Al >
¥

Vil e L™
ISST o
o iy -

-,

ORNL-3148
UC-32 — Mathematics and Computers

STRUCTURE AND USE OF ALGOL 60

Hermann Bottenbruch

OAK RIDGE NATIONAL LABORATORY
operated by

UNION CARBIDE CORPORATION
for the

U.S5. ATOMIC ENERGY COMMISSION

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States,

nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy,
completeness, or usefulness of the information contained in this report, or that the use of
any information, apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of
any information, apparatus, method, or process disclosed in this report.

As used in the above, ‘“‘person acting on behalf of the Commission’ includes any employee or

contractor of the Commission, or employee of such contractor, to the extent that such employee

or contractor of the Commission, or employee of such contractor prepares, disseminates, or
provides access to, any information pursuant to his employment or contract with the Commission,

or his employment with such contractor.

Contract No, W-7405.eng-26

MATHEMATICS PANEL

STRUCTURE AND USE OF ALGOL 60

Hermann Bottenbruch

DATE ISSUED .

JUL 261961

OAK RIDGE NATIONAL LABORATORY
Ooak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION

for the .
‘U.S. ATOMIC ENERGY COMMISSION

ORNL-3148

~ THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

CONTENTS
ADSEFOCT.. oottt et a et et aet b Sttt e s b s st et et eabeas s eere et sereenen iv
IEEOAUCHION e eoeeeeeeeeeeeseseeee e eeessessesseseeeesseesesseesees oo eee e eeee et ee e ssesseeesssrreeesersses 1
A Sample Progrom in ALGOL 60 ..c..ooeeee... et eteeeeteereeentieneeaeieeeeibeesrteatarreabeeabarraeiane e ereernreenteneraeeres 2
Detailed Discussion of Some Simple ALGOL Concepts......cc.cuurerrvvvversse e s 5
Declarations and Blocks ... beeenes 20
PrOCEAUIES ..evreereieiii ettt et cs et st st st et et st e bbb ete s st et neess sbe st ne ekt e bene et esereeb e st ean b beaseenenesesanen 28
Examples of ALGOL Procedures.............. e s et ee s bt et ettt e s et ehe bbb 43
Acknowledgmenf.............................J...t ettt R g b e et e e e e e aen 51

Literature Cited rerrenees e teeeetereeeiesiaeteterteraretearaa b aratasettaaseaeansenrnrarees revrrre e ————————.an 51

ABSTRACT

ALGOL 60 is a universal, algebraic, machine-~independent programming
language. It was designed by a group representing computer societies from
many ditterent countries. ‘ Its primary aims aré:

1. Simplification of program preparation.
2. Simplification of program exchange.

3. Incorporation of the important programming. techniques presently known.

The ALGOL 60 language is defined in Communications of the ACM 3,'299-314
(1960). The present report is -an elaboration- of the concepts of ALGOL 60,

mostly with the help of illustrative examples. |t is intended for people who are -

rd
familiar with the general ideas of programming and mathematical notation.

iz

STRUCTURE AND USE OF ALGOL 60

Hermann Bottenbruch'!

INTRODUCTION

ALGOL was designed as a language to be used for the description of
computing processes in a machine-independent way, and in this respect
it resembles other languages such as FORTRAN, MATHE-MATIC,
and IT. ALGOL is an international effort, and we hope that it will be-

come the main vehicle for communication of algorithms in publications

and reports. The same aims which governed the design of the afore-

mentioned systems governed the design of ALGOL. The following is

cited from the ALGOL 58 report (1):2

1) The language should be as close as possible to standard mathe-
matical notation and be readable with little further explanation.

2) It should be possible to use it for the description of computing
processes in publications.

3) The new language should be mechanically translatable into ma-
chine programs.

However, in ALGOL, ease of expressing a computational process and
consistency with existing mathematical notation were stressed more
than in other systems, and so ALGOL is somewhat further away from
‘‘thinking in terms of a computing machine’’ and closer to ‘‘thinking in
terms familiar to human beings’’ than other systems. This difference
shows up more in the elaborate parts of the language than in the simple
parts.

The ALGOL 60 language? is defined in a very precise and concise
way in ‘*Report on the Algorithmic Language ALGOL 60’' by Peter
-Naur (editor), et al. See (2). The present paper is an elaboration of
the concepts defined in this report. It is not a definition of the lan-
guage, because it does not give all the composition rules. It explains,
rather, the meaning and proper use of the devices provided by ALGOL
60. The main vehicle in accomplishing this task is the discussion of
illustrative examples. Some of the concepts, especially ‘‘block,”’

“‘procedures,’’ ‘‘local or own quantities,'’

10n leave of absence from Institute fir Praktische Mathematik, Technische
Hochschule, Darmstadt. '

2Numhers inparentheses refer to the corresponding items in the bibliography.

3ALGOL 58 (1) was a preliminary language. AL GOL 60 is the ALGOL
language, which was based on the ALGOL 58 report and discussions of it in
the Communications of the ACM and in the ALGOL Bulletin.

are useful only in programs

i

which are so large that the explanation of the logic of the program
would overshadow the explanation of the language. Therefore the
examples are sometimes oversimplified so that they are not practically
useful except for the purpose of explanation, and some of the exampies
are only skeletons, in that they leave out certain parts of the program,

showing only those which are pertinent to the explanation.

Although it is the main aim of this paper to explain ALGOL as far
as writing correct programs is concerned, some effort is made to show
how efficient programs may be written. The remarks concerning storage

allocation in blocks (see p 25) fall into this category.

A SAMPLE PROGRAM IN ALGOL 60

The following program computes the expression

10 2es4n
1
E=Y — . i)
azp ! (n + s)! 2

This expression, by the way, represents the first 11 terms of the power
series expansion for the modified Bessel function of integer order 0.
This fact is not important in order to und'er-s;'rond the example. The
expression cannot be evaluated for x = n = 0, because for s = 0 we get
the undefined expression 0%. In the case x = n = 0 the program will
give the result 1.

The program given below will serve to give a rough impression of
the features of the language, and by comparing the program with the
formula, some of the notational peculiarities become clear. The program
is not complete, insofar as it does not contain ‘‘declarations’’ (see
pp 20 f1.).

The program given is in no way an efficient formulation for the
computation of this expression, and many refinements are possible by
eliminating unnecessary computational steps. Such refinements, how-
ever, would not serve our present purpose of showing some of the
features of the language.

The program reads in four values from an input medium and assigns
these values to the variables named x0, deltax, xmux, n. Then it
computes E for x = x0, x0 + deltax, x0 + 2 x deltax, ... , xmax, and

punches x, n, and E on an output medium:

Line

M : read x0, deltax, xmax, n ; 1
x = x0 ; 2

nfac =1 ; 3

for i := 2 step 1 until 2 do njac := nfac'x i; 4

if x=0 pn=0 then begin sum :=1; goto P end ; 5

L : denom := nfac ; 6
sum =0 ; 7

for s::= 0 step 1 until 10 do ‘ '8
begin sum := sum + (x/2) | (n + 2 x s)/denom ; 9

denom :=denomx (s + 1) x (s + 1 + n) 10

end ;

P : punch x, n, sum ; ’ ' 1
x 1= x + deltax ; ’ ' 12

if x < xmax then goto L ; 13
gotoM; 14

Notes

1. The program is a succession of statements, which are normally

executed in the order in which they are written down. Some of the

. statements have labels in front of them (line 1, 6, 11) which serve as

marks and which are used in go to statements (line 5, 13). Go to state-
ments interrupt the normal sequence of execution of the statements and
indicate the next statement to be executed.

2. The symbols M, L, P are used as names of statements. The
symbols x0, deltax, xmax, n, x, nfac, denom, sum, s, i are used as
names of variables. These names are chosen arbitrarily, and replacing
a name consistently throughout the program by a name different from
all the other names used does not change the meaning of the program.
The names are, however, somehow suggestive of the quantities which
they denote. In contrast to these free names there are certain other
words used in the program like read, step, until, go to, begin, end,
punch. These are fixed constituents of the language. These fixed
words are always printed in bold face and in the discussions below are
treated as a single symbol, such as +, —, etc. ‘

3. The meaning of the statement in line 1 is obvious from the

description preceding the program.

4. The statements in lines 2, 3, 6, 7, 9, 10, 12 are assignment
statements. The value of the expression on the right side of the
symbol := is computed and assigned to the variable at the left side of
that symbol. Assignment statements are also part of the conditional
statement in line 5 and of the for statement in line 4.

5. The statement in line 4 is a for statement, which has as one
of its constituents another statement (nfac := nfac x i), which in this
particular case is an assignment statement. This constituent statement
is executed for certain values of the loop variable i which are obvious
from the for list element 2 step 1 until n. [f the upper limit n of this
far list element is less than 2, the loop will not be executed at all.
The net result of statements 3 and 4 together will be that the variable
nfac has the value n!. The phrase ‘‘for i := 2 step 1 until » do” is
called a for clause.

6. The statement in line 5ﬂis a condz't-ional statement. |t contains
as one of its constituents another .gtctemenf, which in this case is the
compound statement: begin sum := 1; go to P end. Execution of a
compound statement means execution of all the statements constituting
the compound statement.. The statement is, however, only executed if
the condition follo;/ving the if of the conditional statement is true.
Otherwise the complete conditional statement is void. The condition
itself is compounded of the two conditions x = 0 and » = 0 by means of
the Boolean operation p-(logical and), which means that the compounded
condition is true if both the constituent conditions are ﬂ'lue. In the
sequel, we will use the word Boolean expression instead of condition.

7. The three lines 8, 9, and 10 together form a single statement
(a for statement, see note 5), where the statement governed -by the for
clouse is again a compound statement, since in this case the two state-
ments in lines 9 and 10 are to be executed for the designated values
of s. .

8. (For purists and puristic critics).4” ALGOL 60 does not contain
any statements for input and output. Such statements, of course, have
to be added to the language if one wants to write any useful programs.

9. The concepts of notes 1 to 8 which are printed in italics are, in

addition to others, more fully explained in the following sections.

4 puristic critic is somebody who criticizes ALGOL on the fact that a
translator is useless which fulfills ALGOL to the last atom of printer’s ink.

DETAILED DISCUSSION OF SOME SIMPLE ALGOL CONCEPTS

The definition of an ALGOL concept consists of the syntactic part
and the semantic part. In the syntactic part we describe which se-
quences of ALGCL symbols may represent the concept. In the semantic

part we describe what the meaning of this concept is.

The ALGOL 60 report gives the syntactic part in a very rigorous'

form. We do not aim at such rigor. One way of ‘‘defining’' a concept
which is used in the present exposition is simply to give examples of
strings which do represent a concept and of those which do not.
Although this sometimes leaves some doubt, it is hoped that examples
and counterexamples make the general idea sufficiently clear. Clarifi-
cations are added in common language wherever this is desirable.
Even so, some exceptional cases may not be covered by the description
given here, and for completeness the reader is referred to the ALGOL 60
report. For the ‘‘normal’’ user of ALGOL, however, it should not be
necessary to go through the painsteking process of disentangling the

definitions in the report after reading this introduction, which stresses

the more frequent and useful concepts while treating the less important

features with less care.
As far as the ‘‘semantic part’’ of the definition is concerned, we

have omitted it if the meaning is obvious from common usage.

