00532 No decarburization
2 As received -0.03974 Slight evidence of decarburization,
the edge grains being mainly ferritic,
3 Annealed 4.8 -0.0358 Each end of the specimen showed an
area 0.012 in. deep of diminished
pearlite intensity
5 Normalized and tempered 4, -0.0358
6 Annealed and stress-relieved -0.0282
7 Annealed and stress-relieved 2. -0,0290
8 Normalized, tempered, and
stress-relieved 4.8 -0.0239
9 Normalized, tempered, and
stress-relieved 2.2 -0.0172
10 Annealed and spot welds .5 -0.0276
11 Normalized, tempered, and
spot welds 3.5 -0.0231
12 Annealed, spot welds, and
stress-relieved 2.2 -0.0304 Each end of the specimen showed an
area 0.012 in. deep of diminished
pearlite content.
13 Annealed, spot welds, and
stress-relieved 4.8 -0.0342
14 Normalized, tempered, spot
welds, and stress-relieved 4.8 -0.0307
15 Normalized, tempered, spot
welds, and stress-relieved 2.2 -0.0169
NOTE: Tests carried out in 18-8-1 SS rigs and in sodium. Penetration rates are not quoted because of the

possibility of occurrence of decarburization,

Duration of Test 1 and 2, 350 hr; Tests 3 to 15

700 hr. Temperature of specimens — Test 1, 400°C, other tests 550°C. Temperature of cold
trap — Tests 1 and 2, 120°C, other tests 150°C,




TABLE 3.11

NICKEL CORROSION IN NaK-78, COLD TRAPPED AT 120°C
(Reference 94)

Test Tempergture Velocity | Weight Change | Penetration Rate
No of Sf’fé;men (ft/ sec) (g/dmz/mo) {mils/mo)
1 464 1.57 +0.0028 -
2 464 2.52 -0.0576 0.00258
3 464 4.28 -0.01585 0.00071
4 499 1.57 +0.00865 -
5 499 2.52 +0.0072 -
6 499 4,28 +0.0153 -
7 542 0.92 -0.104 0.00465
8 542 1.48 +0.0048 -
9 542 2.52 +0.0176 -
10 590 0.92 +0.0272 -
11 590 1.48 +0.0208 -
12 590 2.52 +0.0176 -

NOTE: Material, all tube.
Duration of test — Test 1 to 6, 500 hr; Tests 7 to 12, 450 hr.

TABLE 3.12

TITANIUM CORROSION IN SODIUM,
COLD TRAPPED AT 120°C
(Reference 94)

Test Duration Temperature Weight Change
No of Test (°C) (g/dm2/mo)
' (hr) &
1 440 400 +0,0012
6.7 500 -12.0
16.7 -15.0
2 33 -16.4
83 -11.7
167 -9.1
6.7 650 -47.0
16.7 -42.8
3 33 -40.0
83 -54.4
167 -40.8

NOTE: Na velocity; 5.5 ft/sec.

NAA-SR-8617
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Figure 3.2 Corrosion Resistance of Various Metals and Alloys in Sodium

REFRACTORY METALS
-1-64

Mo, Nb

COBALT-BASE ALLOYS
(STELLITE 25)
COPPER, CU-BASE

ALLOYS
PRECIOUS METALS

Ta, Ti, W, va, Zr
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TABLE 3.13

CORROSION OF ZIRCONIUM AND ZIRCONIUM ALLOYS IN
1000°F NATURAL CIRCULATED SODIUM

{Reference 103)

