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ABSTRACT

'An energetic eléctron béam producés large emplitude resonanﬁ

. plaSma‘oséilLations which can parametricaliy décay info growihg

. nonresonant electron and ion waves if iohAdynamics.are iﬁclﬁded.‘ A
simiiar parametric instability occurs in a plaéma‘driven'by a high
frequéncj.exterhal‘eléctric field. A two-séecie'particle simulation
study of beam:générated parametric instabilities~is presented and the.
results compared ﬁith corresponding one-specie beam and externai '
fieldAsimulations. _Eor low beam densities the individual nonresonant
modes grow abprqximately'at the rates ﬁredicted by parametric ihstg-'
bility théoty; 'This growth eventually causes the resonant plasma
oscillétions-to decay exponentially af'a raté pfcportional fo £he.*
original parametric growth rate. fe(v) deﬁeloPS suprathermal faiis
which eventually lead to a stable non-Maxwellian plasme with a field
energy spectrum Wk ~ k2 as seen in external field S1mulafioné. The
veloéit&ldiffusion coefficient hasbbéen measured from.test éarticlé
dynamiés,-and beém plasmas driven By an exterhal field'haQe'been

. simulated. .Also, the possible role ofithexparametric'instgbility‘in
sfabiliéing-the beam against.deceieraﬁion has been studied, Qnd the

~ inclusion of fafametric.threshold effects lead to more stringent
fédﬁirementssfor pafametric stabilization‘than had'been previously
assumed. Thé consequehges for séyeral astfophysiqal and. laboratory

plasma systems are diséussed.'
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I. INTRODUCTION

Parametric instability effects occur in plasmas when a large

amplitude'oscillation decays into two or more unstable "daughter"

' ~waves. One of the most widely studied parametric instabilities cén

occur when a plasma is subjected to an infinite wavelength external
electric field of the fbrm'ﬁ(t) = ﬁo‘cos wte If o is near the

: i
electron plasma frequency w_ = (hﬁnoeg/me)z, and if lﬁo' exceeds &

certain threshold level, the external wave decays into a high fre-

quency elecfron~plasma wave and.a low freqﬁency ion acéusticAwave.
The linear theory of the parqmetric growth of fhe two daughter

waves has been widely studied (e.g., Du Bois and Goldman, 1967;

Nishikawg (1968a, b). The pﬁmp wave and the'two_d&ughter waves

satisfy the nonlinear three wave wave-number and frequency-matching

conditions
3 - ». ’ ' | A
k, =k +k o, . . I (1.1a)
e ey
W T T W o (1.1v)

where the subscripts O, 1, and'2 refer to the external pump wave and

the high and low frequency daughter waves, respectively. .In most

+ L . . ) , ' ,
cases one assumes |ko|=,0. This assumption is reasonable for an



externgl electrema@etic wave with the plasma electron f.hema.-l velo-
' city ve‘: @m_e << c. One prediction of the linear theory is that
the high and low fréquéncyl unstable oscillations grow at the same
rate. A ‘

The same parametric instability effects can az"ise in the case
of: e. week high-velocity electron beam. The one-dimensional beam
plasma has. been widely studied‘,,. buf, the usual treatments neglect the
motion of the ions. If the beam velocify Vs is ta,ken to be positive,
linear theory predicts that the plasma w1ll be unstable to osc1llations
whose phase veloc1ty mk/k lies in a region in which the electron
dJ..str:Lbutllon function _fe( v) has a,positive slope. If vB > v, the
typica.l unstable wave will have'wa,ve number & . ™ (ve/v.B)ke where ke
is the e‘lectfo'h-].)ebye wave number given by k_ = (hnnoeg/kBTe)%. The

f‘requency of these waves will be the Bohm-Gross frequency w ek

o}
given by
- -2 =L 2 o |
= + . .
- Wy wg * 3kove. | _ : | (1.2)

The one-dimensiona.l eva.luation of the beam plasma system can be pre- L
A. -dicted by qua,sillnea.r theory (e g, Da,v:Ldson, 1972) whlch predlcts
that the beam plasma mstablli‘ty w111 saturate due to thev form_at:.on
of a "plateau" in f (v)

Parametrlc instabilities are one of several nonlinea.r effects

which can modify the quasilinear prediction. The waves produced by




the linear beam instability have w N'we and Eo << 'k, and are thus
very similar in character to the external pump wave discussed'pre-
vioﬁsly. Therefore, if the amplitudes of the linear beam waves
exceed the‘parametric instabilitv threshoid for the corresponding
external‘field“case,.oneAcquld expect to trigger a parametric insta-
bility. The amplitude-of the linear beam waves at saturation tends
to increase with increasing beam energy. In cehtrast with the usual
analyses of beam systems, the ion dynamics play & central roleAin the
parametrie instability effects.
| A one-dimensional eiectrostatic partiele simulation will be our
'pr1nc1pal tool in analyz1ng parametrlc beam effects. ‘Much of what
is known about external field-trlggered parametric 1nstabllit1es has
been gained from partlcle s1mulation studles (e g.A Kruer and Dawson,
1972) These studles show that the growth 'of the electric field A
energy in the varlous wave modes agrees reasonably well with the
linear parametric theory. In<additiqn, the simulation studies reveal
‘a strong anomalous (eollisienless) heating in the tail (]v] 23 ve)
part of the e;ectron distribution. Much of the analysis of this paper :
vill be an adaptatien of the theoretical and simulation results for an
hexternal pump wave to the case of &n energetic electron. beam."Beme"h
generated parametrlc effects have been previously observed by Kainer..
et al. (l972b) 1n a particle Simulation experlment. The keys to
x. observing such effects in a simulation seem to be the 1nc1u51on of ion

motion and the presence of & sufficiently energetic beam.



Chapter II of this thesis reviews the particle-in-cell simula-

tion method and some of the eonsiderations in ohoosing model para-

"metefs. The theory and;simulation of parametric instabilities trigf
gered by an external field oscillating near the electron plasma-freé
quency is covered in Chapter IIT. Results of our own external field
similations are included. Chapter IV is a detailed study of para-
metric'effects in a beam simnlation plasma. The‘lineam growth and
saturatlon of the beam and parametric instabllitles, and the evolution
of the electric field spectrum, the distrlbutlon function, and the |
velocity daiffusion coeff;clents are examined. The results of the
'simnlation‘ofsan'enemgetic beam plasmavin fhe presence,of 8 high
freqnency electric field are also presented. Chapter V eXamines the

~ possibility, proposed by Papadopoulos and Coffey (197ha), that a
one-dlmensional beam plasma can be stabilized by parametrlc insta-
bility effects against the formation of a plateau in fe(v). The
perametric stabilization process has peen'proposed as‘a method for

| maintaining the energetic eleetion beams.associated with auroral
electron streamsm(Papadopoulos andiCoffey,rl97ha, b) and Type lII solar'
oursts.(Papa60poulos ggglL,197h) and may also occur in she proposea

‘ Io-accelerated beam (Gurnett,”l9723»Hubbard.et5al(,41974;;Shawhan{:

1975) pOSS1bly assoc1ated w1th a varlety of Jov1an phenomena.

Finally, Chapter VI summarizes the results of thls study




II. DESCRIPTION OF THE SIMULATION ‘MODELS

A. Review of Particle-in-Cell Techniques oo

Particle similation techniques have been'adapted to a wide
'variety of plasma physics situations. They have been particularly

useful in attacking the one-dimensionsl Vlasov-Poisson system defined

by

Bfe : afe' e ; afe ‘ '
® U w e Am Y0 ey
a£,  Af, o, - |
EE I - T R
3E _ ) -

& = el fiav - [ favl . S (2.3)

.A'paiticle simlation experiment follows the motion of a large

number of electrons and ions in their self-consistent (plus external)

>.fié1ds. Such experiments can ofteén study nonlinear plasma effects"

which are too difficult to study analytically. One commonly used

approach in plasma similation is the particle-in-cell (PIC) method.

The basic prescription fﬁr a one-dimensional PIC simulation is

well known (e.g:, Methods of Computational Physics, Vol. 9). Each




similation particle is assigned an initial velocity chosen at random

from a suitable (usually Maxwellian) distribution. We have émployed

the "quiet start" loading scheme (Byers and Grewal, 1970) for
initializing a Maxwellian distribution. In experiments in which ion
dynamics are to be neglected, it‘is not neceséary to assign initial
velocities to the ions since they are then taken to be a fixed
neutralizing background.

Particle positions are definedeith'respect to a spatial
Bulerian grid. The grid points define the boﬁndaries of "cells",
and in our scheme each particle's charge is divided between the two
_nearest célls‘usiﬁg‘a‘lineaf interpolation scheme to determine how
the charge is toAbe divided. The charge density is thus defined at
‘the center of each cell by summing the contribution of all charges
in the appropriate neighborhood of the cell. The technique of
dividing each particle's charge amohg two or more cells is somefimes
called the "cloud-in-cell" method to distinguish it from PIC methods
which assign the ?articie's entire charge to the nearest grid.point.
Cloud-in-cell methods aré‘generélly fér.superior ( Langdon, 1970).'

The electric field at each grid point is calculated from the

.. charge density p using the Poisson Eq.  (2.3). The simplest approxi-

.mate solution for the electric field at the Nth grid point is

. 1 -
By =By Tl fwa ™ | (2.4)




th o1l and Ox is the

~-where Py is the charge at the center of the N
grid spacing. Higher order approximatiohs and/or Fast Fourier
Transform (FFT) techniques can be used to improve the accuracy of the
solution to (2.3).

If particle j lies in the Nth

cell, the electric field at its
position xj is approximated by linearly interpolating between EN and

EN+1' At time t = nAt each parﬁicle is advanced by the following

scheme:
nt  n-i 95 :
vi 2=y ®+ LEY (k) At . (2.5)
A m. i : , Y
+ ' +& : | | '
L X0+ v E oAt . (2.6)
J- J dJd , . .

After all farticles are advanced, fhe charge density-at'each celi is
again calculated, and the rest of the cycle is repeated until the |
specified’makimum time is reached.

Most PIC models,includingours;employ periodic boundery condi?
tions. »Thus, a particlelwhich leaves the system from one side returps
erﬁ‘fhe 6£hef éiﬁe with the éame“Qeiocify; Thé elecffié‘fiéids:aieA' 
adjusted so that the a&eiage self-consistent electric fiéld is zero.
Thus, the model simulateé an infinite periodic system, and in the

absence of external fields, energy should be conserved.




- It is relatively straightforward to extend PIC methods to
two or three dimensions and to include magnetic field effects. Many
plasma phenomena are inherently'multi-dimenéional, and a multi-
dimensional plasms simulation obviously more closely resembles a
real plasme thap does a one-dimensional model. However, even twg-
ahnengional models are far more costly in terms of computer time.
The parametric instabilities are essentially one-dimensional in char-
acter and two-dimensionsl simulations have shown that the growth faté,

decreases as the angle between % and Eo increases (Kruer and Dawson,

1972).

B. Discussion of Dimensionless Units

For convenience most plasms simulations employ some form of

dimensionless units. The variables in (2.1)~(2.3) can be redefined

in terms of (primed) dimensionless variables x’, v’, t’, E’, fé it
i >

. v

=x x’ = 1 . 80 5
X = XX s E = EoE ot E B

o

- ’ _ 1 .

t =gt ’ fe,1 v f»‘e,i 2
o °

v = vov' . , (2.7)

One common system and the one followed in all of our experiments is



to pick

- e
x —
° \/ e
£O'= /
hnn e

v __2_
o) t

(2.8)

where Ke, Wg s and Ve are the electron Debye length, plasms frequency,
and thermal velocity, respectively.
This set of dimensionless units reduces (2.1)<(2.3) to

(dropping the primes for convenience):

3f 3f 3f A | -
e : e - e _ :

5t T Vx CEw 0 o (29)

af, - dfy . . BfL o oo n

Sttt REE =0 S (2:10)

g_=.ffdv-ffdv | | | .. .4(.2-11)
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where the mass ratio is
m_ A
B=— . (2.12)
i
The total eneigy of the system in these units can bé written as
12,132 .,1 2 - -
= = e + = .
Cp =5Vt 2B Vi D % lEkl - . _(2-:"-3)
.. In the above-equatioh,Ek.is the discrete Fourier transform of E(x)
defined at'the grid points, and
2 1 o2
s . NS j=1 §,J.

is the average squared velocity for the Ns parﬁicles of specie s.

C. Strategical Considerations in Choosing

Simulation Parameters

:faffiﬁlé'simulatién éxPeriments have a:humbér-éf'key,péia;
metérs which must be carefully chosehf' In genefal one ﬁust balance’
'~ the benefits of moreirgalistic and accurate model performance against
" the cost in computer time of improving‘mpdel.performance. The cholce
ofAmOAel parameters is particularly importanf when studyihg energetic

beam systems.




11

Perhaps the most important parameter is Ne, the total number
df electrons."Increasing Ne reduces statistical fluctuations,
collisional effects, and thermal noise, and more closely appioaches
the Vlasov limit. Together with the system length in Debye lengths‘
(LD), N, determines the so-called plasma parameter € = LD/Ne
—1. Thus noke is the number of electrons per Debye length.
Typically noXé S 102 fof.a one-dimensional simulation plasmé, but it
is usually much larger in most 1aboratofy and astrophySicai plasmas.
In the Vlasov limit, n A = ®. A typical.vaiﬁe for N, has been 6000
in our expgriments.which for LD = 256 corresponds to noke ~ 25. -
‘Doubling N, will approximately doublevcoﬁputer execution time.

‘A second important parameter is LD’ the.length of the system.
The length of the system determines the fundamenfal wave number |
km = 2n/LDKe; incréasing LD increases the density of modeé in k;
space,'and for generating a turbulent field spectrum it is essential
fo have several modes which saturaté at appquﬂmately the same level.
A small value for km is alsd essential when an energétic beam (Wifh

beam_veiocity vB) is present. The fastest growing unstable mode

wiil be at
v : .
B . :
ke ~ k= o A (2.15)

‘where ke = k;l is the Debye wave number. It is desirable to choose



| Lb sufficiently large so that kL 25 km. The problem with increasing
Ly is that n A decreaSes.propbrtionally, thus increasing tﬁermal,
noise etc. A reasonable guideline for unstable plasmas ie to pick
Ne'and LD so that the saturation level of the electric field is at
least an erder of mesgnitude above the noise level.

‘ The-mas; ratio B is another important parameter to be chosen.
Since B ~ 1/2600 in a hydrogen plasma, a small value for B is of
course realistic and keeps the electron and ion time scales well
separated. Unfortunately plasms effecte involving ion motion occur
- on the time scale of the ion plasma frequency, and a-realistic'ﬁass
rat:i_.o;usua.l].y_requlires exceedingly long simulation exper;‘.ments. ﬁus
most simulations, including ours, set B artifically high (8 » 0.01) and
' attempt to scale the results to mofe realisfic mass ratio values. |

-The time step At is chosen to be'a'fractidn_of w;l'in most
simulations. However, having At S 0.1 w;l seldom improves similation
perfbrmencev(e.g;,Emeryandeyce,1973)and program executiqn‘time is
approxlmately inversely proportlonal to At. Energetic beam systems
hav1ng particles with v 2 lO Ve might require a smgll At 81nce some
Aparticles would travel a distance greater than h in one time step.

) Experlence has shown that 1f the number of cells per Debye
length a is less than one, nonphy31cal 1nstabllit1es ‘may grow.
(Langdon, 1970; Okuda, 1972). Hence we have kept @ = 2 in almost all
‘experiments. | | 4

Finally, the time length of the simulation tmax must be chosen B

so. that ellAphysical effects of interest will have occurred by the



15

end of the experiment. Lengthening tmax obviously increases execu-
tion time proportionally. The final positions and velocities of ‘the
particles are often written on tape so that an experiment can be

' restarted at tméx if the results warrant continuihg the ex?eriment.
1 .

In most of our simulations, tmax < sokoe .
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IIT. THEORY AND SIMULATION OF PARAMETRIC INSTABILITIES

DRIVEN BY EXTERNAL ELECTRIC FIELDS

A. Introducfion

One method of produéing aAturbulent plasma is to subject it
to.a'strong oscillating external electric field i - io cos wot whose
driviﬁg frequency o  ~ w,. The two normal modes of the plaéma, :
whose frequencies wek and Wy are the Bohm-Gross and ion acoustic
frequenqies,'respectively, can~$e driven unstable'if wo'is ciose to
(0 ) - and E exceeds a thresﬁold'field_strength Eé.-'This
parametric instability has been the subject of a great number of
theoretical, éxperimental, end computer simulation studies. -

‘ Mbsf of the‘remainder of this pape? will focus on beam
generated pérametric instébilities. Anienergétic beam ﬁill produce.
large émplitude oscillations with k << ke.ﬁnd W~ g These oscil-
lations éah drivé parametric‘instabilitiés if theirAampiitudes eiéeed
the parametric threshold. Becaﬁse of the close relationship'betﬁeen
the beam casé and the external fie;d case, we will first review the
i.more‘widely;Studied oscillqting_external'field;jnsyability,
Afhe'linear theory of the parémgtrig'instability has been
' widely studied (Silin, 1965; Du Bois and G01éﬁan, 1965, 1967;
Nishikawa;.1968a, b; Jackson, 1968; and Sanﬁaiteﬁ, 1970),‘and the -

threshold conditions and linear growth rates sre fairly well
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" understood.. The theory of Nishikawe is derived from fluid equations
and is probably the easiest of these to understand. The Nishikawa
dispersion relatioh-predicts two distinet instabilities depending on
the sign of 6 = Wy = Weper

an electron plasmé oscillation at frequency w

For 6 < O the external wave decays into i
o and a purely-growing
ion oscillation at zero frequency. This process has been lébeled
thé oscillating two-stream instability or OTS. The corresponding
instability for 6§ > O is called the ion acbustic decey instability.
In this case the higﬁ frequency oscillations'opcur at the Bohm-Gross
frequency whiléilqw ffequehcy oscillations take place near the ion
abbuStic-freqﬁehcyr ‘For both parametric instabilitieé the low and
high frequency waves grow at the same rate. |

Most of the theoreticél analysié has been done in the dipole
limit which assumes thatlthé wavelength of the driving external
field far exceeds the Debye length. If this external wave is elec-
_ tromagnetic, this is equivalent to assuming thé electron thermal
vélocity Vo << ¢ since W, ~ wé_and the linear instability is usﬁally .
strongest(aﬁ k~ 0.1 kef. In additibn, the linear theories assume
‘Ei << nokBTe’ although simulafion results (including our own) indicate
;;surpfisingly good.agféement-for cases in which E§'~ HﬂnokBTe‘(e.g.;’vl
De Groot and Katz,~l973). o

'The physical consequences of the parametrié'instabilities".
have been described qualitatively by Kruer and Dawson (1972) based

on their compufer simulation studies. During the initial stage,
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electron and ion oscilletions grOW'exponentiall& as predicted by the
1inear theoryQ The particles undergo oscillations due to the exter-
nel field, but the total plasma energy.averaged over a plasma oscil-
lation remains almost constant.' The piasma heating during this a
phase is classical (collisional) Joule heating. Eventually the
unstable 6scillations saturate and a streng anonalous heating of the

piasma sets in. This turbulent heating is due to collective processes

and is usually much stronger‘than the collisional heating.' For suf-

ficiently strong external fields, Te may increase by a factor of 8

hundred or more in simulation experiments (De Groot and Katz, 1973).

'However, for weaker fieldsA(E§_< hnnokBTe); heating is confined

primarily to the tail of the electron distribution. ‘This is due to

the fact that the instability is usually strongest for modes with

phase velocities between 3 and 15 Vg

These parametric instabilities may ariSe‘in s wide variety
of phy31cal s1tuat10ns. A number of experimenters have observed
anomglous absorption of 1ntense microwaves in low density laboratory
plasmas (e.g., Dreicer et al., 1973) which can be attributed to. the

physical processes just described. Similarly, the anomolous sbsorp- o

.tion of radio waves in 1onospher1c wave pr0pagation experiments

(e g., Cohen and Whltehead, 1970) may also be triggered by parametric

instabilities (Perkins and Kaw, 1971). Parametric instebilities are

. also responsible for the development of density cavities or "cavitons".

iJlnon-uniform1laboratory plasma driven by an external pump electric’
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field (Kim et al., 1974). The cavity, which occurs at the point where
the local plasmé frequency we(x) W, also traps the rf field.

However, most of the recent interest in these parametric
instabilities_has been genergted by the laser fusion prbgrams; As
we have already noted, a strong external field can cause an enormoué
increase in Te' Although Ti'incréésgs mﬁéh'more slowiy from the
parametric instability, electron-ion collisions might spbsequenfly
bring'the'ibns to thermonuclesr temperatures. Unfortunately, the hot
éleétrons}prodnced by the paramétric‘instdbility,actually cause |
‘serious problems for laser fusion experiments (Nuckolls _e_f & ,-1972) by
interfering with pellef compression. Théseielectfdns tend to heat
the center of thé pelléﬁ too quickly andfdo.not couple fﬁei; energy
efficiently into.the'oﬁterxregions of thé core. BécauSe of this,
much of thé current reseaich is concefned with suppressing parametric
instabilities}in laser fusion plasmas. -Theoretiéal analyses have
shown that the instabilitj threshold can be increased>by randbm ampli-
tude modulatién of the laserf(Thbmspn EE al., 1974a) or by increasing
the:bandwiafh of -the laser (Thomson and Karush, l97ﬁ). |

In additiohAto the linear theories which predict initial growth -
.rategland:thresholds,_thete haé.been some progress in the nonlinear ' ™
" problem. Kruer aﬂd Dawson (1972> analyzedzthe saturation level in - |
| g'particlé simulation and found two distinct regimes. For weak fields
they assumed tﬁat‘saturaﬁion occurs when the pérturbation in thé

velocity of a typicai particle equals the velocity produced directly
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by the external field. Thus, at saturation Es = Ei where'EW is the
rms sélf-conéistént field. For stronger external fields, particle

. trapping becomes important, leading to

2,2 ' L

2_z k2 % tv, - 2v, ) ‘ (3.1)
16e :
where
eEoA I A
YoTm, . 06

Equation (3.1) is applicable whenever its right-hand side is less
than Ei. These predicted saturation amplitudes have been useful in

analyzing our simulation results.

B. Review of the Nisﬁikawa Linear Theory

As previously mentionea, the linéar theory of the parametric
inst#bilities.hgs been.developed by a number of authors. We now
review the theory of Nishikawe (l968a, b) since this formulation -
IWiiliﬁéneiteﬁéivéi§‘ﬁéed ih‘énél&iing'the:Simﬁlﬁﬁioﬂ &ata;'xAlthouéh‘
£luid équétions are'used, the exteﬁsion to a Vlaso?ipiasma'is
straightforward. Maéhétic fiéld effects are ignored.

