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ABSTRACT

It is shown that;the magnetic moments of odd-A deformed nuclei
can be interpreted in terms of the independent-particle model withv
ihterconfigurationél mixing due to the very-short-range  residual forces.
Thé latter are implied by using the empirically reduced spin gyromagnetic
ratios. The effects of these residual forces on the collective gyro-
magnetic ratios gy are discussed in terms of pamr correlation. The
effect of particle- -rotation interaction on the magnetlc moment and the
collective gyromagnetic ratio are shown. The 8 values are obtained
from the magnetic moments and the matrix elements for M1 transitions in
this band. TIt.is found that. these mechanisms give a satisfactory account

of the collective gyromagnetlc ratio of Dyl61 165, Er 167 and Hf179
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INTRODUCTION

In this paper are presenféd results of an investigation of the
'magnetic moments of défdrmed nuclei.inlthe regions 151 < A < 191 and
A }'222 ﬁhere'fhe strong-coupling model of Bohr and Mottelsonhas been
highly successful. % The objects of ‘this investigation are (a) to deter- -
mine whether there is évidencé that .the spin gyromagnetic ratioé g when
"quenched" or reduced in magnitude are more appropriate than the. tradi-
tionally assumed free-nucleon values for nuclear magnetic-moment calcula-
‘tions, and (b) to see how the particle-rotation.interaction will affect
nuclear‘mégnetic-properties.

For the first purpose, the nuclei are grouped according to the
asymptotic quantum numbers 3 (projection of intrinsic spin) in order best
' to display the contribution of.the intrinsic spin to the magnetic-moment
calculations. That is, (gf'f ) is positive or negative accordingly as X
is positive or negative. An examination of the compilation of calculated
and experimental magnetic moments of odd-mass deformed nuclei given by
Mottelson and Nilss‘on5 shows that the discrepancies are'of'the same sign
‘as that of ¥ for odd-Z nuclei and of opposite sign for odd-N nuclei. The
magnitude of deviation further suggests that the effective 8 factor for
protons in nuclei is roughly 4 instead of the free value 5.585, while that
f6r neutrons is -2.4 instead of -3.826. Using these values and Nilsson's
wave ‘function interpolated to proper deformation, we have calculated. the
magnetic moments of both odd-A and’odd-odd nuclei.. The reduction of.gs
is attributed to configurational mixing. due to the very-short-range inter-
nucleon forces. °

For the second purpose, we shall single out nuclear states of odd
parity in the 50 to 82 shells (hll/E)’ even.parity in the 82Ato 126 shells
A‘(115/2), and odd parity in the > 126 shell (J15/2 This class of nuclei

- has particularly large j values for the odd nucleon and will therefore be
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especially susceptlble to apprec1able partlcle-rotatlon interaction.

For these nuclei, there is an extra off- diagonal contribution . to the
magnetic-moment calculations. This ;nterect;on will also altec the
relation between Ml-transition ﬁatrix elements and the ground-state ﬁag-.
netic moments. Bernstein and de Boer heve'analyzed.the~experimental data -
in the strong-coupling approximation.and get gR and gK values for. odd-A

deformed nuclei. A reanaly51s of these data taklng into account the W
particle-rotation interaction gives different gR values which are nearly

equal to those of the adjacent even-even nuclei. It 1s then unfortunately

not possible to detect with any, certainty the effecte of the other impor-

tant perturbation, the pair- correlatlon, on collective motion of odd-A

nuclei from the measurements of the collective gyromagnetlc ratio since

such effects will be obscured by the contributions from the particle-

>

rotation interaction.

II. DEFORMED NUCLEI AND THE STRONG~COUPLING MODEL

The nucleaf shape depends upon the configuration of the nucleons.
For nuclei in the regions of closed shells, the equilibrium shape of. the
nucleus is approximately spherical, and the nucleons are considered as
moving>independently in an essentially gapherical potential which represents
the interaction of any one nucleon with the remaining nucleons. In addition
to this, there is also a strong spin-orbit coupling force. The states of
an individual nucleon can then be class1f1ed and this leads to the
concept of shells. For nuc1e1 in the regions far removed from closed .
shells, the nuclear equilibrium shape deviates strongly from spherical.
‘symmetry. There can then be collective oscillations about this equili-
brium shape. These oscillations will modify the effective nuclear field
and so be coupled to the motion of. the nucleons. A description of nuclei
.in such regions hae to be given in terms of collective coordinates speci- - -
-fying the shape of the distorted core and its spatial,orientetion.

Besides the vibrations, thefe is also a rotational type of motion; -
that is, the nuclei rotate as a whole, preserving both shape and internal
structure. -Associated with this rotational motion of a spheroidal nucleus

is a sequence of rotational energy levels given by

h2

E o= 25 [I(I+1) - IO(IO+1‘)] , o (1)



where I and IO are the spins of a given level and the ground state,
respectively. Such levels have been well identified.in the regions
150 < A < 192 and A > 222. The individual nucleons in the spheroidal
nuclei are coupled separately to the symmetry axis in states characterized
by their component of angular momentum Qi along the symmetry axis. The
total @ is.given by'ZQi. Because of the axial symmetry, the particle
states Qi and 4Qi are degenerate, and nucleons will fill pairwise into
these states. The rotational motion is characterized by the quantum
numbers- I, M, and K where I is the total angular momentum of rotational
and nuclecnic motioh, M its projection on a.fixed axis in space, and
K its pfojection on the nuclear symmetry axis. In the vibrational.grouhd
state, the collective rotational angular momentum R is perpendicular -to
the nuclear symmetry axis, and thus we have K = Q. The angular-momentum
coupling scheme for deformed nuclei in the grouﬂd state is shown in Fig. 1.
The wave functions for these nuclei may then be written in the

form given by Bohr and Mottelson:2

o o) - (20) Vo 2l ) ¢ T 2y @
16774 :

where ¢‘describes the vibrational motion, ® the eigenfunction of a

A symmetric top-- deséribes the rotational motion, and Qi refers to the

Eulerian angles specifying a coordinate system fixed. in the nucleus.

The normalizatibn is such that<$ gives the unitary transformation from

the fixed coordinate system to the nuclear coordinate system. Here X& _

represents the motion of the particle with respect to the deformed nucleus.
Assuming a three-dimensional harmonic-oséillator-typé potential

with inclusion of‘spin-orbit coupling, Nilsson has calculated the eigen-

values of Xnuas a function'of the axial defogmation and expresses the

eigenstate in terms of spherical components. Several other quantum

numbers are introduced to distinguish the different single-particle states

in a nonspherical field. These are the "asymptotic" quantum numbers

which should characterize these states in the limit where. the nuclear

‘potential becomes a very anisotropic, axially symmetric harmonic oscil-

lator. Here N is the total number of nodes in the wave function, NZ is

the number pf nodal planes perpendicular to the symmetry axis, and A is

the component of the particles orbital angular momentum along the symmetry




"MU=-20100

Fig. 1. Angular-momeﬂtum coupling scheme for deformed nuclei
in the ground state.
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axis, 2 is the spin component along the symmetry axis, and. we have

Q =AM +23. In this representation, XQ is given in térms of the state
-vectors |NIAS) .

The parity of the state is determined by (-lﬂi, and the values

of zgianeN;Nﬁ-N:Ey *1l, or:.0,, depending on whether N.is odd or even.

The original wave-function tables have been recently supplemented.5 In
. Figs. 2 through 5, these states are plotted as a function of deformation
parameters 8 and 7, which characterize the eccentricity of the nuclear
potential. The parameter & is defined by

' 2

wX2 = 'w02 (1 +2/38) = o, (3a)

and
w?s of(1-u38) | ' (3b)
z = % - . 4 o
Here 8land n are related by
: ‘ -1/6 -
n = % [1- 4/3 88" - 16/27 8] ) (%)

where K is 0.061 for 50 =z < 82, and k is 0.05 for other nucleonic
states. Written in square brackets beside each orbital in Figs. 2 through
-5 are the asymptoﬁic quantum numbers QanA.n’ In the region of very
strong deformations, the nucleonic wave functions are more nearly pure
states when expanded in terms of the eigenvectors of an anisotropic
harmonic-oscillator potential characterized by the asymptotic quantum
numbers. :

With the availibility of ‘these wave functions, it is appropriate
to determine to what extent ﬁuclear properties such as magnetic moments
may be consistent with the general features of the strong-coupling model
.and to check the degree to which the separation of rotational and intrin-

sic nucleonic motion is justified.
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I1T. MAGNETIC-MOMENTﬂCALCULATIONS

N The nuclear-magnefic-moment operator is
- e - - e’ - : '
= ? (8,7; + &.8;) +me& (5)

lwhere'fi,'gi andgﬁ are, respectively, the orbital, spih, and collective
angular momenta of nucleons. The corresponding gyromagnetic ratios are
& ﬁhich is 1 for the protbn and O for the neutron, 8y which. is custom-
arily teken to be 5. 585 for the proton and -3.826 .for the neutron, and
gR, which equals Z/A for a unlformly charged nucleus and the hydrodynamic
or the rigid-body model of ‘collective rotation.

