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ABSTRACT

This report provides a users’ guide for parallel processing ITS on a UNIX workstation network, a
shared-memory multiprocessor or a massively-parallel processor. The parallelized version of ITS
is based on a master/slave model with message passing. Parallel issues such as random number
generation, load balancing, and communication software are briefly discussed. Timing results for
example problems are presented for demonstration purposes.

ut

DISTRIBUTION OF THIS DOCUMENT iS UNLIMITED




ACKNOWLEDGEMENTS

This work was made possible with the continuous support from Leonard J. Lorence and
Gary J. Scrivner. We thank James H. Renken for his encouragement of this project. We
also thank Clifton R. Drumm and Patrick J. Griffin for their comments and suggestions.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are

produced from the best available original
document.




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.




Contents

L INTRODUCTION. ...ttt it i et e ie e iie e eneanannans 5
II. PARALLEL PROCESSING ISSUES ... .. i it iiaa e 5
A.Master/Slave Paradigm. .. ...... ...t i i i 5
B.Random Number Generation .........c.viiiiininrnnonenenensnannnns 7
C.loadBalancing . .. .. cooiiiiiii ettt it ie it ienennesonnnsannnnnas 8

IO IMPLEMENTATION .. ..o it ittt ettt enaennaannss 9
A. Communication Software Packages: MPL, PVM,and NX................. 9
B.Correction Update. ... .oiiiii it iiiiiiiiiiieseternaanennananncns 9

C. New *DEFINE and Input Keywords ............c.oiiiiiiiienennenns 10

IV. PERFORMANCE EVALUATION . ... .ttt i iie e - 14
A. UNIX Workstation Network. . .. ... ittt ittt innnnn. 14
B.Intel PARAGON. .. ..ottt i it it ittt inesieineannens 16

V. CONCLUSIONS . .. i i i i ittt et iteneanereeenennnnnns 17
REFERENCES . ... i i i ittt et i eenneannen 21
APPENDIX . .o e e et e 22
Message Passing Interface. .. ...... . .. i i i 22
Parallel Virtual Machine . . ... ... . it ittt e 22
Intel PARAGON .. ... i i e i et e e enens 23




List of Figures

Figure 1. A schematic diagram of the master/slave model used in ITS. The master and slave
processes may execute different statements by branching within a single
program. The arrowheads indicate the flow of data using message passing. . .6
Figure 2. The existing data structure of common block /calc/ in ITS Version 3. The global
variables are shown initalicfont. . ........... ... ..o i, 11
Figure 3. The rearranged data structure of common block /calc/ used in the parallelized ITS.
The global variables, shown in italic font, are grouped together. ......... 12
Figure 4. A cross-sectional view of the three-dimensional configuration of the EG&G
LINAC bremsstrahlung convertor and collimator, .................... 18
Figure 5. Comparison of computing time per batch for two I'TS calculations of the EG&G
LINAC problem on PARAGON. This problem was run with 512 batches and
with 512 computing nodes. These timing results show that a small number of
histories per batch can result in disparity in batch CPU time and thus affect load
balancing and parallel efficiency. .. .......... ... i it 20

List of Tables

Table 1. Measured Speedup Factors and Parallel Efficiencies of ITS/PVM on a UNIX
Workstation Network for Selected Test Problems. .. ................... 15

Table 2. Timing Results of ITS Calculations on PARAGON for the EG&G LINAC
Problem. ... ... . e 18

Table 3. Comparison of Speedup Factors and Parallel Efficiencies on PARAGON with
Different Number of Particle Histories per Batch and Scale Bremsstrahlung
Factor for the EG&G LINACProblem. ........... .. .. ..o .. 19




PARALLEL PROCESSING ITS

I. INTRODUCTION

Advances in computer hardware and communication software have made it possible to
perform parallel computing for many scientific/engineering applications. Monte Carlo
calculations are inherently parallelizable because the individual particle trajectories can be
generated independently with minimum need for interprocessor communication.
Furthermore, the number of particle histories that can be generated in a given amount of
wall-clock time is nearly proportional to the number of processors. This is an important
fact because the inherent statistical uncertainty in any Monte Carlo result decreases as the
square root of the number of histories. For these reasons, researchers have expended
considerable effort to take advantage of different parallel architectures for a variety of
Monte Carlo radiation transport codes, often with excellent results [1]. Generally
speaking, parallel processing can reduce the notoriously high computational expense often
associated with the Monte Carlo method and allows users to solve extremely complex
problems with fast turnaround time.