Arithmetic Expressions and Their Constituents: Numbers, Variables,
CQperations, Special Functions

Arithmetic expressions are formed in almost the usual way, witha
few notational peculiarities. The quantities- involved in forming an
expression are numbers, simple or subscripted variables, and functions
(see Table 1).

Simple variables are denoted by identifiers.

An identifier is any string of letters and digits of any length
beginning with a letter. Capital and lower-case letters may be used.

Subscripted variables are denoted by an identifier followed by a

list of expressions enclosed in brackets.

There are no restrictions on the expressions used in subscript-

positions. Subscripted variables are defined only for integer sub-

scripts. However, even the evaluation of a simple expression like

(n)x(n ~ 1)/2 may yield a noninteger number due to round-off. There-.

fore the following convention was adopted:

arithmetic expressions

numbers
simple variables

identifier

.subscripted variables

If the value of an expression used in a subscript position is not an
integer, then this value is changed to the nearest integer in the sense
of proper round-off. Thus: a[0.6] = a[].4] = ;1[1.479] = a[0.5] =
al1], al1.5] = al2), al ~1.5) = a[-1].

noninteger subscript expressions

Table 1. Examples and Counterexamples of Arithmetic Exbp;essions and Their Constituents

Examples Counterexamples Structure
1 2 -48 -0.38 0.38 3x4 7w a 127. 6 Numbers
—10-4% -104 104 1045 +105 127.104 100.5 102.8
a Soup al a2 Al AY : 7 oalll 4, 2 2a « a ax lIdontifiors

alpha alphal astar pi
See identifiers

a all) alilll] ali[1]+3x 7] | 4y a3 T -—a

M1, 21 blaxildl + a4 r+2 xpil
alsin (2 x pi x j/3)]

Ix4 3Ixdxsin (3% pi/5) al(-2) al=2 V6 27 2pi
al2 al2+672 al(2+512) sqe(6) ‘
21213 meaning (22)3

a1 (27 3) meaning (2%

Simple variables

Variableé, simple
or subscripted

Arithmetic expression®

“The symbol 10 has the meaning x 10 |, for example, 104 = 10‘&; 0.4110-2 = 0.41 x 10-2 = 0.0041; it is

used in almost the same way that the letter E is used in FCRTRAN numbers.

bFor an extension of the notion of expression, see ‘'Functions,”’ p 37. For conditional expressions, see

“Peculiarities,”’ p 22,

The totality of subscripted variables ‘denoted by the same identifier is
called an array. See array declarations, p 21. Permissible operations
in forming arithmetic expressions are: the binary operations addition,
subtraction, multiplication, division,‘ exponentiation, and integer divi-
sion, denoted by +, —, x, /, T, and *; the unar.y operations + and —;
and the special functions abs, sign, sqrt, sin, cos, arctan, In, exp,
‘entier. The definitions of sign and entier are given below.

The exponent part of the operation | stands on the same line as the
base number and must therefore be enclosed in parentheses if it is an

expression containing an operation. See p 21 for integer division.

arrays operations

special functions

Precedence of operations is understood in the usual way; that is, x,
+, and /are “‘stronger’’ than binary plus and minus; | is stronger than
all other binary operations; unary operations are stronger than binary
operations. |f precedence is not specified by these rules, the operation

farther to the left is stronger. Examples are:

a+bxcmeans a+ (bxc)
a+b-cmeans (a+b)~-c
a-b+cmeans (a~b)+cand not a~ (b + ¢)
a+blc+dmeansa+ (blc)+d
b T~ c is not permissible
a/bxcmeans (¢ / b) x ¢ and not a /(b x ¢)
—~aT b means (~a) | b and not —(a | b)
Expressions which are ambiguous in usual notation, such as the paren-

theses-free form of the last two examples, should be avoided by proper

placement of parentheses.

It should not be overlooked that the associative law does not hold
in rounded-off computations. In some cases it may be important whether
the expression @ — b + ¢ is executed as (a - b) + coras a—(b~c),
for example, if ¢ is small compared with @ and b, and a and b are almost
equal and contain almost equal errors. If it is important that the ex-
pression be evaluated as (@ — b) + ¢, this should be indicated by paren-

theses despite the fact that ALGOL implies this interpretation.

The meaning of the special functions ‘apart from sign and entier is

obvious. The function sign is defined by

+1 if E>O0
sign(E) = 0 if E=0
-1 if <0

The function entier (E) is defined to give the largest integer not greater
than E. Thus entier (1) = 1, entier (=1) = ~1, entier (-1.1) =-2,

entier (1.1) = 1.

Arithmetic Assignment Statements
An arithmetic assignment statement is of the form
V=E,

where V stands for a variable and E stands for an arithmetic expression.

precedence of

operations

sign and entier

arithmetic assignment

statement’

Examples are

a:=
i=i+ 1
a:=b

qljl =1s + /2]

A statement in generﬁllis a rule to perform some action. The action
denoted by an arithmetic assignment statement is (1) the computation
of the value of an expression and (2) the assignment of that value to
the variable. The ‘‘value associated with a variable’’ is the last value
assigned to that variable.

The formula "V 1= E' accompanied by the qualifying remarks
““where V is a variable and E is an arithmetic expression’’ is an ex-
ample of what will be called a syntactic skeleton. In particular,
V := E is the syntactic skeleton for an arithmetic assignment statement.
If, in this skeleton, V is replaced by a variable and E by an arithmetic
expression, the result is a syntactically correct arithmetic assignment

statement.

The bold face capnal letters V and E-are variables® which stand
for ALGOL structures. |In generali, a syntactic skeleton is a formula
which is made up from ALGOL symbols [except digits and (italic)
letters] and bold-face letters. In most cases such a tormula is tollowed
by remarks thatidentify the structures for which the bold-face letters
stand. If one replaces each bold-face letter by any ALGOL structure
for which it stands, the result will be'an ALGOL structure of the type
designated by the skeleton. Since the structures variable, arithmetic
expression, and statement occur so frequently in syntactic skeletons,

we introduce the following convention:

Whenever the bold-face letters V, E, or S, with or without sub-
scripts, appear in d syntactic skeleton, they stand for the
structures variable, arithmetic expression, or statement re-

spectively.

Boolean Expressions

Boolean expressions are used to form a truth value, that is, an

entity which is either true or false. A Boolean expression is formed

5In order to distinguish these vonobles from ordinary ALGOL variables,
they are sometimes called ‘‘meta-variables.”” They never appedar in ALGOL
programs; they are only used when talklng about ALGOL programs Sometimes
they are called * syntachc variables.’ '

Boolean expression

with the following quantities: (@) the truth values true and false,
{(b) Boolean simple or subscripted variables (see ‘‘Declarations and
Blocks,”” p 20, and (c) arithmetic comparisons. Each of these quanti-
ties designates a truth value, which is obvious in case (). In case
(b) it is the last truth value assigned to the variable (see Boolean
assignment statement). In case (c) it is determined by the result of
the comparison.

An arithmetic comparison is of the form
ERE,

where R stands for any of the six relations =, #, >, 2, <, £ Some

examples are:
1§.2, a+b§cx(d+e—/><g);
1.34 £ 2 xsqrt (3.12) .

Tlie bl vulue of comparlsons 1 and 3 Is always true, whereas the

truth value of comparison 2 depends on the values of g, 5, ..., g.

Out of these constituents, Boolean expressions can be formed
according to the rules of Boolean algebra. The permissible Boolean op-
erations are ‘‘not,”’ ‘‘and,’’ ‘‘inclusive or,”’ ‘‘implies,’’ ‘‘equivalent,”’

denoted by —, A, v, 5, =.% The rules of precedence are given by the
‘order in which the operations are listed. - Thus p v q A r means
p vigar), and p A g yr means (p o q) vr. lf precedénce is not de-
termined by parentheses and the above mentioned rules, operations are
" carried out from left to right. Thus a= b = c means (a = b) = ¢, which
sometimes has a truth value different from a= (h = ¢). A few examples

for Boolean expressions are:
x£~2 vx==2, true, — true= false, a<b nc<d pe,
—(agb==-ag~b), Ali + 31 < B4, 2,
agbpabgc=agce. |
The last expression is equal to
[lagb)rlbgc)l=(aga).

Some of the Boolean expressions given in the example are true regard-

less of the values of the variables appeaiiing i them. The identifiers

6The result of the Boelean operation '‘and'' is true if both operands are
true. The result of the Boolean operation ‘‘or’’ is true if one of the operands
is true. The result of ‘the Boolean operation ‘‘implies’’ is true either if the
second operand is true or if the first operand is false. The result of the
Boolean operation ‘‘equivalent’’ is true either if both operands are true or if
both operands are false. In the cases not. mentioned the result is false.

arithmetic comparison

precedence of opera-
tions in Boolean

expressions. '

10

a, b, ¢, d, i, x, denote real or integer variables (see ‘‘Declarations and
Blocks,'' p 20). The identifier e denotes a Boolean variable.

The most common form of Boolean expressions are arithmetic com-
parisons. The program on p 3 contains in line 5 an expression com-
posed of the two comparisons x = 0-and » = 0. The program on p 29 con-
tains in line 5 a Boolean expression composed of three comparisons.
Another example is in the merge procedure on p 45 in the line labeled
Q. More complicated Boolean expressions occur in programs with a
complicated structure, for example, compilers.

Boolean variables are useful for ‘‘storing’’ the results of arithmetic

comparisons in a readily accessible way.
Boolean Assignment Statements -
Boolean assignment statements are denoted by
V:=B,

where V is a Boolean variable and B is a Boolean expression. This

statement assigns the truth value of B to the variable V.
Conditional Statements
A conditional statement is denofedvby
if Bthen$S,
or alternatively by
if B then S, else Sy,

where B is a Boolean expression and S, S,, S, are statements. Ex-

ecution of a conditional statement of the first form means execution of

statement S if the truth value of B is true. Otherwise the statement is-

void. Execution of a conditional statement of the second form means

execution of §, if B is true and execution of S, it B is false. The

statement following the then must not be a conditional statement. The .

statement following the else may be a conditional statement, thus

allowing constructions of the kind:

if B, then S, else if B, then S, else if B, then S,
where $; may again be a conditional statement.

Compound Statements

A sequence of one or more statements, separated by semicolons,

and enclosed in the so-called statement parentheses begin-and end is

Boolean assignment

statement

conditional statement

compound statement,

N

begin end

1Y

1

called a compound statement. A compound statement is also a state-
ment, and may ‘therefore be a constituent of another compound state-

ment. An example of a compound statement is:
begina:=b; x:=y; n:=vend

Examples of conditional statements, each of which has a compound

statement as one of its constituents are:
_ifag2thenbegina:=b; x:=yendelseu:=0

if 2 £ 2 then av:= belse beginx:=y; u:=0end

In the first conditional statement the statements a := & and

x = y are executed if a < 2. Otherwise the statement u := 0 is ex-
ecuted. In the second conditional statement the statement a := b is
executed if a < 2. Otherwise the statements x := y and u := Q are
executed.

Use of compound statements in conditional statements can always
be avoided by means of go to statements and labels. For example, the

first conditional statement above is equivalent to
ifa<2thengoto L ;
u:=0;gotoM;
L:a=b;x:=y;
M : (next statehent) .

This explicit form is bad ALGOL style.

Loops
A loop is a device which facilitates the repeated execution of a
statement for different values of a distinguished variable, the so-called

loop variable. A simple example of a loop is:

for i := 1 step 1 until 10 do ali] :=:T2 .

