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ABSTRACT

Elastic and inelastic cross sections are computed using
the distoried wave impulse approximation. The WKB method and a
modified distorted wave code are compared. As ihput, we use
pion-nucleon phase éhifﬁs, nucleon density from electron
scattering, and microscopic inelastic form factors. It is
found that the interaction given by the impulse approximation
gives a fair fit to the elastic data and that the WKB approxi-
mation compares remarkably well with the distorted wave cal-

culation at all but the lowest energieé. The microscopic form
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factors of the 27 level at 4.4 MeV and 3  level at 9.6 MeV

_give & good account of the inelastic scattering. Discrepancies

in the elastic scattering are similar to those observed in

1 GeV proton scattering from Carbon.

l. INTRODUCTION

Various authors have investigated pion-nucleus . scatter-
ing for the purpose of studying nuclear structure and the
pion-nucleon interaction inside the nucleus. (For a review
of the field, see ref. [1].) Kisslinger [2] introduced a
gradient term in the optical potential to account for the rise
of the cross section at large angles in pion-carbdn scattering
at 62 MeV. A similar gradient term was found to be essential
in reproducing the data at 80 MeV [3]. Auerbach, Fleming and
Sternheim applied the same type of potential to obtain rea-
sonably good fits to data in the 20-150 MeV range [4]. How-
evef, Block and Koetke found that a simple impulse approxima-
tion worked well in explaining pion-helium data at 24 MeV,
when the ;xtra absorption of pions by the helium nucleus was
included [5]. Re&ently, Bion et al. [6] measured the elastic
and inélaqtic cross sections of 120-280 MeV pidns scattered
from 12C.‘ Krell and Barmo and also Sternheim and Auerbach [7]
used the Kisslinger potential to fit the above pion-carbon
elastic data. Schmit and also K. Bjgrnenak et al., have

applied the Glauber approximation to analyze the same elastic

data [8].

¢



The purpose of the present paper is to study the recent
elastic and inelastic data [6] using the impulse approximation.‘
The elastic cross sections are calculated by two independenf
’methods, the WKB approximation and .a modified distorted wave
code by Tamura. It is interesting to compare the WKB approxi-
mation, which is'a high energy and small angle approximation,
with the "exact" distorted wave code at these intermediate
energies. The inelastic cross section for.2+’and 37 states
are computed by the WKB-Glauber formalism. Microscopic
inelasticiform factors are used. There are no free parameters

in the calculations.

2. OUTLINE OF CALCULATIONS

i
The optical potential is computed to lowest order,
ignoring the antisymmetrization of the target nucleons, and
: i

off—shell:effects for pion-nucleon scattering [9].
1

. | |
B Jk tkor@el O°F d3q | (1)

(2m)

U(r) = 3
where k and k' are the initial and final pion momenta in the
pion—nuclehs CM system and F(q) is the Fourier transform of

the normalized nucleon density, i.e.,

F(q) ='jp(r)e’i T g3, | , o (2)



, 2 | 2 '
p(r) = oo(l+°‘r / 2>€Xp(_r / 5) , - (3)

a a
C

<k'|t|k> is the pion-nucleon transition matrix in the pion-
~ ~ |

nucleus center of mass system. A is the number of nucleons

in the target. We relate <k'|t|k> to the t matrix in the

i
pion-nucleon CM system [9] by

] [) ] i [] [ ]
VE'E] <k'|t|k> VEE] = VEQE], <§0|t|50> VE E|, (4)

where E, El’ E', Ei are the energies of the pion and nuqleon
before and after the collision. The subscript 0 indicates
the corresponding quantitites in the pion-nucleon CM system.

The t matrices are related to the scattering amplitudes in

the pion-nucleon CM system via

E.E
o 1 EoPio0
Elkgra) = -37  gag —<kgltlky> (5)
» 0" %10
do 2
ag = 1£1°  q = o7k (e

Now, we can write f in terms of the nucleon spin operator o,

and the pion and nucleon isospin operators i and t [1].

