

Energy and Global Warming Impacts of Next Generation Refrigeration and Air Conditioning Technologies

CONF-9610162--2

J.R. Sand
S.K. Fischer
V.D. Baxter

RECEIVED

Building Equipment Technology
Oak Ridge National Laboratory
Oak Ridge, TN

OCT 10 1996

OSTI

"The submitted manuscript has been
authored by a contractor of the U.S.
Government under contract No. DE-
AC05-96OR22464. Accordingly, the U.S.
Government retains a nonexclusive,
royalty-free license to publish or reproduce
the published form of this contribution, or
allow others to do so, for U.S. Government
purposes."

To be presented at the 1996 International
Conference on Ozone Protection Technologies in
Washington, D.C.
October 21-23, 1996

Research sponsored by the Office of Building Technologies, U.S. Department of Energy under contract No. DE-AC05-96OR22464 with Oak Ridge National Laboratory, Managed by Lockheed Martin Energy Research Corp.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

ENERGY AND GLOBAL WARMING IMPACTS OF NEXT GENERATION REFRIGERATION AND AIR CONDITIONING TECHNOLOGIES

James R. Sand, Steven K. Fischer, Van D. Baxter
Staff Members

Oak Ridge National Laboratory
Oak Ridge, TN

1996 International Conference on Ozone Protection Technologies
Washington, D.C.
October 21-23, 1996

ABSTRACT

Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify and updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCs, HFC blends, hydrocarbons, and ammonia, used as refrigerants.

An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCs. Quantitative comparison TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Energy and Global Warming Impacts of Next Generation
Refrigeration and Air Conditioning Technologies
TEWI-3

J. Sand
S. Fischer
V. Baxter

Oak Ridge National Laboratory (ORNL)
P.O. Box 2008
Building 3147, MS 6070
Oak Ridge, Tennessee

Abstract: Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify an updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCs, HFC blends, hydrocarbons, and ammonia, used as refrigerants.

An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCs. Quantitative comparison of TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

Introduction: Alternative refrigerants and blowing agents developed to replace CFCs are now being affected by regulations proposing a phase-out of all chlorine-containing replacements and investigations into how these alternatives affect greenhouse or global warming. A concept which evaluates the Total Equivalent Warming Impact (TEWI) is being used to assess alternative refrigerants and air conditioning technologies because it accounts for the global warming effects of refrigerants and insulating foam blowing agents released to the atmosphere (direct effects) and the CO₂ released as a result of energy used to provide the refrigeration or comfort cooling effect required for the application (indirect effect). TEWI is a more balanced measure of the environmental impact because it is not based solely on the global warming

potential (GWP) of the working fluid, and it shows the environmental benefit of efficient technologies which result in less CO₂ emissions to the earth's atmosphere. The goal of TEWI is to minimize total global warming impact of all the gases released to the atmosphere, including the lifetime CO₂ emissions from energy use.

As with any other composite index of performance, calculated values of TEWI are sensitive to an underlying set of key values and assumptions. Most of the criticisms of results presented in the two previous AFEAS TEWI reports focused on the justifications and fairness of these assumptions in the resulting technology comparisons.^{1,2} Some assumptions used for TEWI calculations and TEWI calculation results for two of the five refrigeration and air conditioning application areas are summarized on the following pages.

Direct TEWI Contributions: *Direct* global warming results from the atmospheric accumulation of chemicals used as refrigerants and blowing agents. Like CO₂, these absorb and redirect infrared energy normally radiated back out to space from the earth's surface. The Intergovernmental Panel on Climate Change (IPCC) has chosen an index and definition of global warming potential (GWP) which uses the environmental warming effects of one kilogram of CO₂ as a reference gas. This definition is a convenient index to use for TEWI evaluations because it provides a normalizing unit for combining the net environmental effects of a wide variety of chemical compounds with the CO₂ emissions resulting from energy use.

Table 1 is a listing of CFC/HCFC alternative refrigerants and blowing agents with their GWPs, using CO₂ as the reference gas and integration time horizons (ITHs) of 100 and 500 years. Shorter ITHs accentuate the direct TEWI contributions of refrigerants and blowing agents with atmospheric lifetimes shorter than CO₂. Policy makers typically use the 100 year IPCC ITHs because these values balance the long term effect of CO₂ emissions which has a long atmospheric lifetime against the more immediate effects of high release rates of other greenhouse gases.