This loop assigns the value 1 to the variable a[l], 4 to the variable
a{2], ..., 100 to the variable a[10]. The values which. are assigned
" to the loop variable are in general determined by so-called *‘for list
elements’ (see below). A loop is a statement, and the ALGOL term

for this is for statement. A for statement has one of the two forms:
for V:=FL do §
forV:=FL, FL,, ..., FL do$

loop

for statement

12

where FL, FL,, ..., FL designate for list elements. A for list ele-

ment has one of the three forms:
E, step E, until E,
E while B
E

Each for list element designates a sequence of values to be as-
signed to the loop variable V. The first element, for example, de-
signates those elements of the sequence E,, E, + E,, E, + E, + E,, ...
which lie between E, and E;, inclusive. A loop may be expressed
equivalently by a sequence of ALGOL statements not containing loops.

The following examples make this sufficiently clear:

1. for i := a step 1 until b do c[i] := d[7] is equivalent to

i:=a,;

L :if i < b then begin c[i] :=d[i]; i:=i+ 1; go to-L end

Note that the loop is void in case b < a. In for list elements -

with negative step-expression the comparison must use 2 in-

stead of .
2. fori:=7+ 1 while ali = 11> d do a[d] := ali - 11/i is equivalent
to

Liiw=i+1;

if ali — 11 > d then begin ali] := ali = 11/i ; go to L end

3. for i := a + b do x[7] := y[i] is equivalent-to
i=a+b;
x[d] .= y[d]

Loops with more than one for list element are equivalent to a sequence
of loops with only one for list element. Thus:
for vV :
for V:=FL, do§:
for V:=FL,do$S; -
for V:=FL,do$

1]

FL,, FL,, FL; do S is equivalent to

Conditional statements and for statements are both structures which may be
parts of other statements and which have statements as their constituents. |n
order to indicate the logical dependence of these ‘statements, one should use
statement parentheses even where they are not indispensable. [n the example

on p 43, one would not need the begin and end because only one statement is

governed by the for clause. If this statement were part of another conditional’

for list elements

for statements with
several for list

elements

-~

13

statement the begin and end are necessary in order to show the if clause to
which the else belongs. Example:
pi=1;
if e> 2 then
for pl :=(e+p) * 2whilee—p#1do
begin if a[p1] < b then e := pl else p ;= p1 end
Without the statement parentheses this program could be interpreted in the
following way: '
p o
if e> 2 then
for pl :=(e+p) ¥ 2 while e~ p # 1 do
begin if a[p1] <& then e ;== pl end ;
else p :=pl
Labels, go to Statements
Any identifier and any unsigned integer may serve as a label.
Labels and go to statements are described in the example, p 3, note 1.

See also ‘‘Designational Expression,’’ p 27.

Dummy Statement

A dummy statement is represented by ‘‘no symbol.” A dummy state-
ment executes no operation. |t may serve to place a label. An example
is the statement with label L in the following program to find the maxi-

mum of a[1] to aln]:
imax :=1; M:=all];
for i ;= 1 step 1 until » do
begin if a[i{] < M then go to L
| else begin imax = i;
M := ali
end ;

L : end

Ir'tpuf and Qutput of Information

There are no statements for input and output of information in the
ALGOL language. The statements described below are used to supple-
ment the language in this respect. They are, along with others, used
for input and output of information in-the Oracle ALGOL Translator (3).

The statements given below constitute a bare minimum of input-output,

labels, go to state- N

ments

dummy statement

14

commands: and thus are not intended as .a proposal for general accept-
ance. Such a proposal must contain some means for format designation
and input and output of alphameric information. Some practically useful
minimal set of statements would be desirable as a general standard.

The statement read V means: Read the next number from input
tape, convert it to internal representation, and assign it to the variable
V. The number read in is supposed to be punched in ALGOL form on
an input medium. Any ALGOL symbol not compatible with the structure
of an ALGOL number terminates the number.

The statement read Y, V4, ..., V, is equivalent to the sequence

of statements:

read VyireadV, ;... ;read V,

The statement punch E has the meaning: Compute the value of the
expression E and punch it on the output medium.

The statement
punch E , E,, ..., E, ; is equivalentto
punch E, ; punch E,; ... ; punch E,

The statement carriage return activates the punching of a carriage

return and line feed symbol (or equivalent).on the output medium.. -

For further remarks on.input-output- ,see~-stringé,.-.p .15,. and-machine -

code procedures, p 39. -
Comment

There is the possibility of inserting into a program comment, or
text, which does not affect the meaning of the program, but which helps
to make the meaning of a program clear to the (human) reader. The
comment rules are: ' ' A
1. The symbol comment and any character between this symbol and the

first semicolon after comment are text.

2. Any character between the symbol end and the first semicolon or
end or else following this end is text. Some examples are:

comment a + b — c is positive at this point ;

comment if the program ever gets to this point there is a
mistake in the input data. Do not worry ; ‘

if a = b then begin x :=g ; y := z end. Thls is a very ex-
ceptional case else x :=g+ 1 ;

In the last example the symbols beginning with the period after the end

and ending with the word ‘‘case’’ are text.

read

punch

. carriage raturn

comment

v

15

The second comment convention is often used to ‘’mark’’ an end in a way
which facilitates finding the matching begin. In case an end terminates a loop,
one can repeat the loop variable after the end. [f the compound statement has
a label, one can repeat the label of this statement after the end. It has been
the experience of this writer that the following way of writing compound state-
ments displays the structure of long compound statements more effectively:
Write matching begins and ends either in the same row or in the same column

of the program. Subordinate begins and ends are indented farther to the right.
Strings

An ALGOL string is either a sequence of ALGOL symbols enclosed
in the opening and closing string quotes ‘ ’; or it is a sequence of
ALGOL symbols and ALGOL strings enclosed in these string quotes.
Examples are: ,

‘abcd

‘ab ‘cde’ [g'

Strings cannot be used in ALGOL 60 proper. Strings are useful in

input-output operations. With strings in mind it would be useful to
interpret output operations in the following way: Whenever a string
appears in an output statement at the place of an expression, this
means that the elements of the string are put on the output medium.

With this general interpretation the statement

punch ‘A =", 1.34, ‘##B =", B;

would place the following symbols on the output medium:’

A=134, B=....,
where stands for the value of the variable B at the time of ex-
ecution of this statement. In order to make strings really useful, one

would need string variables, string assignments, and sone string opera-

tions. String operations can be introduced into ALGOL by means of

- procedures written in machine code (see p 39).

Punctuation

Proper use of punctuation symbols hardly represents any difficulties, with
the possihle exception of the semiculun. In using the semicolon one should
have the following facts in mind: A semicolon is used only to separate the
different statements of a compound statement. [t is not part of o conditional
statement or of a for statement, except when these have a compound statement

as one of their constituents. From this it may be seen that the sequence

"The #is the ALGOL. representation of *’blank.’”” Blanks are' r;ormally dis-

regarded in ALGOL, but they are meaningful in strings.

ways of indicating'
matching begins and
ends

string quotes

semicolon

16

**; else' can never occur in an ALGOL program, and that in the sequence .

*“; end’’ the semicolon is redundant. Example 1:

ifalbthen x ;= yelse x:=z

Insertion of a semicolon after the y would terminate the conditional statement,
leaving the else without an if clause. An ‘‘intelligent’’ translation program
would be prepared for that mistcke which results from the assumption that a
statement must be terminated by o semicolon, and it would simply eliminate

the semicolon, giving an appropriate error message. Example 2:
ifag bthenbeginxi=y;y:=2z;end; |
The semicolon after the z is redundant.
Statements
Thus far we have discussed the following types of statements:

assignment statements .(arithmetric and Boolean),
go to statements,

for statements,

read, punch, and carriage return statements,

1

2

3

4. conditional statements,
5

6. compound statements.

The notion of statement is recursive insofar as some of the constituents
of for statements, conditional statements, and compound statements are
themselves statements. ‘

Any statement may be preceded by one or several labels, each
followed by a colon. A statement together with its labels is again o
statement of the same type. For example, a conditional statement
preceded by a label is still a conditional statement.

A conditional statement enclosed in the statement parentheses
begin and end is no longer a conditional- statement. The first symbol
of an unlabeled conditional statement is always if.

There are only two more types of statements .in addition to those
discussed so far, namely, procedure statements and blocks. They are

discussed in subsequent sections.
Examples of ALGOL Programs

1. The reader is referred to the example given on p 3.

'2. Multiplication of a matrix A by a matrix B to form a matrix C:
for i := 1 step 1 until » do
for k := 1 step 1 until » do

begin S :=0; -

labeled statements

conditional statement

enclosed in begin end

blocks and procedute »,
statements; see p 20

and 28

¢

.

17

for j := 1 step 1 until n do
S:=S+ Al j1xBlj, k1 ;
Cli, k) :=$
end ;

3. Sorting a one-dimensional array of numbers N[1], N[2], ... , N[&]
according to size by successive interchanges. :

Note: This method is slow if £ is large. SorfAing methods for |drge

arrays are considered in later parts of this report, ofter the discussion

of procedures:
fori ;=1 step 1 until £~ 1 until k-1 do
if N[+ .1] < N[i] then
forj:=i+1,j—1 while N[; ~ 1] > N[/] ,\,";é 1 do

begin b :=n[j - 1] ;-
NG =10 =N
N[jl := b

end ;

It may be of interest to write the last loop in this program in a form not

containing for statements:

jr=i+1; .
h:=Nj-11; Nlj = 1] :=N[j]; N[[] := b
L:jw=7-1;

if N[j -1 >NI[j1 Aj#1 then
begin b := N[; — 1]; N[j = 1] := N[j1; N[jl = b iﬂ
go to L l

end ;

Recursive Definition of ALGOL Concepts

The concepts of ALGOL 60 are defined recursively: A concept C,
which is used as a constituent in defining C, may itself require C, as
one of its defining constituents. Examples of this are the two eoncepis
subscripted variable and expression. An expression is formed according
to the usual rules of arithmetic from numbers and simple and subscripted
variables. A subscripted variable, on the other hand, may be formed by
means of arithmetic expressions in the subscript positions; see the

examples on p 6. Other examples are the concepts statement.and

18

conditional statement: To form a conditional statement requires that
one or more statements be formed first. On the other hand, since a
conditional statement is a statement, these constituent statements may
themselves be conditional.)

