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I. SUMMARY 

SPERT I - The current ser ies  of t e s t s  f o r  the investigation of reac- 
tivity-compensating mechanisms i n  plate-type, highly enriched reactors 
has now been completed. During t h i s  quarter, t e s t s  were conducted i n  
the in-pi le  t e s t  c e l l  with a se t  of aluminum-clad fue l  p la tes  which 
were coated with insulating p las t ic  i n  order t o  investigate changes 
i n  t ransient  bbiling due t o  the presence of the th in  layer of p l a s t i c  
adjacent t o  the fue l  p la te  surface. Tests were a l so  performed with 
aluminum-clad f u e l  p la tes  having a 60% greater f u e l  density (0.061 g 
~235/crn2) than previously tested plates .  In both ser ies  of t e s t s ,  
motion pictures of t ransient  bubble formation were obtained i n  addi- 
t i o n  t o  the measurements of moderator displacement, fue l  plate  sur- 
face temperatures &d transient  pressures. Reduction and analysis 
of data obtained from these t e s t s  and from previous capsule t e s t s  
a re  i n  progress. 

A s  a preliminary part  of the forthcoming kinet ic  experiments with 
a low-enrichment oxide core i n  Spert I, in-pi le  t e s t s  have been per- 
formed t o  investigate the possibil-ity of damage t o  the long t h e m l -  
time-constant fue l  rods when subjected t o  short-period power excur- 
sions, and also t o  t e s t  the effectiveness of an instrumentation 
technique fo r  measurement of U$ f i e 1  temperatures within the  rod. 
A fue l  rod, instrumented with ten  pa i rs  of in te rna l  and cladding- 
surf ace thermocouples, ruptured during the exponentially r i s ing  
portion of an 8.2 msec-period excursion. Sub~equcnt t e s t s  of a fue l  
rod with no cladding penetrations produced no discernible damage or 
dis tor t ions of the rod fo r  periods a s  short as  7.2 msec. These t e s t s  
support the  postulation tha t  the rupture of the f i r s t  rod was related,  
t o  the cladding penetrations made f o r  in s t a l l a t ion  of the in te rna l  
thermocouples. 

SPERT I1 - A knowledge of the effect ive dynamic value of the  r a t i o  of 
prompt neutron lifetime, 4, t o  the effect ive delayed neutron fraction, 
perf, i s  required f o r  analysis of the  short-period t ransient  behavior 
of reactors.  As a par t  of a continuing program of comparing the 
measurements of 4 / ~ ~ ~ ~  by various s t a t i c  techniques with measurements 
based on short-period power excursion data, 4 / ~ e f f  has been determined 
fo r  a @0-moderated core i n  Spert I1 by analysis of the s t a t i s t i c a l  
behavior of the neutron population i n  the subcr i t ica l  system. A 
value of 0.11 sec was obtained fo r  an expanded configuration of fue l  
assemblies i n  Q0 .  This value w i l l  be compared with tha t  which w i l l  
be obtained from the power-excursion t e s t s  with t h i s  core. 

Measurements have a lso  been made of the neutron f lux  and the void 
coefficient of reac t iv i ty  as functions of posit ion i n  t h i s  core. These 
measurements w i l l  be of value i n  the analysis of the forthcoming kinetic 
t e s t s .  

SPERT I11 - Additional data have now been reduced from the  previously 
reported investigations of the e f fec ts  of system pressure and coolant 
flow r a t e  on room temperature power excursions i n  Spert 111. Previously 



reported r e s u l t s  a re  b r i e f l y  reviewed i n  this report  and additional 
data  a r e  presented. For 10 msec-period excursions a t  2500 p s i  system 
prescure, the power maximum i s  about 30% higher than i s  observed a t  
atmospheric pressure. The f u e l  p l a t e  surface temperature t races  fo r  
this t e s t  show indication of the rapid decrease i n  heat t ransfer  r a t e s  
a f t e r  the  p la te  surface reaches the c r i t i c a l  point f o r  water. The 
addition of 18 f t / sec  coolant flow veloci ty  for  similar short-period 
excursions produces essent ia l ly  no change i n  the peak power or tempera- 
tu res  reached, but the  temperature behavior indicates t h a t  good heat 
t r ans fe r  i~ maintained i n  the  region of the crAtical point fo r  the 
f l o w  t e s t s .  Detailed examination and correlation of these t e s t  data 
a re  continuing . 

