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I. Lntroducti on 

Before considering i n  d e t e i l  thermal designs of se lec ted  reac tor  cores, i t  
i s  des i rab le  t o  look a t  the  p ic ture  somewhat more broadly, i n  order t o  understand 

the  pr inc ip les  responsible for the  wide design d i v e r s i t i e s  exhibited by the  many 

var ian ts  of the  gas-cooled reac tor .  
t e r i s t i c s  of gas cooling as 3,pplied t o  reec tors  i s  Torthcoming a t  once from t h e  

most elementsry ergurnents. For s implif iczt ion,  only pe r fec t ,  constant-property 
gases and smooth uniform passages ctre used. 

and a uniform flow d i s t r ibu t ion  i s  essumed. Temperature drops ins ide  f u e l  elements 

are not included. Some useful  reli l t ions between reactor  p z r m e t e r s  Ere now 
derived. 

Considerable in s igh t  i n t o  the  general  charac- 

-1cce1eration of the gas i s  neglected 

llie following bgs ic  relz,tione are used: 

F r i c t iona l  pressure drop A p  = 2fl,1rEp/( Dg, ) (l) 
Mass baliznce w = PESV ( 2 )  

9 = wc AT ( 3 )  
A t  = C;, ( ~ V C  F--Ii ) (4) 

P Heut balance 

1iea.t t r ans fe r  p S t  
Pumping pcwer in the  core ’A = (wAp/p) [7’o/(‘I’o * A 9 / 2 ) ]  ( 5 )  
Reynolds analogy BSt = (Yf  ( f o r  smooth surfaces  and 

1lpr = 1, a = 1/2. ) 

c = Cp/M cw 
Aversgz densi ty  p =pM/[R(To i- AT/;!)]. ( 9 )  

( 6 )  
Hydraulic diameter. D = ~ ~ S L / A  ( 7 )  

P 
Specif ic  heat 

Lere, A p  = Core pressure drop V = Average ga.s veloc i ty  

L = Core length 
p = Average coclant densi ty  w = TotaJ mess flow 

D = 2ydrzu2ic dl6meter of channel 
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gC = C o ~ i ~ f ~ r ~ i o n  f ac to r  (32.2 f t  x pounds 
m a s s / (  sec2 x pounds fo rce )  

E = Void f r ac t ion  

core 

ternperatur e drop 

L=: Stanton number (h/Vpc ) 

AT' = Coolant temperature r i s e  i n  the 

A t  = ATJerZ.ge surface to @OolEUlt 

NSt P 
'GJ = Fumping power i n  the  core 

EPr = Prandt-1 number ( c  p/k) 
P 

C = Coolmt molar heat  capacity P 
p = Average ambient pressure 

= Reynolds number (DVp/p ) NRe 
f = Fr ic t ion  f ac to r  

S = Frontal  erea of core 

c = Coolaxxt spec i f i c  heat 
P capacity 

Q = Total  thermzl output 

F = Heated f r ac t ion  of the  
channc-1 .;urfa.ce 

A = Tota l  f r i c t i o n a l  a rea  i n  

h = Heat t r ans fe r  coef f ic ien t  

t he  core 

To = Absolute i n l e t  
temper -ti ;re 

p = Absolute v iscos i ty  

k = Thermal  ccnductivity 

M = Molecular weight 

R = [Jniversal gas constm,t 

Appropriate manipulation yields  a generel  r e l a t ion  between therms: output 

per  u n i t  f ron ta l  area of the core Q/S 8s a function of the allowobl-e e w e  pumping 

f r a c t j  on W//,CJ, the  vold f r ac t ion  a md At/  AT, without any knowledge of the  de ta i led  

core s t ruc tu re  
c p A T  (ZE 2 FAt2agA Ji 

Q/S = BYO M Q, 1 + AT/2T (IC) 

The required heated surface per u n i t  f r o n t a l  m e a  of t h e  core I s  

F:i/'S = E ATj'(Xst A t )  (11) 

D = 4LIi F A t lAT . ( -'L 2 ) 

:r;d t k  ye:,uired hydreulie diameter of E channel i s  

s t 
IJsing t h e  f r i c t i o n  factor c o r r e l a t i o n  for t u r b u h n t  Plow i n  smooth tubes 

we f i n d  an expression for' t h e  hydraulic dixneter,  

( : b )  11 = 0.136 ( ~ c ~ L , F A ~ / A T ) ~ " ~ ~  [SsCppAT/(QV)] 0 D 166 
1 

The t e r m  (C;/.M)Z emerges as ii c r i t e r i o n  of usefulness of coolants (t!!q. 101, 

bu t  t h e  required heated surfece vmies fo r  d i f f e ren t  coolants (Eq.  14  i .  'lhe choigs? 

of  coolant, however, i s  mainly determined by such f ac to r s  as inertn,,s, i r r ad ia t ion  

damage, and avai ls lbi l i ty .  Since gross output var ies  2s rap id ly  LS the s q ~ s e  root  

of the pumping f r ac t ion ,  it often pays t o  devote a subs tcn t ia l  f r ac t ion  of t h e  

reac tor  output t o  pumping. 5he gross output i s  found t o  be p ropor t iond  t o  t h e  

gas pressure m d  independcnt of t he  core length.  
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The r a t i o  of the heated surface t o  flow area,  FA/;S, depends only on the 

