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SPERT I - A ser ies  of in-pile experiments has been in i t i a t ed  i n  the 
Spert I reactor t o  study the dynamics of void growth i n  a water-fi l led 
capsule containing fuel  plates.  The objective of these experiments i s  
t o  obtain information concerning the r a t e  of t ransient  boiling i n  the 
self-shutdawn of water-moderated reactors.  The capsule, which i~ 
essent ial ly  a water-fi l led tube i n  which fue l  p la tes  are  mounted, i s  
placed i n  a central ly  located f lux  t r ap  i n  the P-core. Using the 
reactor as  a neutron source, measurements are made of the instantane- 
ous pressure, volume expansion, and fue l  plate  surface temperatures. 
In a preliminary ser ies  of t e s t s  which was performed with non-fuel- 
bearing duulrqy p la tes  i n  the capsule, no moderator displacement was 
observed which could be at t r ibuted t o  radiolyt ic  gas formation i n  the 
capsule as  a resu l t  of radiation emanating from the reactor region 
surrounding the capsule. The approximate range of reactor periods for  
these t e s t s  was 10 t o  900 msec. The f i r s t  ser ies  of t e s t s  with fuel-  
bearing p la tes  i n  the capsule included t e s t s  with asymptotic reactor 
periods of 19, 14 and 9 msec, fo r  selected capsule pressures i n  the 
range between 0 and 1.600 psig. Reduction and analysis of the data 
obtained *om these t e s t s  has been in i t i a t ed  and preparations are  
under way for the  ins ta l la t ion  of a second set of more heavily loaded 
fue l  plates  and for  photographic study of t ransient  bubble formation 
i n  the capsule. 

Exmirmtion of the r e su l t s  of the large amplitude, l o w  power, 
osc i l la tor  t e s t s  previous'ly performed i n  Spert I has indicated tha t  
the describing-function phase r e su l t s  a re  i n  re la t ive ly  good agreement 
with theoret ical  predictions. The magnitude resul ts ,  however, show a 
significant frequency-dependent deviation from the theory. Several 
possible e f fec ts  a re  under consideration for  the cause of the disagree- 
ment. 

SPERT I1 - Cri t ica l  experiments have been performed fo r  a close-packed, 
D20-moderated core configuration. The f i n a l  configuration comprised 
72, 12-plate, modified D-type f u e l  assemblies and 8, 8-plate, fuel-  
poison control rods. This loading contained 6.36 kg of $35 and had 
an available cold, clean excess reac t iv i ty  of approximately $6.50. 

Cr i t ica l  experiments and measurements of nuclear parameters were 
.made f o r ' a n  expanded D20-moderated core i n  which the 3-in. x 3-in. 
fue l  assemblies a re  spaced on 6-in. centers. The control rods for  
t h i s  core configuration were,tubular, with a cadmium poison section 
and st11 aluminum follower. The operational core loading comprised 24 
22-plate, BD-type fue l  assemblies with a t o t a l  mass of 3.70 kg of ~ ~ 3 . 5 .  
This core had an available excess reac t iv i ty  of approximately $8 a t  
ambient temperature. 'I'he measu-ed temperature ooef f ic i .~nt  var ies  from 
-2.09!/'~ a t  8 0 ' ~  t o  -4 .4#/ '~  a t  300°F, and the temperature defect from 
70°F t o  300 '~  was found t o  be about $7.25. 

SPIZRT I11 - Tests h~lve been performed i n  the Spert I11 reactor t o  deter- 
mine the effect  of coolant flow on the response of the reactor -L;o step- 
changes i n  react ivi ty .  The t e s t s  covered a range of water veloci t ies  



from 0 t o  18 f t / sec  i n  the  reactor core fo r  i n i t i a l  asymptotic periods 
of from 500 msec t o  10 msec. A l l  of the t e s t s  were in i t i a t ed  a t  room 
temperature with system pressures of 230 p s i  or 2500 ps i .  For short- 
period excursions no s ignif icant  changes a re  observed in the i n i t i a l  
power burst ,  but the  post-burst equilibrium power i s  approximately 
proportional t o  f l o w  ra te .  For power excursions with i n i t i a l  periods 
greater  than about 100 msec, 18 f t / sec  flow velocity i s  suff ic ient  t o  
eliminate the occurrence of an i n i t i a l  parer peak. The power r i s e s  
monotonically toward an equilibrium power l eve l  which increases with 
f l a w  ra tc .  Data from these t e s t s  are s t i l l  being reduced. 

ENGINEERING - The f i r s t  use of %0 in the Spert I1 p r h a r y  system i s  
described. During the  i n i t i a l  c r i t i c a l  studies performed i n  Spert I1 
t h i s  quarter, approximately 294 l b  of Q 0  was l o s t  a s  a result-of 
evaporation from the  vessel, small sp i l l s ,  and evaporation of droplets 
and fi lms clinging t o  f'uel a3semblies;, handling tools  alld ukher par ts  
reuuved from the  r e ~ t o r  t,ank., An addikional 74 lb i s  estimated t o  
have been l o s t  from deuterization of the  ion-exchange columns i n  the 
D20 cleanup system. 

Additional burnout heat f lux  calculations have been made for  the  
Spert I11 reactor including the e f fec ts  of two-phase flow. 

Hydraulic t e s t s  have been continued f o r  the type-D f'uel assemblies 
t o  determine t h e  channel flow dis tr ibut ion fo r  both up-flow and down- 
flow conditions. The r e s u l t s  indicate tha t  fo r  a Spert I V  core com- 
posed of 20 18-plate, D-type assemblies, and fo r  a flow r a t e  of 250 gpm 
per assembly, t he  maximm deviations from the average channel flow would 
be 14% a d  6% f o r  up-flow and down-flow respectively. 

A study has been made t o  investigate the  f e a s i b i l i t y  of soluble 
poison emergency sh~>.tciown sy~tems for  the Spert I1 and Spert I11 reactor$, 
The proposed system woll ld  hp deeigncd 'to p:~:uvLilt! aCiCiltiona1 reac t iv i ty  
shutdown margin ;In t h e  p ~ r ~ n t  89 nil cx-trtii(e ~ u l r t r o i  rod nialfunction 
during elevated temperature operation i n  order t o  permit slow cool-down 
of the  primary coolant system. The study indicated tha t  gadolinium and 
samarium n i t r a t e  solutions decompose i n t o  insoluble compounds a t  teupera- 
tu res  of about 3 0 0 ~ ~ .  It i s  concluded tha t  boric. acid inject ion by 
means of the  gla.ntd makeup pump8 would provide a sat isfactory means of 
poisoning the systems by an amount equal t o  the  available cold excess 
r eac t iv i ty  i n  5.5 hours and 3 hours for  Spert I1 and Spert I11 respectively. 