This -recursive definition causes some trouble in describing the
language and in understanding a description of the language. Thus, in
the present dgscripfion, we introduce the concept of conditional state-
ment. on p 10, using the notion of statement only in so far as it has
already been explained. Up to this point, the only statements which
may be vused to construct a conditional ‘statement are arithmetic or
Boolean assignment statements and condirionul siuleiments. Later we
add rules for constructing statements, and without explicitly mentioning
it we imply.that the expanded notion of statement may be used in all
those construction rules which were previously given. |In order to get a

clear picture of these ‘recursively defined structures, one should read

the construction rules several times--forward .and .backward, forming-

examples of these structures and using these -examples. in forming other .

structures according.to the construction:rules. .
This recursive definition of the ALGOL . concepts accounts- for

much of the thought required for building a translator: From a given

structure one has to find the rules according to which it is constructed.. .
In defining the ALGOL: language :there iis- only - one:thing which -.
must be clearly defined, and.that is the -concept. of program; that s, .

which construction rules lead to ALGOL programs, and what -is the -

meaning of the program. All the other concepts, such as expressions,
are auxiliary, and the language might well be defined by using some
other auxiliary concepts. In this presentation we use muny of the
auxiliary concepts introduced in the ALGOL 60 report. Some of the
concepts which we do not find of sufficient significance (such as
basic statement, compound tail, Boolean factor, simple Boolean) are
not explained or used. Some of the auxiliary concepts are used without
explanation, if their meaning is sufficiently clear from ordinary grammur
(e.g., unlabeled statement). '

Peculiaritics

1. Multiple Assignment Statement. — This type of statement may be

illustrated by examples:

a:=bi=c:=d+emeansc:=d+e;
b:=c;

aw=5b

LY

[

multiple assignment

statement

Y

19

alil =i :=2means j:=1i ;-
i:=2;

Caljl =2

The “‘sneaky'’ point in this last example lies in the fact that the
variable al7] is determined by the value which i had before the execu-
tion of the assignment statement {see the ALGOL 60 report (2),
Sec 4.2].

2. Conditional Expressions. — Example:
if e bthen 3 clse 4

The value of this expression is 3 if a = b; otherwise the value will be
4. Conditional expressions, if used as operands of other expressions,

must be enclosed in parentheses:
a+ (ifaebthen 3 else 4) + 6
I'he following construction is possible:

alif x = y then 3 else 2, if x <y then 2 else 3]

3. Designational Expressions. — These are treated in connection
with switches; see p 26. See also the ALGOL 60 report, Sec 3.5.

4. Dynamic Interpretation of Expressions in For List Elements. —
The expressions appearing in a for clause may contain the loop vari-
able, or other variables, the value of which is changed in the statement
governed by the clause. Whenever the evaluation of such an expression
is called for in the execution of the for statement, the present values
of these variables will be used for the evaluation. This means that in

general these expressions must be evaluated each time the statement

. governed by a for list element is executed. If the value of these ex-

pressions remains constant during execution of the for statement, their
values need be computed only once. It is not easy for u translatoer to

determine in which category a for statement belongs. The programmer

can “‘help’’ the translator in producing an efficient machine program by
using single variables or constants in for list elements where this is

possible.
Example 1:
for i := 1 step 1 until sin (pi x @) do B[7] :=0;
Optimized version: |
n = sin {pi x a) ;

for i := 1 .step 1 until 2 do 5[] := 0 ;

conditional expression

designational expres- i+

sion

expressions in for list

elements

20

Example 2:
for i ;=1 step 2 x 7 until 101 do &[i] :=0;

No optimization is possible here because the expression 2 x i changes
its value during the execution of the for statement. It should be noted

that this ‘‘optimization"’

is ‘'‘translator dependent.” In example 1,
most translators will produce a better machine program from the second
or optimized version of the computing process. Very efficient trans-

lators might give better programs from the first version.

5. Value of Loop Variable on Exit from. For Statement. — The
execution of a for statement may be terminuted in two ways: (a) ex-
haustion of the for list; (b) execution, inside the for statement, of a go
to statement leading out of the for statement. In case () the value of
the loop variable is not defined. In case (&) it is defined to be the
value of the loop variable at the time of execution of the go to

statement.

6. Go To ‘Statement-Leading into a For Statement. — Such a go to:-

statement is illegitimate.

DECLARATIONS AND-BLOCKS. .

Type and .Array. Declarations. .

For every simple variable which appears in an ALGOL program

there must be a type declaration, and for every array there must be an

array declaration. A type declaration determines the range of values.

which a variable may assume. There are the three types: real, integer,

and boolean.

A boolean variable may assume only the values true and false. An
integer variable may assume those integer values which are represent-
able in a particular machine (ALGOL does not attempt a standardization
in this respect). A real variable may assume every real value repre-
sentable in a particular machine (ALGOL does not attempt a standardi-
zation, but it is tacitly understood in all ALGOL programs written so
far that the numbers are represented in floating-point form, with a

~decimal exponent range of about ~50 to +50 or an equivalent binary
exponent .range).. A type declaration has one of the following three

forms:

value of loop variable b0

go to’'into for statement

types

vl

21

boolean V,, V,, ...,V

nt

integer V,,V,,...,V

nt

real Vi, Vy, o,V

nt

It is permissible to mix variables or numbers of types integer and
real in arithmetic expressions. The result of a ‘mixed operation is of
type real. The result of a division of two integers is of type real. The
integer division operation +, however, is only defined if a and b are of
type integers. If a/b is positive, then @ * b = entier (a/b). Otherwise
a* b =—entier (~a/b). Thus .

atb=(-a)* (=) ==(a* (=8) == ((~a) + B).

It is not permissible to use a Boolean variable or constantas an operand
of an arithmetic operation. No number, real or integer, is ussvciated

with the truth values true and false. Conversely, no truth value is

associated with numbers.

The assignment of a noninteger value to an integer variable is always

understood in the sense of proper round-off; that is, the value assigned to the

integer variable will be the integer closest to the noninteger value. If a is of-

type integer the following pairs of statements are equivalent:

a:= 1.4 and a:= 1

2

a= 15 and a

a= 1.7 and a= 2
a:=-=1.1 and a = =1

a=-1.5 and a:=~1

(Note: There is a'slight distinction between an integer number of type real and

an integer number of type integer with respect to the operation ¥, The operation.

a + b is not defined if one of the variables a or b is of type real, even if the
values of a and b are both integer at the time when the operation a + b is to be
executed.)

The type of numbers is inherent in the string of characters by which they
are represented. Every number made up from the symbols +, -, 0, 1, ..., 9 is
of type integer. Every other number is of type real, although its value may be
integer, for example, the numbers 3.0 and 0.4 101. The reader is referred to the
examples and counterexamples for numbers in Table 1. The distinction between
numbers of type integer and type real matters only in connection with the

operation ~. Otherwise it is immaterial.

The assiynment of & truth value to an arithmetic variable or the
assignment of an arithmetic value to a Boolean variable is not defined.

An array declaration gives bounds for the values which the sub-

" scripts of an array may assume. In addition, the type of the array may

mixed expressions

integer division

no Booleon values in
uilihmerie operations,.

and conversely

mixed assignment

statements

subscript bounds in

array declarations

pa

N <

e
A

22

be given in an array declaration. If no type is given, the array is
understood to be real. (Note: No suchdeclaration is implied for simple
variables; their type must be declared.) All elements of an array are of
the same type. The following examples make the structure of array

declarations sufficiently clear.

array a, b[1 : 10], ¢, 4, {1 : 14, 6 : 91, f[-1:+2];

This declaration means: The arrays @ and b are one-dimensional arrays,
and the subscript ranges between 1 and 10. The arrays c, d, e are two-
dimensional arrays, with the first subscript ranging from 1 to 14 and

the second from 6 to 9, etc. All these arrays are reul.

The lower bound for a subscript must be written before the upper.
'Thus array al4 : 1] is not a valid array declaration. References to a
subscripted variable outside the range of the subscript bounds are
invalid. A program with the given array declaration which uses the
subscripted variables 4[0] or c[-1, 18] would be incorrect. Other

examples for array declarations are:
integer array {1 : 14] ; -
real array g[1:14,8:9,-3:~11, 5, f/{1: 2]

A program may be constructed from one or several blocks. A block
is, roughly speaking, a compound statement that contains declarations
about the variables which are *‘local” to the block. Such local vari-
ables must not be used by a statement not contained in the block. The
declarations for a block have to follow immediately the begin which
indicates the beginning for the block; the statements, of which the
block is composed, follow the declarations, and the block is terminated
by the end which matches the block-begin.

A block is also considered to be a statement, and thus may be a
constituent statement of another block.

~ Two blocks B, and B, may be related to each other in three

different ways:

1. B, is a subblock of B,,
2. B, is a subblock of B,,
3. B, and B, are independent blocks.

For case 1 to be true, B, either is a constituent statement of By, or
B, is a subblock of a subblock of B,. For case 3 to be true, B, and
B, are either constituent statements of a block B, or they are sub-

blocks of different constituent statements of B.

type of.arrays

lower bound comes
first

position of declarations

local quantities

.t

23

Example:
L : begin redl 4 b, c;
M begin integer a;
N ; begin real 4, b;
end
o : begin real ¢, d;
end
end
P : begin real J4;
end

end

in the example given, the blocks labeled M, N, O, P are subblocks of
L; the blocks labeled N, O are subblocks of M. The blocks M, N, O
are independent of P, and P is independent of M, N, 0. The block N is

independent of O and vice versa.

Those statements of block . which are not contained in one of its
subblocks may refer to the variables a, b, c. The statements of block
M which are not contained in one of its subblocks may refer to the
variables @, b, c. Notice, however, that the a of block M is different
from the « of block L, whereas the variables & and c used in M are

the same as those used in L. Or to put it another way: A variable

24

which is declared in a block B, is valid for all those statements and
subblocks of B, which do not contain a declaration for a quantity with
the same name. |t is not valid in any of those blocks which are inde-
pendent of B, and, outside B,, in those blocks of which B, is a sub-
block."

There are, however, the possibilitiesv,lwh'ich are to be differentiated,
that a variable of a block B, becomes invalid because contro] is trans-
ferred to a subblock B,, where a variable with the same name is de-
clared, and that a variable becomes invalid as a result of leaving the
block B, where it is declared. In the first case, the value of the
invalid variable is retained and available after exit from B,. In the
second case, the value of the invalid variable is lost, and is not

available on re-entering B,.

There are consequently three possibilities for the ‘‘state’’ of

variables:

1. valid,
2. invalid, value defined,

3. invalid, value not defined.

Table 2 gives the state of each variable in the program on p 23 as a

function of the block.

Table 2. State of Variables as Functions of Blocks

Variable Block L Block M Block N Block 0 ‘Block P
aof block L Valid Not valid, Not velid,. Not valid, Valid
: defined defined defined
" bofblock L Valid Valid Not valid, Valid Valid
defined
c of block L Valid Valid Valid Not valid, Valid
defined
a of block M Noit valid, Valid Not valid, = Valid Not valid,
not defined defined not defined
a of block N Not valid, Not valid, Valid . Not valid, Not valid,
not defined not defined not defined not defined
b of block N Not valid, Not valid, Valid Not valid, Not valid,
not defined not defined . .not defined not defined
c of block O Not valid, Not valid, Not valid,. Valid Not valid,
. not defined not defined not defined not defined
d of block O = Not valid, Not valid, Not valid, Valid Not valid,
. not defined not defined not defined not defined

d of block P Not valid, Not valid, Not valid, ~ ' Not valid, Valid
not defined not defined not defined not défined B

i

25

A quantity which is valid in a block B but which is not declared in
B is called a global quantity in B.

Storage Allocation in a Program with Block Structure

Here is one possible and easy way to allocate storage to the vari-

ables in a program with block structure: Each variable declared is

allocated a unique storage location. In the program given above this

would amount to reserving nine different storage locations for the nine
different variables. This is wasteful, since it is possible to have

only six different locations in the following way:

Loc 1 : aof block L
Loc 2 : & of block L
Loc 3 : cof block L
Loc 4 : aof block M, and d of block P
Loc 5 : a ot block N, and ¢ of block U
Loc 6 : b of block N, and d of block O

This saving of storage space is not important in the case of simple
variables; it may be decisive in the case of arrays. An ALGOL
translator can take advantage of this possibility given by the block
structure. The block structure gives among other things most of the

features of the ‘‘Common’’ and ‘‘Equivalent’’ statements of FORTRAN.

