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ABSTRACT 

T h e r m a l e x p a n s i o n c h a r a c t e r i s t i c s w e r e d e t e r m i n e d for the 

f u e l - m o d e r a t o r , r e f l e c t o r , c l a d d i n g , and e n g i n e e r i n g m a t e r i a l s 

wi th in t h e S N A P - 2 c o r e v e s s e l . V a l u e s w e r e d e t e r m i n e d for AISI 

Type 347 s t a i n l e s s s t e e l , H a s t e l l o y N, b e r y l l i u m , z i r c o n i u m , 

z i r c o n i u m h y d r i d e , and z i r c o n i u m - u r a n i u m h y d r i d e s , f r o m r o o m 

t e m p e r a t u r e to t e m p e r a t u r e s g r e a t e r t han 1 3 0 0 ° F . D e r i v e d 

e q u a t i o n s w e r e c a l c u l a t e d for t h e s e m a t e r i a l s , u s i n g a l e a s t 

s q u a r e s a n a l y s i s . 

T h e r m a l e x p a n s i o n coe f f i c i en t s for the t e m p e r a t u r e r a n g e of 

77 to 1 2 0 0 ° F a r e : 10.34 x 10^ in . / i n . - ° F , for Type 347 s t a i n l e s s 
6 6 

s t e e l ; 7.46 x lO" in . / i n . - " F , for H a s t e l l o y N;- 9.07 x lO" 

in . / i n . - ° F , for b e r y l l i u m ; and 6.12 x 10 in . / i n . - ° F , for 

z i r c o n i u m - 7 wt % u r a n i u m h y d r i d e wi th an NTT = 6 . 4 . 
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\. INTRODUCTION 

The coefficient of l inear expansion as a function of t e m p e r a ­

tu re must be known for fuels, r e f l ec to r s , cladding, and any other 

ma te r i a l s within the SNAP core ve s se l . The rmal expansion co­

efficients a re used as the bas i s for s t r e s s calculat ions , during 

initial heating to t e m p e r a t u r e , operat ion at t e m p e r a t u r e , and 

subsequent cooling. I r radia t ion and hydrogen redis t r ibut ion 

effects also cause s t r e s s e s , during operat ing and the rma l cycling. 

Information concerning the the rma l expansion of z i rconium-

uranium hydrides is unavailable in the l i t e r a t u r e . Values for 

s ta in less s teel , Hastelloy N, and beryl l ium can be der ived, from 

var ious sou rces , thereby present ing a possibi l i ty for var ia t ions 

in data re l iabi l i ty . It w^as decided to investigate the ma te r i a l s in­

volved in the actual fuel e lement , to de te rmine accura te ly the 

re la t ive differences in t he rma l expansion c h a r a c t e r i s t i c s . 

NAA-SR-6047 
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II. EXPERIMENTAL APPARATUS AND PROCEDURES 

The basic equipment consis ts of a null void volume quartz tube differential 

d i la tometer , utilizing a l inear var iable differential t r ans fo rmer as a motion 

sensor . F igure 1 shows the essent ia l pa r t s of the d i la tometer and acce s so ry 

equipment. 

PRESSURE 
TRANSDUCER 

THERMOCOUPLE 
VACCUM GAUGE 

STAINLESS STEEL 
PROTECTION TUBE 

PROGRAMMER J l 

SPECIMEN 

FURNACE 

LINEAR VARIABLE 
DIFFERENTIAL 
TRANSFORMER 

COIL 
CORE 

GRADED SEAL 

QUARTZ TUBE 

THERMOCOUPLE— 

Figure 1. Quar tz Tube Dilatometei 

A ver t ica l ly mounted r e s i s t ance wound tube furnace is used to heat the speci 

men. The specimen r e s t s on a quartz seat which is fused to a quartz tube. The 

tube is connected to a s ta inless steel flange by a graded seal , and the assembly 

is enclosed by a s ta in less steel protect ion tube. A quartz push rod r e s t s on the 

sample , and t r a n s m i t s the motion of the sample to a l inear var iable differential 

t r ans fo rmer (LVDT) core located outside the furnace. A s ta in less steel (non­

magnetic) protect ion sheath surrounds the push rod and t r ans fo rmer c o r e . The 

