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THE THEORY OF A TIME-DEPENDENT HEAT DIFFUSION DETERMINATION OF
THERMAL DIFFUSIVITIES WITH A SINGLE TEMPERATURE MEASUREMENT

R. B. Perez, R. M. Carroll, and O. Sisman

ABSTRACT

A method to measure the thermal diffusivity of reactor fuels during irradiation is de-
veloped, based on a time-dependent heat diffusion equation., With this technique the tem-
perature is measured at only one point inthe fuel specimen. This method has the advantage
that it is not necessary to know the heat generation (a difficult evaluation during irradiation).

The theory includes realistic boundary conditions, applicable to actual experimental
systems. The parameters are the time constants associated with the first two time modes
in the temperature-vs-time curve resulting from é step change in heat input to the specimen.
With the time constants and the necessary material properties and dimensions of the speci-
men and specimen holder, the thermal diffusivity of the specimen can be calculated.

I. INTRODUCTION

There are two well-known and reliable ways to perform measurements of the thermal diffusivity
of materials by time-dependent methods. These are the Angstrom cyclic method! and the flash
technique.? The former requites a relatively large sample to allow for the measurement of the tem-
perature at various points. The flash method is a single-temperature technique requiring an
instantaneous, uniform deposition of heat in the sample, such as by a laser.

The purpose of this work is to develop the theory of a single-temperature-measurement method °
applicable to small-size samples and utilizing any arbitrary source of heat. This last requirement
is important in order to eliminate the effect of inaccuracy in the power determination. The motiva-
tion for the present study arises from the problems encountered in trying to measure the thermal
diffusivity of fissile materials under irradiation conditions. In this instance the determination of
an accurate measure of the effective power input was hindered by the addition of nonfission heat-
ing® and by the release or accumulation of stored energy during changes of irradiation conditions.*
Moreover, the necessity of performing the experiment inside the core of the reactor (in this partic-
ular case the Oak Ridge Research Reactor) and the prevention of thermal stresses require the

use of relatively small samples.

a. J. Angstrom, Ann. Physik Chem. 114, 513 (1861).
’W. J. Parker et al., J. Appl. Phys. 32, 1679 (1961).
3R. M. Carroll, R. B. Perez, and O. Sisman, Nucl. Sci. Eng. 36, 232 (1969).

‘R. M. Carroll, R. B. Perez, and O. Sisman, ‘‘The Effect of Stored Energy on Measurements of
Thermal Diffusivity During Irradiation,’’ Nucl. Sci. Eng. {(in press).



In Sect. II below, the theory is developed for the simple one-region case where one considers ‘
a heated sample exchanging heat with a bulk coolant. In Sects. I, IV, and V, we consider a
three-region problem which cortresponds to the experimental setup presently utilized for in-pile

measurements at the ORR.?

Il. THE SINGLE-REGION PROBLEM

The geometry of this physical situation is shown in Fig. la. The following assumptions are
pertinent to the model. ;
1. The thermal properties of the sample remain constant during the heating pulse.

2. The heat generation is assumed to be uniformly distributed and to be negligible in the
surroundings:

3. The axial flow is neglected as well as the heat transport by radijation.

The sample loses heat to a bulk temperature T,.

The approximation involved in assumption 1 isusually made in heat transport calculations,
and it is reasonable for limited temperature increments of the sample. ‘Assumption 2 does not
affect the results because in this technique the power input does not enter into the calculations
of the thermal diffusivity. 'Its introduction, however, eliminates the considerétion of matrix
elements of the power distribution inside the sample. In contrast, the assumption made in 3 is
a serious one. It will-be investigatéd in a forthcoming paper. The hypothesis set forth in
assumption 4 is plausible for a large body of well “‘stirred’’ fluid coolant. On the basis of the

above set.of conditions, the following heat balance and boundary conditions apply:

14 ~
<Vf it Z‘aT) T(r, ) = — p(/K ,
1

J
—T(r; t =0,
ar « )1’:~b1

d
~ b, 5 (s, t)ilzbz =B TG, §—T,1, r.3)
where T{r, t) = sample temperature distribution (°C);
V2 = radial Laplacian = (d%dt? + (1/r) d/dr,
B = Biot number = bZH/K (dimensionless),
K = thermal conductivity of the sample (cal.cm™! °C~1 sec™1), .

H - conductance between the sample and the coolant (cal cm™2 °C~! sec™!),
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Fig. 1 — Geometry of the One- and Three-Region Problem. (a) Cross-section dimensions of the UC)2

specimen. (b) Cross-section dimensions of the specimen holder.

p(f) = heat pulse (cal cm~3 sec™1!) = p, U(D),
U(t) = step function,

«, = thermal diffusivity (cm?/sec) = (K/pc), where p is density in grams per cubic
centimeter and c is specific heat in calories per gram per degree centigrade,

T, = bulk temperature.

