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ENGINEERING APPLICATIONS OF
ANALOG COMPUTERS

by
Lawrence T. Bryant, Marion J. Janicke,
Louis C. Just, and Alan L. Winiecki
INTRODUCTION
This publication is an extension of Bryant, L. T., Just, L.. C., and
Pawlicki, G. S., Introduction to Electronic Analog Computing, ANL-6187

(July 1960). Six experiments are presented from the fields of reactor
engineering, heat transfer, and dynamics.

The mathematical representation for most of these experiments is
in the form of nonlinear differential equations. In usual practice sim-
plifying assumptions are introduced to linearize the equations. This
linearization may alter the mathematical model sufficiently to cast doubt
upon its applicability. If an analog computer is available, the nonlinear
equation may be solved directly.

The presentation of these experiments has been designed to pro-
vide insight into physical phenomena and their mathematical representa-
tion. The steps required for producing the analog solution will be shown,
as well as complete information for duplicating the solution. Graphical
results are provided.

The format of each experiment will be:

1. Description of the problem

2. Mathematical statement of the problem including:
a. Constants
b. Initial Conditions

3. Preparation of machine equations
a. Machine Variables
b. Scale Factors

4. Analog circuit diagram
a. Flow Sheet
b. Potentiometer setting sheet
c. Static Check sheet

5. Graphical representation of the solution.

6. Bibliography



I. DECELERATION OF A REACTOR CONTROL ROD

1. Problem Description

When a control rod is suddenly inserted or rejected from the core
of a reactor, the rapid motion is quickly dampened by a dashpot or buffer
mechanism, usually consisting of a hydraulic system which prevents sudden
shock of the control drive mechanisms.

Constant deceleration-type dashpots give the most favorable charac-
teristics for protection against shock loads. Essentially, a piston moves
through oil, and the oil is squeezed into small clearances; this process in
turn develops large amounts of frictional resistance. This friction, which
is proportional to the speed of the moving piston, instigates the retarding
force which slowly stops the motion of the control drive.

This hydraulic drag and the ensuing kinetic energy dissipation are
frequently described by differential equations. Elias' equation of buffer mo-
tion(I-1)* is given by

2,2
de _ 2 T Dplg X

dX W(LgqC - CX)?

Various plots of the buffer characteristics are shown on Figs. 2, 3, 4, and 5.

Many parameters may be investigated before the design conditions
for a particular problem are satisfied.(I-2,I-3)

2. Mathematical Statement of the Problem

a. Equations:

v 2 urD3ALE X
p _ _ _cHTphd . (1)

dX W(LgC - CX)?

b. Constants and Variables

Symbol Description Value Units
Vp velocity into the dashpot Variable ft/sec
Dy, diameter of the dashpot 2 inches
C dashpot clearance 0.03 inch
Ly dashpot length 6 inches
MY viscosity of the dashpot fluid Variable lb/(ft)(sec)
w weight of the control rod 200 1b
X distance into the dashpot 6 inches

*References in each section are given at the end of each section.



c. Initial Conditions

Att = 0:
X =0
dX
— = 70 f
It t/sec
.
dt

d. Analysis of Equations

Since

AV, dvp/dt g2y /as

dX = dX/dt = dX/dt ’

the original equation may be restated as

22
&ex _ (ZHRmDpLa ) [oax (1 )
dt? wcC? dt /\Lg-X

3. Preparation of Machine Equations

—
w
~—

a. Machine Variables and Scale Factors

X' = bX ; a = 103
t' = at : b = 10%

b. Scaled Equations
@x' b [2emDRLE\[(x'\[ax' a b \2
dt'2 a2 WwC? b /\dt" b/\Lgb- X'

2.2 '
__b[Z2KT™Dpld [, dax' 1 2 5)
- a WC2 dt’ Lgb - X' '

c. Machine Equation

—

When the values of constants and scale factors are introduced
into Eq. (5), the machine equation results:

, [ ax' 1 2
Tz - (507 X ( dt'>(50 . X') ‘ (6)




The initial conditions (interms of voltages) are:

X' = bX(0) = 0

axX' b dx
Et—' = ; 'a? = 7.0 volts
a#x' b diX _ 0

dt'? az dt?