A. Mechanism Studies 

1. Summary of Experimental Work 

A series of in-pile experiments has been in i t i a t ed  i n  the 
Spert I reactor t o  study the dynamics of void growth i n  a water-fi l led 
capsule containing fue l  plates .  The objective of these experiments i s  
t o  obtain information concerning the  ro le  of t ransient  boiling i n  the 
self-shutdown of water-moderated reactors. Preparation of the capsule 
with i t s  associated instrumentation was completed during t h i s  quarter. 
Foi l  activation f lux  measurements were made t o  determine the  neutron 
f lux  dis t r ibut ion throughout the capsule fue l  plate  region and t o  
determine the r a t i o  of peak f lux  i n  the  capsule fue l  region t o  the 
peak f lux  i n  the  reactor core. In addition, flux-shaping experiments 
were carried out t o  increase t h i s  r a t i o  and t o  enhance the  peaking of 
the capsule fue l  f lux  i n  the v ic in i ty  of the window through which 
photographs are  obtained. A preliminary ser ies  of t ransient  t e s t s  was 
then performed, with aluminum plates  substituted f o r  the capsule fue l  
plates,  i n  order t o  measure my volume changes resul t ing from radiolyt ic  
gas formation i n  the  capsule due t o  radiation originating from the reactor 
region surrounding the capsule. The f i r s t  se r ies  of t e s t s  with fuel-  

bearing plates  i n  the c a p ~ u l e  
was a l so  completed during 
t h i s  period. This ser ies  

P E R 1  S C O P E  - C A P S U L E  included t e s t s  with asybptotic 
reactor periods of approxi- 
mately 19, 14 and 9 msec, 
f o r  selected capsule s t a t i c  

N T R O L  R O D  pressures i n  the range between 
o and 1600 psig. NO motion 
pictures were taken during 
t h i s  f i r s t  t e s t  se r ies .  

N S I E N T  R O D  
2. Capsule Description 

The capsule used for  
in-pile void growth studies 
i n  Spert I was placed i n  a 
central ly  located f lux  t r ap  i n  , 

the  s ta inless  s t e e l  clad, highly 
enriched P-core, which functioned 
a s  the neutron driving source 
for  the  capsule t ransient  experi- 

6 1 - 1 0 0 6  ments. The f lux  t r ap  s lo t  was 
arranged t o  accommodate both 
the  capsule and the  associated 

Fig. 1 - Cross Section of P-Core periscope connecting tube. A 
Showing Flux Trap Slot cross section of the core i s  , 

and Capsule shown i n  Fig. 1. 



The capsule uni t  i t s e l f ,  a s  sham i n  the schematic drawing i n  
F i g .  2, i s  basical ly  a closed, water-filled, cyl indrical  s t e e l  tube, 
with a piston a t  one end t o  provide a measure of the  expulsion of 
the  water moderator from the  capsule f'uel p la te  region during the 
c m s e  of a power excursion. The f u e l  p la tes  axe mounted i n  the cap- 
sule  chamber and axe instrumented with thermocouples t o  measure the  
temperature of the  cladding surface. Below the  f i e 1  plates, a t  the  

bottom end of the  capsule 
chamber, i s  a d i f f e ren t i a l  
pressure transducer, which 
measures the  difference 
between the  instantaneous 
pressure developed during 
the  power excursion and the  

L A T C H  MECHANISM i n i t i a l l y  adjusted s t a t i c  
capni.Llc pressye.  This 
measurement of t he  premura 
r i s e  in ,  the  capsule requires 
tha t  the s t a t i c  pressure i n  
the bottom chamber below 
the  pressure transducer be 
i n i t i a l l y  set  equal t o  the 
capsule s t a t i c  y r e ~ s u e  . 
A sapphire winduw and a 

F ILL  AND P ISTON S H A K E R  periscope-camera arrange- 
ARMATURE a COIL  ment permit photographs t o  

PRESSURE- be taken of bubble formation 
E O U A L l Z l N G  during a power t ransient .  

DEAERATEO WATER 

D~ulng  a power excwslon, 
F U E L  P L A T E  the piston i s  displaced up- 

ward  by the  moderator expul- 
sion resul t ing from the  com- 
bined effects  of fu?l glate 

F I L L  AND , ,PiR\","::E expansion, steam formation, 
and radiolyt ic  gas formation 

PRESSURE i n  the  capsule. The speed 
TRANSDUCER 

and the distance moved by 
the  piston m e  r n ~ a s 1 1 r ~ d  by 

a INSTRUMENT velocity and displacement 
L E A D  L I N E  

6 1  - 1007 
transducers mounted i n  the  
upper instrumentation section 
of the capsule un i t .  Measure- 
ment of the  ins;tantmeni~s d i  6- 

Fig. 2 - Schematic Drawing of the placement of the piston and 
Capsule the t ransient  pressure requires 

elimination of those errors  
ar is ing as  a r e su l t  of the  

compliance of the capsule water due t o  t h e  entrained gases normally 
present i n  fresh, deionized water. Prior t o  each t ransient  run, the  
capsule water i s  deaerated by a l te rna te ly  pressurizing the capsule 
water fo r  several seconds a t  about +5O psig and then depressurizing 
f o r  several seconds a t  -15 psig. After each cycle, a measure of the  



r e l a t i v e  " s t i f fne s s "  of t h e  water i s  obtained by measuring t he  ampli- . 
tude of a 60 cycle acoust ical  wave s e t  up by t he  pis ton shaker armature 
located i n  t h e  instrumentation sect ion ( see  Fig. 2 ) .  As t he  water 
becomes deaerated, t he  magnitude of t h e  propagated acoust ical  wave 
measured by t he  pressure transducer a t  t h e  bottom of t h e  capsule chamber 

a increases t o  a maximiun value. This point, which i s  reached a f t e r  a few 
pressur izat ion cycles, corresponds t o  t h e  maximum deaeration of t h e  
capsule water f o r  t h e  ex i s t ing  experimental conditions. 