To solve this time-dependent heat diffusion problem, we expand the temperature in the form

T, =T, + L

n Yl(anbl)

AU (@, d1.5)



where the eigenfunctions
Uo(anr) = Yl(anbx) Jo (anr) —=Jy (anb1) Yo (anr) (11:6)

satisfy the boundary conditions (II.2) and the following orthogonality and notmalization condi-

tions (see Appendix A):

fb 1:2 U, (0,0 U, (@0r dr=0 (p#£n), aL7)
b2 5 ; 1
j;l UG (a0 de =N = —BIUG (@,,)) + U (o)) = BIUT (.5}, ~ (1.8)
with !
U, (b)) =Y (ab)], (ab)~] (b)Y (ab). (IL9)

Introduction of the expansion (II.5) into Eqs. (IL.1) and (H.3) yields a set of differential

equations for the ‘modal amplitudes An(t):

Cdiamoa .10
g 40 4D =2, —, (L10)
where T =5 is a characteristic time constant of the sample for the pth mode, with
apK
Y (ab) b,
e INpol 2
a, = srvrvme. || ridr Uo(apr) (cm?) . (IL11)
©.opp 1

Moreover, the following secular equation for the gpecial eigenvalues %, is also obtained:
apb2 Ul(apbz) - B, Uo(apbz) =0 , (I1.12)
The differential equation (I1:10) is easily integrated, yielding
_a P Py —*p*
Ap(t) =a, R [:ap S AP(O)] e R : ; (I1.13)

(sec™1) : (.14

1
S =l
By

P

whence from Eqs, (1I:13) and (II.5) one obtains for the temperature distribution:

T(r, =T, + £O, Ufon - F0, e A (IL.15)




with
1 P,
= e __a 2, (11.16)
on Y1(anb1) n K
1 P
= — -2 _ A (O] . 11.17
MY (o) {a"K 2 )J (n

Experimental data (Fig. 2) show the presence of two distinct modal components in the tem-
perature distribution of the sample. The time eigenvalues s, and s, (52 >s)) exhibit a ratio
s2/s1 =9 and are consequently easily separated either by peeling-off techniques or by applica-
tion of the least-squares method to the experimental temperature vs time curves.

Knowing the two time eigenvalues s, and s,, one proceeds in the following manner:

1. Write the secular equation (II.12) for the two space eigenvalues o, and a, and eliminate

among them the Biot number B ; we obtain

S 1/2 s 172 s 172
2 2 2
U (ab,)U, [a1<_s_> sz’ _(;_.> U, [a1<:> bz} Uyab)=0, (11.18)
1 1 1
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where we utilized the relation [from Eq. (11.14)]
(a,/a)? = s,)/s, . (11.19)

2. Solve the transcendental equation (II.18) using (I1.19).  This yields the two space eigen-

values a and a,, from which the thermal diffusivity 'is obtained by either of the equations

Pl i) (I1.20)
1 a? a?
1 2

A particularly simple expression for the thermal diffusivity is obtained for very thin samples,
that is, when 6. = b, = b, is such that the value of 03 is very small compared with unity. Then

(see Appendix B) one can wiite

2
U(ab)=— —— (f. —1.a%8?%), : .21
o5, mbzﬁo 128 (I.21)
26 1
U(ab)~— 2 -—a282> , (I.22)
L ) Th, (go 6
with
f0:1+—-8—t1+£+<i>l, (11.23)
b2 b2 bZ .
10108
bi=gtso | @29
2
1
g0=1+-_5. 1+_8>, | (I1.25)
25, 5, ~

Introduction of Eqs. (II.21) and (I1.22) into (I1.18) yields an expression for the eigenvalue a,

which can be utilized in Eq. (I1.20), yielding the following relation for the computation of Ky

14 fz
K. =8 52{ } (cm? sec™1), (11.26)
1 1 6
g
=) 0
whete
€=(s,/s)?, (I1.27)

which for extremely thin samples reduces to

2
1 14+€
- s 82 . (I128)
T [ 6 ]




ill. THE THREE-REGION PROBLEM

The simple geometrical arrangement assumed in the previous section is very seldom realized
in actual practice. The experimental apparatus utilized for the in-pile measurements at the ORR
has been described elsewhere,® and a schematic view is shown in Fig. 15. There are three
regions to be considered: the sample (region 1), the helium gas (region 2), and the isolating
shell (region 3). The corresponding heat balances and boundary conditions are based on the

assumptions stated in Sect. II:

1 90
(Vf - 5—> T (s )=~ p(t)/K, , (II.1)
K, t
19
<v3 _ -_.> T,6e =0, .2)
K, ot
1 0
<Vr2 —— 5—) Ts(r, H=0, (I11.3)
Ky t
d :
é)—rTl(r, t)tb =0, (IIL.4)
1
T (b, =T,(b, 1), (1IL.5)
d d
K15:T1(r’ t)|b2=K2—a-r—T2(r, t)}b2 , (JiL.6)
T, (b, =T, (b, 1), (.7
0 0 ,
K25 T,(, t)“bs =K, ET3(r, t)[b3 , (111.8)
d
- b"_é_; T, t)]b4 = Bo(Ts(b4’ H-T.), (I11.9)
B,=5bH/K_, (I11.10)
Ko Ky Ky = thermal diffusivity for regions 1, 2, and 3.