Stanton number for a given temperature l imi ta t ion  (Eq.  11). 

it i s  shown i n  Eq.  10 t h a t  the thermal output does not change i f  the  f r i c t i o n  

fac tor  and the  Stanton number 8re  increased by the same fac to r ,  i . e . , a ! i s  constant 

bu t  there  is  a corresponding ?eduction i n  the heated surface FA (Eq .  11.). 
shown i n  Section 6, we can use surface roughening t h a t  almost doubles the Stanton 

number f o r  a penalty of l oca l ly  t r i p l i n g  the f r i c t i o n  f ac to r .  
ho t t e r  1/2 t o  213 downstreaa sect ion of the f u e l  e lexent  needs roughening, the 
over-all  channel pressure drop i s  only doubled. 
l imit ing,  the  fuel-element diameter nay thus be doubled and the  nuriber of f u e l  

elements decreased by a f ac to r  of four,  f o r  a f ixed t o t &  fuel-elaceat  volume, 

rertctor s i ze ,  t o t a l  power and coolant temperatures; increased i n t e r n a l  tem- 
peratures  may now become a limiting factor. 

For 8 f ixed  flow area., 

As 

Sincc only the 

When t h e  surface temperature i s  

2. Main Features of U . S .  Gas-cooled Reactors 

One type of gas-cooled reactor ,  e .g . ,  EGCR (Experimental Gas r'cmkd Reactor) 

and EiiOR (Experimental Beryllium Oxide Reactor ), uses oxide fue l  w i t h  metal l ic  

c l aa .  These reactor5 a r e  designed t o  take advantage of the high burnup po ten t i a l  

of oxide f u e l  and the design freedon allowed by enrichment. The poor csn&JrtLvity 

of the oxide, coupled w i t h  the des i re  f o r  high power densi ty ,  forces the use ol" 

groups of  t h i n  rods i n  channels. High surface temperatures necess i ta te  the use of 

s t a i n l e s s  s t e e l  or Hastelloy-X clads,  whose low thermal conduct ivi t ies  render fins 
i n e f f i c i e n t .  By using roughened surfaces,  the allowable surface h p s t  fZiix m.-y be 

increased. The corresponding higher f u e l  temperatures m&y be l imi ted  by  usirlg 

hollow fuel elements. 
results of  calculat ions w i t h  several assumptions on t h e i r  causes, rather than  by 

using m1:ltiplying fac tors .  

r l  

Hot-spot temperatures are usual ly  obtained by cosparicg the 

In  another type of gas-cooled reactor, e.g . ,  HTGR's (High Ternperazure Gas 

Cooled Reactors) and pebble bed reac tors ,  all-ceran-dc f u e l  e l e m m t s  are med. 

elimination of metal l ic  cladding allows very high surface tempera"ures. As the  

f u e l  i s  heavily d i lu ted  by moderator, s t r u c t u r a l  f u e l  i r r ad ia t ion  damage i s  v i r -  

t u a l l y  eliminated as a burnup-limiting f ac to r .  The incentive t o  seek high coclznt 
temperatures, and accompanying high p l an t  eff ic iency,  goes far beyorid the dire:.:, 

e f f e c t  on fuel cos ts ,  for, i n  general ,  it implies increased usefu; O X ~ P U J ;  f r c n  a 

giver, reac tor  thermal power and hence reduced u n i t  cap i t a l  cos ts  of t h a t  subswn- 
t i a l . p a r t  of the p l an t .  A s  shown by Table I,  the  HTGR c lass  or reac tors  i s  czp&le 

of very sa t i s f ac to ry  core power d s n s i t y .  By v i r t u e  of the high te?qerature d4l'f'tr.- 

e n t i a l s  and good steaa conditions ddvailable, the  associated boi le rs  and t i i r h i m ?  

The 
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can a l so  be very compact. 

duction have, i n  f a c t ,  exploited these features  t o  the point  where powers of the  

HTGR-type designs optimized f o r  large-scale power pro- 

order of 500 MW(e) are contemplated from t o t a l  p l an t  containment volumes l i t t l e  

l a rge r  than the  40-W(e) Peach Bottom, f o r  s imi la r  core power dens i t i e s .  

Some thermal design parameters of U . S .  gas-cooled reac tors  under construc- 

The corresponding f u e l  elements t i o n  or  i n  operation are presented i n  Table I .  

are shown i n  Fig.  1. 

gas-cooled reac tors .  

Rocket and airplane reac tors  are not discussed, nor a re  f a s t  

EGCR and "TGR w i l l  be described i n  more d e t a i l  i n  l a t e r  sec- 
t i ons .  

of-coolant-flow accident.  

liquid-cooled reac tors  because the  a f t e rhea t  cannot be absorbed by t h e  coolant. 

U.S. gas-cooled reac tors  have therefore  been equipped with i n t e r n a l  heat sinks 

A common problem t o  a l l  gas-cooled reac tors  i s  the p o s s i b i l i t y  of a loss- 

This i s  more ser ious f o r  gas-cooled reac tors  than f o r  

which absorb the heat of the i n i t i a l  t r ans i en t  r e su l t i ng  from temperature equali-  

zation within the  f u e l  element which causes a rap id  r i s e  i n  surface temperature. 

