
ORNL-3148
U G 3 2 - Mathematics and Computers

OAK RIDGE NATIONAL LABORATORY
operated by

STRUCTURE AND USE O F ALGOL 60

Hermann Bottenbruch

UNION CARBIDE CORPORATION
for the

U.S. ATOMIC E N E R G Y COMMISSION

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

This repry wss propard as .PR a l c m of @ w * ? m t sponrerd wwk, R~Whdr the U l i J ~ d Eimteb.,
nor t h s Goonunission-, ror any person octimg w bbl# at tho EahmJs8ion:
A. Maker any wwwptu w mprrga@#ioni .n,wm~d rs hnplled, with Wpc* * oaturffq)

o a a r p l e w , or ucdulnarp o#' fh, informath we~uinrrb k tkis ~ p t , or flre~ th us* ot
rrny ~ntorraation, (JppbbXLN, w#hoS, & @-=a disctJ~6-d in this repwt may not bftffiae
pvl*atrlg owned. rbhtq of

B, Atrvmes sap liabitltkrr wirh srspae ?a fh t,ae af, or b r &&ga~ xesulklng tram tkd uea of
i n f ~ q ~ e i p ~ , ; o p ~ ~ \ p , dad, P p.roaess d i o c b d in thir

An o . 4 t~ thq above, "P.rs~ -1% om "kh~if OJ the CQrnrntsstwu' iwdodcs any 0rrl$~lt9yea ar
mmwrhor plf tXa C*nihltr*im, ,or imploper of eudh rokwa@dri PJ fho .*mat &at k'd4.exnpieya
or CorWrastor of th. ~m:almitr i%, orr smpbym of $w& rontraa3M ,pntpplsS, &**OInh~t*~q Or

m i d a t socq5s 14 ovy fnf~rwiqtim pwrsamek +@ his *@loybr#nr or emboc? w f h the Cmmf?rshM1,
ei bbk,effrpkm~rt sycb rontreot&.

Contract No. W-7405eng-26

MATHEMATICS P A N E L

STRUCTURE AND USE O F ALGOL 60

Hormann Bottonbruch

DATE ISSUED

OAK RIDGE NATIONAL LABORATORY
Oak Ridge. Tennessee

operated by
UNION CARBIDE CORPORATION

for the
U. 5. ATOMIC ENERGY COMMISSION

THIS PAGE

A INTENTIONALLY

LEFT BLANK

CONTENTS

Abstract ..

Introduction ..

A Sample Program in ALGOL 60 ..

Detailed Discussion of Some Simple ALGOL Concepts

...... ... Declarations and Blocks ... : :

.. Procedures

Examples of ALGOL Procedures ..

.................................... Acknowledgment ...

............................ Literature Cited :

A B S T R A C T

ALGOL 60 i s a universal, algebraic, machine-independent programming

language. It was designed by a group representing computer societies from

many ditterent countries.. I ts primary alms are:

1. Simpl i f icat ion o f program preparation.

2. s impl i f icat ion o f program exchange.

3. Incorporation o f the important programming techniques presently known.

The A L G O L 60 language i s defined i n Communications of the ACM 3, 299-314

(1960). The present report i s an elaboration of the concepts of ALGOL 60,

mostly w i t h the help of i l lustrat ive examples. It i s intended for who are

famil iar w i t h the geieral ideas o f programming and mathematical notation.

STRUCTURE AND USE OF ALGOL 60

Hermann Bottenbruch'

I N T R O D U C T I O N

ALGOL was designed as a language to be used for the description of

computing processes i n a machine-independent way, and i n th is respect

it resembles other languages such as FORTRAN, MATHE-MATIC,

and IT. ALGOL i s an international effort, and we hope that it w i l l be-

come the main vehic le for communication of algorithms in publications

and reports. The same aims which governed the design o f the afore-

mentioned systems governed the design o f ALGOL. The fo l lowing i s

c i ted from the ALGOL 58 report (I) : ~

1) The language should be as close as possible to standard mathe-
matical notation and be readable w i th l i t t l e further explanation.

2) It should be possible t d use it fnr t h ~ r lercr ipt ion of ~ompu t ing
processes i n publications.

3) The new language should be mechanically translatable into ma-
chine programs.

However, i n ALGOL, ease of expressing a computational process and

consistency w i th exist ing mathematical notation were stressed more

than i n other systems, and so ALGOL i s somewhat further away from
I I thinking i n terms o f a computing machine" and closer to "thinking i n

terms famil iar t o human beings" than other systems. Th is difference

shows up more i n the elaborate parts of the language than i n the simple

parts.

The A L G O L 60 language3 i s defined i n a very precise and concise

way i n "Report on the Algorithmic Language ALGOL 60" by Peter

-Naur (editor), et al. See (2). The present paper i s an elaboration o f

the concepts defined i n th is report. It i s not a def in i t ion of the lan-

guage, because it does not g ive a l l the composition rules. It explains,

rather, the meaning and proper use of the devices provided by ALGOL

60. The main vehic le i n accomplishing th is task i s the discussion o f

i l lus t ra t ive examples. Some of the concepts, especial ly "block,"
I I procedures," " local or own quantities," are useful only i n programs

'on leave of absence from Institute f;'r Praktische Mathematik, Technische
Hochschule, Darmstadt. .

2 ~ u m h e r s in parentheses refer to the corresponding items in the bibliography.

3~~~~~ 58 (1) was a preliminary language. ALGOL 60 is the ALGOL
language, which was based on the ALGOL 58 report and discussions of i t in
the Communications of the ACM and in the ALGOL Bulletin.

which are so large that the explanation of the logic of the program

would overshadow the explanation of the language. Therefore the

examples are sometimes oversimplified so that they are not practically

useful except for the purpose of explanation, and some of the examples

are only skeletons, in that they leave out certain parts of the program,

showing only those which are pertinent to the explanation.

Although it i s the main aim of this paper to explain ALGOL as far

as wri t ing correct programs i s concerned, some effort i s made to show

how eff ic ient programs may be written. The remarks concerning storage

al locat ion in blocks (see p 25) fa l l into this category.

A SAMPLE PROGRAM IN A L G O L 60

The following program computes the expression

10

E =
S=O s! (n + s)!

Th is expression, by the way, represents the f i rs t 11 terms of the power

series expansion for the modified Bessel function of integer order .20.

Th is fact i s not important in order to understand the example. The

expression cannot be evaluated for x = n = 0, because for s = 0 we get

the undefined expression 0'. In the case x = n = 0 the program w ~ l l

g ive the result 1.

The program given below w i l l serve to give a rough impression of

the features of the language, and by comparing the program with the

formula, some of the notational peculiarities become clear. The program

i s not complete, insofar as it does not contain "declarations" (see

pp 20 ff.).

The program given i s i n no way an eff icient formulation for the

computation of this expression, and many refinements are possible by

eliminating unnecessary computational steps. Such refinements, how-

ever, would not serve our present purpose of showing some of the

features o f the language.

The program reads in four values from an input medium and assigns

these values to the variables named xO, deltax, xmux, 71. Then it

computes E for x = xO, xO + deltax, xO + 2 x deltax, . . . , xmax, and

punches x, n, and E on an output medium:

L i n e

M : read xO, deltax, xmax, n ;

x : a x 0 ;

nfac := 1 ;

for i := 2 step 1 unt i l n do nfac := nfac'x i ;

i f x = 0 n = 0 then begin sum := 1 ; go'to P end ;

L : denom := nfac ;

sum := 0 ;

for s.:= 0 step 1 unt i l 10 do

begin sum := sum + (x/2) T (n + 2 x s)/denom ;

denom := denom x (s + 1) x (s + 1 + n)
end ;

P : punch x, n, sum ;

x := x + deltax ;

i f x 2 xmax then go to L ;

go to M ;

Notes
. ,

1. The program i s a succession o f statements, which are normally

executed i n the order i n which they are written down. Some of the

. statements have labels i n front o f them (l ine 1, 6, 11) which serve as

marks and which are used i n go to statements (l ine 5, 13). Go to state-

ments interrupt the normal sequence o f execution o f the statements and

indicate the next statement to be executed.

2. The symbols M, L, P are used as names o f statements. The

symbols xO, deltax, xmax, n, x, nfac, denom, sum, s, i are used as

names of variables. These names are chosen arbitrarily, and replacing

a name consistently throughout the program by a name different from

a l l the other names used does not change the meaning o f the program.

The names are, however, somehow suggestive o f the quantit ies which

they denote. In contrast t o these free names there are certain.other

words used in the program l i ke read, step, until, go to, begin, end,

punch. These are f ixed constituents o f the language. These f ixed

words are always printed i n bold face and in the discussions below are

treated as a single symbol, such as +, -, etc.

3. The meaning o f the statement i n l ine 1 i s obvious fro,m the

description preceding the program.

4. The statements i n l ines 2, 3, 6, 7, 9, 10, 12 are assignment

statements. The value of the expression on the right side of the

symbol := i s computed and assigned to the variable at the lef t side of

that symbol. Assignment statements are also part of the conditional

statement i n l ine 5 and of the for statement i n line 4 .

5. The statement in l ine 4 i s a for statement, which has as one

o f i t s constituents another statement (nfac := nfac x i) , which i n this

particular case i s an assignment statement. This constituent statement

i s executed for certain values of the loop variable i which are obvious

from the for l ist element 2 step 1 until n. I f the upper l imi t n of th is

fnr l i s t element i s less then 2, the loop w i l l not be executed at al l .

The net result of statements 3 and 4 together w i l l be that the variable

nfac has the value n! . The phrase "for i := 2 step 1 until n do" i s

called a for clause.
I!

6. The statement in l ine 5 i s a conditionul slatement. It contains

as one o f i t s constituents another statement, which in this case is the

compound statement: begin sum :=. 1; go to P end. Execution of a

compound statement means execution of a l l the statements constituting

the compound statement. The statement is, however, only executed i f

the condit ion fol lowing the i f of the conditional statement i s true.

Otherwise the complete conditional statement i s void. The condition

i tse l f i s compounded of the two conditions x = 0 and n = 0 by means of

the Boolean operation (logical and), which means that the compounded

condit ion i s true if both the constituent conditions are true. In the

sequel, we w i l l use the word Boolean expression instead of condition.

7. The three lines 8, 9, and 10 together form a single statement

(a for statement, see note 5), where the statement governed by the for

clause i s again a compound statement, since in this case the two state-

ments in l ines 9 and 10 are to be executed for the designated values

of s .

8. (For purists and puristic critics).* ALGOL 60 does not contain

any statements for input and output. Such statements, of course, have

to be added to the language i f one wants to write any useful programs.

9. The concepts of notes 1 to 8 which ate printed in i ta l ics are, i n

addition to others, more ful ly explained i n the following sections.

'A puristic critic is somebody who crit icizes ALGOL on the fact that a
translator i s useless which fulf i l ls ALGOL to the last atom of printer's ink.

. D E T A I L E D D I S C U S S I O N O F S O M E S I M P L E A L G O L C O N C E P T S

The def in i t ion of an ALGOL concept consists of the syntactic part

and the semantic part. I n the syntactic part we describe which se-

quences of ALGOL symbols may represent the concept. In the semantic

part we describe what the meaning of th is concept is.

The ALGOL 60 report gives the syntactic part i n a very rigorous

form. We do not aim a t such rigor. One way o f "definingH a concept

which i s used in the present exposit ion i s simply to give examples of

strings which do represent a concept and of those which do not.

Although th is sometimes leaves some doubt, it i s hoped that examples

and counterexamples make the general idea suf f ic ient ly clear. C lar i f i -

cations are added in common language wherever th is i s desirable.

Even .so, some exceptional cases may not be covered by the description

qiven here, and for completeness the reader i s referred to the ALGOL 60

report. For the "normal" user of ALGOL, however, it should not be

necessary to go through the painstaking process o f disentangling the

definit ions i n the report after reading th is introduction, which stresses

the more frequent and useful concepts whi le treating the less important

features wi th less care.

As far as the "semantic part" o f the def in i t ion i s concerned, w e

have omitted it i f the meaning i s obvious from common usage.