We try solutions of the form

T 0-T,+ L % U an), (IIL.11)
f b n Yl(bl) [1 0 4
T,(c = Ty+ § {4, J(n+B, Y (@0}, (II1.12)
A3n
Ty 0=T,+ L 2220, (I11.13)

2n



with

Uo(anr) = Y1(anb1) jo(anr) — ]1(anb1) Yo(anr) s
Zo(anr) = ﬁzn jo(ocnr) - IBm Yo(anr) !
Bm =ab, ]1(anb4) =B, ]o(anb4) !

Byn=0,b,Y (0,b)~B Y (ab).

(111.14)

(1I.15)

(I1L.16)

The above expansions already satisfy the boundary conditions (II1.4) and (II1.9).  The re-

maining four boundary conditions will determine the coupling coefficients
Tin= An/A10
Mon = B2n/A1n !

nan = Asn/Am ‘

and the eigenvalues a . If we now introduce the expansions (IIl.11), (IIl.12), and (I11.13) into

(1IL.5), (I11.6),-(I11.7), and (11I.8), we obtain
Min ]o(anbz) T Man Yo(o“nbz) = Y;l(anbl) Uo(anbz) ’

K
Nin ]1(anb2) * Man Yz(anbz) = ;{—l Y:l(anbl) Ul(anbz) s
2

g ]0(anb3) T Tan YO(anbs) ™ 182_1 M3n Zo(a’nb3) =0,

K
Tin ]1(anb3) T Man Yl(anbs) = f 18;1 Nan Zx(anbs) =0.
2
From Eqgs. (I11.17) and (I11.18) we obtain

X -
1 U (ab) Y (3,b,) - El U (a,b,) Yo(aan)J ;

1n~ W Y (ab) { ,
-1 K,
772.“ 3 W Uo(a“bZ) jl(anb2) __i(—; Ul(kanbz) ]o(aan) =" Noan

with

(1IL.17)

(111.18)

(I11.19)

(111.20)

(111.21)

(I11.22)

(I11.23)




The pair of equations (II1.19) and (II1.20) provide two equivalent expressions for the coupling

factor n, . These are

KZB2n

Tan " K Z (ab) AN T R OGN (I11.24)

Bon

" Z(ab) LIPWACHNELITS SCHNE (II1.25)

n

Finally by equating Egs. (II1.24) and (II1.25) we obtain the secular equation for the determi-

nation of the eigenvalues @

<K__2> Z, (@,b)) _Tin Jo(%P3) = Mgpn ¥o(a,05) - Wo(oh,) ) (111.26)
Ks Z1 (anbs) Min ]1(anb3) ~ Mo2n Yl(anb3) W1(anb3)

The temperature distribution in each region can now be expressed as a function of a single set

of modal amplitudes Am(t):

T (=T, + § 171(—;35 A_(OU(arn, (IIL.27)
T 0=Tyr LA, 0W,0, (IIL28)
Ty 0Ty L2804, 02,00, (I11.29)
2n
with
Wan=n_J(,0 -7, Y (@, (111.30)

where, in view of the boundary conditions, the following relations hold:

U,(a,b)=0, (111.31)
YT ab) U (o b,)=W(ab), (111.32)
Kl -1
= Y74 b)) U (ab)=W (ab,), (111.33)
2
M3
Wo(a,b)= 22 Z(ab,), (I11.34)
2n

K, 7
W (ab)=—2 3%

2 2n

Z (ab,), (111.35)

ab, Z1(anb4) - B, Zo(anb4) =0, (111.36)

with the functions U , W, and Z  defined in Appendix A.

