

83287

ANL/CHM/PP--83287

EXPERIMENTAL AND THEORETICAL INVESTIGATION OF THE PRODUCT
CHANNELS OF THE O + CH₃ REACTION

Irene R. Slagle, Ilia J. Kalinovski and David Gutman*

Department of Chemistry

Catholic University of America

Washington, DC 20064

and

Lawrence B. Harding†

Chemistry Division

Argonne National Laboratory

Argonne, IL 60439

May, 1994

*Deceased

†Part of this work was done while a visiting fellow at the Joint Institute for Laboratory
Astrophysics, Boulder, CO.

The submitted manuscript has been authored
by a contractor of the U. S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Abstract

The product channels of the $O(^3P) + CH_3$ reaction have been investigated in a combined experimental and theoretical study. In the experimental part the branching fraction for formaldehyde production ($O + CH_3 \longrightarrow H_2CO + H$) was measured at room temperature in a tubular flow reactor coupled to a photoionization mass spectrometer. The reactants (CH_3 and O) were generated homogeneously in the reactor by the simultaneous *in situ* 193-nm photolysis of acetone and SO_2 . The yield of formaldehyde produced relative to the methyl radicals consumed by the reaction, i.e., the branching fraction, was determined to be 1.0 ± 0.15 . In the theoretical part calculations of the energetics of possible decomposition pathways of the energy-rich methoxy radical initially formed in the $O + CH_3$ reaction indicate that the dominant channel for decomposition is C-H bond cleavage leading to atomic hydrogen and formaldehyde. A possible, minor, secondary channel is hydrogen migration, followed by O-H bond cleavage, leading to the same final products. No energetically competitive pathways leading to H_2 , HCO , HOC or CO could be found.

Introduction

The kinetics of the reaction of oxygen atoms with methyl radicals (reaction 1) has been the subject of numerous investigations¹ because of the importance of this radical-radical reaction in combustion processes.²⁻⁴ Reaction 1 is one of the dominant steps removing CH₃ from the radical pool in flames, particularly under fuel-lean conditions. The rate constant for the O(³P) + CH₃ reaction is considered to be well established with a recommended value of 1.4x10⁻¹⁰ cm³ molecule⁻¹ s⁻¹ from 300 to 2500K.⁵

Although there are four possible energetically accessible product channels for the O + CH₃ reaction,

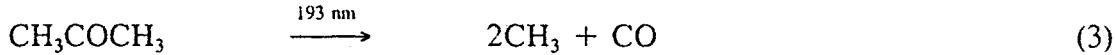
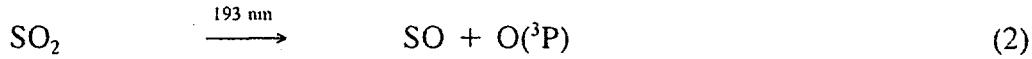
reaction 1a has long been regarded as the dominant reaction route.⁶ A number of experimental studies⁷⁻⁹ has supported the existence of this mechanism by direct observation of the formaldehyde produced. Hoyermann and Sievert⁷ detected product peaks from the O + CH₃ reaction corresponding to HCO and H₂CO using mass-spectrometric analysis. A majority of the peak at mass 29 (HCO) was ascribed to electron-impact fragmentation of the formaldehyde with an upper limit for reaction 1c estimated to be 20%. No products of reaction 1d were detected by Hoyermann and Sievert. Slagle et al.⁸ monitored both the disappearance of CH₃ and the concurrent appearance of H₂CO in time-resolved experiments using a laser photolysis-photoionization mass spectrometric technique. These results confirmed that formaldehyde was

a primary product of the $O + CH_3$ reaction. Neither HCO nor CH_2 , products of reactions 1c and 1d respectively, were detected, suggesting that routes 1c and 1d were not significant compared to the importance of the formaldehyde channel, 1a. In the experiments of Slagle et al. CO, H_2 , and H could not be detected because of their high ionization potentials and low detection sensitivity, making an assessment of the presence or importance of route 1b impossible. Zellner et al.⁹ monitored the production of formaldehyde by reaction 1a using laser-induced fluorescence. Zellner et al. state that H_2CO was determined to be the "dominant product" on the basis of mass-balance considerations.

Recently, Seakins and Leone¹⁰ found evidence of significant CO production from the $O + CH_3$ reaction. They investigated the $O + CH_3$ reaction using laser flash photolysis to produce the radical reactants and time-resolved Fourier transform infrared emission spectroscopy to detect the products. They observed not only emission corresponding to the formaldehyde C-H stretch but also strong molecular CO vibrational emission produced on the same time scale.

Earlier investigations⁷⁻⁹ have clearly detected the products of route 1a in the $O + CH_3$ reaction and have also shown the absence of the products of routes 1c and 1d. The study of Seakins and Leone¹⁰ provides the first measure of the importance of CO (route 1b) as a reaction product. The estimated significance of this route ($\leq 40 \pm 10\%$) is in contradiction with the belief that route 1a is the dominant reaction channel. To clarify this somewhat contradictory picture of the chemical branching in this important combustion reaction, we have conducted a combined experimental and theoretical investigation of product formation in the $O + CH_3$ reaction. The goal of this investigation is twofold: (1) to finally establish the branching ratio of reaction 1a by quantitatively measuring the yield of H_2CO from the $O + CH_3$ reaction and

(2) to provide a sound theoretical understanding of the observed chemical branching from knowledge of the energetics of the O + CH₃ reaction. The results of this investigation are presented here.