The Integrated Tiger Series (ITS) [2] provides state-of-the-art Monte Carlo solutions
of linear, time-independent, coupled electron/photon radiation transport problems with or
without the presence of external electric and magnetic fields. It has been widely used in
weapon-effect simulator design and analysis, radiation dosimetry, radiation effects studies
and medical physics research. Since its inception, the goal of the ITS developers has been
to simultaneously maximize physics accuracy and operational efficiency. This is
accomplished by employing the most complete physics models describing the production
and transport of the electron/photon cascade, the best available cross-section data and
sampling distributions, and variance reduction techniques for various difficult applications
[3]. In this work, we focus on a major software development for the ITS code system so
that ITS calculations can now be performed in parallel. This is accomplished by
developing an update for ITS Version 3 which can be adapted by users to construct and
tailor the ITS codes for specific applications and for various parallel-processing platforms.
These platforms can be a UNIX workstation network, a symmetrical multiprocessor, or a
massively parallel machine.

In the following sections we first discuss the parallel algorithm appropriate for the ITS
code system and its implementation. Two techniques that proved effective for load
balancing across multiple processors and machines are briefly discussed. Timing results
and performance evaluation for selected problems are described.

II. PARALLEL PROCESSING ISSUES

A. Master/Slave Paradigm

In ITS, the particle histories are divided into “batches” of equal size and the evaluation
of the estimated quantities are performed using batch-averaged sample statistics. Since the




batchwise evaluation can be performed independently, it provides a natural partition for
parallel processing. At present, the parallelized version of ITS is based upon a master/
slave paradigm in conjunction with message-passing. The basic operations of the parallel
code can be summarized as follows: (1) the master process performs the input functions,
starts up the slave processes, processes the problem-dependent parameters and sends a
copy of parameters to all slaves, (2) the slaves perform the Monte Carlo calculations, i.e.,
generating particle trajectories and scoring, and (3) the master receives and combines the
data tallied by the slaves, and finally outputs the results. These operations are shown
schematically in Figure 1. All the message-passing tasks, including process control and
data transfer, are handled by the communication software.

MASTER PROBLEM DEPENDENT SLAVE
DATA -

INPUT PARTICLE
INITIALIZATION TRAJECTORIES
RESULTS
START UPSLAVE | TALLIES

OUTPUT

Figure 1. A schematic diagram of the master/slave model used in ITS. The master and
slave processes may execute different statements by branching within a single
program. The arrowheads indicate the flow of data using message passing.

One can make two observations about this master/slave model. First, there is no
interprocessor communication required between the slaves. The problem-dependent data
and the tallied results are transferred between master and slaves, but no data is shared
between the slaves. Thus, message passing is needed only at the start and end of Monte
Carlo calculation. Second, with efficient network communication, it is obvious that step
(2) will require the majority of the computation time. Since each slave process can carry
out these tasks concurrently, this time requirement can be reduced almost linearly with the
number of processors.




B. Random Number Generation

The generation of random-number sequences for large-scale Monte Carlo simulations
in a parallel-processing environment poses a non-trivial problem. The random number
sequences for each processor must be independent, with good “randomness” properties,
and with sufficiently long period. Here, we adopt the pseudorandom number generator,
RANMAR, proposed by Marsagalia and Zaman. Detailed information and
implementation can be found in the review article by James [4]. The basic algorithm of
RANMAR is a combination of two different random number sequences, {X;} and {Y;}.
The first is a lagged Fibonacci generator,

¥ - Xi_o1—-Xi_33 if X;.g72X;_33 )
‘ Xi_g9—X;_33+1, otherwise, :

where a starting table of 97 values is initialized using a combination of lagged Fibonacci
method using three lags, and a multiplicative congruential generator. The second one is a
simple arithmetic sequence for the prime modulus 2°° —3 = 16777213. This sequence is
defined as

" Y, y-c+d, otherwise,

where ¢ = 7654321/16777216 and d = 16777213/16777216. The final random
number is then obtained by a subtraction operation

X;-Y, if X;2Y;

" X;-Y;+1, otherwise

3)

The most exceptional property of this generator is the extreme ease of generating
independent disjoint sequences, which can be accomplished by initializing the lagged
Fibonacci generator with different integers. Furthermore, RANMAR has been tested for
randomness, and has been demonstrated to have very long period [4-5]. It is noted that this
generator is more expensive to compute than the simple multiplicative linear congruential
generators since all the operations are carried out in floating-point. However, the effect of
this may be insignificant since the computing time spent in the random number generation
is almost negligible in comparison to that for particle tracking.

