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T H E S L U G - A N N U L A R F L O W REGIME 
TRANSITION AT E L E V A T E D P R E S S U R E 

by 

P e t e r Gr i f f i th 

A B S T R A C T 

The a n n u l a r s lug flow r e g i m e h a s been i n v e s t i g a t e d 
in v e r t i c a l upflow wi thout h e a t i n g t h r o u g h the u s e of an 
e l e c t r i c a l conduc t iv i t y p r o b e . T h e Tef lon c ladding and s e a l s 
of the p r o b e w e r e found to w o r k to at l e a s t 488°F . When the 
in le t ve loc i t y was suf f ic ien t ly h igh , the qua l i ty at t r a n s i t i o n 
was found to be a c o n s t a n t for e a c h p r e s s u r e going f r o m 
8.6% at 215 p s i a to 17.6% at 615 p s i a . No fully deve loped 
bubb ly flow w a s o b s e r v e d . 

INTRODUCTION 

T h e p r e d i c t i o n of q u a n t i t i e s of i n t e r e s t in t w o - p h a s e flow, s u c h a s 
d e n s i t y o r p r e s s u r e d r o p , is m a d e diff icul t a s a r e s u l t of the i m m e n s e 
n u m b e r of v a r i a b l e s upon which t h e s e q u a n t i t i e s a c t u a l l y depend . 

One dev ice which wi l l he lp r e d u c e the c o m p l i c a t i o n of p r e d i c t i o n s 
in t -wo-phase flow is the u s e of a flow r e g i m e m a p . An a r e a on the m a p 
shows the r e g i o n w^here a g iven f o r c e o r a coup le of f o r c e s a r e m o s t i m ­
p o r t a n t . Hopeful ly , when the d o m i n a n t f o r c e s c h a n g e , the flow c o n f i g u r a ­
t ion wil l c h a n g e a l s o . A flow r e g i m e m a p , c o m b i n e d with an a n a l y s i s 
a p p r o p r i a t e for e a c h r e g i m e , wi l l t h e n m a k e r e a s o n a b l y a c c u r a t e p r e ­
d i c t i o n s p o s s i b l e f r o m r e a s o n a b l y s i m p l e e q u a t i o n s . 

B e c a u s e one m u s t p r e s e n t a m e a n s of p r e d i c t i n g the p r e s s u r e d r o p 
o r void wi th in a r e g i m e , a long with e x p r e s s i o n s for the r e g i m e b o u n d a r y , 
t h e r e is c o n s i d e r a b l e m e r i t in r e d u c i n g the n u m b e r of r e g i m e s to a m i n i ­
m u m . The m i n i m u m n u m b e r for p ipe flow a p p e a r s to be bubbly , s lug , and 
a n n u l a r . Bubbly flow is c h a r a c t e r i z e d by a con t inuous l iquid c o r e in which 
b u b b l e s , which a r e s m a l l c o m p a r e d wi th the p ipe d i a m e t e r , a r e enabedded. 
Slug flow is d i s t i n g u i s h e d by s l u g s of l iqu id spann ing the t u b e , s e p a r a t e d 
by l a r g e b u b b l e s c o m p a r a b l e in s i z e wi th the tube d i a m e t e r ; the l iqu id 
s l u g s m a y or m a y not have o t h e r s m a l l e r bubb le s in t h e m . A n n u l a r flow 
is d i s t i n g u i s h e d by a con t inuous v a p o r c o r e , which m i g h t con ta in d r o p s , 
and a c o n t i n u o u s l iqu id f i lm on the w a l l , -which m i g h t c o n t a i n b u b b l e s . 



A s a r u l e , one c a n u s e the M a r t i n e l l i c o r r e l a t i o n s to p r e d i c t the 
quan t i t i e s of i n t e r e s t in a n n u l a r flow. Slug flow dens i t y c a n be p r e d i c t e d 
by the m e a n s p r e s e n t e d in R e f e r e n c e 1. As ye t , no r a t i o n a l p r o c e d u r e s 
ex i s t which have b e e n v e r i f i e d e x p e r i m e n t a l l y for p r e d i c t i n g the q u a n t i t i e s 
of i n t e r e s t in bubbly flow. 

THE E X P E R I M E N T S 

The loop u s e d in t h e s e e x p e r i m e n t s is the " A r m a d i l l a " m o d e r a t e 
p r e s s u r e loop ( see F i g . l ) , which is c a p a b l e of p r e s s u r e s up to 600 p s i g . 
F i g u r e 2 is a s c h e m a t i c of the t h r e e t e s t s e c t i o n s u s e d and i n d i c a t e s the 
l oca t i ons of the p r o b e s . The da t a p r e s e n t e d in th i s r e p o r t w e r e t a k e n with 
the top p r o b e in the u n h e a t e d s e c t i o n , with the excep t ion of a couple of 
l a t e r r u n s which w e r e m a d e to show e n t r a n c e e f f ec t s . A spot c h e c k i n ­
d i c a t e d tha t the top and naiddle p r o b e s r e a d the s a m e , so tha t it c a n be 
s a i d in g e n e r a l t ha t the flow was fully deve loped . 