The discussion on ‘‘valid’’ and ‘‘defined’’ quantities just given for
simple variables also applies to arrays. The rather interesting feature
here lies in the fact that the size of a local array may depend on
quantities computed outside the array. '

The subscript bounds in array declarations are arithmetic ex-
pressions. They may contain variables and procedures (see below)
which are global to the block in which the array is declared. They
must not contain variables and prt:a\qedures which are local to this
block. If one wants to make efficient use of this feature, one must
allow for ‘*dynamic storage allocation’’ of the elements of an array.
This means that storage space for the elements of an array is allotted
at execution time, more specifically, at the time when control enters

the block where the array is declared.

Local Labels

Labels are, in the same way as variables and arrays, denoted by

“free names.’” There are no explicit declarations for labels. The

global quantities

subscript expressions

for arrays

26

fact that a name denotes a label is implied by the way in which the
name is used. A name or an unsigned integer which appears immediately
in front of a statement, separated from the statement by a colon, is a
label, and such an appearance of a name may be considered as a

““label declaration.’’

There is of course only one declaration for each " label declaration
label in each block. If L is a label ‘‘declared’’ somewhere, then the

statement ‘‘go to L'’ may be called a statement ‘‘using’’ that label.

All labels declared in a block are local to the block, and in this
sense the notions of validity apply to labels in the same way as to
variables. From this statement, it follows immediately that one cannot
jump to a label inside a block by means of a go to statement which is jump inte a block not
outside the block. Also, if in block B, a label L is declared, and if permissible
B, is a subblock of B; where again L is declared, then any statement
go to L inside B, refers to the label L in B,. Any statement go to L
in B, refers to label L-in B.

A compound. statement - which- does-not: contain: any-explicit decla= - labels of compound- - -

rations is not o block, and:labels -of compound:statements which-are. -. . - Statements which.are

. not'blocks are not.
not blocks are not:“‘local”’ to that compound statement. -

local
Switches. -
Assume- that in- an- ALGOL program-one.has: to:write .a statement... . - example:forwse-of av. -
which: transfers control to. one:of five: different:labels L, 'P,~Q; Lo, Ly, .- sf”i"Ch

depending on whether a variable 7 is equal'to 1, 2, ..., 5. One can

write the statement:
ifi=1thengoto L elseifi=2thengotoP
else if i = 3 then go to D else if i =4 thengoto L,
elsegoto L. |

One can greatly simplify this statement by combining the five labels

L, P, Q, L, L, intoa switch by means of a switch declaration:
switch s :=L, P, Q,L,, Ly,

and replacing the lengthy conditional statement by:
go to s[7] .

The switch declaration in this example declares the label L to be the
first element of the switch with name s, label P to be second element

of this switch, etc. Reference to elements of a switch is made in a

27

way analogous to referencing elements of one-dimensional arrays:®

The name of a switch followed by o left bracket followed by an ex-
pression E followed by a right bracket designates the kth label of the
switch, when % is the integer closest to the value of expression E.

A designational expression is defined to be
(a) a label,

() a structure of the form S[E],

where § is the name of a switch.

Designational expressions are primarily used in go to statements
(see the example above). They may, however, also be used in defining
a switch. '

If D,, D, ..., D, are designational expressions, and 1 is an

identifier, then

switch1:=D,, D,, ..., D

n

is a switch declaration.

The statement go to I[E]] transfers control to the kth-designational
expression of switch |, when & is the integer nearest to E,. If this
designational expression is a label L, the statement 1s équivalent 1o
go to L. If it is of the form s[E,], the statement is equivalent to go to
s[Ez]; that is, it refers to the jth designational expression in the
declaration for switch s, where j is the nearest to E,. This process of
referring to other switches within a switch may be repeated an arbitrary
number of times. Such recursive switches, however, are rarely used.

It might be mentioned that one can form ‘‘conditional designational
g g]

expressions.’’ An example may suffice:
.gotoif a=05then L else if a < b then P else Q

The use of conditional designational expressions can and should be

avoided. The statement
if a= b then go to L else go to M
is better "ALGOL style’’ than the statement
go to if a=b then L else M.

A switch declaration ‘may, within a program, occur in any place in

which type and array declarations may occur. The variables and ldbels

“8switches may be considered as a kind of one-dimensional array; the
**values’’ of elements of this array are not numbers but labels. .

designotional expres-

sion

switch declaration

%

conditional designa-

tional expression

28

vsed in switch declarations must be valid in the block in which the
switch is declared. A switch declared in a block is, of course, local
to that block in the sense described above in connection with simple

variables.

PROCEDURES

General Discussion

Procedures serve, in ALGOL, the same purpose which subroutines
serve in ordinary machine coding. -

A piece of ALGOL program, which is used in several places of a
progrdim or in several programs, with possibly different parameters,
may be declared a procedure by preceding it with a procedure heading.

A procedure heading may in some simple cases have the form:

procedure I (P,, P, ... , P);

n

where | is an identifier (the ‘‘name’’ of the procedure), and P, P,, ...,
P, are identifiers, which denote the formal parameters of the procedure.

" More elaborate forms of the procedure heading are considered
below.

The piece of program associated with the name | is called a
procedure body. The procedure body is an ALGOL statement.” Normally
it is a block, since most procedures use local quantities declared in the
procedure body. The procedure heading and procedure body together
form the procedure declaration.

Execution of the procedure body is initiated by a procedure call.
A procedure call is a statement. The procedure with name | is called

by the statement:

I(AP,, AP,, ..., AP),

where AP, AP,, ..., AP_ denote actual parameters of the procedure
call.

An actual parameter may be:

1. an expression (arithmetic, Boolean, designational),
2. an identifier denoting a procedure, a switch, or an array,

3. a formal parameter, if the call appears in the body of a procedure.

Executing a procedure statement means execution of the procedure

body after the following changes have been made:

local switches

~procedure heading,

simple form

formal parameter

procedure body

procedure declaration

procedure call is a

statement

actual parameters

L3

o

29

1. The formal parameters of the procedure are replaced, in the sense
of copying, by the corresponding actual parameters of the procedure
call, after enclosing these in parentheses whenever this is syn-
tactically possible.

2. The names of local quantities are changed so that they are different
from all names appearing in the actual parameters.
An addition to this rule is necessary if some of the parameters are

cal'led by value’’ (see below).

A Simple ALGOL Program Containing a Procedure Declaration

Read in a sequence of number quadruples a, b, ¢, 4. Compute the
area of all triangles which can be formed with sides equal to any three
of a, b, c, or d, and punch these. The program uses a procedure which

computes, for three numbers x, y, z, the area a of a triangle with sides

of these lengths according to the formula @ = /s(s - x) (s — y) (s - 2),

where s = (x + y + 2)/2. The result a is punched. The program also

“ tests whether a triangle can be formed of sides with lengths x, y, z:

Line
teal q, b, ¢, d ; 1
procedure triangle area (x, y, z) ; 2.
begin real s, a; 3
s=05x(x+y+2); 4
ifs2x As2yAs2zthen ‘ 4 5
begin a := sqrt(s x (s=x) x (s~y) x (s~2)); 6
punch a 7
end 8
else punch -1 ‘9
end triangle area ; 10
L:reada, b, c, d; - N
carriage refurh‘;' . 12
triangle area (4, b, ¢) ; 13-
triangle area (a, b, d) ; 14
triangle area (a, c, d) ; B - 15
triangle area (4, ¢, d) ; S 16 .

goto L ; . 17

copy rule

for an addition to the
copy rule in case of
value parameters see

below

30

Notes on the triangle program:

1. Line 1: These are declarations concerning the variables used in
the program.

2. Line 2: The identifier following the procedure is the name of the
procedure. |ts parameters are x, y, z. Consistent replacement of all
the identifiers used as formal parameters does not affect the meaning
of the procedure or of the program in which it is declared. We could
even change x, y, z into identifiers which are equal to some identi-
fiers used elsewhere in the program; for example, we could replace
x by b. We could of course not replace x, y or z by s or a.

3. Line 3: Declarations of variables local to the procedure, that is,
local in the sense described in ‘‘Declarations and Blocks.”’

Lines 4 to 10: The statements of the procedure body."

5. Line 13: This procedure statement is equivalent to the execution
of the procedure body after substituting a, b, ¢ for x, vy, z and
after changing the local quantity a in the procedure body into some
other identifier.

The statement which results from the copying process described
above must be a valid ALGOL statement. There is no other rule or

restriction in forming the procedure body:. - For.some:difficulties:which.

may result. in .some- cases;: see- ‘‘Recursive- Procedures’’ ‘and “‘Own

Variables."”

Second Example of a Program with Procedures’

Form:
10 - B 10].0 o
Y 2,) sinj, Y, »lil,
=1 =5 =6

where the p[;j] are to be read in, and punch these three sums:
begin real «, b; integer i, j, k; array »{0:10]
procedure sum (x, y, f, m, s) 4:'
begin s :=0 ;
for m := x step 1 until ydo s :=s+{
end ;
sum (1,10, 12,4, %);
sum (5, 10, sinj, j, a);
for i := 6 step 1 until 10 do read p[i] ;
sum (6, 10, p[7], 7, b);
punch k, a, b ; |

end

procedure names are

arbitrary identifiers

®

@

31

The copying process transforms 'this program into:
begin real a, b; integer i, j, k£ ; array p[0:10] ;
begin &k :=0 ;
fori:=1step luntil 10do k:=k+iT2
end ; .
begin 2 := 0 ;
for j := 5 step 1 until 10 do @ := a + sin(j)
end ;
for i := 6 step 1 until 10 do read p[i];
begin b :=0 ;
for j := 6 step 1 until 10 do b := b + pj]
end ;
punch &, a, b ;

end

Note that the third parameter of the procedure sum is replaced by an’

expression. However, it is not the value of this expression which is

transmitted to the procedure; rather, the rule for computing an expres-

‘sion is transmitted and replaces the formal parameter. This device is

at the same time powerful for ease of expressing algorithms and
troublesome for compiler builders. Techniques to handle this situation
are discussed in some of the papers in the January 1961 issue of the

Communications of the ACM.

General Discussion, Continued

It is, of course, not the intention of the copy rule that, before
translating an ALGOL program intoc machine code, all procedure calls
are replaced by the bodies of the called procedures. The copy rule is a
simple way of telling what a procedure call means. In actual trans-
lation of a program one tries to have only one copy of the (translated)
procedure in the machine at the time of execution and transfer control
to this piece of program for each procedure call. The question of how
to do this is interesting, but it will not be discussed here. .

A procedure declaration may be placed where a type, switch, or
array decloruf.ion is permissible. A procedure is local to the block
where ‘it is declared in the sense described for simple variables. This

means that o procedure cannot be called by a statement outside the

position of procedure
declaration

local properties of
procedures

¥

R

32

block in the heading of which the procedure is declared. And it cannot
be called by a statement inside a block which contains a declaration
for a variable, array, switch, or procedure which has the same name as

the procedure in question.