Average Weig}zlt Gain
Alloy (mg/em?)
(wt %) Hours
75 163 | . 303 500 1000 | 1500 , 2500
Zr 0.14 0.23 0.33 0.30 0.55 0.50 0.56
Zr + 1.5 Al 0.16 0.26 0.37 - - - -
Zr + 1.5 Al + 1.5 Sn 0.14 0.24 0.36 - - - -
Zr + 1.5 Al + 3 Sn 0.15 | 0.21 0.27 0.27 0.49 0.38 0.41
Zr + 1.5 Al + 1.5 Mo 0.22 0.35 0.44 0.46 0.73 0.61 0.59
Zr + 1.5 A1 + 1.5 Sn + 1.5 Mo 0.18 0.33 | 0.40 - - - -
Zr + 3 Al 0.18 0.25 0.31 - - - -
Zr + 3 Al + 1.5 Sn 0.17 0.25 0.29 0.30 0.45 0.39 0.39
Zr + 3 A1+ 3 S 0.17 0.22 0.27 0.26 0.45 0.35 0.35
Zr + 3 Al + 1.5 5n + 1.5 Mo 0.23 0.31 0.36 0.35 0.56 0.43 0.52
Zr + 2 Al 0.17 0.26 0.39 - - - -
TABLE 3.14
1200°F NaK-78 CORROSION DATA
(Reference 104)
. Duration
Specimen (hr) Type and Rate of Attack
304 Ss" 1500 No apparent attack
2500 0.0014 in. intergranular corrosion
3500 Evidence of general corrosion
4500 0.0015 in. pitting
316 SS 1000 . 0.0026 in. general corrosion
2000 0.0025 in. intergranular corrosion
3000 0.0010 in. general corrosion
347 SS~ 1500 0.0007 in. intergranular corrosion
2500 0.0020 in. general corrosion
3500 0.0019 in. intergranular corrosion
4500 0.0020 in. pitting
Hastelloy N 1500 Slight evidence of general corrosion
2500 No apparent attack
3500 No apparent attack
4500 0.0014 in. intergranular corrosion
ColumbiumT 1000 No evidence of intergranular attack or general
corrosion

*Stainless steel
tThis specimen at 1300°F

NAA-SR-8617
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TABLE 3.15

1400°F NaK-78 CORROSION DATA

(Reference 104)

Specimen Du(r}?;;on Type and Rate of Attack
3}O4‘SS>'< 1500 No apparent attack, slight evidence of decarburiza-
tion
2500 0.0014 in. pitting
3500 0.0013 in, intergranular corrosion
4500 0.0023 in., decarburization
316 SS~ 1000 Slight evidence of general corrosion
2000 0.0004 in. decarburization
3000 0.0008 in., decarburization
347 SS° 1500 | 0.0006 in. intergranular corrosion
2500 0.0004 in, pitting
3500 General corrosion to a depth of 0.0006 in.
4500 0.0025 in. decarburization
Hastelloy N 1500 Slight evidence of intergranular attack
2500 General corrosion to a depth of 0.0005 in.
3500 No apparent attack
4500 Very slight surface attack
Haynes 25 1000 0.0002 in. pitting
2000 Very slight evidence of general corrosion
3000 0.0011 in, decarburization
Molybdenum 1000 No apparent attack
2000 No apparent attack
3000 Slight pitting, no depth
Inconel X 1000 No apparent attack
2000 Very slight general corrosion
3000 Very slight pitting, no depth
Hastelloy C 1000 0.0010 in. pitting
2000 0.0017 in., decarburization

**Stainless Steel

NAA-SR-8617
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TABLE 3.16

REFRACTORY MATERIAL CORROSION RESULTS WITH POTASSIUM
{Reference 106)

because of the tremendous amount of erosion that occurred. Unpurified potas-
sium was also used again resulting in misleading results., The results are pre-

sented here to give an indication of what will happen in an unpurified system.

