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Abstract
A prototype sensor fusion framework called the
"Knowledge Assistant" has been developed and tested
on a gantry robot at Sandia National Laboratories.
This Knowledge Assistant guides the robot operator
during the planning, execution, and post analysis
stages of the characterization process. During the
planning stage, the Knowledge Assistant suggests
robot paths and speeds based on knowledge of
sensors available and their physical characteristics.
During execution, the Knowledge Assistant
coordinates the collection of data through a data
acquisition "specialist.” During execution and post
analysis, the Knowledge Assistant sends raw data to
other "specialists," which include statistical pattern
recognition software, a neural network, and model-
based search software. After the specialists return
their results, the Knowledge Assistant consolidates
the information and returns a report to the robot
control system where the sensed objects and their
attributes (e.g. estimated dimensions, weight, material
composition, etc.) are displayed in the world model.
This paper highlights the major components of this
system.

1. Introduction

Over the past five years Sandia National Laboratories
(SNL) has been developing robotically deployed site
characterization systems for DOE facilities such as
Hanford and INEL [1,2]. While these systems are
good at gathering and storing large volumes of
sensor data, final analysis of the data still requires a
team of chemists and physicists. The objective of
this current project is to develop a framework and a
set of general tools which will simplify and speed up
sensor data analysis and warn the operator of
impending dangers or malfunctions. The software
and algorithms developed should reduce the time
and expense of the characterization process by
minimizing the number of on-site technical
personnel required to collect and interpret large
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volumes of complex, multivariate sensor data. This
generic sensor fusion framework is to be applied
across a wide range of characterization activities
including buried waste, underground storage tanks,
laboratory analysis, and decommissioned facilities.

A sensor fusion (or data interpretation) framework
could play a vital role in automating the
characterization process. Figure 1 illustrates the
robotic site characterization life cycle. The data
interpretation module starts with knowledge of
regulatory requirements, knowledge of the available
sensors, and an estimate of the site contents. From
this information, an expert system formulates a risk
assessment and data acquisition plan. These plans
are reviewed and modified by the site manager. The
data acquisition plan includes sampling rates of the
equipment and spacing and patterns of scans which
are directly translated into robot paths and
instrumentation control sequences. While the robot
is performing the motion and the data acquisition
system is collecting the data, the data interpretation
module looks at the data using various statistical,
model-based, and learning tools. A new estimate of
the site contents is continuously generated and rules
on regulatory requirements are used to modify the
risk assessment and data acquisition plan. As risk
increases, the operator is warned; and if risk reaches
a certain threshold, the operation is automatically
stopped.

+ Estimate of site contents Risk Assessment and

—

+ Regulatory Requirements Data Acquisition Plan
+ Knowledge of available sensors (sample rate, patterns, etc.)
New Paths
New Estimate
Data Interpretation of raw data Robot Path and
using: + Statistics v
+ Models e Data Acquisition Control

bot control syst
+ Learning Algorithms (robot control system)

Figure 1. Robotic site characterization life cycle.
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When investigating how a sensor fusion framework
might be structured, we first analyzed the various
stages of a data interpretation process. After
discussing this issue with several experts in the field,
the following general stages of data interpretation
became apparent.

1. Low level data manipulation. For example,
interpolators, data croppers, filtering
algorithms, and transformations.

2. Extraction of features from the data either
using signal processing techniques or
physical sensor models. For example, the
peaks and areas of spectral data, such as Gas
Chromatography (GC), Raman, infra red, and
gamma spectroscopy, are used to
characterize data. Another example is the
extraction of features within an aerial image
to locate landmarks on a buried waste site.

3. Classification of data using techniques such
as Bayesian hypothesis testing, Dempster-

__ Shafer, Fuzzy Logic, and Neura]. Networks.

4. Heuristic expert system rules to guide the
previous levels, make high level control
decisions, provide operator guidance, and
provide early warnings and diagnostics.

A pictorial example of the information flow within a
data interpretation framework is shown in Figure 2.
Many of the early stages are sensor specific.
However, if formulated correctly; many of the higher
level stages are reusable across many different
sensing modalities. For example, many of the
spectral analysis tools are common for GC, gamma,
or Raman data interpretation. Also, the same
classification tools can be used for classifying GC
spectral as can be used for identifying barrels from
GPR (Ground Penetrating Radar) data.

Raw Spectroscopy Fiitered and Cropped Signal Extracted Features
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Figure 2. Data Interpretation with Statistical,
Learning, and Expert System Reasoning.