Some kind of emergency cooling i s  supplied t o  remove the a f t e rhea t  after the 
i n i t i a l  t r ans i en t  i s  over. 

l imi ted  by afterheat-removal considerations.  
Thus, the design power densi ty  of the reac tor  may be 

EBOR, now under construction, is  designed t o  tes t  the high-temperature 
behavior of Be0 as a reac tor  moderator. The se lec t ion  of the present  EBOR f u e l  

element was based, i n  p a r t ,  on the inherent s implici ty ,  the  r ead i ly  predictable  

thermal performance, and sa t i s f ac to ry  behavior i n  the  event of a loss-of-coolant 
accident.  

the annular passage. 

diameter i s  0.14. 

To achieve proper performance, the f u e l  rods must be c lose ly  spaced i n  

The r a t i o  of the minimum clearance between rods t o  the rod 

The r a t i o  of the p i t ch  of the  h e l i c a l  rod spacers t o  the rod 

diameter is  20. The coolant flow t o  each f u e l  element i s  o r i f i ced  so tha t  the 
maximum cladding temperature i n  each element i s  about the same. 

t r ans fe r  coef f ic ien t  around a fuel p in  may vary 20 t o  3opk about i t s  average 
The l o c a l  heat- 

C2l value. 

The 630-A reactor,C31 which is  derived from the  Aircraf t  NuclesJr Propulsion 

program, i s  proposed as an i n t e g r a l  nuclear steam generator f o r  sh ip  propulsion. 
I n  t h i s  reac tor  t he  thickness of the coaxial  f u e l  r ings  within a f u e l  assembly i s  

varied t o  give approximately equal heat  f luxes from a l l  r ings .  
f i l l e d  moderator tube is  centered i n  each of t he  f u e l  tubes t o  reduce the  f lux  

depression through the assembly. 

A re-entrant  water- 

The diameter of the moderator tube i s  varied i n  
four  radial zones i n  the reac tor  t o  obtain nearly the  same surface heat f l ux  f o r  

all radial pos i t ions .  

ensure enough cooling by rad ia t ion  if coolant flow i s  l o s t .  

Heat losses  t o  the water moderator have t o  be to l e ra t ed  t o  

4 



c41 The MI,-1 reactor  i s  a small portable u n i t  using a closed-cycle gas t u r -  

bine f o r  power generation. 
which contain the  fuel-element bundles, i s  varied t o  f l a t t e n  the  r a d i a l  power dis-  

t r i bu t ion .  

the cladding temperatures. 

other and from the inner l i n e r  tha t  i s  itself insulated from the  pressure tube by 

a 0.112-in. l ayer  of Thermoflex (A1 0 -Si02). 

supply process heat  a t  very high temperatures. 

primary c i r c u i t  contains la rge  amounts of f i s s i o n  products. 

The spacing of the s t a i n l e s s  steel  pressure tubes, 

The fuel loading of the pins within the  bundle i s  var ied t o  equalize 
A 40-mil Hastelloy-X w i r e  separates the pins  from each 

2 3  
The Ultra High Temperature Reactor Experiment (LJHTxnt)c5J i s  designed t o  

Since no cladding i s  used, the 

3. EGCR Thermal Design 

The f u e l  assembly f o r  the  EGCR consis ts  of a seven-rod c lus t e r  of s t a in l e s s  

s teel  tubes f i l l e d  with cored, U02 p e l l e t s ,  each c lus t e r  supported within a l - in . -  

th ick  graphite sleeve of 3-in. I.D. and 5-in. O.D. (see Fig. 1). 

stacked fuel assemblies i n  each coolant channel. 

There are s i x  
C6l 

t 

A s  unsymmetrical temperature var ia t ions around the  rods r e s u l t  i n  differen-  
t i a l  expansion and bowing, i n i t i a l  emphasis was  placed on minimizing the circum- 

f e r e n t i a l  temperature var ia t ions  i n  the  s i x  outer rods of the seven-rod c lus t e r  by 

proper radial loca t ion  i n  the  coolant channel. 

ends, such bowing r e s t r i c t s  gas passage along the hot te r  port ion of t h e  rod, and 

Since the  rods are supported a t  the 

r e s u l t s  i n  fur ther  bowing. It i s  important t o  design the f ie1 assembly s o  tha t  t he  

t o t a l  bowing and flow r e s t r i c t i o n  does not r e s u l t  i n  a l o c a l  rod-surface tempera- 

t u re  t h a t  w i l l  damage the s t a in l e s s  s teel  fuel-rod tubes. 

ature s t ruc ture  within a c lus t e r ,  a r a the r  extensive series of heat- t ransfer  and 
fluid-flow experiments w a s  conducted. 