Indirect TEWI Contributions: In the five application areas covered by the study -- automotive air conditioning, domestic refrigerators, building chillers, unitary heating/air conditioning, and supermarket refrigeration -- indirect TEWI contributions result from gasoline burned to power the automobile, fossil fuels used to generate electricity, and natural gas or petroleum products used as a direct source of heat. Carbon dioxide emission rates have been calculated for these fuels.

- Natural Gas 51.1 g. CO₂/MJ
- #2 Fuel Oil 69.5 g. CO₂/MJ
- Automobile Gasoline 2.32 kg CO₂/liter

Assuming a 90% distribution efficiency for natural gas, which accounts for the energy consumed in pumping losses, increases the CO₂ emission to 56.9 g CO₂/MJ.

Carbon dioxide emission rates from electric power generation are dependent primarily on whether coal, oil, gas, hydro, or nuclear power is used for the power plant. Plant firing efficiency and electric power transportation and distribution losses must also be considered. Published values for CO₂ emission rates for *delivered* electric power are used for TEWI calculations. Wide regional variations are possible depending on the primary source of energy. As shown in Figure 1, variations in the kg CO₂/kWh_{electricity} within the United States range from about 0.49 kg CO₂/kWh for the west and northwest regions where nuclear and hydro power are used, to 0.94 kg CO₂/kWh in the east central U.S. where coal is used for 88 – 90% of the total electrical power generation.

Domestic Refrigerator/Freezers

Direct TEWIs for domestic refrigerators result from the losses of the refrigerant used in the mechanical refrigeration circuit and the blowing agent used to produce insulating foams for the refrigerator cabinet. All of the indirect TEWI for refrigerators is from CO₂ emissions associated with electric power used to operate the refrigerator over its 15 – 20 year lifetime.

Assuming a 550 liter (20 – 22 cu. ft.) top-mount refrigerator which is the most popular model and size in the United States, about 1.1 kg. (2.4 lbs.) of HCFC-141b with a GWP of 630 is used to “blow” the polyurethane insulating foam for the cabinet, all of which is eventually lost to the earth’s atmosphere. Roughly 0.15 kg. (5.5 oz.) of HFC-134a refrigerant with a GWP of 1300 kg CO₂/kg HFC-134a is needed for a refrigerant charge, which may or may not be recovered when the refrigerator is scraped at the end of its useful life.

Direct TEWI Calculation:

$$\begin{aligned}
 & ([\text{kg of refrigerant charge}] \times [\text{annual loss/service rate}] \times [\text{years of life}] + [\% \text{ loss at disposal}]) \times \\
 & \quad \text{GWP}_{\text{refrigerant}} + (\text{kg blowing agent}) \times \text{GWP}_{\text{blowing agent}} = \text{DIRECT TEWI} \\
 & ([0.15 \text{ kg} \times 0\% \times 19 \text{ years}] + [0.15 \text{ kg.}]) \times 1300 + (1.1 \text{ kg}) \times 630) = 888 \text{ kg. CO}_2
 \end{aligned}$$

The indirect TEWI for refrigerators is calculated on the basis of an annual energy consumption, which for a 1996, 550 l, top-mount model is about 647 kWh/year, the number of years of useful life (19), and the CO₂ emission rate for electric power generation.

Indirect TEWI Calculation:

$$(\text{kWh/year energy use}) \times (\text{years of life}) \times (\text{kg. CO}_2/\text{kWh}_{\text{elect}}) = \text{INDIRECT TEWI}$$

$$647 \text{ kWh/year} \times 19 \text{ years} \times 0.65 \text{ kg CO}_2/\text{kWh}_{\text{elect}} = 7,990 \text{ kg CO}_2$$

TEWI Results: TEWI values calculated for representative North American refrigerators and several HCFC and HFC alternatives for the currently marketed product are shown in Figure 2. Most of the research effort for domestic refrigerators at present is directed at finding a non-chlorine containing blowing agent to replace HCFC-141b, which is scheduled for phase-out in 2003. The direct TEWI obtained by assuming a 100% loss of the HFC-134a refrigerant charge after 19 years of service has a relatively small effect (1 - 2%) on the total TEWI. Current and proposed recapture and recycling laws will diminish this contribution.