Rippling and bowing of the stainless-steel-clad Spert I11 f u e l  
p l a t e s  has been observed f ollawing short-period power excursion t e s t s .  
In some cases the  combined bclwing and r lppl i lg ,  which i s  attl-ibu-ked 
t n  the large t h e m  padie11Lti present i n  t h e  p la tes  during the excur- 
sions, i s  suff ic ient  t o  close more tkan half the  width of the  normal 
water channels. B l i s t e r s  have a lso  been observed on the outside f u e l  
p l a t e s  of three f u e l  a s ~ e m b l i e s . ~  Preliminary metallurgical examina- 
t i o n  of the b l i s te red  p la tes  has revkaled the  presence of a few in ter -  
granular cracks, but none of these appears t o  have penetrated the 
cladding and they may have been formed as  a consequence of t h e  b l ie te r -  
ing. The cause of the  b l i s t e r ing  has not yet been determined, although 
there  appears t o  be some correlation between f u e l  segregation a t ,  the  
fuel-clad interface and the  location of the  b l i s t e r s .  

ENGIXIBRING - Channel flow dis tr ibut ions have been obtained f o r  a 
S-pert I11 f u e l  assembly i n  the ETR hydraulic t e s t  f ac i l i t y .  For a 
t o t a l  assembly flow r a t e  of 4C)O gpm, corresponding t o  a t o t a l  reactor 
f l o w  of 20,000 gpm i n  Spert 111, the .standard deviation from the  mean 
f o r  channel flow r a t e s  is  2.1%, and the maximum deviation from the  
mean i s  19.6%. 



11. SPERT I 

A. Mechanism Studies 

  he experimental in-pi le  capsule program(1) f o r  the study of the 
kinet ics  of water moderator expulsion from the regions surrounding fue l  
p la tes  during the course of a power excursion, has been completed with 
t e s t s  conducted on two additional. sets  of capsule fue l  plates .  

The f i r s t  of these additional s e t s  of p la tes  was similar t o  t e 21 1 i n i t i a l  se t  of seven aluminum-clad fue l  p la tes  used i n  the capsule . 
In  addition, the en t i r e  surface area of the f u e l  p la tes  was covered with 
a t h i n  coating of insulating p las t ic .  The p la s t i c  used was l i thcote ,  ' 

LC-34, having a d i f fus iv i ty  approximately 30% l e s s  than tha t  of water 
and, consequently, an insulating property somewhat be t t e r  than tha t  of 
water. The thickness of the  coating was approximately a few thousandths 
of an inch thick. The purpose of these insulated f u e l  p l a t e  t e s t s  was 
t o  investigate changes i n  t ransient  boiling effected by the  replacement 
of the  few-mil-thick' layer of water adjacent t o  the fue l  p la te  surface 
( i n  which region large temperature gradients a re  developed) by a non- 
boiling p la s t i c  having heat conduction properties not very different  
from tha t  of water. Five power excursion t e s t s  were performed a t  0 psig 
s t a t i c  capsule pressure, with i n i t i a l  reactor periods i n  the range between 
65 and 10 msec. Motion pictures of transPent bubble formation were ob- 
tained during these t e s t s .  

The f i n a l  capsule fue l  loading consisted of a se t  of three aluminum- 
clad fue l  plates,  similar t o  those used i n  f;he ea r l i e r  t e a t s  except for  
a 60% greater f'uel density (0.061 g @35/cmL). Three groups of power 
excursions were performed a t  reactor periods of approximately 19, 14 
and 9 msec. Within each group of t e s t s  the  capsule s t a t i c  pressure was 
varied from 0 psig t o  a maximum of about 2400 psig.  Motion pictures of 
t ransient  boiling were obtained i n  addition t o  the measurements of piston 
displacement and velocity, fue l  p la te  surface temperature, and t ransient  
pressure i n  the capsule. Reduction and analysis of the data obtained 
from these t e s t s  and from the previous capsule t e s t s  i s  i n  progress. 

B. Parer Excursion Tests of a Low Enrichment UCQ Fuel Rod 

A s  a preliminary par t  of the forthcoming experimenta rogram on a td Spert I oxide core comprised of 4%-enriched UO;! fue l  rods , in-pi le  
power excursion t e s t s  of two such rods were conducted a t  Spert I using 
the highly enriched, water-moderated, plate-type P-core as  a neutron 
source. These t e s t s  were performed t o  obtain experimental data relat ing 
t o  ( a )  the  likelihood of cladding damage when such long thermal-time- 
constant f'uel rods a re  subjected t o  the  short-period power excursions 
planned for  the  oxide core experimental program, and (b)  the  effective- 
ness of the instrumentation technique used f o r  measuring the  UCQ fue l  
temperature within the  rod. 

The fue l  rod used i n  these experiments i s  a welded-seam stainless-  
s t e e l  tube (6 f t  long, 0.500 in .  OD and 0.028 in.  w a l l  thickness) con- 
ta ining 1600 g of 4%-enriched U@ powder compressed t o  an effect ive 



3 density of 9.45 g/cm . During the  course of a power excursion, the rela-  
t i v e l y  low heat t ransfer  properties of t h i s  f u e l  rod may be expected t o  
give r i s e  t o  large temperature gradients and cladding stresses,  leading 
t o  the  poss ib i l i ty  tha t  t he  cladding may f a i l  i f  the power t ransient  i s  
suf f ic ien t ly  severe. In  addition, the probabili ty of cladding f a i lu re  
may be eqec ted  t o  be fur ther  enhanced i f  penetrations of the cladding 
a r e  made f o r  the ins t a l l a t ion  of thermocouples fo r  monitoring the internal  
temperature of the  f u e l  rod. The fue l  rod t e s t s  t ha t  were performed con- 
s i s ted  of a ser ies  of power excursions on a fue l  rod instrumented with 
in te rna l  thermocouples and of a similar ser ies  on a f u e l  rod containing 
no in terna l  thermocouples. 