4. Analog Circuit Diagram

a. Flow Sheet

+100V -ioov -100V
oy
)]

|

5[AE 502
X' ' X! 50-x |, N[ 100 (Clehe. Sl
2 > > Al 100
C|T100
® P
€[166]] 102x'x'
P L 5(50-x)%
ry N (3) 5402A
~ r ~ [ -X'/5 A2
10%x' =
<]_st50-x)2

Fig. 1. Circuit Diagram for Solution of Elias'
Equation of Buffer Motion
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b POTENTIOMETER SETTINGS

PROBLEM NO,
DRAWING NO.
REACTOR CONTROL ROD DATE
DECELERATION
POTENTIOMETER No. MATHEMATICAL CORREC
VALUE ) SETTING SET PARAMETERS
DRAWING | MACHINE VALUE TiON
1 v, (volts) 7 00 0700 | a =103
2 X' (volts) -50 00 5000 b = 102
3 02 0 2000 2000
5 For
4 Top (5 07 1) y Figs.2 & 5 Vp(0) = 70ft/sec
L, = 00494 |0 0125 0125 Dp =21
W, = 00795 |0 0202 0202 C =0031n
K, = 0102 0 0258 0258 Ly =61
W =200 1b
X = 6 1n
1 V;(O) (volts)
V, = 70 ft/sec 7 00 0700
V, = 50 ft/sec 5 00 0500
For
Vs = 20 ft/sec 2 00 0200 Figs. 3 &4
2 X' (volts) ~50 00 5000
02 0 2000 2000
5
4 100 (507 uz) |0 0202 0202

AMD 2C (8 57)
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c. STATIC CHECK

PROBLEM NO.
DRAWING NO.
DATE
REACTOR CONTROL ROD
DECELERATION
UNIT NUMBER INITIAL
UNIT ouTPUT REMARKS INTE- | conpke | sET PARAMETERS
DRAWING | MACHINE | (YOLTS) GRATOR | 710N
1 K, = 0.0795
POT 1 + 7.00
2 -50.00
FOR STATIC
5 -10.00 CHECK
3 - 1.40
4 + 0.02
AMP 1 - 7.00
2 +10.00
3 +40.00
4 +16.00
5 - 8.75
6 - 0.02
MULT 1 -16.00
2 + 8.75
3 + 0.88

AMD-2A (8-57)
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II. PRESSURE VARIATIONS THROUGH A PACKED BED

1. Problem Description

The future applications of nuclear power sources will depend on
whether reactor technology can match the demand for higher power densities
and higher operating temperatures. A popular concept for advanced appli-
cation is the packed bed reactor. (11-1) (11-2) Equations of fluid flow and
heat transfer for this concept are dependent upon the particular packed-bed
system, particle shape, and the fluid for which they are developed.

The solutions to problems for this type of reactor design are usually
obtained through use of empirical corrections.(II‘ 3) An equation derived by
MacFarlane(H'4) from the basic Bernoulli equation illustrates a fundamen-
tal method for calculating the performance of packed bed arrangements.
This relationship

dP (K + Hx)P

dx E + Dx - P?

expresses in differential form the variation of pressure and distance of a
packed bed one square foot in cross section. MacFarlane also indicates
four other general methods used for calculating laminar fluid flow in packed
beds and describes their derivation.

2. Mathematical Statement of the Problem

a. FEquations and Constants

dP (K + Hx)P (1)
dx  E + Dx - P?
QPoG le
D = ———— = 1,73 x 10* —
8c IOOTOCp ft5
fG*Po g 1b
z ———— = 3.439 x 108 ==
G 2gc Dp Po v x ft5
g - 9P 5.22 x 10° 1b®
T 2gD,P,TeCp | T
1b?
E = G'Po/gch = 1130
, 1 2
K = D+G = 3.44 x 10° 2

ft3

13
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Q = Volumetric heat generation rate =
G = Mass flow rate of helium coolant =
g. = Gravitational constant =
Py = Initial density =
To = Initial temperature =
Py = Initial pressure =
Cp = Specific heat at constant pressure =
Dp = Diameter of the particle =
f = friction factor,a +B (x/L) =

b. Initial Conditions

Py =2.12 x 10* 1b/1t?
Xg = 0
L =0.2 ft.

3. Preparation of the Machine Equations

a. Machine Variables and Scale Factors

x =t *(final) - Y(final)

t' = at dt' = adt a =
P'= bP dP'= bdP b =
P bP, = (10-%)(2.12 x 10%) = 21.2 volts,

! =
(0)
t'(final) = at(final) = 10%(0.2) = 20.0 volts

b. The Scaled Equation

5 Mw/ft?

0.378 1b/(sec)(ft?)
32.17 ft/sec?
0.083 1b/ft3
200°F

10 atmospheres
1.25 BTU/(1b)(°F)
200 microns

285 + 230 (x/L)