Sernmel97 presented results on Haynes 25 alloy and formed the con-
clusion that Haynes 25 (L-605) is highly resistant to transgranular and inter-

granular attack to as high as 1850°F potassium for 1000 hr. He hypothesized

Specimen Weight
ﬁ Sample Location Conditions Material Loss
2
(mg/cm#)
ﬁ Purification Loop | Liquid velocity 10 ft/sec Cb 2.1
11 hr at 1000 to 1150 °F Cb + 1% Zr 1.7
Ta 1.9
E Mo 0.6
Boiler Discharge Liquid velocity 1 ft/sec Cb 24.4
4.5 hr at 1200 to 1700°F Cb + 1% Zr (weld) 23.0
E Vapor velocity 20 ft/sec Ta 69.2
5 hr at 1700 to 1780°F Mo 3.0
ﬁ Nozzle Qutlet Liquid velocity 32 ft/sec Mo 9.0
4.5 hr at 1200 to 1700°F
Vapor velocity 1800 ft/sec Cb 141
E 5 hr at 1700 to 1780°F

that carbon and nitrogen in L.-605 could cause local carburization and nitriding
of the alloy, thus changing its mechanical properties. However, his tests were
not conducted to prove this statement. Loops made of Type 316 SSandCb +1%Zr

were tested, but the results were not presented in Semmel's presentation.

3.1.3.5 Rubidium

There exists a scarcity of information on the compatibility of rubidium

B B K

with various materials. The reader is referred to References 2, 88, and 107

for a summary of static compatibility tests with various materials. Simons

concluded after performing some static capsule tests using Type 316 SS, Inconel X,
KE-7 (WC + 6% Co), beryllium, and DiMax M-19 silicon steel materials at tem-
peratures between 900 and 1400°F for 500 hr that these materials, with the ex-

ception of beryllium, would be suitable for liquid metal loop materials.

NAA-SR-8617
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Whitman and Stockton11 performed static and thermal convection
boiling loop tests with Inconel at temperatures ranging from 160 to 1520°F and

concluded that Inconel is quite suitable for use in a boiling rubidium system.,

3.1.3.6 Lithium

The majority of this subsection is classified. The reader is referred
to NAA-SR-8617 Vol I, Addendum I for the classified discussion of References
108, 61, 105, 109, 110, 111, and 112.

NAA-SR-8617Voll Addendum Ipresents calculated results of corrosion

tests of sevenrefractory metals in static lithium at elevated t:emperatures.l 12 Hoff -

113 .. . ' . . .
n did an extensive study on the corrosion of materials by lithium. His

ma
conclusions are presented in Figure 3.3 which are valid for systems with the
following conditions: the surface-to-volume ratio is approximately 13:1; and in
dynamic systems the flow rate is less than 10 ft/min and the pipe is approxi-

mately 0.7 in. ID with a temperature gradient approximately 200°F.
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3.2 HANDLING OF LIQUID METALS

The following sections will contain brief, general information on
liquid metals regarding the storage, fire prevention, and personnel safety.
These sections do not necessarily constitute the policies of any one company or
organization, and should be used only as a guide. The information is presented
in order to alert the reader to the hazards associated with liquid metals.

3.2.1 Storagel’9’114,115,116

Liquid metals should be stored in a dry, unsprinklered, fire resistant,
ventilated building. The containers should be raised above the ground to prevent
contact with water. Metal storm covers extending down the sides of the con-
tainer should be used, in addition to drip pans in order to prevent liquid metal
from coming into contact with a concrete floor, causing detrimental effects (for
example, burning sodium reacts with concrete, releasing heat which spalls the
concrete and scatters burning sodium over a wide area).9 Usually inert gas is
"used as a cover gas in the container. Petroleum ether and hexane was used by
~ McCoy and I—Ioffman“6 for storing rubidium, but a few disadvantages existed;
the low flash points of the liquids presented a hazard when handling rubidium,
and the rubidium had to be purified in order to remove the impurities associated
with these liquids. Hilll15 indicates that only helium or argon is suitable for
blanketing lithium, while in addition nitrogen may be used with sodium or NaK.