Arithmetic Expressions and Their Constituents: Numbers, Variables,
Operations, Special Functions

Arithmetic expressions are formed i n almost the usual way, w i th .a

few notational peculiari t ies. The quantit ies. involved i n forming an

expression are numb'ers, simple or subscripted variables, and functions

(see Table 1). .

Simple variables are denoted by identifiers. .

An identif ier i s any str ing of letters and dig i ts o f any length

beginning wi th a letter. Capital and lower-case letters may.be used.

Subscripted variables are denoted by an identif ier fol lowed by a

l i s t of expressions enclosed i n brackets.

There are no restr ict ions on the .expressions used i n subscript

posit ions. Subscripted variables are defined only for integer sub-

scripts. However, even the evaluation o f a simple expression l i ke

(n)x (n .- 1)/2 may y ie ld a noninteger number due t o round-off. There-

fore the fo l lowing convention was adopted:

a r i t h m e t i c e x p r e s s i o n s

n u m b e r s

s i m p l e v a r i a b l e s

i d e n t i f i e r

. s u b s c r i p t e d v a r i a b l e s

noni,nteger subscript expressions I f the value of an expression used in a subscript position i s not an

integer, then this value i s changed to the nearest integer in the sense

of proper round-off. Thus: a[0.6] = a[1.4] = a[1.479] = a[0.5] =

a[l], n[1.5] = a[2], a [- 1.51 = a [- I]. . .

Table 1. Exomples and Counterexamples of Arithmetic Expressions and Their Constituents

Examples Counterexamples .Structure

1 2 -4.8 -0.38 0.38 3 x 4 7~ a 127. fi Numbers

-10-4a -104 104 10+5 +lo5 127.104 100.5 102.8

a 7 1 n I n') A I A:i 7~ n l l l n , 2 2" a a - I a x idontifiorc

alpha alpha1 astar p i

See identifiers Sirr~ple variables

variable;, simple
or subscripted

Arithmctic cxpressionb

a T 2 T 3 meaning (a213

a T (2 T 3) meaning a(23)

aThe symbol lohas the meaning x 10 T, for example, 104 = lo4; 0.41 10-2 = 0.41 x l o - ' = 0.0041; i t is

used in almost the same way that the letter E is used in FCRTRAN numbers.

b ~ o r an extension of the notion of expression, see "Functions," p 37. For conditional expressions, see
"Peculiarities," p 22.

The total ity of subscripted variables denoted by the same identifier i s arrays operat ions

cal led an array. See array declarations, p 21. Permissible operations

in forming arithmetic expressions are: the binary operations addition,

subtraction, multiplication, division, exponentiation, and integer div i-

sion, denoted by +, -, x , /, T, and + ; the unary bperations + and -;

and the special functions abs, sign, sqrt, sin, COS, arctan, In, exp,

'entier. The definitions of s ign and entier are given below.

The exponent part of the operation T stands on the same l ine'as the

spec ia l functions

base number and must therefore be enclosed i'n parentheses if it i s dn

expression containing an operation. See p 21 for integer division.

Precedence of operations i s understood in the usual way; that is, x,

+ , and /are "stronger" than binary plus and minus; T i s stronger than

a l l other binary operations; unary operations are stronger than binary

operations. I f precedence i s not specified by these rules, the operation

farther t o the le f t i s stronger. Examples are:

a + b x c means a + (b x c)

a + b - c means (a + b) - c

.a - b + c means (a - b) + c and not a - (b + c)

u + b T c + d m e a n s u + (b T c) + d

b T - c i s not permissible

a / b x c nieatls (c l / b) x c and not a/(b x c)

- a T b means (-a) b and not - (aT b)

Expressions which are ambiguous i n usual notation, such as the paren-

theses-free form of the last two examples, shguld be avoided by proper

placement of parentheses.

It should not be overlooked that the associative law does not hold

i n rounded-off computations. In some cases it may be important whether

the expression a - h + c i s executed as (a - b) + c or as a - (b - c),

for example, if c i s small compared wi th a and b, and a and b are almost

equal and contain almost equal errors. I f it i s important that the ex-

pression be evaluated as (a - b) + c, t h i s should be indicated by paren-

theses despite the fact that ALGOL implies th i s interpretation.

The meaning of the special functions 'apart from s ign and entier i s

obvious. T ~ Q function s ign i s defined by

The function entier (E) i s defined to give the largest integer not greater

than E. Thus entier (1) = 1, entier (- 1) = - 1, entier (- 1.1) = -2,

entier (1.1) = 1.

Arithmetic Assignment Statements

An arithmetic assignment statement i s o f the form

V : = E ,

p r e c e d e n c e of

o p e r a t i o n s

s ign a n d e n t i e r

a r i t h m e t i c a s s i g n m e n t

s t a t e m e n t '

where V stands for a variable and .E stands for an arithmetic expression.

Examples are

A statement i n general i s a rule to perform some action. The action

denoted by an arithmetic assignment statement i s (1) the computation

of the value of an expression and (2) the assignment of that value to

the variable. The "value associated with a variable" i s the last value

assigned to that variable.

The #ormula "V I- E" accompc~niecl by the q ~ ~ n l ~ f ~ ~ n ~ remarks

"where V i s a variable and E is an arithmetic expression" i s an ex-

ample of what w i l l be called a s y ~ t a c t z c skeleton. In particular,

V := E is the syntactic skeleton for an arithmetic assignment statement.

If, i n this skeleton, V is replaced by a variable and E by an arithmetic

expression, the result is a syntactically correct arithmetic assignment

statement.

The bold-face capital letters V and E.are variables5 which stand

for ALGOL structures. In general, a syntactic skeleton i s a formula

which i s made up from ALGOL symbols [except digits and (ital ic)

Iettersj and bold-face letters. In most cases such a tormula i s followed

by remarks that. ident i fy ttie structures for which the bold-face letters

stand. If one replaces each bold-face letter by any ALGOL structure

for which it stands, the result w i l l b e a n ALGOL structure of the type

designated by the skeleton. Since the structures variable, arithmetic

express ion, and statement occur so frequently in syntactic skeletons,

we introduce the following convention:

Whenever the bold-face letters V, E, or 5, with or without sub-

scripts, appear in a syntactic skeleton, they stand for the

structures variable, arithmetic expression, or statement re-

spectively.

Boolean Expressions

Boolean expressions are used to form a truth value, that is, an B o o l e a n e x p r e s s i o n

ent i ty which i s either true or false. A Boolean expression i s formed

'ln order to dist inguish these variobles from ordinary A L G O L variables,
they are sometimes ca l led "meta-variables." They never appear i n A L G O L
programs; they are only used when t;,lking about A L G O L programs. Sometimes
they a r e c a l l e d "syntactic variobles.

wi th the fol lowing quantit ies: (a) the truth values true and false,

(b) Boolean simple or subscripted variables (see "Declarations and

Blocks," p 20, ond (c) arithmetic comparisons. Each o f these quanti-
'

t i es ' designates o truth value, which i s obvious i n case (a). In case

(b) it i s the last truth value assigned to the variable (see Boolean

assignment statement). In case (c) it i s determined by the result o f

the comparison.

An arithmetic comparison i s of the form

E R E ,

where R stands for any o f the s ix relations =, #, >, 2, <, I. Some

examples are:

1 5 2 , a + b s c x (d + e - f x g) ;

1.34 2 2 x sqrt (3.12) .
T l ~ e IIUIII vulue uf cumparlsons 1 anel 3 I s always true, whereas the

truth value o f comparison 2 depends on the values o f a, b, . . . , g.

Out of these constituents, Boolean expressions can he formed

according to the rules of Boolean algebra. The permissible Boolean op-

erations are "not," "and," " inclusive or," "implies," "equivalent,"

denoted by -, , A, v, 3 , = .6 The rules of precedence are given by the

order in which the operations ore listed. Thus p v q r means

P v (4 A r), and p A rjr v r means (p A q) v I . I f precedence i s not de-

termined by parentheses and the above mentioned rules, operations are

carried out from lef t t o r ight. Thus a = b s c means (a = h) = c, which

sometimes has a truth value different from a = (h I c). A few examples

for Boolean expressions are:

x f - 2 v x = - 2 , true, -,true=false, a s b ~ c g d ~ e ,

The last expression i s equal t o

Some of the Boolean expressions given i n the example are true regard-

less of the values of the variables apptai.iiiy iil I~I~III. Tht: identif iers

6 ~ h e result of the Boolean operation "ond" i s true I f both operands are
true. The result of the Boolean operation "orgs i s true i f one of the operands
is true. The result of .the Boolean operation "implies0@ i s true either i f the
second operand i s true or i f the f i rst operand i s false. The result of the
Boolean operation "equivalent" i s true either i f both operands are true or i f
both operands are false. In the cases not mentioned the result i s false.

a r i thmet i c comparison

precedence of era-
t ions i n Boolean

e x p r e s s i o n s . '

a, b, c, d, i, x, denote real or integer variables (see "Declarations and

Blocks," p 20). The identifier e denotes a Boolean variable.

The most common form of Boolean expressions are arithmetic com-

parisons. The progrom on p 3 contains i n line 5 an expression com-

posed of the two comparisons x = 0.and n = 0. The program on p 29 con-

tains in l ine 5 a Boolean expression composed of three comparisons.

Another example i s in the merge procedure on p 45 in the l ine labeled

Q. More complicated Boolean expressions occur in programs with a

complicated structure, for example, compilers.

Boolean variables are useful for "storing" themresults of arithmetic

, comparisons in a readily accessible way.

Boolean Assignment Statements

Boolean assignment statements are denote'd by

where V is a Boolean variable and B is a Boolean expression. This

statement assigns the truth value of B to the variable V.

Conditional Statements

A condit ional statement i s denoted by

i f B then S ,

i f B then S, else S2 ,

where B is a Boolean expression and S, S1, S2 are statements. Ex-

ecution of a conditional statement of the f i rs t form means execution of

statement S i f the truth value of B i s true. otherwise the statement i s -

void. Execution of a conditional statement of the second form means

execution of S1 i f B i s true and execution of S2 if B i s talse. The

statement fol lowing the then must not be a conditional statement. The .
statement fol lowing the else may be a conditional statement, thus

al lowing constructions of the kind:

i f B1 then S1 e lse i f B2 then S2 else i f B3 then S3 ,

where S3 may again be a conditional statement.

Compound Statements

Boolean assignment
statement

conditional statement

A sequence of one or more statements, separated by semicolons, compound statement,
, begin end and enclosed in the so-called statement parentheses beginfand end i s

cal led a compound statement. A compound statement i s a lso a state-

ment, and may .therefore be a constituent o f another compound state-

ment. An example o f a compound statement is:

begin a := b ; x := y'; n := v end

Examples o f condit ional statements, each of which has a compound

statement as one of i ts constituents are:

i f a $ 2 then begin a := b ; x :=: y end else u := 0

In the f irst condit ional statement the statements a := b and

x := y are executed i f a 5 2. Otherwise the statement u := 0 i s ex-

ecuted. I n the second condit ional statement the statement a := b i s

executed i f a 6 2. Otherwise the statements x := y and u := 0 are

executed.

Use of compound statements i n condit ioi lal statements can always

be avoided by means o f go to statements and labels. For example, the

f i rs t condit ional statement above i s equivalent t o

i f a 5 2 then go t o L ;

u : = O ; g o t o M ;

L : a : = b ; x : = y ;

M : (next statement) .
Th is exp l i c i t form i s bad ALGOL style.

Loops

A loop i s a device which faci l i tates the repeated execution o f a

statement for diffcrent values of a dist inguished variable, the so-called

loop variable. A simple example of a loop is:

for i := 1 step 1 unt i l 10 do a[i] := i T 2 .
Th is loop assigns the value 1 to the variable a [l] , 4 to the variable

a[21, . . . , 100 to the variable a[101. The values which. are assigned

to the loop variable are i n general determined by so-called "for l i s t

elements" (see below). A loop i s a statement, and the ALGOL term

for th is i s for stateme7zt. A for statement has one of the two forms:

for V := FL do S . .

loop

. ,

for s t a t e m e n t

for V := FL,, FL2, . . . , FL, do S

where FL, F L 1 , . . . , FL, designate for l i s t . e l ements . A for l i s t ele-

ment has one of the three forms:

E l step E2 unt i l E3

E while 6

Each for l i s t element designates a sequence of values t o be as-

signed to the loop variable V. The f i rs t element, for example, de-

signates those elements of the sequence El, E l + El, E l + E2 + E2, . . .
which l i e between El and E3, inclusive. A loop may be expressed

equivalently by a sequence of ALGOL statements not containing loops.