0 p i1+ oenlf, + £5 i-1] (7)

n is the unit vector perpendicular'to the scattering plane.
~ 1

The coefficients fi are found from the pion-nucleon phase

shifts 62 where %,I,j are the gquantum numbers of the

21,23
orbital angular momentum, isospin, and the total angular

momentum of the pidn-nucleon system. Define



2 o, % ) f
a21,2j = 51n(621,2j)exp(1621’2j) (8)
Then,
_ 1 ) 2 2 , 2 2
£y = /3k0 g=gl¥lag Hp g * 203 2p-1) ¥ D (ay o 1+205 50 00)]
xPl(cose) (9)
_ 1 ) e % 2 L
£, = /3k0 g0 2 (may Hp g*a3 5p 1)+ (R+1) ( ©1,22+1%%3, 2041’ ]
xPQ(cose) (10)
f, = i sin®b _ A _~ 2 2 L i
2 /3k0 g=007%7 291 203 22-1%%7, 20417293 504117}
(11)
f, = 1i siné L _ A _ R 2 '
3 /3k0 2=00%1,20-17%3,20-17%1, 2041%%3, 204118}
(12)

The functions P2 are the Legendre polynomials and
dPQ(t)

Pi = 3 t = cosb

For the optical potential, we take the average of f over Fhe

spin and isospin of the 12C ground state, which has T=J-=0.

Since |
A A

<T=0| I 1.|T=0> = <J=0| % o.|J=0> = 0 - (13)
j:lmJ ) j=l~]

in the present approximation, in which we ignore the anti-

symmetrization of the target nucleons, only‘fO éontributés

to the optical potential. We keep'the.terms in egs. (9) - (12)



up to and including % = 3., The phase-shifts are taken from
Roper, Wright and Field [10]. The parameters for the proton

point den§ity (3) are deduced from electron scattering [11],

o = 4/3, a=1.66 fm, a, = 1.66 fm

These constants are also used for the neutron density.
The elastic scattering amplitude is, in the WKB

approximation [12],

S = exp (ixg) {£ 4 (q)-1k[ 7 (gb) lexp (ix (b) +ix, (b))

(14)
—exp(lxpt(b))]bdb}
where fpt(q)'is the usual Rutherford scattering due to a point

charge Ze and

X(b) = £ ["u(b,z)dz Cas)

b is the impact parameter. and xp are the same as yx with

Xpt
U replaced by the Coulomb potentials due respectively to a
point charge and a .charge distribﬁtion of the form of eq. (3)
with a_ = 1.71 fm, corresponding to a cﬁargé radius of 2.5 fm
(11]. Xg is a real constant factor which depends 6n the cut-
off radius of the Coulomb potential of a screened point charge.
The elastic cross sections were also calculated with
Tamura's distorted wave code using the same §ptical potential,

but without Coulomb. This code was originally written for

- proton-nucleus scattering at lower energies but was suitably



modified for pion-nucleus scattering at relativistic

energies.

The inelastic scattering amplitude for a tran51t10n

to the state |L,'s, J, u> is in the WKB-Glauber formalism
(13, 14),

S(L, s, J,u) % jexp(ig°13+ix(b))

(16)

x<L,S,J,u| ZI%b .. )]0>d b
j=1

where y is the z component of the total angular momentum J,

and

Vo1 s 2
r(g—gj) = E?IEE Jexp(-i8 (b §j))f(ko,6)d 8

Since the final states we are interested in have isospin

T = 0, only f0 and f2 contribute due to eq. (13). For the

final state S = 0, L = J, and T=0, we have
S(L,0 Ju) = fexp(lq b+lX(b)d b[ k f
. *
exp (-18+b) £ (k,,§)a’s fexp(ia-s')FLOJ(r')yL u(‘e',¢')d3r']
~ = ~ -~ 2 L,

an

When the final state has S = 1, L = J, and T=0,




S(L,1,3,u) = 3 [exp (ig-brix () a%p gy |

0
| : 2 L
exp(-i6-b)f, (k,,8)d“s ] <L,l,M1,M2]J,u>1(6M 1
M., M 2
172
RN 5 s * v iy a3
+6M2,—1) Jexp(ié-s')F (x')yy  (8',6")d r!
(18)
!