It also means that one may have two procedures with the same
name in different blocks of a program (e.g., two procedures with the
name ‘‘triangle area’ which use different formulas for computing that

area).

identifiers used inside procedures are either formal parameters,
local quantities, or names of quantities defined outside the procedure.
| hese latter quantities are global to the procedure. The following

example? shows such a situation:

, Line

begin real 4, 5; , 1
procedure P(x, y, 2); 2
begin real 7, s; ‘ 3
a=x+Yy 4

end; 4 5
a:=6; p(l, 2, 3); punch a 6

end 7

The variable a appearing in the body of procedure P is:not a parameter
and not a local quantity, so it is a global quantity. After execution of
the procedure statement in line 6, the value of a will be 3. Had there
been a declaration for @ {e.g., real a) in the body of P, the value of a

after the procedure call would still be 6.

There are some cases where the interpretation of the copy rule is dubious.

Consider the following example:

Line
begin real a, b ; _ 1
procedure P(x, y) ; ' 2
begin real r; 3
a=x+y 4
end ; 5

9This *‘program’’ does not moke much sense, but it serves our purpose of .
illustrating the properties of global quantities in procedures. ’

global quantities in

procedures

(4

33

begin real a; 3
a=1; 7

P(1, 2); 8

) punch a; 9
end 10

end 11

The question here is the interpretation of the quantity a in the procedure
call of line 8. [f the copy rule is taken literally, the procedure statement in
line 8 is equivalent to

Legin real r;
a=1+2
end ;
This would of course mean that the value punched in line 9 is 3. One might
suspect, however, that all translators now under construction - except those
which actually make one copy for each procedure call — will punch the number
1 in line 9 of the program. This means that a procedure takes its global

quantities from the block where it is defined and not from the block where it is

called.)

Spccifications

A consequence of the use of the copy rule in the definition of
ALGOL procedures is that it is very difficult to translate a procedure
declaration independent of the procedure calls.!® Usually, a translating
program is guided by the declarations for the various entities occurring
in the program. There are, however, no declarations for the parameters.
Declarations for parameters are ‘‘inherited’’ from the declarations for
the actual parameters used in calling the procedure.

The following example shows a difficulty which arises from this:'!

beginreal b, ¢, d, x;
boolean 4, B ;
procedure P(p, q, 7, s, v) ;
ififpthen gelser<sthenv:=1elsev:=2;
P(A, B, c, d, x);
P(A, b, c, d, x)

end

Weor a thorough discussion of the problems involved and a possible
(though not efficient) solution, see (4).

Mpiscussed in similar form by H. Rutishauser in ALGOL-Bulletin, No. 10,
p 11, edited by Regnecentralen, Copenhagen-Valby, Denmark, 1960. .

34

According to the copy rule, the first procedure call is equivalent to:’

if if A then B else c £ dthen x ;=1 else x :=2
Using parentheses this may be written

if (ifA then B else (c X d)) then x ;=1 elsex ;=2 ;
The second procedure call is equivalent to:

if ((if A then b else c) < d) then x := 1 else x :=2
Thus, the scope of the second if in the procedure body depend; on' the
parameters. This means that it is not possible to translate the procedure
declaration for P without knowing which actual parameters are used in calls
of this procedure.

This example also suggests that one should use parentheses to
indicate the structure of conditional expressions, even though the
parentheses may not be necessary. Such redundant parentheses help in
writing, reading, and translating such expressions.

There are other, more difficult cases where a .procedure can only be

translated after examination of parameters used in calling the procedure.

Many of these problems can be overcome by:specifications. A specifi- -

cation. -gives information. about the-formal parameters - of ‘a procedure-

declaration. A specification is a specifier, followed by a list of identi-

fiers: There are the following specifiers:-

label

switch

string

real, integer, boolean -

procedure; real. procedure, ! 2 integer-procedure;!2 boolean procedure!2

array, real array, integer array, boolean array

Specifications have to be written immediately preceding the pro-
cedure body. They are separated by semicolons from the parameter
list, the procedure body, and each other. For an example of a procedure
declaration with specifications, see procedure Bessel, p 35.

A specification restricts in an almost obvious way the actual
parameters which may be substituted for a specified formal parameter.
Thus, a parameter which is specified as real may only be replaced by
arithmetic expressions. -Or a parameter which is specified as a label
may only be replaced by labels, or by a designational expression. In
the example on p 33, if the dubious parameter g is specified as boolean,

the second call of the procedure would be illegal, and the procedure P

12Conc:erning these specifiers compare p 38. .

specification .

specifiers

1]

o

35

could be easily translated in such a way that all legal procedure calls

would be executed correctly.

Value Parameters

-~

Consider the example on p 3, for computing approximations to the
values of Bessel functions. We will write this program in procedure
form, making a few changes. The parameters of the procedure are x, 7,
sum, and the procedure computes an approximation to I (x) and assigns
that value to the variable sum. We omit from the example on p 3 the
loop which computes [(x) for different values of x, and we omit the

read and punch statcments. We then get the following procedure:;

procedure Bessel (x, n, sum); real x, sum; integer n;
begin integer nfac, i, s; real denom ;
nfac :=1;
for i := 2 step 1 until n do nfac := nfac x i;
ifx=0 pn=0 then begin sum :=1; goto P end ;
L: denom := nfac ;
sum =0 ;
for s := 0 step 1 until 10 do
begin sum := sum + (x/2) | (n + 2 x s)/denom ;
denom :=denom x (s + 1) x (s + 1 + n)
end ;
P : end Bessel
A possible call of this procedure would be:

Bessel (n/(i+4xx), 4,)

According to the copy rule this is equivalent to executing the

procedure body, replacing x by n/{i + 4 x x), sum by {, and »n by 4, and

" substituting a new name for i to make it different from the i in the first

parameter of the procedure statement. _

During execution of the procedure the value of 2/(i + 4 x x) would
be computed 12 times, always resulting in the same value, since neither
n nor i changes inside the procedure. An intelligent translater could
find out that n/(i + 4 x x) need be computed only once and would
program accordingly. However, in order to simplify efficient translation,
a formal parameter may be declared a value parameter in the procedure
heading. This means that whenever such a parameter is replaced by an

expression -in a procedure call, the value of that expression is obtained

value parameters

36

and assigned to that parameter before execution of the procedure. This
formal parameter is treated as a local quantity in the procedure body,
and the name of this parameter must possibly be changed in the same

fashion as the names of the other local quantities.

A value parameter must be specified in the procedure heading. In
the example above, if x is a value parameter, the procedure heading

would look as follows:
procedure Bessel (x, n, sum) ; valve x ; real x;
The value declarations must precede all of the specifications, even the

specifications for the nonvalue parameters.

With the extended rule for execution of a procedure statement, the
statement ‘‘Bessel (n/(i + 4 x x), 4, {)"" is equivalent to the following

block:

Notes.

begin-integer.nfac, istar,s;. .. - xstar and- istar.are-the names.: : .

substituted for. x and.i" -
real denom,: xstar;

xstar :=n/ (i + 4.%x x).; assignment of the value-to the -

value declared parameter
nfac =1 ; .

for-istar ;=2 step l.until 4:do - n is replaced:by 4 -
nfac = nfac:x istar.;.
if xstar=0 5 4 =0 then -

begin f:=1; goto P end; sum is replaced by |

ete.

P

end

 The reasoning given above for introduction of value parameters seemed

to imply that it affects only the efficiency of the procedure statements.

execution of a proce-
dure with value

parameters

value parameters must

be specified

value part first, then

specifications

addition of value part
changes the meaning
of a procedure

I

37

But consider the example:
procedure 4 (x, y) ;

begin

end

The procedure call A (a + b, 3) is invalid because it would involve

execution of the ‘‘statements’’:

a+b:

3:=...

If one adds the value part, as follows:
procedure A (x, y) ; value x, y ; real x, y;

begin

end , e

the above-mentioned procedure call will be executed as:

begin real x, y ;

X

a+b;y:=3

s

end ;

This is a valid ALGOL statement, and thus the procedure call is valid.
The addition of the valve declaration thus affects the class of actual

parameters which may be substituted for a formal parameter.

Functions

Let it be required to compute the expression

-

5
E = E ak.lbk(k'x)" '
k=1 .

38

where the a, are stored in an array. By using the procedure Bessel, E

can be computed by the following piece of program:
E:=0;
for k := 1 step 1 until 5 do
begin Bessel (k x x, k, [) ;-
‘ i=E + [x alk]
end

It is desirable to use the ‘‘result’’ f of the procedure Bessel immediately

in an arithmetic expression. For this purpose, functions have been

introduced as a special kind of procedure, namely, those with one

“resulf."

particularly interesting ,
In the declorqiion of a procedure which is a function, this “‘result”’
is denoted by a variable which has the same name as.the procedure.
The type of this variable must be declared by placing the type immedi-
ately in front of the word procedure. As an example we will write
procedure Bessel as a function. We use the name Besselfunction for
this procedure in order to distinguish it from the procedure Bessel on
p 35:
real procedure Besselfunction (x, n);
value x, n; integer n; real x;.
begin integer nfac, i, s; real denom, b;
nfac :=1;
for i := 2 step 1 until-# do nfac := nfac x i;
if x=0 p7n=0then begin b :=1; go to P end;
L : denom := nfac; b:=0;
for s := 0 step 1 until 10 do
begin b := b + (x/2) | (n + 2 x s)/denom;
denom 1= dem:;m x(s+ 1) x (s-+ 1+2)
end;
P : Besselfunction := b

end

In the body of the real procetjure Bes&el/uﬁction the name Bessel-
function is used to designdte the result. Note that *‘Besselfunction’
is not a local variable of the procedure body. There is no declaration
for such a variable. Also, the res;'ulf may n_ofibe used in an arithmetic

expression inside the procedure. This is necessary if one woants to

functions

declaration of

functions

type of results of

functions

-t

the name of a function
and the name of its
result are identical

tresult may not be

used in expressions

inside procedure

39

avoid confusion with recursive procedures; see p 40. This restriction .

accounts for a minor deviation of the procedure Besselfunction from the
procedure Bessel: The quantity sum of the latter procedure is replaced
by the quantities b or Besselfunction, because we no longer can use
the same name for an intermediate quantity and for the result.

With this procedure Besselfunction the computation of the sum

5
L o 1ylkex)
k=

can be described in the felloewing way:
=0;
for £ := 1 step 1 until 5 do E := E + Besselfunction (k x x, k) ;

In general, a procedure which is a function is called by writing its name
in an expression and placing after the name a list of parameters enclosed
in parentheses. Some difficulties arise if a function changes the values
of global parameters, and the exact interpretation of this case was the
subject of much discussion since the appearance of the ALGOL 60
report. Since this difficulty, however, arises only in very rare cases
and can always be avoided by simple means, we will not discuss this
topic.

For an example of Boolean functions see p 44,

Procedures in Machine Code

Certain operations or algorithms cannot be expressed efficiently in
ALGOL. In this class belongs manipulation of quantities which occupy
only a few bits of a computer word, or the double length accummulation
of a sum of products. Procedures to handle such computations can be
written in machine code. ALGOL does not specify anything about the
form in which such machine code procedures should be written. How-
ever, it is part of ALGOL that machine code procedures can be called
by an ALGOL procedure statement, with no restriction on the type of
parameters used in the procedure call. Therefore the writing of a
machine code procedure must take into account the way in which an
ALGOL proccdurc statement is translated.