3. Capsule Tests with Simulated Fuel P la tes  

A se r i e s  of twelve power excursions was run using pure aluminum 
p l a t e s  t o  simulate f u e l  p l a t e s  i n  the .capsule .  The purpose of these  
t e s t s  was t o  determine i f  any moderator displacement a t t r i bu t ab l e  t o  
r ad io ly t i c  gas formation i n  t h e  capsule c h g b e r  could be observed during 
power excursions a s  a r e s u l t  of beta, X-ray and fast-neutron rad ia t ion  
emanating from t h e  reactor  region surrounding t h e  capsule. The t e s t s  
were run a t  ambient temperature and a t  0 ps ig  capsule s t a t i c  pressure, 
and t h e  approximate range of reactor .  periods covered i n  these  t e s t s  
was from 10 t o  900 msec. The experimental r e s u l t s  obtained indicated 
no observable void growth during or  a f t e r  t h e  power burs t s .  The 
minimum detectable  pis ton dieplacement i s  a proximately 0.003 in . ,  
corresponding t o  a void volume of 0.004 in .3  or about 0.01% of t h e  
t o t a l  water volume i n  t h e  capsule chamber. 

f 

4. Capsule Tests with I n i t i a l  Capsule Fuel Loading 

The i n i t i a l  f u e l  loading i n  t he  capsule consisted of a s e t  of 
seven aluminum-clad f u e l  p la tes ,  each l ' i n .  x 5 i n .  x 0.050 in .  i n  
dimension, with f u e l  l a t e  cladding thickness of 0.015' i n .  and a f u e l  
densi ty  of 0.038 g U235/cm2 uniformly d i s t r ibu ted  over t he  e n t i r e  p l a t e  
area.  The capsule f u e l  p l a t e s  were cut from a l a rger  f u e l  p la te ,  and 
t h e  resu l t ing  open edges of t h e  cut  p l a t e s  were then sprayed with 
aluminum t o  provide a complete cladding f o r  t h e  capsule p la tes .  Tests 
were run a t  reactor  periods of approximately 19, 14 and 9 msec, with 
various capsule s t a t i c  pressures between 0 and 1600 psig.  All t r ans i en t s  
were i n i t i a t e d  from ambient temperature. Measurements of p is ton d i s -  
placement m d  velocity,  of f ue l  p l a t e  surface temperature, and of 
capsule pressure were obtainea a s  a function of time during the  t ran-  
s ien t .  Typical time p lo t s  of p is ton displacement, p l a t e  temperature 
and capsule pressure a r e  shown i n  Fig. 3. 

O f  i n t e r e s t  i n  t h e  curve of f u e l  p l a t e  surface temperature shown 
i n  Fig. 3, i s  t he  abrupt decrease .in slope,, which t&es place following 
a period i n  which t h e  temperature i s  r i s i n g  exponentially. This break , 

i n  t he  curve i s  thought t o  r e f l e c t  t h e  sudden increase i n  heat t r ans f e r  
r a t e  due t o  t h e  onset of boi l ing.  This manifestation of bo i l ing  i n  
t he  curve of f u e l  p l a t e  temperature has not been observed i n  previous 
measurements a t  Spert due t o  t h e  poorer time-response proper t ies  of 
t h e  thermocouples used i n  t he  e a r l i e r  measurements. The newly developed 
thermocouples used i n  the  capsule s tudies  were 0.0005-in. diameter, 
peened and welded chromel-alumel couples, i n  contras t  t o  t h e  previously 
used 0.005-in. diameter thermocouples. As a r e su l t ,  the  f igure  of merit 



A R B I T R A R Y  T I M E  ( m s e c )  
6 1 - 1 0 0 8  

Fig. 3 - Typical Data from Capsule 

r a t i o  of contact area t o  heat capacity for  the capsule thermocouples 
was an order of magnitude larger  than fo r  the other thermocouples, 
permitting an attendant increase i n  thermocouple time response, with 
consequent greater resolution i n  the t ransient  behavior of the fue l  
p l a t e  temperature. 

Reduction and analysis of the data obtained from these t e s t s  has 
been in i t ia ted ,  and preparations a re  under way for  the  ins ta l la t ion  of 
the  second set  of more heavily loaded capsule fue l  p la tes  and fo r  
photographic study of t ransient  bubble formation i n  the capsule. 

B. Reactivity Oscillator Program 
. .  ~. -- 

Detailed examination of the r e s  1 s of the  large-amplitude, l o w  
power osc i l la tor  t e s t  of June, 1960 ylj has indicated that the  describing- 
function phase r e su l t s  a re  i n  re la t ive ly  good agreement w 
predictions based on the  analyt ical  formulation of Akcasu 
describing- function magnitude resul ts ,  however, show a significant,  
frequency-dependent deviation from t h i s  theory. I f  the magnitude data 
a re  normalized a t  the  higher frequencies, agreement i s  good down t o  
about 0.5 cps. Below t h i s  frequency, the experimental r e su l t s  exceed 
the  theoret ical  by a difference which grows roughly inversely with 
frequency t o  a difference of 'about one reciprocal dol lar  a t  about 
0.002 cps. Similar r e su l t s  a re  obtained f o r  three different  values 
of r eac t iv i ty  amplitude ranging from $0.037 t o  $0.156. 



These t e s t s  were carried out using a simple, direct-recording instru- 
mentation system, and a detailed re-examination of t h i s  system has not 
revealed any effects which might account for  the discrepancy in  the 
describing-f'unction magnitude results.  The earl ier  t e s t s  i n  the summer 
of 1959, using a quite different, nulling-wave-analyzer type of instru- 
mentation, led t o  results  of substantially the same character. It has 
been concluded therefore that, barring a remarkable coincidence, the 
disagreement between the experimental and theoretical describing-mction 
magnitude results  are not due t o  faul ts  i n  the part of the instrumentation 
which folluws the ion chamber neutron detector. 

Other possibi l i t ies  under consideration for  the cause of the disagree- 
ment are as folluws : (a) errors i n  the a n a l y ~ i s  or in the calculations 
based on the analysis, (b) faul ts  i n  the operation of the ion chamber, 
(c)  faul ts  i n  the operation of the reactivi ty oscillator, and (d) addi- 
t ional  spatial  or neutron propagation effects not included i n  the analysis. 

Errors in the analysis of the problem as formulated seem unlikely; 
the analysis has been independently checked i n  detail .  Ekrors in the 
computer program calculation also seem unlikely; a hand calculation a t  a 
single frequency and reactivity amplitude value gave results  identical 
with the results  of the ccanputer calculation. Hand calculation a t  another 
frequency and reactivi ty amplitude w i l l  be undertaken t o  further corrobo- 
ra te  t h i s  point. 

A series of t e s t s  on the performance characteristics of the ion 
chamber used i n  the June, 1960 oscillator t e s t s  has been carried out. 
These include a detailed s t a t i c  calibration of the chamber in  the MlT 
thermal column (saturation and l inear i ty  characteristics t e s t s )  and a 
comparison of the chamber dynamic performance ( in  reactivi ty oscillation 
t e s t s  a t  the Treat reactor) with that  of another chamber which has given 

' satisfactory results  a t  Treat. The results  of the t e s t s  a t  the M I 9  indi- 
cate excellent s ta t i c  characteristics for  the chamber under the conditions 
used i n  the Spert oscillator tes ts .  The results  of the Treat t e s t s  are 
still  being processed. In addition, because the chamber i s  knuwn t o  be 
microphonic as a result  of vibration of the paral lel  plate structure, 
some consideration is being given t o  the effect which plate vibration 
induced by the oscillator drive system might have on the signal generated 
by the chamber. 