The magnetic moment is obtained"frOmfthé expectation vdalue of the
z component of'ﬁvfor the nuclear substate in whiéh the spin. is along the

z axis. Thus we have
we= (B ) yor | (6)

which in. the strong coupling scheme of Fig. 1.is given by
- o
- f]@ . ]'_2 .

Con51der now the magnetlc moment for an odd-A nucleus in which all

the particles except the last one fill the different orbits in pairs. Then
all the nucleons except the last one are paired with Zsz=0 and ;zzz=o

and will not contribute to the magnetic moment except via the collective
rotational motion. The evaluation of the matrix element (:-'f)~ is then
simply that of the last nucleon; and we can write the magnetic moment in

units of the nuclear magneton (n.m.), eﬁ/2mc, as

IJrl[g (B Ty +g (I T)+g (R-T)], (8)

where Eeand faare the spin angular momenta of the 1asf nucleon.
- Using J = f+s and Iz j*R, we may replace the last two terms by

: 2
the more readily calculable terms (3~ T') and (T °). Now we have

=

b 2 [leg) (D) + (g8 (F°T) +g TH] (9

e
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It can also be written in the formally simple form -

I(1+1) - K2 K>

=8 TT+1 T8 T : (10)
with
g =k [8 (5,0 +5 (2,)] (11)

Here (5.1 ) is given in terms of the Nilsson eigenvectors

>

> >, K. o 2 N I-1/2+2
<S . I > = 2.:;2“:@ (0_20_1/2 -4_1394_1/2) + l/2(I+l/2) (') .

2 . : . .
25 B 1/2%k,1/2 (12)

and (j*-I') is given in the j- § representation of Bohr and Mottelson
- o In 1-1/2 .
- I =0K + 1/2(I+1/2 - . e
(J ) =8 1/2( /2) a(-) Sﬂ,;/ESK,l/2 (13)

The magnetic moment can thus be evaluated. Mottelson and Nilsson
- have ‘compiled the calculated and experimental magnetic moments of odd-A

3

deformed nuclei. The discrepancies.are appreciable and systematic. On
grouping the nuclei according to the asymptotic quantum niimder S (projection
- of intrinsic spin) in order best to display the contributions of the

* intrinsic spin to the magnetic-moment calculations (i.e. (Ea fé) is
-positive or negative-accordinglyAas 2 is positive'or,negative), we note
that the deviations of calculated values from experimental values are of
-the same sign within each group, and the seﬂééwdf each deviation indicates
that the.effective g factors are reduced in magnitude from the free-

. space values. .

The choice of reduced values to minimize deviations has been
discussed in an earlier paper of Rasmussen and Chiao.7 Taking the values-
g;=§ for the proton and 8= -2.4 for the neutron, we have recalculated
the nuclear magnetic moments of the deformed odd-mass nuclei for which
measured magnetic moments exist. The matrix elements (SW'T ) are
evaluated from the Mottelson and Nilsson wave functions at n=2,:4, and 6
and interpolated by a three-point Lagrangian interpolation to the assumed
deformations, &, which are obtained from measured electric-quadrupole

3,8

transition probabilities.
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If we assume that the nuclear potential arid charge distribﬁiionb
have the same shape, the vélues of ® may be estimated.from the measured '
electric-quadrupole moment or the elecﬁric;quadrﬁpole transition probability
between two states in a rotational band. These quantities may be expressed

-in terms of the infrinsic quadrupole moment, QO’ which.is approximately
Q = 4L/5 7 302 5 (1+1/2 8 + ....) ' (14)

where RO =2 1.2 x 10-13 Al/5 cm is the mean charge radius of the nucleus.
Some have chosen to'express the nucléar-deformation_by’the-parémeter B

connected with QO by_the relation

Q = Ts%_ 4 302 B (1+ 0.16 B? . R (15)

.. ... ..For teasonslithat will -be-discussed later, the g values are: seme -
what arbitrarily iaken to be Z/A for 0dd-Z nuclei and Z/2A fof'odd-N
nuclei. The uncertainty in the calculated value associated with the
luncertainty'in the assumed value of'gR_is small. In Tables I and,Il;
the calculated values are -compared with empirical values. Both are also
‘plotted‘against I in Figs. 6 and 7. The reference lines.in these
diagrams are. the limiting "asymptotic" values;5

A It is noted that among the cases showing deviations are spin-l/2
' nuciei, which. need a special analysis, and nuclei that have particularly
large j values for the odd nucleon, thereby being especially susceptible
to appreciable Coriolis mixing of different K quantum numbers. This mech-
anism and its effect on the magnetic moment are discussed. Apart from these
cases, the agreement between the calculated and experimental values are
generally good for odd-Z nuclei, showing.that the effective 8 factor
for a proton in most odd-Z nuclei is around 4; In the case of odd-N
nucléi, the effective g factors seem.to séat%ér:more. "A gz%ue,morelggr
duced . in magnitude should be used for some nuclei, e.g. Er and Hf y
while a value much less reduced should be used: for'U253 and U527, (See
SectionVI~c.)
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Table I. Magnetic moments of odd-Z nuclei
. Z '
Nuclei Energy I Assigned Assumed (3-T) - W .a
of ®XP orbital  deform- R X (theo) (exp > Galﬁef
Isomeric (N,n_,A,2)ation - n.m n.m
state <. .- 2
(kev) ,
1 ) : .
65Eu 23 5/2 L1304 0.29 -0.94 0.M12 1.3 1.5b
65Tb129 3/2 411 ¢ 0.29 0.609 0.409 1.9 il;gu?id-'
1 ‘
67Ho 65 7/2 523t 0.28  1.k05 0.406 k.0 h.1857%
l o .
69 69 1/2 411 4 0.27 -0.125 0.408 -o.2:-oT21b; a=-0.T6
1 ‘ .
69Tm 9 118 5/2 411 4 0.27 0.058 0.408 0.7 0.5510115 a=0."p
1
71Lu (& 7/2 Lok § 0.26 -1.565 .0.L06 2.0 2.0:0.2°
71Lul;5 114 9/2 Lok s 0.6 -1.565 0.406 2.5 2.25t0.9%
1381 .
7578 . 7/2  hoky  0.23 -1.552 0.403 2.0 2.348.
1381
75Ta 482 5/2 Lo2 ¢ 0.23 -1.202 0.L403 3.1 5.0-5.3h
75Rel:5 5/2 W2+t  0.19 1.198 0.5 3.1 3.14°
1 )
75 T 5/2 Lo2 ¢ 0.19 1.198 0.k01 3.1 3.18h
77 o 3/2 Lo2 0.14 -0.622 0.403 0.4 0.28
' I 195 3/2 Lo2 4 0.12 -0.613 0.399 0.h4 O.Qh
89Ac227 1/2 530 ¢ 0. ‘0.904 0.392 1.1 1.1h a-1.66
o1F a2 3/2 5304  O. 1.000 0.391 2.1 2.19  a=-1.31
95Np257 5/2 642t 0.25  0.73h 0.392 2.7 >2.7°%%
95Np237 60 5/2 5234  0.25 -0.805 0.392 = 1.35 2.0:0.5
95Am241 5/2 52354  0.27 -0.826 0.39k 1.4k 1.48
95AmELLB 5/2 5234  0.27 --0.826 0.391 1.k 1.u°
a. Values of a involved in the magnetic-moment calculations (taken from ref.3)
or the theoretical a* values calculated fron Nilsson's wave function.
b. See reference L. '
c¢c. These magnetic moments were measured by paramagnetlc resonance and are
subject to error arising. from uncertainty in the values of (1/x3 %2
which were calculated by the use of hydrogenlc wave functions. The values
listed have been corrected by u51ng Sl/r ) values obtalned from self-
consistent field elgenfunctlons
d@. J. M. Baker and B. Bleaney, Proc. Roy. Soc. (London) 2L5, 156 (1958)
e. -G. Manning and J. Rogers, Nuclear Phys. 19, 675 (1960)
f. G. Manning and J. Rogers, Nuclear Phys. 15, 166 (1960).
g. L. H. Bennet and J. I. Budnik, Bull. Am. Phys. Soc., Ser. II, 4, 417 (1959).
h. Strominger, J.M. Hollander, and G.T. Seaborg, Revs. Modern Phys. 30,
_ 585 (1958). =8
J.. ﬂlnocur, Some Nuc ear and Electronic Ground-State Properties of Pa ™ -,
1, and 16-hr Am2%42 (thesis) UCRL-91T74, April 13, 1960
k. C.A. Hutchison, Jr., and B. Weinstock, J.Chem. Phys. 32, 56 (1960) .