Based on this analysis, we began development on a
"Knowledge Assistant" sensor fusion framework
which contains an expert system at the top level, and
various specialists at the lower levels (see Figure 3).
The Knowledge Assistant helps the operator of a
robotic characterization system, much like a co-pilot

helps a pilot navigate an airplane. The Knowledge
Assistant performs the job of the chemist and
physicist by determining how to scan over the
environment based on the sensor platform available
and the regulatory requirements. The Knowledge
Assistant also assists in the collection and post
analysis of the data. Aiding the Knowledge Assistant
are various specialists which can be reconfigured
based on the application. When making decisions,
the Knowledge Assistant directs information to the
lower levels and provides the final fusion of the
results from the specialists. As an initial test, we
developed four specialists:

~ Data Acquisition Specialist

- Statistical Pattern Recognition Specialist

- Neural Network Classifier Specialist

- Gradient-Based Model Fitting Specialist

Each specialist runs on a separate computer and
communicates with the Knowledge Assistant via a
client-server connection. This last specialist is New
Mexico State University's Multi-sensor Analysis
Program for Environmental Restoration (MAPER)
system, and more detailed information can be found
in [3].

Human Operator
Robot Controls Operator Interface &
Rapid World Model
Data Acquisition |¢—p] KnowledgeAssistant Gradient-Based Model
Specialist Expert System Fitting Specialist
b
Sensor Head on Statistical Pattern Neural Network
Robot Arm/Vehicle] Recognition Specialist Classifier Specialist

Figure 3. Knowledge Assistant Architecture.

The next three sections discuss the Knowledge
Assistant, the Statistical Pattern Recognition
Specialist, and the Neural Network Classifier
Specialist. Conclusions and suggestions for future
work are described in the final section.

2. Knowledge Assistant

The Knowledge Assistant was developed on a real-
time expert system [4]. Through the expert system,
heuristic reasoning in the form of "if-then" rules can
be added to the system's knowledge base. The
Knowledge Assistant also directs the flow of data to
the appropriate analysis routines. For example, when
analyzing magnetometer data, the expert system
sends the data to a gradient search algorithm which
fits the raw sensor data to a model. Expert system
rules are also used to set the initial boundary
conditions and residual thresholds of the search.
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When categorizing soils, the expert system directs
data to a statistical pattern recognition routine which
characterizes soils based on tip force, pore pressure,
viscosity, and pH sensor readings from a cone
penetrometer.

To test the capabilities of the Knowledge Assistant,
we presented the system with the task of robotically
scanning over a mock buried waste site with a sensor
package containing a magnetometer, pyrometer, and
camera. The objective was to map out the
environment, display it on a graphical screen, and list
attributes (such as temperature and metallic content)
with each detected target. The sequence of events
which occurred between the Knowledge Assistant
and its specialists is described below.

The Knowledge Assistant first receives the bounding
box information (the volume that the operator would
like to scan) from the world model. User supplied
information such.as-the scan height_and.resolution
information of each sensor are stored in the
knowledge base of the Knowledge Assistant. Several
rules in the knowledge base combine these sensor
requirements to determine the robot path and speed.
This information is passed back to the world model
where the robot motion is graphically previewed by
the operator. If accepted by the operator, the robot
begins its path.

The raw sensor data along with the position and
orientation of the robot is collected in files by the
data acquisition specialist. The data acquisition
specialist can also send real-time data to other
specialists, such as the statistical pattern recognition
specialist, for real-time classification. Live data can
be displayed on strip charts and regional maps by
the data acquisition specialist if desired. When a
robot pass is completed, the Knowledge Assistant
sends the file information to the other specialists for
analysis of the sensor data. Magnetometer and
pyrometer data files are sent to the MAPER specialist
as soon as the Knowledge Assistant receives the data
files names. The Knowledge Assistant receives
statistical information from MAPER for each of the
files, executes an additional set of rules and sends
threshold data back to MAPER to help guide its
analysis. When the MAPER analysis is completed,
target file names are received from MAPER. The
Knowledge Assistant reads a target file in as an
instance. The process is repeated as each robot pass
is completed. - :

When three robot passes have been completed and
the files names have been received, the Knowledge
Assistant sends the files names to the neural net
specialist. The neural net specialist will analyze the
data and return the target file to the Knowledge

Assistant . The Knowledge Assistant reads the target
file in as an instance.