1 ^ 

HEAT EXCHANGER 

COOLING WATER 
OUT 

T.C. 

TO MANOMETER 

~1 
MAKEUP 

VENTURI 
" " T I FLOW METER 

m\ 
COOLING 

WATER IN 
\ 

?. 
C x h 

PUMP 

RISER 

HEATED 
SECTION 

T.C. 

18 

20 l/H 

20 1/2 

I O.D. 
7/8 I.D. 

T^l 

t 
f 

2 3/4 

2 3 / * 

t 

_ RISER 
60 1 / * 

1 

_ 

HEATED 
SECTION 
Bt 1/2 

3/H O.D. 
5/8 I.D. 

1/2 O.D. 
3/8 I.D. 

F i g . 1. S c h e m a t i c D i a g r a m of 
E x p e r i m e n t a l Loop 

F i g , 2. S c h e m a t i c of 
T e s t Sec t ion 

C l e a n w a t e r was put in to the s y s t e m at the beginning of each day 
a r u n was m a d e . The w a t e r , pu r i f i ed by p a s s a g e t h rough an ion exchanger , 
had an e l e c t r i c a l r e s i s t i v i t y in e x c e s s of lo ' ' o h m - c m at the beginning of 
the f i r s t r un each day and of 10^ o h m - c m at the c o m p l e t i o n of the day . 
M e a s u r e m e n t s w e r e m a d e a t r o o m t e m p e r a t u r e , about 80°F . 



H e a t b a l a n c e s w e r e r u n b e f o r e any da ta w e r e t a k e n to e n s u r e tha t 
t h e r e w e r e no g r o s s e r r o r s in flow, t e m p e r a t u r e , o r hea t flux m e a s u r e ­
m e n t s . The p r e c i s i o n of the h e a t b a l a n c e s was not h igh , b e c a u s e the t e m ­
p e r a t u r e of the e n t i r e loop was r i s i n g du r ing the m e a s u r e m e n t s , but w a s 
wi th in 7%. In r e t r o s p e c t , it c a n be s a i d tha t the p r e c i s i o n of any of the 
m e a s u r e m e n t s was in e x c e s s the p r e c i s i o n of def in i t ion of the flow r e g i m e 
b o u n d a r y b a s e d on p r o b e r e a d i n g s . 

A 2 0 - i n . i nc l ined m a n o m e t e r with a v e n t u r i was u s e d to m e a s u r e 
flow. Runs m a d e when the net m a n o m e t e r r e a d i n g was l e s s t han 0.1 in. 
w e r e not found to be c o n s i s t e n t and w e r e a l l d i s c a r d e d . T h e s e w e r e the 
only da ta which w e r e d i s c a r d e d . 

The da t a w e r e a l w a y s t a k e n u n d e r cond i t ions of f o r c e d c i r c u l a t i o n . 
G e n e r a l l y , the flow was fixed and the h e a t flux i n c r e a s e d in 5- or 10-kW 
s t e p s un t i l the s l u g - a n n u l a r t r a n s i t i o n was p a s s e d t h r o u g h . As a r u l e the 
flow would d e c r e a s e s l i gh t ly a s the flux was i n c r e a s e d b e c a u s e of the i n ­
c r e a s i n g p r e s s u r e d r o p in the t e s t s e c t i o n . 

In the c a s e of the 0 . 3 7 5 - i n . - I D t e s t s e c t i o n , the p r e s s u r e d r o p was 
so l a r g e tha t it r e a l l y d e t e r m i n e d the flow. Th is p r e s s u r e d r o p m a d e it 
d i f f icul t , a l s o , to d e t e r m i n e e x a c t l y what the p r e s s u r e was a t the p r o b e 
l o c a t i o n . A l i n e a r i n t e r p o l a t i o n b e t w e e n the in le t and out le t p r e s s u r e s was 
u s e d to d e t e r m i n e the p r e s s u r e a t the p r o b e l oca t i on . Aga in , the u n c e r t a i n t y 
in the p r e s s u r e was s m a l l c o m p a r e d wi th the u n c e r t a i n t y in the i n t e r p r e t a ­
t ion of the p r o b e r e a d i n g s . 

No da ta w e r e r e c o r d e d if the flow was not s t e a d y . When hea t ing 
u p , u n d e r cond i t i ons of n a t u r a l c i r c u l a t i o n , o s c i l l a t i o n s w e r e a lways 
n o t i c e d in the flow. H o w e v e r , when the p u m p was t u r n e d on and the 
t h r o t t l e v a l v e s t u r n e d down, a s far a s cou ld be d e t e r m i n e d the in le t t e m ­
p e r a t u r e and flow r e a d i n g s w e r e p e r f e c t l y s t e a d y and no o s c i l l a t i o n s w e r e 
p r e s e n t . 