With regard t o  possible faul ts  in the operation of the reactivity 
oscillator, no reasonable mechanism has been envisioned which could yield 
sufficiently large increases in  reactivity amplitude with decreasing fre- 
quency t o  account for  the observed disagreement i n  describing-f'unction 
magnitude. The results  of early preliminary experiments i n  the oscillator 
design stage of the program indicate that  the largest conceivable vibra- 
t ion or wobble of the oscillator would yield a change i n  reactivity ampl i -  
tude which would be a t  lettst a decade m d l ~ r  than that  required. 

Some consideration is being given t o  the possibility that  peculiar 
spatial  or neutron-propagation effects may be involved due t o  location of 
the oscillator and detector on opposite edges of the reactor core. No 
such spatial  effects are explicitly included i n  Akcasu's theoretical 
formulation of the problem. 



111. SPERT I1 

A. Close-Packed. IMO-Moderated Cores 

Puwer excursion t e s t s  w i l l  be performed i n  Spert I1 using a close-packed, 
IQ0-moderated core comprising highly enriched uranium-aluminum, plate-type, 
f'uel assemblies i n  order t o  compare the kinetic behavior of such a core with 
that  of an @O-moderated core. The comparison should yield direct informa- 
t i on  on the effects of prmpt neutron lifetime on reactor self-shutdam 
behavior. The t e s t  results  themselves w i l l  also have direct applicability 
t o  reactors of this type which are i n  operation or being constructed. 

With the objective of achieving a heavy-water-moderated core of closely 
similar geometry t o  previous Spert light-water-moderated cores, several con- 
figurations of fue l  assemblies i n  the core and fuel  plate spacings within 
the fue l  assemblies have been investigated, some of which proved t 
unacceptable. A cwe canprf.sed of modif 3 nd h t y y w  fuel oaa~rnbliea?3~~with 
12 fuel plates per a~sembly was chosen fox further teetlug. 

The light-water-moderated cores previously inv igated i n  the @ert II t(9 reactor faci1;ity hAxe 11wd the B-type fue l  uusmbly , but t h f s  assembly was 
found t o  be unsuitable for  use i n  heavy water because of the braze material 
and the stainless s tee l  end-box. These materials caused a sizeable reac- 
t i v i t y  loss  due t o  parasi t ic  neutron capture, For t h i s  reason a BPtype 
fue l  assembly has been used i n  the heavy water cores. The BD-type assembly, 
which i s  canrpared with a B-type assembly i n  Fig. 4, has as alwninum end-box and 
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C O N T R O L  RODS 

FUEL A S S E M B L I E S  FOR C R I T I C A L  
CORE CONFl GURATION 

no braze material. An insuf- 

f icient  number of these assem- 
bl ies  was available for  use 
a t  the time of these e q e r i -  
ments, so the D-type fuel  

assembly, which i s  identical 
with the BD-type assembly 
except for  the end-box, was 
modified t o  resemble the BD- 

type assembly. This was done 
by placing a spacer i n  the 
bottom of the fue l  can so 
that the fuel  was raised t o  
the same elevabion abwe the 
lower grid as it would have 
been had the BD-type fue l  
assemblies been used. 

F U E L  A S S E M B L I E S  ADDED FOR 
O P E R A T I O N A L  C O R E  

The reactor was c r i t i c a l  
s a 7  i n  D20 with 52 modified D fuel  

assemblies containing 12 fuel  - 

Fig. 5 - I n i t i a l  Cri t ical  and Opera- plates each, and with the 8, 
t ional Core Configurations for  8-plate fuel  poison control 

Close-Packed Q0 Core 
rods fu l ly  withdrawn. The 
core contained 4.68 kg of 
~ 2 3 5 .  . ~ d i t i o n a l  f i e 1  was 

then loaded t o  obtain an operational core loading. The f i na l  core 
configuration comprised 72, 12-plate fuel  assemblies and 8, 8-plate 
fuel-poison control rods. This loading cmtained 6.36 kg of $35 aha 
had an available excess reactivity of approximately $6.50. The c r i t i c a  

and f i na l  core configurations are shown i n  Fig. 5. 

B. Eqanded Dgd-Moderated Core 

The most camnonly used core configuration for  highly enriched 
uranium-aluminum plate-type f'uel assemblies i n  heavy water i s  one i n  
which the fuel  assemblies are spaced apart frm one another with a 
sizeable water gap between assemblies (e.g., MITR, DIDO, etc. ). A 
core of this type was obtained i n  Spert I1 by loading BD-type f'uel 
assemblies in to  alternate grid positions so that  they were on six-inch 
center spacing. Each fue l  assembly contained 22 fuel  plates. The con- 
t r o l  rods used for  t h i s  core were tubular with a cadmium poison section 
mid an aluminum fuZlerwer pf eae. 



The reactor was c r i t i c a l  with the loading of 20 fuel  assemblies, 
shown i n  Fig. 6, containing 3.08 kg of u235 i n  the core. The control 
rods were withdrawn 20 inches of a possible 24 inches. 

The operational core loading, shown i n  Fig. 7, was obtained by 
loading four additional fuel  assemblies for  a t o t a l  of 3.70 kg of $35 
in  24 f i e 1  asseniblies, and the  overall t eqera ture  coefficient for  uniform 
heating of the core, moderator and reflector was measured a t  a system pres- 
sure of 260 psig. A s  shown in Fig. 8, the temperature coefficient v u y s  
from -2.04/OF at  80°F t o  -4.44/9 a t  300°F. The temperature defect due 
t o  increasing the reactor temperature frcan 70°F t o  300'~ w a s  found t o  
be about $7.25. 

The temperature defect was used as a reactivity shim in  order t o  
obtain a preliminary calibration of the control rod worth over an extended 
range. A t  each temperature the differential  rod worth was determined near 
the  c r i t i c a l  position by the period method. The control rods, as  a bask, 
were found t o  be worth from $1.15/in, a t  13 .OO in. withdrawn t o  $o .5l/in. 
a t  22.50 in. withdram. This rod worth-information,, together with the 
rod-worth information obtained during the approach t o  the operational 
loading, indicates that  the operational core, shown i n  Fig. 7, contains 
an excess reactivi ty of approximately $8 a t  ambient temperature and 
atmospheric pressure. 