3.2.2 Fire and Personnel Safetyg’ 114,115,117, 118

Proper planning, maintenance, and personnel education will prevent
most fires. To extinguish a fire special agents must be used; dry calcium car-

bonate applied with shovels and Met-L-X pressurized extinguishers are used at

Atomics International on sodium, NaK, potassium, rubidium, and lithium fires.
Graphite was used initially as a fire extinguishing agent, but it proved to be too
messy to handle. Under no circumstances should ordinary extinguishing agents
(water, COZ’ carbon tetrachloride, etc.) be applied. Another word of caution is
that liquid metals do not burn like most materials; for example, sodium seldom
burns with an open flame, instead there are many bright, yellow, glowing spots
covering the surface of the liquid metal exposed to air. Sodium will ignite in air
at temperatures greater than 257°F, and due to the large heat generation, will
reach very quickly a temperature of 1500°F, No information is available on the

burning characteristics of other liquid metals.
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Policies at Atomics International regarding minimum personnel safety

114, 117 and may be summarized in the

equipment have been established by Eggen
following way (small liquid metal setups are usually completely enclosed to
absolutely prevent personnel from coming into contact with the liquid metal, so
that the following precautions may be eliminated), Personnel engaged in activi-
ties near or on the component test towers shall wear hard hats, gloves, and
leather-soled shoes, with safety glasses (cup type) being optional, and shall
raise and lower all tools and loose equipment by hand line. Personnel present
around liquid metal systems shall wear fireproof coveralls and leather shoes,
with hard hats having plastic face shields and plastic gloves being optional., All
personnel involved in transferring or handling exposed liquid metal below 250°F
shall wear flameproof coveralls, leather shoes, plastic gloves, and hard hats
with plastic face shields. When the liquid metal is at a temperature greater
than 250°F, all personnel shall wear welding helmets with canvas or leather
snood, flameproof coveralls, asbestos or chrome leather gloves, chrome
leather leggings, and leather shoes or rubber boots inside trouser legs. In gen-
eral, all liquid metal spills shall be picked up and disposed of in dry calcium
carbonate filled buckets or pans and wiped clean with flameproof rags. Clothing
that has been exposed to liquid metal should be removed and the body should be
flooded with water immediately. Low pressure water should be used for flushing
the eyes. (Personnel working with liquid metals should know the location and
use of safety showers). No matter how minor a liquid metal burn seems, it

should be brought to the attention of the first aid station immediately.
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4.0 HYDRAULICS

4.1 TWO-PHASE PRESSURE DROP

The following presentation will mainly consist of a method presented
by Baroczy and S»anders1 19 for calculating the local two-phase friction pressure
drop in a two-phase, one- or two-component fluid-flow system, The total fric-
tion pressure change during condensing or boiling is obtained by numerically
integrating the local two-phase pressure drop gradient over the range of conden-
sation or boiling. A method for calculating the momentum pressure change dur-
ing boiling or condensing in a horizontal pipe which was initiated by Martinelli

and Nelson120 will also be presented,

4,1.1 Friction Losses

The work of Baroczy and Sanders is actually an extension of work by
120,121,122

previous authors and uses an additional parameter (local gas Reynolds
number) with the Lockhart-Martinelli two-phase flow modulus (X) to correlate
two-phase pressure drop data. The following relationships are used to calculate

the two-phase friction pressure change:

L

Bprpr = / <§£)TPFdZ ; (41
(o]

(%E)TPF - ¢§(%§)gF . (4.2)