where r' = (s', z') = (x',6',4"),

and M, and M, are the z components of L and S. The inelastic

SJ are defined in terms of -the reduced transi—'

form factors FL
tion matrix and have been computed from the Gillet particle-

hole model [13, 15]. For the 2+ state at 4.4 MeV,

202 2

F

0.225  \5/2(5.52r —0.l83a1r4) exp (-a,r?)

(al

212

F2l2 - g.225 5/2(—3.54r2+0.665alr4) exp (—alrz)

(ocl)

and for the 3  state at 9.6 MeV,

F303 = —O.545a3r3 exp (=-a r2)
1" 1
F313 =-O.178ocir3 exp (-alrz)
with
0] = 0.37 fm"2,

3. DISCUSSION

. The optical potentials U have been computed using

eq. (1) and are shown in figure 1. The low energy real




potentials UR are cbmparable in magnitude with the incident
energy, UR/E:l, violating a necessary condition for the WKB
approximation. However, since the strong imaginary potentials

UI will depress the scattefing from these regions, we can

still expect the WKB method to work at least for some of the

low incident energies. The real parts (UR) are attractive

up to and including 180 MeV and repulsive thereafter. The optical
potentials show considerable deviations in shape from the

standard potentials encountered in proton-nucleus scattering.

To understand the unusual shapes, Qe write, assuming only s

and p wave contributions to fo,

_ 2
£y = £o1 * £9

Then, from (1), (4), and (5),
U = —CfF( ) (£ (kL) +E ., (kL) 2)ex (i -r)d3
47 tEg1 Kot TEgatkgla pl{igrrid-q
5 . (19)
= —CfOlp(r)+Cf02V p(r) = UytW N
where
U, = -Cf..p(r) W = Cf Vzp(r)
0 01 02
A k 1
C = S o=
(21T)2 E k0

As the pion-nucleon interaction varies rapidly with energy in
the energy range considered, it must give rise to a non-local

optical potentialvwhich is approximated in the present work
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by a sum of local potentials U0 and W both of which have
energy dependent parameters. The first of these, UO, the
quasi-local part, comes from a zero range interaction giving
rise to an optical potential UOR and UOI (the real and
imaginary parts of UO) which have the same shape as the
density distribution, i.e. a modified gaussian. The second,
W, has aniextra non-locality indicated by its proportionality
to Vzp which makes it very sensitive to the density distribu—

tion assumed. W has significant contributionsvwhére the

change of the slope of p(r) is great. That is,

W=_~¢C fozpog(r) exp(—Brz)

9(r) = 6(p)-8)-(1480,-48%)r?+4p%p, x*
where
B = 1/a° o, = 48/3 a=1.66 fm

g(r) has a positive maximum at r = 0, a minimum (negative)

at r = 1.5 fm, and zeroces at r = 0.63 fm and 2.7 fm. The
plots of UR and UI’ the real .and imaginary parts of the total
optical potential U, when compared with UOR UOI reflect

these features. The contribution of W is most signigicant

at lower energies, which explains the reason why the usual

optical potential fails at low energies [13]. We have

calculated the root mean square radii of Ugp and Us by
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' 1/2
<5172 _ fUr2d3r 3
Jua r

We note that the rms radii of U, as tabulated in Table 1,
decrease with energy except near the (3,3) resonance and

appear to converge to those of U The rms radii of U

0° OR

and UOI afe 2.45 fm at alllenergies. The effect of the
extra nonllocality contained in W is to add a grey penumbra
to the bl;ck sphere which is the main feature.of the optical
potential. The penumbra shrinks as the energy increases and
the total optical potential is approaching the quasi local
potential U0 at 280 MeV.