The fue l  rod i n  the f i r s t  t e s t  se r ies  was instrumented with t en  
pa i r s  of in te rna l  and cladding-surface thermocouples, spaced one inch 
apart  along the length of the fue l  rod. The thermocouples used were 
5 m i l  chromel-alumel. '??he in terna l  thermocouples were inserted i n  
holes d r i l l ed  diametrically through the fue l  rod, with the  junctions a t  
the  center of the  fue l .  The holes i n  the s t e e l  cladding were covered 
with a water-proofing epoxy. The fue l  rod was placed i n  an open-top, 
water-fi l led aluminum container i n  a central ly  located f lux  t r ap  oP 
the  P-core, created by removing one of the P-core fue l  assemblies. 
The in terna l ly  instrumented f'uel rod was subjected t o  a ser ies  of ten  
self- l imit ing power excursions i n  which the reactor period was varied 
from 30 sec t o  8.2 msec. 

During the exponentially r i s ing  portion of the  8.2 msec excursion, 
a 12-in. s p l i t  i n  the s ta in less  s t ee l  cladding occurred along the length 
of the f u e l  rod, approximately following the l i n e  of holes previously 
d r i l l ed  through the  rod fo r  the ins t a l l a t ion  of thermocouples. In t h i s  
t e s t ,  the m a x i m  power density (= 50 kw/cm3) obtained i n  the. fue l  rod 
and the maximum temperature gradient (= 550°c/cm) between the  center of 
f u e l  rod and cladding surface were greater than fo r  any of the previous 
t e s t s .  A s  a r e su l t  of the  cladding n l p t ~ ~ r e ,  approximately 700 g of the 
U02 powder was dispersed throughout the reactor vesse1wal;er. 

k'ollowing decontamination of t he  reactor vessel, a ser ies  v r  twelve 
self- l imit ing power excursions was run on a f'uel rod with intact  cladding. 
In t h i s  ser ies  the reactor period varied from 57 t o  about 7.2 msec. No 
discernible damage or d is tor t ion  t o  the  fue l  rod occurred as  a resu l t  
of these transients,  supporting the postulation that rupture of the f i r s t  
fue l  rod was related t o  the  cladding penetrations made f o r  in s t a l l a t ion  
of' the  in te rna l  thermocouples. It appears p o ~ s i b l e  tha t  fa1ll.u-e uL' Llle 
water-proofing epoxy seals, perhaps a s  a r e su l t  of radiation damage, 
permitted water seepage in to  the fuel,  resul t ing i n  a steam explvsivrl 
during the  pawcr cxcuraion. 

The r e su l t s  of these limited t e s t s  suggest that for  reactor power 
excursions with periods as  short a s  7 msec the probabili ty of fue l  rod 
rupture i s  small fo r  fue l  rods with in tac t  cladding, but tha t  fue l  rod 
rupture may be l i k e l y  fo r  a rod with cladding penetrations of the type 
tes ted  which i s  l e f t  immersed i n  water following a power excursion. 
Pending f'urther analysis of the data, no recommendations can be made 
regarding the application of internal ly  instrumented fue l  rods i n  the  
Spert I oxide core t e s t s .  



A. Measurement of a/Beff 

A knowledge of the effect ive value under t ransient  conditions of 
the r a t i o  of prompt neutron l i fe t ime a, t o  the effect ive delayed neutron 
fract ion Beff, i s  required f o r  prediction of the  short-period kinet ic  
behavior of a reactor.  This quantity can be obtained d i rec t ly  for  the  
Spert reactors from analysis of super-prompt-critical parer excursion 
data. Several s t a t i c  methods are  frequently used fo r  determination of 
alpeff and these methods have been found t o  yield r e su l t s  which are  i n  
good agreement w i t  the dynamic measurement f o r  the light-water-moderated 

( 37 Spert I reactors . An additional method, based on analysis of the  
s t a t i s t i c a l  behavior of the neutron population measured by a counting- 
type experiment, has been employed a s  a par t  of the s t a t i c  t e s t  program 
fo r  the Spert I1 BD-22/24 core i n  Q0, shown i n  Fig. 1, so tha t  the 
value thus obtained can be compared with the dynamic measurements which 
w i l l  be obtained as  a part  of the kinet ic  experiments. The method 
employed u t i l i z e s  the relationship or iginal ly  derived by de~off'man(4) 
which r e l a t e s  the  experimentally measured variance-to-mean r a t i o  of - 
counts as a function of coi~mting time t o  system parameters, one of which 
i s  the prompt neutron lifetime. Since t h i s  method exploits the theoret i -  
c a l  prediction tha t  the  neutron population fluctuations a re  themselves 
an in tegra l  property of the system, measurements of fluctuations a t  a 
single point may be u t i l ized  t o  yield in tegra l  properties of the system. 