-~
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Table IT. Magnetic Moments of Qdd Neutron Nuclei
: == =
Nuclei Energy I Ass1gned Assumed - (s f} u. ) , a
of “orbital deforma- *R 28 (the03 (exp,) values®
Isomeric (N,n_,A,>) tion pem-) ..
state z '
(xev)
l ! .
615 2 3/2 521 %, 0.27 0.483 0.206 -0.37 -0.28?
6&Gdl§7 3/2 5211 0.27 0.483 0.204 -0.37 -0.37° .
66Dyl§l‘ 5/2 6421 0.28 0.777 0.205 =0.39 -0.48¢,¢
66Dy165 5/2 5234+ 0.28 -0.757 0.202 0.67 o.67°’dl
68Erl67 7/2 633 % 0.29 1.302 0.204 -0.54 -0.59°’€
70Ybl7l 1/2 5214 0.28  -0.250 0.205 .0.40 0.46%T 820787
o112 5/2 5121 0.27 1.008 0.202 -0.55 -0.65"
72Hf.l77 7/2 s1b+% 0.25  -1.162 0.203 0.80 0.61°
72Hfl77 114 9/2 sS1kd  0.25  -1.162 0.203 0.97 0.99:0.27%
}72Hfl79 9/2 624t 0.25  -1.812 0.201 -0.63 -0.u7"
7&W183 1/2 510% 0.21  -0.250 0.202 0.48 0.12" 8=0.19
760s187 ~1/2 5kt - 0.18 -0.250 . 0.203 48 0.12 a=0.19
760s189 3/2 5124  0.15  -0.M23 0.201 0.50 0.65"
9éU235 5/2 6334 0.25  -0.408 0.197 O0.ha 0.97°%
: 92'255 7/2  Ths 1 0.2k 1.100 0.196 -0.43 -0.66£0.07 %
‘ 9uPu259 1/2 631V 0.26 10.119 0.197 -0.06 £0,02% a=-0.96
ol 2kl 5/2 . 622t 0.27 0.783 0.195 -0.k0 >lo.1
a. See footnote a, Téble I.
b. See footnote b, Table I.
c. See footnote ¢, Table I.
da. - J.G. Park, Proc. Roy. Soc. (London) A2l5 . ll8 (1958).
e. R.J. Elliott and K.W.H. Stevens, Proc. Roy. Soc. (London) 219A; 387 (1953).
£. A.H. Cooke and. J.G. Park, Proc. Phys. Soc. (London) A69, 282 (1956) -
g. ©See footnote f, Table I. ‘ : :
h. See footnote h, Table I. ;
j. P.B. Dorain, C.A..Hutchison, Jr., and E. Wong, Phys. Rev. 105, 1307 (1957)-
k. See reference 11.
£+ B. Bleaney, P.M. Llewellyn, M.H.L. Pryce, and G R. Hall, Phil. Mag. L5,

- (195k4) .
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We .further extend such calculations to odd-odd nuclei. The wave -
furictions of such nuclei can be written as products of the. Nilsson wave
functions for the last proton.and for the last neutron:

. 1/2 o . - |
e 2’]’]’+l ) T I—J -3 | I | :
7/’v— l67r2> [XQP an‘a.MK + (‘) P “n X_prmn ”8M-K:| - (16)

where the sign of Qn.is determmined from the coupling of the angular momenta
of the proton and the neutron. To calculate the.magnetic moments’calcula-
tions of these nuclei, the.following expression for the magnetic moment is

used:

m{ (6, (s, ) + g2, ), 4o 424,

[I(I+1) -ICQ] gR}» - (17)

Most ground states of odd odd nuclei obey the Gallagher-Moszkowski coupling
rule that the intrinsic spins of the proton and neutron are parallel. 12,13
In this state, the proposed reduction of g .for the proton and. neutron will
nearly cancel. Nuclear states with proton and neutron splns antlparallel

236 and 5- state of Amzue, should

to each other, ‘such as the 6+ state .of Np
show magnetlc moments shifted.from values calculated with free.space 8
factors. Not many. magnetlc moments have been measured. for odd-odd nuclei.
In Table III we have listed cases for which measurements would be . poss1ble
with those :for Wthh magnetic moments are known. The values of u and. p
calculated with free space and reduced. g factors .are very close to each

other and also close -to the asymptotic values.



Table III. Magnetic moments of odd-odd nuclei

Configuration <

. ' oy _2%4 ¥ :
Nucleus Spin Proton Neutron ..(s;)p <£Z>p (sz>n 8= T & Mrmeo Mrheo Masym. Pexp .

(n.m.)(n.m.) (n.m.)

‘65Eu152 3= (412t +521 1] 0.400  "1.100 0296 0.311 1.88 1.73 1.58 1.910’:c

6'5Eul5LL 3- (L1114 +5211]  ° 0.400 1.100 0.296 0.307 -1.88 1.72 1.58 2.0°7¢

65Tbl6o 3- : (k114 +5011] o.hoo» 01.100  '0.296 0.305 1.88 1.72 1.58 1.6010.25d

67Ho162 : 6- [5231¢ +6L42 1] .0.398 3,102 0.%304 0.310 3.57 "3.66 3.52° ‘

67Ho166 T [523 1 +633 1] 0.398  3.102 0.366 0.305  3.70 3.60 3.59 5,5¢of5e‘

69Tml7o - [b11y +521:4] -0.356 0.856 -0.263 .0.304 - 0.09 0.13 0.25 0.24T

71Lul76 7- ‘ [Lok ¢ f51u;]' -0.449 3.949 -0.362 0.334 2.77 2.94% 3.09 3.27%

71Lul76m 1+ [Lok 4 -624 1] -0.4h9 3.949 -0.417 0.33k .74 1.7 1.77

75TalSOm 1+ [Lok¥ -624 1] -0.4k49 3.94k9 -0.417 0.304 1.72 1.73 1.75

95Np256 1+ (52351 -7h34]  -0.312 2.812 -0.326 0.295 1.31 1.32 1.60°

95Np236 6+ [5231 -Th34] -0.312 2.812 0.526 .0.295 0.10 0.70 0.08.

95Np258 2+ (642t <6314] 0.283 2.217 0.150 .0.293 2.18 2.05 2.06 . .
B _ . N

95 2ke 1- (5234 -6221] -0.312 2.812 -0.792 0.294 0.29 0.29 0.29. o.53h v

95 2h2 5- [523¢ = +6221] -0.312 ~ 2.812 0.792 0.29% -1.39 -0.0k 0.08

a. See references 12 and 15;

.b. See footnote c, Table I. i

c. M. Abraham, R. Kedzie, and C. D. Jeffries, Phys. Rev. 108, 58 (1957).

d. C. E. Johnson, J. F. Schooley and D. A. Shirley, Phys. Rev. 120, 2108 (1960).

e. H. Postma, A. R. Miedema, and M. C. Eversdizk Smulders, Physica 25, 671 (1959)."

f£. A. Y. Cabezas and I. Lindgren, Phys. Rev. 120, 920 (1960).

g. See footnote h, Table I. : v

h. See footnote .j, Table.I.
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IV. . INTERCONFIGURATIONAL MIXING

Onr relatively good euccess in calculating magnetic moments with
empirically reduced g factors suggests'that tne appérent moﬁent guenching
throughout the deformed region arises from small admixtures of many dif-
ferent conflguratlons It is most likely that the quenchlng of the &g
factors is not primarily caused by alterations of the virtual meson con-
trlbutlon to the nucleonic magnetlc moment for nucleons in nuclear matter.
Drell and Walecka show this effect to be about 7%

In calculatlng the 51ng1e-part1cle wave . functlons, a spheroidal
potential. has been used to represent the potentlal due to ‘interactions

" of the very- short-range forces and other exchange forces It is therefore
expected that the different nucleon conflguratlons should inevitably get
mlxed with each other to a con51derable extent in the stationary states
of nuclei. Their modiflcatlons ot megnetic moments can be dlscussed in’
terms of the variation principle in the limit imposed by the exclu51on
principle. In zero;order approximation, the core of paired nucleons does
not modify the magnetic moment. The interactions between nucleons. may be
considered to consist of the very-short-range Wigner force and. exchange -
forces whose potential operator when- applied to nuclear wave functions
"exchanges" either the space coordinates of interacting nucleons (Majorana
force) or their spin coordinates (Bartlett force) or both (Heisenberg
force). These scaiar forces between nucleons within the -core can not
polarize the core itself, but the core.can be polarized by its interaction
'with the unpaired nucleon.