0 CONTROL RODS 
0 C O N T R O L  R O D S  

F U E L  A S S E M B L I E S  F U E L  A S S E M B L I E S  
61-1958 

- 8. . - 
" Fig. 6 - I n i t i a l  Cri t ical  Configura- Fig. 7 - Operational Core Confiwa- 

t ion fo r  Ekpanded %0 Core t ion for Expanded .@0 Core 
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The r e a c t i v i t y  worth of t he  
f u e l  assemblies i n  each pos i t ion  
of t h e  @0-moderated core, shown 
i n  Fig. 7, was measured by deter-  
mining t h e  excess r e a c t i v i t y  of 
the  core when a l l  of t h e  assem- 
b l i e s  were i n  posi t ion and then 
with one assembly removed. The 
di f ference i n  t he  r e a c t i v i t y  
f o r  t h e  two cases i s  taken a s  
t he  r e a c t i v i t y  worth of t h e  f u e l  
assembly i n  question. The reac- 
t i v i t y  worth of f u e l  assemblies 
i n  t h e  west quadrant of t h e  core 
was determined. Since t h e  core 
has polar  a x i a l  symmetry, these  
values a re  applicable t o  symmetri- 
c a l  posi t ions  i n  t he  remaining 
quadrants. Fig. 9 shows t h e  
r e a c t i v i t y  worth of each of t he  

Fig. 9 - Reactivity Worth of Fuel f u e l  elements a s  a function of 
Assemblies i n  Fxpanded D20 Core t h e i r  posi t ion i n  t he  core. 



A. Effect of Coolant Flow on Power Excursion Behavior 

The self- l imitat ion of power excursions i n  plate-type, water-moderated 
reactors  i s  due i n  large par t  t o  the  density changes resul t ing from thermal 
expansion of the f u e l  p la tes  and the  moderator. Forced coolant flow w i l l ,  
by i t s  ef fec t  on heat t ransfer  properties, influence the  pa r t i t i on  of 
energy between the p la tes  and the moderator and w i l l  also, by increasing 
t.he r a t e  of energy los s  from the core region, decrease the  effect ive power 
coeff ic ient  of reac t iv i ty .  Tests were performed i n  the Spert I11 reactor 
during t h i s  quarter t o  determine the  effect of coolant flow on the response 
of the reactor t o  step-changes i n  react ivi ty .  These ' tes ts  covered .a range 
of water ve loc i t ies  f'rom 0 t o  18 f t / sec  i n  the reactor core f o r  i n i t i a l  
asymptotic periods from 500 msec to-10  msec. A l l  of the  t e s t s  were i n i t i -  
ated at room temperature (- 30'~) from a power level  of about 1.0 w. The 
system pressure f o r  m o s t  of t h e  t e s t s  was'about 230 p s i  but several were 
performed at  2500 ps i .  

For power excur~lons  with i n i t i a l  periods greater than about 100 msec, 
flow veloc i t ies  up t o  18 f t /sec are suff ic ient  t o  eliminate the occurrence 
of an i n i t i a l  power peak. The reactor power r i s e s  monotonically toward 
an equilibrium leve l  which increases with increasing f3.w r a t e .  For 
excursions of a given period, greater than 100 msec, the temperature r i s e  
of the  hot test  measured f u e l  p la te  surface decreases with increased flow 
velocity.  Fig. 10 shows the effect  of flow velocity f o r  t e s t s  with 
i n i t i a l  asymptotic periods of about 160 msec. 

0 0.5 1.0 1.5 2.0 2 . 5  3.0' 
T I M E  ( s e c  
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Fig. 10 - The Effect of coolant' Flow on Reactor Power and Fuel Plate 
Swface Temperature for  160 msec Tests a t  230 p s i  



For power excursions with i n i t i a l  periods shor ter  than about 50 msec, 
it i s  observed t h a t  f l o w  ve loc i t i e s  a s  high a s  18 f t / s e c  do not produce 
s ign i f ican t  changes i n  t h e  i n i t i a l  power maximum. The equilibrium power 
l e v e l  following t h e  burs t  i s  approximately proportional  t o  t he  flow r a t e .  
As i n  t h e  case of t h e  longer period t e s t s ,  t he  temperatures reached by 

' 
t he  ho t t e s t  measured f u e l  p l a t e  surfaces decrease with increasing flow 
velocity,  even though the  peak power f o r  t h e  burs t  remains e s sen t i a l l y  
constant. It should be noted, i n  t h i s  regard, t h a t  at 18 f t / s ec  flow 
ve loc i ty  t h e  heated coolant has moved only a few inches i n  a time equal 
t o  one period and t h a t  an understanding of t h e  ro l e  of heated water i n  
t h e  s e l f - s h u t d m  f o r  such excursions w i l l  require  an examination of t h e  
water temperature d i s t r i bu t i on  i n  t h e  core. 

Fig. 11 shows the  e f fec t  of flow ve loc i ty  f o r  t e s t s  with periods of 
approximately 20 msec, and f o r  system pressures of 230 and 2500 p s i .  
Since t h e  power behavior I s  e s sen t i a l l y  w~cl~anged by t h i s  pressure 
var ia t ion,  only two power curves a r e  sham.  The addi t ion of t h e  high 
flow r a t e  reduces t h e  maximum measured temperature f o r  t h e  2500 p s i  
t e s t  by about a f ac to r  of two and tends. t o  o f f s e t  t h e  e f f ec t  of t he  
elevated pressure on the  m a x i m u m  temperatures reached i n  no-flow t e s t s ,  
as witnessed by t h e  s imi la r i ty  of t h e  230 p s i  and 2500 p s i  temperature 
t r ace s  f o r  18 f t / s ec  flow veloci ty .  

The da ta  from t h e  flaw t e s t  s e r i e s  a r e  s t i l l  being reduced and the., 
above conclusions should be regarded a s  preliminary. 

T I M E  ( s e c )  
6 0 -  4 2 7 7  

Fig. 11 - The Effect of Coolant Flow on Reactor Power and Fuel P la te  
Surface Temperature fo r  20 msec Tests at 230 and 2500 p s i  



A. DpO Handling Experience i n  Spert I1 

In preparation f o r  t h e  c r i t i c a l  s tudies  described i n  Section I11 
of t h i s  report ,  it was necessary t o  prepare t h e  Spert I1 plant  f o r  i t s  
f i r s t  operation with %0. Since t he  primary c i rcu la t ing  system was not 
t o  be used fo r  these  t e s t s ,  t h e  reac tor  vesse l  was i so la ted  from the  
remainder of t he  system t o  minimize t h e  system inventory and possible 
@0 contamination and losses .  A l l  l i g h t  water piping was i so la ted  by 
removing spool p ieces  and i n s t a l l i n g  bl ind flanges.  