Experimental Section

Overview of Experimental Method. Oxygen atoms and methyl radicals were produced simultaneously by pulsed laser photolysis in a tubular flow reactor at room temperature. Initial conditions were chosen to assure that all CH₃ radicals were consumed by excess O-atoms in less than 5 ms. This rapid conversion provides ample observation time to measure the final H₂CO concentration. In our prior study of reaction 1^a conditions were used which permitted characterization of the decaying CH₃ signal and the growth of the H₂CO signal which provided the information needed to establish that H₂CO was a primary product of the O + CH₃ reaction. The formaldehyde produced by reaction 1a was detected using photoionization mass spectrometry. The branching fraction of reaction 1a is the measured concentration of formaldehyde after all methyl radicals have been consumed by O-atoms ([H₂CO]_t) divided by the measured initial methyl-radical concentration ([CH₃]₀).

The experimental apparatus used and many of the procedures employed in this study have been described previously.^{8,11} Pulsed, unfocused 193-nm radiation (3-4 Hz) from a Lambda Physik 201MSC laser was directed along the axis of a 1.05 cm i.d., boric-acid coated quartz reactor. Gas flowed through the tube at $\approx 4 \text{ m s}^{-1}$ and was completely replaced between laser pulses. The flowing gas contained the reactants [acetone (the CH₃ source), SO₂ (the O-atom source) or Cl₂ (for titrating CH₃)] and the carrier gas (He) which was always in large excess

($X_{He} > 0.99$). Gas was continuously sampled through a 0.043-cm diameter hole (located at the end of a nozzle in the wall of the reactor) and formed into a beam by a conical skimmer before it entered the vacuum chamber containing the mass spectrometer. As the gas beam traversed the ion source, a portion was photoionized (using resonance lamps) and then mass selected. Temporal ion signals were recorded from a short time before each laser pulse to 20 ms following the pulse by using a multichannel scalar. Data from 600 to 5000 repetitions of the experiment were accumulated before the data were analyzed.

The two reactants (CH_3 and $\text{O}({}^3\text{P})$) were produced simultaneously by pulsed laser photolysis:

The initial concentration of O was determined from the measured extent of photodecomposition of the SO_2 (typically 8-10%).⁸ In order to accurately measure the low initial concentrations of methyl radicals used in these experiments, a titration procedure was used. The initial concentrations of CH_3 used were determined in separate experiments in which the acetone used to produce the radicals was present but the SO_2 was removed. A large excess of Cl_2 was introduced to stoichiometrically convert the methyl radicals produced by photolysis into CH_3Cl by reaction 4 ($k_4 = 2.0 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298K¹²):

The mass spectrometric sensitivity to CH_3Cl was determined by calibration with known flows of pure CH_3Cl and used to obtain $[\text{CH}_3]_0$ from the CH_3Cl^+ ion signal after the stoichiometric conversion.

Initial conditions were chosen to provide an O-atom concentration which was at least a factor of 18 greater than the initial CH_3 concentration. Under these conditions oxygen atoms were not significantly depleted by reaction 1. Initial methyl concentrations were kept low to ensure that CH_3 recombination and secondary reactions had negligible rates compared to that of the $\text{O} + \text{CH}_3$ reaction. Experiments using totally deuterated acetone as the methyl precursor confirmed that no measurable ethane (from the $\text{CH}_3 + \text{CH}_3$ reaction), which has the same mass number as H_2CO , was produced under the conditions of these experiments, i.e., $[\text{O}]/[\text{CH}_3]_0 > 18$. Furthermore, there was no measurable signal at $m/z=30$ (the mass number of H_2CO) when either acetone or SO_2 was photolyzed separately.

The photodecomposition of acetone at 193 nm produces CH_3 which is vibrationally excited.¹³ However, since the vibrational relaxation time of CH_3 under our experimental conditions¹³ is short (<.1 ms) compared to the reaction time, it is the product of the thermal reaction between O and CH_3 that is observed in this study.