The following examples make this suff iciently clear:

1. for i := a step 1 unt i l b do c [i] := d [i] i s equivalent to

7. :=a;

L : if i s b then begin c[iI := d [i] ; i := i + 1 ; go to L end

Note that the loop is void in .case b < a. In for l i s t elements
with negative step-expression t h e comparison) must use 2 in-
stead of $.

2. for i := i + 1 while n [i - 1 1 > d do ~ [i] := a t i - l I / i i s equivalent
to

L : i : = i + l ;

i f n [i - 11 > d then begin a [i] := a [i - l] / i ; go to L end

3. for i := a + b do x [i] := y[i] i s equivalent. to

i : = a + b ;

x[iI := r[iI

Loops wi th more than one for l i s t element are equivalent to a sequence

of loops with only one for l i s t element. Thus:

for V := FL,, FL2, fL3 do S i s equivalent to

for V := F L 3 do S

for l i s t elements

for statements w i t h

sever01 for l i s t

e lements

Conditional statements and for statements are both structures which may be

parts of other statements and which hare statements as their constituents. I n

order to indicate the logical dependence of these .statements, one should use

statement parentheses even where they ore not indispensable. In ' the example

on p 43, one would not need the begin and end because only one statement i s

governed by the for clause. I f this statement were part of another condi,tionol

statement the begin and end are necessary i n order to show the i f clause to

which the else belongs. Example:

p : = l ;

i f e > 2 then

f o r p l := (e+p) f 2 w h i l e e - p # 1 do

begin i f a[pl] < b then e := p l e lse p := p l end

Without the statement parentheses this program could be interpreted i n the

following way:

' P : - 1

i f e > 2 then

for p l := (e + p) i 2 whi le e - p # 1 do

begin i f a [p l] < b then e := p l end ;

else p := p l

Labels, qo tq Statements

Any identifier and any unsigned integer may serve as a label .

Labels and go to statements are described in the example, p 3, note 1.

See also " D e ~ i ~ n a t i o n a l Expression," p 27.

Dummy Statement

A dummy statement i s represented by "no symbol." A dummy state-

ment executes no operation. It may serve to lace a label. An example

i s the statement with label L in the following program to f ind the maxi-

mum of a [l l to a [n] :

imax := 1 ; M := a [l l ;

for i := 1 step 1 unt i l n do

begin i f a [i] < M then go to L .

else begin imax := i ;

M := a [i]

end ;

L : end

Input and Output of Information

There are no statements for input and output of information in the

ALGOL language. The statements described below aie used to supple-

labels , g o to s tato-

ments
. .

dummy statement

ment the language in this respect. They are, along with others, used

for input and output of information in the Oracle ALGOL Translator (3).

The statements given below constitute a bare minimum of input-output.

commands, and thus are not intended as .a proposal for general accept-

ance. Such a proposal must contain some means for format designation

and input and output of alphameric information. Some pract ical ly useful

minimal set o f statements would be desirable as a general standard.

The statement read V means: Read the next number from input

tape, convert it t o internal representation, and assign it t o the variable

V. The number read in i s supposed t o be punched in A L G O L form on

an input medium. Any A L G O L symbol not compatible w i th the structure

o f an A L G O L number terminates the number.

The ctntement read Y1 , V a l . . . , V, i s equivalent t o the sequence

o f statements:

read V, ; read V2 ; . . . ; read Vn

The statement punch E has the meaning: Compute the value of the

expression E and punch it on the output medium.

The statement

punch El, E2, . . . , En; i s equivalent t o

punch E l ; punch E2 ; . . . ; punch En

The statement carriage return act ivates the punching o f a carriage

return and l ine feed symbol (or equivalent) 'on the output medium.

For further remarks on input-output see strings, p "15, and machine

code procedures, p 39.

comment

There i s the poss ib i l i t y o f insert ing into a program comment, or

text, which does not af fect the meaning o f the program, but which helps

t o make the meaning o f a program clear t o the (human) reader. The

comment rules are:

1. The symbol comment and any character between th i s symbol and the
f i r s t semicolon after comment are text.

2. .Any character between the symbol end and the f i rs t semicolon or
end or e l se fol lowing th i s end i s text. Some examples are:

comment a + b - c i s posi t ive a t t h i s point ;

. comment i f the program ever gets t o th is point there i s a
mistake i n the input data. Do not worry ;

i f a = b then begin x := g ; y := z end. Th is i s a very ex-

ceptional case e l se x := g + 1 ;

read

p u n c h

c a r r i a g e rn turn

c o m m e n t

In the last example the symbols beginning wi th the period after the end

and ending w i th the word "case" are text.

The second comment convention i s often used to "mark" on end i n a way

which fac i l i ta tes f inding the matching begin. I n case an end terminates a loop,

one can repeat the loop var iable after the end. I f the compound statement has

a label, one can repeat the labe l o f t h i s statement after the end. I t has been

the experience o f t h i s wr i ter tha t the fo l lowing way of wr i t ing compound state-

ments d isp lays the structure o f long compound .statements more e f fec t ive ly :

Write matching begins and ends either i n the same"row or i n the same column

o f the program. Subordinate begins and ends are indented farther t o t h e right.

Strings

An ALGOL string i s either a sequence o f ALGOL symbols enclosed

in the opening and closing str ing quotes ' '; or i t i s a sequence of

ALGOL symbols and ALGOL strings enclosed i n these str ing quotes.

Examples are:

'ab 'cde' fg'

cStrings cannot be used i n ALGOL '60 proper. Strings are useful i n ,

input-output operations. With strings i n mind it would be useful t o

interpret output operations i n the fol lowing way: Whenever a str ing

appears i n an output statement at the place of an expression, t h i s

means that the elements of the str ing are put on the output medium.

With th is general interpretation the statement

punch ' A =', 1.34, '## B.=' , B ;

would lace the fol lowing symbols on the output m e d i ~ m : ~

where stands for the value of the variable B a t the t ime of ex-

ecution of th is statement. I n order t o make strings rea l ly useful, one

would need str ing variables, string assignmcnts, and some str ing opera-

t ions. String operations can be introduced into ALGOL by means of

procedures written i n machine code (see p 39).

Punctuation

Proper use o f punctuation symbols hardly represents any d i f f i cu l t ies , w i t h

the p o s s i h l ~ except ion qf tho seniiculun. I n using the semicolon one should

have the fo l lowing facts i n mind: A semicolon i s used on ly to separate the

di f ferent statements o f a compound statement. I t i s not port o f a cond i t iona l

statement or o f a for statement, except when these have a compound statement

as one o f their constituents. From. t h i s i t may be seen that the sequence

ways o f ind ica t ing

matching begins and

ends

s t r i n g quo tes

semicolon

 h he # i s the A L G O L representation o f '*blank.'' B lanks are normal ly d is -
regarded i n ALGOL, but they are meaningful i n strings.

" f else' ' can never occur i n an A L G O L program, .and that i n the sequence

"; ende' the semicolon i s redundant. Example 1:

i f a s b then x := y e l se x : = z

I nse r t i on o f a semicolon af ter the y would terminate the condi t ional statement,

l eav ing the e l se w i thout an i f clause. A n " in te l l igentw translat ion program

wou ld b e prepared for tha t mis take wh ich resu l ts from the assumption that a

statement must b e terminated by a semicolon, and i t would s imply e l iminate

t he semicolon, g i v i ng an appropriate error message. Example 2:

i f a s b then beg in x := y ; y := z ; end ;

T h e semico lon af ter the z i s redundant.

Statements

Thus far we have discussed the following types of statements:

1. assignment statements .(arithmetric and Boolean),

2. go to statements,

3. for statements,

4. conditional statements,

5. read, punch, and carriage return statements,

6. compound statements.

The notion of statement i s recursive insofar as some of the constituents

of for statements, conditional statements, and compound statements are

themselves statements.

Any statement may be preceded by one or several labels, each

followed by a colon. A statement together with i ts labels is again o

statement of the same type. For example, a conditional statement

preceded by a label i s s t i l l a conditional statement.

A conditional statement erlclosed i n the statement parentheses

begin and end i s no longer a conditional statement. The f i rst symbol

of an unlabeled conditional statement i s always if.

There are only two more types of statements in addition to those

discussed so far, namely, procedure statements and blocks. They are

discussed in subsequent sections.

Examples of ALGOL Programs

1. The reader i s referred to the example given on p 3.

2. Mult ip l icat ion of a matrix A by a matrix B to form a matrix C:

l a b e l e d s ta temen ts

c o n d i t i o n a l s ta temen t

e n c l o s e d i n b e g i n e n d

b l o c k s and p r o c e d u r e

stotements; see p 10
and 28

for i := 1 step 1' unt i l n do

for k := 1 step 1 unt i l n do

begin S := 0 ;

for j := 1 step 1 unt i l n do

end ;

3. Sorting a one-dimensional array of numbers ~[l], N[~I, . . . , ~ [k]
according to size by successive interchanges.

Note: This method i s slow i f k is large. Sorting methods for large

arrays are considered in later parts of this report, after the discussion

of procedures:

for i := 1 step 1 unt i l k - 1 unt i l k - 1 do

i f ~ [i + 11 < ~[i] then

for j := i + 1, j - 1 while ~ [j - 11 > ~ [j l A j f 1 do

begin h := n [j - 11 ;.

~ [j - 11 := ~ [j] ;

~ [j] := h

end ;

It may be of interest to write the last loop in this program in a form not

containing for statements:

j : = i+ l ;

h := ~ [j - 11; ~ [j - 11 := ~ [j] ; ~ [j] := h

i f ~ [j - 11 > ~ [j] A j f 1 then

begin h := ~ [j - 11; ~ [j - 11 := N[jI ; N[jI := h ;

go to L

end ;

Recursive Definit ion o f ALGOL Concepts

The concepts of ALGOL 60 are defined recursively: A concept C,

which is used as a constituent in defining C2 may i tsel f require C2 as

one of i ts defining constituents. Examples of th is are the two eoncepts

subscripted variable and expression. An expression i s formed according

to the usual rules of arithmetic from numbers and simple and subscripted

variables. A subscripted variable, on the other hand, may be formed by

means of arithmetic expressions in the subscript positions; see the

examples on p 6. Other examples are the concepts statement.and

conditional statement: To form a conditional statement requires that

one or more statements be formed first. On the other hand, since a

conditional statement i s a statement, these constituent statements may

themselves be conditional.

Th is .recursive definit ion causes some trouble in describing the

language and i n understanding a description of the language. Thus, in

the present description, we introduce the concept of conditional state-

ment on p 10, using the notion of statement only in so far as i t has

already been explained. Up to this point, the only statements which

r~lny be used to construct a conditional statement are arithmetic or

Boolean assignment statements and c6ndlrlonul sIulcillent3; Later we

add rules for constructing statements, and without expl ic i t ly mentioning

it we imply,that the expanded notion of statement may be used in a l l

those construction rules which were previously given. In order to get a

clear picture of these recursively def~ned structures, one should read

the construction rules several times ..forward and backward, forming

examples of these structures and using these examples in forming other

structures according to the construction rules.

Th is recursive definit ion of the ALGOL concepts accounts for

much of the thought required for building a translator: From a given

structure one has to f ind the rules according to which it i s constructed.

In defining the ALGOL language there. is only one+ thing. which

must be clearly defined, and that i s the concept, of program; that .is,,

which construction rules lead to ALGOL programs, and what i s the

meaning of the program. A l l the other concepts, such as expressions,

are auxiliary, and the language might wel l be defined by using some

other auxil iary concepts. In this presentation we use nlsllly of the

auxil iary concepts introduced in the ALGOL 60 report. Some of the

concepts which we do not find of sufficient significance (such as

basic statement, compound tail, Boolean factor, sitnple ~ o o l e a n) are

pot explained or used. Some of the auxil iary concepts are used without

explanation, i f their meaning i s suff iciently clear'from ordinary glrarnmur

(e.g., unlabeled statement).