The refactor tank, clean-up piping system, outdoor heat exchanger 
and i t s  associated piping, and t h e  @0 t r ans f e r  pump piping were vacuum 
dr ied  t o  remove any reflj.dual l i g h t  water and/or vapor remaining i n  t he  
sy~temo . Wherever poss ible ,  v i sud l  inspections were m a i i p  t.0 determine . 
dryness of t he  various systems. The piping was r insed with 780 g a l  
of Ep0 which wag then rcmovcd ahd stored i n  staialess steel i l n l m s  fnr 
fu tu r e  use  a s  a r i n se .  There was no detectable  change i n  t h e  isotopic  
p u r i t y  of t h i s  %0 before and a f t e r  t h e  r inse .  On Ju ly  28, 6400 g a l  
of heavy water were t rans fe r red  from the  D20 storage tank t o  t h e  reactor  
t a l k .  'Rle loading of f u e l  was i n i t i a t e d  on August 1. 

A dry helium gas atmosphere i s  maintained over t h e  surface of t h e  
water i n  t h e  heavy water storage tank at Spert 11. The experimental 
s tud ies  required frequent t r ans f e r  of mater ia l  between t h e  storage tank 
and t he  reactor  tank.  When t rans fe r r ing  ma. t~r i .a l -  back t o  t h e  storage 
tank, excess gas was vented t o  t h e  reac tor  tank. When mater ia l  was 
t rans fe r red  t o  t h e  reac tor  tank, excess gas was vented through a cold 
t r a p  t o  t h e  atmosphere. It i s  estimated t h a t  t h e  reactor  t a n k  was 
open t o  t h e  atmosphere f o r  115 hours; t h i s  was occasioned by frequent 
i n s e r t  ions and removals of fuel. as sembl-ies, control  rods, and. mechanical 
parts. During t h i s  time a dry  a i r  gl.lrge, dew po5n.t < - 30'~, wag main-" 
t a ined  over the  surface of t h e  heavy water t o  exclude atmospheric a i r .  
All p a r t s  t o ' b e  removed from t h e  reac tor . t ank  were allowed a short  drip- 
dry  period i n  t h e  tank before ac tua l  removal. Despite t h i s  precaution, 
a considerable mount of mater ia l  was removed i n  t h e  form of drople ts  
and f i lms  c l inging t o  t h e  par ts .  It was real ized t h i s  material ,  being ' 

i n  in t imate  contact with t he  outside air., could be a source of contami- 
nat ion when t he  p a r t s  were returned t o  t he  reactor  tank. To prevent 
any such contamination, a l l  p a r t s  were dried with hot a i r  before t h e i r  
r e tu rn  t o  t h e  tank. Frequent density measurements made during t h e  
emerimental  program indicated l i t t l e , ,  i f  any, deteriorn.t,i.on. of D;IO 
qual i ty .  Routine checks of qua l i ty  a s  given by e l e c t r i c a l  conductivity, 
pH o r  pD, and amounts of metal l ic  ions present i n  t h e  mater ia l  were a l so  
made a t  regular  in te rva l s .  

A l o s s  of 538 l b  of D;iO was  incwred dwiug  Lhis perlod; of' t h i s  
amount, + 170 l h  may be due t o  a 1% uncer ta inty  i n  the  i n i t i a l  heavy 
water inventory and does not necessar i ly  represent a loss .  In addition, 
a l o s s  of 74 l b  i s  estimated t o  be t h e  r e s u l t  of deuter izat ion of t h e  
ion-exchange columns i n  t he  clean-up system. The rema.in1n.g 294 l b  



i s  a t t r ibuted t o  evaporation of D20 t o  the  atmosphere, small sp i l l s ,  and 
d i rec t  evaporation of droplets and films clinging t o  f'uel assemblies, 
handling tools  and mechanical par t s  removed from the  reactor tank. 

B. Two-Phase Flow Effects on the Spert I11 Burnout Heat Flux 

The Spert I11 reactor core i s  composed of a large number of pa ra l l e l  
rectangular coolant channels with varying heat generation ra tes .  Occur- 
rence of two-phase phenomena i n  the hot channel r e s t r i c t s  the coolant 
flow through tha t  channel and thus reduces the burnout heat f lux.  Pre- 
liminary calculations of the burnout heat f lux  i n  the Spert I11 reactor 
core have 7°F that  two-phase flow i s  present f o r  some of the operating 
conditions 5 Calculations have been made t o  allow f o r  these two-phase 
flow ef fec ts  i n  the determination of the  burnout heat flux. No attempt 
has been made t o  couple the two-phase phenomenon t o  the nuclear properties 
of the reactor core. 

The pressure drop associated with the flow of a two-phase mixtur 
has been evaluated using the Modified Martinelli-Nelson correlation(6g. 
In  t h i s  relationship the f r i c t i o n  .and momentum pressure drops a re  calcu- 
la ted according t o  the method of Martinell i  and ~elson( '7)  with the f r i c t i o n  
pressure drop corrected fo r  mass flow r a t e  e f fec ts  using the  values obtained 
by  her (8) . 

The inc.oq~ra.tj.on of the two-phase flow ef fec ts  in to  the burnout heat 
f lux  c culation has necessitated revision of the preliminary computer 

( 5 Y  code t o  the extent tha t  the use of the  1131-650 computer i s  impractical 
and the revised code i s  being wri t ten f o r  the IBM-704 machine. To as s i s t  
i n  the compilation of the code, a sample calculation was pert'ormed 'by 
hand for  a typica l  se t  of operating conditions i n  the Spert I11 reactor. 
This calculation was made f o r  the  type "c"-2s h e 1  assemblies i n  the  
center portion (hot spot) of the reactor core a t  system conditions of 
2500 psia  pressure and 500'~ i n l e t  water temperature. The f l m  area per 
channel of the 2s f u e l  assembly i s  1.02 x 10'3 f t2 ,  and the  equivalent 
diameter i s  0.0192 ft. 

For the sample calculation, f r i c t i o n  pressure drop i n  the channel 
pr ior  t o  the formation of steam was calculated using the  Fanning f r i c t i o n  
equation : 

where 

APo/~ = Pressure drop per uni t  length of channel 

p = Water density 

gc = Conversion factor  f r o m  pounds mass t o  pounds force 

De = Equivalent diameter 

V = Velocity 

f = Frict ion factor  

A roughness fac tor  of E / D ~  = 0.00025 was used t o  determine the f r i c t i o n  
factor .  