The analysis begins with‘thé contihuity equation,<fhe,eqﬁation

of motion,'and the Poisson equation:
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o
=+, L v =0 5, o (3.3)
or '

—’

dv e
ned T mooom Bt T Vels's (3.4)
- , s or s

- . . ' :

-%; . E_=,hn_§2_esns . , - (3.5)
or s , ‘

The subscfipt,s refers to the specie (electron or ion) and v, is
‘the damping rate (collisional plus Landau) of the qorresponding '

oscillations. Also

4_2.,3.2 o (.6)
dt. ot 3 . .

dénotéé the.Lagrange sénse time derivative.

Equations (3.3)-(3.5) can 5e'lineafized and Fourier transformed .
| in the‘usual manner and can be reduced to two eéuatiéns in&olving>the
firét order Fourier transformed éiegt;dn'gﬁgl?qp densities nék and
o . _ U . o

Sy

den' ' .
ek 2 ? ) Y S A : ; .
5 * Wex Dok " We Dy T Ve @E Bk -0 v - (3.7)
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La -
ik 2 ’ 2 da : ’ ' Q'
- + - + — = .
2 Wip Bype @5 B YV G Rk~ O (3.8)

where again wg and w_, are the plasma and Bohm-Gross frequencies of

sk

the two species.

An infinite Wavelength electric field of the form

=1y

eXtA_ o C?S wo . . 3.9
is assumed with Es << hnnékBTe; The external driving frequency w,

is selected so that it satisfies
Wy T >> W, Vs vy - . (3.10)

- The oscillafions described by (3.7)-(3.8) take placé‘on two
"wideiy separated timeescales,Agiving‘rise to two seﬁé of-solufions
nf'(fastj and n (slow). ‘Electrons can oscillate on'eithef time

, .

scale. On the slow time scale n, 5

Using the assumptions in (3.10), it is shown in Appendix A that

S

A4  (3(7)Q(3;85F5e¢omé

+uhn tv, —to = -in, =% B (1) (3.11)

s to presérve'charge neutrality. -
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o am '
£, 2 P in £1.D
at2'+ Wl ¥ Ve 3T T Mis me'k Eext(t)  + (5.12)

Here w is the ion a.coustic frequency and the subscripts f and s
refer to the fast or slow time scale. Using (3.9) for E (t) and

taking the Fourier transform in time gives

'wQIiek(w) - lw n k(w) ik ek(w)

+
e

o ie k. oA 5 A g :
. ;.-—-———————,[nik(w‘+ wo) +lnik(wv- ub)J” ,'. | (3-13)

o . N 2
- - nik(w) - iwvinik(w) + wAnik(w)

=4

2 gleta) Faglo- o)) L ()

If we 'assume w ~ w,., and note that terms n (w + sz ), £ 22

AC
_do not have f‘requenc1es near & normal mode.of the system and can be .
ignored s (3 13) (3.14) can be written as three 11nea.r, homogeneous
equations‘ in the u.nknowns nik.(_‘”)" nek(w_ '_wo)’ ‘and nek(wA wo).

Setting' the resulting determinant of the coefficients to zero and

‘ $ 4 2 _ (. \T . : 2 _ /2.3 -
_deflnlng Qg = (e/2m )k ﬁo and g, = (ek E )/2m, gives
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o | 2 . 2 . .2
u>A-1viw-sQA _ _lﬂik _ . -1Qik
. 2 2 2
+5 - , =
41Qek w_*tivow -wg 0 = 0
. ) 2 2
S : +3 -
10k ° O T WVely ~ Pex
(3.15)

where w_ = - Wy and w, = o * Wy The high frequency solution
(w ~ wy,) can be obtained in a similar manner and takes on exactly

the same form as (3.15) with w replaced by w - w e

For a similation plasma with an artifically large m.e/mi value

it can be necessary to solve (3.15) numerically without simplifica-

tion. However, assuming Y o Wek

"following approximgtion can be used:

satisfies.(3.10) and w ~ w_, the

- 2 e '. . N 2 . .
+ - = - - + R
(U) +w ) iv ((.D + w ) .U.) k ° + 2w ][(.D + [UJ w k] ;Ve]

(3.16)

.:u"sThis“redﬁces“(3315?’in one dimension to the form

[u,)2 + 2iw1"i - wi][(w + if'e)z’.- ‘62] + To o o =O - (3-17)
. A ek '
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The frequency mismatch is defined by & E‘wo " Weye? and Fe ; are
it
deflned in terms of the collisional damping rates v: and vi and
the Landau damping rates of the two normal modes:
r =L, 4 fF < -1/2 < 2 | | © (3.18)
=3V . .
e 2 e 8 k5k3
e :
2 ' . '
1l c 7 1 (Re w} '
=zv, *+ |xg 5 . .
I-‘1 5 Vi jg k}\e wg ‘ (3.19)

~The exact form ofA(3.19) is validAdnlyiwhen T, >> Ty-
Equation (3.17) can have two types ofVSOlutions for w. If
w = iy (a zero fréquenc& 6scillatibn); then a necessary condition
for a growing solution (7 > O) is that & < 0. This instabiiity,
which thus can occur only for modes which satisfy w < Wek? is_”
usually referred to as the "080111at1ng Two-Stream 1nstab111ty (OTS)
Nishikawa calculates the threshold level and grpwth rates for -
"the OTS instability for various analytically tractable cases. For

'example, setting 7 =.O'givés the OTS threshold condition

~4m m ‘ : ‘ S
2 ei 2 2 2\ . .
Fo > 2.2 “A T - Bee0)

 In the set of dimensionless units defined by (2.7)-(2.8) the thres-

hold condition for a collisionless plasma in’the 1imit k << 1 becomes
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particularly simple since Fe goes to zero quite rapidly. The result

-is"
CEL L+2e®) , S - (3.21)

- where we have used for the dimensidnless,ion acoustic frequency

(for Te/Ti >> 1, K\ << 1)

-2 kB )
2o KB . | B (3.22)
A1+ T

The second possible form'for the solution. to (3.17) is
® ;‘wr + iy, Substitufing this form into (3.17) and se?arating the
resulting equation into féal and imgginery parts, one can sﬁow that a
ne¢essa¥& coﬁdition for ihstability.is that & > d. Thus & nonzero
‘frequency growing'osci;lation can occur only when Wgye > wd{, Thé
'>r¢sﬁlting’instability is usually referred to aé the "decay instabil-

ity". In one dimension the threshold' condition is

5

IR o 2 Co 5 ::2
T T.m mw (P ta L tay -6 :
Ei 5 .ed g ; ek ()2, Le ei A . (3.23)

, : » 2
8k e (FE—? +41‘i)
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It is possible to_derive analytical estimates for the growth
arate 4 for.both parametrie instabilities under certain conditions
(Nishikewa, 1968a, b). The analytical form for y varies censiderably,
and for conditions encountered in the simulation experiments one

mist usually solve (3.15) or (3.17) numerically.

 C. Computer Simulation Experiments

The parametric instability arising from the interaction of a
plasma with a strong oscillating external field has been extensivel&
studied using particle simmlation methods (Kruer and Dawson,

1972, De Groot and Katz, 1973, Katz et al., 1973, Godfrey et al.,
1973; Thomson et al. 1974b). The main purposes in- conductlng such -
experiments with our simulatlon code will be to test ‘the code - agalnst
the published results of  other 1nvestigators, to develop techniques
for analyzing the data fraom parametrlc-lnstablllty'simulatlons,.and
to be able to compare the beam-generated parametric instabilities'
with the'ekternal‘field-prbduced instabilities using analagous
_experimental parameters. ” |

The simulation che for these'experiments emplqyed the set of -
dimensionless units defined in qu; (2.7)-(2.12). Tms time, dis-
"“tance, veloc1ty, frequency, wave number, electrlc field, and energy
are expressed in terms of wg s ke, Voo ke, m v ¥ /e, and nokBT s
respectively. The number of cells per Debye length was fixed at 2.0.
Slnce the linear growth rate for the parametric instabillty is en-

hanced when T >> T (due to a decrease in ion Landau damping), we

chose the temperature ratio 'I'e/Ti = 16.
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The spatially uniform external field E = Ea cos wot was

ext
added to the self-consistent electric field at each grid point. The
driving frequency was always chosen to be above the plasma frequency
so that the external wave could propagate in a real plasma. Because

the external field adds energy to the plasma it is important to

3reelize that this‘system no longer conserves.energy.

| A:numerical'method for solving the Nishikawa dispersion rela-:
tion (3.15) was dereloped so that the linear growth rate of the
simulation plasms electric field could be predicted. Instead of
using the usual analytical approximations for the two normel modes,

ek’ Fi; and ' used in (3.15) wereicalculated

 pumerically using the method of Fried and Gould (1961) assuming a

‘collisionless plasma. The main reason for not using analytical

values was that the fastest growing mode. in some of the experiments
was k/k ~ O 3, maklng 1t somewhat risky to use the small wave number
analytical approximations. '

Table 1 summarizes the parameters chosen for various external
field simulations. Several of the 31mulat10ns were 1dent1cal except

for the nﬁmber of electrons N . Except for the initial noise level

of e electric field- fluctuations, the s1mulat10n results should be

essentially independent of Ne’ In fact, discrepan01es between Runs
E-2a and E-2b led to some improvements in the Poisson solving and

particle loading schemes. Simulation Runs E-3, E-la, and E-4b have

external field amplitudes and frequencies which correspond to typical o




Parameters

Table 1

for External Field ASJ'.mulm:‘J’.ons1
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By Yo -

Run N k A —2 . = t
€ ne /Im kT We  max

0B

E-la 12,000  0.09817 0.6 1.20 500
E-1b 8,000  0.09817 0.6 1.20 500
E-2a 12,000  0.09817 0.8 '1.20 500
_E=-2b. 8,000  0.09817 0.8 1.20 . .500
E-3 6,000  0.02455° 0.8 1.015 500
E-ba 12,000  0.02455 0.6 1.015 500
E-lib 6,000  0.02455 0.6 11.015 500

1Tn all experiments the mass ratio B = 1/64 and the

. temperature ratio g = Te/Ti = 16. L

fundamental wave number.

5'2n/LDKé is the
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large-ampiitudevelectron plasma waves geherétedAby an enérgetic
electron beam. Simulation Runs E-la, b and E-2a, b have an external
field frequency wy = 1.20 we which is significantly above tﬁe fre-
quency fof typical beam-genersted ﬁaves.

An important result in any simulation is the time evolution’
of the (dimensionless) electric field energy in the various Fourier

modes given by

| B ()] ; o
Wk, t) = W . : _ (3.24)

(o) e

The linear growth rates y(k) predicted by some dispersion relation

can be determined experimentally by assuming

Wk, ) ~W(k, o) e2(E)E -  (3.05)

The total self-consistent field'enérgy in an external field system

is given by

B e
. o A " A ,

and a typical value for y(k) can be obtained by measuring the growth '

of Ws(t).
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Figure 1 traces fhe development of W;(t) for Simlations E-la
-and E-2a. The growth retes for,Ws(t) were appreximately 0.0123 and
0.01k45 W » resbectively. Estimates were also made for the growth
rates of individual modes (graphsAnbt'shown). Table 2 shows the
resules of these ealculations and compares them with the "theoretical

predictions of Eq. (3.15).

Table 2

Growth Rates for External Field Simulations

E =06 . E =0.82
. (o] . o] :

k % (theory) 7 (exp) 7y (tneory) 7, (exp)
0.1963 k_ o.obox@e : 0.6135 W, 0.0001 w_  0.0Wk1 g
0.2945 -~ - 0.0167  0.0137 ~ 0.0224 0.0167
0.3927 0.006k 0.0058  0.0193 0.0106

1Run E-la
2Run E-2a

Except for the large experlmental growth in the k/k = O 1965 :
mode, the agreement is reasonable, partlcularly s1nce the uncertalnty-
in the experimental calculatlons is about 20%. Also, the lehlkawa
linear theery-assumes E§A<< hnnokBTe Which was -not’ particularly well

satisfied in the two experiments;
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The meximum external field energy in dimensionless units is
2 ) _ : .
W= Eo/8nnokBTe and was thus.0.18 apd 0.32 for the two experiments.
According to Kruer and Dawson (1972) the self-consistent field energy
should saturate at the level predicted by Eq. (3.1). The expected

rms saturation energy WZ can be expressed by

y

2,2 .
KN w o
= e ek .

W, =min W, —|— * v, - 2V (3.27)

32 v_\k
e
where .
JoW Ve . - | | | B}
v, = W, @ Ve 2 _ | _ (3.28)

@ei is the Bohm-Gross frequency, and k is the wave number of the..

fastest growing que. U81ng k = 0. 2945 k, and oE 1.16 w,s the
predicted saturation levels for Runs E-la and E-2a are 0.095 and
O:i2h, respectively. This compares with the similation values of
©0.07 and O. 20, respectlvely. Agaln the. agreement 1s reasonable
1g1ven the crudeness of “the theoretlcal estimates. The predlcted and
-observed saturatlon levels both lie about a factor of two below W .
Accordlng to Kruer and Dawson thls means that the saturatlon level

has been determined primarily by particle trapping in the strong

externsl field.
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The'most striking difference between Runs E-la and E-2a was
the'degree to which'electrons were heated. Figure 2 compares
£ (v, t = 0) with fe(v, t = L48) for Run E-la (Ej = 0.6). The
electron temperature rose from 1.0 to 1.6, and the heating took place
in the tail (|v| » 3 v,) region of the distribution. However the
electron heéting was much stronger when E_ = 0.8. Now T, (t = 4u48)
= 6.4, &nd 4.2% of the electrons had |v| > 5 v, Also, some hegting
occurred in the main part Of the distribution.

The strohg electron heating is the result of the anomglous

(collisionless) absorption of the external wave energy by the plasma.

. This results in a much larger heating rate than.can bé;aécounted

for by classical collisional processes (Joulevheating). This increase

in the apparent resiétivity of the plasma is usually'deséribéd by
an anomalous‘cdllision fréqﬁency»v* (Kruer and Dawson, 1972).

For a plasﬁa Subjéct to a high frequency external electric
field, Kruer and Dawson (1972) show that v* is proportional to the
time derivative of the total plasma energy 8T (averaged over a plasma
period). In our simulations there was always a lengthy period
following saturation of Ws(t) durinnghich d/dfbeT was approximatély A
gogstdnt."$he.eyolut}on~oflgqﬂt)vwas~in_gepergl sgreement with the
simulatiop'results of Kruer and Dawson (1972) and othervexperimentéré.

| In Runs.EB-B and EB-hé,.b-the Poisson equatioﬁ was first ‘
solved by>the direct integrafiéh"procédufe uéed in previous experi-

ments. The'resulting electric field E(x, t) was Fourier transformed,
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ylelding E(k, t). After setting B(k >k ., t) to zero, the
' Fourief.spaee field was then transformed back to configuration space.

Since the higher numbered k modes contain primarily thermal ﬁoise, A
this procedure tends to reduce the noise level, improve energy conser—'
vation, reduce numerical collisions, and reduce problems with alias-
ipg. The procedure is widely used in plasma simulation (e.g., Katz

i - ' et al., 1973). Typically'the Wave‘number cutoff kmax was chosen to

be the Debye wave number.

The Fourier transform Peisson solver was tested on a beam
plasms simulation and reduced the energy coﬁservation error by a
'factbr'of three when cemﬁaredAwith the original Poisson solver. . The
‘new method was thus adopted for all subsequent experiments.

Run E-3 (Table 1) used an external fleld whose magnitude (O 8)
and frequency (1.015) was typical of the large amplltude plasma
OOScilletions produced in later beam plasma'simuletions. The'syetem

* iength was increased to 256 Debye lengths so thet k = 'o._oghss k.
The‘eveiutioﬁ of Ws(t) was qualifatively similar:to Fig. 1.- The
saturation level of fhe self-consistent field energy was a factor
of 2 below the value of 0.32 predicted by (3.27). Since w  was
1.015 o, instead of 1.20 w,, there wes a large shift in the spectrun
of unstable waves. The fasteet érewing mode was k.= T k = 0.172 |
k . The experimental growthArate in‘fhie mode was 0.02L Wy while
the predicted growth rate from (3 15) was 0.027 g

Flgure 3 is a semi-logarlthmlc plot of the electron dlstribu-

tion at t = 0 and t = 272 wel. During‘this period the electron
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temperature increased by a factor of five. Thomson et al. (1974 b)
predict on the basis of simulation results that in the tail region

(|v| 23 v,) the electron distribution has the form
T | . , ‘
f, ~ exp [<(t)|v]] . : , (3.29)

Their results indicate that a(t) is proportional to [Te(t)]-%. The
form for fg in (3.29) giveé enhanced suprathermAl tails'in quaiita-
tive agreement with the simulation results in Fig. 3.

Another observatlon of Thomson et al. (l97hb) is that for k
larger than the faStest growing mode k, the field energy spectrum
-2, Preliminary analysis
of Run E-3 supported this conclusion. |
| Thomson et al. (19741) showed that - the form of £ () in Eq.
(3 29) could be predlcted from the form of IEkI ~ K2 if one assumes

a quaS111nea.r d1fﬁ1s1on coefficient of the form

2
D (v) = on -—5 I—'Eﬁll— .o ' (3.30) |

v—w/k o
R a 2. =2 :
Taking w ~ w, and |E |° ~ k™" gives

R R N E N € 10
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where B(t)lis some arbitrary function of time. According to quasi-

"linear fheory the distribution function evolves-according to

af (&, t)
- a“’vp (v, t) - £ (v, t) . (3.32)

Plugging (3. 51) into (3. 32), it is pos31ble to show that the tail

dlstrlbutlon functlon has the form ‘

Loep 3L - (3.39)
v (¢) - A '

Their'simulation results show that ﬁhe function v -~ [Te(t)]f%, where
T (t) is the instantaneous electron tem@erature, so fhat the form
of (3. 29) is recovered. |

This 1nterpretat10n has been recently challenged by Katz et
al. (l975). They showed that for k » 0.1 k, the simlation electric
field.spectrum retained its k-2 shape andvamplitude even when the
' external field was turned off at some time t after saturation.
Since for t > t no s1gn1flcant changes occurred in the dlstributlon
‘{ functlon even though the k ' part of the spectrum.was v1rtually |
unaffected, they concluded that it was not proper to use a dlffu31on
' coeffic1ent .derived from thls k sPectrum to predict the shape of

the euprathermal tail and the resultlng heating rate.
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Katz et al. (1975) thus characterize the plasma after the
field is turned off as & stable but nonequilibrium plasma and analyze
the electric field fluctnaticn spectrum using the theory of Perkins

- and Salpeter (1965). This theory predicts that the electric field

spectrum is given by

T, (v) ,
Wk = ———TeNe' | . ’ - . (3'3’4)
v=wk/k ‘
where W, |Ek| /8nn°kBT is the energy in the k2 mode in our

dlmen31onless units, and T" is a. temperature defined by Perklns :

and Salpeter as
i -1 _ 4 R
kBT"(v) = -mv&;;en [f(Y)i} . (3.35)

In this context N is the total number of simulatlon electrons.

If £(v) ~ e vl /o in the tail, (3.34)-(3.35) predict

W~ kL. However, if f (v) ~ v for'the suprathermal electrons,

~one obtains.a k dependence for Wk’ which agrees w1th the simula-
' o2

tion results. Settlng f(v) = -, the exact result is

k 2N

W =L('kxe)-2 . B} - . - | (3.36)
e .
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For Ivl < 10 Ve Katz et al. found that this power law form for fe(v)
gave as good a fit_to'their experimentel data as did the exponential
fit and also accounts for the shape of the electric field spéctrum.
Mbréover, the(observed‘mégnitude of Wk was in aéproximate agreemght
with (3.36) when the appropriate value for N_ was uséd.

| Thus the view taken by Katz et al. is that the component of

Wk for k 2 0.1 ke which is responsible for diffusing the particles
in velocify space is swamped by the enhanced thermal noise spectrum
Agiveﬁ by Eg. (3.36), meking it impdssible to éxtfact D(v) directly
from Wk. It is of interest to examine our external field-results

in the light of the-predictions of Katz et al. (1975).

. “Runs_ E-ba and E-Lb weréfidentical'to E-3 excepﬁ that E_ =0.6

instead of 0.8 (see Table 4-1). These two simulations were used to
test whether a new 16§ding scheme would cléar up some of thé dis~
‘érepancies that'hﬁd occurred in the past when Ne was changed. Run
E-Ka had twice as many electrons as ﬁid E-Ub (12000 versus 6000)-
_and the lower thermal noise level caused W(t) to take somewhat
longer to reach saturation, but otherwise the effect of changing Ne
was less_pronounced'thanAin.Runs E-28 and E-2b. The two simulations

‘were both run to“tm&xQ# SQQ;w;;} and poth had1&Ufina1.electron

temperature a factor of eight,above its initial value.
, These‘tﬁb similations were.well suited to testing some of the
‘predictions of the Katz et al. (1975) anelysis. In perticular (3.36)

predicts that for k » 0.1 k,, W, should be a factor of two higher in-

k
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Run E-Ub than in E-ba. Figures 4 and 5 give the field energy spectrum
W(k) at t = 480 for Runs E-Lba and E-Ub, respectively (averaged over
10 w;l), and show the least squares fits to the modes k> 5 k .
Since the spectrum is plotted against k2, a slope of -1 indicates a
k™2 spectrum. The experimental'slope values were -1.2 and -0.93
for E-2a end E-2b, respectively. _Because of the difference in slopes
in the two figures, the least square fits do not cleerly show a
higher W(k) level for the N, = 6000 simulation except for k/km 2 20.
The dashed lines represent the values predicted by (3.36), and in
both cases the least squares fit agrees within a factor of two. The
 agreement is especially good for Run E-4b. There are sighifioent ‘
differerice's in the lower modes (k < 6 km) in the two runs, but
compa.fison with W(k) at earlier times shows that the average energy
in these modes fluctuates oonSider&blylafter saturation. |

Even phough the Perkios and Salpeter (1965) theory gives a
| totally differencelw(k) spectrum depending on whether the suprather-
mal fe(v) is exponeﬁtial.or power law, it is sometimes difficult to -
distinguishbbetween.them based on empirical similation data. Figure
6 shows f (v, t = 480) from Run E-lLa plotted semi-logarithmically,
IVI/V : However, the
full logerithmic plot in Fig. 7 shows that the power law flt is
somewhat better. The slope in Fig. 6 gives v = 6.25 Ve‘ The power
lew fit to the form £(v) ~ [v|™ give‘s m = -1.85 and -1.81. Although -

'Katz et al. (1975) used m = -2, any power law will lead to a K2
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energy spéctrum. The form of (3.36) then becomes

WE) = -zt (o) L | (3.37)

In conclusion, the short wavelength part of the W(k) spectrum

”takén well past saturation in these two.simulations agrees féasonably

well in shape and megnitude with the predictions of Katz et al.
(1975). Thus this part of the spectrum is probably due to the
enhanced thermal fluctuations caused by the supfathermél elecfron

tails and cannot_bé used directly in & turbulent diffusion calcula-

tion. Although a power law form for fe(v,‘t = 480) in the tail

region gives an excellent fit to the experiment#l daﬁa apd is neces-
sary. for a kfglspecfrum in the Perkins and Salpéter theofy,'the em-
pirical evidence is not strong enough to rule out other interpretaf
tions. Tt will be of particular igterest to.analyze beam-geﬁerated
parametric instabiiity similations in the 1igh£lof these resﬁlts;
Our oscillating external field simulétions show the same
general features that previous investigatorsAh§ve reported. The
linear growth rétes ggfee reasonably well with thelpredictions of
Nisﬁiﬁéwa'é'iinéér thebry.w Thé éimpiegndnlineér éétufatfoh thepry
of Kruer and Dawson (1972) generally agrees withiﬁAa factor of two
'with our experimental results. We have seen evidence for the
exponential and power law tails in fé(v) and the kf? field épectrum

predicted by Thomson et al. (197Ub) and Katz et al. (1975). The next
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section will investigate whether these features also occur in ener-

getic beam simulations.
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IV. SIMULATION OF ENERGETIC ELECTRON BEAMS

A. Introduction

|
\ |
1 | .In the previous ‘chapter we showed that. an infinite wa.velength'
external electric field can produce & i>arémetric ins'ta.bility if its
| frequency Wy ~ W and itsA amplitude exceeds a certain threshold |
| 1_.'evel. However, an elé'ctron beam whose average velocify VB is much
1a.rger. than Ve will also produce unstablé waves whose a.mpliﬁﬁde and
. frequency may satisfy the conditions for parametric excitation. It
is this possibility,wé shall now pursue. |
The weak beam plasma has been one of the most widely studied
.'subjects in plasma physics; Almost all analyses of the probiem
‘assume that the ions form a fixed neutralizing backgroﬁnd. Figure 8
shows t}ie initial electron distribution ﬁmc’cioh fe( v, 0) taken from
one of our siﬁrula;tic;n experiments in which the ions were immobile.‘
As ﬁsua.l, we-a,re considering the '.one-dimensional.‘problem; -Li.near
'theory pre@icté that the growth (or damping) ra£e$ for indiviquai

modes are given by (e.g., Montgomery, 1971):.