Using cyclo-pentane or pentane hydrocarbon isomers as blowing agents for the refrigerator insulating foam virtually eliminate any direct TEWI from this source, but result in an insulation with higher thermal conductivity and larger annual energy use which increases overall TEWI due to indirect effects.

Household refrigeration is an application in which indirect TEWI from CO₂ emissions dominate the global warming impact with a lesser contribution from the blowing agent and very little contribution from the refrigerant because little, if any, refrigerant loss or make-up occurs over the life of the product. The most significant opportunity to improve the TEWI of this product is via improved insulating foams and increased energy efficiency.

Retail Refrigeration

An application area where TEWI analysis has shown an opportunity to improve the global warming impact by reducing the direct contribution of refrigerants is in retail refrigeration. Traditional approaches to supermarket refrigeration systems are characterized by a centralized rack of compressors connected by long refrigerant lines to remotely located condensers and refrigeration cases located throughout the supermarket. The large internal volumes of these systems necessitate large refrigerant charges while the multitude of

field-assembled joints and connections provide ample opportunities for leakage. Annual charge leakage or make-up rates of 15 – 30% of the total refrigerant charge are commonly reported.

Typically, two different refrigerants will be used in a store, one for low temperature cases which hold products like ice cream and frozen meats and another refrigerant for medium and high temperature cases used for products like fresh meats, dairy products, or produce. Refrigerant selections have been made on the basis of overall efficiency with compromises to reduce the total number of refrigerants used. The original provisions of the Montreal protocol led the manufacturers of compressors and refrigeration cases to use HCFC-22 for medium and low temperature applications and HFC-134a in high temperature cases. Revisions to the Montreal Protocol which outline a schedule for the phase-out of HCFCs has prompted the development of chlorine-free mixtures of refrigerants for medium and low temperature refrigeration. Alternative chlorine-free refrigerants suggested for low-temperature retail refrigeration applications are R-402A, R-404A, R-407A, R-407B, R-407C, R-507, and ammonia. Zeotropic mixtures R-407C, R-410A, R-401A, and ammonia have been offered as medium temperature refrigeration alternatives.

Additionally, two fundamental design changes have been proposed for supermarket refrigeration systems which could significantly reduce the amount of annual refrigerant leakage and the total refrigerant charge size. One approach utilizes a secondary fluid loop rather than refrigerant lines to distribute cooling from a smaller, leak-tight refrigeration circuit to the cases.³ The other design, being developed by Hussman, moves the compressor with its associated high pressure liquid and suction lines as close as practical to the case evaporator loads and employs a closed-loop, water circuit to reject the heat of condensation.⁴ Both of these alternative approaches drastically reduce the refrigerant charge size by as much as 75 – 90% and make it practical to minimize refrigerant leaks.

The secondary loop (SL) approach must operate over a larger temperature lift to accommodate the intermediate level of heat exchange and has an additional parasitic load associated with a fluid circulating pump. Retail refrigeration systems utilizing ammonia as a refrigerant would also have to function with a secondary heat exchange loop. The distributed (dist.) system with compressors located near or in the refrigeration cases requires a larger number of smaller compressors located throughout the store.

TEWI Results: TEWI results from the various combinations of alternative refrigerants with these three fundamental refrigeration circuit designs are shown in Figure 3 for a medium and low temperature supermarket application in Europe. From these results it is possible to see the remarkable improvement

(decrease) in direct TEWI that is possible when the conventionally used direct expansion (DX) refrigeration circuit is replaced with a secondary loop (SL) or distributed system (dist.) approach.

The relative energy use of each system is indicated by the length of the indirect TEWI bars. Small differences are seen between the alternative refrigerant choices. Utilizing ammonia as a refrigerant in a SL system shows a small TEWI advantage due to an improved cycle efficiency.