Figures 4.1 and 4.2 contain curves which give experimental values for

€~ as a function of the two-phase flow modulus; however, the local flow regimes

for the liquid and the gas (vapor) flowing alone must be determined before one

knows which curve to use. Thus, if the liquid and gas Reynold numbers are
larger or smaller than 2000, the flows are turbulent or laminar (viscous), re-
spectively. Therefore, va, th, Xtt’ and Xtv indicate the two-phase flow mod-
ulus for viscous liquid-viscous gas, viscous liquid-turbulent gas, turbulent
liquid-turbulent gas, and turbulent liquid-viscous gas, respectively, and the

following equations are used to obtain values for the two-phase flow modulus:
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No data are presented for the turbulent liquid-viscous gas flow regime because
of its scarcity. Since this type of flow, whenever it does exist, will exist over
a short length at the entrance region of a boiler or at the exit region of a con-
denser, the turbulent liquid-turbulent gas flow regime is usually assumed to
exist over this region. However, since the end points of the turbulent liquid-
viscous gas flow regime are known, the pressure drop gradient may be extrapo-
lated through this region. It should also be pointed out that the Lockhart-
Martinelli parameter implicitly takes into account the different flow patterns
(except slug or stratified flow) so that an investigation need not be made in order

to determine the kind of flow pattern.

In order to calculate the local pressure drop gradient in Equation 4.2
for gas (vapor) flowing alone through a pipe, the following equation should be

used (assuming specific weight and density are equal):

2 GZ

v
(AP) = . 2f yi.&: -2f 8 ... (4.7)
Az g g gbh g gng
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Thus by using Equations 4.2 to 4.7 and Figures 4.1 and 4.2, the two-phase friction
pressure change, (pe - pi)TPF’ can be obtained by numerically integrating

Equation 4.1.

4,1.2 Momentum Changes

When vapor is generated or condensed during forced circulation, the
momentum of the fluid stream changes resulting in a pressure drop or gain in
addition to the pressure drop that is occurring due to friction. The pressure
drop (denoted by a negative value for ApM) caused by the increase in momentum
of the fluid stream during boiling can be expressed120 as follows (assuming all

liquid exists at the inlet):

w
- __ T
(p, - pi)M = Apy = oA (V,Z)i - (1 - xe)(we - (xe)(vg)e ... (4.8)

Using Equations 4.14 and 4.15 from the next section, one obtains (assuming that
the liquid inlet and exit densities are not equal; however, they are usually as-

sumed to be equal) the following equations in terms of known parameters:

GTZ (;0,2)e (1 xe)z o, =x 2
ey glo,) (pf). (R)) 0 R ) . (4.9)
e e e

The pressure gain (denoted by a positive value for ApM) caused by
the decrease in momentum of the fluid stream during condensing can be expressed,

similarly to Equation 4.8, as follows (assuming all liquid exists at the exit):

w
_ T
Apy, = A (1 - xi)(vjz)i + (xi)(Vg)i - (Vl)e] . ... (4.10)

Using again Equations 4,14 and 4.15, one obtains (assuming liquid inlet and exit

densities are not equal) the following equation in terms of known parameters:
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af [a-xp* /o, x. 2 (pz)i
ApM = g(pf) (Rﬂ) + —D_; ' ‘—"‘—(Rg) - (pl) . ... (4.11)
1 1 1 1 e

Discussion on the local liquid and gas fractions is given in the next section,

In the above momentum discussion the liquid and vapor were assumed
to be flowing completely separated (giving approximately ApMoc x2). This results
in obtaining a somewhat lower pressure gain during condensing and a lower pres-
sure loss during boiling than is actually occurring. The other extreme flow
pattern that could be assumed is that the liquid and vapor are completely mixed
(giving approximately ApMccx ), i. e., fog flow exists (Vg = VE)' The real pres-
sure gain or drop will actually be between the two extremes mentioned (found by
comparing the multiplier curves of Reference 111 to the two extreme limits).
However, since experimentally obtained liquid fraction data are used in deter-
mining the momentum pressure change, the values obtained from Equation 4.9

and 4.11 actually lie between the two extremes mentioned above and should be

used with confidence.