102
10-3

Substituting equations (2) into equation (1), the scaled equation is

obtained:

dp! =L{ [K + (H/a)t'] P! }

‘at” " a |E + (Dt'/a) - (PZ/b)

(3)




¢. The Machine Equation

When numerical values are placed into equation (3), the machine

equation (4) results:

dP' _ (3.44+0.522 t')P!
at’ 0.0002 t' - P'? (4)

4. Analog Circuit Diagram

a. Flow Sheet

—-100 1 171013 N~
w—ﬂ ——4> (&>
o
+100
A
B C
—5
010
+100 BN/ C
—AB |-AC
1021102
L :
B (o
HOALO?A
Bl C

500N
IOW

TO HOLD RELAY
+60V

Fig. 6. Circuit Diagram for the Solution
of MacFarlane's Equation
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b. POTENT!OMETER SETTINGS

PROBLEM NO.
DRAWING NO.
DATE
PRESSURE REDUCTION THROUGH A PACKED BED
POTENTIOMETER NO. MATHEMATICAL CORREC
VALUE : SETTING SET P ARAMETERS
DRAWING | MACHINE VALUE TION
1 0.0la volt -1.00 0100
2 Pob volt +21.2 2120
3 b®D/a 0.0002 0002
4 b*H/a? 0.5220 5220
5 b’K/a 3.44 0344
6 V10 3.16a 316a |(lQ)
7 al -20.00 2000
Argonne JAational Laboratorp
APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER
c. STATIC CHECK PROBLEM NO.
DRAWING NO.
DATE
PRESSURE REDUCTION THROUGH A PACKED BED
UNIT NUMBER OUTPUT INTE INITIAL
UNIT REMARKS . CONDI- SET PARAMETERS
DRAWING | MACHINE | (YOLTY) GRATOR | 1i0n
AMP 1 +1.00
2 0.0
3 -3.96
4 -21.2
5 +66.9
6 44.7
7 -0.188
8 0.0
POT 3 0.0
4 0.52
6 -6.69
MULT| 1 -0.84
2 -44.7
3 +1.88




5. Graphical Results

25

20

PRESSURE, LBS /FT®*X 10*

Fig. 7.
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III. REACTOR KINETICS OVER MANY DECADES WITH THERMAL
FEEDBACK (SIMULATION OF A TREAT TRANSIENT)

1. Problem Description

The TREAT reactor was designed to generate a very large,
transient, thermal flux field of short duration.(IlI-1) The maximum in-
tegrated flux is greater than 10'% neutrons/cmz.

The core is a dispersion of highly enriched uranium (as the oxide
or carbide) in a graphite matrix. The graphite serves as a moderator, a
heat sink, and a generator of a sizeable negative temperature coefficient.
The latter effect is due to the fact that the energy of the thermal neutrons
increases with graphite temperature thus causing an increase in the leak-
age probability.

The purpose of this experiment is to simulate a TREAT transient
initiated by control rod withdrawal and terminated by the negative tempera-
ture coefficient. Since a large excursion is expected, the reactor kinetics
equations will be transformed by a substitution,(III-2

N =4n n(t)/n(0)

The equations describing the neutron kinetics (with 6 delayed groups)
will be solved on the analog computer. They will be forced by changes in
K

ex:

2. Mathematical Statement of the Problem

a. Equations:

where




b. Constants

> = 0.00755

4 =8.6x 101
i ri i
1 0.01246 0.00025
2 0.0315 0.00166
3 0.1535 0.00213
4 0.456 0.00241
5 1.612 0.00085
6 14.3 0.00025

C. Initial Conditions

7(0) = 0

Y =0
Kiex=0

3. Preparation of Machine Equations

a. Machine Variables

t' = at

n' = bn
Kiex = ¢ Kiex

%= 49

b. Scale Factors

a =10
b =2
c =25
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c. Scaled Equations

6 .
dn _ B [b(l -B8) n, Z oF; Y
at'  al c L gt
1
R w0
dt’ ac 1ex = dt! iN\a b dt' ’ ’

d. The Generation of Kjex

The expression for K., is made up of two parts: the contribution
of the control rod and the contribution of the negative temperature coeffi-
cient, that is,

Kex = K(t) - K(n,t) s

where
K(t) - {0.041: for 0<t<0.5 sec
0.02 for t>0.5 sec
and
K(n,t) = 10710 [ n dt
Since
K1'ex :%Kex
then
Kiex = 'E; K(t) - %K(n,t) )

or, more simply,
Kiex = K{(t) - Ki(n,t)

1
0.04% "';t for 0<t'<0.5a sec

1
K,(t") = c
0.02 -B—for t'>0.5a sec

K;(t') can be generated by means of an integrator and a relay.



file:///o.02

The generation of K;(n,t) is more complicated: a function
generator is needed. If the machine variables and scale factors are sub-
stituted into

K(n,t) =107 [ ndat ,

the result is

Ki(n,t) :E%- 1071 [ ndt!