Conclusions

Through results presented in this paper and those obtained in looking at all five of the CFC/HCFC alternative application areas, it is possible to form the following conclusions:

- Reductions in TEWI through the use of ammonia and hydrocarbons as refrigerants are insignificant for refrigeration systems with low emissions and may lead to increases in energy use and higher TEWI if forced to comply with the same design criteria applied with fluorocarbon refrigerants.
- Although ammonia and hydrocarbon refrigerants may have theoretical cycle efficiencies comparable to other refrigerants, product modifications necessary for safe consumer products (e.g. secondary loops) reduce overall efficiency.
- Significant reductions in TEWI are possible using currently-known chlorine-free refrigerants with evolving maintenance practices and improved product designs such as curtailing the venting of refrigerant during servicing and the use of distributed refrigeration systems in supermarkets.
- No clear conclusions are possible using currently-known foam blowing agents to replace HCFC-141b where it is commonly used. Hydrocarbon blown foam continues to have higher thermal conductivity than HFC blown foam and consequently higher application energy use.
- TEWI remains a valuable tool in assessing the environmental impact of different refrigeration and air conditioning technologies.

References

- /1/ S.K. Fischer, et al. 1991. *Energy and Global Warming Impacts of CFC Alternative Technologies*, AFEAS Program Office, Washington, D.C.
- /2/ S.K. Fischer, et al. 1994. *Energy and Global Warming Impacts of Not-In-Kind and Next Generation CFC and HCFC Alternatives*, AFEAS Program Office, Washington, D.C.
- /3/ U. Hesse, 1995. *Secondary Refrigerant System Options*, Proceedings of 1995 CFC and Halon Alternatives Conference and Exhibition, p. 322.
- /4/ T. Broccard, 1995. *A Revolutionary New Approach to Supermarket Refrigeration*, Proceedings of 1995 CFC and Halon Alternatives Conference and Exhibition, p. 313.

Table 1: Environmental Properties of Refrigerants and Blowing Agents

	Lifetime (yr.)	ODP	100 year ITH	500 year ITH	HCS	Lifetime (yr.)	ODP	100 year ITH	500 year ITH
CFCs									
CFC-11	50	1.0	4000	1400	HC-50 (methane)	12.2	0	21	6.5
CFC-12	102	1.0	8500	4200	HC-170 (ethane)	—	0	3	—
CFC-113	85	0.8	5000	2300	HC-290 (propane)	—	0	3	—
CFC-114	300	1.0	9300	8300	HC-3(11)0 (butane)	—	0	3	—
CFC-115	1700	0.6	9300	13000	Cyclo-Pentane	—	0	11	8
HCFCs									
HCFC-22	13.3	0.055	1700	520	Zeotropes and Azeotropes		0.037	970	300
HCFC123	1.4	0.02	93	29	401A	—	0.04	1060	320
HCFC124	5.9	0.022	480	150	401B	—	0.03	760	230
HCFC-141b	9.4	0.11	630	200	401C	—	0.021	2250	720
HCFC-142b	19.5	0.065	2000	630	402A	—	0.033	1960	620
HCFC-225ca	2.5	0.025	170	52	402B	—	0.031	3570	4190
HFCs									
HFC-23	264	0	11700	9800	404A	—	0	3260	1150
HFC-32	5.6	0	650	200	405A	—	0.028	4480	5630
HFC-125	32.6	0	2800	920	406A	—	57	1560	480
HFC-134a	14.6	0	1300	420	407A	—	0	1770	580
HFC-143a	48.3	0	3800	1400	407B	—	0	2290	750
HFC-152a	1.5	0	140	42	407C	—	0	1530	490
HFC-227ea	36.5	0	2900	950	408A	—	0.026	2650	920
HFC-236ea	8	0	110	510	409A	—	0.048	1290	390
HFC-236fa	209	0	6940	4700	410A	—	0	1730	560
HFC-245ca	6.6	0	560	170	411A	—	0.043	1330	400
HFC-245ea	5	0	420	140	411B	—	0.052	1410	420
HFC-245eb	5.5	0	490	170	500	—	0.74	6010	2990
HFC-245fa	7.3	0	820	290	501	—	0.29	3150	1350
HFC-356mcf	1.3	0	125	38	502	—	0.33	5230	6610
HFC-356mfm	11.6	0	1160	390	503	—	0.6	11350	11750
HFC-365mtc	12	0	750	200-300	504	—	0.31	4890	6560
HFC-43-10	17.1	0	1300	400	507	—	0	3300	1160