To employ this random number generator for parallel ITS calculations, an integer seed
will be used to initialize the lagged Fibonacci sequence for each batch of histories. This
seed itself is produced by a simple linear congruential generator

Speq = 1366- S, +150889(mod 714025). )




With this, an integer ranging from 1 to 714025 will be selected to start RANMAR and
produce a sequence of length 104, and is guaranteed to be independent of any other
sequences. Although this implementation limits the maximum number of batches to
714025, we believe it is sufficient for realistic simulation. More importantly, since each
batch uses an independent random number generator, the computed results will be
independent of the number of processors and are reproducible.

C. Load Balancing

The goal of load balancing is to enhance performance and achieve the greatest
possible speedup of a parallel program. A balanced program can usually keep all
processors busy and have them finish roughly at the same time. Otherwise, valuable
processor cycles are wasted if some processors have to wait on others to finish. Load
balancing is essential in parallel processing ITS since the computing time for each batch
may vary, and thus adversely affect the performance. This variation in computing time
may result for the following reasons: (1) the stochastic nature of particle histories; a few
anomalous batches may involve long trajectories, (2) the difference in computational
power on each machine in a heterogeneous configuration, and (3) the change in
computational performance in a multiuser, time-sharing environment. These
considerations must be taken care of by adjusting the way the problem is distributed in a
parallel system.

The current version of ITS provides two load distribution schemes, namely, the static
and dynamic methods. The static method is simple and easy to implement. In this method
the required tasks (or batches) are divided up and assigned to the available machines or
processors. The assigned number of batches can vary from machine to machine to account
for different computation power for different machines. These assignments are set at the
start and will not be adjusted to the actual loading and performance. As one may expect,
this scheme can be quite effective on a dedicated or lightly loaded system, but it does not
provide any mechanisms to address issue (1) which can be the main impediment to
efficiently running ITS in parallel.

Dynamic load-balancing is accomplished by the “pool-of-tasks™ paradigm. Initially,
each slave process is given a batch just as in the static scheme. As a slave process finishes
its task it will receive another one. With this scheme all the slave processes are kept busy
as long as there are batches remaining in the pool. The work load for each processor
(machine) is adjusted according to the “realistic” computational performance which may
be problem-dependent and can be changing dynamically as other users share the
resources.

The static and dynamic load-distribution schemes also have different impact on the
dump/restart operation. For the static scheme, the batches of histories are generated in
cycles, with a cycle being defined as the time period that each process starts and finishes a
batch of histories. A synchronization or a barrier is set up at the end of a cycle so that the
output can be updated and the dump file can be written. On the other hand, there is no
clear way to define such a cycle for the dynamic scheme since the batches are started and




finished in a random fashion. Consequently, the dump file will only be written at the end
of the run.

III. IMPLEMENTATION

A. Communication Software Packages: MPI, PVM, and NX

There are numerous communication software packages to support message passing on
different classes of parallel machines. Although there are many variations, these packages
all provide the basic functionalities such as point-to-point communication, collective
communication, and process management. Recently, several systems have demonstrated
that a message-passing system can be efficiently and portably implemented. In the
parallelized version of ITS, we incorporated three of such systems, Message Passing
Interface (MPI) [6], Parallel Virtual Machine (PVM) (71, and Intel NX library [8].

The NX library is the native message-passing library used on the Intel PARAGON and
will be supported on the coming Teraflops supercomputer at Sandia. Both MPI and PVM
are freely available software, and have been widely used in many scientific/engineering
applications. The most attractive feature of these software packages is that they allow
users to construct their own parallel machine by linking many UNIX workstations
together. In addition, they also support shared-memory multiprocessors (SMP) and
massively-parallel processors (MPP).

At present, we prefer MPI over PVM for the following reasons. First, MPI is
becoming a standard and its features are formally specified. In contrast, PVM is an
ongoing research project with no obligation to provide compatibility. Therefore, its
functionality may change, and lack of support may be a concern in the future. Second,
PVM has a fundamental deficiency in communication performance. This deficiency is
mainly due to excessive buffering (pack and unpack) and is most apparent on
multiprocessors with fast interconnection networks, such as the Intel PARAGON. On this
machine, PVM communication performance can be orders of magnitude worse than that
of the native message-passing library, while MPI performance is more comparable.