The pairedﬁnucieons-in.the odd group are polarized antiparallel
to the odd nucleon so that they can approach each other, thus increasing
the interaction energy of thefvery-short—range forces.. The spin-dependent
forces give rise to an opposite. but smaller polarization-effect. -Paired
‘nucleons'of the' even group -are polarized parallel by these spin-dependent
forces, while the~spin¥independent forces have no effect. The polariza-
tions of both groups decrease the magnitude of the magnetic moment in the
same ‘way, and result in the quenching of the 8 factors used in our cal-
culations with these zero-order single-particle wave functions.

Arima and Horie15 as well as Blin-Stoyle16 have calculated the

magneticamoments for'sphericalvnucleiy showing that a small amount of

mixing of certain kinds of configurations can produce changes in magnetic
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moments of nuclei without changing appreciably the pure shell-model
conflguratlons upon which they base their calculatlons The nuclear wave
_ functlon of mlxed conflguratlons can be written as |(Jl 0 J jm )+-§ a
(Jl ) Iy (ng)JJm ) where I(J QOJ jm ) represents a simple shellrmodel
configuration and the I(J1 ) 3p (JQJ, jm ) represent :the admixed con-
figurations. The magnetic moment of the nucleus is then obtained from
this wavelfunction by caiculating'the expecfation value of the particle
magnetic-moment operator. For small values of aJ, the most important
contrlbutlons to the magnetlc moment are those linear in O Contri-
butions of this kind can occur only if I(Jl o Jm Y and |(Jl )J (szlﬁmf-
differ at most by one single state and the orbital state is the same.
Thus. the most important configuratibns for mixing are those -in which a
ucleon palr is broken by promotlon of a nucleon to the unoccupled orbital
of its spln—orblt conjugate. Using 81mple perturbation theory, one can

write.
o= = (M) w1V 1)) (30) pim )8 (18)

where V is the internucleonic interaction, and AEJ is the zeroth-order
energy difference between the mixed states. Using a delta-function inter-
action, Arima and Horie as well as Blin-Stoyle have been able to account
for the deviations of magnetic moments from -the Schmidt limits.

The important point is that nuclear'magnetic moments are extremely
sensitive to admixtures to the zero-order shell-model wave- function which
contribute in first order to the magnétic moment. For example, a 5%
admixture of the h state into the h {209

changes the Bi moment by

11/2. 9/2
1.4 n.m. In a few cases, however, the distribution of nucleons among the'
various shell-model states is such that no type of admixture can lead to

a contrlbutlon to the magnetic moment which is linear in its amplitude

of mixing. Under these circumstances the magnetic momentushould lle close
29 pr

" to the,Schmldt value. The proton conflguratlon in 85 is. (g7/2 ),

(d5/23), which does not oﬁfer ‘much possibility -fox configuration mixing. 17
The experimental magnetiqﬁmoment has been recorrected to the value 5.1 n.m,
which is very near the upper Schmidt limit of h.8ln.m. appropriate to a
proton. _ ‘ ’
Throughout the deformed region.there are always many ways of
fdrming the broken pairs Jjust mentioned. Gauv%n has‘made similar magnetic-

moment calculations for deformed nuclei'.18 The two-nucleon potential is
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assumed to be

Vij=:- vd(r, - rj) (0.8 + 0.k ?0) (19)

where P0 is the exchange  operator for the nucleon spins,-and‘VO is a
positive constant. To first order, only those admixtures which differ
from the original state by one particle excitation contribute to the
magnetic moment. Furthermore, such single-particle excitatibn can go
only to a state which has the same parity and the same value of the
quantum number, .Q, as theﬂstate<that is left vacant. For each such
possible excitation there is a corresponding onerbetwéen the same states
having the opposite sign of Q. If we denote the admixture amplitudes

. for such a pair of exc1tat10ns by o and B, for states w1th pos1t1ve :and
negative Q, respectlvely, the contribution to the magnetic moment from
“this paip is

swrgr ded) g le) T

One can evaluate Q-B by’using perturbation theory and Nilsson's wave
-functions. - The- foreg01ng formalism has been applied to the ground-state

175 181

configurations of Lu and Ta™ .~ ;. both:have an unpalred proton in. the

= 7/2,0=T7/2 level. The cofrected values for the particle magnetic
moments are 2.17 n.m. for Lu 75, and 2.38 n.m., 2.24 n.m., or 2.29 n.m.
“for Tal8l,jdepending on the.actual proton configurations of Tal8l. These
values correspond to g = 2.57 and g _= 2.01, 2.4k, or 2.31, while the .
experimental g, values are"3.74h and 2.90 fromgK values given by Bernstein
and de Boer.: It .seems that the results could be improved if more mixing
configurations were considered by allowing excitations to take place
-between stateg with differeht quantum numbers Q . '

The very-short-range spin-independent forces are much larger

than the spin-dependént forces and correspond to the most -important
. feature of the residual interparticle forces not incorporated.into the
static self-consistént nuclear field .used. for sipgle—particle-calcula-
tions. These very-short-range components of'intérparticle forces have
been. treated as pair-correlation added to the nuclear field, and the
“total Hemiltonian has been solved .exactly. 19 Théréfore, an alternative
way to calculate the particle magnetlc-moment correction, Ap, 1s to use

-these vave - functlons as zero- ~-order and con31der the rest of the forces
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as perturbation. .However, it is doubtful that the corrections obtained
would: differ from the present results.

The effect of both pair-correlation and m1x1ng of the quantum
number on the magnetic.moment will be further investigated. in the fol-
lowing sections, especially with regards to their -effects. on the col-

-lective gyromagnetic ratio, e

V. PAIR-CORRELATION.

A. TIntroduction

Many have considered the eftect of pair correlations on nuclear

19521

propertles It can explain the wide energy gap encountered in the
collectlve spectra of deformed even- even nuclei.

Expressed in terms of the 51ngle-part1cle states of the average
nuclear potential, the pelr-correlatlon interaction scatters pairs of
particles from the originally filled, doubly degenerate single-particle
orbitals ‘into the higher-lying‘levels which are left unoccupied. The
new total intrinsic wave function that most effectively utilizes this.
additional type of interaction and forms the ground state is then a
state with a diffuse Fermi surface. Any excited state is therefore ..
associated with an excitation energy of about at least the width of the
diffuseness of the Fermi.surface. |

Let the Hamiltonian of the statictself-consistent nuclear- field
- be denoted Hs and the corresponding single-particle states ]v), where v
represents the quantum numbers. One then defines the particle-creation

operators by . . ‘
floy=bvy o (21)
e Moy = l-w =y, - (@2

~ Where I-v)~is the conjugate state and is equaled to the time-reversed
. state Tlv) by arbitrarily fixing the phase of T.
"The total Hamiltonian then has the form

ze(a,a,+a,'a)-c;za,,a,_,a_% ~ (23)

where g denotes the elgenvalues of H 7 and the~second term represents
the palr -correlation’ interaction w1th “the limiting assumption that the
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residual force acts only when two particles.move:in a J=0 state. Said’
force.-displays the main features Qf.the;S‘fbrce,_alfhough the latter
has minor but nonnegligible effects .on paifs ef particles.in states of
nonvanishing but small aﬁguler momentﬁm ' The CL s obey the anticommu-
tation relations to ensure the antlsymmetry of the many-particle states.
The Hamiltonian (23) describes a system with a .fixed number of
particles, N. 3Bardeen et al. find an eiéeﬁfunction of this system by

transforming to a system that is described by the Hemiltonian

H=H' - AN, o | L (2

where A,: the..chemical potential, is treated as & Lagrangian multiplier,,e2
thus irepresents . the. erergy of tﬂe ~1ast‘added' particle. The choice
of A determines -the average value of N, whlch we shall denote by‘n