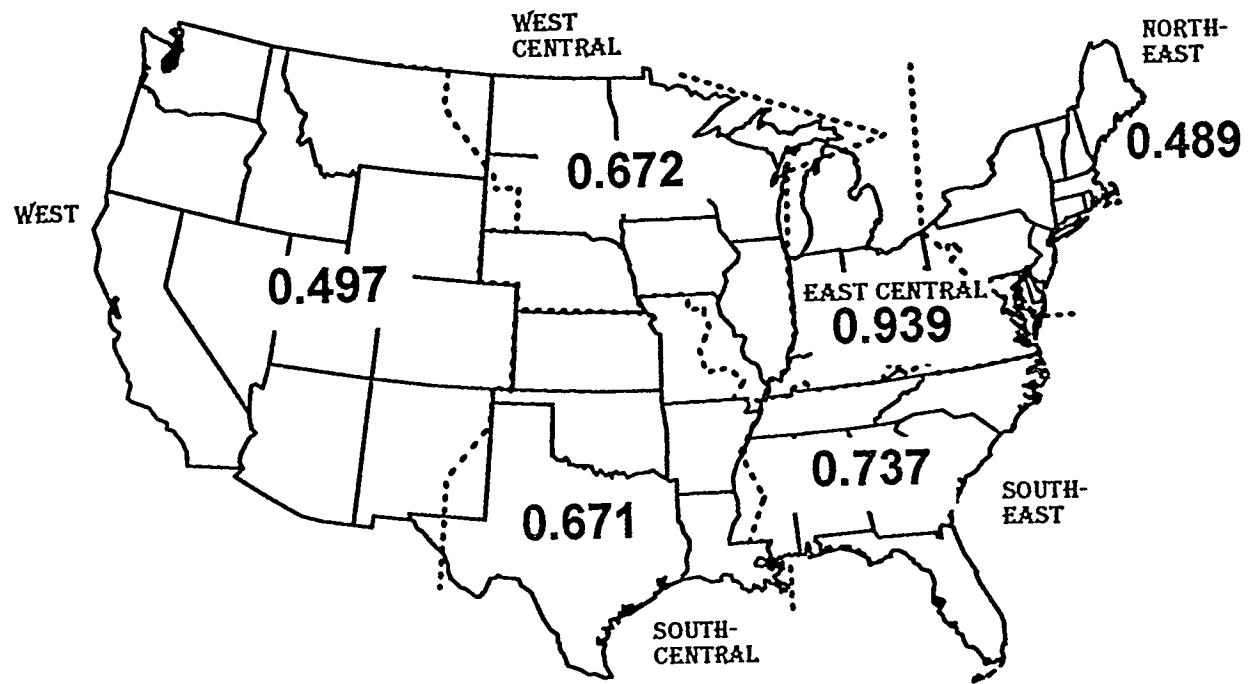
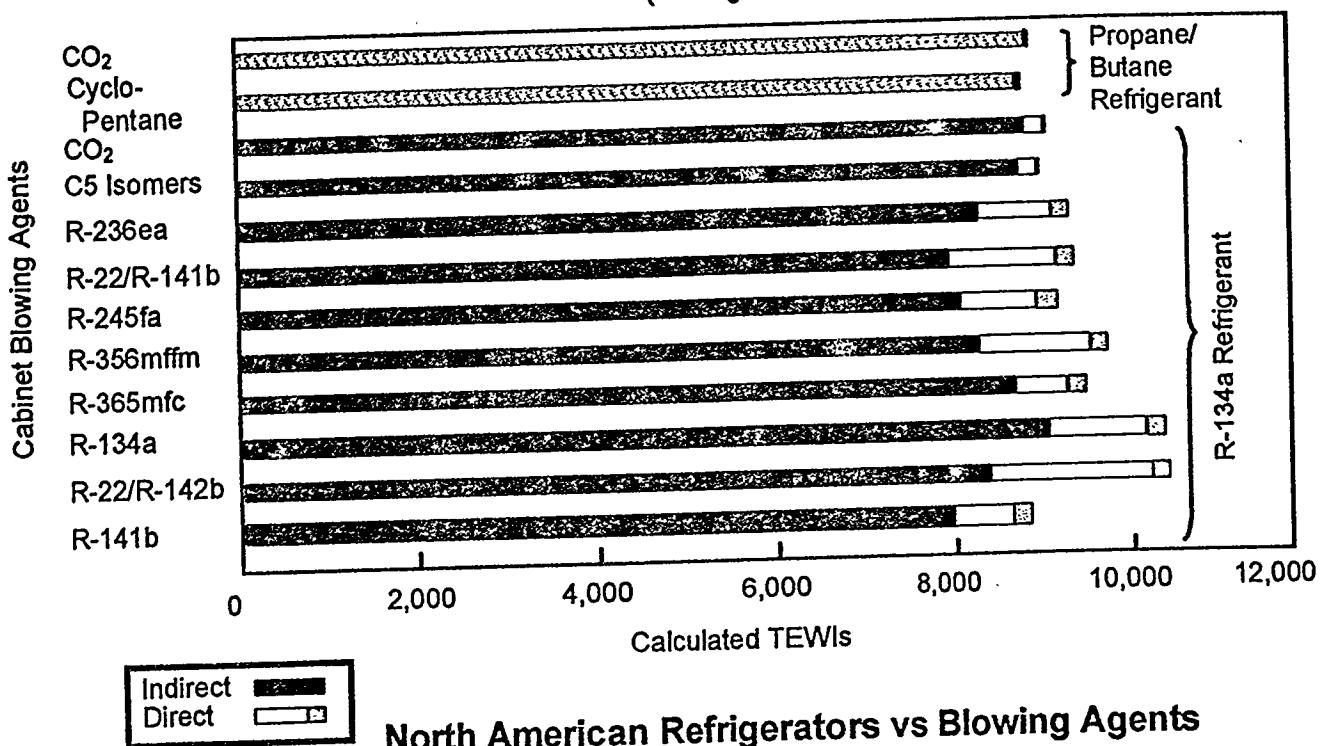