B. Correction Update

We have developed an “update” (a correction set for UPEML [9]) for implementation
of the parallel processing capability in ITS Version 3. This update consists of two major
components: corrections for the common block structure, and codes for process control
and message passing.

It is necessary to modify the common blocks in ITS to minimize both the number and
the size of messages. With the current generation of machines and communication
hardware, sending a message is still an expensive operation. As a rule of thumb, the fewer
messages sent, the better the performance of a program. To achieve this, we have arranged
the data structure so that the variables (arrays) with the same data type are grouped
together and are stored in contiguous memory locations. Moreover, variables of the same
data type are separated into two groups, the global and local variables. The global




variables are those provide information on problem input and tallied results and that have
to be transferred between the master and the slave processes. With this arrangement, we

-can send the global variables for a given data type in one package by specifying the

beginning address and the appropriate length, thus minimizing the number of messages. In
the rearranged common blocks, the floating-point variables are placed first, followed by
the integer, logical and character variables. The global variables are placed before the
local variables.

As an example, we present the old and new structures of common block /calc/ in
Figures 2 and 3. This common block contains the variables mainly used in the input and
monte-carlo routines. With the old structure, one needs to either pack the variables into a
message buffer and send it or send a large number of small messages. Both approaches
can be time consuming. The new common block allows us to transfer data with two
messages, one for floating-point variables (from ASTEP to W2Z) and the other for integer
variables (from NTKAY to NPLOTS).

The correction update is designed in such a way that users can incorporate their own
modifications to construct and tailor the codes for their specific applications. However,
one must pay attention to how and where these modifications are made. If any new global
variables are introduced, they need to be included in message passing between the master
and slave processes. If any changes are made to the existing common blocks, the
corresponding message passing routines must be modified to assure that the messages
contain appropriate memory address and length.

C. New *DEFINE and Input Keywords
To select a desired communication software in the correction update, one has to define
the following keyword
*DEFINE [MPI], PVM, NX]
where only one option listed in the brackets has to be activated. Similarly, the following
keyword is used to select the load-balancing scheme,
*DEFINE [STATIC, DYNAMIC].
An additional keyword is also needed in the ITS input file.
Syntax: TASKS [parameter(1)], [parameter(2)]
Example: TASKS 8,2
Default: 1,1

The first parameter associated with the keyword TASKS is NTASKS, which specifies
the number of tasks that will perform the Monte Carlo calculation in this run. The second
parameter, NPRINT, specifies the frequency of printed output to the scratch file. Its value
should be between one and the total number of batches.

The input parameter NTASKS has different implications to the program for different
communication packages and load balancing schemes. This information is given in Table
1. For the static scheme, a positive value of NTASKS implies that the master process will
perform the same Monte Carlo calculation as the slave processes. The number of
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COMMON /CALC/
ACON (INMT) ,
PIBL (INMT),

CALPH(IMMAX) ,

CEL (INPEL, INEEL) .
CTHB,
DEEL(INEEL1),
DLAM(INLAN) ,

DRGS (INMAX, INMT) ,
]JDDgPS,

ED{INMAX),
EEL(INEEL),

BDIS (IKTOP, IMTOP, INMT),

ASTEP (INMAX, INMT},

CORBL (INMAX, INMT) ,
BETA (INMAX1),
CHANG (INPANG, INRANG, INTANG, INMT},

CCH(NANGS) ,
COSAV (INMAX, INMT) ,
DBREN (IMTOP1),
DEPS (INEPS1),
DRANG (INRNG1},
DPANG,

DPS (INPPS, INEPS) ’
E(INMAX1),

EDGK ( INM’I’) ,

NTBX,

AT (NSURV, INMT},

BREN (IMTOP) ,

CTH (2),

DCALPH ( IMMAX) ,
DGAS (INGAS) ,
ggG (INMAX1, INM’T),
DTANG (IN’I‘NGl) ’
EARL (INMAX, INMT) ,

MTXX,
ESP(IJSPEC),

EM(INMAX), EPS(INEPS),
FAN, G(IMMAX, INMAX, INMT), GAS,
GAUSS (INGAS1}, PANG (INPANG) , PAIRI1 (JATPR, INMT),
PBREM (INMAX1, INMT)}, PEL(INPEL), -
PKI, bps (INPPS), PRUTH (INMAX1),
PSEC (INMAX1, INMT), QAV(INMAX, I
COMMON /CALC/
QCON (INMAX, INMT) , QCONS {(INMT) , QPHOT
Qs, RANG (INRANG) , RANGE (INMAXI INMT),
RAV (INMAX, INMT), NTKAY (INMT),
RKT(IKTOP), RMAX (INMT), SHD,
COHSCT (NSURV, INMT} ,
SPECIN(IJSPEC), SUBFAC (JAHSUB) , SURV1 (NSURV, INMT)} ,
T, TANG (INTANG) , TB,
TD, TL(INLAN1), TP, FLAMC(INMAX,INMT),
W, WB, TPMIN,