Peculiarities

1. Multiple Assignment Statement. - This. type of statement may be

i l lustrated by examples:

m ~ i l t i ~ l e a s s i g n m e n t

s t a t e m e n t

a [i] := i := 2 means j := i ;
i : = 2 ;

, a [j] :=2

The "sneakym point i n this last example l ies in the fact that the

variable a[i] is determined by the value which i had before the execu-

t ion of the assignment statement [see the ALGOL. 60 report (2),

Sec 4.21 .
2. Conditional Expressions. - Example:

i f a = E then 3 else 4

The value of this expression is 3 i f a = b; otherwise the value w i l l be

4. Conditional expressions,. i f used as operands of other expressions,

must be enclosed in parentheses:

n + (if a - h then 3 else 4) + 6

I he following construction is possible:

a[if x = y then 3 else 2, i f x 5 y then 2 else 31

3. Designational Expressions. - These are treated in connection

with switches; see p 26. See also the ALGOL 60 report, Sec 3.5.

4. Dynamic Interpretation of Expressions i n For L i s t Elements. -
The expressions appearing in a for clause may contain the loop vari-

able, or other variables, the value of which is changed in the statement

governed by the clause. Whenever the evaluation of such an expression

is called for in the execution of thk for statement, the present values

of these variables w i l l be used for the evaluation. This means that in

general these expressions must be evaluated each time the statement

governed by a for l i s t element is executed. If the value of these ex-

pressions remains constant during execution of the for statement, their

values need be computed only once. I t is not easy for a translator to

determine in which category a for statement belongs. The programmer

can "help" the translator in producing an eff icient machine program by

using single variables or constants in for l i s t elements where this i s

possible.

Example 1:

for i := 1 step 1 unt i l sin (pi x a) do b[i] := 0 ;

condi t ional expression

designot ional expre5- .a,;.:;.:'

. . sion . .

expressions in for l i s t

e lements .., . P L :.' . &+.

";:;

Optimized version:

)z := s in (pi x a) ;

for i := 1 step 1 unti l n do b[i] := 0 ;

Example 2:

for i := 1 step 2 x i unt i l 101 do b [i] := 0 ;

No optimization i s possible here because the expression 2 x i changes

i ts value during the execution of the for statement. It should be noted

that this "optimization" i s "translator dependent." In example 1,

most translators w i l l produce a better machine program from the second

or optirn'ized version of the computing process. Very eff icient trans-

lators might give better programs from the f i rst version.

5. Value of Loop Variable on Exi t f rom For Statement. - The

execution of a for statemcnt may be terrnlriuled in two ways: (nj ex-

haustion of the for list; (b) execution, inside the for statement, of a go

to statement leading out of the for statement. In case (a) the value of

the .loop variable i s not defined. In case (b) it. i s defined to be the

value of the loop variable at the time of execution of the go to

statement.

6. Go To*Statement.Leading into a For.Statement: .- Such a go tor:

statement i s illegitimate.

Type and ,Array. Declarations

For every simple variable which 'appears in an ALGOL progranl

there must be a type declaration, and for every array there must be an

array declaration. A type declaration determines the range of values.

which a variable may assume. There are the three types; r ed , integer,

and boolean.

A boolean variable 11lay assume only the values true and false. An

integer variable may assume those integer values which are represent-

able in a particular machine (ALGOL does not attempt a standardization

in this respect). A real variable may assume every real value repre-

sentable in a particular machine (ALGOL does not attempt a standardi-

zation, but it i s taci t ly understood in a l l ALGOL programs written so

far that the numbers are represented in floating-point form, with a

:decimal exponent range of about -50 to +50 or an equivalent binary

exponent . range). . A type declaration has. one of the following three

forms: . .

value of loop var iable

go.tO'into for statement

boolean V1, V2, .. . , V, ;

integer V1, V2 , . . . , Vn ;

real Vli V2, - - a I Vn ;
.a

It is permissible to mix variables or numbers of types integer and

real in arithmetic expressions. The result of ,a 'mixed operation i s of

type real. The result of a division of two integers i s of type real. The

integer div is ion operation +, however, i s ,only defined if a and b are of

type integers. I f a/b i s positive, then a + b = entier (a/b). Otherwise

a .+ b = - entier (-a/b). Thus

It i s not permissible to use a Boolean variable or constantas an operand

of an arithmetic operation. No number, rpnl or intoger, i s ~ ~ s o c l a t e c l

with the truth values true and false. Conversely, no truth value i s

associated wi th numbers.

T h e assignment of a noninteger value t o on integer var iable i s a lways

understood i n the sense o f proper round-off; that is, the value assigned to the

integer var iable w i l l be the integer c losest to the noninteger value. I f a i s of .

type integer the fo l lowing pairs of-statements ore equivalent:

a:= 1.4 and a : = 1

a := 1.5 and a := 2

a := 1.7 and a := 2

a :=-1.1 and a := -1

a:=-1.5 and a : = - 1

(Note: There i s a s l igh t d is t inc t ion between on integer number o f type real and

on integer number o f type integer w i t h respect to the operation +. The operat ion

a + b i s not def ined i f one o f the var iables a or b i s o f type real, even i f the

volues o f a and b are both integer a t the t ime when the operat ion a t b i s to be

executed.)

The type o f numbers i s inherent i n the str ing o f characters by which they

are represented. Every number made up from the symbols +, -, 0, 1, . .. , 9 i s

o f type integer. Every other number i s o f type real, although I t s value nray be

integer, for example, the numbers 3.0 and 0.4 101. The reader i s referred t o the

examples and counterexamples for numbers i n Tab le 1. The d is t inc t ion between

numbers o f type integer and type real matters only i n connection w i t h the

operat ion + . Otherwise i t i s immaterial.

The assiyl l i l~unt of u truth value to an arithmetic variable or the

assignment of an arithmetic value to a Boolean variable i s 'not defined.

An array declaration gives bounds for the values which the sub-

scripts of an array may assume. In addition, the type of the array may

m i x e d e x p r e s s i o n s

i n t e g e r d i v i s i o n

no B o o l e o n v a l u e s i n

UI l ihrner~e ope ra t i ons ,

and c o n v e r s e l y

. . . . S F . I. . ..
mixed assignment

..?.

statements . ,.-

s u b s c r i p t bounds i n

ar ray d e c l a r a t i o n s

be given i n an array declaration. If no type i s given, the array i s

understood to be real. (Note: No such declaration is implied for simple

variables; their type must be declared.) All 'elements of an array are of

the same type. The following examples make the structure of array

declarations suff ic ient ly clear.

array a, b [l : 101, c, d, e[l : 14, 6 : 91, f [- 1 : +21 ;

This declaration means: The arrays a and b are one-dimensional arrays,

and the subscript ranges between 1 and 10. The arrays c, d, e are two-

dimensional a,rrays, with the f i rst subscript ranging from 1 to 14 and

the second from 6 to 9, etc. A l l these arrays are reul.

The lower bound for a subscript must be written before the upper.

Thus array a[4 : 11 i s not a val id array declaration. References to a

subscripted variable outside the range of the subscript bounds are

invalid. A program with the given array declaration which uses the

subscripted variables a[01 or 'c[-1, ,183 would be incorrect. Other

examples for array declarations are:

integer array 4 1 : 141 ; '

real array gC1 : 14, 8 : 9, -3 : -11, h, /[I : 21

A program may be constructed from one or several blocks. A block

is, roughly speaking, a compound statement that contains declarations

about the variables which are "local" to the block. Such local vari-

ables must not be used by a statement not contained in the block. The

declarations for a block have to fol low immediately the begin which

indicates the beginning for the block; the statements, of which the

block is composed, follow the declarations, and the block i s terminated

by the end which matches the block-begin.

A block i s also considered to be a statement, and thus may be a

constituent statement of another block.

Two blocks B 1 and B2 may be related to each other i n three .

different ways:

1 . B , i s a subblock of B 2 ,

2. B 2 i s a subblock of R , ,

3. B 1 and B~ are independent blocks.

t y p e o f . a r r a y s

l o w e r bound comes

f i r s t

p o s i t i o n o f d e c l a r a t i o n s

l o c a l q u a n t i t i e s

For case 1 to be true, B 1 either is a constituent statement of B2, or

B 1 i s a subblock of a subblock of B2. For case 3 to be true, B l and

B 2 are either constituent statements of a block B, or they are sub-

blocks of different constituent statements of B.

Example:

L : begin real a, b, c ;

begin integer a ;

begin real a, b ;

end

begin real c, d ;

end

end

begin real d ;

end

end

In the example given, the blocks labeled M, N, 0, P are subblocks of

L; the blocks labeled N, 0 are subblocks of M. The blocks M, N; 0

are independent of P, and P i s independent of M, N, 0. The block N i s

independent of O and vice versa.

Those statements of block L which are not contained in one of i ts

subblocks may refer to the variables a, b, c. The statements of block

M 'which are not contained in one of i ts subblocks may refer to the

variables a, b, c. Notice, however, that the u of block M i s different

from the ; of block L, whereas the variables b and c used in M are

the same as those used in L . Or to put it another way: A variable

which i s declared i n a block B 1 i s valid for a l l those statements and

subblocks of B 1 which do not contain a declaration for a quantity with

the same name. It i s not valid i n any of those blocks which are inde-

pendent of B 1 and, outside B1, in those blocks of which B~ is a sub-

block.

There are, however, the possibilities;, which bre to be differentiated,

that a variable of a block B 1 becomes invalid because control i s trans-

ferred to a subblock B2,, where a variable with the same name i s de-

clared, and that a variable becomes invalid as h result of leaving the

block B 1 where it i s declared. In the f i rst case, the value of the

inval id variable i s retained and available after exi t from B2. In the

second case, the value of the invalid variable i s lost, and i's not

available on re-entering B2.

There are consequently three possibil i t ies for the "state" of

variables:

1. valid, -.
2. invalid, value defined,

3. invalid, value not defined.

 able 2 gives the state of each variable in the program on p 23 as a

function of the block.

Tab le .2 State o f Variables as Funct ions o f Blocks

Var iable Block L Block M Block N Block 0 Block P

a o f b lock L. Va l i d Not valid, Not valid, Not valid, Va l id
defined defined defined

b o f b lock L Va l i d Va l id Not valid, Val id Va l id
dcf incd

c of b lock L Va l i d Va l id Va l i d Not valid, Va l id
defined

a of b lock rM No1 valid, Va l id Not valid, Va l id Not .valid,
not defined defined not defined

a o f b lock N Not valid, Not valid, Va l id Not valid, Not valid,
not defined not defined not defined fiat defined

b o f b lock N Not valid, Not valid, Va l id Not valid, Not volid,
not defined not defined , not defined not defined

c o f b lock 0 Not valid, Not valid, Not valid, Va l id Not valid,
not defined not defined not defined not defined

d o f b lock 0 Not valid, Not valid, Not valid, Va l id Not valid,
not defined not defined not defined not defined

d o f b lock P Not valid, Not valid, Not valid, ' Not volid, Va l id
not defined not defined not defined not defined '. . .

. . .

A quantity which i s val id i n a block B but which i s not declared in

B i s called a global quantity in B.

Storage Allocation in a Program with Block Structure

Here i s one possible and easy way to allocate storage to the vari-

ables in a program with block structure: Each variable declared i s

allocated a unique storage location. In the program given above this

would amount to reserving nine different storage locations for the nine

different variables. This i s wasteful, since it i s possible t o have

only six different locations i n the following wuy: , .

Lnc 1 : a of block I..

Loc 2 : B of block L

Loc 3 : c of block L

Loc 4 : a of block M, and d of block P

Loc 5 : a ot block N , and c of block U

Loc 6 : b of block N, and d of block 0

This saving of storage space is not important in the case of simple

variables; it may be decisive in the case of arrays. An ALGOL

translator can take advantage of this possibi l i ty given by the block

structure. The block stiucture gives among other things most of the

features of the "Common" and "Equivalent" statements of FORTRAN.

