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THE THEORY OF A TIME-DEPENDENT HEAT DIFFUSION DETERMINATION OF 
THERMAL DIFFUSIVITIES WITH A SINGLE TEMPERATURE MEASUREMENT

R. B. Perez, R. M. Carroll, and 0. Sisman

ABSTRACT

A method to measure the thermal diffusivity of reactor fuels during irradiation is de­
veloped, based on a time-dependent heat diffusion equation. With this technique the tem­
perature is measured at only one point in the fuel specimen. This method has the advantage 
that it is not necessary to know the heat generation (a difficult evaluation during irradiation).

The theory includes realistic boundary conditions, applicable to actual experimental 
systems. The parameters are the time constants associated with the first two time modes 
in the temperature-vs-time curve resulting from a step change in heat input to the specimen. 
With the time constants and the necessary material properties and dimensions of the speci­
men and specimen holder, the thermal diffusivity of the specimen can be calculated.

I. INTRODUCTION

There are two well-known and reliable ways to perform measurements of the thermal diffusivity 

of materials by time-dependent methods. These are the Angstrom cyclic method1 and the flash 

technique.2 The former requires a relatively large sample to allow for the measurement of the tem­

perature at various points. The flash method is a single-temperature technique requiring an 

instantaneous, uniform deposition of heat in the sample, such as by a laser.

The purpose of this work is to develop the theory of a single-temperature-measurement method 

applicable to small-size samples and utilizing any arbitrary source of heat. This last requirement 

is important in order to eliminate the effect of inaccuracy in the power determination. The motiva­

tion for the present study arises from the problems encountered in trying to measure the thermal 

diffusivity of fissile materials under irradiation conditions. In this instance the determination of 

an accurate measure of the effective power input was hindered by the addition of nonfission heat­

ing3 and by the release or accumulation of stored energy during changes of irradiation conditions.4 

Moreover, the necessity of performing the experiment inside the core of the reactor (in this partic­

ular case the Oak Ridge Research Reactor) and the prevention of thermal stresses require the 

use of relatively small samples.

1A. J. Angstrom, Ann. Physik Chem. 114, 513 (1861).
2W. J. Parker et al., J. Appl. Phys. 32, 1679 (1961).
3R. M. Carroll, R. B. Perez, and O. Sisman, Nucl. Sci. Eng. 36 , 232 (1969).

4R. M. Carroll, R. B. Perez, and O. Sisman, “The Effect of Stored Energy on Measurements of 
Thermal Diffusivity During Irradiation,” Nucl. Sci. Eng. (in press).
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In Sect. II below, the theory is developed for the simple one-region case where one considers

a heated sample exchanging heat with a bulk coolant. In Sects. Ill, IV, and V, we consider a 

three-region problem which corresponds to the experimental setup presently utilized for in-pile
measurements at the ORR. 3

II. THE SINGLE-REGION PROBLEM

The geometry of this physical situation is shown in Fig. la. The following assumptions are 

pertinent to the model.

1. The thermal properties of the sample remain constant during the heating pulse.

2. The heat generation is assumed to be uniformly distributed and to be negligible in the 
surroundings.

3. The axial flow is neglected as well as the heat transport by radiation.

4. The sample loses heat to a bulk temperature Tb-

The approximation involved in assumption 1 is usually made in heat transport calculations, 

and it is reasonable for limited temperature increments of the sample. Assumption 2 does not 

affect the results because in this technique the power input does not enter into the calculations 

of the thermal diffusivity. Its introduction, however, eliminates the consideration of matrix 

elements of the power distribution inside the sample. In contrast, the assumption made in 3 is 

a serious one. It will be investigated in a forthcoming paper. The hypothesis set forth in 

assumption 4 is plausible for a large body of well “stirred” fluid coolant. On the basis of the 

above set of conditions, the following heat balance and boundary conditions apply:

(II. 1)

(II. 2)

(II 3)

where T(r, t) - sample temperature distribution (°C),
Vr2 = radial Laplacian = (d2/dr2) + (1/r) d/dr,

B0 = Biot number = h2H/K (dimensionless),

K - thermal conductivity of the sample (cal cm-1 °C~1 sec-1),

H = conductance between the sample and the coolant (cal cm-2 °C-1 sec-1),

(II. 4)
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b3 = 0.371 cm

b4 =1.190 cm

(Z>)

Fig. 1 — Geometry of the One- and Three-Region Problem, (a) Cross-secti 
specimen. (6) Cross-section dimensions of the specimen holder.

on dimen sions of the U0„

p(f) = heat pulse (cal cm-3 sec-1) = pQ U(t),

U(t) = step function,

k j = thermal diffusivity (cm2/sec) = (K/pc), where p is density in grams per cubic 
centimeter and c is specific heat in calories per gram per degree centigrade,

Tb = bulk temperature.