: | e 9 : C

lkl( v=u/k

This equation assumes lykl << wg- The oscillations take place at
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the Bohm-Gross frequency wek'~ we(l + 3k2k§/2).' Equation (4.1) thus

predicts that modes whose phase velocity is at or slightly below vy

will have 7E > 0. 1In Fig. 8 these modes have vy S w/k < Vg For

k< O we pick w_ = -w, SO that w/k is positive. Unless otherwise
stated, we will speak only of the k > O casé.

' ‘Quasilinear theory predicts that in the resonant region

v, <v< Vg ﬁhé'electrOn distributionAfuncfioh will evolve to a final
" state in which af (v, =)/at = 0 (e.g., Davidson, 1972). Thus, a
"plateau” will form in fe(v; t) as shown in Fig. 8. The "pumps"” in
the plateau are due to statistical fluctﬁatidns in the simulation.
Quasilinear'thgory_also'predicts that for every two units of energy
lost by the beam, one unit goes into wave energy ahd one uhit:gées
into he#ting the main part 6f the électron distribution. Ion d&namics
are ignored. |

We shall be concerned with cases in]which vp >> Vv, 80 that

B

there is negligible overlap between the main electron distribution
and the beam distribution. If the beam distribution is a displaced
Maxwellian with thermal spread AvB, then the ratio of the beam energyA

density to the main plasma thermal energy density is given by

1 > 2 (2 LD
= + +
e .2 nym(vy + av] _el's vy
B n kBT 2 2 ’
[o} e Ve

'(h.'z) B

where ns is the density of beam electrons and € is the density ratio
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n/n . One cen show that for a cold beam with vy >> v _ the energy
in the beam after plateau foimation will be approximately éB/B. Ope
-éan therefore e#pect from quasilinear theory that at most 1/3 will be
transferred to the unstable waves and-SB/3 to the main plasma elec-

.trons.'

The meximum wave amplitude'Eo available to,arive & parametric

instability is related to the initial beam energy by

Eef . . _ A
- o s = : : 4 )’
Yo T BmgeT, <3 © o e

The'actﬁal.saturgtion level is often well below 85/3, however. Note
Athat Wé.and‘eB are dimensionless'aﬁd correspond to energy measured
in terms of the dimensionless units:described in séction II-B..'

We now examine in more detail the possibility that the beam-
.generated wavés can trigger a parametric instability. Evidence for
this instability in beam systems has been seen in previéus compﬁter
simulations (Kainer et al., l9725)and‘in some laboratory experiments
(quon et al., 1974).

.. "If the beém distribution is a displaced Maxwellian, Eg. (4.1)
‘ predict_s that the fastest grcwing';r_esonant mode :'Er will satisfy .

B

w(ir)/i} NV, - Avg. A more detailed analysis of the fastest growing
mode is given in section IV-C. »Thus5 if vy - AvB.: ZO#e, then N

irsw 0.05 k., andlw(ﬁé)lz 1.0038 wé.' If we pick w(ir) as the driving
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frequency W, in the Nishikawsa theory,‘then we can predict whether
the resonant beam waves are sufficiently strong to drive the para;
metric instability in mbdes outside the resonant region. 'One can
show that the width'bf the resonant region Ak ~ 2AVBE;/VB and is
thus fairly small. |
' For noﬁreéonanf modes with kﬁ>AEr, then'wk > wy and the
oscillating two-stream instability will be ex‘cited.’ Sj.milarly, 1f
k < ir’ then ka<'wo, and the Nishikawa theory predicts that the
ion acoustic decay instability will be triggered. If vy > 10 Vs
most of the unstable modes ﬁill have k > 0.1 ke so that one wouid
~-expect the OTS instability to piedomiﬁate,- The Nishikewa theory
strictly applies.only when E} = ko = 0. This implies infinite bean
veidcity. One would expect the Nishikawa theory ﬁo be most applicable
to very high vglbcity beamévwith vy >> o( k) /k, where k ié the fastest
growing parametric (OTS) mode. | -
'We have already shown [Eq. (3.21)] that for a collisionless
plasmé the OTS threshold-condition becomes particularly'simple when'
the frequency mismatch.é is much larger than the high frequency

Landau demping rate Lo Equation (3.21) can be rewritten in terms of

tion is

w22l 232 . ‘ (4.4)
o wg 27 e : A

' the: energy W_ contained in the resonant modes. The threshold coﬁdi- I
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Equation (L4.3) gives an upper limit to Wo' If we define ko = Er
- and note that
=0 = wey - u)o(k'o) al-1 LY R (F'S)_
‘'we can rewrite the threshold condition using Eq. (4.2) as
c (vg + AV ) wi o : :
~B Bl . —2 ]2 (k4.6)
& ve (v - Av )2 e C
e . , B B
For a sufficiently cold beam we gan‘neglect‘AvB and arrive at the :
minimum beam velocity vBlwhich will trigger the OTS mogde of wave
. 3 _ .
- number k,’given the beam density ratio €. From (4.6), vB(e, k) is
given by
( ]u+§(kv) A.v S1B 2ok o -(h’7)
VB € ee ’

A reasonable éstlmate for the fastest grow1ng OTS mode is:
"4k=* O.l k although in practlce k can vary by a factor of three or .
more from this value. . Table 3 shows the minlmum value of vB whlqh
will,trigger the OTS inst&blllty for various values of k given the 
beam densiﬁy ratio €. Note that for those cases for ﬁhich (h.6j
gives VE‘Q w;/k, the ion acoustic deéay'instability would oceur in

. mode k, and thus the'OTS threshold is not strictly applicsble.
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.Table 3

Minimum Beam Velocity Needed to Trigger OTS

* % _ * _
€ - .vB (k = 0.05 ke) va(k = 0.1 ke) g (k= 0.2 ke)
io‘2 <20 v. <10 v 8.5 v
_ e : - S - e
 10'.»3 < 20 . 13.5 } o7
10'& ;1 L2 .85
100 67 134 - 270
19’6 _ 212 k2o 850

As can be seen from Tablé'B, it is relatively éaéyAto induce
a péiametric.iﬁétability with moderateiy hiéh (~ 20 ve)\beam velo-
citieslbfovided 6.2 10-3; Such parameters are within the capabilities
of computer simulation codes. Higher”beam4Velocities.(> 200.ve) will
irigégi the OTS instability for somewhat lower (e ~ 10'5) beam
densities. . |

The inclusion of ion dynamics is necessary'for:the pérametric
'instabilitiés.v However, it is im?ortant to note thaﬁ the OTS thres-
: hbid,is independent»offtheumass,rétio;Aprb#idedzthét mé/mi~i$ non- -

B
mode near k = 0.1 k_ could be expected to show the OTS instability

. . S : * .-
zero and k << ke' Thus, any plesms in which v 4exceedS‘vB for some-
although the growth rate might be insignificant.

Finally, (L4.6) can be further simplified if (l8/e)k2/k§ > 30.

The result for v, >> AVB is:

B



L6

* (lBJ%

B oy, . | (4.8)
Most of the entries in Table 3 can be detérminéd accurately from (h.8).

Given thevamplitude of the resonant mode electric field Ed
we could use the Nishikewa dispersion relation (3.17) to calculate
the parametric growth.rates in individual nonresonant'modes. The
threshold analysis of this section assumed that the puﬁp wave gen-
eraﬁedAﬁy the beam instability had.a frequency given by the Bohm-Gross
ffequengy of k_ = we/(vB - AvB) and plugged the resulting frequency
W, (k ) directly into (3.17). This ignores the fact that the deriva-
tion of (3.17) eXplICItly assumes ky = O- |

A second approach to applylng (3.17) is to assume that k, is
truly zero gndlthat Wy = Wge This of cour;e assumes infinite beam -
velocity. 1In this‘limit‘all non-zero k modeslin the syﬁtem ére_nbn-

resonant and have § = o < 0,. so that 6nly the OTS instability

o ~ Yek
occurs. This approach has been used by Papadopoulos (1975).in most
of his anglyses of the problem aﬁd is probably correct if,the beam -
veloeity is sufficiently high.

| The . most des1rable approach is to re-derive (3. 17) assumlng an
Aérbitrary k . Papadopoulos (1975) has done thls for an arbltrary
spectrum of pump waves Wr(k ) 1gnor1ng damp;pg ‘effects. The result-.

ing dispersion relation is:
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(10 ) W (k') A
_ 2 2 3 Y ) r e :
O-’_(w - wA) * E_? nokETe:we dk )2 "

2 . -
R L R

(4.9) E

The parameter A is the frequency shift above the electron plasma

frequengy, and for k2 << kg, A is spproximately given by
A= % T - B - (4.10)

e e

For a single infinite wavelength pumpzwawe;_ﬁr(k') = W.on kT 5(k’),

- and (4.10) reduces to (3.17) with o, = w,- Note that in this context

3(x’) is the Dirac delta function and is not to be confusedlwith-
the frequency shift §. va'ko ~ wé/(vB -'AvB) represents the wave’
number of a typical wave in the spectrum, we can expect'the infinite

pump wave number approximation to be valid when -

2 S :
A2 + 75 > plp + 27p) 2 | - o (4.11)

where 7 i the paremetric growth ete and

) . . R .
b= 3k#oxewe - o , - ) (k.12)
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This condition (4.11) is equivalent to neglecting the k’ dependence
in the;dendminatoi of (4.9) and is somewhat more stringent than a
similar condition derived by Papdopouloe (1975).

| If we assume that the beam generated spectrum can be repre-
sented by a single finite wavelength pump wave, then

ﬁr<k') = WonokBTe S(k' - ko). Equation (4.9) then reduces to

BATH o>

2 . 2 . A 2 2 oe _
[o? + 2tory - )0+ ar, ) ) -2

(4.13)

'The damplng terms F ‘and P have been arbitrarlly added in the same
manner as (3’17)7 Equetion (k. 13) reduces to (3.17) in the limit
u'; 0 (or k= 0).. A detailed analytical analysis of (4.13) is given
in Appendix ﬁ. Numerical ~solutions to (4.13) will be employed in
‘analyZihg both simulafion plasmas and plasmae with more_realistic,
mass ratioe.' |

| In .the following'sections we examine the beam-generated para-
metrie instability using particle similation methods. Section IV-B
@:glves an overv1ew -of -the. 81mulat10n experlments. The qualitative:fea-
tures of the parametric 1nstab111t1es are illustrated by comparlng
mobile ion s1mulations with those in Whlch the 1ons are flxed. A
summary of the parameters used in the various simulatlons is also ';

given in this section.
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Section IV-C investigateé the evolution of the resonant and
nonresonant electric field energy Wr(t) ana Whr(t).in more detail. |
A comparison between the observed simulation growth in the individual
‘nonresonant modes:and the predictiohs of the disPéision relation Eq.
-(4.13) is made. A prominant feature of the beam parametric insﬁa-A
bility simulations is the transfer of energy from the resonant modes
to the nonrésonépt"modes.' The saturation levels of W.(t) and W_(t)
are also analyzéq and compared with theoretical predictions.

Section-IV-D analyzes the evolution of the eieéfron distribution
function fe(v) and the field enefgy sPecfrum W(k); In external field
simulations, suprathermal tails form in £,(v) which are w'¢11 repre-
sénted by fe(v) ~ v-2, and the eﬁpirical form for fhe spectrum is
W(k 2 0.1 ke) ~ k-e. The external field. results generaily agieg with
the Perkins and Salpeter (1965) théor& for a stable non-Maxwellian
plasma [Eqgs. (3.34)-(3.35)1. 'This section investigates whether these
obsérvgtions are éﬁpiicable to the beam case.

Section IV-E describes the diffuéion coefficient‘De(v) ca}cu-
lated ffom the thermsl sbread of a group of nohintéracting test |
particies moving‘in the simulation electric fields. We expect De(v)b
to be initi@lly peaked argund vy T AVB with a_spa;ler peak develqping
:iﬁ iﬁé faﬁge 3‘§.{v/vé| < 10 due to the OTS‘généfatéd Wavesf o

| A number of beam simulatioﬁé‘with an external field are
" described in section IV-F. These Systems thus have two sources of
pump waves which can drive the parametric instabiiitj. Although ﬁe '

do not offer an analytical theory for the beam-external field system, -
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the simulation results.can be compared with beam systems orvexﬁernal
field systems. ‘

Findlly, chapter V iﬁvestigates the poésibility that the
parametric ipstability can maiginally étabilize the beam against
plateau formation. Our analysis of parametric stabilization.differs
somewhat from that of Papadopoulds et al. (l97h) and Papadopoulos

(1975) due to the inqlusion of the OTS thresholdleffects.

B. Simulation'Experiments-—General Features

The particle simulation code used in the external field simu-
lgtions was'modifiedlto inclgde a high yelocity electron beam. The
beam eléctrohs wefe fépresented by alshifted‘Maxwellian distribution.
The ‘beam could be described in terms of the beam velocity vp, the '
begq thermal spread QVB,Aand the density fatio €. '

'A number of other investigators have used ﬁarticle simulation

techniques to study beam plasmas. Most early experiments-(e.g.,

Dawson and Shanhy, 1968; Morse and Nielson, 1969) used immobile ions '

and small beam velocities. Kainer gg al. (l972a)'investigated high
velocity beams (VB < 50 ve) with immobile ions. They investigated

“the cohditionS»undér which the beam merged with the background plasma

" prior tOMeléctricﬁfigld,saturation and showed that quasilinear thequ f.

gaVé reaépnablé agféement with.tﬁe e#périments under certain condi-
tions. | | | |

.When some of these'experimenﬁs<Werebrepeated with mobile ions
(Kaine: EE,EEL’ 1972b), they gave the first'direct evidence for beam-

genersted parametfic instabilities. As in the earlier fixed ion
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background experiments the resonant modes (those modes with
vl < o/K < Vg in Fig. 8) grew to a saturation level. However, non-
resonant modes began to giow and eventually reduced‘the energy in

the resonant modes. The growth rafes of these modes and the forma-
tion of high velocity‘tails in bqth directions in fe(v) could be
éxpléined qualitatively by ﬁheAparametric instability theory.

We have conducted a detéiled similation analysis of beam-
generated parametric inStabilities. For the pérameters chosen in
mosﬁ of our simulation experiments the number of simulation_partiéles
in the beam wéuld be at most a few ﬁundred. In order to reduce
_stétistiéal‘flﬁctuations aSsociéted with having'sb few beam particles,
the beam particies were assigned a smaller'mass and éharge. ‘Bj-
setting the charge to mass ratio of the beam particles the same as
for the main plasma electrons, the beam particle dynamiés were thus
identical to. those of the main plasma electrons.‘ Typically the
chafge rgtio qe/qb of main plasma eleétrons to beéﬁ plasma e;ectrons<'
was'chosen s6 that the.tdtal number of discrete beam electrons was
approximately 1/4 N, |

The béam velocity was ﬂ&pically chosen to be between 10 and
- 20 v, while e variédfﬁsually bgﬁwéeq;p.os and 0.0l..vLafggrvbeam]'
velqcitiés required shorter time stepé (sihcé beam particles traveled
many Debye 1engfhs in & single time step) and required largér amounts
of computer time. Beam experiments with vy S 10 or € < 0.005

saturated at such low field energies'that parametric effects were



more difficult to observe. The values of other parameters were

chosen to make easy comparlsons w1th the external field s1mulat10ns.
Unless otherwise speclfled,,Te/Ti = 16, L = 256, At = 0.125 w],

B = 1/6&,'a =2, k = em/256 = 0.02455 k_, and N = 6000. The
meening of these symbols has been previously defined in sections

I1-B and II-C. |

Taﬁle L lists the parameters chosen for each simulation
experiment. Some of the experiments used a fixed ion background
(i.e., B = 0) so that the effects due to ion dynamics could be more
easily determined. Those experiments in Which‘Ne, At, ¢, and qe/qb
were-varied werencarried out primarily to test the yalidity of the

Simulation>code..

The general chafacteristics of the beam plasma inferactions
can be seen.in cdmparing B-1 and B-la. Figure 9 shows the evolution
of the field eneigy when the ioﬁs are immobile (Experiment'B-la).

The resohans modes, i.e., the modes for which w/k’lies‘in the region
where fe(v).has‘a positive slope, were medes 3k and'hkm.. These

. two modes had phase velqeities of 13.7 and iO.B'ye while the beam
 velocity was 15 v_. Figure 9 shows that the energy W (t) in these

_ modes grew much more qulckly than the other modes and saturated at

W o~ 0.11- at time t = 60 w , The energy in all of the other modes "
'1n the system grew much more slowly, and this nonresonant energy.
Wﬁr(t) stayed well below Wi. Figure 10 shows the evolutlonAof Wi(t);

Wnr(t)? and the total field energy W(t) for an identical experiment



Table 4

Experimental Parameters for Beam Simulations!

Run € vB/ Ve AvB/ vy a, / qQy et
B-1 0.01 15 2.0 25 400
2B-1la 0.0l 15 2.0 .25 300
B-2 '~ 0.05 15 2.0 25 - 300
2B-2g 0.05 15 2.0 5 . 300
3B-2b 0.05 15 2.0 5 200
B-2¢c 0.0 15 2.0 10 300
4B-24 0.05 15 2.0 . 5 300

6p-3 = - 0.05 - 15 2.0 5 400
B4 0.05 15 0.5 5 koo
B-5 ~  0.05 .15 . . 2.0 5 400
B-6 ~  0.01 - 20 ko 25 Loo
2B-6a 0.01 . 20 4,0 25 400
5B-6b 0.0l 20 . 4O 25 . 100
4B-6c 0.0 20 " Lo 25 koo
B-T 0.02 10 1.0 15 - koo
2B-Ta . 0.02 . 10 1.0 15 400
B-8 - 0.01 20 1.0 25 217

B-9 0.10 20 1.0 25 122

lUnless otherwise specified, the following parameters were
: Tuused:~‘s-é>1/6h;‘e~=~Té/Tiﬂe.16;”Atﬁ= @;1/85.a =.2;o,bNe‘;u6ooo{ o

LD = 256.

28 = 0 (fixed ion background)
3G = 1.0

12,000

At w;1/16'

g = 1.0

i

Lo
=
1]
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in which B = 1/6& (Experiment B-1). The linear beam instability
again caused W (t) to grow and saturate. waever, the inclueion of
ion dynamics allows exeitation of the parametric instability in
 those modes for which W> lies sbove threshold. For 60 < t < 175
these modes eaused a steady'increase in Whr(t) during which time
Wr(t) femained relatively constant. However, when Whr(t) reached
its maximum, W (t) began to decline. By t = 350 w;l, w_(t) dropped
mere than an ordei of magnitude fromAWi ana was a factor of twé or
three below Whr(t)' This tendency of the nonresonant modes to
take away energy from the resenant modes is one of the most prominent
- features of the parametrlc process. -

The dlstrlbutlon function f (v) evolved into a plateau similar
to Fig. 8 for the immobile ion experiment B-la. Flgure lQ shows
that the inelusion'of ion dynamics did ndt_prevent the formaﬁion of
a plateau in fé(v) for 5 < v/ve < 17. Although there was virtually
no heating in the main part of the electron distribution (lv/VéIQSB),
some slight.heating.in_the tail of fe(Q) was apparent. The tendency
':to form energetic taiis in f (v), a promihent feature of the external

field s1mulat10ns, is more apparent. in some of the other beam experi-

---nents.~4~4

In addition to the simulations listed in the table, a mumber
of preliminary runs were used to test . the validity of the scheme.
These small scale experiments have. not been included in our discus-

sions.
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C. Simulation Experiments—Growth Rates

and Saturation Levels -

We will examine the evolutién'of thé electric field energy
w,(t) in the various k modes for the simulations listed in Table k.’
In partiéular, we wish to inteipret the growth rates and saturation
leveié of the resonant and nonresonant field energy based on fhe
parametric instability theories.