The ground ‘state can be expressed as an. admlxture of 51ngle-
particle.conflguratlons with the admixture. coefficients - determined by

‘the parameters Uv and Vv; subject to the normalization condition
U +v-"=1" ' (25)

and to the auxiliary condition

/.

o5 v 2 2. | (26)
v Vv© A
A convenient way to obtain the gfouﬁd-state energy and the corresponding

. wave -function is to determine the so-called quasi-pafticle operators
defined by

= a - N .
av Uv v V@ a:v (272)
and . +
Boc—v = Bv - Uv v T Vv v (27b)
. In terms of av and Bv’ the‘tfansformed Hamiltonian 'is
=U +‘Hll +H .+ H (28)

20- ° Tint.’ ,
where,U~is.independent of the Quasi-partiele,'Hed-cfeates or annihilates
two quasimparticles, H; . 'contains pfoaucts'of four Quasi—particle

'xcreatlon or annlhllatlon operators, and Hll is an operator of the single

quasi-particle type. When H is set. 1dent1cally equal to zero, the
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Hamiltonian describes a.system of noninteracting quasi-<particles in the

approximation,thatﬂHint.‘may be neglected. We are led to the equations:

o IV ,
Uv? = 1/2(1. +€va_._) - (29)
. - - A |
Vvve =1/2 {1 —'(ZVEV >, (30)
where - : /.
1/2
E, = [(fv--x)z +A2] | (31)
and
A= 0z UV j{rv. (32)

 The parameters A and A can be determined from Egs. (26) ana (31).
The 1nterpretat10n of V 2 as the probablllty of the state’ being populated
byia ‘pair is evident from Eq, (26). The wave functions are the quasi-
partiele creation operatore operating on.the quasi—particle vacuum, the
state where all single particles are coupled in pairs to zero angular
‘momentum. The ground state of an even-eveﬁ nucieus is the quasi-vacuum

state, which in terms of the single-particle model is

Vo =T '(Uv*vva{ﬁaf;l'o ). (33)

ng the ground state of an odd-A nucleus, the odd particle occupies, say,
the orbital é;;. The particle is entireiy unaffected by the pairing force,
,which only scatters‘pairs of particles. The trial function of the ground

state of such an.odd-A nucleus is

v = a

oM (urvata o) . (3k)

v#E v
Now U~ and V, are still given by (29) ;and (30);. but’ the lsumsrover
states in determlnlng A and A exclude the '"blocked"‘'v' state.
h For the ground state of odd A, v' lies near the Fermi surface and
A is not apprec1ably changed with respect to the "even" case of n/2 pairs.
'Therefore the wave functions aré the quas1-partlcle creation operators oper-

atlnglon the qua51—part1cle vacuum.
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B. Effect'of Pair-Correlation on the Magnetic Moment

Consider. the magnetlc moment of an odqu nucleus The quasi-

particle operator may be represented by a sum’ of slngle-partlcle opera-
tors.

WP =3 ( (V|ule'>av+% # (vlp |vie fe ). (35)
vV Lol : :

By the canonical’. transformations (27 /&b) and the phase convention (22),,

it is

Yy (1 oMoty ote tel e iy
"= %ﬂ =(?|HZ|V >(var'+Vva?)(q§'av'~r Bvﬂ ﬁ9)+-§v|<vluzly'>

<

A
W

= +, + :
Uy, ,-v, u.)(@’s . -pa.). | (36)

- The first term corresponds to the magnetic moment of a quasi-
particle and is the same as that of»e single-particle. #® This is under-
stood, since particles and corresponding holes have the same ~magnetic
moments. The second term contains the two quasi-particle- operators

-1t can therefore have no matrlx elements with the ground state of an
.0dd-A nucleus. Thus, Wlth palrlng 1nteractlon, the odd-A nuclei will pf
exhlblt 51ngle-part1cle ‘values for their particle magnetic moments.

B The effect of pairing 1nteractlon on the collectlve magnetic

moment , u 01l.= T? has been well 1nvest1gated by Nilsson and Prior. >
In the s1ngle—partlcle model, with the assumptlon that the self -consis-

tent field determlnlng the 51ngle-part1cle orbltals is cranked around

' externally, the collective gyromagnetlc ratio of a nucleus is given by

S I I ES IE ENES
g, = L 5 —= X X + complex conjugate (37)
R 8T Ee - & ‘
-and
oo i 21<11J1f>1’ o -
BE Ee-&
where J % X is the angular-momentum operator associated with the
rotation and p

=2 (ggl +g S ) 1s the collectlve magnetic-moment operator.
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If we use aSymptotic wave,functionS5-these formulas give . Bg
‘values rather close to the ratio Z/A which show little- varla,tlon,23
while the experlmental values . are generally less than the ratio Z/A
(Table»IYj, and vary as shown. in Fig. 8. The low experlmental values
must signify a. greater role of neutrons. relative to protons in carrying
. the rotational angular momentum. The trend of variation.is reversed
when the holes play the parts of particles near the end.of the shells,
showing that the nucleons coutside of closed shells are the main contri-
butors to the rotaﬁional angular momentum.

Inclusion of pairing interaection.gives

%, o Wy n Yy
&g~y T (85" - 1) s T & ¥ (39)
where
Sy Mvls, vy 2 |
1 _ X X , o :
;?- W = ‘z' — Ev m Ev' “ (U"V‘f'. VVUV,) (+0)
and
e Lol ® vy 22
3 = 2% Ei' ) E TE .imf4 (U§Vv' AN ) (¥1)
‘ - Ty Ty ~

'Slnce the last two terms in Eq (39) are small, gy 1is approx1mately equal
to the relative. fractlon contributed to the moment of 1nert1a Using a
con51derably larger pairing energy for protons than for neutrons, thus
increaeing,the share of‘engular*momentum carried by the neutrons, one
' gets &R values emaller than the ratio 7Z/A. Nilsson and Prior have -cal-
.culated gR-for even-even'nucle:'\.5 ‘Their results are found to be in
reasonable agreement with the experimental values.
. .The empirical gR valees,for odd-A nuclei listei in Table IV are
-taken from the analysis made by Bernstein and de Boer. The AN values
show the same trend of variation as those for even-even nucle1 (Fig.. 8).
The N values for odd-Z nuclei are somewhat higher than for neighboring
even-even nuclei, and the 8 values. for odd-N nuclei, somewhat lower.
A rationale for such a . shift may be provided by con31derat10ns of
pair-correlation effects due to the blocking of an orbital and effects of

the Coriolis force which couples.the near-lying one-quasi-particle states.

1
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-If an odd neutron is added,tb an even-even nucleus,”one orbital is
blocked. from -the neutron-pair correlation, thereby reducing the effec-
tive .energy gap- for neutrons. This reduces gR The same argument- gives
an. 1ncreased gR for ‘0dd-Z.nuclei. The effect of Coriolis force.on
magnetlc moments w1ll be -discussed. in’ detail in terms of single-particle

states.

Table IV. iéollective gyromagnetic ratios.of deformed nuclei.

0dd-Z nuclei Even-geven nuclei 0dd-A nuclei
Isotope gRa Isotope N " Isotope 4 . éRa
' Eu155 0.452+0.012 Sm152 0.20to;oub%°" Gd155 0.34 +0.077
63 , 62 4 6L : I
' 0.21+0.0k4 ‘
e
, 0.31+0.03 1 '
(o127 0.51 0.0 628m}?& 0.2120.04) &/ | 0.227%0.06
S o e Dok 0.29540. 03 T SIS
;{Ho165 0.55u0.047° . Ga* 0.36:0.06° Dyt 10.210£0.072°
6 169 : ok 160 b,c 66 163
Tm 0.23 #0.12 Dy 0.20+0.04"’ Dy 0.302+0.018
%9 175 0" 1¢6 g % 167 b
Lu 0.30. +0.06 Er™ 0. 3220, ool Er 0.098+0.035
71 181 68 180 e 68 103
. 0.327+£0.009 Hf 0.20%0.15 Yb 0.20. +0.09
73 185 [T n 19 177
75 0.413+0.042 7& 10.38+0.05 72Hf 0.215+0.01k4
Re 187 0.413+0.043 o et 0.203+0.034
() - : T2
a. GSee reference k. o
b. These values are corrected using. Judd and Lindgren's values of (l/fslo
c. G. Manning and J. Rogers, Nuclear Phys. 19, 675 (1960).
-d. G. Goldring and R. P. Scharenberg, Phys. Rev. 110, 701 (1958).
e. E. Bodenstedt, private communication.
f. R. Stiening and M. Deutsch, Phys. Rev., to be published.