The elastic cross sections were calculated four times
at each energy and are shown in figure 2, compared with the
experimental results of Binon et al. The solid line is
the cross section obtained by using a distorted wave calcula-
tion with the full optical botential but without Coulomb
interaction. The dashed curve is a WKB calculation using
the full optical potential with Coulomb; the dotted line is
a WKB calculation using the full optical potential without
Coulomb; and the dashed line with crosses is the WKB calcula-
tion with the quasi local potential UO only. | |

The inelastic cross sections to the 2+, (Q=4.4 MeV)
and 3-(Q=9;6 MeV) states were calculated using the WKB-
Glauber method with the full optical potential. They are

plotted in comparison with the experimental results of Binon

et al. in figure 3.
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If we look at the lowest energy considered, 120 MeV,
we find that the modified Tamura code gives a reasonably
good fit to the elastic scattering while the success of the
WKB at this energy is marginal. We see the importance of W
as the prediction of UO alone fails badly at larger anéles.
The Coulomb interference is constructive at both forward
angles and at the minimum as both pion—nucleon.and Coulomb
forces are attractive. The peak in the 2* cross section
occurs.at q =.0.9 fm-l. This value is in good agreement
with the 156 MeV proton inelastic scattering [13] and
smaller than q = 1.2 fm * for the peaks in 1 GeV proton
inelastic scattering [16] and in electron scattering [17].
This discrepancy reflects the difference between the ranges
of the pion-nucleon interaction at 120 MeV and the nucleon-
nucleon interaction at 150 MeV which has rg = 4 fm2 and the
ranges of the nucleon-nucleon interaction at 1 GeV and the
proton electromagnetic form factor, both of which have rg =
0.6 fmz, where ré is the mean square radius of the hadron-
hadron interaction or electromégnetic form factor. The dip
in the crogs section at 70° is due to the largely p-wave
character of the pion-nucleon amplitude.v The pion-nucleon
amplitude has a minimum at. 8, =-90° in the pion-nucleon
center of mass which éorresponds to an angle ecm = 72°

in the pion-carbon CM system. The 3 inelastic data are

not available at this energy.
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At 150 MeV the predicted cross sections are in
reasonably good accord with the elastic data except near
the first;minimum and the second peak. It is interesting
to  note that similar discrepancies appear in 1 GeV proton
carbon scattering [16] and in the pion scattering analysis
using the Kisslinger potential by Krell and Barmo [7]. The
agreement between the WKB and modified distorted wave code
ié good. .The strong diffraction features are due to the
large imaginary potential compared to the real part. The
potential UO gives good agreement up to 60° including the
first minimum but too large cross sections at larger ahgles.
This is cénsistent with the fact that the rms radii of U0
are smaller than those of U. The agreement between fheory
and experiment is good for both 2% and 37 states. The 3~
maximum occurs at g = l.lfm_l, which, like the 2+ state,
is in good accord with the 156 MeV proton scattefing but
is less than the q=l.4fm‘l, given by 1 GeV proton and electron
scattering, rendering evidence again, as for thé scattering
of 120 MeV pions exciting the 2* state, of the different
ranges of the two body forces for different projectiles at
different energies. The inelastic cross-sections thus do
show some sensitivity to the range of the various forces..

The spin-flip contribution, FLiJ, to the inelastic scattering
is negligible except for a 20% effect near the minimum where

the significance of the changes in the small numbers is

questionable.
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At 180 MeV the optical potential is largely imaginary,
which explainé the sharp diffraction structures in both the
elastic and inelastic data. The agreement between the cal-
culdtions (both Tamura and WKB) and the elastic data is good.
except, again,Aat the minimum. The Coulomb interference is
almost zero in the forward direction due to the very small
real optiéal potential. Again, the potential UO is sucéess—
ful in giving the correct minimum'position. Also, there is
a reasonably goéd agreement between predictions énd data
for inelas%ic scattering.