WX, ASIGN, JAZSCT,
BCUT (INMAX1, INMT) , NSUB (INI\MX, INMT),

Z,

PBREC (INMAX1, INMT),

ZSR, CTSR

COMMON /CALC/
I

NVFNOONONEWNEF RO ONIGUINIRN R 00~TAULBR W R V00 I UT IR W 1=

ANN, ICROSS, IFUP, IFUPA,
IFUPL, IFUPS, IPR,
JATIN, JF, ICTH,
LAST, LB, NLAN, NGAS,
ND, NDIF, NDIFA
NDIFL, NDIFS, NSCALE NSKALE,
NT, NTANN, IMPI (INMT) p NEMAX,
NMT, NMAX, MTOP,
NRANG, NEPS, KTOP, NTANG,
JSPEC, MMAX, NEEL, NPANG,
NPEL, NPPS, NMAXI, CWCF,
LD, LS8z, NGMAX
*IF -DEF,TIGER
COMMON /CALC/
1 X, Y, X, Dy,
2 CPH(2), SPH(2), STH(2}, SCH{NANGS) ,
3 STHRE, CPHB, SPHB,
2 STSR, CPSR, SPSR, XS8R,
3 YSR, Wix, W1y,
4 W1Z, wz2x, W2y, w2z
*IF DEF,ACCEPT
COMMON /CALC/
1 LPCZ, LBCZK, LBCZ
*ENDIF
*IF -DEF, PCODES
COMMON /CALC/
1 EAUG(3,INMT), EK(4,INMT),
2 PKEG{INMT), PXRAY(IZ\MAXI INMT) ,
3 RAUG(3,INMT), RK(4,INMT), WK ( INMT) ,

4 JATKA (4, INMT)
*ENDIF
*IF DEF, PCODES
1 RWT(INMAXI1,INSH,INMT),
1 SHEL(INMAX1,INSH,INMT),
*ENDIF
*IF DEF,MCODES
COMMON /CALC/
1 CTHT, STHT, CPHT, SPHT, CTHF, STHF, CPHF, SPHF,
2 SP, LBN, IBETA, IMOD
*ENDIF
*IF DEF,CYLTRAN
COMMON /CALC/
1 NPLOTS, RMNPLT, RMXPLT, ZMNFLT,
*ENDIF
COMMON /CALC/
1 ECEB(IMTAX, INTAB,INMT),

EPART (INMAX1,INSH, INEM1, INMT),
PPART (IMTAX, INTAB, INEM1, INMT)

ZMXPLT

ECAVE (KPTMAX), ECSIG(KPTMAX)

Figure 2. The existing data structure of common block /calc/ in ITS Version 3. The global
variables are shown in italic font.
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COMMON /CALC/ ASTEP{INMAX,INMT), AT(NSURV,INMT}, PIBL{INMT)},
CORBL (INMAX, INMT), BDIS(IKTOP,IMTOP, INMT), BETA(INMAX1),
BREN(IMTOP), CALPH(IMMAX), CCH(NANGS),
CHANG (INPANG, INRANG, INTANG, INMT), CEL(INPEL, INEEL),
COSAV(INMAX, INMT}, DBREN(IMTOP1), DCALPH(IMMAX), DEEL(INEEL1},
DEPS(INEPS1), DGAS(INGAS), DLAM(INLAN), DRANG(INRNG1),
DRG(INMAX1,INMT), DRGS(INMAX,INMT), DPANG, DPEL, DPPS,
DPS (INPPS, INEPS), DTANG(INTNG1), E(INMAX1), EARL(INMAX, INMT),
ED(INMAX), EDGK(INMT), EEL{(INEEL), EM(INMAX), EPS(INEPS),
ESP(IJSPEC), FAN, G(IMMAX,INMAX,INMT), GAS, GAUSS(INGAS1),
PANG (INPANG), PAIRI1(JATPR,INMT), PBREM(INMAX1,INMT), PEL(INPEL),
PPS(INPPS), PRUTH(INMAX1), PSEC(INMAX1,INMT), QAV(INMAX,INMT),
QCON (INMAX, INMT), RANG(INRANG}, RANGE(INMAX1,INMT),
RAV(INMAX, INMT), RKT(IKTOP), COHSCT(NSURV, INMT), SPECIN(IJSPEC),
SUBFAC (JAHSUB), SURVI1(NSURV, INMT), TANG(INTANG), TL(INLAN1),
FLAMC (INMAX, INMT), BCUT(INMAX1,INMT), PBREC(INMAX1,INMT),
ZSR, CTSR