To solve this time-dependent heat diffusion problem, we expand the temperature in the form

T(r, t) Tb + Z ____A (t) Vn (a r) ,
n F,(a h)n 0 n

lv n i'
(II. 5)
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where the eigenfunctions

V (a r) - Y(a b ) J , (a r) - , (a. h ) F ( a r)ovny lvnly,,Ov n7 *,lvni'' n ' (II-6)

satisfy the boundary conditions (II.2) and the following orthogonality and normalization condi­

tions (see Appendix A):

l U0(apr)V0(anr)rdr =Q (p ^ n) ,

•6„/ ! Vl (ap0, * - JVpp .\wpil (a 62) + v\ (a,»2>] - b\Vl ,
pp 2

with

V, (a bj = Y, (a 6J (a bj - J, (a bj Y (a b) .1 v p 27 1 v p 1^ ^ 1 v p ^ 1 ^ p V lv p 2'

(II-7)

(II. 8)

(II-9)

Introduction of the expansion (II.5) into Eqs. (II.1) and (II.3) yields a set of differential 

equations for the modal amplitudes A (t):

d p(t)
t — A (f) + A (t)= a -----,
pdt p p PK

1

(11.10)

where r = —— is a characteristic time constant of the sample for the pth mode, with 
P cr/<

YAab,) rb2
P i-

p a2N ** b,P pp i
f r dr U Aa r)oK p ' (cm2) .

Moreover, the following secular equation for the special eigenvalues cl^ is also obtained: 

a- bUAa bj - BU(a bJ^O .p 2 lv p 2' 0 O'- p 2'

The differential equation (11.10) is easily integrated, yielding

A (t) = a _£. 
p p K

a - A (0) 
_ p K P

(sec-1) ,

— S t
. P

(11.11)

(11.12)

(11.13)

(11.14)

whence from Eqs. (11.13) and (II.5) one obtains for the temperature distribution:

nr, 0 - rs + £ ®„ p0<v) - E 8,„‘rV - (11.15)
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with

@ On (11.16)

©
in

1

yi<an*,>
(H.17)

Experimental data (Fig. 2) show the presence of two distinct modal components in the tem­

perature distribution of the sample. The time eigenvalues s1 and s2 (s2 > sj exhibit a ratio 

«2/s1 = 9 and are consequently easily separated either by peeling-off techniques or by applica­

tion of the least-squares method to the experimental temperature vs time curves.

Knowing the two time eigenvalues s and s , one proceeds in the following manner:

1. Write the secular equation (11.12) for the two space eigenvalues and a2 and eliminate 

among them the Biot number BQ; we obtain

UiW Uo £W2) = o, (11.18)
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where we utilized the relation [from Eq. (II. 14)]

(a /a)2 = s /s . v 2 1' 2 1 (11.19)

2. Solve the transcendental equation (11.18) using (11.19). This yields the two space eigen­

values a, and a2> from which the thermal diffusivity is obtained by either of the equations

= !i = !i 
1 a2 a2 

x 2
(11,20)

A particularly simple expression for the thermal diffusivity is obtained for very thin samples, 

that is, when 8 - b2 — is such that the value of aS is very small compared with unity. Then 

(see Appendix B) one can write

Vo^---7 (Wr^2)’
U£>2

2 ^ ^ 
U(abJ=----- — [gn--CL282

7Tb„

(11.21)

(11.22)

with

f = 1 + — 
0

1 + —+ 
b2 ^b2

(11.23)

1 1 _5
2 + 3 b„ (11.24)

, 1 s A s\ 2T ( U) (11.25)

Introduction of Eqs. (11.21) and (11.22) into (11.18) yields an expression for the eigenvalue , 

which can be utilized in Eq. (11.20), yielding the following relation for the computation of

K1=S^
LlL
66n

(cm 2 sec 1) (11.26)

where

^(W1 (11.27)

which for extremely thin samples reduces to

.2 -i
1

K. = —S.
1 2 1

s2
1 +

(11.28)
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III. THE THREE-REGION PROBLEM

The simple geometrical arrangement assumed in the previous section is very seldom realized 

in actual practice. The experimental apparatus utilized for the in-pile measurements at the ORR 

has been described elsewhere,3 and a schematic view is shown in Fig. lb. There are three 

regions to be considered: the sample (region 1), the helium gas (region 2), and the isolating 

shell (region 3). The corresponding heat balances and boundary conditions are based on the 

assumptions stated in Sect. II:

(III-l)

(III. 2)

(III. 3)

ST>fc0l*,-°- (III. 4)

(III.5)

K^T-(r-0l-rK4T^'\'
(III. 6)

T2<iS’ 0 - T3<43. » • (III.7)

(in. 8)

'>1^ - VW' O-T^), (III. 9)

»o - ■ (III. 10)

k > k , k3 = thermal diffusivity for regions 1, 2, and 3.