LVDT coil is mounted outside the vacuum sys tem, as shown in F igure 1. This 

upper assembly is a i r cooled, to prevent t he rma l expansion of the var ious com­

ponents during a run . 
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The l i n e a r v a r i a b l e d i f f e r e n t i a l t r a n s f o r m e r c o n s i s t s of a m a g n e t i c a l l y s u s ­

c e p t i b l e c o r e and t h r e e c o a x i a l c o i l s m o u n t e d on a c e r a m i c co i l f o r m . Axia l 

m o t i o n of the c o r e p r o d u c e s an e l e c t r i c a l p o t e n t i a l which v a r i e s d i r e c t l y with the 

m o t i o n of the c o r e . T h i s s i g n a l i s t h e n bucked a g a i n s t a s i m i l a r c o r e - c o i l a r ­

r a n g e m e n t in a r e c o r d e r , t h e r e b y p r o d u c i n g a pen d i s p l a c e m e n t which i s l i n e a r l y 

v a r i a b l e with the o r i g i n a l c o r e m o v e m e n t . 

A p r o g r a m m e d f u r n a c e c o n t r o l i s u s e d to o b t a i n u n i f o r m hea t i ng r a t e s wi th 

the s a t u r a b l e c o r e r e a c t o r and r e s i s t a n c e tube f u r n a c e . A t w o - p e n r e c o r d e r , for 

p lo t t ing bo th t e m p e r a t u r e and e x p a n s i o n , a s func t ions of t i m e , i s u s e d . F o r the 

h y d r i d e s t u d i e s , p r e s s u r e - s e n s i t i v e t r a n s d u c e r s a r e u s e d to m e a s u r e the h y d r o g e 

d i s s o c i a t i o n p r e s s u r e s . T h e s e p r e s s u r e s a r e m o n i t o r e d on e i t h e r m a n u a l o r r e ­

c o r d i n g p o t e n t i o m e t e r s . 

A n o r m a l t h e r m a l e x p a n s i o n r u n c o n s i s t s of an in i t i a l e v a c u a t i o n p e r i o d , 

l e a k c h e c k i n g , i s o l a t i n g the s a m p l e c h a m b e r , hea t i ng to a s e l e c t e d t e m p e r a t u r e , 
- 3 

and coo l ing b a c k to a m b i e n t . E v a c u a t i o n to l e s s t h a n 5 x 1 0 m m was a l w a y s 
_3 

a c h i e v e d , a c c o m p a n i e d by l e a k r a t e s of l e s s t h a n 5 x 1 0 m m / h r into the s y s t e m . 

A h e a t i n g r a t e of 3 ' ' C / m i n w a s s e l e c t e d , to a l low c o m p l e t e h e a t i n g and 

p a r t i a l coo l ing d u r i n g a n o r m a l w o r k i n g d a y . The p r o g r a m m i n g s y s t e m h e a t e d 

the s p e c i m e n , at a r a t e of 2 .8±0.2 ° C / m i n , to a s e l e c t e d t e m p e r a t u r e ( f rom 700 

to 900 °C), w h e r e a m a n u a l l y o p e r a t e d swi t ch r e v e r s e d the s y s t e m , a l lowing 

coo l ing at the s a m e r a t e . One o r m o r e r e c o r d e r s fol lowed both t e m p e r a t u r e and 

e x p a n s i o n , a s func t ions of t i m e . T h i s i n f o r m a t i o n was then p lo t t ed , a s e x p a n s i o n 

vs t e m p e r a t u r e , for f u r t h e r c a l c u l a t i o n s . 

N A A - S R - 6 0 4 7 
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III. MATERIALS 

The Type 347 s ta in less steel was procured from normal commerc ia l sou rces . 

The Hastelloy N rod was purchased from Haynes-Stel l i te Company, Kokomo, 

Indiana, suppl iers of the r eac to r cladding m a t e r i a l . Brush Beryl l ium Company, 

Cleveland, Ohio, supplied the r e a c t o r - g r a d e hot p r e s s e d and extruded beryl l ium. 

Reac to r -g rade zi rconium was obtained from swaged c rys t a l bar stock. For 

evaluation in the z i rconium-hydrogen "delta" phase region, the zirconium was 

subsequently mass ive ly hydrided, as descr ibed in the l i t e r a t u r e . Zirconiuna-

uranium alloys were double a rc melted, by the consumable e lect rode method, 
2 

from r e a c t o r - g r a d e zi rconium and uranium pe l l e t s . The ingots were subse­
quently extruded, swaged, annealed, and hydrided to var ious composit ions for 
investigation. After hydriding, the specimens were ground to size, 0.240 to 0.250 
in. in d i a m e t e r . The length of the sample ranged from 1,3 to 2.2 in. 