But

n = n, n(0) ;

therefore
cn(0 _
Ki(n,t) = —Bé'_) 1071 [ n,dt

The analog computer will supply 7} = £n n; (due to a change in
variable) and since efn Ny = n,

Ki(n,t) = —C% 10710 [ e .dt

After the terms are collected,
K (n,t) = ¢ [ e%at! ,

where
«=7+4nn(0) - £n 10 - fn ap

For the values given the constants, and for n(0) = 102,
a=m-15.836.

Then 25 e% will be generated with a diode-function generator
(DFG).(III"3) In order to decrease the slope of the function, the DFG will
be driven by 107 - 100.



In the actual experiment, the input to integrator 3 is removed
(by means of a relay) until 25e% = 0.01 volt.

DFG DATA
7 10m - 100 o 25e%
0.0 -100 ~15.836 -
8.012 - 19.88 - 7.821 | 00.01
9.938 - 0.62 - 6.438 | 00.04
10.42 + 4.2 - 5.416 | 00.11
12.0 + 20.0 - 3.836 | 00.54
13.0 + 30.0 - 2.836 1.47
14.0 + 40.0 - 1.836 3.96
15.0 + 50.0 - 0.836 | 10.59
16.0 + 60.0 + 0.164 29.45
17.0 + 70 + 1.164 | 80.75

e. Machine Equations

d 1

S0 £ 0.0697 Kley +0.3512(0.03319] + 0.2199%}
dt

+0.2821%4 + 0.3192% + 0.1126¥4 + 0.0331%))

d¥i _ dn’ | , dn'

<o <o ~0-0013Y - 0.52//15,-

dWZ' dan! dan’

—Z __4n'_ - r 4N

S = g -0-003294 - 0.593

dy' dn' | , dn’

T —-(;t—|—0,0154’¢//3 - 0.5Y¥; T

d?l/i dn’ an’!
—_— = _ - 1 _ !
= —ﬂ—dt, 0.0456%, - 0.5¥, —U——dt,




d%' 1 dn' dn’
G- 00001 Koy ~ 35 - 0.16129; - o.swg—dr
dy an' an'
ok 0.0009 Kjex S 1.43%, - 0.5¥¢ e

1

Kiex = K;(t) - Ki(n,t)

Ki(t) = 13.25t" volts for 0<t'<5 sec
B2 7 166.23 volts for t'>5 sec

Ki(n,t) = 25 exp (N - 15.836)

4. Analog Circuit Diagram

a. Flow Sheet

>
o)

s

! 1
Ci i

EXPERIMENT 3—Kjey

-AB
102

To1

EXPERIMENT 3~ 2= %+,

Fig. 8. Circuit Diagram for Duplication of TREAT Transient
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b. POTENTIOMETER SETTINGS

PROBLEM NO.
DRAVWING NO.
DATE
THE TREAT REACTOR
POTENTIOMETER NO. MATHEMATICAL CORREC-
DRAWING | MACHINE VALUE YALUE TION SETTING SET PARAMETERS
1 Bb(l - B)/afe 10.0697 0697 £=86x10"*
2 B/ak 0.8779 8779 B =0.00755
3 bB/dif  |0.0331 0331 A, = 0.01246
4 bB/df  [0.2199 2199 X = 0.0315
5 bBs/dsB  |o0.2821 2821 Ay = 0.1535
6 bBs/dB  |0.3192 3192 A, = 0.456
7 bBs/dsf  |0.1126 1126 s = 1.612
8 bBs/def  [0.0331 0331 A = 14.3
9 A /a 0.0012 0012 B, = 0.00025
10 A/a 0.0032 0032 B, = 0.00166
11 Ay/a 0.0154 0154 B, =0.00213
12 Ay/a 0.0456 0456 By = 0.00241
13 As/a 0.1612 1612 Bs = 0.00085
14 A /a 1.43 1430 (14g) B = 0.00025
15 dshsB/ac 0.0001 0001 a =10
16 dehe B/ac 0.0009 0009 b=2
17 FOR 0 c =25
TO STATIC 0 d, = ..=dg=
24 CHECK 0 n(0) = 10
25 - 5.0 volts 0500
26 +1.0 volts 0100
27 -0.04c/Ba volt 1325
28 -19.88 volts 1988

AMD-2C (8-57)