Figure 1. United States kg CO₂/kWh electricity Emission Rate
(0.650 kg CO₂/kWh average)

North American Refrigerators vs Blowing Agents (0.65 kg CO₂/kWh)

North American Refrigerators vs Blowing Agents

Assuming 90% Refrigerant Recovery at Disposal - 0.65 kg CO₂/kWh

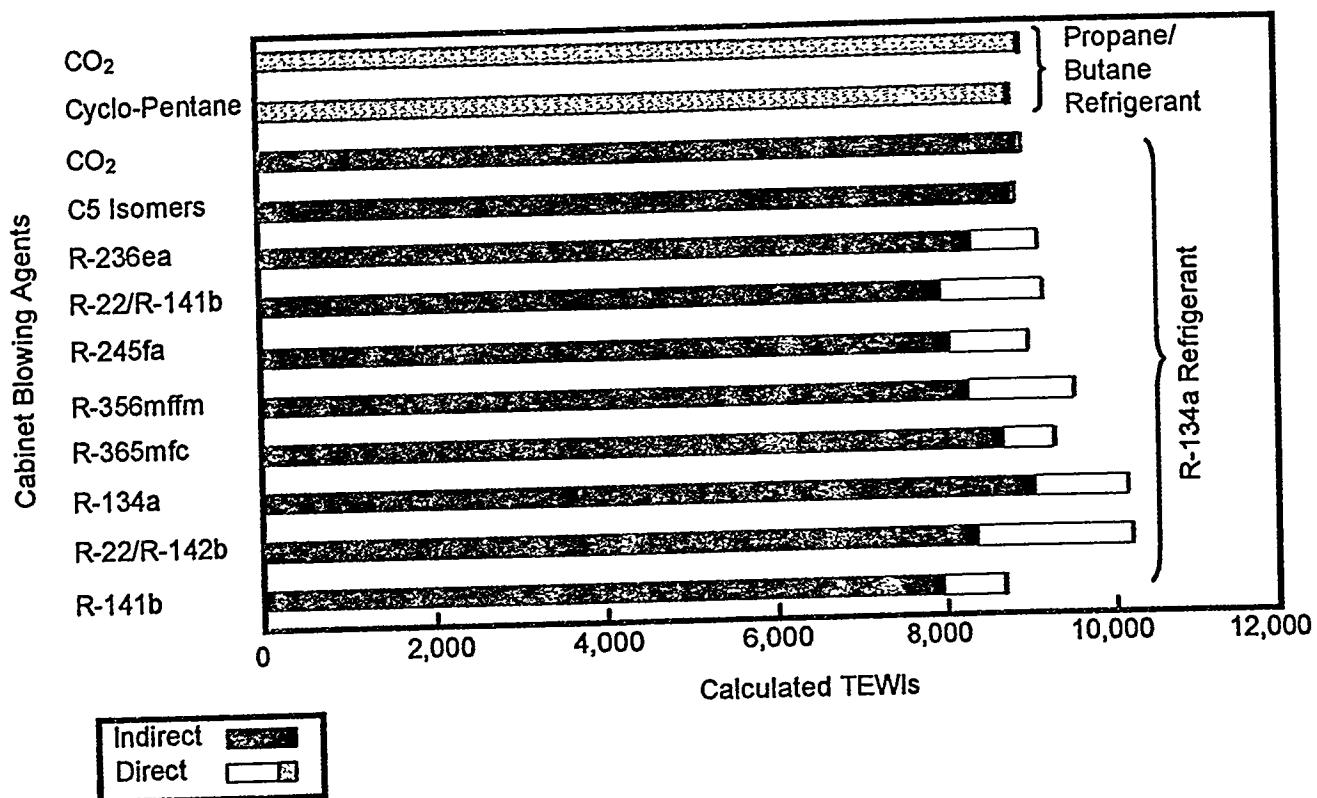
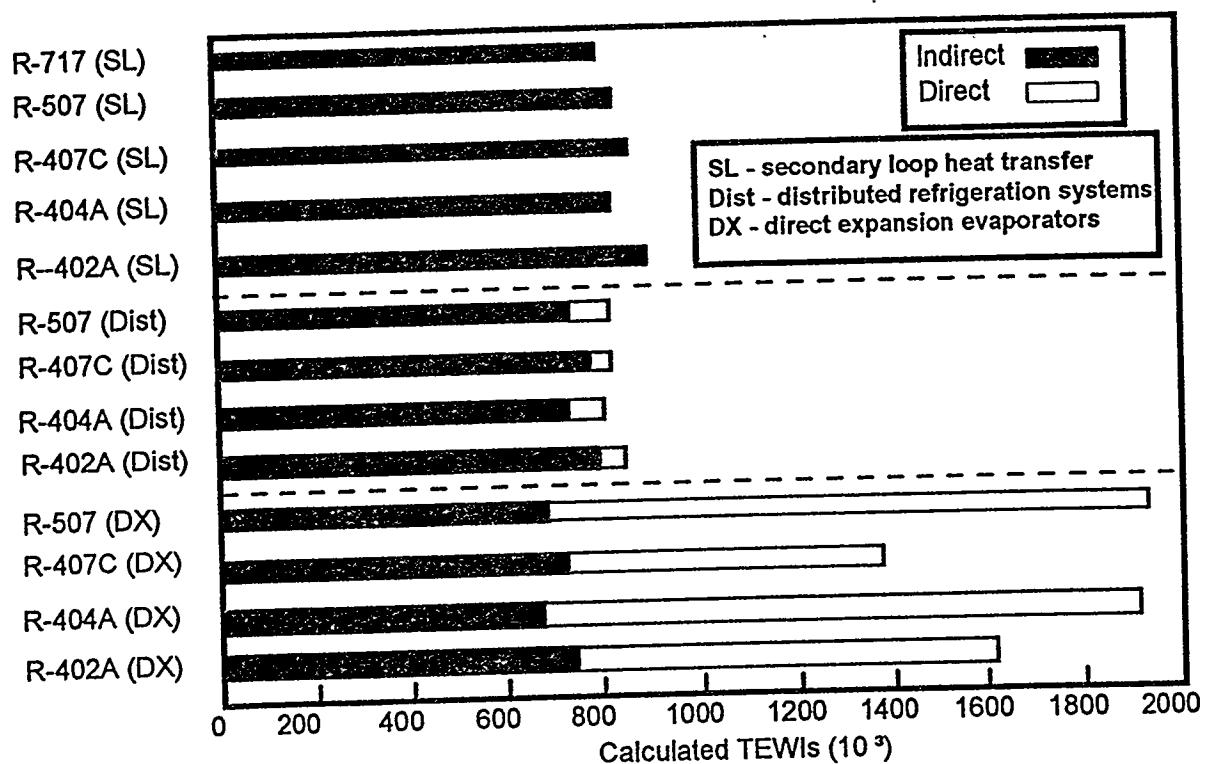