It is conveniént to discuss Runs B-2 through B-5 separately
‘because the high beam_density (e = 0.05) leads‘ﬁo qualitatiyely
different results from the other experiments. In each of these
‘.~simulétions.a singlé,parameter was variédlfroﬁ its valﬁe in Ruﬁ B-2.
Figure.l2 sho#s the resonant, nonresénant,~and total field energy
for Run B-2.. Because € = 0.05 instead of 0.01, W (t) (modes 3 k_
and U k.m again) grew more rapidly than in Fig. 10, and the satura-
tion level'ﬁaé higher by a factor of k.  At fhe time of saturation
of.Wi(t) the nonresonant energy Wnr(t) was ﬁithin a factor of two’
of its ultimate maximum value. Hence, there was no clear iinear-
“growth -in an(t) as in Fig. 10. However, the fact that Wi(t) dropped

by a factor of 50 between t = lOO‘w;l

and t =180 w ' is en indica-
.. tion of the presence of the_parametric_instability.‘ B

Run B-2a duplicated the'experimental conditions-of Run B-2
while holding the ions fixed. As expeéted; initiél behavior of the

' two resonant hqdes 3 k and L ko was essentially the same as in Run

B-2. _However, there was no eventual largé drop in the resonant
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energy as there had been in the previous experiment and of course no
parametric instability effects.

Runs B-2b and B-2c¢ were 1dentical to B-2 except for some
parameter which should not have affected the outcome except for
statistical fluctuations. These experiments were conducted to test
the validity of the model. 1In Run B-2b the number of grid points
per bebye'length.a is 1.Q instead of 2.0. The ratio of the.charge
on a main}plasma“electron to the charge on a beam electron qé/qB
was increased in v"Simulation B-2¢ from 5.0 to 10.0, thereby doubling
the number of simulation particlee.- In both cases Wr(t) and Wnr(t)
evolved in essentially the manner shown in Fig. 12. As a further
test, the humber‘of eimulation electrohé Ne was increased to 12,000
in Run B-2d. Some significant discrepancies compared with Fig. 12
did appear at first, but improvements‘in the accuracy cf the initial
loading scheme removed them. |

Run B-3 examlned the effect of taking identical electron and
| ion temperatures._'For an equal temperature plasma, 1cn acoustic.
waves (in the absence of a'driving electfic field) are.much more
strongly damped.i Thus F. in the Nishikawa linear theory<is much
1arger, and ‘one mlght expect a 51gn1ficant decrease 1n the parametric
effects. However, the evolution of W (t) and W (t) in the T =T,
' siqulation did not vary 81gnf1captly from the_Te/Ti = 16 experiment
'(Fig.c12). The large drop in W}(t); which we have attributed to

4 , ,

parametric effects, still occurred.
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In Simulation B-4 the beam thermal spread AvB/ve was decreased

from 2.0 to 0.5. As can be seen from Eq. (5.1), the colder beam

should give rise to a larger growth rate for Wr' This effect was
apparent from the simulation results. In addition, the.resonant
saturation energy was somewhat higher. ' The eventual decrease in

Wr(t) due to the parametric instability was even more precipitous

‘than in the previous experiments.

Run B-5 was identical to Run B-2 except that vp = 10 v, instead

B

of 15. The resonant growth rate and saturation level were both lower

_than in Run B-2, and the eventual decrease in Wr(t) was not as rapid.
!

,Itvseems like;y that the lowgr saturation levgl Wi wgs.reéponsible
fér the aﬁparent‘decreaSe ipAthe3§arametiic insfabilifyAéffects.

., These expériments with beém density ratio € = 0.65 ali show
such strdng nonlinear effects that compariéons with theoretica; esti;
ma£es are difficult. For example, since the beam disfributions wére‘

displaced Maxwellians, Eq. (4.1) becomes in our dimensionless units:

0 = [fage el a0
T % vy

B ) . ) . -

The fgétest growing mode in an infinitely long system can be found by

differentiating (4.14) with respect to k. This can be most easily

done by defining u = v =~ wek/k and taking CRELECR = 1 in our units.

B

Substituting into (h;lh),~differentiating.with respect to u, and

'using Newton's method on the‘resultingfcﬁbic equation for u'gives:
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AvB
u = AVB(l -—, (4.15)
v .
‘ B S : _
and By definition the fastest growing resonant mode i} satisfies
w . AV _
L == AvB(l - ;—B . (L.16)
kr B '

If we pick the parameﬁers‘used in Run B-2 (e = 0.05, Vg = 15,
Av = 2), we flnd that the fastest growing mode has phase velocity
o, /kv ~13.3 and,from(h 14), the growth rate is 0.82 e Since
(k. lh) is valid only for 7, << w_, it is clear that the beam insta-
bllity is too strong to estimate the resonant growth rate using the
~usual-11near methpds. The 81mulat10n growth rates for W (t) varled
-betweén O.i92 and 0.110 in the € ='0.05 experimgnts and -thus were
far below the ratéé predicted by Eq. (h.lh)f

Table 5 summarizes the results of the € = O 05 31mulations
(B—2 through B—5), and includes in addition Run B-9 (e = 0.10,
Vg = 20, AvB = 1.0). As we have mentioned,before, these experiments
" all have such large beam densities that nonlinear effects cause some
of the nonresonant modés to gfbw so much that one cannot observe
clear growth in Wnr(t) after Wr(t) saturates. Comparison of Wnr(f)
Aaf resonant mode saturation‘in<3uns B-2 and B-2a showed that this

initial nonresonant-growth was not due to ion dynamic effects and




Table 5

Sumary of € = 0.05 Beam Simulation Results

Wo, (t = tmax)

B-2 B-2F
‘Pa.ramefers changed - B=20
r +0.159 0.147
W 0.510 0.1450
N - o ,
E = (awr) | 1.01 0.95
8B 5.73 5.73
S
W_/eg | 0.089 1 0.079
75 (theory) . . 0.030 -
;p ( exper.imen-tal)A - -
W (pag) ‘ 0.17 o.18_'
R (at W, saturation)  -0.00028  -0.00006
R (p = max) | -o.oozg | --o.ooo7h‘.
R(t.=t ) XE,. -
mex’ T -0.40 -0.013

B-3 B-l . B-5 B-9
v, =20
=1 Av =05 v, =10 __ o
0.153 0.192 0.110 0.209
0.510 0.534 . 0.175 2.7
1.01 1.03 - 0.591 2.3
5;75 5.63 2.60 20
0.089 0.095. 0.067  0.135
0.030 0.031 . 0.021 >0. 05
-- 0. 017 0.010 |  0.039
0.19 0.17 0.10 1.5
o.oo§25 0.0013 0.00064  0.00058
-0.0017  -0.0018 -0.0020 - -¢.0005
1 -0.22 -0.42 -0.13 -0.09

66
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not due to the OTS instabilitj. The strong initial nonresonant
4gfowth is due to mode coupling which is noﬁ a three wave decay process
Safisfying Egs. (1.1a) and (1.1v). Such strong mode coupling effects
have been seen in numerical studies of a high density (e = 0.10),

“bump-on-tail (vg = 4.0) plasma with fixed ions (Joyce et al., 1971).

Tgble 5 also lists the saturation leﬁel Wi of the reéﬁnant
energy for these high beam density experiments. We define wi‘as the
average of the locai maiima taken during the period when Wi(t) is
apﬁroximately4cdnstént. Since Wr(t) peaks twice in each plasma
period; the elapsed'time between these'local mexima is usually about
34w;l. It is evident from Table 5 that Wi'is fypically €,/10 rather
than &B/3 as estimated in section IV-C. However, 8B/3iis'merely'an
upper estimate for Wi. Ekamination of fe(v, t) shows that saturation
of Wi(t) is}asgociated with plateau‘formatiop.in the distribution.
function. - | |

Ahothervmethod of estimating WiAis to equate the wave momen-
'tum'pw = Wi/aﬁ'aﬁ satura#ion to the momentﬁm lost by:the beam (Kainer '
et al., 1972a). vathg average phase velocity ;5 is thgt associated
yiﬁh thg fastest growing beam mode, so that V§v= QB - AvB, and if thé

‘_-beam.distribution at,satu:gtion is symmetric-about v?, then
Wo ~ evoAV v . ' R - '(h.i7)
r _BA B'e ' o ‘ : . ’ :

Although Eq. (4.17) predicts that hotter beams will saturate at
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higher levels, our simulation results seem to indicate just the

opposite. Using the momentum conservation technique described above

and a different dispersion relation, Kainer et al. (1972a) estimate

)e . - | N .(h.18.)

However, this estimate assumes a zero temperature beam and is not

applicable to most of our experiments.

Thus we dé not have an accurate analytical>method for esti-
matihg Wiﬂ However, other computer simulation experiments also tend

to saturate well below eB/B._ ‘Kainer et al. (1972b) typically found

' Wi < 8B/5 for their relatively cold (vB/AvB = 50) beams. Bump-on-

tail experiments with relatively-warmer (vB/AvB ~ 4) beams ténded
to saturate at much-lower.lévels relative to eB; ' For example, Joyce:
et al. (1971) found WS ~ 0.0L gpe

Table 5 also shows that the typical (dimensionless) value of
the saturation electric;field Eo ”.lf Since ﬁhe Nishikawa theory

agssumes

T o (k19)

one w6uld'expéct that the predicted pérametric growth rates would be



highly inaccurate even if we could observe a linear increase in

Wnr(t) after resonant saturation. -

The NishikawaAthéory‘predicts that ion density fluctuations
sﬁould grbw at the same rate as the electron plasma oscillations.
It turns out that the growth of these density fluctuations is observ-
able and does not seem toAbe so strongly influenced by mode coupling.

The ion density fluctuation level is defined by
2 kéO " ' C :
pyl° = 7= ' : o (L4.20)

where p;on is the Fourier transform of the spatial ion density.
Figure 13 shows the time evolution of |Ap'i|2 for Runs B-1 and

B-4. Taking the élope'of the graph during the period of exponential

‘grdwth, we find that the experimental growth rate of the oscillating

two-stream instability for Run B-4 was 0.017 wé. Similar analysis
of Run B-5 gave a parametric growth rate of 0.010 .

We can predict the above growth rates using the Nishikawa

- "dispersion relation (3:17). If the growth rate is well above the
‘normal mode demping rates Fe end T, Eq. (3.17) can be used to find

‘an analytical solution for the parametric growth rate 7P (Nishika#a,

1968a, b). For the OTS instability (6 < 0), w = iyp,'and we find

that
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W=

IR 8 TR
‘ (h.21)v

Equation (h.21) in our dimensionless units can be found by setting
W, and k “to unity and noting that W is. defined dimensionless.

A typical value for k in the nonresonant modes (for Run B-h)
isk =6 km== 0.15 ke. We can estlmate the frequency shift § by
assuming tnat the driving electric field in the parametric insta-
bility analysls has a frequency

wom(l-t-gko)\e)we . - :'(u.2‘2)

The wave number k| = wo/(vB - AvB). ‘The frequency mismatch § is thus

5=%{k§_-k2) Ki“’e . S o (k.23) - 1
Applying the'parameters of Run B-h in‘(h.2l)-(h-23) gives 7? ='0.03l
“we whlch is somewhat above the ion density fluctuatlon growth rate
c1ted.earller. " The predicted 7p value for B—S, us1ng k —'8 k as ;

a typical nonresonant mode, is 0.021 W This is about a factor of .
two sbove the experimental value.

There is»one other feature_associated with'the;erolution of

the field energy which can be interpreted by parametric instability
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effects. The nonresonant energy Whr should saturate at approximately
the same level as the self-consistent energy of an external field
plasme whose driving wave amplitude is the same as the resonant
energy W_- Applying Eq. (3.24) to the parameters of Runs B-2 through
'B-S,_we see that‘Wnr should equei Wi when Whr reaehes its maximum.
An analysis of W (t) and W (t) for these similations (e.g., Fig.

12) reveals that W (t) is at or near its maximum value when

(t) W}(t).

As we have previously stated, the beam plasma simulations
should conserve eneigy,“ Thus the relative energy conservation error
RAis.an important figﬁre offmerit for the similations. Table 5
lists typical values of R at resonant saturation and at t s ..
Typically, |R| < 2 x 107

conservation error to the total field energy at t = tmax is listed

in all cases. The ratio of the energy

‘in the last row of Table 5. . It is desirable for the magnitude of
this ratio to be less than O.lo; but oost of our simlations are
somewhat above this level. Lack of energy conservation at the end
'of the run seems most serious in Runs B-2 and ﬁ—h. |
.Thos, inlsPite of the strosg nonlinear effects associated
w1th hav1ng such large electric fields, the S1mulations with |
€ 2 0.05 gave strong evidence for the ex1stence of parametric 1nste-
bility effects. All of the simulations with moblle ions showed a
.Vstrong decrease in W (t) after a period in which W, (t) was relatively

. constant. This effect did not occur when ions were fixed. Although
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the parametric growth of Whr(t) could not be observed directly
because of strong mode coupling, the squared ion dehsity flquuatiOn
- level did grow at about half of the prédicted rate. The.resonént
énergy ténded to saturate at about 10% of the beam energy, and the
2 npnresoﬁant energy tended to reach its maxiﬁum when Wr(t) ~ Whr(t).
The low beam densitj cases (e € 0.02) can demonstrate para-
metric instebility effects and make it possible to apply the Nishikawa '
linear theory directLy to the wave energy in the ponresonant modes.
" Because of the decrease‘in'wi and the subsequent décrease in mode
j coupling effects, the parametric instability effects stand out more
- clearly tﬁan_in the high beam deﬁsify simulatioﬁs. The deyelépment
of Wr(t) and'whr(t) in Runs B-1 and B-la has already been briefly
discussed iﬁ section IV-B and shown in Figs. 9 and 11. These ekperi-l
ments used € = 0.01, vy = 15 v, and Avé - 2.0 ve, |
‘Run B=6 ihcfeased vy from 15 to 20 v and Avy to k.0 Ve
while holding € at 0.0l.‘ The evolution of Wr(t) and Whr(t)’ shown
in Fig. 1L, is qualitatively similer to Run B-l. Run B-6a, like
other fixed ion experimentsé did not show'the deérease_in Wr(t)'
evident when the simulation included ion dynamics. |
'Run_B-8 qged-the4ngefparametgi“valueS‘as B-6 except that
AvB = Vgr Again ﬁhere was a'periOd of linear growth in Wnr(t)
. following resonant‘satﬁration. The resonanﬁ”growth rate and satura-
ﬁion level were both somewhat lafger fhan‘in Ruﬁ B-6.
A lower beam felociﬁy might be'expécted to frigger a para- .

metric instability in modes’ with phase velqcities‘largerAthan the
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beam velocity. The parameters of Run B-7 (vy = 10, A‘vB' = 1.0,

€ = 0.02) were chosen so that this possibility could be investigated.

Figure 15 shows that W}(t) and Wnr(t) develop in the usual manner.
"n Run B-Ta the-iOn background was Pixed. The resonant energy

again ;howed the charaéteristic_ pattern of immobilé ion simulations

and reméiﬁed almdst constant after ssturation.

: iThe resﬁlts of the seven experiments in which € < 0.02 are
listed in Table 6. These results will now be discuségd in more
detaiiw A |

As expected, the groﬁth rateA;?.of_the.resonant wave energy
Wr(t)HWasvsomewhaﬁ less than in the e Z'Q.bsfsimuiatiqgs,'varying
- between 0;027.and 0.12. Compgssion of the values of 7r'ih Table 6
with the predictions of Egs. (¥.14)~(L.16) shows that the experimental |
values are typically at'least a factor of three below the analyfical
values for the maximum growth rate. For example, if we take the
maximim growth rate as being tﬁe mode with phase velocity

w/k =.V ‘-.AV

s g Ea. (4.14) yields

o - (nok)

The values of 7r predicted by (L.24) are also listed in Table 6.
The disérepancy is probably largely dué to the very small number

of resoﬁant modes and the'largé difference in phase velocities




Table 6

Summary of € < 0.02 Simulation Results . .

B-1 B-la B-6  B-6a B-7 ©  B-Ta  B-8
Ji Stmilation * 0,059 0. 066 0.029 - '0.027 = ©0.118  0.112 0.103
.7g % " theory = . 0.161 0.161 0.061 0.061 0.62 .  0.62 >1
| i ) 0.129 0.120 0.095  0.158 0.112 0.087 0.147
E =~(2'w§)% . 0.51 0.49 0.Lk 0.56 0.47 . o.b2 0.54
ex I . [ 1L.15 - 2.08 . 2.08 1.00 . 1.0l 2.01
wile, . o012 0.10k - 0.0  0.076 0.111 - 0.086 0.073
7/wg (theory) -~ 0.013  --  0.010 - . 0.011  -- . 0.015
?F/we [£rom whf(t)i_ ~0.0096 -- . 0.0108  --. 0.0072 --  0.0082
' " [from lApija] . 0.007 - 0.0075- 0.0095 0.0051
W (max) ‘ 0. 070 0.030 0.040  0.006 0.032  0.032 0.110
R (st W, =Ww) - 0.0007  -0.0008 =~ -0.003 . =-0.0008  -0.001  -0.000L  =0.003
CR(att=t ) -0.0011  -0.002 -0.003 -0.0015  -0.002  -0.0025  -0.005
Rt =t ) xE, - . S |
: max : -0.005 -0.02 -0.22 '=0.02 -0.19 -0.07 ~ -0.07
WL =t ) » A , 4
L max’ .
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between adJacent resonant modes in our system. increasing system
'length LD would thus probably reduce the dlscrepancy in 7 between
analytlcal theory and 31mulat10n results.

The saturation values for the resonant mode energy Wi are
also shown in Table 6. These values are all within a‘factor of two
of each other and again are typically 10% of the beamienergy. The
values of'Wi in Runs B-6 and B-6a are interesting in that'the fixed
ion saturation 1evel is 60% higher than'the mobile ion case. Since
Whr(t) shows significant growth before saturatioh; the nonresonant '
modes may be_takiné away significant energy from the resonant.modes
prior tozreSOnant.saturatioh}A Such & process,woﬁld tend to stabilize
the beam against plateau formastion and will be discussed in more
detail in- chapter V.

"All four of the € < 0.02 moblle ion s1mulat10ns (B-1, B-6,

B-T7, and B-8) offer'the opportunity to measure. parametric growth
rates in a number of nonresonant modes and to compare. these growth
rates with the predlctlons of the dispersion relatlons (3.17) and
t(h.l}). In all four of these experlments ‘the resonant energy is

'relatively constant for a long period of time, so that the values of

,;_W llsted in Table 6 should produce reasonably accurate predictions 4

of the parametric growth rates.
The growth rates in each of the nonresonant modes were mea-
sured by plotting the energy Wk(t)”in that mode during the,period in

which Wr(t)‘was relatively constant. .Figure 16 shows Wk(t) for the
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=3 km mode of Run B-T7 during the parametric growth period. The
daua poihts are periodic local maxima, and the straight line is a
least squares fit whose slope is 2§p(3 km). The fluctuations about
the straight iine are typical of these experiments. ‘ |

In applying the dispersion relations (3.17) and (4.15), several

minor changes were made in the estimates of some of the terms in the
equations. The electron damping rate Fe now included an estimate of
the simulation collisiou frequency. This is normally a very diffi-
cult quantity to estimate. Based on an estimate in Godfrey et al.

(1973), which was
Y o (25 aA )L , . S (4.25)
c o e ’ ' : : .

and theAexperience of ofher simuletion investiggtors, we estimated
bvé ~ 2 X 10'3>we, The damping rate was then given by (3.18) as .
~usual. No collisional corrections were madeAto the ion daﬁpihg rete
Fi; The dispersion relauion results for the fasueSt érowing modes |
in‘the simulation were fairly insensifive to the choice of F and f .
| A slightly different numerical procedure from the one described
’ in sectlon III~ C was used to solve the parametrlc dispers1on relatlon.f
Instead of solv1ng for the normal modes numerlcally us1ng the Fried
and Gould (1961) procedure, we used analytlcal approx1mat1ons. Since
the mass ratio B = l/6h and temperature ratio 6 = Te/Ti = 16 made

the usual analytical approximations for W2 Wy s and the corresponding -
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Landau damping rates somewhat 1naccurate, higher order approx1mations
were used. Following the derivation of the llnear theory and retain-

ing first-order terms in B and 6 (e.g., Montgomery, 1971), we find

1
2
0oy = X [(1 +B) + j(l-* )2 + 12 k2h§} w, ~(k.26)
/2 A ' _
o (1+30) s .27
w, = 2
A (l + 2 2) ’
- p
_ I A (l + 99)
ry = j;k)‘e‘”e DN (4.28)
Note that as usual’f'i - - Im (@) where w is the low frequenéy'solu-

tion-to the dispersion relation. These analytical approximations
. gave closer agreement with numerical solutions to the dispersion
relation for the Vlasov-Poisson system than. did the usual analytical

approximatibns when tested with typical simulation paremeters.

Flgure 17 shows a d1rect comparlson between s1mulat10n growth o

ﬁ’rate 7 (k) and the predicted 7 (k) from the dlsper51on relatlons .
(3. 17) and (4.13) for Run B-l. The figure shows that taking
k ~ (p(ko)/(v - bvg) = k /13 instead of k, = 0 in (4.13) gave a

slightly higher meximum value for 7p(k) and'gave-yp(k) > 0 in modeé




8 k and 9 k instead of 7p(k) < 0. Except for mode 6 k , the

agreement between ;p(k) as measured from simulation growth rates and

7p(k) from'(h.IB) was quite good. The blank area corresponds to

. resonant modes.

Figure 18 shows the same data taken from Run B-6. Again
the agreement between ;p(k) and 7p(k) was reasonable, and again the
non-zerol&)caléulation for 7p(k) seemed to agree more closely with
the simulation results than did the k, = O calculation. The higher.
resonant saturation level of Run- B-8 as compared with Run.B-6 led
to generaliy higher values of both';p(k) and 7p(k) (Fig. 19). The
agfeément:between the simulation resﬁlts and the dispersion relation '
‘was again fairiy good excgpt for an aﬁhormally low value for ;p(6kh)
and an unexpectedly high value for ?p(km). In féct;‘in all four
experiments ?p(k <'ko)-tended to be significantly higher than the
dispersion relation values.

Only in Run B-7 is the agreement between ;p(k) and 7P(k)'
generally quite poor (Fig. 2O)f This experiment had a lower beam
Qelocity and higher beam denéity retio than did the others. Taﬂle
6 also shows that the maximum value of Wnr(t) was the same‘for Runs
‘B-7 and B-Ta. _This.ﬁouquseem to indicate that stfong'parametr;c
que céupling effects may'havé been a.factor as ih the e z 0.05
- simulations. | | o
.The.experiﬁenfai growth rates ;P listed in Table 6 are

taken from graphs 6f'the'totalAhonreSonant energy Wnr(t) and the




‘square of the ion density fluctuation leve1'|Api]2 defined by Eq.