To determine the temper- 

The most convenient qualitative experi- c7 9 8 1  

mental method was found t o  be measurement of the l o c a l  removal of a naphthalene 

coating on one of the outer c lus t e r  tubes i n  an isothermal t e s t  using a i r .  
naphthalene removal i s  most uniform when the  outer rods are equidis tant  between the 
center rod and the channel w a l l .  

axial temperature r ise  of the gas i s  not uniform, and mixing between the passages 

of the c lus t e r  i s  very s m a l l ;  therefore,  more space i s  required between fuel rods 
than between a rod and the channel w a l l .  [lo’ Minor var ia t ions i n  the roughness of 

the  outer channel w a l l  do not ser iously influence the flow d i s t r ibu t ion  a t  the  

expected Reynolds number of about 5O,OOO. 

c91 

However, heat-transfer tests ind ica te  t h a t  the 

The s t a b i l i t y  of the  fuel rods i n  t h e  assembly i s  enhanced fu r the r  by mid- 

length spacers.  

so t h a t  the e n t i r e  length of the rods i s  i n  a hydrodynamic entrance region. 

Both the  end f ix tu re s  and the mid-length spacers disturb the flow 

The 
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most recent  correlat ion of air data “11 f i t s  the  data within 46% and -3$: 
-0.15 

N = 0.041 N0*7‘7(L/D) ~, 
N% Reb 

where the  temperature difference associated with the Nusselt number (NNu = hD/k) i s  
based on the  mixed mean gas temperature and the average surface temperature of t he  

outer rods a t  a distance L from the nearest  upstream spacer; the subscr ipt  b refers 

t o  mixed mean t e q e r a t u r e s .  

The ro t a t iona l  posi t ion of t he  assemblies i n  the coolant channel w i l l  be 

random. 

the  spaces between the  outer rods i n  the  next assembly. 

complete with a r e l a t i v e  ro ta t ion  of 30 degrees, while 60 degrees ro t a t ion  i s  
equivalent t o  no ro ta t ion .  

a 30-degree ro ta t ion  has l i t t l e  e f f ec t  except j u s t  downstream from the spacers,but 

a 15-degree displacement of t he  preceding assembly produces a la rge  eccentr ic  var- 
i a t i o n  i n  circumferential temperature along the  e n t i r e  f i r s t  half of the  rod and i s  

eas i ly  detectable  even beyond the  mid-rod spacer. This effect r e s u l t s  from a ro ta -  

t i o n a l  flow component introduced by the unsymmetrical displacement of t h e  preceding 
rods e 

Thus, outer rods of a preceding assembly may p a r t i a l l y  block entrance t o  

The blockage w i l l  be most 

Apparently because of t he  mixing act ion of the  spacers, 

are w e l l  correlated over 
a range of Reynolds numbers by separating spacer and end e f f e c t s  from the remaining 

pressure drop. 

For spacers, t he  loss  coef f ic ien ts ,  defined as c = 2Apgc/(pV2), were largely 
independent of the  main-stream Reynolds number, and were approximately 0.43 f o r  t h e  

end supports f o r  the rods and about 0.34 f o r  the mid-rod spacers.  

‘121 

-0.18 

Pressure-drop measurements with atmospheric air 

For the  EGCR configuration f = 0.17 N 
Reb * 

I n  calculat ing the loca l  temperatures within the  c lus t e r ,  t he  following 
e f f e c t s  are considered: radial and axial heat-generation gradient ,  thermal radia- 

t i o n  w i t h i n  the c lus te r ,  variable heat-transfer coef f ic ien t  around the elerrrent and 

along the channel, gas temperature differences between the various f low pas;sages, 

circumferential  heat  conduction around the  graphite sleeve,  and mixing between the  
flow passages. 

Analysis shows tha t  a t  the end of the  second assembly, where the heat gtnerat ion is  

highest ,  the circumferential  temperature difference between opposite sides cf a 

f u e l  rod  i s  80’ t o  gO°F. 

The flow of heat i n  the U02 p e l l e t s  i s  assumed t o  be radial only.  

4. The Peach Bottom €ITGR Thermal Design 

The Peach Bottom HTGR c13921 i s  a helium-cooled reac tor  with semihomogeneous 
graphite fuel elements. 

which the Wigner e f fec t  i n  the  graphite r e f l e c t o r  i s  important, bu t  s t i l l  allows 
The i n l e t  temperature of 652’~ l i es  above the level a t  
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the  pressure vessel  t o  be made of low-alloy s t e e l .  

1342'F i s  limited by the external  c i r c u i t s  and not  by the  core. 

The o u t l e t  temperature of 

The f u e l  element consis ts  of a graphite spine of 1.75-in. d i m ,  surrounded 

The f u e l  by a f u e l  r i ng  of 2.75-in. d i m  t h a t  i s  contained i n  a graphite sleeve.  

r i ng  consis ts  of coated uranium and thorium carbide p a r t i c l e s  embedded i n  a 

graphite matrix. 
3.50-in. elements on a 3.55-in. p i t ch .  

cooling passages. 

The elements form a closely packed hexagonal pa t te rn  w i t h  the  

Each element i s  surrounded by s i x  t r icuspid  

The elements are separated by four ring-shaped spacers.  

A f u e l  r i ng  was chosen r a the r  than a solid cen t r a l  f u e l  cylinder of the  

same diameter t o  l i m i t  the  peak temperature i n  the  fue l ;  the present  thickness of 

the r ing  i s  convenient f o r  fabr icat ion reasons. 

f i s s i o n  products out of t he  primary coolant stream and t o  provide s t r u c t u r a l  r i g id -  

i t y  t o  the fuel element. 

i n t o  fission-product t raps .  