NAA-SR-6047 
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IV. DATA 

Thermal expansion curves for z irconium - 7 wt % uranium a re shown in 

F igure 2. Mater ia l s with H / Z r r a t io s of 1.70 to 1.80 appear to have identical 

expansion c h a r a c t e r i s t i c s , while m a t e r i a l with H / Z r = 1.57 expands at a slower 

r a t e . 
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Figure 2. Thermal Expansion of Zirconium - 7 wt % Uranium 
Hydrides 

This i nc rease in the t he rma l expansion coefficient with increas ing hydrogen 
3 

content was also observed by Denver R e s e a r c h Insti tute, in their studies on 

zi rconium hydr ide . F igure 3 shows both the Denver Resea rch Institute data and 

some data obtained on this pro jec t . Battelle Memoria l Institute obtained s imi la r 

r e su l t s , under more rapid heating condit ions. 

Claddings a r e requi red to be in close proximity with the fueled modera tor 

ma te r i a l ; thus , they must closely approximate the t he rma l expansion coefficient 

of the fuel. Curves obtained on Type 347 s ta in less steel a r e shown in Figure 4. 

The l i t e r a tu re value is plotted for compar i son . It may be noted that the l i t e r a ­

ture data or ig ina tes at 0°C, while the p resen t curves originate at 25 °C. 
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Figure 3. Thermal Expansion of Zirconium and Zirconium Hydrides 
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Figure 4. Thermal Expansion of Type 347 Stainless Steel 
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Figure 5 shows the the rma l expansion curves for Hastelloy N, based on both the 
5 

l i t e r a tu r e value and p resen t exper imenta l data . 
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Figure 5. The rma l Expansion of Hastelloy N 

Beryl l ium, originally selected as an axial ref lector m a t e r i a l within the fuel 

tube, and therefore in contact with the cladding, was also invest igated. Expe r i ­

mental data f rom a s e r i e s of four runs on actual SNAP ref lector plugs a r e shown 

in F igure 6. Fo r comparat ive pu rposes , data obtained from Brush Beryl l ium 

Corporat ion, suppl iers of SNAP beryl l ium, and from x - r a y diffraction a r e 

shown to bracket the exper imenta l data . 

Beryl l ium oxide, selected to replace the axially positioned beryl l ium r e -
Q 

f lec tors , has been investigated on another project at Atomics Internat ional . 

Expansion of the BeO is l e s s than any of the ma te r i a l s in the SNAP fuel e lement , 

being approximately 25% lower than the fueled hydride m a t e r i a l . 
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Figure 6. Thermal Expansion of Beryl l ium 
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V. ERROR ANALYSIS 

A v a r i e t y of f a c t o r s a r e invo lved which i n t r o d u c e e r r o r s into the e x p e r i m e n t a l 

d a t a . The LVDT l i n e a r i t y i s d e s c r i b e d by the m a n u f a c t u r e r a s be ing b e t t e r t han 

± 1%, but u t i l i z a t i o n of c a l i b r a t i o n f i x t u r e s a t t a c h e d to the t h e r m a l e x p a n s i o n 

a p p a r a t u s n o r m a l l y r e s u l t e d in a r e p r o d u c i b l e a c c u r a c y of b e t t e r t han ± 0.5%, o v e r 

the e n t i r e c h a r t r a n g e . F u l l - s c a l e c h a r t r a n g e w a s n o r m a l l y se t at 20 m i l s e x ­

p a n s i o n , for m o s t r u n s . R e a d a b i l i t y on the c h a r t is b e t t e r t han 0.2%, thus the 

e x p a n s i o n i s known to ±0.5% [in a c t u a l u n i t s , ±0 .00005 i n . / i n . (50 / x i n . / i n . ) ] at 

full s c a l e . 

T e m p e r a t u r e r e a d i n g s a r e h ighly s u s c e p t i b l e to e r r o r s . C a l i b r a t e d C h r o m e l -

A l u m e l t h e r m o c o u p l e s w e r e u s u a l l y r e l i a b l e to ± 1 / 2 % of t e m p e r a t u r e r e c o r d e d . 