The counting apparatus con- 
s is ted of three ~IO-l ined pulse 
chambers located around the 
periphery of the  core, associ- 
ated pre-amps, l i nea r  amplifiers, 
mixer, and a crystal-oscil lator- 
controlled gated scaler .  The 
frequency response of the  system 
was approximately 100 kc which 
was more than adequate since the 
highest count r a t e s  observed were 
l e s s  than 2 kc per channel. The 
noise leve l  i n  the measuring sys- 
tem was low enough t o  have no 
effect  on the experimental data. 
This was checked by observing 
tha t  a random, or Poisson, 
counting dis t r ibut ion was ob- 
tained frm- a Ra-Be source f o r  
several gate times. 

0 C O N T R O L  R O D S  

F U E L  A S S E M B L I E S  6 1 - 1 9 5 9  The measurement technique 
consisted of counting the number 

. , of neutrons detected during a 
Fig. 1 - Spert I1 BD-22/24 fixed couatfng or gate time. 

Core Configuration This was repeated f o r  many gates 
. . 



and the  number of counts obtained a t  the fixed gate time was analyzed 
f o r  the  r a t i o  of variance-to-mean. Data on the  behavior of the yariance- 
to-mean r a t i o  a s  a function of gate time was obtained by repeating the 
measurements f o r  gate times, ranging'from 0.001 t o  1.000 sec. The 
ef fec t  of gate time was studied a t  f ive  subcr i t ica l  reac t iv i t ies ,  
varying from approximately 0.99 t o  0.999. The experimental data were 
correlated i n  terms .of the theory i n  order t o  evaluate .8/peff. 

The variance-to-mean r a t i o s  obtained the experimental data 
were f i t t e d  with the  theore t ica l  re la t ion:  

U - - - variance-to-mean r a t i o  o S  c = 

c = counts per gate time 

E = detector efficiency 

kp = prompt neutron reproduction factor  

- 
v  = average number of neu-t~*uns erulLLed per _ C i s s i i r r l  iii 

u235 = 2.47 
- 
v 2  = dispersion i n  the nuinber of neutrons emitted per 

fi ssi,nn i n  1 ~ ~ 3 5  = 7.32 

& = mean g r o m ~ t  neutron l i fe t ime 

T = gate time 

and the  bar indicates .mean value. 

This equation may be W P t t e n  I n  the  form 
T 

vc W = -  - 1 = z , x ( ~ , T ) .  
M, 

The constant Z i s  a combination of the  fixed variables (constants) and 
X i s  a function of gate time and "a". A nonlinear least-squares f i t  
f o r  Z and "a" was then made using an IBM-650 program. The values of 
kp were calculated from rod worth data taken pr ior  t o  the experiment. 
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, Having obtained values of "a" 
f o r  each multiplication,  a l e a s t -  
squares f i t  o f  "a" ' A kp/l vs 
A kp/peff gives a s t r a igh t  l i n e  
through t h e  o r ig in  with slope 
l /pef f ,  as. shown i n  Fig. 2. The 
value of alpeff  thus  determined 
i s  0.11 see, f o r  t he  Spert I1 
BD-22/24 expanded Q 0  core. Analy- 
s i s  of t h e  short-period power excur- 
t i o n  da ta  t o  be obtained f o r  t h i s  
core w i l l  y ie ld  a dynamic measure- 
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ment of alpeff which can be com- 
pared with t h e  above value. 

B. Measurement of Neutron Flux 
Dis t r ibut ion 

In  order t o  provide information 
f o r  fu tu re  use i n  the  analysis  of 
k ine t i c  experiments, t he  thermal 
neutron f l u x  d i s t r i bu t i on  has been 
measured i n  the  Q0-moderated BD- 

?(sed1l 6 1  - 2 2 7 o 22/24 core shown i n  Fig. 1. The 
f l u x  map was obtained f o r  one quad- 

Fig. 2 - A k,/peff vs  A r an t  of t he  core by t h e  ac t iva t ion  
f o r  Spert I1 B~-22/24 of 250 gold f o i l s .  Fig. 3 ,shows 

t h e  r e l a t i v e  neutron f l u x  p r o f i l e  
h 

@ .  
C .- 



fo r  a horizontal t raverse through one row of fue l  assemblies, as  indi- 
cated i n  the  figure.  As would be expected, substantial  f lux  peaking 
occurs i n  the water gaps between the  f i e 1  assemblies of t h i s  core con- 
figuration. A detailed p lo t  of the  f lux  dis t r ibut ion within a f u e l  
assembly i s  sham i n  Fig. 4. 