The sleeve i s  provided t o  keep 

Vola t i le  f i s s i o n  products are purged from the element 

The fuel element has no sharp temperature l imi ta t ion  (e .g . ,  melting point ,  
phase change ) but  fission-product release from the  fuel  p a r t i c l e s  increases appre- 

c iably between 2700' and 3OOOOF. The maximum design f u e l  temperature w a s  taken t o  

be 2700°F. 

normal fission-product release can be accepted i n  s m a l l  areas of the core. It 

becomes more important, therefore,  t o  know what percentage of the f u e l  i s  above 
ce r t a in  temperatures rather than t o  t r y  t o  prevent any fuel from reaching a l i m i t -  

ing temperature. 

A small l o c a l  hot  spot  i s  not very ser ious,  as a somewhat l a rge r  than  

The average heat-transfer coeff ic ient  and t h e  circumferential  var ia t ion  of 

the heat- t ransfer  coef f ic ien t  around a f u e l  element were obtained experimentally. 

Other uncertaint ies ,  such as the flow d i s t r ibu t ion  i n  the reactor  core and the 
e f fec t s  of bending of f u e l  elements, were investigpted analytically. 

C141 

has shown tha t  the smooth tube cor re la t ion  E141 Experimental work 

using the  hydraulic diameter of t he  tricuspid-shaped channel y ie lds  answers which 

are about 5$ too high. 

var ies  between 55 and l3O$ of i t s  average value. 
channel l i e s  s l i g h t l y  below the  cor re la t ion  f o r  a smooth tube; however:the fou r  
spacers contr ibute  approximately as much pressure drop as the channel f r i c t i o n .  

The heat-transfer coeff ic ient  around the circumference 

The f r i c t i o n  f ac to r  f o r  the 

Cl5l 

The following heat-transfer and f r ic t ion- fac tor  correlat ions are used i n  t h e  

design f o r  Reynolds numbers between 15,000 and 100,000: 

0.8 0.4 and -0.25 
f = 0.079 NRe , 

NPrf f 
NNuf = 0.021 NRe 

f 

where the  subscr ipt  f refers t o  propert ies  evaluated at  film temperature. 
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Temperature and pressure-drop calculat ions i n  t he  HTGR are complicated 
because the HTGR employs an open core, i . e . ,  a l l  cooling channels are in t e r -  

connected and o r i f i c ing  i s  not possible.  

coolant var ies  from channel t o  channel; therefore ,  the res i s tance  t o  flow a lso  

var ies  as a r e s u l t  of the differences i n  coolant v i scos i ty  and accelerat ion.  
resu l t ing  pressure differences between channels are equalized by flow from one 

channel t o  another, i . e . ,  cross-flow. A t  first sight, it i s  not obvious whether 

cross-flow i s  benef ic ia l  or  disadvantageous: 

uously because of higher accelerat ional  and f r i c t i o n a l  l o c a l  pressure drops, bu t  

more gas enters  a t  the i n l e t  of the ho t t e s t  channel than would be possible  f o r  a 

closed hot channel. 

imately cancel each other ,  as far as maximum temperatures a re  concerned. 

The l o c a l  and t o t a l  power input i n t o  the  

The 

the ho t t e s t  channel loses  gas contin- 

For the  HTGR, it has been shown t h a t  these two e f f ec t s  approx- 

The change i n  coolant o u t l e t  temperaturec2’ i n  the HTGR r e su l t i ng  from 
sudden changes i n  power, coolant i n l e t  temperature, or  coolant flow r a t e  i s  qui te  

slow i n  comparison with other reactor  systems because of the la rge  heat capacity 

ok the f u e l  element. 

peratures but  by the o u t l e t  temperatures that  the  ducts and steam generator can 

withstand. When coolant flow i s  interrupted, followed by a reac tor  scram, the 

HTGR t rans ien ts  are usual ly  l imited not by fuel-element tem- 

f u e l  cools i n i t i a l l y  due t o  temperature equalization. 

ceramic elements (graphi te )  can withstand qui te  high temperatures without damage 

t o  the s t r u c t u r a l  i n t e g r i t y  of t h e  element. In  the Peach Bottom HTGR, emergency 
cooling i s  supplied by cooling the pressure vessel  and t ransport ing the afterheat 

from the f u e l  elements by conduction, na tura l  convection, and radiat ion.  

The s t r u c t u r a l  p a r t s  of 

5. Pebble Bed Reactor Core Desim 

In  se lec t ing  the  core f o r  a pebble bed reactor ,  assuming t h a t  the  gas ten- 
peraturcs and t o t a l  heat output are  fixed, the re la t ionship  between the variables 

and the  thermal-stress l imi ta t ion  places narrow l i m i t s  on the range of values t h a t  

one may se l ec t .  In  general, one wants the core power density la rge  t o  minimize 

core dimensions, and the f u e l  elements la rge  t o  minimize fuel fabr ica t ion  cost  and 

t o  simplify fuel handling. 

b a l l  diameters 1.5 t o  2.5 in .  