After all target files are recieved from the MAPER,
neural network, and statistical pattern recognition
specialists, the Knowledge Assistant consolidates the
results. A target is defined by x1, y1, z1, radiusl, x2,
y2, z2, radius2, magnetometer value, and pyrometer
value. The target may not have radius values or only
one sensor magnitude value. The Knowledge
Assistant rules check each target instance attribute
created by one file with each target instance attribute
from the first target file. If any bounding boxes
overlap or touch, the targets are combined into one
target with an encompassing bounding box and with
attribute values which are the weighted sum of the
individual targets. If the bounding boxes do not
overlap, the target attributes are added to the first
target file. This process continues until all of the
target files have been checked against the first target
file. Reports are generated to convey the number of
targets before and after consolidation. A file is then
created by the Knowledge Assistant which contains
the consolidated target data. The file name is sent to
the world model where the target objects and their
attributes are displayed in a three-dimensional
graphic environment.

3. Statistical Pattern Recognition Specialist.

This section briefly describes how statistical pattern
recognition techniques were used to classify the
objects that the magnetometer and pyrometer sensed.
The objective was to classify the materials in real-
time as metal, hot non-metal, hot metal, and no
target. These same pattern recognition techniques

-have also been used to classify simulated waste from

an Underground Storage Tank using a cone
penetrometer. In that case, the measurements of
sensors such as sleeve friction stress, tip stress,
friction ratio, and pore pressure were used to
discriminate between air, supernate, sludge, and salt
cake.

The statistical pattern recognition software was
constructed to be used in two phases. During a
learning phase, either simulated sensor readings or
actual measurements from live sensors are used to
learn the mean and variance of the sensor data in a
particular class (e.g. metal, hot non-metal, hot metal,
and no target). During a follow-on monitoring
phase, a multi-variate, multi-class Bayesian classifier
is used to identify the class. The results of the
classifier are used by the expert system to notify the
remote operator of the type of material sensed and
any suggested plan of action.” The minus-log-
likelihood value indicates to the operator the
probability of correct classification.




A statistical pattern recognition technique, known as
Bayesian hypothesis testing [5], is used to analyze
sensor measurements and discriminate between
classes. This method of classification is well
recognized within the field of safeguards and nuclear
material management [5,6,7]. Below is a brief
introduction to the subject. A more detailed
discussion can be found in [8].

Bayesian hypothesis testing is used to classify a

sample X of dimension n (i.e., X € R") into one of
m classes @;, i = 1,...,m. The samples are assumed

to come from a Gaussian (Normal) distribution with
a mean and covariance which are learned prior to
on-line testing. The decision rule for multiple classes

is as follows: A sample X is an element of class @; if

P(@X)> P(0]1X) Vj=1l..,mj#i. (1)
L d 7 ‘_J o

e P,

where P(@;1X) is the conditional probability that

‘class @; occurred given sample X. The above

equation selects the class which has the greatest
probability. :

Using Bayes' theorem, the conditional

probability P(®;lX)can be replaced with
P(w;))p(Xlw;) where P(®;) is the a priori
probability that class @; will occur, and p(Xl®;) is
the a priori conditional density function that sample
X will occur if we know the class of X is @;.

Assuming Gaussian distributions of X, the decision
rule can be rewritten as: A sample X is an element of

class @; if
P(w;)

;i(X) <Inj —— Vi=1..mj#i. 2
K [P(“’i)}

The minus-log-likelihood is given by
hy(X) = 0.5(X - MY G (X ~ M)

05X - M, CTL(X = M;)+0.51n| SUE
(X-M;) C;( J)+051n|:det(cj) "

where M; is the mean of X given class @; and C;is

the covariance matrix of X given class @;. The
superscripts ¢ and -1 denote matrix transpose and

inverse operations. The function det() denotes the
determinant of the matrix. .
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G
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Figure 4. Uni-variate, two-class example of Bayesian
hypothesis testing.

Figure 4 illustrates a uni-variate (in X), two-class
example of Bayesian hypothesis testing. The area
under each curve is equal to the a priori probability
of class @;. The sum of these areas for all classes is
one. The value 7 is the threshold below which we
assign the sample to class @;, and above which we

assign the sample to class @;. The area of overlap

of the two curves is the probability of false
classification. To achieve the best classification, it is
desirable to minimize the probability of false
classification. This usually means that you would
like the means of the two classes to be far apart and
the covariances to be small (i.e. small standard
deviation). Since the probability of error is
computed during the learning phase (when the
means and covariances are learned), it may be used
as a measure for choosing the sensors which provide
the best classification.

The total probability of error between classes ®;

and @; can be estimated by
Etal = P(w;)&;; + P(@;)€);
where the errors £;;; and €p;; are associated with

C)

incorrectly choosing @; when we should have
chosen @ ki and vice versa [8]. Note that the above

equation is only an estimate of the probability of
error since the minus-log-likelihood is not Normal

but instead quadratic when C; # C - Also, note that
this equation provides a pair wise comparison
between classes. These values can be put in matrix
form as shown below.