1’
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Before we can proceed with the solution of the time-dependent problem, we must prove the
orthogonality propetties of the eigenfunctions U o w o and Z o and obtain an expression for the

normalization integral. This program is developed in Appendix A. The results are:

K

K Map N
Y7 a b)Y N a b )l 42 4 3.3P 30y _g (111.37)
1 1 1 1771 2 !
i f i Kl i K1 B2p62n son
K K 7 2
—2 2 —3 3p =
Y] (apbl) Ilpp % I2pp +K -B—- > Ispp =N, (111.38)
1 2p
where
b,
Iipn= (o2 — a;) L r dr UO(apr) U (a5, (111.39)
1
by
= (afl -~ a;) . r dr WO (apr) Wo(anr) s : (111.40)
2
by
Lipn= (a2 - a,;) J; rdr Z (a0 Z (a0) ~ (141
: 3
)
_ 2
Ilpp- bl rdr UO (apr), (I11.42)
b .
I = f ’ r dt' WZ(CL l') § (IH 43)
e Jp, 0tpT? :
b,
I = f ¢ r dr Z2(a l‘) (III 44)
3pp b3 oNp .
N :—1—— Y"2(ab)b2 1———-—- Uz(ab)+ = Z(Qb) 12U2(ab)
pp.-9 1 P ...E.
2
K, — K K
+ - 2K 3 p2 { 2(& b )-— 2 W2(a b )} )(b2 ;2 B2 Zg(apb4)} . (111.45)
1

The above integrals are given also in Appendix A.
Introduction of the eigenfunction expansions (I11.27), (111.28), ‘and (I1I: 29) into the heat dif-

fusion equations and proceeding in the usual way yields:

Z :A O +4,,0=a, &, | (111.46)

d
—A, (t) + K

pp dt n#p

where the following time constants have been introduced:
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K

3

op = llepp K 7:?szpp + E_TspHspp ’ (111.47)
1

K K
- 2 3
pn = Tllepn + ;(—-7-2pH2pl’l +K— 7239”3[)1’1 ; (III48)
1 1
with
1 1
T = y T = e T, e (11.49)
1p 2 2 2 3
Gy T A P apz)Ks
H —=YT%ab )—I“’p W, e g (T >2 Lopp (111.50)
1pp 1 VpT1 ? app T *P3pp T\ @, ! ’
N oo Voo Bop N oo
-1 -1
_ Y] (apbl) Y7 (b)) Ilpn H - Izpn , (L5
i Vo % = a; e (e - azza)Npp
Nyn 7 I
H _J3n "sp 3pn
3pn 2 2 ’
BaaBap (O = N pp
and
1 b, b U (o b
a = — f U (a1)rdr= 2 1(%p5,) (cm?) . (I11.52)
P oY (ab)N b op Y (ab) N
P 1Vp pp 1 p 1~ p1 pp

From the result (II1.46) one sees that the modal amplitudes are coupled through the time
constants Ton' The individual time constants are weighted sums of the characteristic times of
the regions involved in the problem (i.e., Mo Tap and 'rsp) with the dimensionless matrix elements

Hipp and Hipn (f =1, 2, 3) acting as the weight factors.

V. THE TWO-MODES APPROXIMATION

In this case Laplace transformation of the set (II1.46) and especialization to two modes

yields

a
A +s7, DA, (9) + sleAw(s):—K—lp(s)+§.1 , (av.1)
1

T AL+ (s sT DA (9) = .;_2 o)+ 3, av.2)
1
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where for a step function input heat pulse one has

p()1
S‘“’;po’

and

E1 =71 A“(O)+TIZ AIZ(O)’

22: Tyt ‘411(0)+ Ty2 Alz(o)'

This gives the following expressions for the Laplace-transformed modal amplitude:

fa 1s(a

7ol
All(s)= 1 122 12722 1272

TN p /K, + 82 A 457, ) — 57 2 )

sls? + S(Tll * Tzz/du) +1/d12]d12

[a2 * S(azTu = Tzlal)] <po/K1) + S[22(1 + 87 1) T Tziszl]

A = ;
IZ(S) sls? + [8(71 tr Tzz)/dx 2] * (1/‘11 2)}‘112
with

172 = 1070

d12:71

The poles are located at s =0 and s = —s, s = —s,, where

2

Txl“LTzzJr <T11+7—22> o 4
A 22 A 22 —

d12 d12 d12

T %T T N2 4
T e (11 22)
. AL 22 alb 22N

: [ d12 d12 d12

with the relations

1]

It
t\)l =

|

%]
it
S

: T T
Is | +1s,] 2t 220
)y

Straightforward Laplace inversions of Egs. (IV.6)and (IV.7) yield

—s,t
SR U RMg=sit p(2) 2
All(t)“Rll R“e R11e ’

-5t -5t
= RO . R(L) 17 p(2) 2
Alz(t)_R12 R1ze Rlze ,

(IV.3)

(IV.4)

(IV.5)

(IV.6)

av.7

(IV.8)

Iv.9)

(IV.10)

(IV.11)

av.12)

(IvV.13)

(IV.14)
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where
Riol) = axpo/Kl ! (Iv.15)
R =a,-2, v.16)
K
1
RO - 1 la, = s (a,7,, —a, 7, N8 — s[5 (157 )43 7 s ] (IV.17)
“‘1—(s1/s) ! 177122 212 K 171 122 2'12°14 (¢ :
2
(2)="’—"——1 sl @-s 7 y+s 7 2 1~la ~s (a7 -7, a)]B.Q_ (1V.18)
R CIVZRES U 2'22 21272 1T T et , :
2
R _ 1 [ (a7 7] D, = a , s 1 V.19
1271 —(s,/s,) R A =8, T+ 2Ty 8,0y, (AV.19)
152 1