THE P R O B E 

The p r o b e which was u s e d to m a k e the m e a s u r e m e n t s r e p o r t e d in 
t h i s w o r k is b a s i c a l l y a d e v i c e to d e t e r m i n e the e l e c t r i c a l r e s i s t a n c e b e ­
t w e e n the c e n t e r of the p ipe and the -wall. When the p r o b e is d r y the 
r e s i s t a n c e is in f in i t e , when wet , the r e s i s t a n c e is of the o r d e r of 
100,000 o h m s . The p r o b e t h e n c a n be u s e d to d e t e r m i n e w h e t h e r or not 
t h e r e a r e b r i d g e s of l iqu id a c r o s s the c h a n n e l . It is the d e t e r m i n a t i o n of 
of l o c a t i o n b e t w e e n the b r i d g e s and the n o - b r i d g e s cond i t ion to which the 
p r o b e is p a r t i c u l a r l y we l l a d a p t e d . 
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The d e s i g n of the p r o b e , a s tha t in R e f e r e n c e 2, is shown in s o m e 
de t a i l in F i g . 3a a long with the w i r i ng d i a g r a m (F ig . 3b) u s e d in t h e s e 
e x p e r i m e n t s . 

SST WIRE 

Fig, 3a, Probe Detail 

SCOPE 

F i g . 3b. Wi r ing D i a g r a m for Use of P r o b e 

S o m e t r o u b l e s w e r e e x p e r i e n c e d with the p r o b e at the s t a r t of the 
e x p e r i m e n t s . Teflon pack ing a r o u n d the s t a i n l e s s s t e e l tube (see F i g . 3a) 
l e a k e d un t i l the nut which c o m p r e s s e d it was dra-wn up so t ight ly that the 
v o l u m e a r o u n d the tube -was f i l led c o m p l e t e l y with Tef lon. The packing 
g land at the end of the t u b e , which s e a l s the Teflon s l e e v e aga in s t the t e s t 
w i r e , had to be s i l v e r s o l d e r e d to the s t a i n l e s s s t e e l shea th to p r e v e n t 
ba l looning of the s l e e v i n g . The pack ing for the Teflon s leev ing gland is 
Tef lon t ape with a s m u c h put on a s a l lows one to get the nut back onto the 
g land . Af te r a couple of hea t ing c y c l e s , the l a y e r s of t ape a r e s i n t e r e d 
into a so l id u n i f o r m m a s s . The Teflon s leev ing u s e d fits e a s i l y over the 
w i r e when it is ne-w. H o w e v e r , -with e a c h hea t ing c y c l e , it s h r i n k s c l o s e r 
to the w i r e and, as a r e s u l t , expands down the p r o b e t ip and u l t i m a t e l y 
ex tends beyond i t . When th i s h a p p e n s , the p r o b e r ead ing ge t s s m a l l e r and 
s m a l l e r . It is then n e c e s s a r y to p a r e the s l eev ing back to expose the t i p . 
Th i s m u s t be done t h r e e or four t i m e s be fo re the e x t e n s i o n of the Teflon 
c e a s e s . At th i s t i m e the Tef lon h a s t u r n e d into a p e r f e c t l y t r a n s p a r e n t , 
c l o s e - f i t t i n g c o v e r i n g for the w i r e . 



A p u l s a t i n g DC po-wer supply was u s e d for the A r m a d i l l a loop in 
t h e s e e x p e r i m e n t s . I n i t i a l l y , a c o n s i d e r a b l e a m o u n t of p i ckup was ob t a ined 
f r o m the po-wer supply , which n e c e s s i t a t e d the bucking coi l a r r a n g e m e n t 
shown in F i g , 3b. With t h i s co i l , p i ckup cou ld be r e d u c e d to about 0.4 V, 
with the r e a d i n g s equa l to about 4 V. The s w e e p r a t e of the s cope was 
f ixed for a l l the e x p e r i m e n t s at 5 x 10" s e c / c m . 

B e c a u s e of the p i c k u p , it was not found p o s s i b l e to put the p r o b e s 
r i g h t into the h e a t e d s e c t i o n . A c o n s i d e r a b l e a m o u n t of e l e c t r o n i c s would 
be n e e d e d to s e p a r a t e the p o w e r - s u p p l y n o i s e f r o m the s i g n a l , and it was 
not b e l i e v e d t h a t th i s was w o r t h w h i l e . 