The discussion on "valid" and "defined" quantities just given for

simple variables also applies to arrays. The rather interesting feature

here l ies in the fact that the size of a local array may depend on

quantities computed outside the array.

The subscript bounds in array declarations are arithmetic ex-

pressions. They may contain variables and procedures (see below)

which are global to the block in which the array i s declared. They

must not contain variables and procedures which are local to this
,

block. I f one wants to make eff icient use of th is feature, one must

al low for "dynamic storage allocation" of the elements of an array.

This means that storage space for the elements of an array i s allotted

at execution time, more specifically, at the time when control enters

the block wl~eic lie array is declared.

Local Labe1.s

g l o b a l q u a n t i t i e s

s u b s c r i p t e x p r e s s i o n s

for a r r a y s

Labels are, i n the same way as variables and arrays, denoted by
I # free names." There are no expl ic i t declarations for labels. The

fact that a name denotes a label i s implied by the way in which the

name i s used. A name or an unsigned integer which appears immediately

in front of a statement, separated from the statement by a colon, i s a

label, and such an appearance of a name may be considered as a

"label declaration." There i s of course only one declaration for each l a b e l d e c l a r a t i o n

label i n each block. I f L i s a label "declared" somewhere, then the

statement "go t o L" may be called a statement "usingw that label.

A l l labels declared in a block are local to the block, and i n this

sense the notions of va l id i ty apply to labels in the same way as to

variables. From this statement, it follows immediately that one cannot

jump t o a label inside a block .by means of a go to statement which i s i u m ~ into o b l o c k not

outside the block. Also, i f i n block B 1 a label L i s declared, and i f p e r m i s s i b l e

B Z is a subblock of B , where again L i s declared, then any statement

go to L inside B~ refers to the label .L in B2. Any statement go to L

in D l refers to label ,L . in B,.

A compound. statement. w.hich. does:.not: contain.. any,,.expl icib dec1.a.. , l o b e l s o f cornp'ound.. ,. . . .

rations i s not a block, and. labels r of compound statements which are - s t a t e m e n t s w h i c h a r e

n o t . b l o c k s a r e n o t .
not blocks are not "local" to that compound statement.

l o c a l

Switches . .

Assume. that i n an. ALGOL program,:one, has: .to; write :a st.atement:?: . . exampIe:.for 4us.e-.of a! . . .

which,: transfers control- to. one:of. five:dif.fe.rent;labels L,:.P;.:Q; L2,. L,., ". . swi. tch . . .

depending on whether a variable i, i s equal to 1, 2, . . . , 5. One can

write the statement:

i f i = 1 then go to L else i f i = 2 then go to P

else .if i = 3 then go to Q else i f i = 4 then go to L2

else go to L1.

One can greatly simplify th is statement by combining the ' f i ve labels

L, PI Q, L2, L1 into a switch by means of a switch declaration:

switch s := L, PI Q, L,, L , ,

and replacing the lengthy conditional statement by:

go to s [i] .
The switch declaration in this example declares the label L to be the

f i rs t element of the switch with name s, label P to be second element

of th is switch, etc. Reference to elements of a switch i s made i n a

way analogous to referencing elements of one-dimensional arrays: 8

The name of a switch followed by a lef t bracket followed by an ex-

pression E followed by a right bracket designates the kth label of the

switch, when k i s the integer'closest to the value of expression E.

A designational expression is defined to be

(a) a label,

(b) a structure of the form S[E] ,

where S is the name of a switch.
'

Designationat expressions are primarily used in go to statements

(see the example above). They may, however, also be used in defining

a switch.

If Dl, D2, . . . , Dn are designational expressions, and I is an

identifier, then

' switch I := Dl, D2, . . . Bn

i s a su~ i t ch declaration.

The statement go to I IE l] transfers control to the kth.designationa1

expression of switch I, when k i s the integer nearest to El. If th is

designational expression i s a label L, the statement IS equivalent ro

go to L. I f it i s of the form s[E21, the statement i s equivalent to go to

s[E21; that is, it refers to the jth designational expression in the

declaration for. switch s, where j is the nearest to E2. Th is process of

referring to other switches within a switch may be repeated an arbitrary

number of times. Such recursive switches, however, are rarely used.

It might be mentioned that one can form "conditional designational

expressions." An example may suffice:

, go to i f a = b then L else i f a j b then P else Q

The use of conditional designational expressions can and should be

avoided. The statement

i f a = b then go to L else go to M

is better "ALGOL stylew than the statement

go to i f a = b then L else M .
A switch declaration may, within a program, occur in any place in

which type and array declarations may occur. The variables and labels

d e s i g n a t i o n a l e x p r e s -

s i o n

s w i t c h d e c l a r a t i o n

c o n d i t i o n a l designs-
t i o n a l e x p r e s s i o n

. 8 ~ w i t c h e s may b e considered a s a k ind of one-dimensional array; the
a. va luesev of elements of this array are not numbers but labels.

used i n switch declarations must be val id in the block i n which the

switch i s declared. A switch declared i n a block is, of course, local

to that block i n the sense described above i n connection with simple

variables.

l o c a l s w i t c h e s

PROCEDURES

General Discussion

Procedures serve, in ALGOL, the same purpose which subroutines

serve i n ordinary machine coding.

A piece of ALGOL program, which i s used .in several places of a

pr6gram or In several programs, with possibly different parameters,

may be declared a procedure by preceding it with a procedure heading. p r o c e d u r e h e a d i n g ,

A procedure heading may i n some simple cases have the form: s i m p l e form

procedure I (P P 2, . . . , ,P,) ;

where I is an identifier (the "name" of the procedure), and PI, P2, . . . ,
P, are. identifiers, which denote the formal parameters of the procedure.

More elaborate forms of the procedure heading are considered

formal p a r a m e t e r

below.

The piece of program associated with the name I i s called a

procedure body. The procedure body i s an ALGOL statement. Normally p r o c e d u r e body

it i s a block, since most procedures use local quantities declared i n the

procedure body. The procedure heading and procedure body together

form the procedure declnmtion. p r o c e d u r e d e c l a r a t i o n

Execution of the procedure body i s init iated by a procedure call.

A procedure ca l l i s a statement. The procedure 'with name I is called

by the statement:

where APl, AP2, . . . , AP, denote actual parameters of the procedure

call.

An actual parameter may be:

1. an expression (arithmetic, Boolean, de~ i~na t i ona l) ,

2. an identif ier denoting a procedure, a switch, or an array,

3. a formal parameter, i f the ca l l appears in the body of a procedure.

p r o c e d u r e c a l l i s a

s t a t e m e n t

a c t u a l p a r a m e t e r s

Executing a procedure statement means execution of thd procedure

body after the fol lowing changes have been made:

1. The formal parameters of the pro'cedure are replaced, in the sense
of copying, by the corresponding actual parameters of the procedure
call, after enclosing these i n parentheses whenever this i s syn-
tactically possible.

2. The names of local quantities are changed so that they ar'e different
from a l l names appearing in the actual parameters.

An addition to this rule i s necessary i f some of the parameters are

called "by value" (see below).

A Simple ALGOL Program Containing a Procedure ~ec l a ra t i on

Read in a sequencc of number quadruples a, b,' c, d. compute the

area' of a l l triangles.which can be formed with sides equal,to any three

of a, b, c, or d , and punch these. The program uses a procedure which

computes, for three numbers x, y, z, the area u of a triangle wi th sides

of these lengths according to the formula a = \/s(s - x) (s - y) (s - z),

where s = (x + y + z)/2. The result a i s punched. The program also

tests whether a triangle can be formed of sides with lengths x, y, z:

Line

real a, b, c, d ; . . 1

procedure triangle area (x, y, z) ; 2

begin real s, a ; 3

s := 0.5 x (x + y + z) ; 4

i f i & x ~ s k y A s . z ? t h e n 5

b e g i n a : = s q t (s x (s - x) x (s - y) x (s - z) ~) ; 6

punch a 7

end 8

else punch - 1 ' 9 .

end triangle area ; . . .

L : read a, b, c, d ;

carriage return ;

triangle area (a, b, c) ;

triangle area (a, b, d) ;
triangle area (a, c, d) ;
triangle area (b, c, d) ;

copy ru le

for on addi t ion to the

copy r u l e i n case o f

va lue parameters see

below

Notes on the triangle program:

1. L i ne 1: These are declarations concerning the variables used in
the program.

2. L i ne 2: h he identifier fol lowing the procedure i s the name of the
procedure. I ts parameters are x, y, z. Consistent replacement of a l l - p r o c e d u r e n a m e s a r e

the identif iers used as formal parameters does not affect the meaning a r b i t r a r y i d e n t i f i e r s

of the procedure or of the program in which it is declared. We could
even change x, y, z into identifiers which are equal to some identi-
f iers used elsewhere i n the program; for example, we could replace
x by b. We could of course not replace x, y or z by s or a.

3. L i ne 3: Declarations of variables local to the procedure, that is,
local i n the sense described in "Declarations and Blocks."

4. L ines 4 t o 10: The statements of the procedure body.

5. L i t ie 13: Th is procedure statement i s equivalent to the execution

of the procedure body after substituting a, b, c for x, y, z, and
after changing the local quantity a in the procedure body into some
other ~ d e n t ~ f ~ e r .

The statement which results from the copying process described

above must be a valid ALGOL statement. There i s no other rule or

restr ict ion in formi,ig the procedure body: For some di f f icul t ies which.

may result i n some cases, see "Recursive Procedures" and "Own

Variables."

Second Example of a Program with Procedures-'

Foim:

where the p [j] are to be read in, and punch these three sums:

begin real a, b; integer i, j, k; array p[0:101

procedure sum (x, y, /, m, s) ;

for m := x step 1 unt i l y do s := s + /
end ;

sum (1, 10, i T 2, i, k) ;

sum (5, 10, s in j, j, a);

for i := 6 step I .until 10 do read p [i l ;

sum (6, 10, p[j l , j, b) ;

punch k, a, b ;

end

The copying process transforms this program into:

begin real a, b ; integer i, j, k ; array p 10: 101 ;

begin k := 0 ;

for i := 1 step 1 unti l 10 do k := k + i T 2

end ;

begin a := 0 ;

for j := 5 step 1 unt i l 10 do a := a + sin (j)

end ;

for i := 6 step 1 unti l 10 do read p [i] ;

begin b := 0 ;

for j := 6 step 1 unt i l 10 do b := b + p [j]

end ;

~ u n c h k, a, b ;

end

Note that the third parameter of the procedure sum is replaced by an

expression. However, it i s not the value of this expression which i s

transmitted to the procedure; rather, the rule for computing an expres-

sion i s transmitted and replaces the formal parameter. This device i s

at the same time powerful for ease of expressing algorithms and

troublesome for compiler builders. Techniques t o handle this situation

are discussed i n some of the papers in the January 1961 issue of the

Communications of the AC'M.

General Discussion, Continued

It is, of course, not the intention of the copy rule that, before

translating an ALGOL program into machine code, a l l procedure cal ls

are replaced by the bodies of the called procedures. The copy rule i s a

simple way of tel l ing what a procedure cal l means. In actual trans-

lation of a program one tries to have only one copy of the (translated)

procedure in the machine at the time of execution and transfer control

to this piece of program for each procedure call. The question uf 11uw

to do this i s interesting, but it w i l l not be discussed here.

A procedure declaration may be placed where a type, switch, or

array declaration i s permissible. A procedure i s local to the block

where it i s declared i n the sense described for simple variables. Th is

means that a procedure cannot be called by a statement outside the

p o s i t i o n o f procedure

d e c l a r a t i o n

l o c a l p r o p e r t i e s o f

procedures

block in the heading of which the procedure i s declared. And it cannot

be cal led by a statement inside a block which contains a declaration

for a variable, array, switch, or procedure which has the same name as

the procedure i n question.

It also means that one may have two procedures with the same

no'me i n different blocks o f a program (e.g., two procedures with the

name "triangle area" which use different formulas for computing that

area).