O 2pm E13tra Eldroml
€1240tal 0 €23total €245
Emal B0 O By
Eldroral  E24i0ia1 E34torat 0 (5)

By looking across a row, we can see which classes
appear to overlap causing larger error terms. By
adding up ith row, we can estimate the total error

associated with choosing class @;.

Overall, we found that the statistical pattern
recognition technique worked well if the sensor
readings were repeatable and stable. For example,
we had a very high detection rate using the
magnetometer and pyrometer. Unfortunately, when
measuring the simulated Underground Storage Tank
waste, the penetrometer did not always return
repeatable results.- -The viscosity measugement was
different depending on the sequence of events (e.g.
inserted in sludge and then salt cake, or first inserted
in salt cake and then sludge). Also, since we taught
.the system based on the steady state sensor readings,
we -were not able.to capture transient responses such
as ringing which occurred when the penetrometer
entered the salt cake. These two results imply that in
the future we should add some time dependent
features (e.g. tip force readings at the current time
and some delayed time) to the sample X. Another
solution is that the expert system could detect when
the sensor readings were not stable and could switch
to different learned parameters based on the situation
at hand.

Another problem with Bayesian classification is that
there is no way to capture a sense of non belief. In
other words, we should be able to say that I do not
believe that it is any of the four classes, and
therefore, it must be something else. In the future,
we may be able to solve this by using Dempster-
Shafer belief functions.

4. Neural Network Specialist

In our tests, the goal of the neural network specialist
was to map heat sources in an area by examining
pyrometer data from multiple scans over the area.
The pyrometer provides a measurement of the
average temperature within its field of view. In our
case, we used a pyrometer with a 1:2 field of view.
This means that the spot diameter is one-half the
distance between the pyrometer and the waste
surface. Because of this averaging effect, the
temperature map created by scanning the pyrometer
over the surface becomes blurred as the distance
between the pyrometer and the waste increases. The

neural network takes the raw sensor maps at three
heights and determines the number, location, size,
height, and temperature of sources. This work is also
applicable to other radiation sources, given suitable
sensors.

The reason that a neural network was used for this
task was to evaluate how learning algorithms could
be used to analyze sensor readings over time. The
hypothesis is that expert knowledge will be required
to analyze the first few waste sites. However, learning
algorithms will be useful as more information
becomes available over time. Learning sets from
previous sites will be used to train the neural
networks. Eventually, the neural networks will be
able to perform a higher quality analysis of
extremely complex, non-linear, multi-variate data.
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Regularize Data
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Neural Net: Height

Neural Net: Map
< grid of ON, OFF indicators

Translation to Target Format

Figure 5. Flow diagram for neural network
processing of pyrometer data

Figure 5 is a flow chart of the neural network
training process in our tests. During data collection,
the sensing axis of the pyrometer is pointed straight
down and is moved by the robot arm in a serpentine
scan pattern over the selected area. The algorithms
developed here require scans regularly spaced in Z
(height). Temperature data is collected at regular
time-sampling intervals; however, since the speed of
the robot changes, the data is not collected on an
evenly spaced grid. Therefore, the next step,
"Regularize data," creates a regularly spaced grid of
pyrometer data for each Z level. Regularized data
for one pyrometer scan is shown in Figure 6. White
lines indicate edges of heat sources: a pipe wrapped
with heat tape, and two rectangular heat sources at
400 degrees F and 250 degrees F. Three scans were
taken 6 inches apart in height. The rectangular heat




sources were 17.7 inches and 18.1 inches beneath
the lowest scan plane.

Next, a partitioning algorithm is applied to the lowest
level scan. The number of sources are identified,
and each square in the grid is assigned to a partition.
Two partitions are identified, each encompassing one
of the rectangular heat sources. The heated pipe did
not generate sufficient signal for it to be picked out
by the partitioning algorithm. The centroid and
strength computation algorithms are applied to each
partition. The strength is defined as the sum of the
readings in the partition. Note that this is not the
radiant power, which is a function of absolute
temperature to the fourth power.

Middie Level Pyromster Scan

Y coordinates, inches
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Figure 6. Middle level pyrometer scan data.