DATA R E D U C T I O N 

F r o m m e a s u r e m e n t s of p o w e r input , in le t t e m p e r a t u r e and p r e s ­
s u r e , and the d i a m e t e r of t h e t e s t s e c t i o n , the l o c a l s u p e r f i c i a l v e l o c i t i e s 
w e r e c o m p u t e d . The p r o b e r e a d i n g gave a s i ng l e point for the flow r e g i m e 
m a p . R e a d i n g s w e r e t a k e n for a v a r i e t y of hea t ing and flow^ r a t e s . In e v e r y 
c a s e , r e a d i n g s w e r e con t inued un t i l the flow, flux, o r p r e s s u r e - d r o p l i m i t s 
of the loop -were o b t a i n e d . 

THE R E S U L T S 

The r e s u l t s for s l u g - a n n u l a r t r a n s i t i o n for the top p r o b e for a l l the 
t e s t s a r e g iven in F i g s . 6 t h r o u g h 14. F i g u r e s 15 and 16 show the s l u g -
a n n u l a r t r a n s i t i o n as d e t e r m i n e d f r o m the b o t t o m p r o b e , w h e r e t h e r e is 
a l m o s t no o p p o r t u n i t y for the flow to b e c o m e fully deve loped . 

It is a p p r o p r i a t e at th i s t i m e to dwel l at s o m e leng th on the i n t e r ­
p r e t a t i o n of the p r o b e r e a d i n g s a s the s i g n i f i c a n c e of t h e s e r e s u l t s is so 
i n t i m a t e l y c o n n e c t e d -with t h i s . F i g u r e s 4 and 5 show p i c t u r e s of the s lug 
and a n n u l a r r e g i m e s a long with the c o r r e s p o n d i n g t r a c e s on the s c o p e . (A 
far m o r e e x t e n s i v e p r o b e c a l i b r a t i o n is c o n t a i n e d in R e f e r e n c e 2.) The top 
p i c t u r e s c l e a r l y r e p r e s e n t a n n u l a r flow, w h e r e a s the b o t t o m p i c t u r e s 
c l e a r l y r e p r e s e n t s lug flow. B e t w e e n t h e s e two r e g i o n s t h e r e is a wide 
t r a n s i t i o n band . W h e t h e r p i c t u r e s , o r the p r o b e , o r s o m e o t h e r d e v i c e or 
m e a s u r e m e n t w e r e u s e d to define the r e g i m e t r a n s i t i o n , t h e r e would s t i l l 
be a band w h e r e t h e r e would be a q u e s t i o n as to w h e t h e r one should c a l l 
the flow s lug o r a n n u l a r flow. It was o r i g i n a l l y in tended to show s c o p e 
p i c t u r e s in the t r a n s i t i o n r e g i o n , too , but m o s t of the t i m e the scope shows 
only a l i n e , and a l a r g e n u m b e r of p i c t u r e s of the t r a c e s would have to be 
t a k e n to c a t c h a c h a r a c t e r i s t i c t r a c e . 
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SCOPE TRACES ANNULAR FLOW 

0 = I " , AIR-WATER 

ATMOSPHERIC PRESSURE 

SWEEP TIMES = 5 X 10"^ sec/cm 

SENSITIVITY 2v/cni 

V = .37 f t /sec 
f s 

V = 8 6 
gs 

V = .50 
fs 

V = 8 6 
gs 

V = .90 
fs 

V = 8 6 
gs 

SCOPE TRACES SLUG FLOW 

D = I " , AIR-WATER 

ATMOSPHERIC PRESSURE 

SWEEP TIMES = 5 x lO"^ sec/cm 

SENSITIVITY 2v/cm 

V =1 .03 f t / sec 
fs 

V = 7 
gs 

fs 

V = 7 
gs 

1.03 
fs 

V = 7 
gs 

.03 

Fig. 4. Probe Calibration 



SCOPE TRACES 

D = .875" 

° = i| l5 ps ia 

STEAM-WATER 

V 
gs 

f s 

8.35 ft/sec 

1.91 ft/sec 

SLUG FLOW 

SWEEP RATE = 5 x 10 

2v/cm SENSITIVITY 

-3 
cm /sec 

SCOPE TRACES 

D = .875" 

P = m 5 psif» 

STEAM-WATFR 

V 
gs 

fs 

211.1 ft/sec 

1.60 ft/sec 

AMNULAR FLOW 

SWEEP RATE = 5 x l o ' 

2v/cm SENSITIVITY 
cm /sec 

F i g . 5. C h a r a c t e r i s t i c T r a c e s for S t e a m and W a t e r 
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F i g s . 6, 7, and 8. F low R e g i m e Maps (Using Top P r o b e ) for 0 .875- in . P i p e 
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F i g s . 12, 13, and 14. F low R e g i m e M a p s (Using Top P r o b e ) for 0 .375- in . P i p e 
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60 
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«0 
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0.137 — 