We try solutions of the form

r.fr. i)-Tb + Z Jl^ u0cV),

T/r, !>=!-„+ E U,„ /0<V) ♦ W)! ■

rs(r, iaz,(a,),

n P2n

(III. 11) 

(III. 12)

(III. 13)



V A a r) Y (a 6 ) J (a r) — J (a b ') Y (a r) ,Ov n 7 1' n 1-^ ■/ ov n 7 •' lv n ly ov n y (III. 14)

'n(a r) = jS„ / (a r) — B, Y A a r) , cr n y "2n J 0^ n ' "in Ov n ' ’ (III. 15)

fi, - a. 6 J (a b )- B /(<*&),1 in n 4 ^ lv n 4y 0 ^ o'- n 4'

jS, = a fc F (a i ) -S F (a bj < 2n n 4 lv n 4y 0 ov n 4y

(III. 16)

The above expansions already satisfy the boundary conditions (III.4) and (III.9). The re­
maining four boundary conditions will determine the coupling coefficients

rlm = A2n/Aln’ 

r?2n = B2nMln '

T13n = A3n/Ain ’

and the eigenvalues a^. If we now introduce the expansions (III.11), (III.12), and (III.13) into 

(III.5), (III.6), (III.7), and (III.8), we obtain

Tj JAa bj + n F (a b„) = Y~1(a bA VAa b ) ,1 m •'0V n 2' <2n n 2' 1 v n 1' 0V n 2

K
Ti, JAa bj + 71 F (a b ) = —1 Y~1(a b ) V (a b ) ,'in ^ iv n 2' <2n lv n 2' ^ 1 v n ly lv n 2^ ’

^1 -Ws) + naB Y0(%b3) - 0-1 i?3n Z0(a b3) = 0 ,

^in /i(an63) + r?2n Fl(an^ ~ ^ ^ ^3n ZlKb3^ = 0 ‘

(III. 17) 

(III. 18) 

(III. 19) 

(III. 20)

From Eqs. (III.17) and (III.18) we obtain 

1

W F (a b,)n lv n l7

K.
VAa bj F (a bj----- 1 17,(a b ) Ffa b )0V n 27 1v n 27 F n 27 0V n 27 (III. 21)

^ 2n = If F (a b,)n XK n l7

K,
17 (a bj JAa bj----- 1 C7 (a b ) /„(a b )0V n 2 -7lv n 27 ^ lv n 27 •' n 27 '02n

with

(III. 22)

If
2

(111.23)
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The pair of equations (III.19) and (III.20) provide two equivalent expressions for the coupling 

factor r?„ . These areI 3n

K, Z(a bj3 lv n 3/
In J (a- b)-n F (a 6 )1 ,L'lnJlv n 3' > 0 2n l'' n 3',J ’ (III. 24)

2n
I 3n Z (a b ) ov n

[r? J (a b ) — n Y (a b )] . L ' in J 0^ n 3' 1 02n ov n 3/J (III. 25)

Finally by equating Eqs. (III.24) and (III.25) we obtain the secular equation for the determi­

nation of the eigenvalues a :

^Xn/oW-^n W3> *W3>
V*3AKA) VlnJ1(anb3^~Vo2nYiW W&bJ (III. 26)

The temperature distribution in each region can now be expressed as a function of a single set 
of modal amplitudes Ain(f):

r ,(r, o . + £ —1—- 4 m(0 V0(anr) , (III.27)

n r n°i'

T2(r, t)=Tb+Z Aln(t) W0(a(r) , (HI.28)

T3^ t)=Tb+lhlL Aln(t) Z0(a r) , (III.29)
n Pin

with

"Vv) = vln J0(%r) - Vo2n F0(a r) , (III.30)

where, in view of the boundary conditions, the following relations hold:

^,(0,^=0. (III. 31)

(III. 32)

-A Y-\a b\ U (cl bj= W(a b) ,fz 1 v n l7 1K n 2' lv n 27 '
2

(III.33)

W (a bj = Z(a bj ,0V n 37 n K n 3' ’
Pin

(III. 34)

W(a b ) = ^l2lILZ (a b ) ,
1K n 3/ i/Q lv n 37 ’^2 Pm

(III. 35)

a bA Z (cl bA) - Bn Z(a bA) = 0 ,n 4 lv n 0 n ’ (III. 36)

with the functions Vl, W^ and Z1 defined in Appendix A.



Before we can proceed with the solution of the time-dependent problem, we must prove the 

orthogonality properties of the eigenfunctions UQ, WQ, and ZQ and obtain an expression for the 

normalization integral. This program is developed in Appendix A. The results are:

K KY-\a, b\Y-1(a hjl + —^ / +-1'hs llIL l =Q
1 v P l' 1 v n l' ipn js 2pn v a 3pn

1 1 ' 2p • 2n

K K
Y~2(cl b ) I +—L +i v p 1^ ipp r, 2ppp'l'-lpp ' 2pp \^2 ^ 3pp ,pp

3p ; = n_
2p

where

ipn

ipp

2PP

3PP

N
pp

-j{r ,*<■%>> J vlW+ “ S7)

K2 ~ 2
+ —------------  b2

Kt 3
wlw-rv2W

■a3

(III. 37)

(III. 38)

fb2
(a2 - a2) I r dr [/ (a r) {7 (a r),^ n p7 if, P 7 0V n 7'

1
(III. 3 9)

fb3
(an ~ ap) J6 r * (apr) ^o(anr) ’

2
(III. 40)

(a2 - a2) f r dr Z A cl r) Z (a. t) ,N n p7 */, 0V p 7 0V n 7 ’
3

(HI. 41)

fb2
Jb TdTVl ’ (III. 42)

r63

°2
(III. 43)

f64I r dr Z2(a r) ,
Jb °V P 2 (III. 44)

(4‘+ a"3 B“) z”(a'ii'*>}' (IIU5)

The above integrals are given also in Appendix A.