g. E. Bodenstedt, H . J. Korner, C. Gunther, and J. Radeloff, Nuclear.
Phys. 22, 145 (1961).

h. E. Bodenstedt, E. Matias, H..J. Korner, E. Gerdu, F. Frisius, and
D..Hovestadt, Nuclear Phys. 15, 239 (1960).
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Fig;,8. The collective gyromagnetic ratios of deformed nuclei.
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VI. PARTICLE-ROTATION INTERACTION

A. Introduction

The particle-rotation,interaction arises from the Coriolis force
which comes.into.play when a particle is moving in a rotating system. The
nature of this interaction can be understood best by considering a model
simpler than the actual nuclei, such as the sysgtem of a single particle

coupled to a rigid top. ;The Hamiltonian of this system is
o ’ 2 . . 2 A
N 5 23 +vd + 2 5 @) (42)
. 2m . 1=1 :231 RS . -

,wheref?‘ is the position rector of the particle in the'rotating system
of coordinates corresponding to the instantaneous position of the prin-
cipal axes of,thetoP,~ /3, and Ry are the trincipal moments of inertia and
- angular momenta of' the top, respectively, and m is the reduced mass of the
system. For the analogy with actual nuclei, we assume that both the top
‘and ‘the potential are ax1ally symmetrical that is, 43 = S = 3. The top
angular momentum.ﬁ is coupled w1th.Q the component of the particle momen -
~tum on the symmetry axis to form the angular momentum I w1th the component
K on the symmetry ax1s

The term (ﬁ ) can then be written as'

(B3 = (@D

I(I+l)+J(J+l) 2 T3 )
I(I+l)+J(J+l) oK - ol

N 1' 2T 32 . - - (L3)

We can also rewrite that  part of the_Hemiltonian in the form
5 o g ' P k |
£ b % =5 xfsl5 [2(z+1)+3(5+1) -k205-

(tsp18)] ()
: . . _ . _ S ﬁg )
where I, = Ili iI,eandj, =Jy tiJ,. The last term'w-v-e—%—(lj +I_J )
corresponds to the effect of the Coriolis force acting betweén the particle
and the collective rotation “When this effect is neglected, it is clear
that K and Q. w1ll be good quantum numbers The Coriolis operator makes
no diagonal contribution unless Q is 1/2, in which case there is a

.diagonal contribution
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{ 9=1/2|14j_ +'I-j+ lo =‘1/é’§ = (;§I+j(j+l/2)(l+l/2) (45)

known as the "découpling term" to the rotational spectrum.

' ' Rotational spectra of the simple form given in' Eq. (1) are
obtained when the rotation:is sd'sIow;that.the particle motion can adjust
adiabatically to the changing orientation of the potential field. ‘The
finite rotational frequency gives rise to small nonadiabatic excitations
resulting from the Coriolis force acting on.the particie. -To lowest
order in the rotational frequency, these viftual excitstions.imply an
increase intthe'energy.of the nucleus. proportional to I(I+1) and thus
~proVide-the moment of iqertiaiessociated with the rotational motion.
To.higher'order, the nohadiabatic effeets give rise to a coupling bet-
ween. the rotatlonal and intrinsic motlon, which 1mp11es deviation from

' the rotatlonal spectrum as well as the geometrlcal relations for the
nuclear ‘moments. ‘

In odd-A nuclel, the nonadlabatlc excitations o6f the last odd
nucleon w1ll play a spec1al role, since these do not involve the break-
-1ng_of~any pairs. Prlor has correlated the increase 'in the moment of
inertia in going from an even-even hucleus to the next heavier odd-mass
nucleus with.the effect of the Coriolis force om the odd nucleon.gu In
addltlon to the increase  in the moment of 1nert1a, the band may show an
I (I+l) energy term, which corresponds to relaxlng the axial symmetry of
‘the model we have been  discussing. Small deviations from the I(I+1)

. dependence may rise from the higher-order effects of the near-lying bands
associated with the lowest states of the last odd particle. Such effects
have been noted, and detailed analyses havé been made for'the spectra of
Peeil,'Pa255, and w185.?5’26 Even when the deviations from the simple
form are small, nuclear properties sueh as the electromagnetic transition
probabilities may be appreciably affected. Kerman has given formulas

for the electromagnetic transition probabilities .between admixed states

183

and related transition probabilities of W

26

We will 1nvest1gate the effect of partlcle-rotatlon interaction

quantitatively to the

observed energyAperturbations

. on magnetlc moments and magnetlc parameters &R and gK by treating this
interaction as a perturbation. The matrix elements of the Coriolis-

force operator are
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2
T T
He g < H.K =-h—(/IK‘Q IIJ +IJ|IKQ>

o= [I(I+1) - K(K+1] 1/2 S K+1<9 EN lQ) :
- 2_§ [1(1+1)- K! (K+1)]- /2 SK';‘.;;K_','I;-(Q»;HJ_IQ ) (46)

By decomposing the operators j and j_as j+ =-l + 8, , the
matrix elements {(Q' ]J IQ ) can be obtalned by using Nllsson s wave

function. They are

. : , ' 1/2
@'a_le) =-z;4 {a?m'-l/e Z0-1/2 [z(z+1) - (Q'-l/2),;(9'+l/2)]
| 1
+ Oyoii /e U1 /2 [z(/z'+1) - (Q'+1/?) (Q'+5/2ﬂ

Qg /o 029;1/2} | : | (47)

for @' . =Q-1, and

. -l " RN A .' » ’ ’ 1/2
@lsle) -2 {%'-1 2 %n-1/e [+(22) <(2-1/2) (01 /2)]

1/2

* g +1/2 Lyg1/2 [?(1"1)'(9*1/2)(;%5-/2{]

* Dot -1/2 Y '+1/2} (48)
for Q'=0+1. Thus the Coriolis interactidn:éouples states which have the
same spin and parity but differ by one in K and Q. The strength of the
interaction.increases with iﬁcreasing J and increasing I.

In the case K =0 = 1/2, it is possible for the operators j+ and
j- to connect states (with the same parlty), both of which have K= Q= 1/2.

The matrix is given by
il s ey o VIt e e @
(12151, + 3,1 'l‘1/2.>‘- (- )779(1+1/2) %{ Lo 20+~1/z(/z+1)

(250, + 4] %J (49)
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- .A secular equation eanrtﬁen'be written.for levels of spin I.
If we- express it in determinantal form, the diagonel elements are
lHKK W, where HKK represents the elgenvalues of interacting. intrinsic
states. The first off diagonal elements are given by Eq. (46); all
other Off-dlagonal elements.are zero. - For example, the secular equation

forl.=.7/2'and j 2 .7/2.could be written as

Bjo,1/e = B - Hy/0,3/2 ° 0
Bje,sre . Hsjezpe® HEpspe O
=0.
o s Bs/2,5/27%  Fs/2,1/2
° -0 Bsre1/2 T9/2,7/27F | (50

The robts of the secular equation give‘the energies of the
perturbed level I. In order to find the eigenfunctions corresponding

.to root E, we substitute the value of E in the set of equations

() /o 1/0 Bl fo* Byjn 57005007 O (51)

and

By 2,502 %12t (Bsja,5/0" V%0t By fp 500500 = 0 (52)

and ‘solve for the ratios d,/e/ /2,615/2ﬁ11/2, a,/g/a /2, where n is the
final numerator in the series. A knowledge of .these ratios, plus the

normalization condition

% ) * '

determlnes the a's. The wave function of these mixed. levels may be

wrltten 1n the form

wmixed

@1/217/2 1/2) + @/2|7/2 3/2 )+ a,/2|7/2 5/2 )+ & /2|7/2 Z/?)
>

where the wave function of the pure level I in the rotational band K is
written lIK).
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~-B. Effect of Particle-Rotation Interacﬁion on:the.Magnetic Moment and
the Electromagnetic Transition Probability .

The. effect of ‘this K.admixture on the magnetlc momen; comes from
"off-diagonal contributions to the matrix elements (g}l ) -and (J T ) in

the éxpression ‘for the magnetic moment. We can write -

O )mgad (1370 g, (e fied) )
and
37 - 2 a e (K| FT| K+ ?{QK*QM (K 3,1 K1 ). (56)

The expréssion of the diagonal contribution is given in Egs. (12) and (13).