Identif iers used inside procedures are either formal parameters,

local quantities, or names of quantities defined outside the procedure.

l hese iatier quantities are global to the procedure. he f o l i o ~ i n ~

example9 shows such a situation:

begin real u, b ;

procedure P(x, y, 2) ;

begin rea l Y., s ;

a : = x + y

end ;

a :- 6; p(1, 2, 3); punch,a

end

L ine

1

2

3

4

5

6

7

The variable a appearing in the body of procedure P is .not a parameter

and not a local quantity, so it i s a global quantity. After execution of

the procedure statement in l ine 6, the value of a w i l l be 3. Had there

been a declaration for a (e.g., real a) i n the body of P , the value of a

after the procedure cal l would s t i l l be 6.

There are some cases where the interpretation of tha copy rule i s dubious.

Consider the following example:

begin real a, b ;

procedure P(x, y) ;

begin real r ;

a : = x + y .

end ;

Line

1

g lobal quant i t ies in

procedures

9 ~ h i s "program" does not make much sense, but i t serves our purpose o f , .
i l lustrating the properties of global quantities in procedures.

begin real a ;

P(l , 2) ;

punch a ;

end

end

The question here i s the interpretation of the quantity a in the procedure

ca l l of l ine 8. I f the copy rule i s taken literally, the procedure stateme.nt in

l ine 8 i; equivalent to

begin real r ;

a : = 1 + 2

end ;

This would of course mean that the value punched i n l ine 9 i s 3. One might

suspect, however, that a l l translators now under construction - except those

which actually make one copy for each procedure ca l l - w i l l punch the ;umber

1 i n l ine 9 of the program. This means that a procedure takes i t s global

quantit ies from the block where i t i s defined and not from the block where i t i s

called.

A consequence of the use of the copy rule in the definit ion of

ALGOL procedures i s that it i s very di f f icul t to translate a procedure

declaration independent of the procedure calls. lo Usually, a translating

program is guided by the declarations for the various entit ies occurring

in the program. There are, however, no declarations for the parameters.

Declarations for parameters are "inherited" from the declarations for

the actual parameters used in calling the procedure.

The following example shows a di f f icul ty which arises from this:"

begin real b, c, d, x ;

boolean A, B ;

procedure ~ (p , q, r, s, v) ;

i f i f p then q else r g s then v := 1 else v := 2 ;

P (A , B, c, 4 x) ;

P (A , b, c, dl x)

end

' O ~ o r a thorough dis'cussion of the problems involved and a possible
(though not efficient) solution, see (4). .

l l ~ i s c u s s e d i n similar form by H. Rutishauser i n ALGOL-Bulletin, No. 10, . .
p 11, edited by Regnecentralen, Copenhagen-Valby, Denmark, 1960.

According to the copy rule, the f i rs t procedure ca l l is equivalent to:

i f i f A then B e l s e c s d t h e n x := 1 e l s e x : = 2

Using parentheses th is may be written

i f (i f A t h e n B e I s e (c ~ d)) t h e n x : = l e l s e x : = 2 ;

The second procedure call i s equivalent to:

i f ((i f A then b e lse c) s d) then x := 1 else x := 2

Thus, the scope o f the second i f i n the procedure body depends on' the

parameters. Th is means that i t i s not possible to translate the procedure

declaration for P without knowing which actual parameters are used i n cal ls

o f th is procedure.

Th is example also suggests that one should use parentheses to

indicate the structure o f conditional expressions, even thouoh the

parentheses may not be necessary. Such redundant parentheses help in

writing, reading, and translating such expressions.

There are other, more d i f f icu l t cases where a procedure can only be

translated after examination of parameters used in call ing the procedure.

Many of these problems can be overcome by specifications. A specifi-

cation- gives information about the. formal parameters of a procedure-

declaration. A specif ication is a specifier, followed by a l i s t of identi-

fiers. There are the fol lowing specifiers:-

l abel

switch

string

real, integer, boolean . .
~rocedure, real. procedure;' integer.procedure,l boolean .procedure1

array, real array, integer array, boolean array

Specifications have t o be written immediately preceding the pro-

cedure body. They are separated by semicolons from the parameter

l ist, the procedure body, and each other. For an example of a procedure

declaration with specifications, see procedure Bessel, p 35.

A specif ication restricts in an almost obvious way the actual

parameters which may be substituted for a specified formal parameter.

Thus, a parameter which i s specified as real may only be replaced by

arithmetic expressions. Or a parameter which i s specified as a label

may only be replaced by labels, or by a designational expression. In

the example on p 33, i f the dubious parameter q i s specified as boolean,

the second call. of the procedure would be illegal, and the procedurep

spec i f i ca t ion

spec i f i e rs

12concerning these specifiers compare p 38.

could be easi ly translated i n such a way that a l l legal procedure ca l l s

would be executed correctly.

Value Parameters

Consider the example on p 3, for computing approximations to the

values of Bessel functions. We w i l l wr i te th is program in procedure

form, making a few changes. The parameters o f the procedure are x, n,

sum, and the procedure computes an appr0,ximation to I,(x) and assigns

that value to the variable svln. We omit from the example on p 3 the

loop which computes I,(x) for different values o f x, and we omit the

read and punch statcmcnts. We then get the fo l lowing procedure:

procedure Besse l (xi n, sum) ; real x, sum; integer n ;

begin integer nfac, i, s; real denom ;

nfac := 1 ;

for i := 2 step 1 unt i l n do nfac := nfac x i ;

i f x = 0 j, n = O then begin sum := 1 ; go t o P end ;

L : denom := nfac ;

sum := 0 ;

for s := 0 step 1 unt i l 10 do

begin sum := sum + (x/2) f (n + 2 x s)/denom ;

denom := denom x (s + 1) x (s + 1 + n)

end ;

P : end Besse l

A possible ca l l o f th is procedure would be:

Besse l (n / (i + 4 x x), 4, f)

According to the copy rule th is i s equivalent to executing the

procedure body, replacing x by n / (i + 4 x x), sum by 1, and n by 4, and

substitut ing a new name for i to make it different from the i in the f i rs t

parameter o f the procedure statement.

During execution o f the procedure the value of n/(i + 4 x x) would

be computed 12 times, always result ing i n the same value, since neither

n nor i changes inside the procedure. An intel l igent translator could

f ind out that n/(i + 4 x x) need be computed only once and would

program accordingly. However, i n order to s impl i fy e f f i c ien t translation,

a formal parameter may be declared a value parameter i n the procedure

heading. Th is means that whenever such a parameter i s replaced by an

expression i n a procedure call, the value o f that expression i s obtained

v a l u e p a r a m e t e r s

and assigned to that parameter before execution of the procedure. This

formal parameter i s treated as a local quantity in the procedure body,

and the name of this parameter must possibly be changed in the same

fashion as the names of the other local quantities.

A value parameter must be specified i n the procedure heading. In

the example above, i f x i s a value parameter, the procedure heading

would look as follows:

procedure Bessel (x, n, sum) ; value x ; real x.;

The value declarations must precede a l l of the specifications, even the

specifications for the nonvalue parameters.

With the extended rule for execution of a procedure statement, the

statement "Bessel (n/(i + 4 x x), 4, f)" i s equivalent to the following

block:

Notes

begin integer.nfac;,istari .s.;. . . . xstar and. istar. are. t h e names ...: :

substituted for. x and.+
real denom,:.xstar *;.

xstar := n/ (i + 4, x x). ;

nfac := 1 ;

assignment of,the,value..to the
value declared parameter

for-istar ;= 2 step 1 ,until 4 do n i s replaced: by 4

n/ac := nfac: x istar.;.

begin f := 1 ; go to P end ;

etc.

end

sum is replaced by /

The reasoning given above for introduction of value parameters seemed

to imply that it affects only the eff iciency of the procedure statements.

e x e c u t i o n of a proce-

d u r e w i t h v a l u e

p a r a m e t e r s

v a l u e p a r a m e t e r s m u s t

be s p e c i f i e d

v a l u e p a r t f i rs t , t h e n

s p e c i f i c a t i o n s

a d d i t i o n o f v a l u e p a r t

c h a n g e s t h e m e a n i n g

o f a p r o c e d u r e

But consider the example:

procedure A (x, y) ;

begin

x := . . .

' y :=...

end

The procedure ca l l A (a + b, 3) i s invalid because it would involve

execution of the "statements":

If one adds the value part, as follows:

procedure A (x ! y) ; value x, y ; reql x, y ;

begin

end ,

the above-mentioned procedure cal l w i l l be executed as:

begin real x, y ;

end ;

This is a valid ALGOL statement, and thus the procedure cal l i s valid.

The addition of the value declaration thus affects the class of actual

parameters which may be substituted for a formal parameter.

Functions

Le t it be required to compute the expression

where the ak are stored i n an array. By using the procedure Bessel , E

can be computed by the following piece of program:

E : = O ;

for k := 1 step 1 until 5 do

begin Bessel (k x x, k, f) ;

end

It i s desirable to use the "result" f of the procedure Bessel immediately

i n an arithmetic expression. For this purpose, functions have been

introduced as a special kind of procedure, namely, those with one

particularly interesting "result."

In the declaration of a procedure which is a function, this "result"

i s denoted by a variable which has the same name as the procedure.

The type of this variable must be declared by placing the type ;mmedi-

ately i n front of the word procedure. As an example we w i l l write

procedure Bessel as a function. We use the name Besselfunction for

th is procedure in order to distinguish it from the procedure Bessel on

6 35:

real procedure Besselfunction (x, n) ;

value x , n ; integer n ; real x; .

begin integer nfac, i , s ; real denom, b ;
. . n f a c : = l ; ,

for i := 2 step 1 unt1l.n do kfac := nfac x i ;

i f x = 0 n = 0 then begin b := 1 ; go to P end;

L : denom:=nfac; b : = O ; . .

for s := 0 step 1 until 10 do
'

begin b := b + (x / 2) f (72 + 2 x s)/denom ;

denom := !enom x (s + 1) x (s + 1 + 71)

end ;

P : Bessel/unction := b

end

In the body of the real procedure ~esse l func t ion the name Bessel-

function i s used to designdte the result. Note that "Besselfunction"

i s not a local variable o f the procedure body. There i s no declaration
. . .

for such a variable. Also, the result may not be used i n an aiithmetic

expression inside the procedure. This i s necessary i f one wants to

functions

declarat ion o f

functions

type o f resul ts of

functions

the name o f a function

and the name o f ' i ts

resu l t are iden t ica l

resu l t may not be

'used i n expressions

i n s i d e procedure

avoid confusion w i th recursive procedures; see p 40. Th is restr ic t ion

accounts for a minor deviation o f the procedure Besselfunction from the

procedure Bessel: The quantity sum of the latter procedure i s replaced

by the quantit ies b or Besselfunction, because we no longer can use

the same name for an intermediate quantity and for the result.

With th is procedure Besselfunction the computation o f the sum

can be d e ~ c r i b o d i n tho fo l lowing way:

E : = O ;

for k := 1 step 1 unt i l 5 do E := E + Besselfunction (k x x , k) ;

In general, a procedure which i s a function i s cal led by wr i t ing i t s name

in an expression and p l a ~ i n ~ a f t e r t h e name a l i s t o f parameters enclosed

in parentheses. Some d i f f i cu l t ies arise i f a function changes the values

o f global parameters, and the exact interpretation of th is case was the

subiect of much discussion since the appearance o f the ALGOL 60

report. Since th is d i f f icul ty, however, arises only i n very rare cases

and can always be avoided by simple means, we w i l l not discuss th is

topic.

For an example of Boolean functions see p 44.

Procedures i n Machine Code

Certain operations or algorithms cannot be expressed ef f ic ient ly i n

ALGOL. In th is c lass belongs manipulation o f quantit ies wh'ich occupy

only a few b i ts of a computer word, or . the double length accummulation

o f a sum of products. Procedures to handle such computations can be

wr i t ten i n machine code: ALGOL does not specify anything about the

form i n which such machine code procedures should be written. How-

ever, it i s part o f ALGOL that machine code procedures can be cal led

by an ALGOL procedure statement, with no restriction on the type of

parameters used in the procedure. call . Therefore the wr i t ing of a

machine code procedure must take into account the way i n which an

ALGOL proecdurc statement i s translated.