C. Measurement of Void Coefficient 

Analysis of the  self-l imiting power excursion data t o  be obtained 
f o r  the  @0-moderated Spert I1 BD-22/24 core, shown i n  Fig. 1, w i l l  
require some knowledge of the  loca l  importance of steam voids. Pre- 
liminary measurements have recently been made of the reac t iv i ty  worth 
of voids within f u e l  assemblies i n  t h i s  core. One f u e l  assembly was 
divided i n t o  three gas-tight sections of equal volumes. Each section 
included the f u l l  ve r t i ca l  height of the assembly. Using helium gas t o  
simulate voids, the  r eac t iv i ty  worths of voiding the central  t h i rd  of the 
assembly, the outer two-thirds, and the complete assembly were determined 
fo r  each l a t t i c e  posit ion of one quadrant of the core. The r eac t iv i ty  
changes were determined by  period measurements. The r e su l t s  of these 
 measurement.^ are  indicated i n  Fig. 5. Within the l imi ts  of experimen;tal 
error,  the values obtained from the f u l l y  voided assembly agree with the 
average void worth f o r  the  pa r t i a l ly  voided assembly. 
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I V .  SPrnT I11 

A. The Effect of System Pressure on Room Temperature Power Excursions 

One of the conclusions which has been drawn from previous experi- 
mental investigations i n  Spert I f o r  water-moderated, highly enriched 
systems operating a t  atmospheric pressure i s  that ,  for  short-period 
pares excwsio~ls,  l;he furma-Lion of steam voids i s  an important con- 
t r ibutor  t o  the reac t iv i ty  compensation which limits the power burst .  
An increase i n  the  system operating pressure w i l l  delay or suppress 
en t i re ly  the onset of moderator boiling during the i n i t i a l  power burst 
fo r  an excursion in i t i a t ed  a t  room temperature. Investigations of the 
e f fec ts  of system pressure on room temperature power excursions i n  
Spert I11 have been reported i n  a previous quarterly report (6).  Since 
an additional t e s t  ser ies  has recently been performed and the  prelimi- 
nary data have been somewhat refined, a br ief  review of the e f fec t  of 
system pressure can be presented. 

The t e s t s  which have been performed investigated the  response of 
the reactor t o  step-wise insertions of reac t iv i ty  from an i n i t i a l  
power l eve l  of about 10 w, a t  room temperature (- 30°c), with no 
forced coolant flow, fo r  a range of i n i t i a l  asymptotic periods from 
10 sec t o  11 msec. The i n i t i a l  system pressure was varied from 0 t o  
2500 psig. The t e s t s  discussed here were performed with the primary 
coolant system l iqu id - f i l l .  

For power excursions with i n i t i a l  asymptotic periods longer than 
about 40 msec, where boiling does not occur pr ior  t o  the power maximum 
a t  atmospheric pressure, elevation of the system pressure has no effect  
on the power burst  behavior, as  would be expected. For shorter period 
t e s t s ,  the  effect  of elevated system pressure was t o  increase the  maxi- 
mum power of the burst by about 30% with most of the change occurring 
i n  the f i r s t  50 p s i  of pre'ssure increase. The time of occurrence of 
the power peak was s l igh t ly  delayed and the  burst was s l igh t ly  broad- 
ened. 

Fig. 6 shows some of the data f o r  t e s t s  with i n i t i a l  asymptotic 
periods of about 18 msec, corresponding t o  a reac t iv i ty  step of about 
$1.12. The temperature of the hot test  measured f u e l  p la te  surfaces a t  
the time of the power max im,  Q(tm), i s  plotted as  a f'unction of the 
system pressure. Data are  shown frcm the two different  t e s t  se r ies  
which were performed using different  se t s  of f u e l  assembly thermo- 
couples. The saturation temperature i s  a l so  shown a s  a f'unction of 
pressure. It i s  seen tha t  @(tm) increases by about 20% with the f i r s t  
100 p s i  pressure increase but that, f o r  pressures above 200 psia, 8(tm) 
i s  l e s s  than the saturation temperature and i s  approximately constant 
with fur ther  pressure increase. The r i s e  of temperature t o  about 
200'~ i s  apparently suff ic ient  t o  l i m i t  the excursion by nonboiling 
expansion, and increasing the pressure f'urther does not increase 
e i ther  the  peak power or the temperature a t  the  time of peak power. 
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F ig .  7 ~ihows the geak terqperatwe reached by the hot test  measwed 
f'uel p l a t e  surface f o r  the t e s t  se r ies  with approxfnlately 18 msec 
i n i t i a l  periods. For system pressures above 2OUU p s i  it appears tha t  
boiling does not take place a t  any time during the t e s t ,  even a f t e r  
t he  power r i s e  has been halted. 