Determination of the Branching Fraction. The branching fraction for reaction 1a ($F_{\text{H}_2\text{CO}}$) is the concentration of formaldehyde after all methyl radicals have been consumed by O-atoms ($[\text{H}_2\text{CO}]_f$) divided by the initial methyl-radical concentration ($[\text{CH}_3]_0$). Since, in these experiments, $[\text{CH}_3]_0$ is determined by converting CH_3 to CH_3Cl with molecular chlorine, the branching fraction can be rewritten as $[\text{H}_2\text{CO}]_f / [\text{CH}_3\text{Cl}]$.

$$F_{\text{H}_2\text{CO}} = \frac{[\text{H}_2\text{CO}]_f}{[\text{CH}_3]_0} = \frac{[\text{H}_2\text{CO}]_f}{[\text{CH}_3\text{Cl}]} \quad (\text{I})$$

The ion signals monitored in this study must be converted into concentrations in order to

determine F_{H_2CO} . The ion signal of a stable (or labile) species R (S_{R^+}) is directly proportional to the concentration of R in the flow reactor with a sensitivity constant (α_R) which depends, among other things, on the ionizing lamp intensity used and the conditions in the flow reactor.

$$S_{R^+} = \alpha_R [R] \quad (II)$$

The sensitivity constant can be determined by flowing a known concentration of R in the reactor and monitoring its ion signal. Such a calibration was easily accomplished for CH_3Cl . Production of an accurately known concentration of formaldehyde in the flow reactor is much more difficult. To minimize possible errors in the H_2CO sensitivity constant and, subsequently, in the branching fraction determination, sensitivity determinations for H_2CO were based on a relative sensitivity measurement of H_2CO to C_3H_6 . Formaldehyde and C_3H_6 were produced simultaneously by the thermal decomposition of 3-buten-1-ol.

Butenol in helium was decomposed in a separate flow tube heated to approximately 1073 K attached to a side-arm of the reactor. This source of formaldehyde was chosen for calibration purposes because the decomposition of 3-buten-1-ol is known to proceed predominantly by this molecular elimination mechanism.¹⁴ Although the decomposition may produce minor amounts of other molecular elimination products,¹⁴ e.g., $H_2O + C_4H_6$, equal concentrations of H_2CO and C_3H_6 are formed under all reaction conditions.

In order to establish the relative mass-spectral sensitivity to H_2CO and C_3H_6 the ion signals at $m/z=30$ (H_2CO^+) and 42 ($C_3H_6^+$) were recorded using an argon resonance lamp as the source of ionizing light. The butenol was then removed from the system and known flows of C_3H_6 and CH_3Cl were added to the main flow. Again using an argon lamp, the ion signals

at $m/z = 42$ ($C_3H_6^+$) and 50 (CH_3Cl^+) were recorded to obtain the relative sensitivity to C_3H_6 and CH_3Cl . These two carefully measured sensitivity ratios were then combined to obtain the conversion factor relating the relative ion signals of H_2CO and CH_3Cl to the ratio of their concentrations.

$$F_{H_2CO} = \frac{[H_2CO]_f}{[CH_3Cl]} = \left(\frac{S_{H_2CO^+}}{S_{CH_3Cl^+}} \right) \left(\frac{S_{C_3H_6^+}}{S_{H_2CO^+}} \right)_c \left(\frac{S_{CH_3Cl^+}}{S_{C_3H_6^+}} \right)_c \left(\frac{[C_3H_6]}{[CH_3Cl]} \right)_c \quad (III)$$

Subscript c designates those quantities measured in the calibration experiments.

With the procedures used in this study the branching fraction depends only on the ratios of ion signals or concentrations of easily handled stable molecules. Such ratios can be measured very accurately. The absolute concentrations of CH_2O and CH_3 are *not* required in these calculations.

A potential source of error associated with the use of butenol as the formaldehyde source is the production of an ion signal at mass 42 due to photoionization fragmentation of butenol. At the temperatures used in the calibration experiments (1073 K), 99% of the butenol decomposes in less than 10 ms¹⁴ and thus should not contribute to the mass 42 ion signal. Investigation of propylene production using less energetic ionizing light (10.2 eV) which reduces the fragmentation by a factor of 25 confirmed that there was no contribution to the mass 42 ion signal from residual butenol.

The following sequence of measurements was performed to determine the branching fraction of reaction 1a.

1. The relative mass-spectral sensitivities were determined as described above for each [He] used.

2. For each set of initial conditions ($[CH_3]_0$, $[O]$ and $[He]$) the following series of measurements were made.

- a. With acetone and Cl_2 in the flow reactor, the CH_3Cl^+ ion signal was monitored (CH_3 titration).
- b. With acetone and SO_2 in the flow reactor, the H_2CO^+ ion signal was monitored (H_2CO yield).
- c. Step a. was repeated.

3. The mass-spectral sensitivities were again determined.

An example of the ion signals monitored in steps a. and b. is shown in Figure 1. From the results of these measurements the branching fraction was calculated using Equation III.

Experiments were conducted using different initial conditions to confirm that the branching fraction is independent of $[O]$, $[CH_3]_0$, $[He]$, and laser intensity. The conditions and results of all experiments to measure the branching fraction are presented in Table 1. The average of six measurements covering over a three-fold range of initial methyl and oxygen concentrations and a two-fold range of densities results in $F_{H_2CO} = 1.0$. The statistical uncertainty (1σ) in these measurements is only $\pm 5\%$. The total uncertainty in the branching fraction is estimated to be $\pm 15\%$ when possible errors in ion signal ratios and concentration ratios are taken into account.

The branching fraction could be measured only at room temperature. At higher temperatures the presence of secondary reactions prevents an accurate determination of the branching fraction. For example, the Cl -atom produced in reaction 4 can attack the acetone.

At high temperatures the acetyl radical can then thermally decompose, producing ketene and additional methyl radicals.