The two-phase flow press e drop was calculated by the  Modified 
) Martinelli-Nelson relationship . 

where 
APTp = Two-phase flow pres.sure drop 

APo = Pressure drop i n  flow c i r cu i t  f o r  flow of saturated water 

= Two-phase f r i c t i o n a l  pressure drop 

mL2 = Ratio of two-phase f r i c t i o n a l  pressure drop gradient t o  

t. correspondAng isothermal l iquid gradient 
d aL a 106 = Same a s  Z L ~ ,  except evaluated a t  a mass f l o w  r a t e  of 

1.0 x 10 lb/hr-ft2 

G = Mass f l a w  rate 

r = Multiplier of G ~ / ~ ~  t o  calculate momentum pressure lo s s  

The r a t i o  (&pF/APo) has been determ'n d by W t i n e l l i  and elson t 7 I as  a function of ex i t  qual i ty  and pressure 7 . The r a t i o  (mL2/mL a 106) 
i s  the c.orrection factor  applied the f r i c t i o n  p r e s s u e  los s  t o  account 
f o r  the  e f fec t  of mass flow r a t e  . The multiplier r i s  used t o  determine 
pressure drop due t o  omentum changes and i s  a fbnction of the ex i t  qual i ty  
and system pressure (77. 

The two-phase pressure drop equation assumes a l inear  relationship 
between the  length of channel and the quality.  However, for  Spert 111, 
the  nonuniform heat generation along the channel required the f r i c t i o n  
pressure drop t o  be calculated for  incremental channel lengths. ,311lmtation 
of the incremental pressure drops obtains the  t o t a l  channel lo s s  .. The 
momentum pressure drop was determined using only the  ex i t  quality. 

Expansion and contraction losses for  two-phase flow through the upper 
end-box region of the  fue l  element were calculated by the standard single- 
phase f l o w  equation, 

n 

however, an apparent density of the two-phase f lu id  P Apparent = ( P  steam) 
( X  qual i ty)  + ( P  water) (1-X) was used t o  calculate the  l inear  velocity, V. 
K i s  an area dependent constant f o r  expansion or contraction. 

Fig. 12 presents the change i n  pressure drop per inch of channel length 
at the caiiuition pr ior  t o  .burnout where bulk boiling occurred i n  the hot 
channel. The burnout conditions a re  those calculated by the preliminary 
IBM-650 burnout heat f lux  code for  Spert I11 which were reported i n  
Reference (5) .  Integration of the area under the  curves gives the t o t a l  
,pressure lo s s  due t o  f r i c t ion .  The s t raight  portion of the  plot  i s  for  
single-phase flaw and the curved portion i s  fo r  two-phase flow. The 
addi t io6 of the pressure lo s s  due t o  momentum changes and entrance and 
ex i t  losses  r e su l t s  i n  the. overall  channel pressure drop. Table 1 i s  a 
compilation of t h e  calculational r e su l t s  fo r  the  hot channel i n  the two- 
phase flow region. 
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Fig. 12 - Pressure Drop Per Unit Channel Length vs Position 
for  Various Flow Rates - Spert 111 

TABU 1 

HOT CRANNEL PLATE SECTION PRESSURE DROP 

550'~ INLET TEMPERATURF: - 2500 PSIA SYSTEM PRESSURE 

P1at.e section 
Hot Channel Entrance and 
Flow Rate Pmer Frict ion AP Momentwn AP Exit AP Total aP 

( lb lhr - f t2)  (MW) (ps i )  (ps i )  (p s i )  . (ps i )  



C. Hydraulic Test of the  Spert Type-D Fuel Assembly 

The i n i t i a l  hydraulic studies of the  Spert type-D fue l  assembly(3) 
revealed the  need f o r  a modification t o  the upper l i f t i n g  b a i l  t o  help 
f l a t t e n  the  flow dis t r ibut ion  through the center p la te  section of the 
assembly. This modification was made and hydraulic t e s t s  were conducted 
on the 18-plate, type-D f u e l  assembly t o  determine the  channel flow d i s t r i -  
bution f o r  both up-flow and dam-flow conditions. The t e s t s  were ntn) t" t he  ETR Hydraulic Test Fac i l i t y  which has previously been described 3 
The channel flow dis t r ibut ions  were obtained by inser t ing two tubes i n  
each channel with one tube measuring the s t a t i c  pressure near the  bottom 
of the  channel while the other tube measured the  s t a t i c  pressure near the 
top of the  channel. The channel f r i c t i o n a l  pressure drop was correlated 
t o  the flow by means of the Fanning f r i c t i o n  correlation. In addition, 
the  overal l  fue l  assembly pressure drop was measured. 

A p lo t  of overal l  pressure drop vs f l o w  i s  shown i n  Fig. 13 fo r  both 
up-flow and down-flow a t  a water temperature of approximately 859.  The 
relat ionship may be expressed by 

0 549 GPM = '74.7 L3.P 

where the  pressure drop i s  i n  
ps i .  The calculated relation- 
ship fo r  up-flow i s  .a lso shown 

60 - f o r  comparison purposes. The 

\ 

calculation deviates from the  
experimental correlation by 
approximately 10%. The over- 
a l l  pressure drop with the 

V) 
a modified l i f t i n g  'bail was 

I 20 - not, appreciably different  
frm the  pressure drop with 

V) 
c n .  the or iginal  l i f t i n g  ba i l .  
0 
A In  Figs. 14 .and 15 the 

W 
channel flow dis tr ibut ion i s  

[r shown as  a function of overall  
flow r a t e  and f l o w  direction. 
The channel flow was measured 
fo r  11 of' the 19 channels. 
The channel fluw for  the re- 
maining 8 channels was detes- 
mined by assuming symmetrical 
f l o w  dis t r ibut ion.  For dam-  
f low,  Fig. '14, the distribu- 
t ion i s  re la t ive ly  f l a t  except 
f o r  a flow depression i n  the 
outer two channels. For up- 

I I , I  f low,  Fig. 15, the f l o w  d i s t r i -  I 7  
I  2 4 6 .I0 bution i s  re la t ive ly  f l a t  except 

fo r  the increased flow i n  the 
. . F L O W  G P M  x 16* outside channels. The flow 

6 0 -  6 1 0 6  direct ion dependence i n  the  
Fig. 13 - Overall Pressure Drop vs  , outside channel. flow r a t e  i s  

Flow f o r  Type-D Fuel Assembly probably due t o  entrance effects .  
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Fig. 14  - Channel Flow Distribution Fig. 15 - Channel Flow Distribution 
as  a Function of Overall Flow fo r  a6 a Function of Overall Flow for  

Down-Flow - Type-D - Assembly Up-Flow - Type-D Assembly 

The actual  flow i n  any given channel may deviate from tha t  shown i n  
the figures since it was assumed tha t  each channel spacing was the average 
width between p la tes  (0 .O92 in.  ) rather  than the m a x i m u m  .(0.105, in..) or 
the minimum (0.079 in . ) .  However, motion pictures taken of the fue l  , 
plates  during.previous flow studies showed tha t  all of the p la tes  exhibited 
random vibration i n  t h e i r  support s lo ts .  