J I I I 1 

— ANNULAR 
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P = 215 psia 

O 

I I I I 
0 I 2 3 H 5 6 0 I 2 3 4 5 

^ s 

F i g s . 15 and 16. F l o w R e g i m e Maps (Using B o t t o m P r o b e ) for 0 .625- in . P i p e 

A s one a p p r o a c h e s the t r a n s i t i o n r eg ion f r o m the r e g i o n of w e l l -
def ined slug flow (the open dots in the f i g u r e s ) , the t r a c e s get f u r the r and 
f u r t h e r a p a r t and , in t i m e , the a m p l i t u d e of the t r a c e s beg ins to d e c r e a s e 
f r o m the f u l l - s c a l e r e a d i n g s . The v i s u a l o b s e r v a t i o n s of R e f e r e n c e 2 i n ­
d i c a t e t ha t t h i s c o r r e s p o n d s to s l u g s -with a l a r g e n u m b e r of s m a l l bubb les 
in t h e m . The s l u g s a r e s t i l l of a p p r e c i a b l e l eng th , h o w e v e r , and cons t i t u t e 
the m a j o r m o d e of l iquid t r a n s p o r t . T h i s t r a n s i t i o n slug flow^ condi t ion is 
d e s i g n a t e d b-y open t r i a n g l e s . 

A s the s u p e r f i c i a l v a p o r velocit-y- is f u r t h e r i n c r e a s e d , t h e a m p l i t u d e 
and l eng th of the p ips on the s c o p e d e c r e a s e s f u r t h e r unt i l only a s ing le 
p ip of v e r y s m a l l l eng th and no j a g g e d n e s s a p p e a r s . The v i s u a l o b s e r v a ­
t ions of R e f e r e n c e 2 i n d i c a t e tha t th i s c o r r e s p o n d s to a t r a n s i t i o n a n n u l a r 
flow with l iquid b r i d g e s of t h i c k n e s s too s m a l l to con ta in any e n t r a i n e d 
b u b b l e s . T h e s e b r i d g e s apparentl-y do not p e r s i s t and do not c o n s t i t u t e an 
i m p o r t a n t m o d e of l iquid t r a n s p o r t . Th i s t r a n s i t i o n a n n u l a r flow is d e s i g ­
na t ed -with b l a c k t r i a n g l e s . The p l a in b l a c k dots c o r r e s p o n d to p u r e 
a n n u l a r flow w h e r e no b r i d g e s o c c u r a t a l l . Th i s r e p r e s e n t s the end of 
the t r a n s i t i o n r e g i o n . The t r a n s i t i o n l ine has b e e n d r a w n in each c a s e to 
effect a s e p a r a t i o n bet-ween the open t r i a n g l e s and the b l ack t r i a n g l e s . 

It is b e l i e v e d t h a t t he s l u g - a n n u l a r t r a n s i t i o n as d e t e r m i n e d with 
the p r o b e is b e t t e r t han the one d e t e r m i n e d f rom s t i l l p i c t u r e s ; for , a t 
t h i s t r a n s i t i o n , m o s t of the tube c o n s i s t s of s o m e t h i n g tha t looks l ike 
a n n u l a r flow, whi le the m a j o r m o d e of l iquid t r a n s p o r t is s t i l l in the v e r y 
rapidl-y mov ing s l u g s . Mo t ion p i c t u r e s , of c o u r s e , do not suffer f r o m t h i s 
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de fec t . H o w e v e r , a l l p h o t o g r a p h s suf fe r f r o m o b s c u r i n g due to s m a l l 
bubb le s in the l iquid on the -walls, so tha t it is often difficult to t e l l w h e t h e r 
one is looking a t a f ro thy r ing wave t r a v e l l i n g up the tube o r an a c t u a l 
b r i d g e . If one w e r e to do a c o n t r o l v o l u m e a n a l y s i s of the flow by m e a n s 
of c o n t r o l v o l u m e b o u n d a r i e s b a s e d on p h o t o g r a p h s , t he d i s t i n c t i o n b e t w e e n 
the b r i d g i n g and the n o - b r i d g i n g cond i t ion would be an i m p o r t a n t one , and 
it is j u s t th i s d i s t i n c t i o n t h a t the p r o b e m a k e s . 