Another area o f application o f machine code procedures i s manipu-

lat ion of auxi l iary equipment such as drums, files, tapes, etc. Input

and output of information can be incorporated i n an ALGOL translator,

by means of machine code procedures.

c a l l o f funct ions

Boo lean function,

see p 44 ' , .

mach ine code in

A L G O L progranls

Recursive Procedures

A procedure P which calls, i n i t s body, itself, or which cal ls another

procedure PI which cal ls P, i s said to be a recursive procedure. Con-

sider the fol lowing example:

real procedure factorial (n) ;

i f n = 1 then factorial := 1 else factorial := n x factorial (n - 1);

This i s a recursive procedure, because the execution of this procedure,

for example, in case n = 2 requires the.execution of this same procedure

for n = 1. It i s not a very good program for the computation of the

factorial, since it requires n procedure calls. Even on computers with

fast subroutine iump facil i t ies, it w i l l probabiy use more t ~ m e for lumps

tb the subroutine and back than it does for the actual computation. I he

factorial should be programmed with a loop such as:

real procedure factorial (n) ; value n ; integer n ;

begin integer i, f ;

f : = 1 ;

for i := 1 step 1 unt i l n.do f := f x i ;

factorial := f

end ;

The l a s t program performs. an ."iterative'! computation of the factorial,.

as . contrasted.-with the t'recursive"' computation. gi.ven:.before; .A large. ..-

par.t of,: many . programming.. efforts :. c0nsist.s .: in. -redu'cing~~.,:,recursiae:;.-

proces.ses. to:: iterafive . processes.:. r .In.. ,some.. .areas;':,however., . t11.i s., io-.:

duction . is either not possible or very cumbersome, and in such cases

recursive procedures should be used. One area for the application of

recursive procedures is translator construction (5) .

Recursive Procedures and Copy Rule

The copy rule (p 29) al lows us to eliminate procedure declarations and

procedure ca l ls from a program by actually replacing each procedure ca l l by

the body of the cal led procedure, with the changes required by the copy rule.

Although, as has been pointed out before, i t i s not desirable to actual ly make

this copy i n a translator, the copy rule i s a simple way of describing the

meaning of a procedure call. Evidently the copy ruledoes not work for recursive

procedures: Every copy produced would ca l l for another copy, and the copying

would go on indefinitely.

The copy rule can be modified i n such a way that a copy of the called

procedure i s produced only after a c a l l of the procedure has been encountered.

Th is interpretation o f the copy rule s t i l l leaves the following question, which

i s not,answered by the ALGOL 60 report: W i l l the names o f local quantit ies

be changed i n the same way i n ;he different copies o f a single procedure, or

w i l l these changes be made independently. In the f i rs t case, every level o f a

recursive procedure acts on the same set o f local quantities. In the second

case, every level has i t s own local quantities. At present the second inter-

pretation seems to be most commonly accepted. I t seems that i n those cases

where recursive pro;edures are real ly important both kinds of quantit ies' are

desirable. Most translators presently under construction w i l l not handle

recursive procedures, so that the question raised above i s at present not o f

great pract ical importance. '

Own Variables

The value of a variable i s lost after exit from the block i n which

this variable i s declared. There are some cases where this i s unde-

sirable, and ALGOL provides for a special class of local variables, the

so-called own variables, which retain their :identity throughout the

program. A simple variable or an array i s declared own by preceding

the corresponding declaration with the symbol own. Example:

own real x, y ;

own integer array a [l : 101 , b, c[4 : 171 ;

For a precise interpretation of these declarations, consider the

following example:

n := 15;

R : g o t o L ;

L : begin real x ; own real y ;

arroy a [l : n] ; own real arroy b[l : n] ;

end

M : begin integer a , b ;

array x, y[l : 51 ;

end ;

own v a r l a b l s s anJ .
arrays

' .'7 , "&-
the behav io r o f t h e

'>I
own v a r i a b l e y and < '
the own array b o f . .
t h i s b lock w i l l be

d i scussed below

i f 11 = 15 ther! n := 20 else n. := 15;
. .

P : g o t o L ; . .

\

During execution of th is program, storage space i s reserved for the

variable y of the block labeled L. Outside block L no reference can be

made to th is variable. In the block labeled M the identifier y i s used to

denote an array. Th is use of y does not, of course, interfere with the

variable y of block L. When block L is lef t in the normal way, that is,

after executing the statements " y := 6 ; x := 4," the value of the

variable y w i l l s t i l l be 6 on re-entry to the block. The value of x,

which i s not own, w i l l be lost after block L is left, and the value of x

is undefined after re-entry to block L. The location of x could, for

instance, be used by the variable a of block M .

If the block L i s entered from the statement labeled R, the value of

n i s IS. Un the f ~ r s t entry tb block L, Iocarlons for u [l] to u l l 5 J u t ~ d

b [l] t o b[151 wi l l be reserved. On re-entry to L from statement P , n

w i l l be 20. At this stage, locations are s t i l l reserved for b [l] to b[15]

(not necessarily the same ones as on the previous exit), and these

locations contain the values which b [l] to b[15] had on the previous

exit. Before the f i rst statement of block L is executed, locations for

a [l l t o a[201 and b[161 to b[201 wi l l be reserved. The values of these

variables are, of course, not defined. Before the next entry to block L

from statement R, the value of n wi l l be reset to 15. After entry t o

block L and before execution of the f i rs t statement of this block,

storage reservation for array b wi l l be restricted to b [l] to b[151. The

values of b[161 to b[20] w i l l be lost. They w i l l not be recovered after

the next entry to block L, even i f n i s reset to 20.
A local variable must appcar on the lef t side of an assignment

statement or i n a read statement before i t s value can be used in an

arithmetic expression. Th is i s also true for own variables of a block

when the block i s executed for the f i rs t time. On subsequent entries to

the block the assignment of a value t o an own variable may bc by-

passed. As a matter of fact, i f the assignment of a value to an own

varioble i s not sometimes bypassed there i s no sense in tnaking the

variable own, because i t s value, although available at the beginning

of a block, w i l l be recon~puted before it i s uscd.

Own Variables in Procedures

I f the block which constitutes a procedure body contains own variables, the

question mentioned under recursive procedures, p 40, comes up again: Are the

changes of names for own quantities which are made in. the different copies

corresponding to different procedure cal ls identical, or are they mode inde-

pendently? In case of independent changes, each procedure cal l would have

i ts own "own variables" which ore not affected by other calls of the some

own variables in

procedures

procedure. In the other case, a l l cal ls o f the same procedure act on the same

set of own variables. I t should be noted that own variables ore very,awkword

to use, and are very awkward t o handle by a translotor when the first inter-

pretation i s mode.

The question of identical vs independent changes does not arise i n case of ,

local, nonown quantities in nonrecursive procedures. Their values ore not

defined after ex i t from the procedure, so that there can be no relation between

the local quantities used i n different procedure calls.

Special Parameter Delimiters

E X A M P L E S O F A L G O L P R O C E D U R E S

In the remainder of this report we w i l l give some ALGOL procedures

for internal sorting. It i s sometimes contended thnt ALGOL, though it

may be adequate for expressing procedures which are mainly numerica I,

i s unsuited for nonnumerical algorithms such as sorting. We chose our

examples from the general area of sorting in order to show that these
I I lagicsl, " ~ u ~ l l s r than numei;ica(, procedures can be adequately ex-.

pressed in ALGOL.

Program for Binary Search

The following procedure assumes that the elements of an array a are

arranged in descending order, that is, dl1 .L at21 2 a[31, Given a

number b and a subscript 1 such that

a [l l 2 b =: a [l l

the program determines in [log2 I] comparisons a subscript p for which

procedure binary search (a, b, I, P) ; value I, b ; integer 1, p ;

real b ; real array a ;

begin integer p l ;

p : = l ;

test for end : i f I - p = 1 then go to M ;

p l := (I + p) + 2 ;

i f 2[p1] < b then I := p l else p := p l ;

go to test for end ;

M :

end ;

for spec ia l parameter

de l imi ters , see p 48

By using.0 for statement with an "'E while B" element, this procedure.

can be expressed a l i t t le more elegantly, though perhaps this i s not so'

easi ly understood by a reader not familiar wi th this type of for statement:

p : = l ;

for p l := (1 + p) 9 . 2 while 1 - p f 1 do

begin i f a [p l I < b then 1 := p l else p := p l end ;

The Binary Search Program w i t h a Boolean Function as a Parameter

The binary search procedure above works only i f the elements a[l],

'aC21, . . . are. arranged in descending order. I f one needs, as part of a

larger algorithm, the binary search for some sequences which are ordered

i n ascending order and for others which are ordered in descending order,

there are two possibil i t ies: Either one writes. the search procedure

twice, one for ascending and one for descending sequences, or one

writes a search procedure with a "variable" order relation, which be-

comes a parameter of the procedure. In this particularly simple case, it

. i s probably best t o take the f i rst approach because it avoids the time-

consuming . transmittal of a parameter procedure at a relatively low

penalty i n storage space (for storing two search procedures). In large

procedures it might be worth while to introduce another parameter in

order t o avoid duplication of instructions. We w i l l show the use of a

Boolean function in the case of the binary search procedure:

procedure binary search wi th variable order relation (a, b, 1, p, R) ;

value I, b; integer 1 , p ; real h ; real array a ;

boolean procedure R ;

begin integer pl ;
p : = l ;

test for end: i f 1 - p = 1 then go to M ;

p l := (1 + p) + 2 ;

i f ~ (a l p l] , b) then p := p l else 1 := p l ;

go to test /or end ;

M :

end ;

The following procedures are examples for Boolean procedures which

represent order relations and thus are permissible parameters in the

5th posit ion of the procedure binary search wi th variable order

relation:

boolean procedure geq (a , 6) ;

geq := a 2 b ;

boolean procedure leg (a, b) ;

leg := a b ;

boolean procedure abscomp (a , b) ;

abscomp := abs (a) 2 abs (6) ;

boolean procedure indirectcomp (a , b) ;

indirectcomp := D [a, 11 2 D [b , 11

The last procedure must be defined inside a block where array D i s

valid; D is a global quantity for this procedure. The comparison of two

numbers a and b i s here based on the comparison of the f i rst elements.

i n row a and row b of a matrix D.

A Preoodure lor Merging Two -Sequences of Nunrbcrs ,Auralytd in As-
cending Order

The ~rocedure assumes that the numbers a [f 11, a [f 1 + 1 1 , . . . ,
a [f 2] are arranged in ascending order, and that the numbers a [g l] ,

a [g l + 1 1 , . . . , a [g2] are arranged in ascending order. The procedure

merges these two sequences into locations a [h l] , a [h l + 1 1 , . . . :
procedure merge (a , f 1 , 12 , g l , g2, h l) ; valuef 1 , f 2 , g l , g2, h l ;

array a; integer f 1 , f2, g l , g2, h l ;

begin integer f , g, h ;

comment f , g , and h are "pointers" in the three sequences
of elements i n the array a ;

Q : i f f > f 2 Ag > g 2 then go to P ;

i f f > f 2 then

M : b e g i n a [h] : = a [g] ; h : = h + l ; g : = g + l ; g ~ t ~ Q

end ;

i f g > g2 then

end ;

i f a [f I ~ a [g] then go to N else go to M ;

P :

end ;

Eff ic iency o f the Merge Procedure

Strictly speaking, one cannot judge the eff iciency of an ALGOL

program unless there is a translator. An ALGOL program which appears

t o be poor may turn out to be almost optimum i f translated by a good

translator; and a good ALGOL program may turn out to be very bad i f

translated by a poor translator. This means, of course, that the

"machine independence" of ALGOL has i ts limitations as soon as

eff ic iency of the intricate kind discussed below becomes important.

One may, however, iudge the quality of an ALGOL program under the

assumption that it i s translated by a "simple-minded" translator, that

is, a translator which fol lows the instructions of an ALGOL program

very closely without looking for possible savings in instructions. Such

a simple-minded translator would produce a program for the procedure

merge which contains some inefficiencies. The program w i l l make,

for example, the comparisons f > /2 and g > g2 twice, and for such a

translator the fol lowing program would be better:

...
/ := / 1 ; g := g l ; h := hl: ;-

Q : i f f > f 2 then begin-if g. > g2 then go .to ;P e k e go to. M
. ,

end ; . .

i f g.>.g2 then:.