Use of CH₃I as a CH₃ Source. Attempts to use methyl radicals from a different precursor, CH₃I, were unsuccessful. Although the absorption coefficients at 193nm reported in the literature for acetone¹⁵ and methyl iodide¹⁶ are not very different ($\epsilon \approx 1000 \text{ l mol}^{-1} \text{ cm}^{-1}$ for acetone and $400 \text{ L mol}^{-1} \text{ cm}^{-1}$ for CH₃I), decomposition yields are quite different. There was a negligible depletion of CH₃I upon photolysis (< 1% as compared to > 5% for acetone photolysis at room temperature using the same laser fluence). Reaction of CH₃ from the two sources with Cl₂ indicates that photolysis of acetone produces 12 times the concentration of methyl radicals as is produced by an equivalent concentration of CH₃I exposed to the same laser fluence.

When SO₂ was photolyzed in the presence of CH₃I, a fast reaction between O-atoms and CH₃I was observed. This reaction is known to be very rapid.¹⁷ A lower limit for the rate constant of $1.7 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ has been reported.¹⁸ A set of ancillary experiments was performed at room temperature to determine the rate constant and possible products of the O + CH₃I reaction. The rate constant for the O + CH₃I reaction was measured under pseudo-first-order conditions ($[\text{O}]/[\text{CH}_3\text{I}]_0 = 30 - 290$). The rate constant was determined from the exponential decay of the CH₃I ion signal with time. An average of six such measurements at a density of $1.2 \times 10^{17} \text{ molecule cm}^{-3}$ yielded the rate constant $k_{\text{O} + \text{CH}_3\text{I}} = 1.7(\pm 0.4) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$! The only observed products of the photolysis of CH₃I and subsequent reactions which occurred were I, HI and H₂CO (most probably from the O + CH₃ reaction). A small signal corresponding to HIO was observed but, because of its low intensity, could not be

identified as either a primary or secondary product of the O + CH₃I reaction.

Gas Sources and Purification Procedures. The gases used were obtained from Matheson (He, 99.995%; SO₂, 99.98%; Cl₂, 99.99%; CH₃Cl, 99.5%; C₃H₆, 99.0%). Acetone (>99%), acetone-*d*₆ (99.8 atom-%), CH₃I (99%), and 3-buten-1-ol (99%) were obtained from Aldrich. Helium was used as provided while all other materials were degassed by freeze-pump-thaw cycles and used without further purification.

Photoionization Energies Used to Detect Reactants and Products. Three photoionization energies were used in the mass spectrometer during this investigation. A neon resonance lamp (16.67, 16.85 eV) was used to photoionize oxygen atoms and SO₂, an argon lamp (11.62, 11.83 eV) to detect H₂CO, C₃H₆, CH₃Cl, I and HI, and a hydrogen lamp (10.2 eV) to photoionize SO, CH₃, acetone, butenol, and CH₃I.

Electronic Structure Calculations

The theoretical study described here involves searching for and characterizing the transition states for rearrangements of the highly excited (94 kcal mol⁻¹) methoxy radical initially formed in the O + CH₃ reaction, focusing on decomposition pathways which can potentially yield CO (or HCO, a CO precursor) as a final product. Seakins and Leone¹⁰ have discussed some of these isomerizations and possible decomposition paths qualitatively. Here these processes are dealt with quantitatively in order to assess their feasibility.

There have been a number of theoretical studies on the decomposition pathways of the methoxy radical¹⁹⁻²². Most have focused on the barriers to loss of atomic hydrogen and (1,2) hydrogen migration. The most recent of these²² employed large basis sets, combined with multi-

reference configuration interaction methods and was said to be accurate to ± 1 kcal mol⁻¹. The focus of the present study will be to examine possible alternative pathways for the decomposition of methoxy radical, in particular pathways that might lead to formation of CO.


The calculations employ the double zeta (3s,2p,1d/2s,1p) and triple zeta (4s,3p,2d,1f/3s,2p,1d) correlation consistent basis sets of Dunning²³, denoted here DZ and TZ, respectively. The calculational method used is quite standard, consisting of a restricted Hartree-Fock (RHF) calculation followed by a singles and doubles configuration interaction (RHF+1+2) calculation. An estimate of the importance of higher order excitations (triples and quadruples) is made using the normalized Davidson correction²⁴, (RHF+1+2+QC). Geometry optimizations were all carried out using RHF+1+2+QC calculations with the DZ basis set. Single point calculations were then done with the TZ basis set at the optimum, DZ geometries. All calculations were carried out using the COLUMBUS electronic structure codes²⁵.

The calculated energies are summarized in Table 2 and illustrated schematically in Figure 2. The one reaction on this potential surface for which there is the most detailed experimental information available for comparison is the abstraction reaction, (8).