(4.20). “These values are typically a factor of two below the maxi- -
mum ;P(k)_measured in the individual modes. This is probably due
mginly to the spectrum Wk at resonant saturation and thus the fact
thatvtﬂe'ﬁonresonaht modes tend to start growing from different
- amplitude levels. As in the case of the denser beam simulatiens;
. the similation growth of lAeilg.tendsAto be consistently lower than
expected‘frem the dispersion relation. The estimates of 7p listed‘
in the table are taken from the analytical approx1mat10n for large
growth rates (4.21) using a typical nonresonant k value. Thus the
tabulated estimates are probably less accurate than the.numerlcal
" solutions to (h;ls) plotted in Figs. 17 through 20.
Ae Wh?(t) approaches its maxibum Qalue in the € < 0.02 mobile
ion-simulatiohs, the resonant ehergy Wr(t) Begins to decrease as
| expected.. As in the higher beam density experiments, Wh?(t).m Wr(t)
in Runs B-1, B-6, B-7, and B-8 when Whr(t) reaches its maximum value.
As we‘diecussed earlier, this observation agrees with the parametric
»saturatlon theory of Kruer and Dawson (1972) |
In all of the mobile ion 51mulat10ns the decay of the resonant
fmode energy W (t) due to parametrlc effects 1s approxlmately exponen-
tial. For example, Fig. 21 shows local maxima of_Wi(t) for Run B-1
from the fime_(tla=lh0) when Wr(t) begins to decay from its satura-
" tion value to the time (t = 265) when it reaches an approximately
~ constant value; The least séuares,fit'to an exponentiai decay‘is

" quite good.
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If we define t as the time when W (t) beglns to drop from

1ts saturatlon value and assume for t = t that

-2yp(t=t )
W t)~Wie T, (4.29)

we can calculate 7b by teking a least'équares fit to tﬁe resonant
energy data for each similation. - Although the fifs Qere nop generql-
ly as good as in Fig. 21, the.a5sumption of exponential decdy seemed,
justified_in all cases. The results of this analysis are.iiSted in
‘,,Table 7. :
Table 7 also lists approx1mate maximum parametrlc growth
" rates 7p ca;culated from the Nishikawa dispersion rélation; There
seems to be a sﬁrong‘tendency_for'large 7p to be associated with
more rapid decay of w&(t). Figure 22 plots 7p'against D for the
eight simulations listed in Table 7 and shows the least squares fit;
lThe result of the fit is that y, ~ 7p/2 for all similations. ihe
:‘reason for this relationship between 7D and 7p is not known.
Another interesting feature of the long time behavior of.the
N fleld energy is that for all s1mulat10ns the eventual level of the
.total f1e1d energy W is withln a factor of two of h x lO _From
(h.h) we see that this level corresponds to the-OTS threshold for
kswlo.lB ke. Since this wave number  of typical‘of the fastest groy-"
ing parametricaliy excited mode, it is reasonable to conclude thaf ‘

Wr(f) decreases until it reaches'parametfic threshold.



Table 7

Summary of Resonant Decay Rate 7D and Predicted Pé.ra.metric

' Growth Rate 7P From Various Beam Simulations?

Run 7n/e SR AR
'B-1 . 0.008k ~0.015
| B-2 o 0. 0169 . 0.0%0 -
B3 o.oi69 A 0.030

By '0.6159 o | 0.031

B-5 | 6.0075 | " 0.021

B-6  o.0128 0,012

B-T  0.0128° ~ 0.016
" B-9 0.3l . ©0.050

Y70 was estimated from a least squares fit to the local maxima
of Wr(t) .during the decay phase. 7p. was calculated from the Nishikewa
ir _ A Y |
dispersion relation (3.17) using wg = (1 + 3k2>\§)2- w, and taking k

which gave meximum value for 7p"




Table 6 gives the relative energy conservation error R(t)

for the € < 0.02 simulations at the fime of resonant saturation and
near the end of the.run. These values of R are in approximate agree-
ment with the € = 0.05 simulations listed in Teble 5. The ratio of
the actual'energy éonservation error to the field enérgy at t » tmax
is listed in the last row of the table and seems to be within toler-
able limits.

| In conclusioﬁ, the evolution of the field energy in.the.
€ 5 0.02 simulatidns strongly supports the existence of the para-
metric instability. Theré is reasonable mode-by-mode agreement
befween the-growfh rgtes observed in the noqresonant,modes and the |
.predicfions of the parametric instability diépeision relations. Ion
density fiuctuations grow at aéproximately;the4samevrate as the
electric field energy, in agreement with the Nishikawa'theory.
Finally, the resonant field energy Wr(t) seems to.decreése exponen-
Fially at a rate proportional to the prediéted barametric g¥owth rate.
This behavior, which is not ébserved'in fixed ion simulations, can be '

. explained using the parametric instability theory.

~ D. Simulation Experiments—Evolution of .

" 'Distribution Function and Field Spectra

In the previous section we examined the growth rates and
saturation levels of the fesonant energy Wi, the nonresonant enérgy‘
Wnr’ and in some cases individual mode énergy Wk' This section will

_ examine the development of the electron distribution function fe(v)
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and the field energy spectrum W(k) and the relationship between
‘these two features of'the beam plasma System.'

The basic features of the e%olutioﬁ of fe(v, t) for a mobile
ion beah simulation have already been shown in Fig. 11. A plateau
forms in the distribution function from V& Vg down to the main
part of the distribution at v ~ 3 Ve Since the OTS parametric
instability excifes high-freqﬁency waves with w ~ w_ and k S ke/S,
the'resulting waves have phase velocities of 5-10 Ver These waves
are respons1ble for the heating in the tall of the distribution
(]vl >3 Ve )}, while the lack of parametrically unstable waves with
]v | <3 v, accounts for the lack of heatlng in the main part of the
electron dlstrlbutlon. This tendency of the OTS 1nstabllity to
form supfathermal tails without heating the main paert of the dis-
tribution has already been discussed in éonnection with the external ,
field simulétions’in section III~C.

We have'already discussed the apparenﬁ-form of the electric
fielq energy spectrum Wk ~ k-2 in external field simulations and the
. different interpretations of this spectrum by Thomson et al. (197h5)
and Katz et al. (1975). It will be of interest to see if this form
is also. observed in. the beam s1mulations and whether f (v) develops'
an exponentlal or power law tall. The obv10us asymmetry 1ntroduced
by the beam and the tendency to form a plateau in the beam direction
lwill certainly affect thé exact form of the suprathermal tail dis-

tribution fg(v);
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Figure 23 shows £ (v, t = 192) for Run B-2, which was a high

beam. density simulatiorl (e = 0.05) with vy = 15 vé. By this time
the resonant and'nonresonant energy W, and W had reached an approxi-
mately constant value and were probably below the OTS instability
threshold. Thus the plasma had probably reached an approx1mate non-
thermal steady state similar to that observed by Katz et al. (1975)
when their external fleld was turned off. The straight line in Fig.
23‘is a fit te the exponential form'fz ~ e-lv]/v* fer v S ;h ve,A
and the fit is reasonable but not especially good. It looks like
an exponential might also flt fZ(v) in the region 3 S v < 7. The
. éharaeteristie plateau has formed between 7 Ve and 20 Vo A power .
law £it (£, ~ |v|®) to the antibeam tail gave s = -3.3 instead of
the value s = -2 observed in the external field 81mulations. The
squared correlation coeff1c1ent R2 was sllghtly hlgher than for. the
exponentlal fit (0;87 versus O.8h). The distribution function for
2.5 < v < 6.5 gave an excellent power law fit with s = -2. 7 and
R® =:O.979. The field energy spectrum W(k) for th1s simulation at
= 192 Aw;l is shown in Fig. 2k. Recall that k = O'.l02’+55 k,, and
that a spectrum of the form W(k) ~ K will have slope 1/2 m in this
‘log-log plot; ‘The least squares f1t gave, W(k) ~k -1 é, and the:
agreement w1th the predlctions of Eq. (3 37) for f ~ lv| and
|v| was again quite good. ) ‘

- A gimilar analysis-was performed . on SumulationB-6 (e %uo.dl,_

Vg =20 ve, AVB ='h.ve). The development of the plateau region and
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the suprathermal tails in fé(v) were similar to Fig. 23 except that
the‘weaker pump>field led to less heating in the tail thanAin Run B-2.
It tooklconsiderable time after satufatibn for the disfribution
function to fill in completely and even fe(v; t = 380 w;l) showed a
dip in the piateau at v~ 10 v_. The small number df daté points in
fg(v) made itlimpractical to attempt a least squares fit.

In Run B-6a the ions were held fixed. A suprathermal electron
tail did not form .in fe(v), and it took approximately the same time
for the plateau in-fe(v) to fill in completely as it did in Ruan-6;
fhe delay in plateau formation Qbserved.in Run B-6 was apparently -
not due to parametric inétability effects.

| The field energy spectrum W(k) for Run" B-6 taken at t = 380
w;l is shown'in'Fig;'25.A The straight line is the least squares fits
for k 2 6 k ~ 0.15 k_. Assuming W(k) ~ k%, the empirical values
for m is -2.2 which is consistent with the predicted value m = -2.
The dashed’lines represent the level predictea by the Perkins and
Salpeter theory [Eq. (3.36)]Awith‘Né = 6060 and assuminé
fz ~ |v|® for s = -2 and -3. Using the value s ~ -3 obtained in Run.
B-2 gave excellent agreement between the theoretical and observed
- _'spectra for k ?»6»km’; ‘ .
.; 14 siﬁilar,aﬁalysis was péfférmed fo?-W(k) at t =;280«Q;1.v
‘The least squares fit to thé high wave nﬁmber épectrum ga#e'

Wwk) ~ k-l'9,Aand again the agreement between the least squares fit

and the spectrum predicted by (3.36) fbr,fz ~'|v|"3 was quite good.
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W(k) for k < 6 k_differed significantly from Fig. 25, but such 1grg§
fluctuations in'w(kj on a slow time scale had been seen in other
simulations including the external field experiments.

It is important to note that the final shape of W(k) is totally
different in the fixed ion simulations. The spectrum for the fixed
ion Simulation B-6a reﬁéined very strongly peaked éiound the resonént
modés even at the -end of the run, and the high wave number modes were
only slightly above their initial noise levels: There was no appaf-
ent k™2 form for W(k). In the mobile ion simﬁlations, pérametric
instability effects caused W_(t) to decay to threshold which appar-
enfl&'léft}fhe'plasma in & northermal stea&y state with no diffusion
in:veloéity spéce. In cbntfast, the fixed ion simulations do have
a finite diffusioh“coefficiéntL These B = O plasmas are sti11
turbulent, but fe(v,:t)-doesn‘t change significantly after plateau
formation is complete because'af/év5=:0 in the region where D(v)
is still large.
| ‘Run B-7 (with vy = 10, € = 0.02, and v, - 1.0) was analyzed
in;fhe same menner as B-6. The plateau-and suprathermal tail_for-
matioh was again eviéenf; and the merging between the beam and the
main distpébﬁtion«waS-mgéh mo;eifapid;_'Againtthe small number of
aaté pbintsliﬁ the taii'region précluded a@ accurate émpiriqai-

352)

determination of the form of fZ(v). Figure 26 compares fe(v, t =
for Run B-7 and the fixed ion simulation B-Ta. As usual, the B =0

simulation did not creqté supréthérmal electrons except for those

in the plateau.




The parametric instability effects were fairly weak in this

simulation, and W(k) departed more significantly from the assnmed
k™® form. At t = 280 the empirical Fit to the W(k) spectrum was
k-;'6. At t = 380 w; the least squares fit gave W(k) ~ k~ -1. h
Thus; in contrast with Run B-6 whose K2 field spectrum favored a
power law form for f: on theoretical grounds, Run B-7 has W(k) ~ K12
which is exactly midway between the Perkins and Salpeter (1965)
predlctlons for an exponential or power law tall.

Run B-9 gave such strong resonant and nonresonant 1nstabilities
tnat the antibeam.tail extended signlficantly further 1n velocity.
. The eiectron distribntion_at't = 112_w;lcshowed.considerable'heating
in the antibeam direction, and a significant number of electmons‘were
accelerated’to velocities weli ebove vy éA2O ve; A least squaresv
fit to,fZ(v £ 2.5, t = 112) ~t|v|m gave m= -4,2 and R? = 0.987.
This excellent powerllaw fit is somewhat surprising dne to tne very
strong nonlinear effects of such an intense beam. The form of fz
in the beemicirection,.which haed given such an excellent power law
fit in Rﬁn-Bé2, gave a much poorer fit in this case (m = -6.8,

- o. 73). The field sPectrum.W(k, t = 112 w;I) dropped off more
c;trapldly than usual with Wk ~‘k-2’s,: The least squares fit was
:sllghtly above the Perkins and Salpeter predlctlon for fT ~ |v|

The beam simulations discussed in this section seem to support

our contention that. the analyses of ‘the development of (v, t) and

the electrlc field fluctuation spectrum W(k) in external fleld
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simﬁlatlons can- be applied to the beam-generated parametric insta-

| bility simulations. In,particular, the interpretation of Katz et al.
' (1975) of the oriigih of the form of W(k) seems to be applicable to
‘the beam case. Both the observed shape (~ k'2) and magnitude of

W(k > 0.15 ké)‘agree reasonably ﬁell with the predictions of the
Perkins and Salpetef (1965) calculation for a stable nonthermal
plesme with £5 ~ .|v['S. The fact that the electric field is no longer
above parameﬁric thresheld means that the final state of the beam
system'is prebably closely related to the external field blasma affer
the external field is tﬁrned off. Oﬁresimulation results are con-
 sistent with the interpretation that both systems are stable non-
thermal plasmas whose W(k) spectrumAlelows_from a power lew form-for
the tail distributien fZ(v). It would be of iﬁterest to incorporate
the actual form of £ (v) produced by the beam similation into the.
Perkins and Salpeter theorj, but tﬁe'results would be very sensitive
te df/3v whieh is very difficult to determine accurately. It is |
elso important to fealize that-a realistic,plasma-would have far mbiei
particles per Debye length which would greatly reduce the magn1tude

.‘,of W(k) pred1cted by Eq. (3.33).

* Simulation Experlments-Diffusion Coeffic1ents

Another 1mportant property of & turbulent plasma is the velo-

city space diffusion coefficient D (v, t). For some turbulent plasmas- ‘

the spatially averaged distribution function f (v, t) evolves accord- .

ing to a diffusion equation:



.'-afé(v, t) 3 df :
—=— = a—vD (v, t). (v, t) |, (4.30) -

where s‘dehotes'the specie (electron or ion). This approacﬁ has been
used by'ThomsenAgg al. (1974b) and Katz et al. (1973) to deseribe tﬁe
turbulent heating of an‘oscillating external field piesma. |
Turbulent heating is generally most effective when the plaéma

supports many waves with overlapping trappingAvelocities (Gary and |
Montgomery,’l968).‘ If the phaee velocities of these waves.vary over .
‘e wide range, particles are ﬁassed from one wave to another until _
-they gradually spread out in veiocity. *This seems to be the case
with the strong anamalous heatlng observed in externally driven
parametric instability 81mulat10ns.

| Even when the plasma evolution is not adequately descrlbed by
(h 30), D(v) still indicates the dominant phase velocities in the
plasme. For example, the resqnant quasilinear diffusion coefficient

takes.the»form
. 2 |E] S -
- - e Tk % . . b Ean
HooeetG PRrekewl o e

Slnce D, (v) ~ l/m , there is usually little change in the ion dis-
tribution from dlffu81ve processes, and thus we w1ll concentrate on

the electron diffusion coeff1c1ent.
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Computer similations offer a unlque 0pportun1ty to measure
D (v, t) directly. Katz et al. (1973) a.nd Thomson et al. ( 1971+b)

have measured D (v) in turbulent simulatlon plasmas. The electrlc

fields from a turbulent simulation plasma can be -stored on tape and-

used to advance a collection of noninteracting test partlcles in a

later experiment. De(vb, to) for the "background" plasma can be

' measured'in:the following manner. The.N test particles are loaded

‘un1fbrmly in space with an initial dlstribut1on f (v, t=t )-é(v v, ).

The particles are advanced in the usual manner for particle-in-cell
simulations except that E(x, t) is taken from the earlier simulation
experiment. Typlcally ‘only a few hundred test partlcles are used.

The "temperature" Ttp(t) of the N test. particles defined by

X o 2 _ 2
Teolt) =5 ) [vy(t) - W) PP = mv S ({;.32)

' is periodically measured. Here v, (t) is the velocity of the i
test particle, v(t) is the average test partlcle velocity at time t,
and m = 1 for electrons in our dimensionless units. Assuming D(vo,to)

. is constant during the: ‘measurement ,

D("’t) 2At_ - | o (k33)



8L

Thus, if we define t/ =t -t , a constant D (v, t,) implies
that T, (t") should be linear with slope 1/2m D(v , t ). Figure 27
plots T (t') taken from test electrons injected at v, = 48 Vs
to = 200 wel into the turbulent fields of Run B 1 and is indeed
approximately linear. This method was used by Thomson et al. (197kb)
in their sinnlation ana;ysis.

One should exercise considerable caution in applying the above
method. . First, all test particles injected at‘the same time t_
the same in1t1al electric field E (t) where E (t) is the electric
| field along the j partlcle s orblt. Thus, if Tc is the electrlc
,fleld correlatlon time along a particle orblt T (t') is essentlally
independent of v for t’/ <<t o’ and these initial observations must
be discarded. The value of fc_can be determined experimentally in

the simulations by measuring the time it takes for

- N | -
(6% Vs t) T F L B0V B8 (k)

- to decay to ~ 1/ei of its original value. The correlation time can also

be'estimeted'analytieaily_(e.g., Devidson,pl972):
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" Typically Te after injection is very short (g5 w;l) although.parti-
cles can later be trapped in a single wave for a much.longer time
pefiod. A | o

A second difficulty with ‘the test particle approach is that
De(v) is oftén‘sharpiy peaked in velocity, and test particles will
eventuaily diffuse to a region in velocity space'where.De(v) is
- much different from De(vb); 'for'example,'in Fig. 27 the thermal
spread at t’ = 32 (»”;l is about 5 v, and De(v) can change by an
order of magnitude over this range. Iaeaily Ttp(t’) should be

measured only for t’ min (7 ‘z) where r_ is the time for a

T3y Ty D
‘sighificant number'of-fest pértiéies'to'diffusé~to-regibns'of velo-
city space where De(v) >> De<v°)‘or D(v)A<< D(vo), §n§_1p2~is the -
timé_dver which the gross plasma charactefistics change significantly.‘
Cléaily the tgét ﬁarticle mefhod'breaks down when Teo p- min»(rD, Tpi)f-
. Finélly; the test ﬁarticle distribution is not usually a smooth,
graduaily spreading Mexwellian. It tendsfto.have multiple. peaks aﬁd
a very strong spatial dependénce. In addition, in some of the more
strongly tuibulent.cases, ;(t) may shift significantly from Qo. Some
-of these.fEafures wiil be discussed in more detéil later. |
.. In view of the sbove discussion,lDe(vo,'to)jwas;cgigglgyed from
'the test particle heating‘ratejiﬁ the following manner. A large
‘number 6f separate test particlel'blasmaé" were simhltaheously cieatedi
wifh‘vo.= “16 v, -1k v, ..., +20 v, &t time t . The test particles

moved about in the turbulent fields and Ttp(t’) was calculated for
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each group. After a short (~ 6 w;l)'time, the experiment was termi-

‘ nated, and the particles were reinjected with their initial Vo values

again at the slightly later time. Thus, assuming‘stationaiy'turbu-
lence and an ergedic system, this process of reintroducing the part-
icles at different times eonstituted an epproximate ensemble average.
A ieast squares fit was then made between the points (discarding
t! < ) to determine d/dt T, (t’) and thus Xv,)-

| " Figure 28 shows the test particle D (v) for Run B-2 and 1llus-
trates the basic development of De(v; t) in a parametrically unstable
team flaSma system. Near saturation of the linear beam instability
(24 s t < 42), D (v) was strongly peaked ebout the linearly most
unstable mode 5 phase velocity (~ 15.5 Ve ) as predicted by quasi-
linear theory. The test particle method probably distorted the true
ﬁidtﬁ of the resonant peak significantly since the large value of
De(v) madeit' <71p impossible te satisfy. The enhanced spread is thus

not due to "resonance broadening" (Weinstock, 1969). During the

" period when W (t) began to decrease from the parametric instability

effects, the peak in D(v).decreased by almost a factor of two. Mbre
significantly, D (v < 0; 96 < wt < 114) showed a definite increase.
In fact, Dé(v‘<'0:A96,<'wet <-11k4) was quite similar in shape and

magnitude to.De(v)acalculated from the saturation level self-cohsistent
field of the external field Simulation E-3. This increase in D (v)

was therefore probabl& due to waves generated by the osciilating tﬁo-
stream instability and was respohsible~fer the formation of supra- |

thermal tails.  Near the end of the simulation De(v) had decreased



signflcantly and was approx1mately symmetrlc in velocity. This is

prdbably the nonthermal steady state pr0posed by Katz et al. (1975)
At this stage Wr(t) and Wnr(t) had dropped below parametrlc.threshold |
and f’(v) remained virtually‘constant. Assuming that the interpreta-
tion of Katz et al. (1975) is correct, the value of D (v) at this
stage is due to the enhanced thermal fluctuations generated by the'
'suprathermal tail and cannot be used in the diffusion Eq. (h.35)
to further change‘fe(v,). | | |

- The same.general featur es were seen‘in De(v,'t) in all of the.
€ = 0.05 simulations. ‘With=the ekeeption ovaun BQS, which had a
smaller.reSOnant'peak due_to the lower value of WS, the magnitude of
D (v, t) was approx1mately the same as in Flg. 28

When B = O ‘the parametrlc 1nstab111ty effects do not occum
and one would exPect D (v, ®) D (v, o t) where tsat»ls the time |
when Wi(t) saturates. Figure 29, which ' shows De(v; t) for Run B-la,
confirms this prediction. The higher peak value at later times re-
flects the slow increase in W'(t)‘seen in Fig. 9, and the magnitude
_ of D (v) compared w1th Run B-2 is due to the fact that W was a
factor of four lower.
The form of D, (v, t) for Run B-6 (Flg. 30) was. developed in the

samergeneral fashlon as Run B-2. The exceptlon.ls.that even at the.
:end of the simulation, D (v) still showed an appreclable peak in the
" beam dlreetlon. This peak at v = lO-ve corresponds with the region .

in velocity space where the plateau in_fe(v) had not quite filled in.
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fhis is another indicati‘on‘that' Run B-6 had not quite rea.chéd a steaciv. ‘
state by the end éf the run.

Finally, Run B-7 showed that the now familiar features of the
evolution of De( v, t) occp:pred for lower beam velocity (vB = 10 ve). o
' The location of ﬁhe resonant peak at t ~ t_ ., was shifted to .lowgr'_ '
ye}ocitieg.than in Fig. 28, reflecting the lower vy value. Again

De( v, t = tmax) was. near zero reflecting the nonthermal stationary

state.