For up-flow, the most e r r a t i c  channel flow dis tr ibut ion occurred a t  
the highest f l o w  r a t e  tha t  was measured, SOU gpm. A t  t h i s  Slow rate ,  
the  maximum deviation f r o m  the average was 16% while the standard devi- 
ation from the average was 1.4%. The maximum deviation occurred i n  the 
out side channels. 

For down-flow, the maximum deviation and standard deviation from the  
average channel flow were 12% and 1.374 respectively, f o r  an assembly 
flow r a t e  of 500 gpm. In general, the maximum deviation and the  standard 
deviation decreased with decreased assembly flow ra tes .  

For a Spert I V  core composed of 20, 18-plate, type-D f u e l  assemblies, 
the fue l  assembly flow r a t e  would be approximately 250 gprn per assembly. 
A t  t h i s  flow rate ,  the maximum and standard deviation from the average 
would be 14% and 1.5$ f o r  up-flow 6% a d  0.8% fo r  down-flow. 



D. Studies of Soluble Poison Injection Systems f o r  Sperts I1 and I11 

1. Introduction 

A study has been made t o  investigate the f e a s i b i l i t y  of 
soluble poison emergency'shutdm systems fo r  the Spert I1 and Spert I11 
reactors .  A t  present, the  occurrence of a severe malfunction of the  
control  rods during high temperature operation might require removal 
of moderator t o  achieve a safe  cold s h u t d m  margin before cooling 
d m  the  system. This act ion would necessarily be done i n  a s t r i c t l y  
controlled fashion i n  order t o  prevent rapid cooling of the system and 
t o  avoid possible boi l ing i n s t a b i l i t i e s  but, i n  any event, might r e g k t  
i n  severe thermal s t resses  and damage t o  the prlmary coolant system. 
The inject ion of soluble poison t o  the  hot system would permit.a slower 
cool-down of the system. The poison inject ion system investigated i s  
not intended t o  provide f a s t  nuclear shutdown or t o  be used as a routine 
means of' obtaining additional shutdown margin. 

2. Selection of Solu~ble Poison 

Of t he  elements with high thermal neutron absorption cross 
sections, boron, cadmium, europium, gadolinium and samarium are com- 
mercially available i n  the form of water-soluble sa l t s .  Cadmium i s  
unsuitable for  use i n  the  Sperts I1 and I11 sta in less  steel. systems 
because it has a high potent ial  fo r  plat ing out, as  shown by i t s  posi- 
t i o n  i n  the electromotive ser ies  r e l a t ive  t o  s ta in less  s tee l .  Europium 
was eliminated a s  a soluble poison material  because of higher cost 
(- 20 times greater than Gd or %I) and lawer neutron absorption cross 
section. The s a l t s  of gadolinium, samarium and boron have been investi-  
gated i n  de ta i l .  

Of t he  soluble s a l t s  of' gadolinium and samarium tha t  were considered, 
only the  n i t r a t e s  a re  compatible with the reactor systems. Gadolinium 
n i t r a t e  and samarium n i t r a t e  are  available i n  pu r i t i e s  ranging from 80% 
t o  99.9%. Because of economic considerations, only 9% gadolinium 
n i t r a t e  and 80% samarium n i t r a t e  were considered. No information could 
be found i n  the l i t e r a t u r e  on the high temperature properties of gado- 
linium and samarium n i t r a t e .  Since the neutron absorption cross section 
and room temperature so lubi l i ty  of these s a l t s  were very favorable, a 
small amount of gadolinium n i t r a t e  was obtained and simulated environ- 
mental studies were conducted i n  an autoclave. These s tudies  showed 
the  material t o  be unsuitable for  use i n  e i ther  the  Spert I1 or Spert I11 
systems since it decomposed in to  an insoluble compound a t  a temperature 
of about 300'~. It was assumed tha t  samarium n i t r a t e  would undoubtedly 
decompose because of i t s  chemical similarity,  and would a lso  be unsuitable. 

Boron in the form of boric acid was found t o  be acceptable. 



3. Method of Poison Addition 

Three methods fo r  the addition of poison solutions t o  the 
systems were investigated. The three methods are  described below: 

Method A: With the primary pumps operating, the  pressure drop of 
the system can be used t o  force part  of the primary coolant through a 
poison tank containing an excess amount of saturated solution of the 
poison material, thus mixing the poison solution in to  the primary 
coolant . 

Method B: A saturated solution of poison material can be added 
continuously with the plant make-up pump and the excess water removed 
through the  blow-down valve u n t i l  the desired concentration of poison 
i n  the primary coolant i s  reached. 

,Method C:  A saturated solution of poison material can be injected 
in to  ) the reactor vessel by using high pressure ine r t  gas. 

For Spert TI ,  Method "A" i s  zndesirable since the primary pumps 
are  isolated from the  reactor vessel for  some reactor operations a t  
elevated temperature. Method "c" can be used and has a shorter poison- 
inject ion time than fo r  Method "B" but has the  disadvantage of a larger  
i n i t i a l  i n s t a l l a t ion  cost. 

For Spert 111, Method "C"  i s  not desirable since commercially 
supplied ine r t  gas i s  not readi ly available a t  the  higher system pres- 
sure.s a t  which Spert I11 w i l l  be operated. Method "A" can be used and 
has the shorter inject ion time, but the i n i t i a l  i n s t a l l a t ion  cost i s  
estimated t o  be a t  l eas t  a factor  of t en  greater than for  Method "B". 

4. Conclusion 

Since the  speed with which shutdown can be accomplished i s  
not of primary concern, the r e su l t s  of the study indicate that ,  of 
those systems investigated, boric acid inject ion by the plant make-up 
pump provides the  best poison shutdown system fo r  both the Spert I1 
and Spert I11 reactors.  Calculations indicate tha t  the  Spert I1 reactor 
can be poisoned suf f ic ien t ly  t o  remove $12 i n  reac t iv i ty  i n  approxi- 
mately 5.5 hours by t h i s  method. For Spert 111, $23 can be removed 
i n  approximately 3 hours. These reac t iv i ty  values represent the  largest  
available excess r eac t iv i t i e s  anticipated fo r  Sperts I1 and 111. 
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