Typical core power dens i t ies  are 5 t o  10 kW/liter and 

The importance of the core pressure drop depends on the d i rec t ion  of f l G w  

For a downward o r  radial-flow core, the r e s t r i c t i o n  on pressure through the core.  

drop i s  the pumping power o r  s t ruc tu ra l - r e s t r a in t  l imi ta t ions ,  whereas f o r  an 

upward flow through the  core, the l imi ta t ion  on pressure drop w i l l  be the  l e v i t a -  

t i o n  flow or  flow rate a t  which the  upper layer  of f u e l  elements begins t o  move. 
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Experiments with gas flowing upward through beds of spheres have indicated t h a t  

when the  pressure gradient equals 8@ of the bulk bed density,  spinning of t h e  

b a l l s  i n  the upper layer  begins; 'lS1 at  s t i l l  higher flow rates, ac tua l  l ev i t a t ion  

of some spheres w i l l  occur. 

data  c221 indicate  t h a t  the  equation f o r  pressure drop i s  not va l id  f o r  IfRe > 
15,000. Above t h i s  value, the f r i c t i o n  f ac to r  becomes a constant. The pressure 
drop through a bed of spheres may be expressed as 

c171 Recent s tudies  have been summarized by Bundy. 

The r e l a t ions  used below are taken from Refs. E181 through [211. Later 

1.73 0.27 15 Gs p 
Ap = 

where G i s  the  approach mass veloci ty ,  and d i s  the  sphere diameter. The l i m i t  
t h a t  thermal stress places on the mean power density i n  the  h a l l  bed i s  

q = 60(1 - v)kau(l  - €)/(a! Ed2 y )  

8 

where 

the  ult imate t e n s i l e  s t rength,  E i s  the  modulus of e l a s t i c i t y ,  a! i s  t h e  coef f ic ien t  

of l i n e a r  expansion, and y i s  the  maximum-to-mean power r a t i o .  

q i s  the maximum allowable mean power density,  v i s  Poisson's r a t i o ,  uU i s  

The heat-transfer correlat ion for a bed of spheres is  

with NSt and NRe based on the supe r f i c i a l  gas veloci ty  and t h e  b a l l  diameter. 

The mean surface-to-gas temperature drop i s  A t  = qd/6h(l - E). 

6 .  Surface Roughening and Swirl Flow 

I n  gas-cooled reac tors  t he  f i l m  temperature drop i s  usually a lwger f rac-  

I t  i s  there- t ion  of the  t o t a l  temperature drop than i n  other types of reactors .  
fore  worthwhile t o  decrease the  f i l m  temperature drop (Eq.  11). 

accomplished i n  several  ways: the heat- t ransfer  surface FA may oe increased, t h e  

flow area r S  may be decreased, and the  Stanton number ITst may be increased. 
three e f f ec t s  a re  compared i n  Ref. C231. 

S ta t e s  and i n  other  countries,  have s tudied experimentally and theore t ica l ly  
the ways of improving heat  t r ans fe r  with roughened surfaces.  
formance, they found t h a t  the height of the  turbulence promoters should be about 

the  thickness of the  laminer sublayer and the  buffer  layer.. The f r i c t i o n  factor 
becomes nearly independent of t he  Reynolds number, while the  Stanton number 
decreases very slowly with increasing Reynolds number f o r  turbulent  flow of gases. 

For a given roughness height,  there  i s  an optimum r a t i o  of p i t ch  t o  height t h a t  
produces the l a rges t  values of f r i c t i o n  f ac to r  and Stantor numSer. -7 t o  8 .  The 

'l'his -r\iay b~ 

These 
Many invest igators ,  both i n  the United 

[ 24-30] 

To obtain good per- 
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b e s t  r e s u l t s  given i n  Refs. C261 and C281 may be cor re la ted  by p l o t t i n g  the 

increase i n  Stanton number versus the increase i n  f r i c t i o n  fac tor .  Data from 

Refs. [241,[251 , and c291, among others ,  check with t h i s  cor re la t ion .  
following approximations seem t o  represent several. sets of published da ta  within 

&LO$ f o r  turbulent  flow of gases such as air 

f o r  3 X 10 < NRe < 6 X105, and for 15 f /f 5 3: 

The two 

nitrogen, C02 or  heliun!, I(" z 0.7)  
4 x 

where * r e f e r s  t o  roughened surfaces.  These equations show t h a t  doubling the 

Stanton number t r i p l e s  the  f r i c t i o n  f ac to r .  Surface roughening ii; current ly  used 

i n  the  Windscale Advanced Gas Cooled Reactor and is  now incorporated i n  the  design 

of most advanced metal-clad gas-cooled reac tors .  

Swirl-flow heat t r ans fe r  w i t h  gases i n  tubes has been s tudied w i t h  s w i r l  
[3i, 321 C331 induced by an i n t e r n a l  twisted tape and by tangent ia l  tube-wall s l o t s .  