F. Simulation of an Energetic Beam Plasma Driven

By & High Frequency External Electric' f‘ield

In the parametric instabili'ﬁy simulations discussed up to this
point the high frequency pump wave was either the result of an exjtér-.
‘nal electric field: or was a ,lérge amp_litﬁde ‘electron plasma wavé pro-
duced by a J,ingar béam insta;bil_ity. AHow-ever ’ 1t is‘easyA‘to change
" the simulation model so that both types of pump waves are simultan- | |
eousiy present byl' adding the external field to a beam plasma éimula— |
tion. ' o o

| To_‘ the author's knowledge, no one ﬁas yet analyzed such a

) phs@ sysfem ex-‘perimerita.lly or numerically. There doeslr'xot appear
to bé éhy"coﬁpéilihg"réasdh" why eXistiﬁg ihten’é_e miérowave experi-
ﬁxentls (e.g.', Dreicer et Q._, 1973) could not be modified to include
& modéraﬁely high veiocity. be_am‘... We sﬂall not attempt to formulate
aAnéw a‘.na_lyticé.l 'i:heory” for the beam-éxterna.l field "pl.a;sma. but will

. instead draw upon ﬁhe analyses of the previous sections. .
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Table 8 shows the chosen experimental parameters (vB, L_\vB, €,
E , and wo) for five beam-external field simulations. External field

Simulation E-ka is also included to show typical results in the

ebsence of a beam. Except for taking Ne = 12,000, other parameters

(mass ratio etc.) are fhe same &s for Run B-1. The table also sum-
marizes the-ekperimehtal pesulﬁs;
Experimente EB-1, EB-2, and EB-3 were identical to simlation
Run B-6 (vp = 20, Avy =k, € = 0.01) except for the addition of an
external field. Experiment EB-4 was an attempt to stabilize the beam
agaiust plateau formation, a ﬁrocese discussed in detail in éhepter
V. Finally, Run EB-5 was designed to generate'sfrohg parametric
growth in modes with phase velocities greater than the beam velocity
B’ ,
 Most of the simulations listed in Tsble 9 had & driving

frequency W, which was 31gn1f1cantly above the electron plasma fre-

"quency. ‘This dr1v1ng frequency was chosen so that the small wave

number resonant beam modes would be more difficult to excite para-
mtrically. For example, if w, = l.l2‘we, and appropriate values

are used for the parameters,in the ion aeoustic decay threshold

‘ condltlon (3 23), the parametrlc threshold condition 1s E //E kT

>3 2.5 for beam modes k < 0.06 k.. Moderate phase veloclty modes
afeheasier to exeite with such an external pump wave, and for k = 0.2
k, the thfeshold condition beeomes EOA/EFHSET; S 0717.

Figure 31 traces the evolution of the resonent and nonresqnunt

energy for Run EB-1 and shows the typical features of a beam-external



Table 8 = .

Experimental Parameters and Results for External Field-Beam Simulations .

. EB-2

power law R2

EB-1 . EB-3 EB-}4 ‘EB-5 ~ E-ha
vp - 20 20 20 30 10- 0
Avy L It 4 6 1 0-
€ 0.01 0.01 0.01 0.002 0.01 0
E, 0.6 0.6 0.8 0.6 0.6 0.6
W 1.06 1.12 1.12 l.12° 1.015 1.05
Ef0) - 2.70 2.70 2,77 1.56 1.13 0.62
Eq(480) 5.06 b.12 . 5.4 3.52 6.76 4.39
Eg(480) - Ef(0) 2.36 Lh2 269  1.96 5.63 3.77
e 0.037 0.048 . 0.046 0.010 0.040 -
75' 0.012 0.012 0.014 0.009 ? 0.013
WS 0.18 0.15 0.1l 0.05 0.26: :
SO 0.15 0.08. 10.09 . 0.10 0.10 0.22
o from eIVl o gt 0.485 -- 0.563 - . 0.439  0.368
exponential'Ra ¢ 0.972_ -- - 0.976 - 0.990 0.835 .
m from £~ |v|™ fit = -3.0 - 3.4 -- -2.5  -1.8
power law B2 *  -0.953 0.933 0.971 - 0.965
s from Wy ~ k® fit -1.2 -- -1.2 - -1.b 2.2
- 0.70 0.51 0.85 0.80

06
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field system. As could be expected, the externai electric field
'*triggered paremetric growth in Wnr immediately. In an identical beam
plasma with no external field (Run B-6), Whi(t) did not grow signifi-
cantly until W neared its saturat_ion level. W (t) grew slightly
faster than in Run B-6 and still showed the abrupt decrease after
saturation characteristic of the parametric beam plesma interaction.
For t 2 350 w;l, W_ and W were approximately equal in magnitude.
Growth rates and'saturation-levels are listed in the table.
Changing w_ from 1.06 to 1.12 (Run EB-2) cheanged the detailed
. structure of.Wf(t) and Wnr(t) while retaining the gross features of
Fig. 31. increesing Eo'from 0;6.to 0.8 (Run EB-3) caused W, to
show onevsignificantly differeént feature. After the usual decrease
in W_ following the ssturation of wm;, Wf began to rise again and
eventually became & factor of six above the locel minimum at
t = 500 R 1. |
The electron d1str1but10n functlon for Run EB-1, shown in

Fig. 32, demonstrates the features of a typlcal beam-external field .
. plasma. As W, nears saturation (t 128 w ), the usual plateau in
‘the beam d1str1but10n begins to form. Long after saturatlon (t = 416
: w ), the heatlng 1n the tall part of the dlstrlbutlon 1s 31gn1f1- f |
~cantly stronger than in the correspondlng S1mulat10n in the absence
of the external‘field. The distribution is appr0x1mately symmetrlc
in the reglon ]v| < 10 v, which corresponds to those phase velocities

- for wh1ch perametric effects are probably strongest. The evolution

" of fé(v,-t) was similar in Runs EB-2 and EB-3.




The stronger tail heating giues enough data points to permit

a least squares fit to the form of £, (v). Table 8 reveals that

. the tail distribution at t = 480 w;l'fitsthe exponehtial form signi-

ficantly better than the power law form in both Run EB-1 and EB-3.
Similar analysis in previous experiments gave better fits with'the
powerAlaw form.
~ . t -a,vl
As we have previously discussed, fe ~ e results in a

fluctuation spectrum of the form W, ~ k%: Figure 33 shows the

k
spectrum resulting from the distribution in Fig. 32. The least
squares fit gives Wy ~ k12, The dashed lines show the spectra
‘predicted by Eq. (3.33) assuning ft -alvl and f ~ |v|  The

values of ¢ and m used in this analays1s are listed in Table 8,
and N = 12,120. The exponential form is clearly superior both in

slope and magnitude which is to be expected since fz ~ e'O‘lvl

gave
@ better £it to the simulation distribution function.

An enalysis of the distribution function and field eﬁérgy_
spectrum for Run EB-2 gave very eimilar results; Again) the form
, b 41|v| gave a.superior fit to the tail distribution, and the

field energy spectrum predicted by the exponential fit gave mich
closer agreement with the experimental results’ than did the k
spectrum predicted by the power law form. Again the results are
tabulated in Table 8. |

Thelparameters of Run EB-U4 made thelbeam instability very

weak. In contrast to the previous beam-external.field experiments,
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wnr(t) was consistently above Wi(t) until t ~ 450 w;l, after which -
the resonant and nonresonant energies remained approximately equal.

As previously merttioned, the external driving frequency

(w

o = 1.12 we)>was chosen so6 as to minimize paremetric excitation of

the beam modes (ﬁodes L km). This is reflected in the fact that

~at t = 180 w;l, over half of the field energy in Run EB-L was in

‘modes 9 k, end 10 k , and less than one-tenth of the energy was in

the resonant modes. The heating in the tail part of the electron

‘distribution followed the pattern of other external field simulations.

In Run EB-5 modes with phase velocities higher than vy = 10 Ve

were driven parametrically unstable by the external field. This

resulted in very strong heating in the electron tail. Figure 34
shows-that.fe(v, t = 480 &;l) was almost symmetrical with only a

slight vestige of the beam remaining. Once again, the exponential

' form gave a better fit in the range 3 < |v|/v, s 10 than did the

 i'power‘law form. By t = 480, there are a significant number of elec-

trons (0.49) traveling in the opposite direction to the beam with

~ speeds greatér than 15 Ve Only abdut'l/s this number have velocities -

in the same direction as the beam with v = 15 v,. The reason for

.this‘appgrgnt tendencyAto:pronce»mb;e high épeed particles in the

direction away from the beam is not known.

The fie;d energy- spectrum for -Run EB-5 gave a least squares
3 -Iou

.'fit to the form W(k) ~ k . Again the exponential tail distribution

prediction [W(k) ~ k1] agreed more closely with the simulation field

energy spectrum.
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' Tgble 8 also shows the amount of energy (in the approprlate

dlmensionless units) absorbed by the various simulation plasmas by

= 480 w;l;‘ It appears that the presence of the beam in simulation
' Run'EB-Slled to significently more energy being sbsorbed from the
external field. Specifically, the total plasma energy increased by
5.63, whereas in an identical simulation with no beam (E;ha), the
'energy increase was only 3.77. Thus,lthe additional turbulence
generated by the beam appears to have 1ncreased the anomalous resis-
tivity of the plasma. The other beam-external field simulations gained
less energy than did E-la, but the higher pump‘frequency w, prohably
.inhibited parametric excitation in the long wavelength modes.

o fn conclusion, we can make the‘following-general observations
_fabout the evolution'of a simulation beam piasma in.the presence .of an
external field whose frequency is near we. First, Wnr begins growing
1mmediate1y ‘instead of waiting for the resonant beam modes to rise
well above threshold. Also, the decay in W (t) as W_(t) nears its
maximum, a prominent feature of the beam Systems studled in prev1ous
sectlons, still occurs in the presence of the external pump- Ho&-
-ever, W may begln to rise again at a8 slower rate after the decay
‘ phase is completed. The electron dlstrlbutlon function develops
stronger talls than when the external field 1s absent. In contrast
to experiments discussed in prev1ous sections, the. form of fz appears
to be.exponential rather than.power law, and the observed formnoflthe o

field energy spectrum agrees more closely with the spectrum'predicted



forlan expoﬁential electron tail. The external field does not pre-

vent plateau formation although the plateau can be buried by the

- energetic electron tail. Finally, in the one case in which

|vB | S wek/k for a typical mode parametrically excited by the exter-

nal field, an unusually large number of particles were accelerated to

speeds greater than the beam velocity.
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V. STABILIZATION OF BEAM PLASMAS EY-

PARAMETRIC INSTABILITY EFFECT

A. Analysis of the Stabilization Criteria

The previous chapter.has documented the importence of the
oseillating two-etrean instability in simulation beam plasma systems.
in all of those simulations the initial linear beamvinstability wes
.sufficiently strong so that.the resonant mode energy Wr reacned its
saturation value Wi before the‘parametrieally driven nonresonant
modes grew very far from their'thermal noise ievels.' The growth‘of
these nonresonant ‘modes led to an eventual decrease in W (t) and the
formation of & suprathermal tail, but these effects did not prevent
vthe "washing out" of - the beam into the usual plateau in f (v)

waever, under certain conditlons the parametrlc growth of the
nonresonant energy W may be sufficiently strong to cause W to
- decrease.before reachlng 1ts normal saturatlon level (1 e., the
'saturatlon level for a beam plasma W1th infinitely massive ions).

In this event quasilinear dlffu81on would be severely reduced in the
;uresonant region, and the formatlon of ‘the characterlstlc plateau in
f (v) would be 1nh1b1ted. This possiblllty of using the. osc1llat1ng
two-stream 1nstab111ty to prevent plateau formation and ma1nta1n the
peak in f (v) at ‘the beam velocity vy has been investigated by
Papadopoulos and Coffey (l97ha, b), Papadopoulos et al. (197&), and :

Papadopoulos (1975).
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Figure 35(a)bshows the expected qualitative evolution of
:'Wr(t) and Wnr(t) for a paremetrically stabilized beam plasma based
on the arguments of the previous paragraph. The distribution func-
tion fe(v, ©) might be expected to form suprathermal electron tails
[Fig. 35(b)] while maintaining the integrity of the beam peak. For
comparison, Figs. 10 and ‘11 showed the evolution of the field energy
and the form of fe(v, ®) for a typicel unstabilized (plateau forming)
beam plasma in unich parametric effects were nevertheless important.

To the author's knowledge this stabilization process has never
been ‘successfully observed in particle simulation‘experiments. As
'bwe snall‘see,'the conditions for‘stabilizatiOn reduire very large
beam velocitles and low beam denS1t1es, and the required resonant
growth rate Yy is so small that thermal fluctuatlons tend to _swamp
the desired physical effects in a simulatlon plasma. Moreover, the
laboratory experlments of Quon et al., I97h), although confirming
-the ex1stence of beam generated parametrlc instabilities, were
far from stablllzed.

However, it has been proposed-that the parametric stablliza-
tion process occurs in auroral electron streams (Papadopoulesland
Coffey; 19Thka,.b) and in the streams of high~energy solar wind I'.
~electrons assoclated W1th Iype III solar bursts (Papadopoules et al.,
'197h) In both cases the observed beam of electrons seems to b
relatlvely unchanged over very long d1stances, even though the usual
quasillnear theory predicts rapid plateau formation. Ihus, some

form of stabilization probably occurs.



98

The parametric stabilization process has been described in
great detail by Papadopoulos (1975), who has derived the conditions
for achieving the stabilizﬁtion. Howeve?, the analytical stabiliza-
tion condition derivéd by Papadopoulos ignored the importance of the
0TS threshold condition [Eg. (h.h)] and some bf the complexities of
the Nishikawa dispersion‘relatioh. The main purpose of this section
is to show that fhe incluéion of these effeétsvleads to significantly
different conditions for stabilization than those given by |
Papadopoulos (1975).

The evolution of the resonant wave enérgy Wr(t)'and the various
nonresonant modes Wnr(k;‘t) cénfiﬁitiﬁ#l&lbe_described in the follow-

ing manner (Papadopoulos and Coffey, 197ha):

W (t) - _‘ .

ST = Wr(F) -2 % 7 W) Wk, ), (5.1)
av__(k, t) o -
—— = 2 W) W (k, 8) R (5.2)

 Thi§_coupigd‘setAqf_wafe_kinetic.eqﬁatioﬁs bresks down when diffusion
'éﬁanéés'f;(v,'f) Sighificéﬁfi& ffém fé(v,-oj; Tﬁén 7r begiﬁsvfo‘ o
decrease with the 5éginning of plateau.forﬁétion, and the nonresonant
waves may 5egin to exchanée energy with particles. :Hdwevér, (5.1);.
.(5;2) cen stilllBe uéed to estimgte whethér parametric stabilizationA

can occur.
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To analyze the stabilization conditions Papadopoulos (1975)
replaced the sum over the nonresonant modes with the total non-
resonant mode energy Wnr(t) = E Wnr(k, t) and estimated the average

parametric growth rate ;;KW}). The resulting system is

oW (t) . ‘
—t— = 2y () -2 W (), - - (5.3)
5t p () ) | (5.4)
A , 75 /3_8 Wr(t)A:we R | : : (5.5)
o | L u 2
. - Equatlon (5.5) follows from (4. 21) assuming 62 ~ 9/h AW, 5
6 > wi, and -
w2 '
4 e - o '
3 5Wr(t,) —<<1 . | - - (5.6):

8

The resonant growth réte can be estimated from Eq. (h 24).

‘ Papadopoulos (1975) shows that the evolutlon of W (t) and

W (t) described by (5.3)-(5. 5) follows the general pattern shown 1nt o

'Flg, 35(a). Using an approprlate change of variables, one can show

that the peak value of W (t) is epproximately
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Awmax 73 AR ERE W?ax :
s VPG e

The factor W (O) is the 1n1t1al noise level in the nonresonant modes,
and Eg. (5.7) dlffers sllghtly from Papadopoulos result owing to

different numerlcal factors in 7p and 7 pe :

For purposes of making approximate numerical estimates,

Papadopoulos (1975) estimates

ey, | S :
ROl kel I

for a typical plasma. He then assumes that the parametric instability

effects will stabilize the beam against quasilinear.diffusion if

r

W s e S (5.9)

 :where W is the saturatlon level fbr the corresp0nd1ng flxed 1on

background system. For W < wmax the beam is stabilized by the usual

2

qugs1linear plateau. Papadopoulos uses Wr ~ s(vB/ve 2/6 which is
the upper limit given in Eq. (4.3). Using (4.24), (5.7), (5.8), ana
(5.9), the parametric stabilization condition fdr a hydrogen plasma o '

is
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2 ‘ L

v , v, - AV ' '
Bl B B .
[ 7o (B2) < (520

| The parametric stabilization conditions predicted by (5.10)

are exhibited in Fig. 36. As expected, it becomes significantly

more difficult to stabilize parametrically as vB/AvB increases. This
théory also predicts that as the‘beém dénsity ratio € + 0, it becomes
very easy to stabilize'the beam against plateau formation.
However, Eq. (5.5) is valid<on;y well above the OTS threshold.
For Wr < 26/we'a:3kghi, the mode k will not exhibit parametric growth.
Thus Egs. (5.1)-(5.2) with the frue Nishikawa value for 7p(k, Wr)
might lead to significantl& differenﬁ parametric stabilization
| conditions. Secondly; the true‘yalue 6flthé:duaéilinear-saturation
level W: is likely to be:well'below e(vB/ve)2/6,-especially-in view )
y : . : of the simulation fesults in section IV-C. Thus the‘parametficA
f sfqbiliZatibn,cdhditiops mey be much more difficult to achieve than
bpreviouély thought, and a numerical solution fo (5.1)-(5.2) would.
seem to befin order. |
'Béfére.attachiﬁg the.problem numerically we can assume that -
e pgrametrié Stabiiiéétion is~imp6§Sible unlésS'Wi'exceeds.the'thres; S
hold of the highest phase velocity'CTS mode. .The threshold for this

¥*
mode kp will be
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2
S € vB . P ( *) -1 ’ A : :
~ —_— .
W~z v, > 26 kb w, , (5.11)
where the frequency mismatch 6(k;) is
_ _ 2
S m 2| )2 - —— |  (s12)
p 2 P e ( - Av )2 e )

" For’ v = 34V, v (k Y v /3 since higher phase velocity modes
11e in the resonant region. The region below the dashed line in
Fig. 36 denotes plasmas for which- W 11es below the OTS threshold
for mode'kp;‘ Colder beams tend to increase vp(k ), and the thres-
hold condition is relaxed somewhat. | | 4

Although 7p(k; k, Wi) can be estimated from Eq.»(s.S), numer-
ical solutions to the finite wevelength'drivem dispersion relation
[Eq. (h.lB)] reveal 8 far more complex behavior. Figuresf37 and
38 show 7o (k) for various fixed values of k and W = 0.02 and
0.00125, respectively, assuming a collisionless hydrogen plasma.

Although Eq. (5 5) predicts that 7p should be relatively 1ndependent

: of k and should scale like W2 the actual dependence is clearLy muchl

_more complicated. Flnite wavelength effects are clearly 1mportant
for koke > 0.05 (or VB - AvB < 20 ve). Lower beam velocities and’
higher resonant wave energies tend to shift the peek in the 7p(k)

curve to higher wave numbers.
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‘ ﬁecause of the complexities iniyp(k; W ko), we have solved
AEqs;l(S.l);(5.2) numerically as & function of €, vb, and v /A
and examined the observed peak value of W (t) to see if it lies above
or below the quas;llnear saturatlon Wr. The modes in the system
mere takem to be multiples of km = 0.0125 k_, and usually seven non-
resonant modes were retained. Modeslfalling in the resonamt regien
~were excluded from (5.2), and the resonant modes were lumped intov
a single wave atvk.oxe = ve/vB'- AvB,‘ Instead of calculating 7p(k,W¥)
for eaCh“mode at each time step, Eq. (4.13) was solved to create a .
table.of parametric‘growth.rates, and the program interpolated besed

(t)

‘on the current value of W."’ and the approprlate values of W in

the table for the particular mode. Since W grows exponentlalLy at’
the rate 27r until it reaches the threshold level of the smallest

wave number nonresonant mode s W (t =t ) was taken to be this thres-

-7

hold. . W_(k,t = t)) was taken to be 10~ ana woﬁld be determined

" by the number of. partlcles per Debye ‘length in a real plasma system.
Flgure 39 shows the evolution of W (t) and W (k, t) as
caleulated from (5.1)=(5.2) for € = 3'x 107, vy = 100 v_, and
_VB/AvB = 5. Mode k lies in the resonant region, and.tﬁreshold~fer
-3 . '

vm,ode‘:.2.k =0, 025 k, is W, = = 1.88 x 10 ‘The resonant energy W,

u

grows a.t.'yr = 1.8 x 10 g until t - t 5.7500 W, -L and soon after.
reaches:its peak value; Once W falls below W Eqs. (5 1)- (5 2)
no longer adequately descrlbe the evolution of the system.

Several observatlons about the typical evolution of W (t) can

" be made on the basis of Fig. 39.»'F1rst of all, Wmax 2. 7 x 10 -2
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and is only a factor of two below the uyper limit for
Wi =Ae(v2 + sz)/(6'v2) = eb/B. Since typical simulation resultslgive
W s é /10, parametric stabilization is probably marginal. Second,
the various W (k, t -t ) curves” reveal that the lower k modes have
the 1owest threshold as expected, but. the higher k modes often grow
faster onée’threshold:for ﬁhese modeé is exceeded. Finally, if
w(t¥o)=w (&, t=0) = '7, the time t_ forW(f) to grow to
the threshold level for W (2k ) is 2.7 x lOh W, s so that the time
span represented in the graph is only t /3

Since the key parameter in determining whether parametric
stabilization will occur is the ratio wf“/wj, Teble 9. displays
‘.this‘ratio aSsuming W:.¥ eb/ﬁ, based on the numerical method we have
A been deécribing.'_We arbitrarily define marginai pérametric stabil-
iiatibh as occurring when 0.3 < Wiax/(gb/3) < 1 since Eb/3 is an
upper 11m1t for W° .‘ We éan see that. fbr v /Av‘ =3, béam‘systems‘
-Aw1th vB < 50 Ve are not even marglnally stable against quaS111near
‘plateau formation. Marginal parametrlc stabilization is achieved for -
50 5 vB/ve < 75 but only for a narrow'range of density ratios. Only
for ;B z'lOOAve can we be reasonably confident that the beam will
- not always bg,wéshedzoup-by’diffusiqn in'velqcity spacgg

Teble 9 sunmarizes the results of a similer anslysis with
vy/bvg = 5. Even though such & ratio would still be considered a
Yhot".beam, parametrié stabilizétion is very difficult to achieve'

for vy < 100 Ve under any circumstances.