U l t i m a t e l y , one w a n t s to u s e the flow r e g i m e m a p to t e l l when to go 
f r o m an a n n u l a r to a s lug flow m o d e l for compu t ing s o m e quant i ty for the 
t w o - p h a s e flow-. As the t r a n s i t i o n band is so wide , the obvious def in i t ion 
for the b o u n d a r y i s a n o p e r a t i o n a l one -which migh t be b a s e d on the p a r t i c ­
u l a r quan t i ty of i n t e r e s t . P r e s s u r e d r o p h a s t h r e e t e r m s in it , and, as s u c h , 
t e n d s to be m o r e c o n s t a n t t han any one of the t e r m s , so tha t a d i s t i n c t i o n 
b a s e d on it would not be too c l e a r . In any c a s e the p r e s s u r e - d r o p c o r r e l a ­
t ions for e i t h e r a n n u l a r or s lug flow a r e not tha t good. Void f r ac t i on is 
b e t t e r , for one can u s e the p r e d i c t i o n s for a n n u l a r flow f r o m M a r t i n e l l i 
and t h a t for s lug flow f r o m R e f e r e n c e 1. H o w e v e r , even the M a r t i n e l l i void 
p r e d i c t i o n s have v e r y l i t t l e da ta beh ind t h e m at e l e v a t e d p r e s s u r e , so tha t 
an o p e r a t i o n a l def in i t ion us ing vo ids does not , in t h i s spec i f i c t r a n s i t i o n , 
t u r n out to be v e r y u se fu l . 

DISCUSSION 

The da ta of F i g s . 6 t h r o u g h 13 a r e v e r y s i m p l e in c h a r a c t e r . The 
e x t r a p o l a t e d i n t e r s e c t i o n with the v e r t i c a l a x i s in e a c h c a s e l i e s b e t w e e n 
the l i m i t s p r e d i c t e d for the t r a n s i t i o n f r o m slug to a n n u l a r flow as p r e ­
s e n t e d in R e f e r e n c e 3 . The u p p e r l i m i t g iven in R e f e r e n c e 3 is ob ta ined 
with a v e r y s m o o t h e n t r a n c e , w h e r e a s the lower linait is ob ta ined with a 
s h a r p edge e n t r a n c e . T h e s e l i m i t s w e r e ob ta ined for u n h e a t e d t u b e s . F o r 
h e a t e d t u b e s t hey h a v e not ye t b e e n d e t e r m i n e d . When t h e v a l u e for the d i -
m e n s i o n l e s s g r o u p g iven on t h e left s ide of the E q . ( l ) is g r e a t e r than 2 .0 , 
the t r a n s i t i o n l ine is v i r t u a l l y a l ine of c o n s t a n t qua l i ty : 

V^ p 
- ^ ^ 2 . 0 . (1) 
gOPf 

T h i s qua l i t y is t a b u l a t e d in T a b l e I. When the l e f t - h a n d s ide of E q . ( l ) i s 
l e s s t h a n t h i s , the d i a m e t e r a f fec t s the qua l i ty at which t r a n s i t i o n o c c u r s . 

T a b l e I 

MINIMUM QUALITY F O R ANNULAR F L O W 
F O R VARIOUS PRESSURES 

p r e s s u r e . 
p s i a 

215 
415 
615 

M i n i m u m Qual i ty for 
A n n u l a r F l o w , % 

8.6 
13.7 
17.6 
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F o r the s m a l l e s t p ipe and l a r g e s t v e l o c i t i e s , t r a n s i t i o n o c c u r s a t 
h i g h e r q u a l i t i e s . It is b e l i e v e d tha t t h i s is p r i m a r i l y an effect of ve loc i t y 
r a t h e r t h a n p ipe s i z e , for the c u r v e s for the l ower v e l o c i t i e s fa i r into t h o s e 
ob ta ined f r o m the l a r g e r p i p e s . When the ve loc i ty is h igh enough, e n t r a i n -
m e n t p r o b a b l y o c c u r s , and one h a s , in effect , a d e n s e r v a p o r with l e s s 
l iquid on the w a l l s . T h i s i s a s though one w e r e o p e r a t i n g a t h i g h e r p r e s ­
s u r e for which the t r a n s i t i o n qua l i ty is a c t u a l l y h i g h e r . 

F i g u r e s 14 and 15 give the t r a n s i t i o n condi t ion j u s t at the d i s c h a r g e 
of the t e s t s e c t i o n . A s c a n be s e e n , the t r a n s i t i o n qua l i ty is v e r y s u b s t a n ­
t i a l l y i n c r e a s e d . T h i s cou ld be an effect of hea t flux a n d / o r v a p o r v e l o c i t y , 
for the tw-o w e r e not s e p a r a b l e in t h e s e e x p e r i m e n t s . P h y s i c a l l y , the p i c ­
t u r e tha t e m e r g e s f r o m t h e s e e x p e r i m e n t s is as fo l lows . When the qua l i ty 
is p a s s e d t h r o u g h at which s lugs can f o r m , they do . As the a n n u l a r flow 
r e g i o n is a p p r o a c h e d , t h e s e s l ugs beg in to l o s e l iquid to the wal l a s they 
r i s e , u l t i m a t e l y be ing c o m p l e t e l y c o n s u m e d if the p ipe is long enough. 
Th i s g e n e r a l l y o c c u r s b e f o r e the l o c a t i o n of the m i d d l e p r o b e in t h e s e e x ­
p e r i m e n t s . It t a k e s t i m e for th i s to happen , though, so tha t we see s lugs 
a f t e r the point w h e r e s lug flow is the fully deve loped flow r e g i m e . The 
h e a t f luxes in t h e s e e x p e r i m e n t s -were g e n e r a l l y l e s s t han 200,000 B t u / 
(hr)(ft ). If the h e a t flux w e r e h i g h e r , o r p e r h a p s if the r e g i o n in which 
s lug flow could e x i s t w e r e s h o r t e r , s lug flow m i g h t n e v e r d e v e l o p , and one 
could go r i g h t f r o m bubbly to a n n u l a r flow. 