The overall or total two-phase pressure change, (pe - pi)T’ through

a horizontal boiler or condenser is obtained by using the following equation:

ApT = ApTPF + ApM ... (4.12)

By using Equation 4.1 and 4.9 or 4.11 the total two-phase pressure change over
a given length can be obtained. One word of caution might be mentioned at this
point. When attempting to find the overall two-phase pressure change gradient,

the following equation should be used:119

(Ap) _ 2PrprE * APy .. (4.13)

ET Az

An error occurs if one attempts to obtain the overall pressure change gradient at

"
i
!
i
i
i
i
i
i
i
i
i
i
i

z = 0 by adding the two-phase friction pressure change gradient to the momentum
pressure change gradient, because at z = 0 the overall pressure change is due

entirely to two phase friction. Therefore, the overall pressure change gradient
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must be due only to the two-phase friction change gradient. Since the momentum

pressure change is zero at z = 0 and the momentum change gradient is not zero
at z = 0, Equation 4.13 must be used for calculating the overall pressure change
gradient, Usually the heat flux is constant and the condensing or boiling rate is
assumed linear in order to ease the calculating work needed to obtain point by

point pressure changes and gradients,

Sl sl wil SN -
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NOMENCLATURE

: . 2
Cross sectional area of pipe, ft

Constant in friction factor equation = 16 (laminar flow); = 0.046

(turbulent flow), dimensionless

Hydraulic diameter of pipe, ft

Fanning friction factor = 16/Re (laminar flow); = = 03

(turbulent flow), dimensionless

Function of X utilized in calculating two-phase friction pressure drop

[&sz = ((AAP//AZZ)TPF], dimensionless

g

Gravitational acceleration = 4.18 x 108 f‘c/hr2

Mass velocity (G = pV)lbrn/hr-ft2
Specific weight, 1bf/ft3
Pressure, psf

Pressure change (Ap = P, - P;), psf

Pressure change gradient in separated flow, psf/ft

Fraction of pipe flow cross section occupied by gas (Rg =1 - RE)’

dimensionless

Fraction of pipe flow cross section occupied by liquid, dimensionless

)

Reynolds number based on single-phase flow (Re =

dimensionless
Velocity, ft/hr
Mass flow rate, lb_ /hr
m
Two-phase flow modulus, dimensionless
Quality (x = W dimensionless
Length along boiler or condenser, ft

Density, 1b_/ft>

Absolute viscosity, lbm/hr-ft
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SUBSCRIPTS

e = Exit

F = Friction

g = Gas

i= Inlef

£ = Liquid
M = Momentum

*t = Turbulent
T = Total

TP = Two-phase

tt = Turbulent liquid-turbulent gas

tv = Turbulent liquid-viscous gas

v = Viscous

vt = Viscous liquid-turbulent gas

vv = Viscous liquid-viscous gas
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4.2 LIQUID HOLDUP

Liquid holdup is very important in SNAP systems because of the weight
requirements set forth in space systems. It has become necessary to be able to
predict the amount of liquid contained in a boiler or a condenser. Pressure
changes in two-phase fluids flowing through ducts are also affected by the amount
of liquid contained in a boiler or a condenser. Therefore the term, local liquid
fraction, has been devised and is defined as the fraction of fluid flow area occu-
pied by the liquid at a given cross section. The local gas fraction is the remain-

ing cross sectional area which is unoccupied by liquid.

120,90, 122

Baroczy123 extended the work of other authors by corre-

lating local liquid fraction data with the Martinelli two-phase flow modulus
)0'2/(p£/pg). The additional

g

parameter plus an additional parameter, (”l /i
variable was needed, because when the liquid mercury-nitrogen data124 were

compared to the Lockhart-Martinelli correla.tion,121 the iiquid fraction data

represented only 10% of the Lockhart-Martinelli values.l23 Therefore, by

121,124,125, 126 for various liquids and

correlating the data of other workers
gases, a generalized correlation of data was developed and is represented by
Figure 4.3. The turbulent liquid-turbulent gas flow regime was the only one
investigated by Baroczy; the problem becomes more complex when other flow
regimes are investigated, since a family of Reynolds number curves results
for each two-phase flow modulus value. However, work by Baroczy69 and
Martinelli and Nelson120 indicated that the momentum pressure change is only

slightly affected by the different flow regimes. Therefore, it seems advisable

to use Figure 4.3 for all flow regimes for the time being.