Introduction of the eigenfunction expansions (III.27), (III. 28), and (111.29) into the heat dif­

fusion equations and proceeding in the usual way yields:

d „ d p(t)
t „ —A (f)+ £ r —A (i) + A (t) = a

ipv ' ' imt pn J, xnv ' lpK ’ p T,
n=tp 1pp dt

(III.46)

where the following time constants have been introduced:
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T = T H.
Kn K_

■tH.
PP IP IPP ft 2p 2pp 3p 3pp ’ (III. 47)

K„
T — T H -4- ^ "T IJ I rj~ TJ
pn ip ipn 2p 2pn g 3p 3pn ’ (III.48)

with

T = ■— 
ip ^2

Vi

i i

(X^A- (X^/CPK2 P 3
(III.49)

= F72(a b )^£P , A = _l££ ,ipp 1 v p »r ’ 2pp M ’3
PP PP

^3p \ 13pp

M N.pp

(III. 50)

Y-^a bj Y-\a bj I IW _ 1 v p l/ 1 v n Ipn ff —
ipn )v a? — a? ’ 2Pn ~ (a2 - a:2)N

pp n p x n p' pp

2pn (IIL51)

H 3pn
m Vsp 
2n ^2p ^n -

3pn
a2)/V

PP

and

YIWN
f
J h

TJ Xcl r) r c/r ^ ov p /

t/^a^)

pp ^(“pV /v
(cm2) (III. 52)

pp

From the result (III.46) one sees that the modal amplitudes are coupled through the time 

constants t . The individual time constants are weighted sums of the characteristic times ofpn

the regions involved in the problem (i.e., r^, 7^, and r^) with the dimensionless matrix elements 

Hipp and Hjpn (i = 1, 2, 3) acting as the weight factors.

IV. THE TWO-MODES APPROXIMATION

In this case Laplace transformation of the set (III.46) and especialization to two modes 

yields

(! + stii)Ai1(s)+ sri2 A 12(s) = -J-p(s) + 21 , (IV. 1)

ST21 V(s)+(1+ ST2 2)A12(-s)=Y-P^+12 ’ (IV. 2)
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where for a step function input heat pulse one has

PO) “ P0 >

and

V1-.i'•..(OH’,,

This gives the following expressions for the Laplace-transformed modal amplitude: 

K + <aiT22 ~ Tl2a2^ P0/Kl + S[S1^ + S72 2) “ S712S2)]
^il(S) ~

s[s2 + 722/^12)+l/cf12]c/1

A12(,) =
[a2 + sCa^ - r21a1)] (pp/K^ + s[S2(l + st^) - 

sis2 + [s(ri + T22)/d12\ + 0-/d12)}d12

with

d — T T — T T 12 11 22 12 21

The poles are located at s = 0 and s=—s,s=—s, where

Sl =
r + r 

11 22 Tll + 722

52 2
r + r 

11 2 2

1 2

^l 1 + ^ 2

with the relations

lSll + lS2
r -h t 

11 2 2

S1S2

Straightforward Laplace inversions of Eqs. (IV.6) and (IV.7) yield

am^=rii-R[iysit~Rixe -S2t

■Slf_ R(2)e V 
1 2

(IV. 3)

(IV. 4) 

(IV. 5)

(IV. 6)

(IV. 7)

(IV. 8)

(IV. 9)

(IV. 10)

(IV. 11)

(IV. 12)

(IV. 13)

(IV. 14)
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where

R‘,V-a.Po/K. ■
K!”> - a. 012 2 K.

(IV. 15) 

(IV. 16)

R(,V = -11 1 — (s

L__|[ai -a2T12)]]f - Sl[2l(1 -S1T22) + ;S

I?<2> = -----------^s[S(l—sr ) + sr £ ] — [a —s(ar —r a)] -2- i- , (IV. 18)
11 (s /s ) - 1 ] 2 2 2 2y 2 12 2J L 1 2V 1 22 1 2 2Ji | V J

R!"-1~ _ s'(a’T" “ a'T!')11;“ s-E!<1 “ ^ T-) + S‘T“S-1 ^ ■(,V19)

R?)
1

12 (sa/si)
rr(S2[22(1 - Vu>+ VaiSi] - [a2 - ^(-a^ii - air2i)] (IV'2°)

Therefore within the two-modes approximation one has, from Eqs. (III.27), (III.28), (III.29), 

(IV. 13), and (IV. 14), the following expressions for the temperature distribution:

-S , t
Tx{r, t) - T b + K<°> £/10(V) + RW V^r) - [R[\> U^r) + R[\> f/10(ar)]e 1

- IR^ Ul0{axr) + R™ f/10(a2r)]e_S2' , (IV.21)

(IV. 22)

S, t
r2(r, t) = r6 + R\°? W0(a r) + /?<«> If0(ar) - [R[\> Wq (^r) + WQ (a2r)]e 1

— s„t
- IR^ V0(aiT) + i?<2) V0(a2r)]e 2 , (IV.23)

Tfi, i) = Tb + R^^hlZ^,) + *<»> Z„(a2r) - [*<■> ,)

^2 1 P 22 LP2I

+ r<,‘!> jF
P 22

rs/ jR(2) Z (a r) + R^^ll Z (a r) 
Uo 0vl'' 12 0 0v2y

^2 1 P22

e 83f . (IV.24)