R e p e a t e d a t t e m p t s to ob ta in bubbly flow in t h i s a p p a r a t u s al-ways 
w e r e u n s u c c e s s f u l . E i t h e r the h e a t flux was too low or the p u m p too s m a l l 
for th i s cond i t i on e v e r to e x i s t . In the 0.8 7 5 - i n . - I D p ipe , the m a x i m u m 
in le t l iqu id v e l o c i t y was only 10 f t / s e c . Th i s is a p p a r e n t l y insuf f ic ien t to 
give bubbly flow a s the fully deve loped cond i t ion . In add i t ion , the w a t e r 
was v e r y p u r e , which a l s o m a k e s it diff icult to ob ta in bubbly flow. It would 
a p p e a r t ha t bubbly flow is an i m p o r t a n t flow r e g i m e only when the p r e s s u r e 
a n d / o r t h e h e a t flux is v e r y h igh . 

Though the r a n g e of p r e s s u r e t e s t e d in t h e s e e x p e r i m e n t s is s m a l l , 
it is i n t e r e s t i n g to e x t r a p o l a t e t h e s e r e s u l t s to h i g h e r and lo-wer p r e s s u r e . 
If a r ough c u r v e fit is m a d e on the p r e s s u r e effect f r o m t h e s e da t a , the 
l i m i t i n g qua l i t y v a r i e s a s about the s q u a r e r o o t of the l i q u i d - v a p o r d e n s i t y 
r a t i o . If th i s i s a s s u m e d , one ob t a in s the r e s u l t s for s t e a m and w a t e r 
g iven in T a b l e II. 

It is w o r t h w h i l e to c o m p a r e t h e s e r e s u l t s with the m e a s u r e m e n t s 
a l r e a d y in the l i t e r a t u r e . In R e f e r e n c e 4 a r e r e p o r t e d s o m e v i s u a l o b s e r ­
v a t i o n s m a d e in h e a t e d r e c t a n g u l a r c h a n n e l s at 150, 300, and 600 p s i a . 
R e s u l t s a r e g iven in T a b l e III. In a l l c a s e s , the e x p e r i m e n t s w e r e r u n in 
a 0 .134 in . x 1.00 in . x 24 i n . r e c t a n g u l a r c h a n n e l h e a t e d on one of the 
l a r g e s i d e s . 
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Table II 

MINIMUM QUALITY FOR ANNULAR FLOW 
F O R HIGH AND LOW P R E S S U R E S 

X , 
P r e s s u r e , p s i a T 

14.7 
2 1 5 
4 1 5 
6 1 5 

2000 

M i n i m u m at 
r a n s i t i o n . 

2 
8.6 

13.7 
17.6 
40.0 

Tab le III 

% S o u r c e 

E x t r a p o l a t i o n 
M e a s u r e m e n t 
M e a s u r e m e n t 
M e a s u r e m e n t 
E x t r a p o l a t i o n 

VISUAL OBSERVATIONS O F F L O W P A T T E R N S FOR A 
MASS V E L O C I T Y O F 0.25 X 10^ lb/(hr)(f t^) 

P r e s s u r e , 
p s i a 

150 

300 
300 

300 

6 0 0 
6 0 0 
6 0 0 

Q u a l i t y , 
% 

5 

5 .5 
11.0 

T r a n s i t i o n 
16.6 

4 . 1 

6 . 3 
10.2 

F l o w 
R e ] 

Slug-
flow 
t r a n s 

R e g i m e 
Dorted 

a n n u l a r 
r e g i m e 
i t ion 

_ 

-

-

_ 

-
-

Flow Regime as 
In terpre ted from 
Pic tu re by this 

Author 

Slug 
Slug 

Annular 

Slug or bubbly 
Slug 
Slug 

The t rans i t ion occurs between 11 and 16%, where it would be ex­
pected to occur at 300 ps ia . Slug flow sti l l exists at 10% quality, where it 
should occur at 600 ps ia . 