A new feature at 200 MeV is that the real part of
the optical potential is repulsive, which is evidenced by
the destructive interference in the forward direction and
at the minima in figure 2. The minima are beginning to
"fill-up" due to the sizeable Ur- The potential U, does
remarkably well up to the first peak and is able to pfoduce
the second minimum, although at too large an angle.
Discussions regarding the inelastic scattering are similar
to the pre%ious ones except for the fact that the height
of the predicted cross sections is slightly too low.

At the higher energies (230, 260 and 280 MeV) both
the shape and the rms radii of U are approaching U0 although
significant differencés persist even at 280 MeV. The optical
potential U pfedicts cross sections that are too small at
large angles, while U0 gives a good fit at 280 MeV. It

would be interesting to see whether U0 would continue to
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give a good fit beyond 300 MeV. - The trend suggests that

the usual optical potential of.modified Gaussian or Wood-
Saxon shape should work well at énergies beyond 300 MeV.

To attempt to compare U and U0 in further detail would

take us beyona the limit of.the assumptions of eq. (l). The
contribut;ons of the d and f phase-shifts are small at 230
MeV but are sizeable‘at 280 MeV. That is, we find that
omission of these phase-shifts would increase the cross
section by ~30% near the first minimum and depress it by
~15% at larger angles. The 2+ and 3~ form factors continue

to give reasonable‘agreement with the data.

4. CONCLUSIONS

First, we find that optical potentials which are
obtained with the impulse approximation and contain no
free'parameters give fair fits to the existing data in the
range 120-280 MeV. The term W which is'proportional to the
second derivative of p(r) is essential at the lower energies.
- The quality of the fits are as good as those obtained by
Krell and Barmo [7] who searched for the best parameters of
the Kisslinger potentiali ‘It is evident that ﬁhe simple
approximation using V2p works as well as the corresponding
terms in the Kisslinger potential.

Secondly, the WKB method works remarkably well for
.elastic scattering in comparison witﬁ a distorted wave code

for 150 MeV incident energy and above. The reason for such
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success at these intermediate energies is believed to be

the strongtimaginary part of the optical potential.
Néyertheless, there are distinct differences between the

WKB and the distorted wave calculation in the depths of

the minima and heights of secondary maxima at large momentum
transfers, a fact which has to be kept in mind if the
heiéhts at minimum are used as criteria for the existence
of higher order effects such as correlations in an approxi-
mate calculation.

Thirdly, we see that for elastic-scattering, except
at the lowest energy, there is a persistant discrepancy
between the calculated-and experimental results in that .
theory gives the first minimum and the secondary maximum
consistently at too low a momentum transfer, as if the
nucleus was somewhat smaller than that given by theory.

The same discrepancy was found by Krell and Barmo [7].

Taken at its face value and given the fact that the zero

range interaction UO gives a good fit at high energies, this
would suggest that the present local approximation exaggerates
the non-locality of U and that a smooth short range inter-
action would be more realistic. .A Glauber type approximation
by K. Bjdgrnenak gE_gi.A[S] which neglects some of the momentum
dependence of the two body amplitude but makes up for it by
averaging over the nuclear fermi motion, goes in the opposite
direction, predicting the minima at too large a momentum
transfer. This calculationikept p-waves only in the pion-

nucleon interaction, and used antisymmetrized wave-functions
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which gave small contributions from the spin-flip part of the
amplitudes, and so is not directly comparable to the present
calculation. A recent calculation by Sternheim and Auerbach
[7] used the Kisslinger form of the optical potential obtained
from the pion-nucleon s and p wave phaée shifts, but averaged
over the Fermi motion of the nucleons. They did not find