At the highest level of theory used here the calculated barrier for this reaction is 6.9 kcal mol⁻¹ (including zero point corrections), and the calculated exothermicity is -16.2 kcal mol⁻¹. The measured exothermicity for this reaction is -16.7 ± 0.25 kcal mol⁻¹²⁶ and it has been shown²⁷ that the measured rate²⁸ is consistent with a barrier of 4.9 kcal mol⁻¹. Thus the calculated exothermicity is in error by 0.5 kcal mol⁻¹ and the calculated barrier height is high by 2 kcal mol⁻¹. Another point of comparison to experiment are the exothermicities of reactions (9) and

(10).

The experimentally derived exothermicities (0 K) are -21.0 and -28.7 kcal mol⁻¹, respectively. The corresponding numbers from the highest level of theory are -21.6 and -28.2 kcal mol⁻¹. In this case the calculations are well within the experimental error bars for both reactions (± 0.9 kcal mol⁻¹). These errors are typical for this level of calculation and should be indicative of the overall accuracy of the calculations.

The calculations clearly predict that the lowest pathway to decomposition of methoxy radical is through loss of atomic hydrogen. The next lowest pathway is (1,2) hydrogen migration, forming hydroxymethyl radical. In the present calculations migration is predicted to lie 6.2 kcal mol⁻¹ above the C-H bond cleavage route. This is in good agreement with the calculations of Walch²² who found these two transition states to be separated by 6.7 kcal mol⁻¹. The following discussion focuses primarily on possible alternative pathways to decomposition of both CH₃O and H₂COH. In particular, we will consider the possibility of direct elimination of molecular hydrogen from both radicals, a necessary first decomposition step to ultimately lead to the production of CO.

For methoxy radical, only a (1,1) elimination is possible leading to H₂+HCO. For hydroxymethyl, either a (1,2) elimination, leading again to H₂+HCO, or a (1,1) elimination, leading to H₂+HOC are possible. Extensive geometry searches were made for all three pathways. In only one case was a transition state located; this being the (1,1) elimination from hydroxymethyl forming H₂+HOC. The calculated barrier for this process is quite high, 81.6

kcal mol⁻¹, or 54 kcal mol⁻¹ above the lowest competing pathway, CH bond cleavage from methoxy radical to form H₂CO + H. Thus, although this barrier is energetically accessible in the O+CH₃ reaction, the existence of much lower energy pathways makes it unlikely that this route will be observable. Note that these results imply a fairly large barrier of 35.8 kcal mol⁻¹ to the reverse reaction, insertion of HOC into H₂.

No transition states leading directly to H₂+HCO were located. For the case of (1,1) elimination from methoxy radical, the geometry search was initially constrained to force the simultaneous loss of two hydrogens. This was done by keeping two of the CH distances equal. With this constraint, a pathway from H₃CO to H₂+HCO was located, having a barrier of 50.6 kcal mol⁻¹ (DZ). However, at this point there is a non-zero gradient for the anti-symmetric CH stretch (CH_a - CH_b). Optimization of this coordinate is found to lead down to the transition state for CH bond cleavage, i.e., loss of atomic hydrogen rather than molecular hydrogen. The search for a transition state for (1,2) elimination of hydrogen from hydroxymethyl radical was initially constrained to have an H_aCOH_b dihedral angle of zero degrees. With this constraint the calculations predict a barrier to loss of molecular hydrogen of 85.9 kcal mol⁻¹. However, the calculations also show a non-zero gradient at this point for the constrained torsional coordinate. When this constraint is relaxed the geometry collapses down to that of the transition state for (1,2) hydrogen migration.

The calculations predict the existence of a third H₃CO isomer, HCOH₂, a weak complex between CH and H₂O, having a binding energy of 7.8 kcal mol⁻¹, relative to CH+H₂O. There appears to be no barrier to the formation of this complex from the addition of CH and H₂O and only very small barriers to collapse of this complex to H₂COH. Thus relative to CH+H₂O, it

is predicted that there is no net barrier to insertion of the CH into an OH bond forming H₂COH. This implies that the reverse of this insertion is a route for production of CH + H₂O that is also energetically accessible in the O + CH₃ reaction. However, again because of the high energetic requirements, this route is not expected to compete effectively with loss of atomic hydrogen.

Discussion

The results of both the experimental and theoretical study of the product channels of the O + CH₃ reaction indicate that the O(³P) + CH₃ reaction produces H₂CO + H dominantly, if not exclusively. The primary mechanism is the formation of an energy-rich CH₃O radical which decomposes by simple C-H bond cleavage. A possible, minor, secondary channel involves 1,2 hydrogen migration, followed by O-H bond cleavage, leading to the same final products. A similar kinetic picture was found in the theoretical study of the reaction routes of the O + C₂H₅ reaction.²⁹ No energetically competitive pathways leading to H₂, HCO, HOC or CO could be found.

This conclusion that route 1a is the dominant product channel in the O + CH₃ reaction appears to contradict the results of Seakins and Leone.¹⁰ Seakins and Leone monitored the time-resolved infrared emission from both formaldehyde and CO following 193-nm photolysis of SO₂ / CH₃I (or acetone) mixtures. The temporal behavior and concentration dependencies of these signals as well as the absence of emission when either SO₂ or CH₃I alone was photolyzed demonstrated that these emissions arise from reactions occurring after photolysis, not from direct photodissociation, and indicated that these emissions originated from initial products of the O

+ CH₃ reaction.