An end result of the local liquid fraction curves is the ability to be
able to determine the slip ratio (Vg/Vf) in two-phase flow. The respective

liquid and gas velocities are defined as follows:

Wy
v, = oo (4.14)
L plARi ’
w
Ve T5 AR - co . (4.15)
g g
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Therefore, the slip ratio becomes,

v W p R
Vg= W pg(l‘e—zR) 3 0..(4.16)
i 1" g i
since,
R =1-R, . co.(4.17)

i
R
i
i
i
i
i
i
i
i
i
i
i
|
i
i
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incorporated in this SNAP TECHNOLOGY HANDBOOK.

UNCLASSIFIED

NAA-SR-8617 Voll

Atomics International

SNAP TECHNOLOGY HANDBOOK — LIQUID METALS
G. F. Burdi (Author) 153 pages

Issued: May 30, 1964

Extensive use of liquid metals as working fluids in various reactor
programs, i.e., SNAP 10A/2/8, necessitates a handbook to corre-
late and present the current information which is available to the
engineer. The present work is not intended to be all inclusive but
contains important excerpts from commonly used references along
with recent developments, arranged for the convenience of the de-
sign engineer. Data selected for presentation has passed the test
of being in reasonable agreement with the majority of published
work; some older data not well substantiated by recent experiments
has not been included. The liquid metals considered to be the most
useful for present and future applications are mercury, sodium,
sodium-potassium, potassium, rubidium, and lithium. As addi-
tional information becomes available, periodic revisions will be
incorporated in this SNAP TECHNOLOGY HANDBOOK,

UNCLASSIFIED

NAA-SR-8617 Voll

Atomics International

SNAP TECHNOLOGY HANDBOOK — LIQUID METALS
G. F. Burdi (Author) 153 pages

Issued: May 30, 1964

Extensive use of liquid metals as working fluids in various reactor
programs, i.e., SNAP 10A/2/8, necessitates a handbook to corre-
late and present the current information which is available to the
engineer. The present work is not intended to be all inclusive but
contains important excerpts from commonly used references along
with recent developments, arranged for the convenience of the de-
sign engineer. Data selected for presentation has passed the test
of being in reasonable agreement with the majority of published
work; some older data not well substantiated by recent experiments
has not been included. The liquid metals considered to be the most
useful for present and future applications are mercury, sodium,
sodium-potassium, potassium, rubidium, and lithium. As addi-
tional information becomes available, periodic revisions will be
incorporated in this SNAP TECHNOLOGY HANDBOOK.

UNCLASSIFIED

NAA-SR-8617 Voll

Atomics International

SNAP TECHNOLOGY HANDBOOK — LIQUID METALS
G. F. Burdi (Author) 153 pages

Issued: May 30, 1964

Extensive use of liquid metals as working fluids in various reactor
programs, i.e., SNAP 10A/2/8, necessitates a handbook to corre-
late and present the current information which is available to the
engineer., The present work is not intended to be all inclusive but
contains important excerpts from commonly used references along
with recent developments, arranged for the convenience of the de-
sign engineer. Data selected for presentation has passed the test
of being in reasonable agreement with the majority of published
work; some older data not well substantiated by recent experiments
has not been included. The liquid metals considered to be the most
useful for present and future applications are mercury, sodium,
sodium-potassium, potassium, rubidium, and lithium. As addi-
tional information becomes available, periodic revisions will be
incorporated in this SNAP TECHNOLOGY HANDBOOK.

UNCLASSIFIED




	NAA-SR-86
	Com ple te ly
	NAA-SR-