1 P, |-
RYY = m{sz[zz(l = 5,0+ 8,7 3] = la, - s (a7, - a7 K—"} . (v.20)
2 1 1

Therefore within the two-modes approximation one has, from Eqs. (111.27), (II1.28), (I11.29),
(IV.13), and (IV.14), the following expressions for the temperature distribution:

—s_t
T, =T,+RPU (an)+RYU ()~ RV U, (00« R U, (a,nle *
—~s t
- [R§21) U, a0+ Rgzz) U, 0(a2r)}e 2, @av.2n
U, (o0 =Y" b)) U (ar), (IV.22)
t

-
T, =T, +RQW () +RPW () ~[RD W (a,0)+ R W (a,0le !

—8 t
~[RP W (0r) + RDW (a,0le 2, (IV.23)

n 7 n
T, )=T,+ R<1°1>-[.3_3i Z(an)+ R 2L Z (a0 - [Rﬁ) Eil.zo(alr)
21 22 21

n —8§ t n n —s, t
CREE z0<a2r>]e . [Rg? B 2,0+ R 22 Zo(azr)]e ' av.29)
22 21 22

V. DETERMINATION OF THE THERMAL DIFFUSIVITY FOR THE CENTRAL REGION

This section will be devoted to the problem of determining K, assuming that the thermal

diffusivities of the other regions are known. The unknowns to be determined are &y Bys and
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the two spatial eigenvalues a and a,. To this end we have at our disposal Eqs. (IV:11) and

1
(IV.12), arising from the knowledge of the two time eigenvalues s, and S, and the secular equa-
tion (II1:26) written for a equal to a, and a 5 The first step is to rewrite those equations show-

ing explicitly their dependence on K Kz, KS, and Bo. We define the following functions:

Loalby by) = Y (aby) Jolaby) —J (@ b)Y (ab), (v.1)
L by by = ¥, (2,0, J (2,0 — ], (0,5,) Y (ab), vV.2)
Qonlby b) = ¥ (a b)) J (b)) — Jo (b ) ¥ (ab), | (v.3)
Qnlby )= Y (a.b.) ]1(anb2) = Jo(@,5,) Yx(az{bz) ’ : ‘ V.4
Monlby b= ¥ (b I(0b) = 1@ ¥ o(o) v.5)
Minbyr b = ¥ (@) ], (0b) = T (b ) ¥ (0 b,) W
SOn(bs’ :b4) = ¥ (0,0 Jolo,by) = ]o(a’nb4) Y (b)), (V'7>
Sialby b ) =Y (04 0) ] (b))~ (% 0)Y (2b), (V.8)

with the properties
Lonlby B =W, | (v.9)
M, (b, b)=W (b)), | | (V.10)
where Wn(bz) and Wn(b4) are the Wronskians

2

WanX

(V.11

W)= ¥ (0,0 (00—, (0= -

In terms of the above functions we have the following expressions for the functions W 0(ocnx),
W.(0, %), Z (a,x), and Z (a x):

W (o b

i ‘ V.
oN'n 2) Anyl(anbl) Uﬁ(aan) Wn(bz) g ( 12)

K

Wo(aan) T m I:Uo(anbz) an(bz’ b3) = —i(_:- Ul(anb2) QOrz(bz ¢ b3)} ¢ (V'l?’)
1 K ‘

Wl(anbz) R RIS RIS h Ul(anb2) Wn(bz) ;) (V.14

An Yl(anbl) KZ
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W, (ab,)= M{Uo(anbz) L, (b, b) _i;i U (b)) L, (b, bs)] , (V.15)
n 1" n1 2

Z(ab)=0b W (), (V.16)

Z(ab)=ab, T, (b,b)—B,S, (b, b,), (V.17)

Z,(a,b)=B W (b,), (V.18)

Z (ab)=ab T (b,b)—B S (b,b,). (V.19)

The above relations allow us to write the secular equation (II1.26) and the integrals Ipp and

I in a manner such that the constants K1’ Kz’ K

on and B are explicitly shown. We obtain

37

KZ K3 K3
anb4 Uo(anbz) LlnMon—k_‘— anMm 7(_> + O"nb4 Ul(anbz) Qon Mln’i— - Lon MOn
1 1 2

K K K
3 2
+ B, [Uo(anbz) (ansan— - LmSOnT)‘L U, (a,b,) (LOHSOn ~ Qon Slnf)] =0 (V.20)
1