COMMON /CALC/ ECEB(IMTAX,INTAB,INMT),

*1F -DEF,PCODES

& EAUG(3,INMT}, EK(4,INMT), PKEG(INMT}, PXRAY(INMAX1,INMT),
& RAUG(3,INMT), RK(4,INMT), WK(INMT), -

LRI R R

*ET
*IF DEF, PCODES
& RWT(INMAX1,INSH,INMT), EPART(INMAX1,INSH,INEMI1,INMT),
& SHEL (INMAX1,INSH,INMT), PPART(IMTAX,INTAB,INEMI1,INMT),
*BI
*1F DEF,MCODES
& CTHT, STHT, CPHT, SPHT, CTHF, STHF, CPHF, SPHF, SP,
*EI
*IF DEF,CYLTRAN
& RMNPLT, RMXPLT, ZMNPLT, ZMXPLT,
*EI
*IF -DEF,TIGER
& SCH(NANGS), STSR, CPSR, SPSR, XSR, YSR,
& WI1X, WI1Yy, Wlz, W2X, W2Y, W2Z, X, Y, DX, DY, CPH(2), SPH{2),
& S8TH(2), STHB, CPHB, SPHB,
*BEI
ECAVE (KPTMAX) , ECSIG(KPTMAX),
ACON {INMT), CTH(2), CTHB, DZ, PKI, QCONS (INMT),
QPHOT, QS, RMAX({INMT), SHD, T, TB, TD, TP, W, WB, TPMIN,
WX, Z, ASIGN, CWCF
COMMON /CALC/ NTKAY(INMT), NSUB(INMAX,INMT), IANN, IFUP, IFUPA,
& JATIN, JF, ICTH, NLAN, NGAS, NDIF, NDIFA, NTANN, IMPI(INMT},
& NRANG, NEPS, KTOP, NTANG, JSPEC, MMAX, NEEL, NMAX1, LD, NMT,
*IF -DEF,PCODES
& JATKA (4, INMT),

R R

*EI
*IF DEF,MCODES
& LBN, IBETA, IMCD,

*ET

*IF DEF, CYLTRAN
& NPLOTS,

*EI

*IF -DEF,TIGER
*IF DEF,ACCEPT
& LPCZ, LBCZK, LBCZ,
*ET
& NTBX, MTXX, JAZSCT, ICROSS, IPR, LAST, LB, ND, NDIFL, NDIFS,
& NSCALE, NSKALE, NT, NEMAX, NMAX, MTOP, NPANG, NPEL, NPPS,
& LSZ, NGMAX

Figure 3. The rearranged data structure of common block /calc/ used in the parallelized
ITS. The global variables, shown in italic font, are grouped together.
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processes started is identical to the number of tasks required. Conversely, a negative value
of NTASKS means that the master process will not perform the Monte Carlo calculation.
Thus the number of processes started should be one more than the number of tasks
specified.

For the dynamic scheme, the master process will not perform the Monte Carlo
calculation. Its mission is to perform input/output, monitor and control the other
processes. Therefore the number of processes started should be one more than the number
of tasks specified. For most UNIX computers, this arrangement does not waste any
processing power since multiple processes can often be run on a processor simultaneously.

In the appendix, we provide further information on how to obtain the communication
software MPI and PVM, and how to build the executable program on various parallel
platforms. It is intended to assist ITS users, with limited experience in parallel processing,
to get a quick start. More comprehensive guides on MPI, PVM, and NX can be found in
References [6-8].