V. DETERMINATION OF THE THERMAL DIFFUSIVITY FOR THE CENTRAL REGION

This section will be devoted to the problem of determining assuming that the thermal 

diffusivities of the other regions are known. The unknowns to be determined are kx, B0, and



the two spatial eigenvalues and a.^. To this end we have at our disposal Eqs. (IV. 11) and 

(IV. 12), arising from the knowledge of the two time eigenvalues Sj and s2, and the secular equa­

tion (III.26) written for a equal to and a^. The first step is to rewrite those equations show­

ing explicitly their dependence on k ^, K2, K^, and B0. We define the following functions:

Ln (6„, b.) = Y (a bJ) JAa. bj) — J (a o') Y (a bA) ,0nK 2’ 3' lv n 3' J o' n 2' n 3' o' n 2' ’

L, (b„ bj - Y (a b ) J (a bj - JAa. b ) Y (a. b ) ,in' 2’ 3' l' n 3' J l' n 2' J l' n 3' i' n 2' ’

Qn (b , bj --= YAa. bj J (a bj) - J (a. bj Y (a, bj ,v On' 2 3' O' n 3' •’O' n 2' J O' n 3J o' n 2'’

O (h^, bj = Y A a. b ) J (a bj - JAa bj Y (a bj ,v ln^ 2 3' o' n 3J J l' n 2J •' O' n 3' l' n 2J

Mn {b. b )=Y (a b ) JAa b) - J A a b ) Y (a b) ,On' 3’ 47 lv n 4' J O' n 3' •'lv n 4y ov n 3' ’

M (b , bj Y (a b ) JAa. b,) - JAa b,) Y Aa bj) ,lnv 3 4' lv n 4' ^ lv n 3' J 1' n 4' 1' n s' ’

S(b,b)= YAa b ) / (a b,) - /„(a bA) F„(a 6J ,On' 3’ 4"^ o' n 4' J o' n s’ J o' n 4' 0V n 3' ’

S (b , h ) = Y Aa b ) J (a bj - JAa bA) YAa bj ,l ;iv 3’ 4' O' n 4' J l' n 3' J o' n 4' l' n 3' ’

with the properties

(b„, bj = W (bj ,On' 2 2 n' 2

(h , bA) = W (bA) ,0nK 4> 4' nK 4'

(V.l)

(V-2)

(V.3)

(V.4)

(V.5)

(V.6)

(V.7)

(V.8)

(V.9)

(V.10)

where W (b ) and W (bA) are the WronskiansnK 2 n' 4'

W (x) = Y (a x) J id x) - J (a x) Y (a x) = -nK ' lv n 7 *'ov n 7 lv n 7 o n 77 a X
(V.ll)

In terms of the above functions we have the following expressions for the functions WQ(anx),

H'jCOjX), ZQ(anx), and Z^x):

W (a b ) = --------------- V (a bj W (bj ,o' n 2' \ v /■„ u \ o' n 2' n' 2' ’A Y (a b )n iv n 1^
(V.12)

1
W„(a bj=-------------------

0 n 3 A F (a 6 ) n 1' n 1'

K.
V Aa bA) Q, 0&„> bj -r — C/,(a bj Qn (b.b)0K n 2/ ^ 2 37 T' 1 x n 2/ ^ OnK 0K_ 1' n 2' v On' 2 3' (V.13)

1 K.
w (a b)=---------------------

1 n 2 A F (a bA Kn iv n l7
i-UAa b )W (bj ,l' n 2' n' 2' ’ (V.14)
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^(ay
-1

A F (a bjn iv n l'

K,
U (cl b) L, (bn, bj----- 1 U(bJ L (b. b )Ov n 2^ lnv 2’ 3' ^ lv 2y Ony 2 3/ (V.15)

Z (a bj= a bAW (b ) ,n 4' n 4 nv4y

Z„(a bj = a bT(b , bj - Bn Sn (b , b ) ,0K n 3' n 4 Onv 3 4' 0 Orb 3 4' ’

ziW = Bo w«

Z1{anh3)=anb4Tln{b3, b4)-B0Sln(b3, bj .

(V.16)

(V.17)

(V.18)

(V.19)

The above relations allow us to write the secular equation (III.26) and the integrals / and 

Ipn in a manner such that the constants K2, K3, and BQ are explicitly shown. We obtain

Kr K
a bA VAa bj L, Mn —L- Q, M -J-) + a b U (a bn) Qn M. —i - L„n 4 0V n 2' \ In On g v In ln J ~ n 4 1v n 2^ On In g On On

K,

+ U (a b ) l Q S -J. - L S — ) + U (a b )l L S -0 SO' n 2/\vln ln^ In On ^ J lK n 2J On On v0n Jln

for the secular equation, and

I = .JL G(1)
ipp 2A2 0pp ’ 

p

with

0 (V.20)

(V.21)

Gi15 = \b2AV2(a b ) + [/2(a b )} - b2 U2Aa b )SA2Opp 2l O' p 2' l' p 2' 1 O' p l' p (V.22)

2PP 2A2F2(a6i)
X. K.