1 2

for the secular equation, and

I = -—1—- G (V.21
1pp A2 opp’ )
r
with
(1) _§p2 2 2 772 2.
Gopp = {bz[Ug(apbz) + Ul(apbz)] - b1 Uo(apbl)iAp ; (V.22)
1, = __ G2 4GP <_K-‘.>2 - 26 & (v.23)
2pp 2A12? Yilz(apbl) opp 2pp K2 ipp K2
with
(2) _ 2 2 2 2 2 2
Gopp = Uo(apbz) [bs(le + Llp) — b2 Wp(bz)] s (V.24)
(2) _ 2
Glpp = Uo(apbz) Ul(apbl) bs(leQOp + LOlep) s (V.25)
(2) _p2 202 2 2 w2 .
Gzpp = Ul(apbz) [bs(Qop + Lop) — b2 Wp(bz)] ; (V.26)
I =~1-[(ab)2G<3)+G<3>BZ+2ab B G(] (V.27)
3pp 9 p 4 opp 2pp— 0 p 4 0 1pp ’ *
with

3) _ 2 w2 _ K2 2 2 V.28
GO = bi Wb, — b3 (T, + T1), (v.28)
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3 _ b2

G = b2 (M, S+ M, S, ), » (V.29)
(3) . 12 w2 2/¢2 2 5. :

Gopp = b4 Wp(b4) - b3(50p+ Slp) ; (V.30)

while for p £ m:

Ilpn = anbz Uo(a'pbz) Ul(an b2) = apb2 Ufo(aan) Ul(a'pbz) = GE)iJ)n AA il (V'31)
pon
with
(1
G(Op)n = ApAn[Oerbz Uo(apbz) U1(O“nb2) - ~apb2 Uo(anbz) Ul(apbz)] ; <V'32)
I, = . ¢ 4 oo (& 2 e X (v.33)
2pn { 5 5 opn 2pn J 1 ! ¥
P AnAp Yl(apbl) Yl(anbl) P P K2 pn K2
with
2) = ;
Gopn = [a'n Uo(apbz) Uo(anbz) leLm -a Uo(a'nbz) Uo(apbz) (,)lep]b3 ; (V.38
2y : .
Glpn o OLnba [Uo(apbz) Ul(anbz) prLon * Uo(anbz) Ux(apbz) QOlen]
= by [Ug(0,5,) U,(@,5)) Oy, Lo+ U(@,5) Uy(0,5,) 0y, L ) (V35)

~b,lo, Uy(@ b)) U (ah) ~a Uab) U (ab)IW (b)W (b)),

Ggiv)n = bs(anQOpLOn - apQOnLop) Ul(apb2) Ul(anb2) ] (¥.36)

L= G+ GBI+ G B, (V.37)
with

Gon = G by(a,b )% M, My, = aby(ob )2 M M, (V.38)

Gg}n = (0 8,8, 0= %SeSibs | : (V.39)

G§3t3)11 = anapb4b3(M0pSm - Monslp) * (aisolen = O“IiSOanp)bSb4 : (V.40)

Next we express the weighted time constants Tiir Togr Tygo and T in terms of the above

relations. 'We now have
0 1 (2) 2
1 App 2App (KI/K2)+App (K1/K2)

T = (P = 17 2) 3 (V'41)
PP OL;KI Qgp + mgp) (K,/K,)+ Q;p K ,/K,)
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) . A1), (2) 2
o oM Teh) v 1 A = ASXKL /K + MG KN s
pn 2042 _ A2 T !
Vo Yioaby) Vo JAG (e = 0k NG L AOK /K )+ ACXK /K )?

(V.42)

where the following matrix elements have been introduced:

Eop=Ugl0,0) 0, (V.43)

‘fm = Ul(apb2) Qop ’ (V.49)

D, (B = (apb4)2ag§}p + G<23p>pBg + 2apb4c§i)>l)30 a5

DB = Gl + GSB% - GBy | |

F;‘;) = mepp g F;;) = §0p§1prp ’ Fz(f;) = fprpp

, (V.46)

F;Sx) = é‘:OpgonDpn ; F;(JL) = (f()p'fm + ‘flp‘fonﬂ)pn ; ng) = §1p‘§1nDpn
AS) =V IGS) +(pye,/p e GG )+ (pyey/p e DIS) (V.47)
A =V (p,e,/p,c G2 +(pyc /p e )T (V.48)
Agp) = Vp(pzcz/plcl)ngpl) +(p3c3/p1c1)F§);) (V.49)
Q0 = v [60) ~263) 1 (K,/K)CE ]+ (K /K)TD (V.50)
Q% = 1/2[v G~ 2(K /K DI')] (V.51)
Q% = (K /K )OI (V.52)
Ag;j =V, [Gf)‘p’n + (p2C2/p1c1)Gé;)n] + (p3c3/p1cl)rgg (V.53)
AS; = Van(pzcz/plcl)G(lz’;n +(p3c3/plcl)f‘gn) (V.54)
AD =V W (0,0,/p,e )G, +(pye,/p,e )T % (v.55)
where