In order to avoid the complications arising from interfering CO* from acetone photodissociation,³⁰ the majority of the experiments conducted by Seakins and Leone to confirm the identity of the reaction responsible for the observed CO emission were carried out with CH₃I as the methyl radical precursor. The fact that O reacts very rapidly with CH₃I was not considered in the FTIR emission study. (There have been no prior direct studies of this reaction rate constant reported in the literature.) However, using the rate constant for O + CH₃I determined in this study along with our relative photolysis yields, we calculate that the radical pool in Seakins and Leone's study is dominated by products from the O + CH₃I reaction to the extent that, even at short reaction times (10 μ s), methyl radicals from direct photolysis constitute less than one-tenth of the carbon-centered radical pool. The primary products of the O + CH₃I reaction are not known but are most likely CH₃O + I. The route to produce CH₃ + IO is thermoneutral and probably not important. Kwong and Tse¹⁸ report observing chemiluminescence from a variety of sources (I₂, CO₂, CO and OH) in the O + CH₃I system while Herron and Huie reported deposits from this system on the walls of their reactor which included polymeric formaldehyde and oxides of iodine. It is possible that primary or secondary products from the O + CH₃I reaction could interfere with the determination of the branching fraction to CO in Seakins and Leone's measurements.

A feasible origin of the discrepancy between the results of Seakins and Leone¹⁰ and those reported in this study is more difficult to suggest when the same methyl radical precursor (acetone) is used in both studies. We speculate that CO, if present, is a minor product with a branching <0.15, within the error limits of our experimental study. Further experiments,

perhaps those that directly probe the ground state of CO, are necessary to resolve the differences in the measured branching fractions.

Summary

The branching fraction to formaldehyde production in the O(³P) + CH₃ reaction has been experimentally determined to be 1.0 ± 0.15. The conclusion that formaldehyde and hydrogen atom are the only products of the O + methyl reaction is supported by the results of theoretical calculations on the pathways to decomposition of the methoxy radical initially formed in the reaction. The dominant channel for decomposition of methoxy radicals is C-H bond cleavage leading to atomic hydrogen and formaldehyde. A possible, minor, secondary channel is hydrogen migration, followed by O-H bond cleavage, leading to the same final products. No energetically competitive pathways leading to H₂, HCO, HOC or CO could be found.

Acknowledgements

We gratefully acknowledge support for this research from the Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research, U.S. Department of Energy under grant No. DE/FG05-89ER14015 at CUA and contract W-31-109-Eng-38 at ANL. We thank Dr. Lev N. Krasnoperov for his many useful suggestions regarding these experiments and Drs. Paul W. Seakins and Stephen R. Leone for their numerous discussions and comments on this study as well as on their own results.

References

1. Mallard, W. G.; Westley, F.; Herron, J. T.; Hampson, R. F.; Frizzell, D. H. *NIST Chemical Kinetics Database -- Ver. 5.0*, NIST Standard Reference Data: Gaithersburg, MD, 1993.
2. Warnatz, J. In *Combustion Chemistry*; Gardiner, J. C., Ed.; Springer-Verlag: New York, 1984; Chapter 5.
3. Miller, J. A.; Kee, R. J.; Westbrook, C. K. *Annu. Rev. Phys. Chem.* **1990**, *41*, 345.
4. Warnatz, J. *Combust. Sci. Tech.* **1982**, *26*, 203.
5. Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.; Just, Th.; Kerr, J. A.; Pilling, M. A.; Troe, J.; Walker, R. W.; Warnatz, J. *J. Phys. Chem. Ref. Data* **1992**, *21*, 411.
6. Tsang, W.; Hampson, R. F. *J. Chem. Phys. Ref. Data* **1986**, *15*, 1087.
7. Hoyermann, K.; Sievert, R. *Symp. (Int.) Combust. [Proc.]* **1979**, *17*, 517.
8. Slagle, I. R.; Sarzyński, D.; Gutman, D. *J. Phys. Chem.* **1987**, *91*, 4375.
9. Zellner, R.; Hartmann, D.; Karthäuser, J.; Rhäsa, D.; Weibring, G. *J. Chem. Soc., Faraday Trans. 2* **1988**, *84*, 549.
10. Seakins, P. W.; Leone, S. R. *J. Phys. Chem.* **1992**, *96*, 4478.
11. Slagle, I. R.; Gutman, D. *J. Am. Chem. Soc.* **1982**, *104*, 4741.
12. Timonen, R. S.; Gutman, D. *J. Phys. Chem.* **1986**, *90*, 2987.
13. Donaldson, D. J.; Leone, S. R. *J. Chem. Phys.* **1986**, *85*, 817.
14. August, R.; McEwen, I.; Taylor, R. *J. Chem. Soc., Perkin Trans. II* **1987**, 1683.
15. Baba, M.; Shinohara, H.; Nishi, N.; Hirota, N. *Chem. Phys.* **1984**, *83*, 221.