Table 9

Ré’tic‘; of w‘:ax( eb/B) Calculeted From (5.1)-(5.2)

Asguming:" b(a.») vB/AvB =3, (b) vB/AvB =5

- | vy/v,
| 'W?a%/( /) 50 . 75 100 150
&l;/AvB =3
5A X ‘10'“' 'o.81+ 0.40 0.05
1 x 10""'_ . 0.80 0.5 0.1+ 0.05
3% 1077 > 1 0.49° 0.17  0.05
1'x 10;.5' L : >1 ©0.36 0..09
3 x 10'6:. ¥ : * 0.9k 6.20
L1x100 o« * *  0.52
sk e * *
|  vE/AvB 5
3x10™ s1 »>1 . - --
‘-1xlo'u > 1 > 1 >1 -
35%x10°  >1 © 0.9% 0.55 0.2k
1x107 > 1 0.80 o.l'+5' 10.20
k10t e s1 et 32 o
1x106 .« wx g
‘-5‘><10',7‘ EE T * *

" Maximum possible value

parametric threshold.

of W_ is below




As noted by Papadopoulos (1975), the stabilization conditions

1 are fairly insensitive to the‘initiel noise level in tﬁe nonresonant .
‘modes Wnr(O); If W:r(o) represents some assumed noise level in

each nonresonant mode and W*max represents the maximum velue of W (t)
obtained by solv1ng (5.1)-(5. 2), a different assumed initial noise

level W (O) will lead to & new maximum resonant energy approxlmately

‘given by
. -)(-
: | 4 (0) .
ax _ _*max . ‘r nr : :
WooX = T exp = g o] | (5.13)
-'P '

For the example shown‘in fig..39;'the raﬁio-yi/?é ~ 0.1 at
the time.Wr(t) reaches its max imm. Applying (5.13), a change of
10° in Wﬁr(d) changes W:aijy oniy'e‘fdctcr of three. 1In ﬁost
' stebiiized'cases;.yi/;é is ejen smailef, making Wgax even less .
sensitive to’wnr(O)f | | '

'Tﬁus, the resultsAof this section indicate that, because of the
ﬁhreshold effects, parametric stabilization probably cannot occur
undes any circumstances unless vg ? 50 v, Even then, an exceedingly
" hot (v /Av s 3) beam must be used, and the range of beam denS1ty
ratios for whlch thls process cah occur is 11m1ted. In addltlon,

“in most of the stabllized cases, W (t) reaches its meximum Wm

"~ before any of the hlgh'wavernmmers(k 2 0. 15 k ) have grown apprec-

1ab1y., The phase_velocltles of the OTS modes w1ll therefore not
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overlap the main part of the electron distribution (lv] €3 ve) in
most peiametrically stabilized plasmas. Nonresonant diffusion will
still tend to pull main plasma electrons into a suprathermal tail

(Davidson, 1972), but the process is inherently much weaker than

resonant dlffusion and suprathermal tails mlght not be formed at

‘all.

. In view ofAthe more restrictive stabilisation criteria pre-
dictedAby'our anal&sis, the applicability of parametric beam{stab-
ilizetion to Type'III‘solar bursts and suroral electron streams will
be re-examined_in:seetion v-C. The possible.effect on the Io-
accelerated beam'in the Jovian*magnetosphere,vproposed.by'Gunnett

(1972);.w11l also be analyzed.

" B. AttemptsAto Achieve Parametric Stabilization

in a Simnlation Beam Plasma

‘The analysis of the parametric stabilization condltions cen-

. tered on the wave klnetic equations (5. 1) (5. 2) and was not carried
"out in a selffconsistent manner. Thus, 1t would be very desirable

to determine whether the stabilization process‘can take place in a

self-consistent 81mulat10n plasma. To our knowledge the parametric :

f‘stabilization process has never been observed in a self—con31stent a

plasma system.

Plasmas which meet the stebilization conditions,deseribed in
the pre#ious section pfesent considereble difficulties for a particle

simulation~analysis. First, parametric stabilization can only be
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achieved for low density (e € 3 x 10—3), high temperature

(AvB/vB » 1/5) beams. This results in a very weak linear beam
instability. Paiticle‘simulations often have difficulties with very
weaek instebilities because fhe instabilify‘may be swamped by thermal.
hoisef ‘In addition, the wave kinetic analysis predicts that vy ? 50
vé befoie.stabi;ization can occur at any density. Such high beam
veloéities would'probably.require shortening the time ste§ and
increaSihg the system length, both of which increase computgtion"

time, FihalLy, the smaller value of the resonant growth'rate 7p

_increases the time necessary to reach saturation. In almost all of

the  cases énéLyzed in sectioh V'A"tmax 5 2000'w;l. Computing costs

therefore may be prohibitively expensive.

waevgr, the actugl values of parameters Vg AvB, and €
necessary for péiametric stabilization'in a similation may be'so@e-
what less‘restriptive thah those for a hydrpgen plasma. The para-.
mgtric gfowth raﬁe 7? in a simulgtion plasma~wili be higher becausé
of #he artificial maés ratio B. Sinceyp ~ B% in certain cases,
the simulation parametric growth rate could easily be a factor‘of five
higher than the hydroggn plasma case. Also,_the wave kinetic analysis
assumes 7£ tgkes‘on its;mgximum ppssible:va}ug'assuming.a ggntinuggs_
k spectrum. In éection IV-C we noted that ﬁecause of thejdiscrete
nature of the simulation spectrum and ﬁhe l&rge differenceAin phase -

velocity between adjacent low wave number modes, the simlation

growth rates were typically a factor of two below the predicted
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maximum given by Eq. (L4.24). Noting that stabilization occurs when

T;vkét)myrwét) . | (5.14)

the gffect'of increasing ;é and decreaéing 7p mékgs parametfié stab-
ilization egsiér to achieve. Finally, the initiai nonresonant noise
level‘Wnr(Q) is ﬁuch higher in a sipuiation ﬁhan in most real éiasmés,
éb that the condition (5.13) is achieved more quickly.

The wave kinetic analysis was repeafed for typical similation
paréméte:s. AS'exﬁeéted,‘the paramefers used»iﬁ the simulations -
of chapter IVAdid not come close tO‘achieVihg parametric stabiliza-
tion. Marginal péréﬁetric.stabilization [wgax/(e£/35 ~ 1] was
achieved for vy = 30 yé; AVB =6 v, and ¢ = 0.002. Increasing |
VB.to 50 v, and setting:AvB~= 10 ve'gave w?ax/(eb/s)‘z 0.5. Although
the upper limit for_yr.was used, the fact that in prévious simula-
tions Wi.has uéually been & factor of three or more below the upper
linit value WS = g /3 indicated that'parametric-stabilization would
étill be’difficﬁlt to achieve. However, since even a marginal
parametric stabilization could be of considerdﬁle interest, we
decided to attempt such'a simulation. |

The beam parameters in Run Sﬁal ﬁe?e chosen to be QB'=:50 Vs
'foﬁ =10 v, and € = 0.003. The'nﬁmbef bf maih:plasma electrons -
N, = 12,000, the time step ‘At =.w;1/;6, tax = 800 w;l, and other

parameters were the same as in Run B-1. Figure Lo shbws the
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evolution of the field energy.  The meximum value of Wr(t) is 7><10'3

‘which is two orders of magnitude below 85/3. ' The initial resonant

growth rate Yy © 0.015 W and is near the value predicted by Eq.
(L.2h). |

The electron distributiqn:function changed very little during
the run'and'showed no tendency to stabilize by plateau formation.

At first glance the lack of change in fe(v, t) and the low .satura-

tion level of Wr(t) would seem to be evidence for parametric stabili-

zation. However, a fixed ion simulation with identical beam para-

" meters (Run SB-1F) gave almost identical results except that W_ (t)

© did not ‘show the factor of two rise observed in the moblle ion

simulation.

The lack of change in fe(v, t) and the low value of Wgax was

thus apparently not due to parametric inetability effects but may

have been due to the largevnoise level. The fields due to thermal

noise fluctuations may well have swamped the beam instability and

caused W (t) to pesk premsturely. The total field energy W, increased

by only a factor of three above the thermal noise level, and after

W saturated, the energy conservation error was larger than the total
-’field energy.. ‘Thermal noise effects therefore probably made these

" simulation results meaningless. s

-Similation Run SB-2 represented'ahothef atteﬁpt at paramefric
stabiliZation. The beam parameters chosen were vy = 50 ) AvB =“6vve,

and € = 0,002. In this simlation all electric field modes remained.
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essentially at their thermal fluctuation levels, and no significant
chenge in fe(vj was observed. This simulation again seemed to be
stabilized.by collisional effects rather than by either qﬁasilinear
plateau formatlon or by parametric 1nstab111ty effects.

The problems 1nduced by the thermal noise spectrum could be
reduced by increasing the number of particles greatly. It is also
possible thaf improvements in the simulation code, such as improving
the Poisson solver or using a mere efficient particle pushing rou-
tine, might make it feasible to observe the parametric stabilization
process. A further increase in.the mass ratio B could increase ;é
sufficieptly' so that a stfonger uné,a_r beam .stability could be
allowed. - waevef,.eﬁenlthough it may still Be possible to observe‘
parametric beam stabilization in a particle siﬁulation, the cost is
prebably prohibitive.
| - It is of interest te compare these resultsewith the low beam
density experiments of Kainer gg'g;L_(l972b). Although some .of these
experiments used even lowerlbeam densities than Run SB-2, the beam N
was much colder (Av & Ve ~and Vg T 50 Ve ). This led to & much larger

linear beam growth rate 7y and therefore the beam instebility was

“not swamped by thermal noise effects.v waever, because of the larger .

Y the nonresonant modes did not grow 51gn1ficantly until. W (t)

reached saturation, and plateau formation was not prevented.-
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C; Paiametric Stebilization in Space

and.Laboratory'Plasmas

We have seen invthe previousAsections that the relatively high
threshold of the oscillating two-stream instability pfedicted by the
Nishikawa (1968a, b) dispersion relation mekes parametric stabiliza-
tion more difficult to achieve than had been pre#iously thought. We
shall now apply the results of section V-A to scme of the space and
laboratory plasmas in which the parametric stabilization process‘
might occur.

Electron streams associated with Type III solar bursts are
‘observed pfbpagating with energies of 10-100 keV in the solar wind.

_Although the usual quasilinear‘analysis predicts that the beam dis-
tribution should be flattened by the lineqr beam instability long
before it reacheé the Earth, the beam distribution at 1 a;u. still
has; a definite peak (Lin, 197h). "Papadopoulos et al. (197h) have
proposed that parametric stabilization prevents the beam from de-

céierating while at the same time producing plasma 0scillat10né in |
the‘nonresonant region'which are sufficiently stréng to produce the
'Aobsérvéd electromagnetic radiation.

._;'Tpglénérgeti¢4electron-beam originates in'yhe-cqrpna whgré<-~
'.tﬁe thermal plasma has a temperafqre above 100 eV. The beam Qelocity
‘is therefore 20-30 ve.' Since parametric Staﬁilization is difficult
to achieve under any circumstances at such é lowfrelative‘begm vélo-

~ city (Table '9),,it seems unlikely that the parametric stabilization




113

process could take plaoe in the corona. Moreover, the typicel beam
density ratio is € 10-6'- 19-7, and Fig. 36 shows that the maximum -
resonont wave energy for such a plasma is weli below the OTS threshold.
The possibility of parametric stabilization is somewhat im-
proved in the solar wind. The solar wind temperature at 1 a.u. is
about 10 eV, and thus v /v 100. Table 9 reveals that for
'VB/AV 3, parametrlc stablllzatlon can occur for a limited range of
€. However, the beam density ratio for the Type III solar burst
eiectron‘streams is still somewhat below this range. Moreover, the
time necessary for quasilinear flattening of thelbeam distribution'is‘

-7 ‘and n ~ i07 cm-3

approximately w /e (Davidson, 1972). Taking-é =.10
in the corona, the beam distribution should flatten within 1 second,
long before it reaches the lower density and temperature region in
ohe solar wind. |

The'above anolySié indicates that the numerical solutions to
the coupled wave kinetic equations (5.1)-(5.2) do not support the
conclusions of Papadopoulos et al. (1974). However, & number of
factors have been left out of our analysis. First, the beam is
mildly relaﬁivistic, so that the actual béam energy might be as much
.as 20% above tho‘non;olativiétic level. *Moreover,.the,aotoal electron -
stream isospatially liﬁited and inhomogeneous at the front,and'back{
Zaitsev et al. (1972) heve shown that this ‘spatial structure can
radically effect the dyanmlcs of the system as-compared with the

.‘infinlte spatial assumption inherent in our model. In addltion, we
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have relied on the single finite wavelength'pump wave model Eq.
(h.l§) to generate ﬁhe parametric growth rates for Egs. (5.1)-(5.2),
end the large beamathermal spread necessary for stabilization could
require a more accurate analysis. However, such finite pump wave
bandwidth effects tend to reduce rather than:enhance parametric
growth rates in external field plasmas (Thomson and Karush, 19Th).
Although a more careful analy51s which included the above-
mentioned factors and explicitly followed the evolution of fe(x,\r,t)
might alter the conclusions of this study, the beam energy in the
corona is so far below paremetric thresheld as to make it unlikely
that the 0TS 1nstabllity alone can stablllze the beam. HoweVer, if
~ some other mechanlsm can retard the beam flattenlng process untll
“the beam reaches the lower temperature regions of the solar w1nd,w
parametrlc processes mlght assist in the stablllzatlon of the beam
! . B Papadopoulos and Coffey (19Tha, b) have proposed that the |
| | parametrlc stabilization’ process also applles to auroral electron
beams. Rocket.meesurements of the flux of such electrons (Reasoner
end Chappell, 1973)'ihdicate a peak at 10 keV. These beams can
propagaﬁe over distances of several thousand kilometers witheut
lsignlficant energy 1oss (Papadouplos, 1975) As in the case of fhev“
.energetic electrons assoclated with Type III bursts, the usual quas1-
linear analysis would predlct 81gn1ficant energy loss due to flattehr o
ing of the beam_distributioh.
| Typical paremeter values for such beams are vi/v_ = 200 and

10~? (Papeadopoulos, 197ha) Table 9 reveals that paremetrlc
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stébilization probably does occur forlvB < SAvB. The beam energy for
these precipitating electrons is’mﬁéh'higher,relative to the thermal
plasmé energy than in the solar burst cese because the thermal plasma .
in the ionosphere is much colder than the éoiar corona.

Papédopbulos;and:Coffey (1974a, b) have also predicted the
formation of suprathermal electron tailé in the suroral plasmé by
the OTS instability. In fact, the meééurements of Reasoner and
Chappell (1973) indicaﬁe a power law flui spectrum whicﬁ‘tranSlates
to & distribution function fz ~ |v|™. This is in qualitative agree-
ﬁent with the form of the supfafhermal tail observed in our beam
fsimulétions; However, the simu;ationé were at lower beam velocity
and higher besm density, and most of the observed tail in the rocket -
méﬁsuréments is in the region v » 10 Ve which is beyond the region ‘
observed in the simulation.A

One can estimate from Table'9Athat thé’resonanf’energy Wr will
peak é,t 35/30 for VB/AVB =3, vB/ve = 200, and € = 107°. The result-
ing dimensionless energy will:belwilax =6 x 107, The largest para-
metrically unstable wave number mode will be k =~ 0.05 k.e [from Eq.
(k.4)], so that thé-pa:ametricall& unstable waves will have o » 20
ije; It woulﬁ therefbre:pe«negegsgry;tq.rély‘on nQnresonan§ difquion;v
to puli electrshs from the thermal plasma into the suprathérmal taiis,;
This process would be weak owing to the small growth rates and'energy'
in»thgse modes, ahd appréciable tail formation might not pccur.

waever,fsupfathermal tails have been observed in $imulations with
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sxterndl fields whose dimensionless energy Wo was as low as 0.02
(Katz et al., 1975).

' Papadopoulos (1975) has‘proposed using relativistic electron
beams to aid in maintaining thexmonnclear temperatures in a tokamsk.
His analysis was partially based on an extension of Eqs.l(s.l)-(5.2)
using the appropriate relativistic correction to the resonant growth
rats 7r; The proposed parameters for such a system have beam ener-
gies far above parametric threshold and thus are unaffected by our
anglysis. »

Finally, it has been proposed that sheaths surrounding the -
Jovian satellite Is.accelerste an intensé_beam_of energetic electnons

with fluxes of 105-107 cm™2

sec™! and energies of 100 keV (Gurnett;
1972; Hubbard et al., 197h; Shewhan, 1975). The Jovian thermal
plasma has n_ ~ 10-100 em™ in the region of To with T, ~ 10-100 eV.
Possibls values oi‘,vB/ve might'tnerefbre naiy between 20 and 106,

L 2

< € € 10°.. In the region near Io, sheath-accelerated
electrons along a single magnetic field line all have approximately
the same energy (Hubbard et al., 1974). However, if sufficient

mixing across field lines . occurs so that v

B~ 31AVB throughout_tne

flnx,tubé,'Tablel9 indipstss that parametric stabilization is pos-

sible for sufficiently low T_. The flux tube probably -traverses:

regions in which the ambient plasma density is much lower, and strong

linear beam instabilities (for € R 10'?) would probably prevent para-

metric stabilization throughout the flux tube.
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It is apparent that although parasmetric stabilization might

- occur in the Io-aecelerated beam, the relevant parameters are simply
not known accurately. -The existence of the beam'itself remains uncer-
tain even in the face of.Pioneer 10 and 11 data.' If the beam does
ex1st the OTS 1nstab111ty would almost certainly occur even if
parametric stabilization does not. The resulting waves could produce

significant radiation at w_  and 2 W (Papadopoulos et al., l97h),

e
‘but the frequency would be far lower than the ohserved‘Io-controlled
decameter bursts. | |

In conclu81on, it appears unlikely that the oscillatlng two-
. -stream 1nstab111ty alone can stabilize the Type III solar burst
electron streams in the corona, but OTS might contribute to stabillza-
tion in the solar wind near 1 a.u. if other processes can prevent
vbeam flattening in the corona. The parametric stabilization process.
isnmore-likely tobapply to auroral streamers since the‘relative beam
energy is much hlgher. ‘Parametric stabilization probably cannot occnr

in the pr0posed Io-accelerated beam although the relevant parameters

are not known with suff1c1ent accuracy to rule out this pos51b111ty.
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VI. - CONCLUSION

© We have investigated parametric instabilities in energetic
beam plasmas using a one-dimensional particle simulation model. The
dominant paremetric:process is the oscillating two stream (OTS) 4.
instabiiity in which a large a,mplitude ; long wavelength, beam-
generated electron plaema oscillation decays into shorter wavelength
electron plasma and ion acoustic waves. Ion dynamics play a‘vitai
role. Since this éaramefrie instability'also occurs for a plasma
subject to a,suffieiently stiong externally-generated electric field
of the ‘form E(t) = E, cos w,t with @ = @e, we have dran heavily
upon previous anelytical and simulation analyses of such systems.
Our anal&see of the growth rates and.saturation leveis of thelvarious,
electric field modes, thelgrowth of ion densiﬁy flﬁetuations, and
the evolution of the electron distribution fe(v), the electric field
energy spectrum W(k); and the-diffusion coefficient D(V) are exten-
~ sions of the-externel field simulations of Kruer and Dawson (i972),
e Groot and Katz (1973), Katz et al. (1973), Thomson et al. (197kb),
~and Katz et al. ..(‘1975).- In addition, :we.’ have conducted external -
field eiﬁﬁlationslwith pump ﬁave amplitudes and frequencies t&pical
of - beam-generated waves in our'Beam simuletions. o

The method‘of separating the field energy into resonant (beaﬁ-”'

generated) and nonresonant (parametrieally excited) modes used by
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Kainer et al. (1972b) was valuable in analyzing simulation results.
Simulations with high density (e > 0.05) beams éenerally displayed
such strong mode coupling that the linear growth of the'nonresonaht
energy Wn‘r.was swemped. However, thé parametric growth of the ion
density fluctuafiops weas observeble even when € 2 0.0S'although the
growth rate.was fyfically a factor of two 5elow the value predicted
by the'parametric instability disPersion relation. Wnr(t) generally
peaked wheﬁ Wnr(t) ~ Wr(t), in agreement with the external field |
saturation theory of Kruer and Dawson (1972). At some time t
shortly before W_(t) reached its maximm, W (t) always began to
decreasé, as first observed by Kainer et al. (1972). The empirical

derelopment of Wi during this decrease was

W6 > ) WS A S (4.29)
where,the ObserredAvalue of yp was typically half of the predicted
?arametric_gr0wth rate ;5. W}(f)'eventually became approximeﬁely
'constant at a'lerel near parametric'threShold. No theory was
mdeveloped to explaln the apparent exponentlal decay of W (t > t )
 -The decay in W (t) was not observed in flxed jon 51mulat10ns.

Weaker beam simulations (e < O 02) revealed & clear linear
growth in W (t) as predicted by the analytlcal parametric 1nstability'
'theques.v In several 51mulat10ns there was surprlsingly good mode-

by-mode agreement between the observed:s1mulat10n growth rates 7p(k)
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and the growth rates 7p(k) predicted by linear paremetric dispersion
relations using the observed saturation value of Wi as the pump

ampiitﬁde. A monochromatic finite wavelength pump wave dispersion

~ relation [Eq. (L4.13)], taken from Papadopoulos et al. (1974) and

Papadopoulos (1975), gave better agreement with the simulation results
then did the Nishikewa (1968a, b) dispersion relation [Eg. (3.17)]
ﬁith én‘infinite wavelength pump wave. This was not surprising in
view of the range of beam vglécities'(lo < QB/Ve < 20) used in the
simulatiqns;

_ The electron diétribution function fe(v) developed suprather-
maljtails:which_tended to be more heavily populated in those simula;

tions with higher beam energies. Plateau’fbrmation, predicted by

quasilinear theory and seen in fixed ion simulations, still occurred.

The Suprathermal tails closely resembled those seen in external field
simulations,'but there was usually not enough date points to deter-

mine whether the form of fg(v) was exponential or power law. Typi-

cal fits to the form f:(v) ~ |v|™ gave m ~ 2-3.

Katz et al. (1975) showed that the theory of Perkins and

Salpeter (1966) for a stable non-Maxwellian plasma gave an electric

field energy §pectruh W(k_? O.l ke) ~ k"2 yhen fg ~ |v|fm. Since

- after a sufficiently long time the simulations did indeed appear to

be stablé, we calculated the spectrum predicted by the Perkins and

- Salpeter (1965) theory assuming an fz(v) corresponding to the empiri-

cal simulation power law fit. -This spectrum generally agreed quite
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well with W(k » 0.1 k_) observed in the similations, and all of the
external field and beam simulations gavé field spectra of approxi-
mately‘the'same-shape:and magnitude at tbe end of the runs.