IV. PERFORMANCE EVALUATION

A. UNIX Workstation Network

The goal of parallel processing is to make the program run faster (shorter turn-around
time) than it would in the corresponding serial run. A speedup ratio is often used to
evaluate the performance of a parallized program. On a dedicated system, the speedup
ratio can be calculated in the following manner:

Tl

where Sy, is the parallelization speedup, T is the elapsed wall-clock time for a single
processor, and T, is the elapsed wall-clock time if N processors are used in the
calculation. Furthermore, one can also define the parallel efficiency as the ratio of the
speedup factor to the number of processors,

S
€= —=, (6)

N
which provides a measure of efficiency of a parallel program and takes into account of
effects such as synchronization and communication overhead. A parallel efficiency of one
implies that a program executed with N processors will be N times faster than that with a
single processor.

Table 2 summarizes the measured speedup ratios and parallel efficiencies for seven
test problems on a cluster of SUN workstations. These test problems include the three
standard codes (TIGER, CYLTRAN, and ACCEPT), two P-codes, and two M-codes of
the ITS system, and utilize many tally and biasing options of the system. Sufficient
particle histories were required so that the input and output times were negligible in
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comparison to the overall CPU times. It is observed that the speedup ratios increase
almost linearly with the number of processors. The parallel efficiencies are about 90% or
better except for the ACCEPT-M code, where it drops to as low as 65%. Further studies
indicated that the relatively poor performance of the ACCEPT-M code was caused by an
anomalous batch which consumed ~ 50% more CPU time than the other batches. It is
believed that one or more electrons entered a vacuum .region with a uniform magnetic
field with velocities almost perpendicular to the field so that they drifted very slowly
through this region. Consequently, extra computing time was needed to calculate these
orbits, thus prolonging the CPU time for that batch.

B. Intel PARAGON

To further demonstrate the benefit of parallel processing and the dynamics between
load balancing and parallel efficiency, we consider the following problem related to the
EG&G linear accelerator. In this problem, it is desired to determine the energy and
angular distribution of the bremsstrahlung spectrum generated from an electron beam
incident on a tantalum converter. A three-dimensional configuration of the converter and
collimator is shown in Figure 4. In order to obtain accurate results with a modest number
of primary electrons, one variance-reduction technique available in ITS is to artificially
increase the bremsstrahlung production as electrons slow down in the converter while
particle weights are adjusted accordingly so that the results are unbiased. This technique
can considerably reduce the computing time by reducing the primary electron histories,
since electron tracking is more time consuming than that of photons. More information on
this technique can be found in Reference 2.

Timing results, using different numbers of processors, on the PARAGON machine are
given in Table 3. These results are based on 512 batches with 25 electron histories per
batch and with the SCALE-BREMS factor set to 10000. The load distribution for each
processor is fixed; that is, each processor will perform 512/N batches, where N is the
number of processors. The run time ranges from 4.5 hours for 32 processors to 21 minutes
for 512 processors. As a comparison, the same run will take about 28 hours on an IBM
RS6000 Model 560 workstation.

We have also estimated the speedup factors and parallel efficiencies for these
calculations. These results are estimates since we did not perform the calculation on a
single processor, and the run time for a single processor is approximated by summing the
batch CPU times from the multiple-processor run. As shown in Table 4, at 25 histories per
batch the speedup is about one half regardless of the number of processors; hence the
parallel efficiencies are about 50%. A closer examination indicates that this relatively poor
performance is mainly due to the fluctuation in the computing time required to generate
the electron trajectories. Since there are only 25 electron histories per batch, batches
involving a few, long-running electron histories will run longer than the average.
Consequently, the overall computing time is dominated by the longest computing time for
a batch. Combining Egs. (5) and (6), we can estimate the parallel efficiency for N
processors by
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where T is the average computing time per batch and T, is the longest computing time
among all batches. As shown in Figure 5, the ratio between T, .. and T is about two,
which validates the parallel efficiency observed. '

There are two ways to improve the parallel efficiency. The first one is the dynamic
load distribution. As discussed in Section II.C, this technique dynamically adjusts the
load, the number of batches executed per processor, so that all processors will finish
roughly at the same time. The processors involving long-running batches will execute less
batches while the other processors will pick up additional batches. Timing results with the
dynamic load balancing are also given in Table 4. The parallel efficiencies are about 90%
for small numbers of processors, and decrease monotonically as the number of processors
increases. It is noted that the performance of static and dynamic load distribution are about
the same as the number of processors increase beyond 256. This is expected since the
worst-case efficiency of the static scheme is about 50% and the number of batches
executed per processor is two or less.