Figure 2. TEWI Values for U.S. refrigerators

Low Temperature Supermarket Refrigeration: European Average (0.469 kg CO₂/kWh)

Medium Temperature Supermarket Refrigeration: European Average (0.469 kg CO₂/kWh)

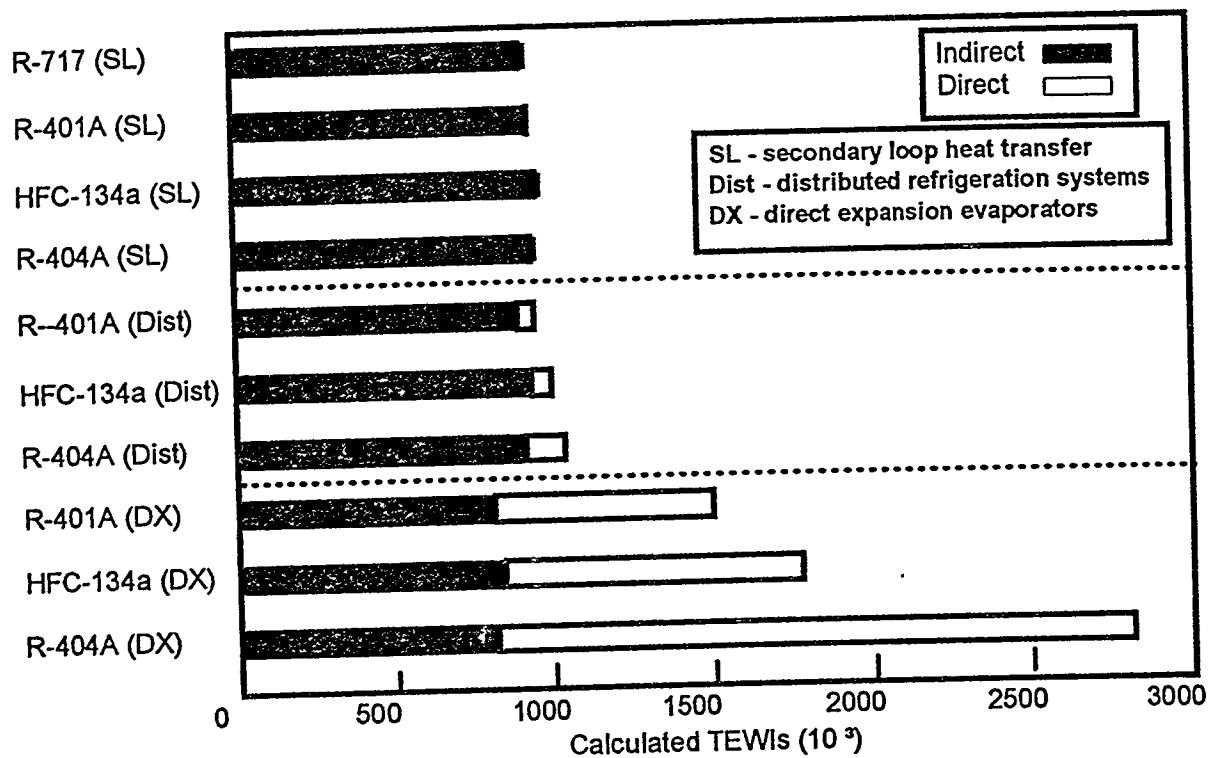


Figure 3. TEWI for low and medium Retail Refrigeration Application