R e c o r d e r s have an i n h e r e n t a c c u r a c y of a p p r o x i m a t e l y 1/2% of full s c a l e , g iving 

an e x p e c t e d o v e r a l l a c c u r a c y of ± 1%. As a t e m p e r a t u r e s t a n d a r d , A r m c o i r o n 

h a s a s h a r p t r a n s f o r m a t i o n at 9 1 0 ° C . D u r i n g e x p e r i m e n t a l r u n s , t h i s t r a n s f o r ­

m a t i o n w a s a l w a y s o b s e r v e d in the r a n g e of 908 to 912 °C, i nd i ca t ing tha t r e c o r d e r 

t e m p e r a t u r e s w e r e n o r m a l l y a c c u r a t e wi th in ± 2 °C at t ha t t e m p e r a t u r e . 

D u r i n g in i t i a l c a l i b r a t i o n e x p e r i m e n t s u s ing d i f f e r e n t i a l t h e r m o c o u p l e t e c h ­

n i q u e s wi th in the i n t e r i o r of a s a m p l e vs the n o r m a l l y u s e d t h e r m o c o u p l e , d e v i ­

a t i ons of 5 to 10°C w e r e o b s e r v e d in the r e g i o n of 200° C , due to a s p e c i m e n h e a t ­

ing l a g . T h i s t h e r m a l lag was c a u s e d by low hea t t r a n s f e r c h a r a c t e r i s t i c s of the 

s y s t e m in t h i s t e m p e r a t u r e r e g i o n . Above t h i s t e m p e r a t u r e , t he d e v i a t i o n b e ­

c a m e l e s s ; and, above 400 °C, the t h e r m a l lag was l e s s t han 1 °C . 

C a l i b r a t i o n c h e c k s , with A r m c o i r o n and q u a r t z , showed tha t the only c o r ­

r e c t i o n f a c t o r r e q u i r e d in the c a l c u l a t i o n s was tha t i n t r o d u c e d by the q u a r t z 

ad j acen t to the s p e c i m e n . The o b s e r v e d s p e c i m e n e x p a n s i o n w a s l o w e r than the 

t r u e e x p a n s i o n by the a m o u n t of the q u a r t z e x p a n s i o n . When a q u a r t z s a m p l e w a s 

p l a c e d in the s y s t e m , i t s o b s e r v e d e x p a n s i o n was - 0 . 0 0 0 0 1 ± 0.00001 i n . / i n . at 

a l l t e m p e r a t u r e s in the r a n g e f r o m r o o m t e m p e r a t u r e to 1000°C, t h e r e b y a l l o w ­

ing u s e of the t h e r m a l e x p a n s i o n of q u a r t z a s the c o r r e c t i o n f a c t o r , a s the s y s t e m 

e r r o r s w e r e s m a l l e r t h a n n o r m a l r e a d a b i l i t y . V a r i a t i o n s in v a l u e s r e p o r t e d in 

the l i t e r a t u r e for the t h e r m a l e x p a n s i o n of A r m c o i r o n , p a r t i c u l a r l y above 600 °C, 

n e g a t e the u s e of A r m c o a s a p r i m a r y e x p a n s i o n s t a n d a r d . 
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L o w t e m p e r a t u r e d e v i a t i o n s in e x p a n s i o n w e r e o b s e r v e d in a l l m a t e r i a l s , due 

to the a f o r e m e n t i o n e d t e m p e r a t u r e l ag of the s p e c i m e n at t e m p e r a t u r e s l e s s t h a n 

a p p r o x i m a t e l y 250 °C. High t e m p e r a t u r e e x p a n s i o n d e v i a t i o n s w e r e o b s e r v e d on 

the h y d r i d e s , due to h y d r o g e n l o s s f r o m the s p e c i m e n into the 34 cc void v o l u m e 

of the a p p a r a t u s . In the c o m p o s i t i o n r a n g e of H / Z r f r o m 1.55 to 1.85, Zr - 7 
_2 

wt % U h y d r i d e s c o n t r a c t at the r a t e of 10 in . / i n . H / Z r . Knowing the s a m p l e 

weight , d i s s o c i a t i o n p r e s s u r e , and void v o l u m e of the a p p a r a t u s , it i s p o s s i b l e to 

apply t h i s c o r r e c t i o n to the Z r - U h y d r i d e s . The r e s u l t a n t t h e r m a l e x p a n s i o n 

c u r v e s , a f t e r c o r r e c t i o n for h y d r o g e n evo lu t ion , show u p w a r d c o n c a v i t i e s at a l l 

t e m p e r a t u r e s ; w h e r e a s , wi thout c o r r e c t i o n , c o n t r a c t i o n s b e c o m e ev iden t only at 

h igh t e m p e r a t u r e s . 