A collection of noninteracting test particles was'injected4
'into the s1mulat10n turbulent’ electrlc fields, and the diffusion '
coefficient D (v) was calculated from the "temperature of the test
particles. De(v) in the beam similations was strongly peaked around
vg - Avg et the time Wr(t) ‘saturated, and remained so throughout' the
fiked‘ion eimulations.‘ However,.as'Whr(t) increased in the mobile
ion similations, a_second'smaller peak in D(v) formed around
v~ -6‘ve,'andithe resonant peak'magaitpde decreased. .The second -
peak»closely resembled D(v) in correspondingAexternal field simula- -
tions and was apparently due to parametrically excited waves.
Finally D(#).was eventually reduced to almost zero as Wi(t) and
W (t) decreased to threshold levels.

Several similgtion experlments were conducted w1th beam
plasmas driven by a high frequency electric field. These experlments
~ thus had two sources of parametric pump wa#es; W (t).began.rising

immed1ately and caused W (t) to decay samewhat as W (t) reaches its.

- meximum. . In; the long t1me limit,. W, (t) and W. (t) were . approx1mate1y -

‘equal in all experiments and were well above parametrlc threshold.
The plasma particles absorbed more-energy from the external field '
than in similar experiments without the beam. .The field’energy»sPec-

trum was in all cases significantly flatter than in prev1ous beam or




-1-2 4 stead of k2, This

external field experiments, with W(k) ~ k

observation was consistent with the fact that the form 6f fﬁkv) wes
eigrlificantly c.loser to an exponen_tia.l than a power ia.w since

fZ(v) ~.'ex'p (-] /v*) yields high wave number fluctuations of the
fom W(k) ~ kL. Tt was not clear that the empirical forms of fZ( v)
and W(k) were characteristic of all beam-extemal field systems.

The similations described so fe.r all had W (t) reach satlzura.-A
tion at epproximately the same level v-rhe'ther or not ien motion (and
therefore peré.metrie bef‘feets) ﬁere included. Papadopoulos ’a.nd' Coffey
(1974a, b), Papadopoulos et al. (1974), and Papaﬁopouios (1975) have
px_-eposed a_parametiie stabilization process whereby the growth of -
Wnr(t) due to OTS would eventually cause W?(t) to peak at a lower
level tha,n if ion dynamics were ignored. This wduld prevent plateau
formation in .f'e( v) and ‘perhaps would create supra.thermal electrons.

' The peek in £ e( v) at the ‘peam'velocity would remain.

. Previ'eus analyses of the -cendii:iens_for parametric stabiliza-
t’ior'i ignored the importance of the oTs threshold é.ﬁd gaw}e no lower
limit to the density ratio e. W (k, t) cannot - grow until W (t)
exceeds a threshold determlned primary by the frequency mlsmatch 6. R
~ When.the a.nalys1s of Papadopoulos et al. (l97l+) and Papadopoulos '

( 1975) was ca.rried out numerlcally, the 1nclusion of threshold
. effects gave conditions for . pa.rametrlc stabilization which were much 5
more restrictlve. Even for very hot (v ~ 3 Avg ) beams, parametric

stabilization could not be achieved for vy 50 v_. Higher beam .
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velocities gave ﬁarametric stabilization only eVEr‘a limited range
of €. The 81mulation code was not well suited to the high beam
velocities and’ low beam dens1t1es necessary for parametrlc stabiliza-
'tion, and attempts to simulate this phenomenon were unsuccessfuli
Finally, several astrophysical and laboratory beam plasma
systems were re-analyaed in the light ef the more restri‘ctiv,e pa.t'a- v
;metric stabilization conditions.A Parametric stabilization in auroral -
electron streams (Papadopouios and Coffey, 19Tha, b) and in relativie-
tic beam tokamak heating (Papadopoulos , 1975) would not be affected
by our results. However, our analysis 1ndicates that the electron
streaﬁs assoclated with Type IIT solar bursts probably cannot be

stabllized by OTS alone, as had been suggested by Papadopoulos (197&)




lEh_

Figure 1. Evolution of the sélf-consistent field Wy for external
field simulation Runs E-la and E-2b. . The driving ffequency'

l, and the larger driving field in Run E-2b

w =1.20 w_
o . e .
(EO// Ennok.BTe, = 'f:o = 0.8 instead of 0.6) gave a larger growth

‘rate and saturation level.
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. Figure 2. The electron distribution function'fe(v) at t = O and
t = bu8 w;l-,for Run E-la (E = 0.6, w = 1-,20_w;l), showing

thelde#elopment of suprathermal-tails.
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Figure 3. Semi-logarithmic plot of £ (v, t = 272 ol) for external

field Simlation E-3 (E_.= 0.8, u = 1.015 u,).
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'Figure L. Field energy spectrum for Run E-ba taken at t = 480 w'l.

The SOlld line 1s a least squares f1t to the data for k. > 5 k s
assuming W(k) ~ k°. The dashed line represents the field
energy spectrum for a stable nonequilibrlum 51mulat10n plasme

~with N_ = 12,000 and tail electron dlstribution fT | v] ~2.
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Figure 5. Field spectrum at t = hBQ w;l for Ruﬁ'E;hb which is
identical to Run E-la except that N_ = 6000. The "starred"
mode is the 1owest.wav§ number mode included in the least

squares fit.
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Figure 6. The electron distribution function for externel field

 Simulstion E-ba (E_ = 0.6, w, = 1.015 0 ) at t = 480 w]'
‘The straight lines ére a least squares fit to the form .

fz ~ e-lvl/v*:fbi [v|'> 5 v, and §*'='6.3 Ve
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Figure 7. Log-log plot of fz(v, t = 480 @;1) also taken from Run
_E-ha. The ‘strai.g_ht lines are a fit to the form fz ~ |v|™,

aﬁd thisipower,law fit is‘éupefiof to #he expdnential fofﬁg

shown in Fig. 6. Thé empirical value of m is gpproximately"

-1.8.
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Figure 8. Initial and final form of £ (v) for an energetlc beam
¢1plasma system in the absence of 1on motlon.v The data is taken
from Run B-la, show1ng the development of a plateau in the

region 3 S v/v, < Vg
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f‘igﬁre 9. The evolution of the resonant, nonresonant , and total

| elegtric field energir Wr(t,)’ Wnr(.t), and Wi,(t) taken from
bé.a.m";s.imulgti'o.thun'B-la,. The modél parameters are € =0.01,
vg =15 v , vy =2v_, and = O. Sirice the ions are immobile,

‘most of the energy remains in the resonant modes (3 k and 4

-k, where k = 0.02455 k).
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Figure 10. The evolution of wr(t) and Wﬁr(t) for Run B-1. Model
_ parametérs are the same as for Fig;i9'except‘that B = 1/6k.

' The'inclusion'of'ion aynaﬁiés résults in ﬁaiametriq instability
growth of Wnr(t)'and eventually c#ﬁsés Wr(f) to decay from

 -its saturation value.
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Figure 11. The-electron'distribution function from Run B-1

1

(e =0.01, vy =15 v, Avp =2 ve) at t = O and t = 192 w_~.

B
The inclusion of ion dynamics in Run B-1 results in the for-
mation of a small suprathermal tail of electrons with speeds

above 3 Ve
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Run B-2 (e =.0.05, vy =15 v, and Av, = e‘ve).- The energy

B-

|

|

' Figure 12. Wr(t), wnr(t), and'wT(t) for high beam density simulation
‘ .

} - in the resonant modes (modes 3 ko and 4 km) shows the precip-
1 . .

|

‘itous drop for t 2 l2O}w;l characteristic of the parametric

instability.
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Figure 153. The evolution of the ion density fluctuation level lApi|2
.. for Runs B-1 and B-h. The Nishikewa theory predicts that

' lApi|2 should grow at the same rate as W .-
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Figure 14. ‘The evolution of wr(t) and W_(t) taken from Run B-6

(e = 0.01, v

vg = 20-v, apd‘AYB = % ve>.4‘The qualitative |

features are similar to Fig.'lo.
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Figure '15. The evolution of Wr(t) and Whr(t) for beam Simulation’

. B-7 (e =_0.02,. vB'f 10 v, .a.pd A_VB = ve)
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Figure 16. A typical example of parametric instability growth in a
nonresonant mode. Data points are periodic local maxima taken
from the k = 3 km_mode.of'Run B-7, and the straight'line has

a slope which is defined as 2 ;P (3 km).
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Figure 17. A direct comparison between the observed simulation growth
ratev;p(k) in the various nonresonant modes and the growth '
rates 7p(k) predicted from Eq. (4.13). The circles give ;P
from Run B-1, and the two curves are the predictions of Eq.
N oA o . o uf Lo :
(4.13), k = 0 and k_ = w./15v_, assuming W = W_ = 0.129.

The blank area represents the resonant modes.
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Figure 18. Simulation parametric growth rate ;p(k) and the growth
_rates predicted from the»dispersion relation Eq. (4.13),
plotted against mode number. The data are from Run B-6

(e = 0.01, v = 20 ves and Avy = b ve), and the format is

B
the same as in Fig. 17.



159

A-G75-739

0.025 1

- 0.020 |

0.015

(k)

0.010

' 0.005

10.000 &
: 0

l

I

I

!

l

: Figuie.l8




.160

Figure 19. Observed simulation growth rates ;p(k) and predicted
growth' rates 7p(k) for nonresonent modes of Run B-8 (e = 0.01,

vy
Fig. 17.

= 20Ave,‘and AVB = ve); The fonmat‘is the same as in
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Figure 20. Observed simulation growth rates ;p(k) and predicted

L

growth rates'yp(k) for the nonresonant modes of Run B-7

(e =0.02, vy = 10 v, and Avy = v_). The format is the same

as in Fig. 17.
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Figure 21. The decay of W (t) for Run B-1 during the period
140 < w_ t <. 265. The data points are local periodic maxima.
The decay is due to the parametric instability and is approxi-.

mately exponential.
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Figure 22. .The observ‘ed resonant decay rate 7D plotted égainst .the‘
 meximun perametric growth y predicted by the Nishikews dis-
'p'exfsion relation. Each dai:a point represents one of thé 'eight .

s_imulations listed in Table 7, and the least squares fit

gives 7y ~ 7p/2.
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Figuré 23. Electron distribution £ (v, t =192 w;l) taken from Run
- B-2 (e = Q.Oj,'VB =15 v, and bvy = 2 ve)f, The solid line

-e-|v|/v*

is a fit to the form fz ~. for v S -4 v, A supra-

‘thermal tail also forms for v > O as does the usual plateau.
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Figure 2k, W( k) averaged over data near t = 192 w;l from Run B-2.
Again k= 0.02455 k_, and’ the least squares fit (solid line)
is W(k) ~ k-l'8.' The dashed lines are the predictions of

Eq. (5.37). |
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Figure. 25. 'Field energy spectrum W(k) for Run B-6 (e = 0.01,
vy =20 v, and vy = l+ .Ve) for data averaged over 375 < w t

2 .

B
< 385." The format is the seme as Fig. 2, and W(k) ~ k™=
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Figure 26. A comparison of fe(v; t =3552 w;l) from Run B-7 (e = 0.02,

Vg = 10 v, AvB =v,, and B ='l/6h) and the corresponding )
.fixed ion Simulation B-Ta (B = 0). The mobile ion simulation

- . A *  forms small suprathermal tails and does not have such a

clearlyAdefihed‘plateau region.
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Figure 27. Evolution of the test particle temperature Ttp(t) for

‘electrons ejected at t°'= 200'w;l with velocity vy =8 ve
into the turbulent electric fields of Run B-l. As expected,
' T'té(t) is approximately linear in t, and d/dt Ttp(t) is

related #o De(vo, té) by Eq.'(h.38).
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Figure 28. The test particle diffusion coefficient De(v) taken at
various times during Run B-2. D (v, 24 s wet < 42) has a
B " AVB as predicted by

quasilinear theory.v,wnr(t) reaches its maximum value in the -

single large peask centered around v

period 96 < w t < 114 and parametric instability effects
cause the second peak centered on -6 Var Near the end of the
simulation, D(v, 260 < wt < 278) is near zero and is approxi-

mately symmetric in v.



|
| ) .
{ ‘ A-G75-72I

I - N

| . -
2.0 — - 1 o \ T
24 <twy <42/ o

/ S




180

Figure 29. The test particle diffusion coefficient De(v) taken from
fixed ion Simulation B-la. As in other immobile ion simula-
~tions, De(v)~is relatively unchanged_after saturation of the

resonant field energy.
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Figure 30. De_( v) ta_,keri from Run B-6. The curves‘représent data
teken at resongi.nf energy -sa.turatiion (120 = w b < 138), non-
}z;eso'na'.n‘t enefgy maximum (23(.).5-'(0481: 5"2’-}8‘),, ‘ar’ld #ear the end.
of the run (380 < ot < 398). The results are qualitatively

similar to Fig. -29.
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Figure 31. Wr(t) and Whr(t) from Run EB-1, showing the typical.
fegtureé"qf the‘selff¢onsistent‘field'energy‘for a beam plasma f

‘driven by a high frequency electric field.
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Figure 32. The electron distribution fe(v) at two different stgges‘
for beam-extérnal field Simulation EB-1. Suprathermal tails
are more heavily p0pulated than in thevgbsencé of the driving

field, and plateau formation still occurs.
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Figure 33. W(k, t = 48O w;l) taken from Run EB-1. - The fit gives

Wk ~ -k_.l -2 and agrees more closeily with the predicted spectrum
for fz ~ eIV tan for_fz~~.|v|'s.
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Figure 34, The electron distribution takeh from beam-exteinal field
| Run EB-5 at t = 480 w'l. The originel beam (vg=10v,) is
"swamped by the suprathermal tall and heatlng is 81gn1flcantly.

greater than for either beam or external field alone
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Figure 35. Characteristics of a pérémetrically4stabiliged béam
plasma. A :
(a) Wr(t) peaks at a‘lower level thén fér a cﬁrresbondiné
| fixed ion plasma. -

(b) 'fe(v, 0) (dashed line) evolves into a stabilized

-fe(ﬁ, ®) (solid line) with peak at vp still present and

perhaps with supréthermal tails.

192
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Figure 36. Stabilization conditions predicted by Eq. (5.10). Curves
A, C, and D are for vB/AvB =3, 5, and 10, respectively, and
curve B is from Papadopoulos (1975). Region below dashed

line, however,:is below OTS ‘threshold assuming vﬁ = 3'AvB

and must be excluded.
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Figure 37. 71,(1;, k)
various va;ues
shaded regions

wave amplitude

196

calculated numerically from Eq. (4.13) for
of ko,  Note that (VBif AvB)/ve ~ ke/ko. The
are resonant modes for a cold beam. The pump

is fixed at W_ = 0.02.
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Figure 38. 7 (k; k) calculated as in Fig. 37 except that
_WrA= 0.00125 -instead ‘o'f 0.02. .The peaks are shifted to very

o low wave numbers and are greatly reduced in magnitude.
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Figure 39. . Numerical solution to Eqs; (5.1)-(5.2) showing marginal

 param¢tric stébilization,jiGrOwthvof nonresonant modes causes
.Wr(t) to peak before reaching Wi.' Curve n reﬁresentsAWhr(nkm)

| where km =AQ.0125 kef
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Flgure‘ho. Wr(t) and wnr(t) from Run SB-1 (vB =30 v, Avg = 6 Ve
€ = 0.002). This attempt to achieve parametric stabilization
 was unsuccéésﬁil. Other effects‘(perhap's collisional damping)
caused Wi(t) ‘to peak two orders of magnitude below eB/3 , and

'W_(t) was below OTS threshold for all OTS modes.
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APPENDIX A

FORMAL ORDERING SCHEME FOR NISHIKAWA'S

COUPLED EQUATIONS

'Injorder to derive the Nishikawa disperéidn relation Eg.
(3.15),'it is necessary to analyze Egs. (3.7)-(3.8) on t&o séparate
time.scales; In 6rdér to facilitate thié analysis we introduce the
pafameters es.and €, to denote the slow and fast time scales and
intrédgcé the parameter T to depote the small gquantities w; 5 Qe,

and gi'« The time parameters are introduced into hek and n;, by
= + ' B ’ (.
n, ésnes. €fnf , , , (A.l)

(A.2)

(=]
1]
m
(=]

ik s'is

where the k subscript has been dropped for convenience.
The external field introduces a coupling between the fastvand'
slow oscillations. This coupling arises formally from the Fourier

' transformed version of the convective derivative: '



where g = e or i. One can show that —1’1 . -‘;eo is 0(M) while

% . -‘;io ~ O(T]z) and cen be ignored. Thus Eq. (3.7) can be written

as

=5 ¢ + o n, —efn _ +v,.2n_=0 . : (A.k)

2. - . ’ . .
@2 3 it aaddr 2R
— = =73 - 3¢ (ik - v ) +2. at‘lk Veo " kv ,‘ (A.5)

Applying Eqs. (A.2) and (A.5) to the electron oscillation Eq. (3.8)

gives

+ + = '
w [efnf.esn ] e51s ,eat [efnf-*esnes:| AO

Equatlon (A. 6) can be further s:.mpllfied by noting that € es =€

€p, and € e In addltlon, 3/at €N ™~ o(7M). Applying

€sfr T £ ©
these rules to (A.6), one obtains
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aan : on 3 4
at2 + Wi Bp + Ve 5T = -in_ SE'k *Veo _ (A7)

for those terms on the fast time scale and

, 'ii""
Wex"es ™ Welis 3 Veo

(A.8)

_for those terms on the slow time scale.

The spatially homogeneous pait of the linearized solution to

- Egs. (3-3)-(3-5) gives:

3.3 s.23%.% o '
atk veqf_ mek Eo(t) . , (A.9)

Assuming approximgfe'éhargerneutrality on the slow time scale

(n

es'm'nis)f Eq. (A.T) becomgs‘

"azn o dn ' ‘
; 2 £ . e ? 2 . »
+ + —_— = —k * E T {A.
W t Ve 3T in, a k Eo(t) (A'1o)

at>

Substituting (A.8) and-(A.9) into (A.4t) and noting that

22 . | |
2 2 e i o , ‘ : 4
Wp N W T T3 | (a.11)
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the ion equation becomes

&
2

, dn .
n, +a’n is - in 2% . B(t) . ©(A.12)
dt m

is T a5 T V5 3t £ o,

Equations (A.10) and (A.12) agree with (3.11) and (3.12), and the
Nishikawa dispersion relation can be derived from the rest of the

analysis in section III-B.
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APPENDIX B .
ANALYTICAL SOLUTIONS TO THE FINITE WAVELENGTH DRIVER-

PARAMETRIC DISPERSION RELATION

Equation (4.13), teken from Papadopoulos et al. (197&) and
Papadopoulos (1975), is the parametric dispersion relation assuming
that the beam instability produces a single large amplitude pump
wave‘ﬁith wave ﬁumber k. It is convenient to rewrite Eq. (k.13)

in the following form:

w? + 21T, - “’i)[(“’i * 4T S )P - A2] =a. (B.1)
whgre
\'u S L . (B.2)
o oe’e j . | |
o 9 L4lho . ‘
A" = E— kl*xewi , | (B.3)
6= —>= . (B
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Although (B.1l) must be solved numerically in most cases,
approxiﬁate,analytical'solutions cah be obtained in certain cases.

Following Nishikawa (1968a), we take

and split (B.l4) into real and imaginary parts. The resulting equa-

tions are
.wi* - wi- 2T, = %[(wr - )2 - (7 + 1"e)2 - A2] , (B.6)
‘2iw(y +T,) = -2i(w, - w)(7 +T,) % (B.7)A

‘vwhere '
o 2 ' .
F= [(u, - )20 +T)% - 28] + 4w, -0y +1 )% .

(B.8)

| “For po= O, Eqs. (B 6) (B 8) yleld the osclllatlng two stream 1nsta-
bllltY‘Wlth w, = O for all ¥y > 0. However, for p # O (finlte wave-
..length drlver), the zero frequency (w : O) solution is no longer
p0831b1e and thus the unstable waves ‘are not purely growing ion

oscillations. In addition, since G and F,are inherently positive'one
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' can show that ify>0 (correspopding to an instability), |u| 2 lwrl
and uw 2 0. '
One can derive threshold condltlons from (B.6)-(B.8) by

setting y = 0 and making certain addltlonal assumptions. For example,

- 2 2. .2 2 __ 2 2 2 2 . 2
if p© s A%, AT >> Fe’ w, << w,, and w, <<_(re+A - )te~/ri,
retaining only linear terms in w gives
;2 2 ' . : o
)'l' - . B
AW.g:. A222 .=3( - Lhx )x . o - (B.9a)
3k x ~ ' o '
“and
- Wire”' - R |
wr?ﬁ— . - S ‘(B.9b)
(A -p,)Fi : .

Thé finite wavelength driver thus l&wers'fhe threshold as compared
with the p = O approiimation; For A2 >> u2;<(B.93,,b).give'the usual -
@Smmmddﬂmw-mlﬁyr%ﬁﬁhiwm

~ Threshold condltlons for k << k can -also be found uﬁder cer-_
'talnvc0nd1t10ns.i Such modes would have frequenc1es below the pump
wave frequency and should therefore resemble the ion acoustic decay .

;1nstab111ty. For A << pe, F >> T e’ and w2 >> wi; one can show that
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'Wc = uAar r w_u : ' , (B.10a)
o eie- : . ' .
and

This agrees with Eq. (51) of Nishikewa (1968a) if the last terﬁ is
ignored. Tt is possiblé to derive other threshold conditions,. but
the combination of parameters necessa.ry is often dlfflcult if not
imposmble to satlsfy mth a reallstlc pla,sma

~ Analytical solutions are also poss1ble for W sufflclently
above Wo so that damping cen be igpored. Unfortune.tely, for.pa.ra-‘
meters relevanf to realistic plasmas,Athe algebraic solutions are
usually so complicated that little ﬁew insight can be'éaihed from
-them;. However, for'42'>> uz and ¥ >>_Fé; Ty» retaining only'iinear

terms in wr-' gives

: : ' BW AW - -
7.2. -‘(Ae + wi) + j(Ag + wi) + h(__°_3_— + A%i) ,  (B.11a)

w_ = 3kk A 4 £ e . - (B.1)
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This growth rate is identical to the ko = O result, but again w, is
small but nonzero. The conditions necessary for appiying‘(B.lla, b)
generally require very high beam velocities (vB 2 100 ve). In almoét
all other cases of interest, humeriqal solutions to Eq. (4.13) must

be used to éalculate parametric growth rates.