10 10' I o3 I o4 

Flg. 0 slluws Llle 8( lm) & L a  f u l  e a c . ~ s i ~ i i s  ~ 5 t h  period6 of a b a t  
l l m s e c ,  corresponding t o  reac t iv i ty  inser t ions of about $1.25. F'or 
these shorter period t e s t s ,  the f u e l  p l a t e  surfaces do reach saturation 
temperature a t  the time of the  power maximum u n t i l  the system pressure 
exceeds about 2000 psia, but boiling does not occur before the power 
peak a t  a pressure of 2500 ps i .  As f o r  the longer period t e s t s ,  the 
la rges t  change i n  peak power and hence i n  the  energy release ~ ( . t ~ )  
occurs i n  the f i r s t  100 p s i  pressure increase. The energy released 
up t o  the  time of power peak i s  approximately 18 Mw-sec fo r  pressures 
above 200 ps i .  

-The maximum measured fue l  p la te  surface temperatures fo r  the  11-msec 
t e s t s  a re  shown i n  Fig. 9. Althoughthe maximum temperature increases 
more slowly with pressure than does the saturation temperature, 8,, i s  
s t i l l  above boiling a t  2000 psi .  The rapid increase i n ' t h e  maximum 
temperatures reached f o r  pressures above 2000 ps i  i s  reproducible and 
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i s  almost cer tainly associated with the rapidly decreasing heat t ransfer  
r a t e s  a s  the water immediately adjacent t o  the p la te  surface approaches 
the c r i t i c a l  temperature. 

In Fig. 10, the  power and f i e 1  p la t e  surface temperature data a re  
shown a s  functions of time during two 11-msec t e s t s ,  one a t  atmospheric 
pressure and the  other a t  2500 psf. The 2500 ps i  t e s t  reaches a power 
maximum of about 930 Mw, about 30% higher than the  atmospherfc peak. 
The time of peak i s  delayed about 10 msec and the burst  i s  noticeably 
broader fo r  the  high pressure t e s t .  The atmospheric pressure t e s t  
displays a more rapid power drop following the peak and the power 
recovers rapidly toward an equilibrium power, whereas f o r  the  high- 
pressure t e s t ,  the power continues t o  decrease throughoul; the post- 
burst  region of the  t e s t .  

The p la te  surface temperature fo r  the  2500 p s i  t e s t  shows fur ther  
indicat ion of the poor heat t ransfer  a f t e r  the  temperature reaches the  
c r i t i c a l  point. The p la t e  surface remains substant ial ly  above the 
354 '~  saturation temperature f o r  a r e l a t ive ly  long time a f t e r  the  power 
l eve l  has decreased by a factor  of one hundred, whereas f o r  the  atmos- 
pheric pressure t e s t ,  the  temperature drops below saturation soon a f t e r  
the heat source i s  removed. That t h i s  change in.behavior i s  sudden, 
and associated with the  high'temperatures reached, i s  i l l u s t r a t ed  more 
c lear ly  i n  Fig. 11, where the same 2500 p s i  t e s t  i s  compared with a 
l g O O  p s i  t e s t  on a more expanded time scale. In t h i s  f igure the p la te  
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surface temperature r i s e  has been plotted on a logarithmic scale i n  
order t o  f a c i l i t a t e  shape comparisons. The temperature fo r  the  
1900 p s i  t e s t  peaks sharply soon a f t e r  saturation temperature i s  
reached and the p la t e  surface remains above boiling temperature f o r  
only about 85 msec. For the 2500 p s i  t e s t ,  on the other hand, the 
p l a t e  surface temperature t r ace  has a broad top and remains above 
saturat ion for  about 400 msec, even though the power has dropped t o  
the  same or lower level.  

The r e su l t s  of the  Spert I11 t e s t s  have shown tha t  a s  the system 
pressure i s  raised the delay and eventual suppression of boiling 
r e s u l t s  i n  an increase i n  ?,he temperature r i s e  of the  f u e l  plates,  
with a consequent increase i n  the r eac t iv i ty  compensation ar is ing 
from water and fuel-plate expansion, and with only small changes i n  
the  power burst  behavior. For room-temperature power excursions a t  
2500 p s i  with i n i t i a l  asymptotic periods of about 11 msec, boiling i s  
suppressed u n t i l  ai'ter peak power, but the energy release i s  increased 
only about a factor  of two as  compared with atmospheric pressure t e s t s .  
Detailed calculations a re  presently being made of the reac t iv i ty  
compensation arising-from fuel-plate and water eqans ion  based on 
measured temperatures, the  power history, and the measured r eac t iv i ty  
coeff ic ients .  The r e su l t s  of these calculations w i l l  be compared 
with the r eac t iv i ty  compensation a t  the  time of the power maximum 
obtained by analysis of the power burst  shape. 

Additional data on the  t ransient  pressures developed i n  these 
t e s t s  a re  s t i l l  being reduced and correlated. 