F i g u r e 7 shows both the low and h igh t e m p e r a t u r e d e v i a t i o n s o b s e r v e d in a 

t y p i c a l t h e r m a l e x p a n s i o n r u n on h y d r i d e d m a t e r i a l . F i g u r e 8 shows the d i s ­

s o c i a t i o n p r e s s u r e o v e r the s p e c i m e n , a s a funct ion of t e m p e r a t u r e , d u r i n g the 

s a m e t y p i c a l e x p e r i m e n t a l r u n . Due to the s y s t e m be ing d y n a m i c in n a t u r e , 

e q u i l i b r i u m p r e s s u r e s a r e n e v e r ob t a ined o v e r the s a m p l e . H o w e v e r , by p lo t t ing 

both hea t i ng and coo l ing p r e s s u r e s , t he e q u i l i b r i u m p r e s s u r e c a n be a s s u m e d to 

be s o m e w h e r e in b e t w e e n . By p lo t t ing t h e s e p r e s s u r e s on an i s o c h o r e m a p , the 

m e t h o d b e c o m e s an a n a l y t i c a l too l to d e t e r m i n e the a p p r o x i m a t e s a m p l e 

c o m p o s i t i o n . 

R e p r o d u c i b i l i t y of the e x p a n s i o n d a t a for a l l m a t e r i a l s w a s a l w a y s b e t t e r t han 

± 1/2%, with l e s s t h a n ± 1/2% a c h i e v e d in four c o n s e c u t i v e r u n s of the s a m e 

h y d r i d e m a t e r i a l . 

C u r v e s w e r e c a l c u l a t e d by u s i n g a l e a s t s q u a r e s a n a l y t i c a l t e c h n i q u e . A 

s a m p l e c a l c u l a t i o n i s i l l u s t r a t e d in Appendix II . Us ing the d e r i v e d e q u a t i o n s for 

c a l c u l a t i n g e x p a n s i o n at v a r i o u s t e m p e r a t u r e s , v a l u e s w e r e wi th in ± 1% of the 

e x p e r i m e n t a l c u r v e s , e x c e p t at low t e m p e r a t u r e s . 
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VI. DATA COMPARISON 

A compar i son of the data obtained during this exper imenta l p r o g r a m is plotted 

in F igure 9. Type 347 s ta in less s teel expands at a ra te g rea te r than beryl l ium. 

.E 10 

STAINLESS STEEL 
TYPE 347 

BERYLLIUM 
HASTELLOY N 
(Zr - 7wl % UI H, 

200 400 

TEMPERATURE ( 'O 

Figure 9. Thermal Expansion of SNAP Mater ia l s 

Hastelloy N, and z i rcon ium-uran ium hydr ide . Table I, in Appendix II, l i s t s the 

coefficients for the der ived the rma l expansion equation, as well as the coefficients 

for expansion from room t empe ra tu r e to 1000, 1200, and MOO'F. The coeffi­

cient (a) is a re la t ive m e a s u r e of low t e m p e r a t u r e deviation from the calculated 

cu rve . The coefficient (b) may be regarded as the room t empe ra tu r e t he rma l 

expansion coefficient, while coefficient (c) is the t empe ra tu r e dependent coeffi­

cient . In cases where (c) is smal l , the coefficient of t h e r m a l expansion changes 

only slightly as a function of t e m p e r a t u r e , as shown by the s ta in less steel; while 

l a rge r values of (c) cause an upward concavity, as best i l lus t ra ted by the 

z i rcon ium-uran ium hydr ide . 