Argonne JAational Laboratory

APPLIED MATHEMATICS DIVISION

ANALOG COMPUTER

c.STATIC CHECK PROBLEM NO.
DRAWING NO.
DATE
THE TREAT REACTOR
UNIT T TUAReR OuTPUT REMARKS INTE- ICN;II';II: SET PARAMETERS
DRAWING | MACHINE (voLTs) GRATOR TION
POT 17 -10 1 +10
18 +10 2 -10
19 +10 3 -10
20 +10 4 -10
21 +10 5 -10
22 +10 6 -10
23 410 7 -10
24 -50 23 +50
AMP 9 -7.0
10 -10
11 -10
12 150
13 50
14 150
15 +50
16 +50
17 150
18 +5.0
20 Negative
25 Positive
ALL MULTIPLIER CHANNELS = +5 |volts

AMD-2A (8-57)
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5. Graphical Results
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IV. A VIBRATING SYSTEM WITH TWO DEGREES OF FREEDOM

1. Problem Description

Problems of vibration must be considered in the design of power
plants using fissionable fuel. Fuel elements, control rods, and structural
supporting members are capable of vibrating; their characteristics must
be analyzed, for vibration problems prove to be of importance to eliminate
concern for the safe operation of the power plant. Good representations
of the true situation usually involve systems with several degrees of
freedom.(IV-1)

A typical vibration problem which will serve as an introduction to
multi-degree-of-freedom systems is shown in Fig. 10. The two masses
m; and m, are suspended vertically by springs k; and k;. The masses are
constrained such that they only move vertically. The displacements x; and
x2, taken positive for a downward motion, are measured using static equi-
librium as reference. The elongation of the upper spring is x; and the
elongation of the lower spring is (x, - x;). The restoring force acting on
m; is [-k;x; + ka(xz - %;)], and on m, the restoring force is -ky(x, - x;),
where k; and k; are the spring constants of the respective springs.

Effects due to energy dissipation in the elastic spring, wind friction,
and springs that have appreciable mass have been neglected in the equations
of motion given below.

Fig. 10

Illustration of a Vibrating System
with Two Degrees of Freedom

2. Mathematical Statement of the Problem.

a. Equations

dZXl

m, = -kix; + ka(xz - %) (1)

dt?

27
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dZXZ

dt?

m; = -ka(x, - x1) (2)

b. Equation Constants

mj: mass (1b) (i = 1, 2)
spring constant (lb force/ft) (i=1,2)

Initial displacement of the springs (feet)

c. Initial Conditions

It is obvious that with the springs displaced a certain distance,
A, the initial conditions will have the following values

Xl(o) = x;_(O) = A
dxl(o) dxz(O)
a " Tar (3)
dZXI(O) dZXZ(O)
= =0

dt? dt?

3. Preparation of Machine Equations:

In transforming to the machine equations, the following relationships
are made. Let

and (4)

Substitution of equations (4) into equations (1) and (2) yields

d’f k| , ,

; - = > Xl + 2 (XZ - Xl) (5)
dt 2 a“m, a‘m,
d%x, -k

2 - 2 (x - x)) (6)

dt ‘2 azmz




where

2
S
i
o’
Ky
©
1

and

>

g
(=)
i

The solution to the equations will vary with m,, m;, k;, k;, and A,
solution given here, we consider the following physical constants:

ky =k;
m; = m;
A

= be(O)

1

bA

bA

0.2 1b force/ft
1 1b mass

11t

4. Analog Circuit Diagram

a. Flow Sheet

Fig. 11.

—100V

4H

-

(7)-
&

—HD—

=100V

—\

Circuit Diagram for the Solution of the Equations
Describing a Vibrating System with Two Degrees

of Freedom

()
&)

In the
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Argonne JAational Laboratorp
APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER

b. POTENTIOMETER SETTINGS

PROBLEM NO.
DRAWING NO.
A VIBRATION SYSTEM WITH DATE
TWO DEGREES OF FREEDOM
POTENTIOMETER No. MATHEMATICAL CORREC
VALUE " | SETTING | SET PARAMETERS
DRAWING | MACHINE VALUE TION
1 bA -50.00 -5000 a =1
2 bA ~-5000 -5000 b = 50
3 k,/a’m, 0.2 2000
4 k,/a’m, 0.2 2000
5 k;/a?m, 0.2 2000
Argonne Aational Laboratory
APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER
c. STATIC CHECK PROBLEM NO.
DRAWING NO.
DATE
UNIT NUMBER . INTE INITIAL
UNIT OUTPUT REMARKS i * | conpl- | sET PARAMETERS
DRAWING | MACHINE | (YOLTS) GRATOR | 110N
POT 3 10.00
4 0.0
5 0.0
AMP 1 0.0
2 +50.0
3 -50.0
4 0.0
5 -10.0
6 0.0
7 50.0
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5. Graphical Results
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V. TEMPERATURE DISTRIBUTION IN A RADIATING FIN