Ag’; = - A;jg (i=0,1,2). (V.56)

V.=abM —BS (V.57)

Vo=ab M, ~BS, (V.58)
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Introduction of the relations (V.41) and (V.42) into Eqs, (IV.11) and (IV.12) yields

<§1’ + —1> 1 ! CO + 2C1(K1/K2) + Cz (Kx/Kz)Z = 2C3(K1/K2)3 + C4(K1/K2)4
s

1 2 12

«joja; E,—2E (K /K)+E(K/K)" - 2B (K /K) +E (K /K)"*
s;s,  0,+20 (K /K)+0O (K /K) + 20 (K /K) +0 (K /KN’
with

C 2 A(0)0(0) 2A(0)0)(0)
Co= azAquz + oA

C, = ALY — APQE) + afAATY — A
C, = 2O — AL + AR + aADAD ~ AADAD + ADDD)
Cy = APAE) - ALY + fA0T, ~ AR
C,= A + AT

2000 0)
00‘911922 ’

= Q)0 06) (1) (0)
01“9’22&11*_911Q

22 7
=~ O02) (L)1) (250 (0)
02“911922 +4911&)22 +Qlig

227

200 2) (2O
0, =007+ Q107

o 2)0(2)
04_9(11922 ’
E = AOA) 4 A0)2
0 117722 (ai_af)z 12
E —A(O)A“)+A(1)A(°)-—-—-—i-——— AOA Q)
1 71152 11°722

2 "t127 12
2 2
_
(aZ 1)
4
(a?-—o?)
2 1

(2IA D)
7 ATJA

12’
2 2
-
(CL2 1)

2
A0 (2) (L)AL (2YIAC0) . (OIA(2) (1)
E, = AL A +AATVAL) + ATVAS 5 QATYALY + AT

— ACDA(2) (2)A (1)
Es‘AnAzz +A11‘/\22 -

K, = )
a?a2 0.+ 20 (K /K) + 0, (K,/K ) + 20 (K /K)* + O (K, /K )

(V.59)

(V.60)

(V.61)
(V.62)
(V.63)
(V.64)

(v.65)

(V.69)
(V.67)
(V.68)
(V.69)

(V.70)

(V.71)

(V.72)

(V.73)
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4
- A@AM@ (2)2
E4“A11A22 '_(az _ a2)2A12 ) (V.75)
2 1

The environmental conditions represented via the Biot number B, can be eliminated by the

use of the secular equation (V.23). We then obtain

UO(aan)[(K2/K1)L1ﬂTOH - (K3/K1)QII1T1H] + Ul(aan) [(K3/K2)QOIIT111 —LoaT ]

B -a on” on
oo Uo(anbz)[(Kz/K1)L1nSOn - (Ks/K1)Q1nSm] + U1(anb2) [(KS/KZ)QOHSIH - LOnSOn]
(V.76)

Because Eq. (V.76) has to be satisfied by the two space eigenvalues o and a,, one obtains

1

<a2> Uo(azbz)[(Kz/K1)L12T02 - (Ks/K1)leT12] + U1(a2b2)[(K3/K2)QozT12 -L,,T,,
a
1

0202
UO(a2b2)[(K2/K1)L12802 - (K3/K1)QI2SIZ] + Ul(a2b2)](l<3/1<2)Q L,,s ]

02512 7 ~02502
(V.77)
_ Uo(a1b2)[(K2/K1>L11T01 ~ (Ks/K1)Q11T11] + Ul(o“lbz)[Ks/Kz)QmTu - L01To1] -0
Uy (a5 & /KDL sy, — K /KO s, 1+ U (@b K, /KO s —Lo s ]

01811 OISOI

Finally, introduction of (V.76), evaluated for either value a or a,, into Egs. (V.59) and

(V.60) yields, together with the relation (V.77), three equations to determine a, o, and k.

2!

The numerical problem associated with the above procedutre has been coded for the IBM 360/91
computer with satisfactory results. Details of the numerical techniques utilized will be presented
in a forthcoming paper.
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Vi. CONCLUSIONS

We have developed a general theory of time-dependent heat diffusion phenomena which shows ~
the feasibility of measuring the thermal diffusivity with a single temperature measurement,
eliminating the necessity of measuring the power input. When the effects of the enclosure of b
the sample (one-region problem) can be neglected, a very simple relation for the thermal dif-
fusivity of the sample has been obtained; Eq: (II.26)k. For the general case the value of the
thermal diffusivity has to be obtained: by iteration of three transcendental equations, . The input
(parameters) needed for the calculation are the two lowest time eigenvalues observed in the

temperature-time curves and the material properties of the regions surrounding the sample.