In the t empe ra tu r e range investigated, all s t ruc tu ra l m a t e r i a l s have the rma l 

expansion coefficients g rea t e r than z i rcon ium-uran ium hydr ide . P a r t of this 

differential t he rma l expansion is el iminated during heating and normal r eac to r 

operat ion, due to the fact that the fuel is hotter than the cladding. 
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Vn. SUMMARY 

Data o b t a i n e d d u r i n g t h i s e x p e r i m e n t a l p r o g r a m for SNAP 

m a t e r i a l s have b e e n c o m p a r e d to the l i t e r a t u r e , w h e r e a v a i l a b l e , 

and found to c o r r e s p o n d wi th in n o r m a l l y e x p e c t e d e x p e r i m e n t a l 

a c c u r a c y . T h e r m a l e x p a n s i o n coe f f i c i en t s ob t a ined for the 

t e m p e r a t u r e r a n g e of r o o m t e m p e r a t u r e to 1200 °F a r e : 10.34 x 

10 i n . / i n . - ° F , for Type 347 s t a i n l e s s s t e e l ; 7.46 x lO" 

i n . / i n . - ° F , for H a s t e l l o y N; 9.07 x lO" i n . / i n . - ° F , for b e r y l l i ­

u m ; and 6.12 X 10 i n . / i n . - ° F , for z i r c o n i u m - u r a n i u m h y d r i d e 

wi th an N^r = 6 .4 . I n s t a n t a n e o u s t h e r m a l e x p a n s i o n c o e f f i c i e n t s , 

for any t e m p e r a t u r e f r o m 200 to 1 3 0 0 ° F , m a y be c a l c u l a t e d f r o m 

d e r i v e d e q u a t i o n s , for u s e in r e a c t o r a n a l y s i s . 
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APPENDIX I 

LEAST SQUARES METHOD OF SOLUTION FOR THERMAL EXPANSION DATA 

Let: 

Y = Expansion from room t empera tu re to t°C (mi l s / in . ) 

X = Tempera tu re (°C x lO" ) 

Y = a + bX +cX^ 

I. S(Y) - Na + bS(X)+cS(X^) 

II. 2(XY) = aZfX) +b2(X^) + cE(X^) 

III. 2(X^Y) = aliX^) + bi:(X^)+ cS (X^ 

For a s tandard expansion run which covers the range from room t empera tu re 

up to 700 to 900 °C, it is convenient, from a calculation standpoint, to use 100 

to 700 °C for a solution. 

For a s tandard solution (100 to 700''C): 

N = 7, I (X) = 28, 2(X^) = 140, S(X^) = 784, ^(X^) = 4676 

Fitt ing summations of X into Equations I to III: 

7a + 28b + 140c = E(Y) . . .(1) 

28a + 140b + 784c = ^(XY) . . . (2) 

140a + 784b + 4676c = 2(X^Y) . . . (3) 

Dividing through to obtain a: 

(1) ^ 7: a +4b +20c = 2(Y) /7 . . . (4) 

(2) -f 28: a + 5b +28c = 2(XY)/28 . . . (5) 

(3) ^ 140: a + 5.6b + 33.4c = E(X^Y)/140 . . • (6) 
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Eliminating a: 

(5)-(4): b + 8c - Z(XY)/28 - 5;(Y)/7 

(6)-(5): 0.6b +5.4c = Z(X^Y)/140 - Z(XY)/28 

Eliminating b: 

(8) X 5/3: b + 9c = | [ l ] (X^Y) /140 - E(XY)/28j 

(9)-(7): c = -I [S(X^Y)/ 140 - S(XY)/28] - [i:(XY)/28 - Z(Y)/7l 

Substituting c in (7) or (9) , b is obtained. 

Substituting b and c in (4), (5), or (6), a is obtained. 

Substituting for X and Y: 

A i - 3 - 5 - 7 2 
Expansion = = a x l O + b x l O t + c x l O t 

i 
w ĥe r e: 

t is in "C, in the range of 100 to 700°C 

a, b, and c a re the der ived coefficients 

Ai . . . .. 
—J— IS m m. / m . 
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APPENDIX II 

SAMPLE SOLUTION FOR THERMAL EXPANSION 

t 
(°C) 

100 

200 

300 

400 

500 

600 

700 

z 

X 

1 

2 

3 

4 

5 

6 

7 

28 

x' 