1. Problem Description

The only economical method for rejecting heat from an outer-space
power plant is by thermal radiation.(V-1) If the working fluid of the power
plant passes through tubes, the additions of extended surfaces to the tubes
in the form of fins reduces the number of tubes required. This reduction
decreases the probability that a meteor will puncture a vital coolant-
carrying passageway. (The puncture of a fin is of lesser concern for the
continued operation of the power plant.) An analysis of the temperature
distribution of these extended surfaces is very important in calculating the
effectiveness (and, indirectly, the safety of the plant) of various fin
geometries.

2. Mathematical Statement of the Problem

In the development of a differential equation for conduction,(V'Z)

dq = d/dx <2kWYX% dx > . (1)

A general heat balance requires this differential equation (1) to be equal
to

dq = 20¢ (T* - T4)dA (2)
the heat rejected by radiation.
By assuming that the arc length (ds) on the arbitrary surface is

equivalent to dx on the abscissa and assigning Yy equal to a constant thick-

ness for a straight fin geometry, the differential equation for temperature
is

-Tg) - (3)

A constant heat source will be assumed at one end of the fin and

dT
= = 0 at the other end.(V-3) This will correspond to the fin in Fig.13.

x=L

(3] TEMPERATURE
2 Fig. 13
D

A ( Geometry of Radiation Fin

= {x) Y

2H N\ ZL*K/ \}/ and Coolant Tubes

C?SbégT/ FINS




A L P £ a Q

b.

Constants and Variables

= Absolute temperature along the fin

Absolute temperature of the sink

Stefan-Boltzmann constant

n

Emissivity

Width of the fin in the z-direction

Total length of the fin in the x-direction

Heat dissipated
Half-thickness of the fin

Thermal conductivity of the fin material

Typical values are:

0°R.

0.173 x 10~% BTU/(hr)(it?(°R*)
0.9

1.0 ft

i

n

0.25 ft
1.250 x 1073 1t
25.0 BTU/(hr)(ft)(°R)

n

H

n

Initial Conditions

T(0) = 2000°R

The most efficient use of radiator material weight dictates the

arrangement of the finned tubes in a straight bank. The general tempera-
ture distribution, of this arrangement, along the fin is given in Fig. 15.

3. Preparation of Machine Equations

a. Machine Variables and Scale Factors.

ax = x!' bT = T!

adx = dx' bdT =4T! (5)
aldx? = dx'? bd?*T = 4°T!

a = 10?2 b =5x 1072

33
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b. Scaled Equation

Substituting Equations (5) into Equation (3) we get,

a*t'  geT™
dt'* a%h*kH

(Note T4 = 0.)

c. Machine Equation

2t 14
4T 0.03986 <—T"—'5')
dt'? to

d. Initial Conditions

T' =DbT =100 volts

dT'

— =Y volts
dt!'
so that
1
dr -0
dt!

t=al,

4. Analog Circuit Diagram

a. Flow Sheet

|1'>
ol
@

102|C

Fig. 14. Circuit Diagram for Solution of Second-
order, Fourth-degree Differential Equation
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Qrgonne JAational Laboratory

APPLIED MATHEMATICS DIVISION

ANALOG COMPUTER

b. POTENTIOMETER SETTINGS

PROBLEM NO.
DRAWING NO.
DATE
POTENTIOMETER NO. MATHEMATICAL CORREC
VALUE | SETTING | SET P ARAMETERS
DRAWING | MACHINE VALUE TION
dT!
1 - Et—, volts *
2 100 €/ab’kH 0.03986 0399
. dT
AVariable to produce o 7|0 atx 3§ L
h'd
Argonne JAational Laboratorp
APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER
c. STATIC CHECK PROBLEM NO.
DRAWING NO.
DATE
UNIT NUMBER | INITIAL
UNIT ; ur REMARKS INTE- | conpi- | sET PARAMETERS

DRAWING | MACHINE | (YOLTS) GRATOR | 1108
POT 2 -3.99 2 +100
MUH 1 AB -100v

2 AB -100v
AMP 3 +3.99
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5. Graphical Results

2000

1500

1000

TEMPERATURE, °R

500

dT/dx

o] 005 010 015 020 025
FIN LENGTH, FEET

Fig. 15. Temperature Versus Length and dT/dx
Versus Length for a 0.25-ft Fin (K =25.0)
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VI. TEMPERATURE DISTRIBUTION IN AN INFINITE SLAB
CONSIDERING VARIABLE THERMAL PROPERTIES