B. The Effect of Forced Coolant Flow on Room-Temperature Power 
Excursions 

The presence of forced coolant flow during a power excursion will, 
by it's e f fec t  on heat t ransfer  properties, influence the  pa r t i t i on  of 
energy between t h e  f u e l  p la tes  and the  moderator and w i l l  also, by 
increasing the r a t e  of energy removal from the core region, decrease 
the  effect ive power coefficient of react ivi ty .  Preliminary data have 
previously been reported(7) from t e s t s  performed i n  Spert I11 t o  
determine t h e  e f fec t  of coolant flow on power excursion behavior. 
Some additional data  a re  now available and can be reported, although 
the correlation and analysis a re  s t i l l  i n  a preliminary stage. 

The t e s t s  were performed for  a range of water veloci t ies  from 0 
t o  18 f't/sec i n  the  reactor core aiiU Y6Y irilrfai aSyTQt0ti~ reactor 
periods from 500 msec t o  10 msec. A l l  of t he  t e s t s  were in i t i a t ed  
a t  room temperature (-30°c) from a parer l eve l  of about 10 w. The 
system pre.ssure was 230 p s i  fo r  a l l  t e s t s  t ha t  w i l l  be discussed 
here, except as specif ical ly  noted. 

A s  previously reported, (7) the addition of flow veloci t ies  as  
high as  18 f t / sec  does not produce s ignif icant  changes i n  the i n i t i a l  
parer burst  fo r  excursions with periods shorter than about 50 msec, 



whereas f o r  longer period t e s t s ,  - 

One t e s t  was performed i n  which a power excursion with an i n i t i a l  
period of about 9.7 msec was in i t i a t ed  f'rom room temperature with a 
system pressure of 2500 p s i  and a flow r a t e  of 1% ft/sec.  In Fig. 13 
the  power and the  f u e l  p la te  surface temperature f o r  this t e s t  a re  shown 
and compared with similar data fo r  a t e s t  a t  atmospheric pressure with 
no forced flow. For the high-pressure, high-flow t e s t  a peak power of 
about 1000 Mw i s  reached, followed by a sharp minimum. After a few 
damped osci l la t ions the  power levels  off a t  about 130 Mw. It i s  of 
in t e res t  t o  note tha t  the maxirmun fue l  p la te  surface temperature fo r  
t h i s  t e s t  i s  approximately the same as  f o r  the  11 msec, 2500 psi ,  no- 
flow t e s t  shown i n  Fig. 10 of the preceding section, but i n  this case 
there i s  a sharp decrease i n  temperature following the  peak, indicating 
t h a t  the forced coolant flow i s  suff ic ient  t o  offset  the  large decrease 
i n  heat t ransfer  r a t e  near the c r i t i c a l  point, although the temperature 
maximum i s  not appreciably reduced. 

the flow veloc i t ies  a re  suff ic ient  
t o  eliminate the  occurrence of an 
i n i t i a l  power peak. In both cases 
the equilibrium power l eve l  f ollow- 
ing the burst  i s  approximately pro- 
portional t o  the  flaw rate ,  as  
would be expected. I n  no case was 
the  t e s t  allowed t o  run long enough 
f o r  the cooling water t o  make a 
complete cycle through the heat 
exchangers and back t o  the  core, 
so tha t  fo r  these t e s t s  t he  quasi- 
equilibrium power reached i s  inde- 
pendent of the heat removal capacity 
of the heat exchanger. 
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10 1 o0 Fig. 12 shows the  temperature 
RECIPROCAL PERIOD (see') reached by the  hot test  measured 

e0 - e0  fue l  p la te  surface (outside p la te  
of a cent ra l  f u e l  assembly) a t  the 

Fig. 12 - 0(%) vs'Reciproca1 Period time of thepower maximum, @(%), 
for  Various Coolant Flow Rates as  a function of the i n i t i a l  

reciprocal period fo r  various 
flow ra tes .  ~(t,)  i s  approxi- 
mately constant fo r  periods 

longer than about 100 msec and increases approximately l inea r ly  with 
reciprocal period fo r  shorter periods. The increased flow ra t e s  r e su l t  
i n  decreased temperatures as  would be expected. In the short-period 
t e s t s ,  0(%) increases a t  about the same r a t e  f o r  a l l  flow ra t e s  toward 
a max imum of about 230°c, which i s  s l igh t ly  above saturation temperature 
fo r  the  system pressure of 230 ps i .  For periods of about 20 msec, e(tm) 
i s  well below boiling. Increasing the  flow r a t e  decreases @ ( t m )  even 
though the  peak power remains essent ial ly  the same. Since a t  18 f t / sec  
the coolant moves l e s s  than f ive  inches in a time of one 20-msec period, 
it i s  obvious tha t  a study of the change i n  v e r t i c a l  temperature prof i les  
i s  necessary t o  an understanding of the reac t iv i ty  compensation fo r  
these t e s t s .  Such a study i s  being made. 
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C. Fuel Assembly Damage 