The height determination network shown in Figure 7
is run once for each partition. This is a two layer,
fully connected, feedforward network that has been
trained by a backpropagation algorithm [9]. The
sizes of the boxes represent the last value through the
network at that node, and whether the box is shaded
or empty implies the value is positive or negative.
The weights at each node are the result of the
backpropagation technique. Inputs to this network
are (a) strength estimate for the partition (POW), and
(b) peak pyrometer readings for each Z level for the
partition (PK1, PK2, PK3). The network output is an
estimate of the distance from the lowest measurement
plane to the plane of the source.

Figure 7. Height determination network.

Similarly, a mapping network is executed once for
each cell in the X-Y grid. This is also a two layer,
fully connected, feedforward network that has been
trained by a backpropagation algorithm. Inputs are
(a) the distance between scans in the Z direction, (b)
the height from the height determination network,
and (c) the pyrometer readings for this location on
the grid for each scan. The network output MAP is
interpreted as a binary signal, 1 indicating presence
of the source at this cell, and 0 indicating absence.
The results on the example problem are shown in
Figure 8. White cells indicate presence of a source,
black indicates absence.

Mapping of Sources by Neurat Network
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Figure 8. Mapping of sources by mapping network.

The last step of the process is to translate the results
into the target file format, indicating the height of
each source and its maximum extents in an X-Y
coordinate system. The temperature of each source
is the power estimate divided by the number of cells
indicated by the mapping network (in other words,
the average temperature measured per identified
object).




The height and mapping neural networks were
trained by dividing 24 experiments into test and
training data sets so that generalization could be
examined [10]. Performance of the height network
is shown in Table 1. Training was stopped when
performance on the test set began to decline. The
imperfect generalization seen here indicates that
more training data would be needed to improve the
accuracy of the network on non-training examples.

The output of the mapping network is deemed to be
1 if the center of the cell is within the borders of a
source. Hence some errors are to be expected in
cells near the edges of a source. Performance of the
mapping network is tabulated in Tables 2 and 3.
Tabulated figures indicate the number of examples
in each category. The training set was selected so
that the numbers of 1 and 0 samples were equal, to
keep the network from being biased toward zero
valued outputs. This left an imbalance of 1 and 0
entries in the test set, as reflected in Table 3.

Table 1. Height network results.

"~ .| STD error { MIN error | MAX
(inches) (inches) | error
(inches)
Training Set |1.13 -2.4 +1.5
Test set 2.18 -9.3 +3.8

Table 2. Mapping network results on training set.

Actual 1 Actual 0
Output outputs
Desired 1 1919 127
Output
Desired 0 142 1931
Output

Table 3. Mapping network results on the test set.

Actual 1 Actual 0
Output oufputs
Desired 1 199 17
Output
Desired 0 103 4943
Output

It is easy to see that the approach to mapping here is
limited compared to a true deconvolution algorithm.
There are several dependencies (such as the height

computation depending on the output of the power
estimate) that contribute to a cumulative buildup of

error as data progresses through the flowchart.
Furthermore, the mapping step of this approach
ignores the fact that each reading depends not only
on the contribution of the source directly beneath
the sensor, but also on the contribution of everything
within the sensors' field of view.

It seems reasonable that a neural network
deconvolution algorithm could be written to better
handle these difficulties. That algorithm would
consist of a recurrent algorithm that took as inputs
both sensor readings and previous outputs of the cell
and its neighbors.

5. Conclusions and Future Directions

The prototype system described above is an example
of the type of automated processing that is desirable
for future work in the environmental arena. The
combination of automated processing together with
intelligent analysis algorithms and a friendly
graphical user interface provide a valuable means of
improving and speeding up environmental analyses.
The expert system provides a high level means to
control processing, with potential for future
incorporation of additional sensors, further
processing, and additional inferencing to determine
more accurate results.

We believe that the combination of expert system
technology along with statistical hypothesis testing
and neural networks provides a valuable means of
fusing sensor data. The Bayesian hypothesis testing
provides an analytical means of classifying complex
multi-variate data, which would otherwise be near
impossible to analyze by hand. It can also be used
to rapidly select and test different sensor
combinations for different characterization tasks. A
neural network can be used to accurately model
nonlinear, complex relationships. The expert system
provides a high level user interface, which can be
used to alert operators and inform them of the
appropriate next steps.

Future work should focus on the area of data fusion
and intelligent inferencing methodologies. This
involves incorporating multiple raw data types into a
single analysis in order to make better inferences and
determine more information than is possible with
any single raw data type alone. Goals for this
processing include: more accurate location solutions,
determination of target material type, identification
of target (i.e., 55 gallon steel drum), determination
of container status (leaking, intact), and container
contents (or lack thereof), etc. ‘This will allow future
clean-up operations to be performed more safely,
more efficiently, and with better results.
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