“Another area of application of machine code procedures is manipu-

lation of auxiliary equipment such as drums, files, tapes, etc. Input

and output of information can be incorporated in an ALGOL translator

by means of machine code procedures.

call of functions

Boolean function,

see p 44

machine code in

ALGOL programs

40

Recursive Procedures

A procedure P which calls, in its body, itself, or which calls another
procedure P, which calls P, is said to be a recursive procedure. Con-

sider the following example:

real procedure factorial (n);

if n =1 then factorial := 1 else factorial = n X factorial (n=1);

This is a recursive procedure, because the execution of this procedure,
for example, in case n = 2 requires the execution of this same procedure
for » = 1. It is not a very good program for the computation of the
factorial, since it requires n procedure calls. Even on computers with
fast subroutine jump facilities, it will probably use more time for jumps
to the subroutine and back than it does for the actual computation. |he

factorial should be programmed with a loop such as:
real procedure factorial (n) ; value n ; integer n ;
begin integer i, {;
fi=14
fori ;=1 step-l:until n:do f 1= fx iy
factorial :=f
end ;

The last program performs: an .‘iterative’’ computation of the factorial,.

as.contrasted -with .the *‘recursive’’ computation-given: before:- -A large..-

part of.: many - programming-- efforts . consists .-in‘ reducing-:recursive:

processes-. to:.iterative - processes.. : .In. some:.areas; . however, - this. re=

duction -is either not possible or very cumbersome, and in such cases
recursive procedures should be used. One area for the application of

recursive procedures is translator construction (5).

Recursive Procedures and Copy Rule

The copy rule (p 29) allows us to eliminate procedure declarations and
procedure calls from a program by actually replacing each procedure call by
the body of the called procedure, with the changes required by the copy rule.
Although, as has been pointed out before, it is not desirable to actually make
this copy in a translator, the copy rule is a simple way of describing the
meaning of a procedure call. Evidently the copy rule does not work for recursive
procedures: Every copy produced would call for another copy, and the copying
would go on indefinitely.

The copy rule can be modified in such a way that a copy of the called
procedure is produced only after a call of the procedure has been encountered.
This interpretation of the copy rule still leaves the following question, which
is not answered by the ALGOL 60 report: Will the names of local quantities
be changed in the same way in the different copies of a single procedure, or

g

n

4]

will these changes be made independently. In the first case, every level of a
recursive procedure acts on the same set of local quantities. In the second
case, every level has its own local quantities, At present the second inter-
pretation seems to be most commonly accepted. |t seems that in those cases
where recursive proéedures are really important both kinds of quanﬁties' are
desirable. Most translators presently under construction will not handle

‘recursive procedures, so that the question raised above is at present not of

great practical importance.

.

Own Variables

The value of a variable is lost after exit from the block in which
this variable is declared. There are some cases where this is unde-
sirable, and ALGOL provides for a special class of local variables, the
so-called own variables, which retain their :identity throughout the

program. A simple variable or an array is declared own by preceding

‘the corresponding declaration with the symbol own. Example:

own real x, v ;

own integer array a[1:10] , 5, c[4: 17);

For a precise interpretation of these declarations, consider the

following example:

n:=15;
R : goto L ; .

L : begin real x ; own real y; .

array 21 : n) ; own real array 5[1 : 2] ;

M : begin integer a, b ;
array x, y[1:5];

end ;

if n=15then n := 20 else n.:= 15;

P : goto L ;

the beha;fior of the

own variablos and .

arrays

. oSy
own variable y and < ¥

the own array b of .
this block will be
discussed below

42

During execution of this program, storage space is reserved for the
variable y of the block labeled L. Outside block L no reference can be
made to this variable. |n the block labeled M the identifier y is used to
denote an array. This use of y does not, of course, interfere with the
variable y of block L. When block L is left in the normal way, that is,
after executing the statements ‘‘y := 6 ; x := 4,"" the value of the
variable y will still be 6 on re-entry to the block. The value of x,
which is not own, will be lost after block L is left, and the value of x
is undefined after re-entry to block L. The location of x could, for
instance, be used by the variable a of block M.)

If the block L is entered from the statement labeled R, the value of
n is I5. Un the first éntry to block L, locarlons for «[1] tu «[15] und
b[1] to b[15] will be reserved. On re-entry to L from statement P, »
will be.20. At this stage, locations are still reserved for 5[1] to £[15]

(not necessarily the same ones as on the previous exit), and these

locations contain the values which 5[1] to b[iS] had on the previous.
exit. Before the first statement of block L is executed, locations for
al1l to al20} and 5116] to.5[20] will be reserved: - The values of these -
variables are, of course, not defined. Before the.next entry to block L-

from -statement -R, the value of n will be-reset to-15. Aftér entry to -

block L and before execution of the first statement of this block,

storage reservation for array-b will be restricted to-5[1] to 5{15]. -The-

values of 5[16] to 5[20] will be lost. They will not be recovered-after

the next-entry to block L, even if n is reset to-20.

A local varieble must appear. on the left side of an assignment -.

statement or in a read statement before its value can be used in an
arithmetic expression. This is also true for own variables of a block
when the block is executed for the first time. On subsequent entries to
the block the assignment of a value to an own variable may be by-
passed. As a matter of fact, if the assignment of a value to an own
variable is not sometimes bypassed there is no sense in making the
variable own, because its value, although available at the beginning

of a block, will be recomputed before it is used.

Own Variables in Procedures

If the block which constitutes a procedure body contains own variables, the
question mentioned under recursive procedures, p 40, comes up again: Are the
changes of names for own quantities which are made in- the different copies
corresponding to different procedure calls identical, or are they made inde-
pendently? In case of independent changes, each procedure call would have
its own “‘own variables’ which are not affected by other calls of the same

own variables in

procedures

)

.

%

43

procedure. |In the other case, all calls of the same procedure act on the same
set of own variables. It should be noted that own variables are very awkward
to use, and are very awkward to handle by a translator when the first inter~
pretation is made.

The question of identical vs independent changes does not arise in case of
local, nonown quantities in nonrecursive procedures. Their values are not
defined after exit from the procedure, so that there can be no relation between
the local quantities used in different procedure calls,

Special Parameter Delimiters

EXAMPLES OF ALGOL PROCEDURES

In the remainder of this report we will give some ALGOL procedures
for internal sorting. It is sometimes contended that ALGOL, though it
may be adequate for expressing procedures which are mainly numerical,
is unsuited for nonnumerical algorithms such as sorting. We chose our
examples from the general area of sorting in order to show that these

"*logical,” ruller than numetical, procedures can be adequately ex-

pressed in ALGOL.

Program for Binary Search

The following procedure assumes that the elements of an array a are
arranged in descending order, that is, A1} > a{2] > af3], Given a

number & and a subscript / such that
alll 2 &> afl]
the program determines in [log, /] comparisons a subscript p for which

alpl 26> alp +1] or alpl=b=alp+1].

procedure binary search (a, b, 1, p) ; value I, b ; integer I, p ;

real b ; real array a ;

begin integer p1 ;

p:=1;
test for end : ifl—-p=1thengoto M;
‘ pli=(l+p)*2;

if a[pl] < b then I := pl else p :=p1 ;

go to test for end ;
M:
end ;

By using.a for statement with an ‘“E while B'' element, this procedure .

can be expressed a little more elegantly, though perhaps this is not so

for special parameter
delimiters, see p 48

44

easily understood by a reader not familiar with this type of for statement:
pi=1;
for pl := (I +p) +2 whileI-p #1 do
begin if a[p1] < b then ! := p1 else p := pl end ;

The Binary Search Program with a Boolean Function as a Parameter

The binary search procedure above works only if the elements a[1],
"al2], ... are arranged in descending order. |f one needs, as part of a
larger algorithm, the binary search for some sequences which are ordered
in ascending order and for others which are ordered in descending order,
there are two possibilities: Either one writes the search procedure
twice, one for ascending and one for descending seq:uences, or one
writes a sedrch procedure with a ‘‘variable’’ order relation, which be-
comes a parameter of the procedure. |In this particularly simple case, it
_is probably best to take the first approach because it avoids the time-
consuming . transmittal of a parameter procedure at a relatively low
penalty in storage space (for storing two search procedures). In large
procedures it might be worth while to introduce another parameter in
order to avoid duplication of instructions. We will show the use of a

Boolean function in the case of the binary search procedure:

procedure binary search with variable order relation (a, b, I, p, R) ;
value /, b; integer I, p; real b; real array a;

boolean procedure R ;

begin integer p1 ;
pi:=1; _

test for end: ifl—p=1thengoto M;

pli={+p)*2;
if R(alpll, b) then p :=pl else l:=p1;
go to test for end ; ’ '

M:

end ;

The following procedures are examples for Boolean procedures which
represent order relations and thus are permissible parameters in the
5th position of the procedure binary search with variable order

relation:

45

boolean procedure geq (a, b) ;
geq:=axb;

booleu;a procedure leg (a, b) ;
leg:=agb;

boolean procedure abscomp (a, b) ;

abscomp :=abs(a) > abs (b) ;

boolean procedure indirectcomp (a, b) ;

indirectcomp :=D{a, 1] > D[, 1]

The last procedure must be defined inside a block where array D is
valid; D is a global quantity for this procedure. The comparison of two
numbers @ and b is here based on the comparison of the first elements,

3 in row @ and row b of a matrix D.

A Procedure for Merging Twe .Sequences of Numbers Arranged in As-
cending Order

The procedure assumes that the numbers a(f1], alf1 + 1], ...,
alf2] are arranged in ascending order, and that the numbers algl],
algl + 11, ..., alg2] are arranged in ascending order. The procedure
merges these two sequences into locations a{b1], a[p1 + 1], ... :

procedure merge (a, /1, /2, g1, g2, b1) ; value f1, /2, g1, g2, b1 ;
array «; integer f1, f2, g1, g2, b1 ;

. begin integer f,8.b;

comment {, g, and b are ‘‘pointers’’ in the three sequences

of elements in the array a ;
f=f1;g:=81;b:=h1;
Q : iff>f2prg>g2thengotoP;
if / > /2 then
M beginalh] :=algl; h:=h+1;,g:=g+1;g0ot0 Q
end ;

if g > g2 then
N : begin a(b] :=alf];f:=f+1;h:=h+1;goto 0

end ;

ifalf] < alg] then go to N else go to M ;

end ;

46

Efficiency of the Merge Procedure

Strictly speaking, one cannot judge the efficiency of an ALGOL
program unless there is a translator. An ALGOL program which appears
to be poor may turn out to be almost optimum .if translated by a good
translator; and a good ALGOL program may turn out to be very bad if

translated by a poor translator. This means, of course, that the

““machine independence’” of ALGOL has .its limitations as soon as

efficiency of the intricate kind discussed below becomes important.
One may, however, judge the q'ualify of an ALGOL program under the
assumption that it is translated by a ‘‘simple-minded’’ translator, that
is, a translator which follows the instructions of an ALGOL program
very closely without looking for possible savings in instructions. " Such
a simple-minded translator would produce a program for the procedure
merge which contains some inefficiencies. The program will make,
for example, the comparisons f > f2 and g > g2 twice, and for such a

translator the following program would be better:
=11, g:=gl;h=h1;

Q : if f > /2 then begin-if g > g2 then go to P else go-to- M - -

end ;

if g>g2 then.-.