The second method is to reduce the difference between the average and maximum
computing time per batch, which can be accomplished by increasing the number of
electron histories. For this example problem, one can obtain similar results with 200
electron histories per batch and a SCALE-BREMS factor of 1000. This approach reduces
the disparity in computing time as observed in the case of 25 histories per batch (see
Figure 5), hence greatly enhances the efficiency. As shown in Table 4, the parallel
efficiencies increase to 89% for 32 processors and 80% for 512 processors. However,
since it is more time-consuming to generate electron trajectories, the overall computing
time also increases slightly from the previous cases.

V. CONCLUSIONS

We have implemented a parallel-processing capability to the ITS code system. A
generic update to ITS 3.0 has been developed which provides users a basic yet flexible
platform for their applications. We have performed validation and timing tests in various
parallel computing environments. For selected problems, this parallelized version of ITS
performs very well. This capability is anticipated to become a standard feature in the
future releases.
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Figure 5. Comparison of computing time per batch for two ITS calculations of the EG&G
LINAC problem on PARAGON. This problem was run with 512 batches and
with 512 computing nodes. These timing results show that a small number of
histories per batch can result in disparity in batch CPU time and thus affect load

balancing and parallel efficiency.
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I. APPENDIX

This appendix provides information on how to obtain the MPI and PVM software, and
how to build and execute ITS on various parallel platforms.

Message Passing Interface

There are several freely available, quality implementations of MPI, which support a
variety of platforms and communication networks. More information on these
implementations can be found at the Mississippi State MPI web page hap:/
www.erc.msstate.edu/mpi. Although MPI is a standard, its implementations may vary and
are still evolving. Here we employ a portable implementation MPICH (Version 1.0.13)
developed jointly by Argonne National Laboratory and Mississippi State University. It
can be obtained by anonymous ftp to the address fip.mcs.anl.gov, and the directory pub/
mpi.

Assuming that the MPICH package is installed on a system and the related files are
stored as the following:

* Header files: /optO/mpich/include,
¢ Libraries: /fopt0/mpich/lib, and
+ Executables: /opt0/mpich/bin,
the executable program its.mpi can be built by issuing the shell command
£77 -O -o its.mpi its.f -I/optO/mpich/include -L/opt0/mpich/lib -Impi,
where £77 is the FORTRAN compiler on the system.
To run its.mpi on N processors, one can execute the command
mpirun -np N its.mpi < inp > out
where it is assumed that there is a machine configuration file (for example, /optO/mpich/
util/machines) which contains a list of machines where the MPI program can be run.

Parallel Virtual Machine

PVM is developed and maintained by researchers at the Oak Ridge National
Laboratory and University of Tennessee, Knoxville. Information on PVM can be found at
the web page http://www.epm.ornl.govipvm. At present, the parallel ITS program is
designed to work with PVM3.3 or later versions.

Assuming that the PVM files are stored on a system as the following:

+ Header files: /opt0/pvm3/include/X,
+ Libraries: /optO/pvm3/lib/X,
the executable program its.pvm can be built by issuing the shell command
f77 -O -o its.pvm its.f -IoptO/pvm3/include/X -L/opt0/pvm3/lib/X -lfpvm3 -
Ipvm3

where X indicates the type of machines and/or operating system.




Before running any PVM programs, one has to start a PVM daemon on the system
pool. This can be done using the PVM console or the hostfile option. Reference 6 provides
detailed information on this subject and will not be repeated here. To execute its.pvm,

simply type
its.pvm < inp > out.

Furthermore, one can use the file PVMTASKS for more control over how processes
get started on a UNIX workstation cluster. This option is activated by setting the input
parameter NTASKS to a negative number. The format of PVMTASKS is a set of lines of
the form

<NHOSTS> # number of host machines available under PVM, and
<NPH> < HOSTNAME>

where NPH is the number of processes to be started on the machine HOSTNAME. The
last line should be repeated NHOST times to use all the available machines. An example
of such a file, where we want to perform 6 tasks on 3 available machines might be

3

1 sunl
1 sun2
4 sun3

It is important to note that the master process may be running on a machine listed above.
Furthermore, the last machine may be a shared-memory multiprocessor which can start
multiple processes.

Intel PARAGON

At Sandia, an executable program for the PARAGON must be built on the front-end
machine using the cross-compiler. The SUNMOS operating system contains shell scripts
that can be used to compile programs written in C and FORTRAN. This is typically done
by the following command

sif77 -O -o its.pgon its.f.
The utility yod is then used to load and execute the program:
yod -size N -comm M its.pgon < inp > out,

where N is the number of nodes for the application and M is the memory (in bytes)
allocated for the communication buffer on each node.
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