1. Problem Description

When the thermal properties of various materials are studied,
thermal conductivity, specific heat and density are usually considered as
constants; they are, however, dependent upon temperature.(VI'l) In this
experiment, an insulated zirconium slab is studied. Four cases are
considered:

(1) Diffusivity (k = k/p c) is constant;

, &

(2) «=F(=2 Ty ;
5 i=)

(3) k = F (Temperature of the region described by the heat
balance);

(4) k = F (Average temperature across an interface).

2. Mathematical Statement of the Problem(VI-2)

a. Equations

A,

N\

o,
O

Fig. 16. Model of the Infinite Slab Showing
Regions Used for Analysis

X
7/

IR
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dT, _ S K
dt ~ pcAx  Ax® (T1-To)

d_drl;ci = Zﬁz—(Tl_TZ) —'Aixz(Tz-Ts)
%_3. = Ai:'{'z‘(Tz-T;x) - Z‘%(Ta-TO
d;:q’ = Z‘i‘?(Ts'TO —Z_l::Z(T4_T5)
d;:s - -Az—Z(T‘i-TS) - pfzx (T% - T5).*
b.  Constants

(1) Constant case

k = thermal conductivity =
c = specific heat =
p = density =
k = k/cp = diffusivity =
S = heat source =
€ = emissivity
0 = Stephan-Boltzmann constant
Ax = 1/60 ft
(2) As a function of temperature

T, °F k(T)

100 0.4198

200 0.4

300 0.38

400 0.364

500 0.352

600 0.336

700 0.322

800 0.309

900 0.298

*Radiation heat loss will be neglected.

11 BTU/(hr)(ft)(°F)
0.066 BTU/(Ib)(°F)
0.397 Ib/ft?

0.4198 ft?/hr

18.3 BTU/(ft?)(sec)




C. Initial Conditions

T1=T2=T3=T4=T5=1000F

3. Preparation of Machine Equations

a, Machine Variables

t!' = at
T' = bT
S" = AxSb/k

b. Scale Factors

a=1.0

b=0.1

c. Machine Equations
dT; _ kS" K

t _ !
dt' = Ax%a ~ Oxfa (T1 - T2)

d_th.é_= e (Th-TY) - 1 (T3-TY)
4L . & (1y-TY) - i (Ty- T
. (ryomy - T (- Ty
4T e (n-Ty

d. Initial Conditions

H
f

Th =... Ts = 10 volts

V-

S" = 10 volts [S = 18.3 BTU/(ft?)(sec)] for 50 sec
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4. Analog Circuit Diagrams

a. Flow Sheets

Case I - (K = constant)

@__,\

Fig. 17. Circuit Diagram for
an Infinite Slab with
Thermal Conductivity
k = Constant

R-RELAY CIRCUIT
TO INTEGRATOR

5000
+i00

O+O——‘
(o} Xo?

B -

(o}

F 0l

— S

Fig. 18. Relay Circuit for
the Heat Pulse Used
in Experiment VI




Case Il - [k = F(Tay)]

+100

Fig. 19. Circuit Diagram for an Infinite Slab with Thermal
Conductivity « = F(Taverage)
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Case III - [k = F(Temperature of the Region Described by the

Heat Balance)]

! —

+
-7}
,2\ -
+

—@

%ﬁ.

@

%ﬁ

i

=

Fig.

20.

Circuit Diagram for an Infinite Slab with

Thermal Conductivity « = F(Temperature
of Region Described by the Heat Balance)

Case IV - [k = F(Average Temperature Across an Interface)]

Fig.

21,

Thermal Conductivity &
Temperature Across an Interface)

Circuit Diagram for an Infinite Slab with

= F(Average




Argonne Aational Laboratory

APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER

b. POTENTIOMETER SETTINGS
TEMPERATURE VARIATION IN A ONE FACE INSULATED SL.AB PROBLEM NO.