16. Pence, W. H.; Baughcaum, S. L.; Leone, S. R. *J. Phys. Chem.* **1981**, *85*, 3844.
17. Herron, J. T.; Huie, R. E. *J. Phys. Chem.* **1969**, *73*, 1326.
18. Kwong, B. C. L.; Tse, R. S. *J. Phys. Chem.* **1994**, *98*, 823.
19. Saebo, S.; Radom, L.; Schaefer, H. F. III *J. Chem. Phys.* **1983**, *78*, 845.
20. Page, M.; Lin, M. C.; He, Y.; Choudhury, T. K. *J. Phys. Chem.* **1989**, *93*, 4404.
21. Curtiss, L. A.; Kock, L. D.; Pople, J. A. *J. Chem. Phys.* **1991**, *95*, 4040.
22. Walch, S.-P. *J. Chem. Phys.* **1993**, *98*, 3076.
23. Dunning, T. H. Jr. *J. Chem. Phys.* **1989**, *90*, 1007.
24. (a) Langhoff, S. R.; Davidson, E. R. *Int. J. Quantum Chem.* **1974**, *8*, 61. (b) Silver, D. W.; Davidson, E. R. *Chem. Phys. Lett.* **1978**, *52*, 403.
25. Shepard, R.; Shavitt, I.; Pitzer, R. C.; Pepper, M.; Lischka, H.; Szalay, P. G.; Ahlrichs, R.; Brown, F. B.; Zhao, J.-G. *Int. J. Quantum Chem.* **1988**, *S22*, 149.
26. The experimental heats of formation (298 K) are as follows: H₂CO, -108.6±0.5 kJ/mole [Baulch, D. L.; Cox, R. A.; Crutzen, P. J.; Hampson, R. F. Jr.; Troe, J.; Watson, R. T. *J. Phys. Chem. Ref. Data* **1982**, *11*, 493.]; HCO, 41.8±0.8 kJ/mole [Chuang, M.-C.; Foltz, M. F.; Moore, C. B. *J. Chem. Phys.* **1987**, *87*, 3855.]; H, 217.999±0.006 kJ/mole [JANAF, 1985]. In all cases JANAF data was used to correct these to 0 K.
27. Harding, L. B.; Schatz, G. C. *J. Chem. Phys.* **1982**, *76*, 4296.
28. (a) Klemm, R. B. *J. Chem. Phys.* **1979**, *71*, 1987. (b) Baldwin, R. R.; Cowe, D. W. *Trans. Faraday Soc.* **1962**, *58*, 1768. (c) Dean, A. H.; Johnson, R. L.; Steiner, D. C. *Combust. Flame* **1980**, *37*, 41.

29. Slagle, I. R.; Sarzyński, D.; Gutman, D.; Miller, J. A.; Melius, C. F. *J. Chem. Soc., Faraday Trans. II* **1988**, *84*, 491.
30. Seakins, P. Private communication.
31. Lightfoot, P. D.; Kirwan, S. P.; Pilling, M. J. *J. Phys. Chem.* **1988**, *92*, 4938.
32. Shaub, W. M.; Hsu, D. S. Y.; Burks, T. L.; Lin, M. C. *Symp. (Int.) Combust., [Proc.]* **1981**, *18*, 811.
33. Alvarez, R. A.; Moore, C. B. *J. Phys. Chem.* **1994**, *98*, 174.

Table 1. Conditions and Results of Experiments to Measure the Yield of Formaldehyde from the O + CH₃ Reaction.

T (K)	10 ⁻¹⁷ [He] (atoms cm ⁻³)	10 ⁻¹¹ [CH ₃] ₀ (molec. cm ⁻³)	10 ⁻¹² [O] (atoms cm ⁻³)	F _{H₂CO}
299	1.20	1.7	5.8	1.04
295	1.20	2.8	5.3	0.92
295	1.20	2.8	18.	0.97
295	1.20	5.6	18.	0.99
297	2.40	2.0	5.7	1.06
297	2.40	6.6	16.	0.99
average = 1.0 ± 0.05 ^a				