The method devised :in this work may become an-important tool for the measurement of

small samples, when it is only possible to measure the central temperature accurately.
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APPENDIX A

Orthogonality Conditions and the Normalization Integral

Calling Xo(anr) any of the functions Uo’ Wo’ Z,, one has from the Bessel differential equation:

1d d ) Al
:CT; l"&: Xo(anr)+anX0(anr)=0, ( . )
1d d ) 0

—= r = Xo(ocpr) +al Xo(apr) =0. (A.2)

From the above equations one obtains

X

x d 2
Iipn = (ocf1 - OL;) j; Zrdr Xo(apr) X (o0 = I:Xo(anr) r = Xo(apr) ]X1
1

X

d 2
- I:Xo(apr) r (—1; Xo(anr)J X, (A.3)
We then write Eq. (A.3) for the three regions involved in the problem, that is,

b
2
I C ) j; rdr U (a0 Uy,n) = bla, U (ab)U (ab)-aUeb)Ub)l, (A
1

b
3
Izpn = (aﬁ - a;) j; rdr Wo(apr) Wo(otnr) =b, la, Wo(apbs) W (ab,)
2
- a, Wo(anb3) W1(apb3)] - bz[an WO(apb2) Wl(anbz) - Wo(anbz) Wl(apr)] » (A.5)
Iion="— b la Z(ab)Z (ob)~ a, Z (a b)) Zl(apbs)] , (A.6)

where we applied the boundary conditions (III.31) and (II1.36).

Multiplying Eq. (A.4) by [Yl(apbl) Yl(anbl)]" 1, Eq. (A.5) by Kz/Kl' and Eq. (A.6) by
(Ks/K1) (nsp/ﬁzp) (nsn/an) and utilizing the boundary conditions (111.32) up to (II1.35), we
obtain the orthogonality condition (IIL.37).

To obtain the normalization integral we follow a slightly different method. We can rewrite

the Bessel differential equation in the form
azrzin(ar)+d rdX(ar)Z—O (A.7)
LR A B B '

from which, upon integration between the limits x_ and x,, we obtain

1

1

Lo E[xj Xg(apxz) ~ x? Xg(apxl) + X2 Xf(apxz) - x? Xf(apxl)] . (A.8)
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For each one of the regions, we have

b
2 1
= j; rdr Ug(apr) :-2-[b§ Ug(apbz) - b2 U;(apbl) + b2 U (ob,) - b2 U (a,b)], (A.9)

1pp ;
by 1
lo= j; o dr Wie o) =5 By Wiaby) - b2 Wiaph,) + b2 Wi(a b)) — b2 Wi(a b))l , (A.10)
b, 1
Liop= j; rdr Zﬁ(apr):—é-[bi zg(apb4) - b§ Zo(apba) 4 bi Zf(apr) — bng (apbs)] oA

3

Multiply Eq. (A.9) by [Yl(apbl)]fz, Eq. (A.10) by K /K and Eq. (A.11) by (773p/62p)2 x (K /K ),
sum the results, and apply ‘the boundary conditions (If1.31) up to (II1.35).to obtain Npp as given by
Eq: (111.45). - Also,

Ul(anr) = Yl(o"nb1)]1(o“nr) - ]l(anbl)Yl(anr) (A12)

Wl(anr) =17, njl(anr) = noanl(anr) (A.13)

Z (an= an]1(o“nr) = BlnYl(anr) (A.14
R APPENDIX B

Expansion of the U and U, Functions for Thin Samples

When the ratio 5/b2 is smaller than unity (6 = b2 = b1)’ one can expand the Bessel functions

]O(X) and YO(X) in:the Taylor series
1 :
Xn(apbz o apﬁ) = Xn(anbz) g (ap&) [Xn~1 (apbz) T Xn+1(apb2)]
1
* 5z (QPS)Z[XH_Z(apr) —2X (a,b))+ Xn+2(apb2)]

1 !
ST (apﬁ)s[Xnﬁs(apbz) —-3X, (b)) +3X ,(ab)—X (b)) (25<1). (BI)

Introduction of the above expansion into the functions Uo(apbz) and Ul(apr)' together with

the relations

2
Wb =¥, (@) ], (@b =] (e p) ¥, (ah)=——, .2
D2
2
J (@b ¥ (@) = ¥ (0,5)) T, (b)) = = ——, (B.3)

P 2
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J @)Y (ab)—Y (ab)] (ab,)= - E (B.4)
p 2
48 2
Y (o) J (ab)) ~J (ab) ¥ (ab)= TS (B.5)
P 2 p 2
9% 16
Jo@b) ¥ (@ b))~ ¥ (ab) ] (ab,)=— (B.6)

by ma by
7T(ap 2) ’TT(CLp )

yields the results (II.21) and (I1.22).
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