W i n g  venting operations following one of the  test's investigating 
the e f fec t  of system pressure on parer excursion behavior, ( 6 )  unusually 
high a i r  ac t iv i ty  was observed i n  the Spert I11 reactor building. Subse- 
quent analysis of the  reactor water revealed the presence of low levels  
of short-lived f i s s ion  products. A visual  examination of the fue l  assem- 
b l i e s  was made and b l i s t e r s  were observed on the outside Sue1 p la tes  of 
three fue l  assemblies. These b l i s t e r s  were located i n  an area from three 
t o  twelve inches from the bottom of the  fue l  plates,  which corresponds 
t o  the  region of maximum neutron f lux  f o r  the Spert I11 core when operated 
a t  room temperature. The b l i s te red  assemblies had been located i n  regions 
of the core corresponding t o  substantially different  f lux  levels,  and 
assemblies i n  symmetrically located core posit ions were not bl is tered,  
nor were adjacent p la tes  of the  same assemblies. 

Rippling of fue l ,p la tes ,  was generally observed throughout the core 
and was more severe than had been observed subsequent' t o  previous short- 
period' t e s t s  a t  atmospheric pressure. Dial indicator measurements taken 
on the  outside p la tes  of several of the  assemblies showed that., i n  



addition t o  the rippling, a general bowing of the f u e l  p la tes  i n  the 
ve r t i ca l  direct ion had occurred. This bowing was a s  much a s  0.04 inches 
i n  the lower one-third of the f u e l  p la te .  Peak-to-valley measurements 
of the r ipples  showed an average height of about 0.03 inches. The com- 
bined baring and rippling was i n  some cases suff ic ient  t o  close up more 
than half of the water channel. *There was fur ther  evidence that a t  
l eas t  one of the plates  had bowed and rippled suf f ic ien t ly  t o  touch the  
adjacent control rod guide boxes, thus loca l ly  closing off the water 
channel. Visual inspection of the  inner p la tes  indicated similar 
rippling throughout the assemblies. 

The rippling and bowing of stainless-steel,  enriched U02,fuel p la tes  
had previously been observed with the Spert I p-core(819) and i s  thought 
t o  be the direct  r e su l t  of high thermal gradients during t e s t s  with 
periods l e s s  than about 20 msec. 

Bl i s te rs  had a lso  been observed with the  P-core. In tha t  case, the  
resu l t s  of metallurgical examination suggested tha t  the  b l i s t e r ing  may 
have been due t o  steam explosions originating a t  cladding cracks caused 
by intergranular corrosion( 9 )  . Preliminary metallurgical examination 
of the Spert I11 type "c" b l i s te red  p la tes  does reveal t he  presence of 
a limited number of intergranular cracks. None appears t o  have penetrated 
the cladding, however, and the cracks may have been formed as  a consequence 
of the b l i s te r ing .  The cause or the  b l i s te r ing  of the  Spert I11 pla tes  
i s  a t  present indeterminate, although there appears t o  be some correla- 
t i on  between f u e l  segregation (s t r ingers )  a t  the fuel-clad interface 
and the  formation of b l i s t e r s  i n  the high-temperature, high-flux region 
of the f u e l  p l a t e ~ ( l O ) .  

After removal of the  b l i s te red  f u e l  assemblies, power excursion 
tes t ' s  were continued i n  Spert I11 t o  complete the study of pressure and 
flow ef fec ts  a t  short periods. No fur ther  f i ss ion  product release has 
been observed and visual  inspection has f a i l ed  t o  disclose any additional 
b l i s te r ing .  



A. Flow Di,stribution Measurements for  Type-C~Assemblies 

The channel f l o w  d is t r ibut ion  f o r  a Spert 111, type-C, 1-S f u e l  
assembly has been obtained. The work was done a t  the ETR hydraulic 
t e s t  f a c i l i t y  using a dummy f u e l  assembly. The flow dis tr ibut ion was 
obtained by inser t ing two s t a t i c  tubes i n  each channel. The channel 
f r i c t i o n a l  pressure drop was recorded as  a function of assembly flow 
and converted t o  channel' flow by means of the Fanning correlation. 
The charm-el flow dis tr ibut ion i s  shown i n  Fig. 14 for  vasious flow 
ra tes .  The flow dis t r ibut ion  i s  r e l a t ive ly  f l a t  except f o r  the flow 
depression of the  outside channels. For an average assembly flow of 
400 gpm, which corresponds t o  a t o t a l  flow r a t e  of 20,000 gpm i n  the 
Spert I11 reactor, the  percent standard deviation from the  mean i s  
2.1%, and the  maximum deviation from the mean i s  19.6%. 
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Fig. 14 - Channel Flow Distribution fo r  Type-C Fuel Assembly 
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