1 

4 

9 

16 

25 

36 

49 

140 

x^ 

1 

8 

27 

64 

125 

216 

343 

784 

X^ 

1 

16 

81 

256 

625 

1296 

2401 

4676 

A i 
I 

( m i l / i n . ) 
Y 

0.44 

1.22 

2.22 

3.38 

4 .70 

6.12 

7.65 

25 .73 

XY 

0.44 

2.44 

6.66 

13.52 

23.50 

36.72 

53.55 

136.83 

X^Y 

0.44 

4.88 

19.98 

54.08 

117.50 

220.32 

374.85 

792.05 

7a + 28b +140c = 25 .73 . . . (1) 

28a + 140b + 784c = 136.83 . . . ( 2 ) 

140a + 784b + 4 6 7 6 c = 792.05 . . - ( 3 ) 

(1)-^ 7: a + 4b + 2 0 c = 3.67571 . . . ( 4 ) 

(2) - r28: a + 5b + 2 8 c = 4 .88680 . . . (5) 

(3) H- 140: a + 5.6b +33.4c = 5.65750 . . . (6) 

(5) - (4) : b + 8c = 1.21109 . • . (7) 

(6) - (5) : 0.6b + 5.4c = 0.77070 • . . (8) 

(8) X 5 / 3 : b + 9c - 1.28450 . . . ( 9 ) 
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(9)- (7) : c = 0.07341 

b = 1.21109 - 8(0 .07341) 

= 0.62381 

a = 3 .67571 -4 (0 .62381 ) - 20(0.07341) 

= - 0 . 2 8 7 7 3 

4 ^ ( i n . / in . ) = - 2 . 8 8 x l O " ^ + 6.24 x lO"^ t +7.34 x lO"*^ t' 

C h e c k for so lu t ion of s a m p l e : 

t 
CO 

100 

2 0 0 

300 

4 0 0 

5 0 0 

6 0 0 

7 0 0 

O r i g i n a l 
E x p . 

( m i l / i n . ) 

0.44 

1.22 

2.22 

3.38 

4 .70 

6.12 

7.65 

a 

- 0 . 2 8 8 

-0 .288 

- 0 . 2 8 8 

- 0 . 2 8 8 

- 0 . 2 8 8 

-0 .288 

- 0 . 2 8 8 

b t 

0.624 

1.248 

1.872 

2.496 

3.120 

3.744 

4 .368 

c t ^ 

0.073 

0.294 

0.661 

1.174 

1.835 

2.642 

3.597 

a+bt+ct 
( m i l / i n . ) 

0.41 

1.25 

2.24 

3.38 

4 .67 

6.10 

7.68 

Dev ia t i on 
f r o m 

O r i g i n a l 

- 0 . 0 3 

+ 0.03 

+ 0.02 

0 

- 0 . 0 3 

-0 .02 

+ 0.03 
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TABLE I 

THERMAL EXPANSION OF SNAP MATERIALS 

* 
C o n s t a n t s in E q u a t i o n (1) 

- a ( x 10^) 

b(x 10^) 

c(x 10 ) 

C a l c u l a t e d CL^^^.^ ( i n . " = c ) <" ^°^) 

A v e r a g e E x p a n s i o n (•• ^^ 'o^ ) (x 10 ) 
\^in.- c y 

25 to 500' 'C 

25 to 600°C 

25 to 700°C 

A v e r a g e E x p a n s i o n (-: TTr] (x 10 ) 
\^ in . - FJ 

77 to 1000°F 

77 to 1200<'F 

77 to 1 4 0 0 ° F 

Type 
347 
S . S . 

6.34 

16.11 

4.52 

19.73 

17.9 

18.6 

19.1 

10.05 

10.34 

10.66 

H a s t e l l o y 
N 

3.94 

11.13 

3.87 

14.22 

13.0 

13,4 

13.8 

7.19 

7.46 

7.78 

Be 

4 .78 

11.76 

7.19 

17.51 

15.2 

15.9 

16.7 

8.53 

9.07 

9.47 

Z r - 7 w t % U 
H / Z r 1.8 

2.88 

6.24 

7.34 

12.11 

10.1 

10.8 

11.5 

5.63 

6.12 

6.56 

•Equation (1): A l = a + bt + ct^ 

Where: t is in C, in the range of 100 to 700 C 

M = 0 at 25°C 

a, b, c are derived coefficients 

t o 
'^400''c Instantaneous coefficient of thermal expansion at 400 C 
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