'1 

The r e s u l t s  show r a t i o s  of swirl-to-axial-flow heat- t ransfer  coef f ic ien ts  a t  8 

given Reynolds number of 1.1 t o  3.0 w i t h  increased f r i c t i o n  f ac to r s .  
mary of data  i s  given i n  Ref. [%]. 

k good sum- 

7. Numerical Methods and Applications 

Most of t he  thermal design analysis  i s  performed by analysing a model b y  

numerical methods. 

thermal problems are  solved by replacirig the  relevant  d i f f e r e n t i a l  equations by 

f in i te -d i f fe rence  equations. For coolant f low,  one usual ly  makes the s&proximation 

t h a t  t he  t r a n s i t  time of t he  gas through the coola.nt channel i s  small compare3 ~ * - - b  

the ca lcu la t iona l  t i m e  step. The f in i te -d i f fe rence  equations are ofken made 

imp l i c i t  t o  avoid time-step l imi ta t ions  i n  t r ans i en t  problems. 

simultaneous f in i te -d i f fe rence  equations i s  usually obtained by l t e r a t r i  ve nethods 

as the  number of unhown points  i s  general ly  too la rge  f o r  e f f ec t ive  na t r ix  inver -  

s ion  and nonl inezr i t ies  make it impractical  i n  any case.  Good, crornrnonly ?IS& 

methods are the Peaceman-Rachford method for regular two-dimensionel georr:etrie% 5f 

an extrapolated Liebman method f o r  i r r egu la r  or three-dimensional geornitriez. 

Nonlinear i t ies  (temperature-dependent proper t ies ,  thermal r ad ia t ion )  treated by 

re-evaluating the proper t ies  between i t e r a t i o n s  as a function of the  current  

temperatures. 

A number of d i g i t a l  computer codes have been c',evelopstd i n  which 

The so lu t ion  of the 

Codes f o r  one-, two- and three-dimensional geometries have been developed i n  
which all thermal propert ies  may be temperature-dependent, he3t-gEnWatiGn rates 
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may be space- and time-dependent, rad ia t ion  across in t e rna l  gaps i s  permitted, and 

thermal expansion i s  taken i n t o  account. 

general, e .g . ,  radiat ion,  conduction, and convection. 

The boundary conditions may be completely 

Such codes and a l so  ana ly t ica l  methods have been applied t o  obtain tempera- 
t u re  d is t r ibu t ions  i n  reac tor  cores and i n  complicated geometries such as those 

encountered i n  homogeneous f u e l  elements, e.g. ,  f u e l  elements pierced by coolant 

channels, o r  f u e l  elements i n  which the f u e l  i s  concentrated i n  some regions of the  

element. 

cooling holes ins ide  a c i r cu la r  cylinder,  and w i t h  uniform heat generation, the  

optimum locat ion of the holes is  nearly independent of the i r  dimension, fo r  a given 

number of holes.  c351 This optimum radial locat ion i s  about 0.6 r f o r  s i x  holes or 

more, independent of the  Biot number (Nsi = hr/k) .  A s i m i l a r  problem i s  solved i n  

Ref. C36l f o r  a t r iangular  or  square cooling hole arrangement i n  a la rge  s o l i d  w i t h  

given coolant-hole surface temperature. 

With uniform convective cooling a t  the surface of c i r cu la r  equidis tant  

4 * 

The f u e l  concentration i n  the annulus of an HTGR-type f u e l  element which 

gives the lowest i n t e r n a l  hot spot and average temperature i s  found t o  be 50 t o  

65 volume-$ f o r  r a t i o s  of fuel-to-matrix thermal conduct ivi t ies  of 5 t o  2@, 

respect ively.  

the element below about 25 volume-$; the  thermal conductivity of f u e l  dispersed i n  
the  matrix may obey e i t h e r  a l i n e a r  l a w  or Maxwell's l a w .  

thermal conductivit ies above 45 t o  5@, the annulus should contain f u e l  only, sub- 

j e c t  t o  metal lurgical  l imi ta t ions .  

This r e s u l t  i s  nearly independent of the t o t a l  f r ac t ion  of f u e l  i n  

For r a t i o s  of I371 

The optimum shape of r a d i a l  f u e l  holes i n  a spined cy l indr ica l  f u e l  element, 
cooled a t  the outside,  has been s tudied as a function of various parameters, such 

as number of fuel holes of given t o t a l  area, and r a t i o  of conduct ivi t ies  of f u e l  t o  
matrix. c381 The maximum i n t e r n a l  f u e l  temperature is  minimized w i t h  respect  t o  tk 

length-to-diameter r a t i o  of the fie1 holes. Circular holes are usual ly  not as good 

- 

as elongated pie-shaped holes f o r  low fuel-to-matrix conductivity r a t i o s .  

Good neutron economy and high coolant temperatures can be obtained i n  a l l -  

ceramic (i .e., BeO) cores, but  t h e  heat flux f o r  a given s i z e  f u e l  element i s  

usual ly  limited by t e n s i l e  thermal stresses. 
C02, may be used a t  high temperatures i n  an all-Be0 reac tor .  

tures and e l a s t i c  thermal-stress d is t r ibu t ions  f o r  several  geometries w i t h  uniform 

It may be noted tha t  the m a x i m u m  in t e rna l  heat generation have been tabulated.  

t e n s i l e  stress tha t  occurs a t  the cooler boundary i s  proportional t o  the difference 

between average and surface fuel-element temperatures. 

generation has been s tudied extensively.  c401 Elas t ic -p las t ic  deformation of a 

Other coolants besides helium, e.g. ,  
Steady-state tempera- 

C39J 

Nonuniform i n t e r n a l  heat 

11 



cylinder insulated on the  outside and cooled inside,  with uniform heat  genera- 
t i on ,  has been studied. c411 The thermal-stress l imi ta t ion  fo r  a given heat f l ux  

may be eased by cooling the ceramic f u e l  element both in t e rna l ly  and external ly .  