any discrepancies in the position of the first minimum, but

they used for the nucleon point density a distribution of

the form (3) but with the parameters a = 1.5 fm and a, = 1.5 fm

taken from an earlier analysis of electron scattering, instead
of the 1.66 fm used in the present calculation. Their para-
meters correspond to a nucieus about 10% smaller than the one
assumed in the present work and would move the first minima

in figure 2 outwards by a corresponding amount. Thus most

,of the discrepancy between the two calculations comes from

the difference in matter radius. It should be remembered
that a very similar discrepancy to the one found here occurs
between theory and experiment in the scattering of 1 GeVv
protons from 12C, whereas no such discrepancy occurs from a
similar comparisop involving O16 as target, as has been
noted by several authors [16, 18], all of whom used the same
parameters for 12C as used here. The discrepancy has been
taken to mean that the ground state of 12C is deformed, or
that as the 2+(4.4 MeV)gstate of 12C is strongly éxcited at

all enérgies, a coupled channel calculation may be necessary

for hadron scattering, even if the corresponding dispersive
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corrections for>electron scattering are very small. In any
case, it needs to be determined whether there is a nucleon
distribut%on in 12C which is compatible with both electron
scattering and hadron scattering before significance can be
attached to more refined calcula£ions. It would be very
convenient to have data in the same energy region for elastic
pion scattering from 16O, which shows no anomalies in 1 GeV
proton scattering, so that the nuclear structure problem

is removed from the picture, and a better test of the two-
body interaction could be obtained. A calculation of second
order éontributions to the optical potential, including
correctiogs to the hadron-hadron scattering amplitudeg and

. the effects of nuclear correlations, along the lines set out
by Feshbach and Hufner [19] would‘be of interest, however,

in establishiﬁg the convergence of the method for such strong
interactions. These second order corrections have been |
shown [20] to bé‘relatively émall except at large momentum
transfer, in the case of the scattering of 1 GeV protons

16

from O, but are expected to be considerably larger in the

present case.

‘ Finally, the 2+ and 3~ inelastic form factors based
on the Gillet particle-hole picture'give reasonably good
fits for the pion inelastic scattering as they did for 156
MeV [13] and 1 GeV proton scattering [16] and for electron

scattering [17] within the errors of the experimental data.

The momentum transfer at the maxima in the cross section
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for these levels gives some indication of the range for two
body force involved, but inelastic scattering is‘not as
sensitiVeito the details as elastic scattering.

The authors wish to thank F. Petrovich for assistance
with the distorted wave code, and both the staffs at the
L7 computér of the MSU cyclotron and at the compﬁter center
of California State College, Dominguez Hills, for their

cooperation.,
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Table 1. The root mean square radii of the optical potentials.
The rms value of UR at 180 MeV is not calculated.
The rms radii of Uy are 2.45 fm for both real and

imaginary parts at all energies.

TABLE 1
120 MeV 150 180 200 230 - 260 280
Ur 3.2 fm- 3.05 2.64 2.66 2.6 2.56
U 3.1 fm 2.96 2.88 2.84 2.87 2.72 2.7
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FIGURE CAPTIONS

Fig. 1.

Fig. 2,

Fig. 3.

Optical Potentials for pions of different incident
energies; UR and UI are the real and imaginary parts
of the full optical potential; UOR’ UOI the quasi-
local pafts only as defined in the text. The notation
tUR tUOR indicates that the real parts of the optical
potentials change from attfactive to repulsive after

180 Mev.

Comparison of theory with experiment for pion-carbon
elastic scattering. The experimental points are

those of Binon et al. The solid line is the distorted

wave calculation, without Coulomb, the dashed 1ine‘

the WKB approximation with Coulomb, the dotted line
the WKB calculation without Coulomb, and the crosses
indicate a WKB calculation using the quasi-local

potentials Uy only as defined in the text,

Comparison of theory with experiment for pion-carbon
inelastic leaving the target in the 27 state

(Q = 4.4 MeV) and the 3  state (Q = 9.6 MeV).
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