N .: begin .a[h.] -:=.a[/] ; / :=:f + 1,; go. to,~~~:.end:.:; .

else.if: a[.f]~.j.,a[g];then:.go;.to.;l\r.e(se go to.,^:.; :: ; - . .

M : a [h l := g := g + 1 ;

R : h : = h + l ; g o t o Q ;

P :

end

This program w i l l s t i l l lead to inefficiencies, because for each com-

parison between elements a[/] and which i s mode, it requires:

1. computation of the addresses of a[/] and a[g],

2. getting these elements from memory to the arithmetic unit,

3. computation again, after the comparison, of the addresses of a[/] or
a[g] for use in statements N or M, and finally transmittal of the
smaller element to i ts proper place a(h).

The following program avoids some of the inefficiencies:

f := 11; := gl; h := h l ; G := F := a[/];

Q : i f f > f 2 then

for i :=O step 1 unt i l g 2 - g d o a [h + il :=a[g+ il
. .

else i f g > g2 then .
for i := 0 step 1 unt i l f 2 - f do a[h + i] := a[/ + i]

else begin i f G .5 f then

begin a [hi := G; g := g + 1 ; G := a [g] ; h := h + 1 end

else begin n [k] := F ; f := f + 1 ; F := a [/I ; h := h + 1 end

go to Q
end;

The last program is ahout as ns nne A n get in "nptimi-ring" nn

ALGOL formulation for this computation process. Such things as

register assignment i n the arithmetic unit, of course, l i e beyond thc

,scope of ALGO,L, and for some time to come the optimum use of special

registers w i l l be beyond the scope of translators.

A Procedure for Sorting a Set of Numbers

The elements to be sorted are stored in a [f] , a [f + 11, . . . ,
a[f + n - 11. The sorting is done according to the now classical

procedure by von Neumann and Goldstine (6). Sequences of ordered

numbers of length 1, 2, 4, . . . are merged to create ordered sequences

of twice this size. After, at most, [log2 n l sweeps, the original set i s

sorted. The procedure uses n auxiliary storage locations, namely

a[aux] , a[aux + 11, . . . , where aux is one of the parameters of the

procedure. A t the end of the program the ordered sequence i s stored in

either a[/] and the following locations, or i n a[aux] and the following

locations, depending on whether [log2 n] i s even or odd. The Boolean

variable E contains the value true in the f i rst case and the value false

in the second case. The procedure sort by merge uses procedure

~ i n (a , b); which i s assumed to be declared somewhere else:

~rocedure sort by merge (a, f, aux, n, E) ;

array a ; integer f , aux, n ; boolean E ;

begin integer a1 , a2, 1, i, b ;

comment

a1 = f and a2 = aux i f the merge works from the original loca-
t ions to the auxil iary locations

a1 = aux and a2 = f i f the merge works from the auxil iary loca-
t ions to the original locations

1 i s the length of the ordered sequences

j counts through the set of ordered sequences;

comment

the actual program starts here. Note how short it is;

I := 1 ; a1 := /; a2 :- aux;

Q : for j := 0 step 2 x I unti l n - 1 do

merge(a,al + i I a l + ~ i n (n - 1 , j + l - 1) , a l +]+I,
a'i + M z n (n - 1 , j + 2 ~ ~ - 1) , j + n 2) ;

I : = 2 x I ;

. i f I < n then begin b := a1 ; a1 := a2 ; a2 := b go to Q end ;

P : i f a1 #. f then.E := false else E. := true

end ;

Use o f Special Parameter Delimiters

The program sort by merge given above i s straightforward and can be .
easi ly understood i f one knows the meaning of procedure merge, which

i s cal led by the procedure sort b y merge. The trouble in understanding

the ca l l of procedure merge l ies in i ts many parameters, the meaning of

which has to be retrieved from the description of procedure merge.

Although the reader of a program cannot be relieved of the task of

looking into the description of the procedures which are used in this

program, he may be given some help by the use of "special parameter

delimiters." A special parameter delimiter i s a string beginning with a

closing parenthesis, followed by a string of letters, a colon, and an

opening parenthesis. Examples of a parameter delimiter are:

) this i s a parameter delimiter : (

) the next parameter must be a posit ive integer : (

A l l such special parameter delimiters are equivalent, and they are

equ'ivalent t o a comma. They may be used to .separate parameters in

procedure declarations and/or in procedure calls. I f a special parameter

delimiter is. used in the declaration of a procedure, the ca l l may yet use

a comma, or even a special parameter delimiter with a different letter

string.

With these special parameter delimiters, the ca l l of the merge

procedure can be made in the following more readable way:

merge (a)

merge the elements from position : (a1 + j l)

to position : (a1 + Min(n - 1, j + 1 - 1))

and the elements from position : (a1 + j + I)
, to position : (a1 +Min (n - 1, j + 2 XI- 1))

into positions upwards from : (a2 + j) ;
comment the second set of numbers i s void in case n - 1 < j + 1 ;

A Sorting Procedure Based on Uniform Distribution o f the Numbers to be
Sorted

TIte f u l l u w i ~ i ~ procedure Is useful only if t l ie numbers to be sorted

are almost uniformly distributed between the numbers I (= lower limit)

and u (= upper limit). The interval from I to u i s divided into I + 1

intervals of equal length. .In a f i rst "sweep" over the elements a [i]

(i = 1, 2, . . . , n), one determines the numbers C[j], C [j] = number of

elements in jth interval (j = 0, 1, . . . , I). In a second sweep, the

elements a [i I are transmitted into an auxil iary storage region in such a

way that for a l l j and jl, i f j > jl, the elements belonging to interval j

are stored after those belonging to interval jl. I f j = jl, the elements

are arranged in the original order. In a third sweep, the elements in the

different intervals are sorted.

Since the amount of work to be done per element increases in the

sort by merge process as log2 n, the saving which results from this

procedure may be substantial i f n i s large:

procedure sorting b y distributinn corlnting (a, n, 1, U, I, aux) ;

value n, I, u, I; integer n, I; real u, I, real array a ;

comment the elements to be sorted are a [I], a [2], . . . a [n] .
I + 1 i s the number of intervals

I and u are lower and upper l imits for the a [i] respectively ;

begin integer array c[-2, I] ;
-

comment C [j] w i l l be f irst used to store the number of
elements in the jth interval ;

for j := O step 1 unti l I do ~ [j l := O ;

for i := 1 step 1 unt i l n do

begin j :=entier (I x (a [i] - I) / (~ - I)) ;

c[jl := c[jl + 1
end ;

c[-11 := 0 ;

for j := 1 step 1 unt i l I do ~ [i] := C [j] + ~ [j - 11 ;

comment at this place C [i - ' I] contains the number of
elements in intervals below i from here on
C [j - 11 w i l l be used as a pointer for the

posit ion of the elements in interval j ;

for i := 1 step 1 unt i l n do

begin j := entier (I x (a [i l - I) / (u - I)) - 1 ;

U [U U X + c L ~]] := u[iI ;

C [j I := C [i I + 1

end ;

comment a t this point ~ [j - 11 contains the position
relative to a[aux] which i s occupied by the
last element in interval j ;

c [-21. :=,- 1. ;

for j := - 1 step 1 unt i l I - 1. do.

sort the elements .from posit ion : (aux + ~ [j - 11 + 1) .

to posit ion : (aux + C [j] - 1)

so that the sorted sequence,appears .

i n positions upwards. from. : (~ [j - , 11 + 1) ;

end of procedure sorting, by .distribution .counting . .

comment this i s a cal l of a procedure which i s not de-
clared i n this paper, but which could easily
be constructed from the procedure sort by
merge ;

The sorting procedures given here can be generalized, by the addi-

t i on of a Boolean function as a parameter, .to be va l id for any order

relation.

C H E C K L I S T OF. I M P O R T A N T A L G O L C O N C E P T S .

Page Page

actual parameter

ALGOL strings

ALGOL structure

arithmetic assignment
statement

arithmetic comparison

arithtnetic express ion

array declaration

Boolcan assignment
statcmcnt

Boolean express ion

comment, text

compound statement .

conditional expression

conditional statement

designational express ion

dummy statement

for l i s t element

for statement

formal parameter

functions

global

go to statement

identifier

input output

label 16.

local 22

machine code 39
11 metavariables" E, S, V 8

number 5

own 4 1

procedure body 28

procedure ca l I, 2 8
procedure statement '

procedure heading, 28
simple form

recursive procedure 40

simple variable

special functions

specifications

specifier ,

statement

statement parentheses

string quotes

subscripted variable

switch

switch declaration

syntactic skeleton

type declaration

value parameter 35

ACKNOWLEDGMENT

Tom Sobosky prepared notes from my talks about ALGOL 60 a t the

1960 summer session on "Advances in Programming and Art i f ic ial

Intelligence," Chapel Hi l l , North'Carolina. An earlier version of this

report was published in the proceedings of this summer session. A. A.

Grau and L. L. Bumgarner helped in preparing this first version.by . .

making ,valuable comments and corrections. The present version

incorporates further suggestions and corrections by W. Borsch-Supan, . , . .
A. S. Householder, F. L. Baver, K. Samelson, and W. R. Busing. I wish

to thank a l l of these gentlemen.

L I T E R A T U R E C I T E D

(1) A. J. Perl is and K. Samelson, "Preliminary Report - International
Algebraic Language," Communications of the ACM 1 (12), 8-22. . . .

(1959).

(2) P. Naur '(ed.), "Report on the Algorithmic Language ALGOL 60,"
Communications o l the ACM 3, 299-314 (1960).

(3) Math. Panel Ann. Progr. Rept. Dec. 31, 1960, ORNL-3082, pp 6-20.

(4) J. Jensen and P. Naur, "An Implementation of ALGOL 60 Pro-
cedures," Nordisk Tidskrift for Information - Behandling 1(1),
38-47 (1 961):

. .

(5) A. A. Grau, The Structure o f an ALGOL Transldtor, ORNL-3054
(Jan. 23, 1961). .

(6) H. H. Goldstine and J . von Neumann, Planning and Coding for un
Electronic Computing lnstrument, Institute for Advanced Study,
Princeton, N. J., 1947/48.

ORNL-3148
UC-32 - Mathematics and Computers

TID-4500 (16th ed.)

. 1. Biology Library
2. Reactor Divisi,on Library

3-4. Central Research Library
5. ORNL - Y-12 Technical Library,

Document Reference Section
6-200. Laboratory Records Department

21 . Laboratory Records; ORNL R. C.
202. N. B. .Alexander
203. D. E. Arnurius
204. G. J. Atta
205. S. E. Atta
206. S. R. Bernard
207. N. A. Betz
208. F. T. Pinford
209. H. M. Battenbruch

,210. L. L. Bumgarner
21 1.. H. P. 'Carter .'
212. C. E. Center
21:3. E. L-. Cooper
214. A. #. ~u l kowsk i
215. F. L. Culler
216. 'N. M. Dismuke .
217. A. C. Downing
218. M. B. Emmett
21'9. M. Feliciano
220. 8. A. Flores
221. J. H. Frye, Jr.
222, W. Gautschi

223. A. A. Grau
224. M. 'T. Harkrider
225. A. Hollaender

236-250. A. 'S. Householder
251. R. G. Jordan (Y-12)
252. W. H. Jordan
253. M. T. Kelley . .

254. J. .A. Lane

255. J. G. LaTorre
256. M. P. Lietzke
257. .T. A. Lincoln
258. S. ,C. Lind
259. R. S. Livingston
%U.' E. C. Long,
261. M. J. Mader
262 K. Z. Morgan
263. J. P. Murray (K-25)
264. M. L. Nelson
265. -J. J. Rayburn
266. .H. E. Seagren
267. E. .D. Shipley
268. M. J. Skinner . .

269. A. H. Snel I
270. J. A. Swartout
271. E. H. Taylor
272. D. .J. Wehe
273. A. M. Weinberg

EXTERNAL DISTRIBUTION

274. Division of Research and Development, AEC, OR0
275-813. Given distribution a s shown in TID-4500 (16th ed.) under Mathematics and Computers category
v . - .