CONSIDERING VARIABLE THERMAL PROPERTIES DRAWING NO.
CASE 1 DATE
POTENTIOMETER No. MATHEMATICAL CORREC-
DRAWING | MACHINE VALUE VALUE TION SETTING SET PARAMETERS

1 0.01T} 0.1 1000 S =18.3
2 0.01T} 0.1 1000 S" = 10 volts
3 0.01T; 0.1 1000 a=1
4 0.01T, 0.1 1000 b=0.1
5 0.01T, 0.1 1000 K =%loloﬂ
6 (0.01kS"/Ax%a) [0.042 0420 Ax =1/60
7 k/Ax% 0.4198 4198 T;(0) = 100°
8 K /b x*a 0.4198 4198
9 K /0 x%a 0.4198 4198

10 K /A x%a 0.4198 4198

11 K /A x%a 0.4198 4198

12 K /0 x*a 0.4198 4198

13 K /0 x%a 0.4198 4198

14 K /A x*a 0.4198 4198

JASE II

1 0.01T] 0.1 1000
2 0.01T} 0.1 1000
3 0.01T; 0.1 1000
4 0.01T, 0.1 1000
5 0.01T5 0.1 1000
6 S" /100 0.1 1000
7 1.0 1.0 1000 | {(1Q)
8 1.0 1.0 2000 | |(b)

AMD-2C (8-57)
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Argonne JAational Laboratory
APPLIED MATHEMATICS DIVISION
ANALLOG COMPUTER

b. POTENTIOMETER SETTINGS

TEMPERATURE VARIATION IN A ONE FACE INSULATED SLAR PROBLEM NO.

CONSIDERING VARIABLE THERMAL PROPERTIES DRAWING NO.

CASE III - IV i
POTENTIOMETER NO.| I ATHEMATICAL CORREC-
DRAVWING | MACHINE VALUE v ToN e - o
1 0.01T} 0.1 1000
2 0.01T, 0.1 1000
3 0.01T} 0.1 1000
4 0.01T} 0.1 1000
5 0.01T} 0.1 1000
6 S" /100 0.1 1000

AMD-2C (8-57)



c. STATIC CHECK

Argonne JAational Laboratory

APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER

PROBLEM NO.
CASE 1 DRAWING NO.
DATE
UNIT NUMBER OUTPUT INTE- INITIAL
UNIT REMARKS CONDI- | SET PARAMETERS
DRAWING | MACHINE | (YOLTS) GRATOR | 110N
AMP 6 0.0 1 +10
7 0.0 2 -10
8 0.0 3 +10
9 0.0 4 -10
POT 6 -4.2 5 +10
7tol4 0.0
CASE 1I
AMP 6 -10 1 +10
7 0 2 -10
8 0 3 +10
9 -10 4 -10
10 0 5 +10
11 0
12 -10
13tolé 0
17 10
18 -41.98
DFG +41.98
POT 6 -4.2
7 -1.0
8 -2.0

AMD-2A (8-57)
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Argonne Rational Laboratory

APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER

c. STATIC CHECK PROBLEM NO.

TEMPERATURE VARIATION IN A ONE FACE INSULATED SLAB DRAWING NoO.

CONSIDERING VARIABLE THERMAL PROPERTIES DATE
CASE III
UNIT UNIT nueER ouTPUT REMARKS INTE. I(:‘:?;ll:ll: SET PARAMETERS
DRAWING | MACHINE | (YOLTS) GRATOR | 7108
AMP 11 0 1 -10.0
12 0 2 +10
13 0 3 -10
14 0 4 +10
15 +41.98 5 -10
DFG | 1to5 +41.98
POT 6 +4.2
CASE IV
AMP 7 +10 1 -10.0
9 +10 2 -10.0
12 +10 3 -10.0
14 +10 4 -10.0
6 0.0 5 -10.0
10 0.0
11 0.0
15 0.0
16to24 0.0
20 +41.98
6 +4.2

AMD-2A (8-57)



5. Graphical Results

Case I - (kK = constant)

Heat Input = 18.3 BTU/ftzsec for 50 sec

600

ol » [¢]
o o o
o o O

TEMPERATURE,°F

n
[=]
[e]

100

0 5 {e] 15 20 25 30 35 40 a5 50 55 60 65 70
TIME, SECONDS

Fig. 22. Temperature Distribution for an Infinite Slab - Case I

Case II - [k = F(T,,)]
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Fig. 23. Temperature Distribution for an Infinite Slab - Case II
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Case III - [k = F(T of region described by the heat balance)]

600

[ F3 <
o] Q Q
o [=] =]

TEMPERATURE, °F

N
(o3
[s]

100

o] 5 10 15 20 25 30 35 40 45 50 55 60 65 70
TIME , SECONDS

Fig. 24. Temperature Distribution for an Infinite Slab - Case III

Case IV - [k = F(Average T across an interface)]

600
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[e] [e] =)
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n
o
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Fig. 25. Temperature Distribution for an Infinite Slab - Case IV
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