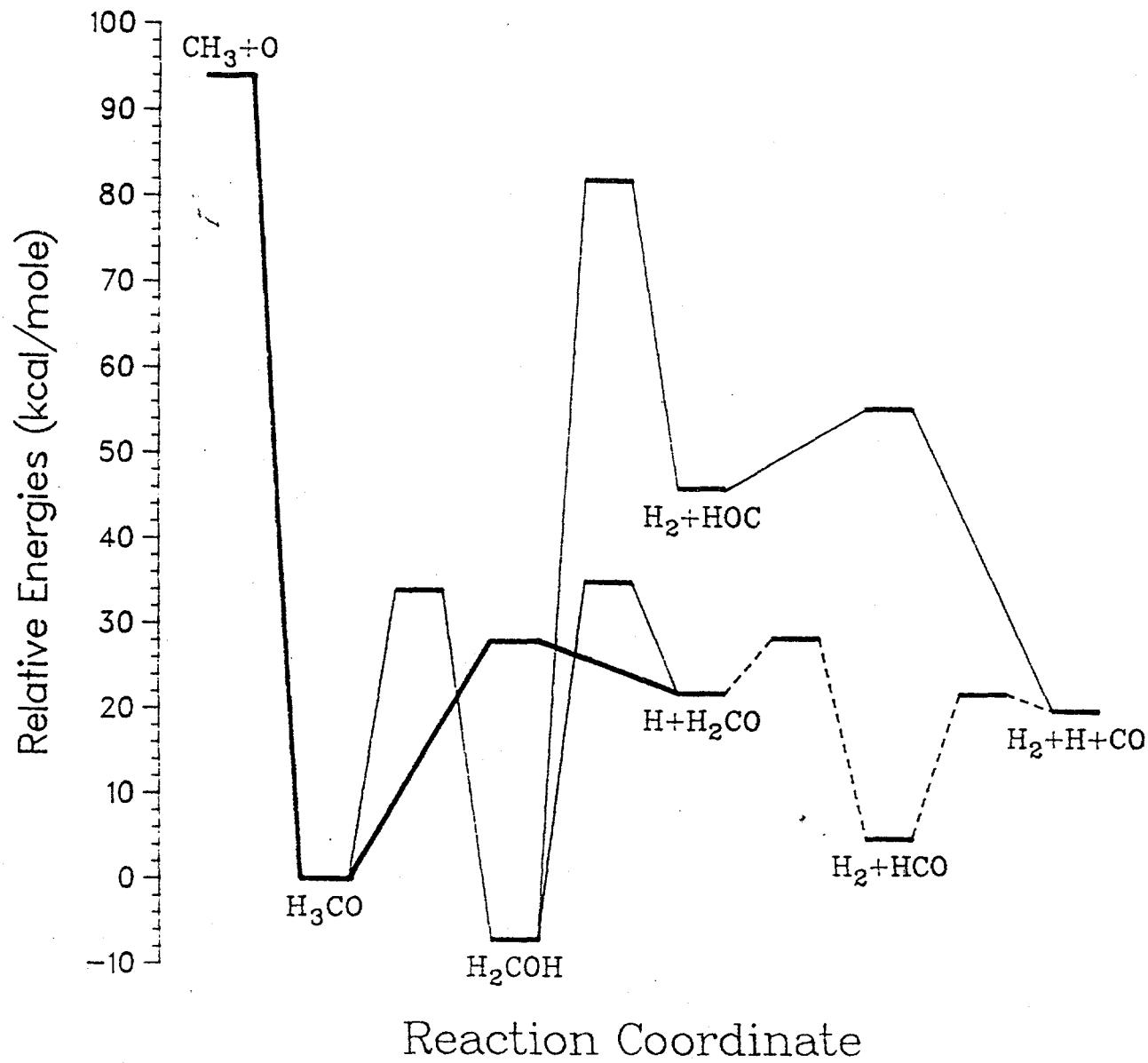
^aError limits are one standard deviation and indicate statistical uncertainties only.

Table 2. Summary of Calculated Relative Energies for the Minima and Transition States on the H₃CO Potential Surface.^a

	RHF+1+2+QC DZ	RHF TZ	RHF+1+2 TZ	RHF+1+2+QC TZ
<hr/>				
Minima:				
H ₃ CO (2A') ^b	0.0	0.0	0.0	0.0 (0.0)
H ₃ CO (2A'')	0.2			
H ₂ COH	-5.3	1.6	-6.5	-7.3 (-6.6)
HCOH ₂	70.4	76.3	73.0	71.1 (69.1)
H+H ₂ CO	24.6	31.0	28.2	27.5 (21.6)
H ₂ +HCO	11.2	26.1	17.3	13.7 (5.4)
H ₂ +HOC	51.6	57.1	55.4	53.5 (45.8)
H ₂ O+CH	84.1	79.8	83.7	83.2 (76.9)
 Transition States:				
H ₃ CO → H+H ₂ CO	31.2	44.9	36.1	32.7 (27.7)
H ₃ CO → H ₂ COH	36.8	55.9	38.9	35.2 (33.9)
H ₃ CO → H ₂ +HCO ^c	50.6			

Table 2 (continued). Summary of Calculated Relative Energies for the Minima and Transition States on the H₃CO Potential Surface.^a

	RHF+1+2+QC DZ	RHF TZ	RHF+1+2 TZ	RHF+1+2+QC TZ
H ₂ COH → H + H ₂ CO	38.0	56.4	44.3	39.7 (34.7)
H ₂ COH → H ₂ + HOC	87.0	104.0	91.5	86.9 (81.6)
H ₂ COH → H ₂ + HCO ^d	80.6			
H ₂ CO + H → H ₂ + HCO	32.7	53.3	40.8	35.9 (28.5)


^aAll energies (kcal mol⁻¹) are relative to H₃CO(²A'). Those in parenthesis include zero point corrections.

^bThe total electronic energies for columns 1-4 are -114.671019, -114.459430, -114.830635 and -114.867668 hartrees, respectively. The calculated zero point energy is 22.75 kcal mol⁻¹.

^cGeometry optimized under the constraint R(CH_a) = R(CH_b). See text.

^dGeometry optimized under the constraint H_aCOH_b dihedral angle = 0. See text.