In Reference 5 observat ions of h i g h - p r e s s u r e flow reg imes a r e 
given. The reproduct ion of the p ic tures in the repor t is too poor to allow 
one to in te rpre t them for one's self, but a descr ipt ion of the visual o b s e r ­
vations is given in Appendix D of Reference 5. The findings a re sumnaarized 
and l is ted for the quality region in Table IV. The p r e s s u r e is always 1000 psia 
and the channel had dimensions of 0.5 in. by 2.1 in. There a r e various heat 
fluxes r ep resen ted in these data. 
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T a b l e IV 

F L O W R E G I M E DATA OF REFERENCE 5 

F l o w R e g i m e 

Slug 
Slug 

V e r y s l igh t s lugging 
A n n u l a r 
A n n u l a r 

A n n u l a r with s m a l l waves 

F r o t h 
Slug 
Slug 
Slug 
Slug 
Slug 

A n n u l a r 
A n n u l a r 

A n n u l a r with l a r g e waves 

F r o t h ( ? ) 
F r o t h 
F r o t h 
F r o t h ( ? ) 
F r o t h ( ? ) 
A n n u l a r (?) 
A n n u l a r (?) 
F r o t h ( ? ) 

F r o t h 
F r o t h 
F r o t h 
F r o t h ( ? ) 

E x c e p t for the a m b i g u o u s flow r e g i m e d e s c r i p t i o n s g iven for c o n ­
d i t ions n e a r the 2 0 0 - l b / ( s e c ) ( f t ) m a s s v e l o c i t y , it a p p e a r s as though the 
s l u g - a n n u l a r flov^ r e g i m e t r a n s i t i o n s o c c u r at about the qua l i ty one would 
a n t i c i p a t e frona e x t r a p o l a t i o n of the m e a s u r e m e n t s r e p o r t e d h e r e , t ha t i s , 
a t about 2 5%. It is not c l e a r e x a c t l y what d i m e n s i o n one shou ld u s e to 
c o m p u t e the F r o u d e n u m b e r c r i t e r i o n a p p e a r i n g in E q . ( l ) . The i n v e s t i g a ­
t ion r e p o r t e d in R e f e r e n c e 1, h o w e v e r , showed tha t g e n e r a l l y the l a r g e r 

M a s s V e l o c i t y , 
l b / ( s e c ) ( f t ^ ) 

50.0 
50.0 

50.1 
50.1 
50.1 
50.0 

99.4 
99.4 
99.4 
99.4 
99.2 

101.0 

99.4 
99.4 
99.4 

199.0 
199.0 
199.0 
199.0 
196.0 
202.0 
199.0 
199.0 

398.0 
398.0 
395.0 
398.0 

Q u a l i t y , 

% 

25.8 
31.8 

T r a n s i t i o n 
45.0 
55.6 
65.6 
65.6 

5.6 
9.7 

16.6 
22.3 
23 .4 
30.2 

T r a n s i t i o n 
45 .4 
46.5 
46.5 

10.5 
11.3 
16.0 
16.7 
25.2 
10.4 
15.1 

8.4 

3.4 
7.4 
9.3 
9.6 



d i m e n s i o n was m o r e s ign i f i can t t han the s m a l l e r . T h e r e f o r e , one would 
expec t the r u n s at l o w e s t v e l o c i t y to have the s l u g - a n n u l a r t r a n s i t i o n o c c u r 
a t s o m e w h a t h i g h e r q u a l i t i e s . Th i s a l s o a p p e a r s to be the c a s e in t h e s e 
d a t a . 

When one looks at t he q u a l i t i e s on T a b l e I at which the s l u g - a n n u l a r 
t r a n s i t i o n t a k e s p l a c e , t h e y r e d u c e , c r u d e l y , to the q u a l i t i e s at -which 80% 
voids o c c u r in the M a r t i n e l l i p r e d i c t i o n . 

CONCLUSIONS 

I . The s l u g - a n n u l a r flow r e g i m e o c c u r s at a l m o s t constant quality, 
i ndependen t of flow r a t e a s long as 

gDP f 

2 . The qua l i ty at which the t rans i t ion o c c u r s i s dependent on p r e s s u r e 
with the v a l u e s g iven be low: 

X, % P , p s i a 

8.6 215 
13.7 415 
17.6 615 

3 . At v e r y h igh flow r a t e s , t h e r e is s o m e ind i ca t i on tha t the qua l i ty at 
which the t r a n s i t i o n o c c u r s is i n c r e a s e d , p r o b a b l y due to e n t r a i n m e n t 
i n c r e a s i n g the a p p a r e n t v a p o r d e n s i t y . 

4 . The T e f l o n - c o v e r e d p r o b e t ip g ives r e l i a b l e , t r o u b l e - f r e e s e r v i c e up 
to t e m p e r a t u r e s of a t l e a s t 489°F . 

5. With Vfg = 10 f t / s e c m a x i m u m in an 0 .875 - in . p ipe , no fully deve loped 
bubbly flo-w was a t t a i n a b l e at any q u a l i t y . 
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