N.: begin.alb] :=-alf]; f:=7 +1 ; go.to<R:énd..

else-if-alfl.< algl thenigoito:N-else goto-M:; = -~ -

M: albl:=algl, g=g+1;

R: hbh:=b+1;gote Q;
P :
end
This program will still lead to 'ineffic.iencies, because for each com-

parison between elements alf] and a[g] which is made, it requires:

1. computation of the addresses of alf] and alg],
getting these elements from memory to the arithmetic unit,

3. computation again, after the comparison, of the addresses of a[f] or
alg] for use in statements N or M, and finally transmittal of the
smaller element to its proper place a(b).

47

The following program avoids some of the inefficiencies:

fi=f1; gi=g1; b:=hl; G:=algl; F:=alfl;
g : if/> /2 then
for i := 0 step 1 until g2 -~ g do albh +] := alg +]
else if g > g2 then . _ o
fori:=0 step 1 until /2 —fdo alb + i) := alf+]
else begin if G < f then
begin a[4] i=G; gi=g+1;G:=algl; h:=h+1end
else begin alhl :=F; f:=f+1; Fi=alf]; b:=h+1 end

go to Q
end;

The last program is about as good as ane Fan get in “‘nptimizing’’ an
ALGOL formulation for this computation process. Such things as

register assignment in the arithmetic unit, of course, lie beyond the

‘scope of ALGOL, and for some time to come the optimum use of special

registers will be beyond the scope of translators.

"A Procedure for Sorting a Set of Numbers

The elements to be sorted are stored in alf], alf + 11, ...,
alf + n = 1]. The sorting is done according to the now classical

procedure by von Neumann and Goldstine (6). Sequences of ordered

. numbers of length 1, 2, 4, ... are merged to create ordered sequences

of twice this size. After, at most, [log, 7] sweeps, the original set is
sorted. The procedure uses n auxiliary storage locations, namely
alaux], alaux + 11, ... , where aux is one of the parameters of the
procedure. At the end of the program the ordered sequence is stored in
either alf] and the following locations, or in alaux] and the following
locations, depending on whether [Iogz.n] is even or odd. The Boolean
variable E contains the value true in the first case and the value false
in the second case. The procedure sort by merge uses procedure

Min(a, b), which is assumed to be declared somewhere else:

procedure sort by merge (a, [, aux, n, E) ;

array a ; integer [, aux, n ; boolean E ;

48

begin integeral, a2,!,j7, b ;

comment

al = { and a2 = aux if the merge works from the original loca-
tions to the auxiliary locations

al = aux and a2 = { if the merge works from the auxiliary loca-
tions to the original locations

. 1 is the length of the ordered sequences

j counts through the set of ordered sequences;
comment
the actual program starts here. Note how short it is;
l:=1; al ;={; a2 := aux;

@ : forj:=0step2 x/until n—1do

merge (a, al +j,al +Min(n=1,j+1-1),al +j+1,
al +Min{n-=1,j+2%x1-1),1+a2);

l=2x1,;
if I <n then begin b :=al;al :=a2 ;a2 :=bgotoQend;
P : ifal #{ then.E := false else E.:= trve .

end ;

Use of Special Parameter Delimiters

The program sort by merge-given above: is straightforward and can be: .
easily understood if one. knows the ‘meaning.of procedure. merge, which. -

is called by the procedure sort by merge. . The trouble. in .understanding .-

‘ the call of procedure merge lies in its many parameters, the meaning of
which has to be retrieved from the description of procedure merge.
Although the reader of a program cannot be relieved of the task of
looking into the description of the procedures which are used in this
program, he may be given some help by the use of ‘‘special parameter
delimiters.”’ A special parameter delimiter is a string ‘beginning with a
closing parenthesis, followed by a string of letters, a colon, and an

opening parenthesis. Examples of a parameter delimiter are:

)} this is a parameter delimiter : (

)} the next parameter must be a positive integer : (

All such special parameter delimiters are equivalent, and they are
equivalent to a comma. They may be used to separate parameters in
procedure declarations and/or in procedure calls. |f a special parameter

delimiter is used in the declaration of a procedure, the call may yet use

49

a comma, or even a special parameter delimiter with a different letter
string.
With these special parameter delimiters, the call of the merge
procedure can be made in the following more readable way:
merge (a)
" merge the elements from position : (al + ;1)
to position : (al + Min(n -1, j+1-1))
and the elements from position : (al +j +1)
to position : (@l +Min(n-1,j+2x1-=1))

into positions upwards from : (a2 +j);

comment the second set of numbers is void incasen—-1<j+!;

A Sorting Procedure Based on Uniform Distribution of the Numbers to be
Sorted

The folluwing procedure Is useful okly if the numbers to be sorted

are almost uniformly distributed between the numbers ! (= lower limit)

and u (= upper limit). The interval from ! to « is divided into I + 1
intervals of equal length. In a first ‘*sweep’’ over the elements a[i]
(i =1,2, ..., n), one determines the numbers C{j}, C[j] = number of
elements in jth interval (j =0, 1, ...,). In a second sweep, the
elements a[i] are transmitted into an auxiliary storage region in such a
way that for all j and j1, if j > j1, the elements belonging to interval j
are stored after those belonging to interval j1. If j = jl, the elements
are arranged in the original order. In a third sweep, the elements in the
different intervals are sorted.

Since the amount of work to be done per element increases in the
sort by merge process as log, n, the saving which results from this

procedure may be substantial if » is large:.

procedyre sorting by distribution counting (a, n, 1, u, 1, aux) ;

valve n, [, u, 1; integer n, I ; real u, I, real array a ;

comment the elements to be sorted are a[1], al2], ... a[n].
I + 1 is the number of intervals

1 and u are lower and upper limits for the a[i] respectively ;

begin integer array C[-2,1];

comment C[j] will be first used to store the number of .
elements in the jth interval ;

forj := 0 step 1 until I do C[;]:=0;

for i := 1 step 1 until n do

50

begin j := entier (I x (alil-1)/(u-1));
cljl=cljl+1
end ;
cl-1]:=0;

forj:=1step luntil I do C[j]:=Cljl+cCclj-1];

comment at this place C[j — 1] contains the number of
elements in intervals below j from here on
C[j - 1] will be used as a pointer for the
position of the elements in interval 7 ;

for i := 1 step 1 until » do
begin j := entier (I x (@il -1)/(u=-1))=-1;
alaux + Clfl] = ulid ;
cljl:=cljl1+1
end ;
comment at this point C[j ~ 1] cor;ntoins the position

relative to a[aux] which is occupied by the
last element in interval j ;

cl-2}:=-1;
for j :=—1 step 1 until 1 = 1 do .

sort the elements from position : (aux + C[j~11+1) .
to position : f{aux + C[j]1-1)
so that the sorted sequence appears
in positions upwards from.: (C[j =11+ 1);
end of procedure sorting: by distribution .counting -
comment this is a call of a procedure which is not de-
clared in this paper, but which could easily
be constructed from the procedure sort by
merge ; ’ '
The sorting procedures given here can be generalized, by the addi-
tion of a Boolean function as a parameter, ‘to be valid for any order

relation.

IN

2

31

CHECKLIST OF IMPORTANT ALGOL CONCEPTS -

actual parameter
ALGOL strings
ALGOL structure
arithmetic assignment
statement

arithmetic comparison
arithimetic expression
array declaration

Boolcan assignment
statement

Boolean expression
comment, text
compound statement
conditional expression
conditional statement
designational expression
dummy statement

for list element

for statement

formal parameter
functions

global

go to statement

identifier

_input output

page

28
15

21
10

14
1V
19
10
27
13
12
n
28
38
25
16

13

label

local
machine code
“metavariables’’ E, S, V
number

own

procedure body

procedure call,
procedure statement

procedure heading,
simple form
recursive procedure
simple variable
special functions
specifications
specifier
statement
statement parentheses
string quotes
subscripted variable
switch
switch declaration
syntactic skeleton
type declaration

value parameter

page

16

<22
39

41
28
28

28

40

34
34
8,16
10
15

26
27

20

35

e

52

ACKNOWLEDGMENT

Tom Sobasky prepared notes from my talks about ALGOL 60 at the
1960 summer session on ‘‘Advances in Programming and Artificial
Intelligence,’’ Chapel Hill, North Carolina. An earlier version of this
report was published in the proceedings of this summer session. A. A.
Grau and L. L. Bumgarner helped in preparing this first version.by
making valuable comments and corrections. The present version
incorporates further suggestions and corrections by W. Bérsch-Supan,
A. S. Householder, F.L. Baver, K. Samelson, and W. R. Busing. | wish

to thank all of these gentlemen.

LITERATURE CITED

(1) A. J. Perlis and K. Samelson, "‘Preliminary Report ~ |nternational
Algebraic Language,’’ Communications of the ACM 1(12), 8-22
(1959).

(2) P. Naur '(.ed.), “‘Report on the Algorithmic Language ALGOL 60,"’
Communications of the ACM 3, 299-314 (1960).

(3) Math. P;znel Ann. "P.rogr. Rept. Dec. 31, 1960, ORNL-3082,. pp 6-20.

(4) J. Jensen and P. Naur-, *‘An Implementation of ALGOL 60 Pro- \
cedures,’’ Nordisk Tidskrift for Information — Bebandling 1(1),
38-47 (1961):

(5) A. A. Grau, The Structure of an ALGOL Translator, ORNL-3054
(Jan. 23, 1961). .

(6) H. H. Goldstine and J. von Neumann, Planning and Coding for an
Electronic Computing Instrument, |nstitute for Advanced Study,

Princeton, N. J., 1947/48.

53

ORNL-3148
UC-32 — Mathematics dnd Computers
TID-4500 (16th ed.)

INTERNAL DISTRIBUTION

. 1. Biology Library ' 223. A A. Grau
2. Reactor Division Library ' 224, M. T. Harkrider
3-4. Central Research Library 225. A. Hollaender
5. ORNL - Y-12 Technical Library, 226-250. A.S. Householder
Document Reference Section ’ © 251, R. G. Jordan (Y-12)
6-200. Laboratory Records Department 252. W. H. Jordan
201. Laboratory Records, ORNL R. C. 253. M. T. Kelley .
202, N. B. Alexander V 254, J. A. Lane
203. D. E. Arnurius : 255, J. G. LaTorre
204. G. J. Atta 25%. M. P. Lietzke
205, S. E. Atta. ‘ 257. .T. A. Lincoln
206. S. R. Berndrd , - 258, S. C. Lind
207. N. A, Betz 259. R. S. Livingston
208. F. T. Binford ‘ ' 50." E. C. Long
209. H. M. Bottenbruch 261, M. J. Mader
.210. L. L. Bumgarner . 262, K. Z. Morgan
211, H. P. Carter - 263. J. P. Murray (K-25)
212, C. E. Center . 264. M. L. Nelson
213. E. L. Cooper ' 265. -J. J. Rayburn
214, A. H. Culkowski : : 266. ‘H. E. Seagren
215. F. L. Culler ; . . 267. E. D. Shipley
216. N. M. Dismuke . : 268. M. J. Skinner
217. A. C. Downing : : 269. A. H. Snell
218. M. B. Emmett 270. J. A. Swartout
219. M. Feliciano ‘ 271. E. H. Taylor
220. B. A. Flores : 272. D.J. Wehe
221, J. H. Frye, Jr. . 273. A. M. Weinberg
22, W. Gautschi

EXTERNAL DISTRIBUTION

274. Division of Research and Development, AEC, ORO
275-813. Given distribution as shown in TID-4500 (16th ed.) under Mathematics and Computers category