G<2) + G<2) (_i ) - 2G<2> -1 
opp 2pp\ K J lpp K

with

(V.23)

g“pp ■ kw [63®« - i-y - k "'pt*,)] •

G‘,2pt - v.W vfiAJ ‘3®.p9.p - i-.pi-.p) ■

0<2> = ^2(a fc ) [b2<Ql * Ll ) - 62 ;2pp l' p 2y 3'v0p Op7 2 p' 2y ’

7 = J [(a f> )2 G(3) + G(3) B2 + 2 a b B G(3) ] ,
3pp 2 P 47 °PP 2PP 0 p 4 0 lppJ ’

(V.24)

(V.25)

(V.26)

(V.27)

with

G<3) = b2 W2(b) - b2 (T2 + T2) ,Opp 4 p' 4 3 ' Op Xp'
(V.28)



while for p n:

/ = a 6 £/„(<x b ) V (a b ) — a bnU (a b ) U (a b ) G<-1) -------ipn n 2 0K p 2-' n 2' p 2 ov n 2J ly p 2' Opn ^ ^ ’
apan

with

(V,31)

Gn!?„ = a A [a UJa bj U (a bj - a b V (a b ) U (a b )] : 
Opn p nL n 2 0K p 2' 1K n 2' P 2 0V n 2y i' p 2'J (V.32)

2pn A A Ft(a, b)Y (a b)up iv p 1' lvni'/

/ iz \ 2 iv-
G^2) -+ G(2> ( _L 1 - G(2> -1

Opn 2pn\j^ J 1PnKr

with

(V.33)

G<2) = [a t/ (a 6J C/ fa bJQ, L, -a V (a b ) U (a bj Q L ]b , (V.34)Opn n Ov p 2y O' n 2' v Ip In p Ov n 2J Ov p 27 ' in lpJ 3 v y

G(2) = a b, [V(a. bj VXa A ) O L„ + U (a b ) U (a b ) O L Jipn n 3 0^ p 2X lv n 2y v ip On Ov n 2'' l' p 2'' v Op lnJ

- Qp63 "W Q\nLOp * VoW VlW QonLJ (V.35)

- *2tap UoW Ui(apb2> -an V0(%b2) u^abji Wp{b2) Wn{b2) ,

G2pn = b^0pL0n ~ %Q OnL Op') V iW U ’

I = G(3) qO) d2 /j(3) r 
23pn U0pn + ™2pn0 + Ulpn^0 ’

with

G(„3) = a A (a AJ2 M M, - a A (a A )2M M ,Opn n 3V p 4y On Ip p 3V n 4y Op In ’

G(3) = (a S S - a S S )A ,2pn ^ ponip n0pln/,3,

G$3) = a a A A,(M S, - S, ) + (a2S„ M - a2S M )b bIpn n p 4 3V Op 1 n On Ip7 v n Op in p On Ip7 3 4

(V.36)

(V.37)

(V.38)

(V.39)

(V.40)

Next we express the weighted time constants r ^ t22, ti2, and r x in terms of the above 
relations. We now have

1 A0 - 2A(1) (K./KJ + A(2) (K./KJ
PP PP K i 27 pp v r 27

pp a2K, 0“ + 20(1) (K/KJ + Q2 (KJKJpi pp pp K 1' 2* pp v l7 27
(P= 1, 2) , (V.41)
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r =2 _£pn
YW K ^(°)  A(1 \K /K ) + A(2)(K/KJ2\

P" 1 2' pny l Vp ^ n>
I>A> VVaK'V'-Aa^ + a">«(,/(£,) +A^’W/K,)2,

where the following matrix elements have been introduced:

A =U (a b )Q ,= Op ov p v ip ’

A = [7 (a 6J 0„ ,
blp 1VP 2/v0p’

D (BJ = (a 6J2G<3) + G(3) B2 + 2a bG^35 Bnpp' O7 v p 47 Opp 2pp 0 p 4 lpp 0

D (BJ = G(3) + G<3) £2 + G(3) Bpnv (r Opn 2pn 0 ipn 0

r(0) = p d ; r(1) = ^ ^ d ; r(2) = f2 dpp b0p pp pp =Op=lp pp ’ pp =lp pp

r(0) = * * n . p(i) ^ (-t ^ +£ £ )D ■ F<2) ^ £ £ D
pn =0p=0n pn ’ pn ^Op^ln =ip=0n7 pn ’ pn =lpbln pn

App = Fp[Gopp + (P2C2/PiciH2pp] + ^3C3/PiciK°p)

APP = Vp(P2C2/PlCJG<l2pp +(P3C3/PlCJrpp

APP = F>2C2/PlCl)G2pp +^3C3/PlCl)rpp

fipp = f;g^p - ^yp+(K2/Ki)G^y+(vkw

fl^1) = 1/2[F G(2> - 2(K/Kjr(1)]pp p 2 pp A 3 1' pp

ni2) = (K/Kjri2)pp 3 l' pp

A(0> = VF [G(1> + (p,c /plc1)G<2) ] + (p,c /p c,)r(0)pn pn opn vr2 2 " l 17 Opn "3 3 rl l7 pn