The off-diagonal.contributions are

Em% 29

(K |s,T_ |K21 ) = [1(1+1) K(K+1)] sz+1/2 2041 /2 (57)

and

1o
(k[3,I_ |k+1) =.[I(I+l) --K(-K+;L)J z (a'(glz{)l/e a-ég:i/)e

/2 (K) (K41
[,Q(Hl) - (a-1/2) (o+1/2)] | m+1/2 1913/2 [(£+l) -(a+1/2)

1/2 (k+1) (K |
(a13/2) * a’llQ:l/)E “z931/2 : ' (58) -

.

This effect on magnetlc moment for some nuclei may be illustrated
by the example of the 87-kev -level of Pa255. The calculation of Marshall
fitting the even-parity levels of Pa 233 gives a wave function for tne
87-kev level (I = 5/2+) of :

Vpixea = O 9l+ |5/2 5/2) + 0.34 15/2 3/2 ) + 0. 0915/2 1/2).

The pr1nc1pal effect of thls K admlxture on the magnetlc moment comes from
an off-diagonal contribution between K=5/2 and 5/2 components. This con-.
tribution is about 1.1 n.m. The calculated moment for the pure K=5/2
state at deformetion25= 0.2 using Nilsson's wave functions and gs=h.is

2.6 n.m. " Taking into account all components, we predict a magnetic moment
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255 - This state has a half life

“of 3.8 n.m. for the 87-kev state in Pa
of BTmpsec, and. the magnetic moment may be measured by’ external magnetic-
‘field attenuation of the - vy angular -correlation with Np257
_ The electromagnetlc-tran51t10n probabllltles between.the mixed
' states can be given in terms of the above mixing amplitudes and the usual
gamma-ray transition matrlx elements. 2’6 ) |
The strength of a nuclear gamma-~ray tran51tlon of multipole order,

A\, between an 1n1t1al state, i, and-a final. state, f with' magnetic quantum

1
numbers, My’  may be characterlzed by the reduced tran51tlon probablllty
J

B(}»I—-»I = M, x| )] IM)  (59)

where:M(A,u) is the u component of the. transition operator of multipole

order X. The transition probability per socond is

877((2‘}\.4‘1) ' l (CD 27\+l B(N) ' - (60)
7\,[(27%1) B |

The factor B (EN)- also enters'théVexprossion for the' EA Coulombeexcitation
cross sections.

The electric- and magnetic-multipole operators are given by

Me (h’”) N 211'::_1 p p}‘ %(Op.’%? (61)
and |
. N |
M ow)= 2 (g (g2 + )jl g, [rﬁh;ym(g,q&ﬂ, (62)
respectively. |

In the coordinates appropriate to the strong- coupllng model, .the
multipole operators (61) and (62) take the form

\ » Carg
777(7»,u) -2 ( TR e B Ry (6)

and

i SR gz:z) 3, 5500, )] N ng;(@)
A[‘acm(@f@] ars (e
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The first terms in ‘the expressions répresent the transition
moments of the most loosely bound particleSIWhichiean‘be individually
excited. The sum over p is te be - taken over the transforming nucleons.
_The;lsst terms represent the multipole momenpwgenerated bywthe_eollee-'

tive motioti-of the nucleons, and & * is the Hermitian conjugate of the

coordinate describing the deformation of the nuclear surface defined by

|

R (8,9) = Ro [1 + z};\ %, Yy (65 @] (63)
W

Here RO is the nuclear radius, b:d (4) is the collectlve angular-momentum
— ™
den51ty, and one has _fﬁ @) dr = R.
It is convenient to express the multlpole operators in the

coordinate system f1xed in the nucleus,

A Ny
Mmoo = 28, @)m (), -. (66)

where m is of'the‘same functional form as 27. The reduced transition

probability then takes the form
" i 2
B(A,I»I') = = | (x| =0 ;MO ) | . (67)
: ) H;M'.’. LV MV .. . .
Integration over the Eulerian angles, Gi, gives

87r
4 R = (TAMp |IAIM) (IXNKV|TAIKD
ﬁi—)M'Kﬁpv ik & 2T +1 l

(68)

where (I AM p [T A.I'™M') and (I A Kv|I A I'K' ) are the vector addi-

tion coefficients. One then obtains

B(N,;T-I 1)+ [(I XlK/K'-KII ACTUKY). fx'd,m(x K'-K) Xnd'r +
(I K K‘-K| IAT X' )f[( T3 ] Pns: K 57K)

2 \-
X drl : (69)-
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The second term_contributes_only for the unusual case A< K + K!

The operator £ = ( V ™ Yxé)can be rewritten

(v er ) \2n 1> v [(7‘ v E]l/zzé;x - %X,—i’)‘ % [(x Vi l;_ll/2

Netly 1 1/2 >;-1 | -
L f*(xl)(m) E“")("*’V‘lﬂ AETT Y00 (-1), - (70)

where 2+ ?'&X+‘l zy, L = 4,-i £ .

|
_ b - The same formula holds for B+ (v rKY )
with s- -e;cchanged for 1- g.nd S0, on

We are interested in the magnetic-dipole transiticn probabllltles from
s state IK to another state I'K'. We have

3 /en | 2 2
B(M1, IoI') = '16?<§M'E">2 | (INKK'-K |INI'K' )| G

The expression for GKK' in terms of Nilsson's wave function-is

(71)

oy g (P2
\/—252, -l/”az :L/,)
J—%Z 1/252 -1/2

20"y -

+(g£-gR~)6Z,Z' V2 [:/l (2+1) -A'(A'+l)]

A A+l
-~f2 [¢(2+) - A(A+1)]

W USIREE (72)
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The magnitude of the megnetic-dipole transition probability .
between rotational states can thus be related to the gyromagnetic ratios
= and &g A knowledge of both the magnetic- dipole transition probability
and the ground-state magnetic moment can thus yield g and gR separately
(cf. K. Alder et al. 21)

The reduced transition probabilities between the mixed states are

B(ML) = =2 'ﬁi_g aI (IIKK'-K[IKIK) (73)
1gr: M, [K K a'K Ok e

The sensitiveness of this transition probability to mixing of wave func-
tions 1mp11es that one would get very different gR values from the Coulomb-
-excitation studies and ground-state moments of nuclei when the particle—
rotation 1nteraction is considered.

Since the successive rotational states in an odd-A nucleus have
A I=1, the ‘gemma. radiation emitted in the decay of these states will in
general be & mixture of magnetic-dipole M1l and electric-guadrupole E2
radiations.' The absolute E2 transition probability can be determined from
the cross section for Coulomb excitation. Thus, a determination of the
Ml transition as'compared with the E2 transition in the decay of the
first excited state will also yield the absolute M1 transition probabi-
lity. This information can be obtained from angular distributions or
-internal-conversion measurements of the emitted radiation (or from the
lifetime of the excited state). The M1 transition probability in the

caecade,transition (IO+2aI +1) can be determined from the relative strength

of M1 and E2 radiations inothis transition together with the branching
ratﬂ)between the mixed M1 and E2 cascade radiation and pure E2 cross-over
(I +2) decay of the second excited state. If one of these data is
..available, one may estimate the absolute M1 transition probability in the
" cascade ‘radiation. '

Bernstein_and de Boer have combined available experimental data
to obtain the reduced magnetic transition probabilities between rota-
'tional states of deformed odd-A rare earth nuclei. 4 The results are
'1nterpreted to yield 8k and er* In view of the possible particle-rota-

tion interaction, we will renormalize the data far several nuclei.
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C. Numerical Calculations of the Effect of Particle-Rotation .Interaction

on -the Magnetic Moment

It has Beenbmentionedvthat nuclei having particularly large j
vélues for. the odd nucleon would be especially susceptible to appreciable
particle-rotation interactions. Somewhat arbitrarily, we 'single out
nuclei belonging to states of 4dd parity in the 50 to 82 shell (hll/E)’

even parity in 82 to 126 shell (i ), and odd parity in the > 126

shell (315/2) to. investigate the ;Zﬁ%icle-rotation-interaction effects
on magnetic moment and magnetic parameters.