One can a l so  use a graphite sleeve t o  provide s t r u c t u r a l  s t rength  t o  a Be0 f u e l  
element. C421 

Bounds f o r  the  eff ic iency of longi tudinal  f i n s  of a rb i t r a ry  shape with 

*variable surface heat-transfer coef f ic ien t  are given i n  Ref. C431. 
shape of a f i n  with a given p r o f i l e  area and the corresponding maximum heat f lux  

are qui te  d i f f e ren t  from the values obtained by using a constant heat- t ransfer  
coef f ic ien t .  

The optimum 

In  conclusion it may be s t a t e d  t h a t  the  design-trend of gas-cooled power 
reactors  i n  the U.S.A. has been towards high coolant o u t l e t  temperatures combined 

with simple (all-ceramic) f u e l  elements. 
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Power 
Thermal, MW(th) . . . . . . . . .  
Electrical, MW(e). . . . . . . . .  

Diameter, m . . . . . . . . . . . .  
Active core 

Length, m .  . . . . . . . . . . . . .  
Power density, kW/liter of core 

Power conversion . . . . . . . . . .  

Heat flux 
W/cm2 . . . . . . . . . . . . . . . .  
W/cm . . . . . . . . . . . . . . . .  

ECCR 

85 
25 

3 .6  

4.4 

1. 87 

482OC s tean  
87 a t m  

55 (max) 
330 (rnax) 

HT GR, 

115. 5 
40 

2 . 8  

2.3  

8. 3 

537OC steam 
95 a tm 

35 (max) 
980 (max) 

EBOR 

10 
None 

0. 59 side 

1.93 

13. 7 

None 

84 (max) 
251 (rnax) 

Maximum temperature ,  OC 
S u r f a c e . .  . . . . . . . . . . . . . .  
Fuel. . . . . . . . . . . . . . . . . .  

Coolant gas 
Total mass  flow, kglsec  . . . .  
Inlet temperature ,  OC . . . . . .  
Outlet temperature ,  OC . . . . .  
Pressure .  a t m .  . . . . . . . . . .  
Coolant void fraction, '% . , . . 
Reactor pumping fraction, 7s . 

816 
1650 

Helium 
53. 5 
266 
566 
22 
6. 2 
2 

Moderator . . . . . . . . . . . . . . .  C 

Table I 

THERMAL CHARACTERISTICS OF SOME U. S. GAS-COOLED REACTORS 

630-A ML- 1 UHTREX 

67. 4 
20 

3. 3 
0. 33 

3 
None 

1.22 

0. 70 

0. 56 

0. 56 

0. 585 1. D. 
1. 70 0. D. 

1 . 0  

1 . 3  82.  5 

510°C stean 
60 a t m  

15. 3 

Closed- cycle 
gas  turbine 

None 

44.5 (maw) 
85 (max) 

955 
1180(U02-BeO] 

1450( UOz) 

N2 o r  Air  
1 1 . 3  
422 
650 
20. 5 _ - _ -  
3. P 

35 (rnax) 
140 (max) 

1593 
I610 

1050 
1330 

815 
1040 

Helium 
55. 5 
345 
728 
23. 0 
12. 8 
0.55 

Helium 
6. 3 
400 
700 
72.5 
11 
1 . 4  

Air  
160 
300 
650 
27 - _ _ _  
32 

Helium 
1. 29 
870 
1320 
34 

0. 07 
- _ - _  

C (in element) B e 0  A C Water 

8& 

Water 

6 Ib 3121 Number of channels . . . . . . . . .  234 

Enrichment, % .  . . . . . . . . . .  2.46 
Cladding mater ia l  . . . . . . . . .  304 SS 
Cladding thickness. c m  . . . . .  0.05 

Fuel-element length, c m  . . . .  6x73. 6 

APrimary loop. 
b P r e s s u r e  tubes. 
113  levels of 24 radial channels. 
d38.2 wt-% U02 in  80 Ni-2OCr alloy. 
=An element contains 7 pins. 

U02, UO2-Be0 
93. 5 
Hastelloy-X 
0.075 

79 
0. oxo. 4& 

U0,d 
93. 5 
80Ni-20Cr 
0.10 

9% 7.65 
0.4* 

UC2. ThC2 in C 
33. 5 

1. 95 
L .  45x7. 0 
$66 

I 

L 

U02 - B e 0  
62. 5 
Hastelloy-Y 
0.05 

210 
0. oxo. 8& 

U 0 2  in C 
93. 5 
None 

1. 27x2. 54 
4x14 

- - - -  

LAn element consists of an annular ring 

g10-13 concentric rings 0.45-cm thick, 

hAn element contains 19 pins (18 fueled). 

of 18 rods around a B e 0  spine. 

cooled on both sides. 

EGCR 

b 0  
SANE 

COOLINT' 

630-A UHTREX ML-I 

WATER UOMrUmR 
NOTE NOT DRAWN TO SCbLL 

Fig .  1. Schemztic fuel-element cross sections for  the reactors  of Table Z 
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Fig. 1. Schematic fuel-element cross sections for the reactors of Table I 