A(1) = F V (p c /p c )G(2^ +(p,c /p cjr(1)pn p nvr2 2 "l l7 Ipn Kr3 3 "l 1 pn

A(2) = F V (p c /p cJG(2) +(pcjp c )r(2)pn p n r2 2 "l l7 2pn Kr3 3' ri j' pnpn p 

where

A(i) = - A(i)np pn O' = o, 1, 2)

V = a b M - B Sn n 4 On 0 On

F = a b - B Sp p 4 Op 0 Op

1, 2) , 

(V.42)

(V.43)

(V.44)

(V.45)

(V.46)

(V.47)

(V.48)

(V.49)

(V.50)

(V.51)

(V.52)

(V.53)

(V.54)

(V.55)

(V.56)

(V.57)

(V.58)



Introduction of the relations (V.41) and (V.42) into Eqs. (IV.11) and (IV.12) yields

l + ±)K - J Co f 2Ci(*/*2) ^ C2 (K/K2^ ~ 2C3(K1/lfa)3 + C^K/KJ

S1 S2/ aia2 O0 + 201(K/K2) + 02 (K^^p2 + 203(K1/K2)3 + 04(K/K2)4 ’

kW E0 - 2Ei(K/K2) + E2(Ki/E2)2 - 2E3(K1/E2)3 + E4(El/E2)4 

siS2 =Oo + 201(K1/K2) + 02(K/E2)2 203(Ki/K2)3 + 04(Ki/K2)4’

with

C. - «1A<«>0<»> + a;A<»>n<«>,

C,. + «?(A<»>n<y - A'yso,

C, - a»(A«»«> - 4A«>0<'J> + A«>0<”>) + - 4A»>0<‘> + A»’n<»>)

c, - «j(A«>n«> - Af.-fl-y) t a;(A<‘>a;, - a^;^ ,

c. - “WKV * «;A<yn«>,

°«- •

o . Q<>>Q<»> + a<1,n‘'",1 2 2 1 1 1 1 2 2 ’

O2 = OC0)O(2) + 4Q<VO<V + Of15OC0)

03 = Q(l1l)fi22) + Qi2l)Q22) '

o4 = ,

En = AiVMV0 11 22 /„2 „2\2 12(a2 - a2)2'"2 ly

Ei = Ai0i)A<212) + AiVAjV '
Ca2 _ ^

, A<0)A(1> , 
2 12 12 ’

£2 = AJ.A^V + 4ACVA<V + A<VA‘«) - 77i-T5 (2A<«>A<22> + A^/)

(-22 ~ aD

^3 = A<VA<V + A^) -
' 7 ^

A<2>A$V .2 il12 12

(V.59)

(V.60)

(V.61)

(V.62)

(V.63)

(V.64)

(V.65)

(V.66)

(V.67)

(V.68)

(V.69)

(V.70)

(V.71)

(V.72)

(V.73)

(V.74)
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*4 - ASVASV -,-2
(a2v o a2)

A(2)2 _
2n2 12 (V.75)

The environmental conditions represented via the Biot number BQ can be eliminated by the 
use of the secular equation (V.23). We then obtain

a hn 4
L T ]On OnJ

UJa b )[(K/K )Lsn0V n 2' v 2 i7 in On

(V.76)
Because Eq. (V.76) has to be satisfied by the two space eigenvalues and a , one obtains

02 12 L T ]02 0 2J

O„(a1i2)[(K2/)i1)Llir01 l r ]01 01J

~ + ^1(a162)f(VK2^01S1l "

(V.77)

0 .

Finally, introduction of (V.76), evaluated for either value or a2, into Eqs. (V.59) and 

(V.60) yields, together with the relation (V.77), three equations to determine o^, a2, and

The numerical problem associated with the above procedure, has been coded for the IBM 360/91 
computer with satisfactory results. Details of the numerical techniques utilized will be presented 
in a forthcoming paper.
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VI. CONCLUSIONS

We have developed a general theory of time-dependent heat diffusion phenomena which shows 

the feasibility of measuring the thermal diffusivity with a single temperature measurement, 

eliminating the necessity of measuring the power input. When the effects of the enclosure of 

the sample (one-region problem) can be neglected, a very simple relation for the thermal dif­

fusivity of the sample has been obtained, Eq. (11.26). For the general case the value of the 

thermal diffusivity has to be obtained by iteration of three transcendental equations. The input 

(parameters) needed for the calculation are the two lowest time eigenvalues observed in the 

temperature-time curves and the material properties of the regions surrounding the sample.

The method devised in this work may become an important tool for the measurement of 

small samples, when it is only possible to measure the central temperature accurately.
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APPENDIX A

Orthogonality Conditions and the Normalization Integral

Calling XQ(anr) any of the functions U0, W0, ZQ, one has from the Bessel differential equation:

1 ,
■----- ( r — ) X(cl r) + a? X (a r) = 0 ,r dt\ dr > 0 n n n ^ (A.l)

l d / d\
------( r — ) XXo, r) + a2 X (a r) = 0
r dr \ dr J 0 P P ° P

From the above equations one obtains

I. = (a2 - a2) f 2 r dr X (a r) X (a r) ■■ipn K n P i 0V p y on'
'/xl

X0(-anT)rJrX0^CLpr')

(A. 2)

X(a r) r — X (a r) 
° P dr 0n

(A.3)