- The interacting rotational bands to be considered are all based
on particle states in which the odd nucleen. is in.orbitals of the same
'3 (but different Q). If a nucleus has rotational bands based on par-
ticle states in which the odd nucleon is in orbitals’of-different'f,
‘there will be no Coriolls interaction between them. if they have opposite
parity; if the bands have the sape parity, there usually will be an
interaction between them, but it will be relatiuely weak. Eveu when the
-interacting states‘gme 80 closely‘lying'thatzthe mixing emplitude may be
comparable. to that of intefaction between states of the same'f, the
mixing effects on magnetic properties are still negligible because .of
the smallness,of‘the matrix elements (S+ I-) and (j+ I-). For eiample,
the ground state of Eul55 (413, 5/2+) has l%-mixing of (411, 3/2+).

-The effect on the magnetic'moment‘is only 0.02'n.m., and &R differs. by
0.005 With and without mixing of wave functions.

In order to celculate the‘magnetic moment of nuclei subjected
.to particle-rotatiomhimteraction, the unperturbed moment ofjihertia %O
.is assumed to be;the same for all interacting bands. The dependence. of
' the,off—diegonal elements on I, J, and K is given in Eq. (MG). The
magnitude of these matrix elements was allowed to vary with .a variable
parameter k replacing the pol /EJO term. Values of thls term and of k
are chosen.in such a way as to glve -the, best agreement with experlmental
rotational bands (w1th1n 1 kev) The k's are swaller than the X /260
values mainly because the <J ) matrix elements calculated by using
single-particle wave functlons are larger- than the values one would get
if one used the quasi-particle wave functlons° The diagonal elements are
taken from energy levels of Mottelson and Nilsson. To transfer the energy

from the units hmo.to'kev, we have used
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Ez hltK(A'l/B,
where E.is. in Mev and U4l k(A)~l/3.is in units of h&%.
In all cases, only the interaction between the state |Q ) under
consideration and its neighboring. states |o-1 ) and.|Q ) are taken into
account. The other states could be coupled to the state IQ ) only through
‘their coupling with the states |Q-1 ) and |Q+1 yi Therefore .their mixing
amplitudes should be negligible. The secular equation will therefore be
_third-order. o |
Flgures 9 through 14 shog Ehe rotational spectra.of the ground
J

state of’ these specifled nuclei. The assumed positions of interacting
states are also sﬂown in dotted lines -labeled with the quentum numbers
K, parity, and (NnZA) Table V lists their mixing coefficients and the
calculated magnetic moments’ Y and g with and without K mixing. The
magnetic-dipole tran51t10n probabllltles are taken from Bernstein et al.
The  experimental magnetic moments ‘are taken from Tables I and II. These
values differ from those .of Bernstein.et 'al. because of the (l/r cor-
rection we have mentioned.

The: results show that the particle-rotation: interaction .does not
have as significant an effect on the g values .as .on the 8- values. In
the latter case, the rather large correctlon indicates that the Ml-transi-
tion matrix elements are-Very sénsitivevto-mixing of K quantum numbers.

- The magnetic~mbmehts are calculated with the assumed gé factors, that. is,
using. 4.0 .for the proton and -2.4 for neutron. Theréfore, the results
show the effect-of K mixing on the'megnetic.moment fether than the cor-
rection that would actually be ceused‘by such kind of mixing. '

Nilsson has pointed out that the corrected er values should be
close to those of neighboring even-even nuclei, which we have also listed

in Table V for comparison. They are .close to each other within experi-

mental uncertainty.
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Table V. Effect of particle-rotation interaction on the magnetic moment and gyromagnetic ratio of some deformed nuclei.

gR‘of

- Calculated values Calculated values neighboring
Spin without K mixing with K mixing even-even
Nuclei Level Mixing coefficients B(ML;I'-I) p & &g m &g &, Mesxp. nuclei
161 '
Dy 5/2 a, ;,=0.062, =0.998 0.101#0.050;  -0.37 0.210 -2.83 -0.48 0.295 -2.57 -0.48 0.20%0.04
66 3/2° ®5/2 7/2-5/2 (20.072) (#0.23) (#0.072) (*0.22) ‘
7/2 35/2=0.095,35/2=0.991+,a7/2=0.056
9/2 35/2=0._123,&5/2=0.989,a7/2=0.081+
165 ]
o 7/2 =0.060, =0.998 0.542t0.082; 4.0 0.554 432 h.1 0.391. k.23 4.18 0.320
67" /2 7/2 11/2-9/2 (20.047) (20.12) (£0.060) (£0.11) (20.02L)
9/2 o /2=-0.089,a7 /2=o.99u,a9 /2=o.053 .
11/2 ag /2=-0.11h,37 /2=O.990,a9 /2=-o.o77
167 ) :
Er 7/2 =0.095, =0.995 0.094+0.026;  -0.54 0.098 -2.31  -0.65 0.226 -2.24 -0.59 0.320
68 ‘ /2 %1/2 11/2-9/2 (£0.035) (20.09) (20.055) (£0.08) (£0.02k)
9/2 a5/2=o.129,a7/2=o.986,a9/2=o.106
11/2 35/2=o.175,&7/2=o.976,a9/2=o.155
179 ' ‘
£ 9/2 a,,,=0.125,a_,,=0.992 0.165%0.031;  -0.63 0.203 ~1.93 -0.69 0.379 -2.20 -0.47 0.20
7 7/2 9/2 13/2511/2 (20.034) (20.14) - (£0.052) (20.17) (20.03) (#0.15)
11/2 a; /2=o.178,a9 /2=°‘976’°‘11 /2=o 126
13/2 8 /2=o.218',a9 /2=o.96o,all /2=o .176
92U255 7/2 5 /2=o.090,a7 /2=o.995 -0.43 -0.49 . Eo(.)s(“)( )
. $0.07
9/2 8.5/2=O.133,37/2=0.987,a9/2=07087
1/2 ag /2=o.265,a7 /2=0.957,a9 /2=o.123
237 .
p 5/2 -=0-087,8, 0996 2.7 3.0 > 2.7
2 /2 :§f2=o.126,a§//2=0-989,87/2=0-077

~6p-
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Nilsson and Prior have expressed the. difference between odd-A

and neighboring even-even nuclei as5
B T 3 (g~ ) + 5 (g5-8)) (74)

where 8% . is the contribution of the odd particle.to the: moment of inertia
connecting the. one-quasi-particle state with other stateé of tﬁé same kind.
Some of the difference may be - -due to fhe biocking effect. If the quasi-
pafticle~formulation.is sufficiently'accurate-to estimate tﬁis diffefence,
83 should. be very nearly equal to the odd-even difference in the moments
Qf'ineftia,;;Similarly, BW- is the contribution to the expression W of
the odd particle.' Nilsson and Prior-find.tﬁaf~if one insertslin this
formula the'empirical odd-e?en differences. in the moment of inertia and
estimate. the somewhat smaller second term from its "asymptotic" expression,
one usually finds too iarge»corrections. The spin-matrix elements are
much . smaller than those calculated from the single-particle wave functions
because of the spin polarization efféct*we<have-méntioned. "However, even
with a 50% reduction of the latter term, the correction still appears -
soméwhat too large. If is likely that»the second term should be  negligible.
k It .is hard to distinguish between effects of the Coriolis force
.and pairrcorrelafion effects due to blocking of an orbital, thereby
reducing the effective energy gaﬁ for nucleons of the odd group. Both
~these mechanisms affect moment of inertia and gR.in tHe saﬁe way to the

lowest order.
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VII. CONCLUSION

‘In.this paper an attempt has been made  to discuss the inter-
pretationlof the available data on magnetic moments of deformed nuclei
in terms of the collective and individual-particle.aspects of nuclear
motion. From the foregoing discussion, the following points can be
made. » . ‘ A

| Theiparticle magnetio-moments are very'sensitive to nuclear-
iwave function mixing caused by the very-short-range residual forces,
‘both spin- 1ndependent and spin-dependent. These~effects are equiva-
lent to using reduced g, factors. The reduction is somewhat different
for different nuclei. Admixtures due to the. Corlolls force affect
partlcle magnetic moments to a smaller extent.

.The deviation of the collective -gyromagnetic: ratlo Irom Z/A
-can be satlsfactorlly accountedtfor by pair- correlatlon_for even-even
nuclei. For odd-A nuclei, gR,is affected .in addition by»Coriolis
force and blocklng effect

However, 1t should be p01nted out that it remains to be shown
~whether the terms present in, for example, the delta forces but neg-
lected in the palrlng interaction w1ll have any effect on the collec-
tlve gyromagnetlc ratio. It appears llkely that such an effect should
be small because gR_ls essentlally the ratio srﬁgw— s andF ﬁ and %

Spt Sp
should be affected in about the same way by these terms.
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