We then write Eq. (A.3) for the three regions involved in the problem, that is,

rb2
I = (a2 - a2) I r dr U (a r) U (a r) = 6 [a 1/ (a 6 ) £/,(a b )-a U (cl bn) U (a b )] , (A.4) Ipn v n ■ pJ J, 0V p 7 n ^ 2 n p 2y I n 2' p 0V n 2y p 22 ’ v 2

/ = (a2 - a2)2pn v n py A dr W„(a r) Wn(a r) = h, [a W (a Wfa 610V p 2 On' 3 n 0V p 32 lv n 32

- a W (a 6 1 W fa 6 )] - 6 Ja If fa 6 1 F fa 6 1 - a F fa 6 ) F fa 6J] , (A.5)p 0V n 32 lv p 32 2 n 0V p 22 lv n 22 p n 22 lv p 22 v 2

f = -6 Ja Zn(a 6.) Z fa 6 ) - a Z fa 6 ) Z (a 6 )] , (A.6)3pn 3 n 0V p 32 n 32 p 0V n 32 1' p 32 ’

where we applied the boundary conditions (III.31) and (III.36).

Multiplying Eq. (A.4) by [^(o,^) F1(ah6i)]~ ^ Eq. (A.5) by K2/K1, and Eq. (A.6) by 

{K3/Kx) (^3p//32p) (J73n/i32n) and utilizing the boundary conditions (III.32) up to (III.35), we 

obtain the orthogonality condition (III. 37).

To obtain the normalization integral we follow a slightly different method. We can rewrite 

the Bessel differential equation in the form

2„2orr r) + -
dr 0 P dr

r —X(cl r) dr 0 PJ 0 ,

from which, upon integration between the limits and x2, we obtain 

I. = — [x^ X2(a x ) - x2 X2(a x ) + x2 X2(a x ) - x2 X2(a x )] .
ipp 0 2 p 22 1 0V p l2 2 lv p 22 1 1 v p l2

(A. 7)

(A. 8)
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For each one of the regions, we have

ipp r r dr V2(a r)=-[6^ U2(a bj - b2 U2(a bj+ b2 V (a bj - b2 U (a bj] , (A.9) 
OVp 7 2 2 p 27 1 CP p l7 2 lv p 27 1 p 17J ’ v 7

2PP

3pp

, * ^ [6s - bi w>rb,'> *- bi v>„b^ ■(Al0)r
Jb,

f"‘ ’ * z;cv>4[i< zS(aP,,.) - 63 z.(“p43)+ b!, z;<“pf> - ^z; (“p6,)] ■ <a-u>

Multiply Eq. (A.9) by [^(o^)]-2, Eq. (A.10) by K^K^nd Eq. (All) by (r]3p/p2p)2 x

sum the results, and apply the boundary conditions (III.31) up to (III.35) to obtain Npp as given by
Eq. (III.45). Also,

UAa r) = Y(a b,)J(a r) - J (a b,)Y(a r) (A.12)I n7 l nl77lxr!7 l nX7lvn v 7

W (a r) = n / (a r) — n F,(ar)I n7 'In7 I n7 '02n lAn7 (A.13)

Z,(a r) = / (a r) - F,(a r)lvn7 "2n',lvn7 “in lvn7 (A.14)

APPENDIX B

Expansion of the U0 and V^ Functions for Thin Samples

When the ratio 8/b2 is smaller than unity (S = f>2 — b^), one can expand the Bessel functions 

/Q(x) and F0(x) in the Taylor series

X (a b- a 8) = X (a bj---- (a 8) [X (a b )- X ,1a b J]nx p 2 p 7 nA n 2 2 P n-lx p 2 n + lv p 27

+---- - (a 8)2[X (a b) - 2XXa bj + X ,(a ij]2(22 P n —2V p 27 «v p 27 n + 2v p 27

1
_ (a§)3[Z (a bj - 3X (a bj + 3Z , (a bj - X ,1a bj] (a 8 < 1) . (B.l)23JI v p 7 L n—p 27 n—lv p 27 n+lv p 27 n+3v p 27 v p 7 A 7

Introduction of the above expansion into the functions U0(apb2) and ^l(ap^2^’ together with 

the relations

W (bj = F (a bj J la b)-J(ab)Y (a b ) = - pv 2 p 27 *'n—p 2 J rr p 27 n—lv p 27 wxpb2

/ (ab)Y (ab)-Y(a b) J (a £ ) =J p 2' 2X p 27 lv p 27 7 2V p 27 m £
P 2

(B.2)

(B.3)
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J (a b ) Y (a b )-Y (a b ) J (a b )J p 2' 3V p 2' p 2' J 3K p 2'P 2- i' p-a"3'-p-2' -ni^bj2’

Y(a bj J (a bj - JXa bj Y (a bj1' p 2 4V p 2' ^ p 2' 4V p 27

48
p-2'-4'p-2' 7T(apb2)3 TT(apb2)

96 16
J(a bj Y (a bj - YXa bj J (a bj = - ----------- +J nK n O' A' n 0' n^nO'^A^n O' - •0- p 2' 4' p 2' 0-P2'-’4'p2- 77(0^6^ 77(0^6^ 2 ’

yields the results (11.21) and (11.22).

(B.4)

(B.5)

(B.6)
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