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ABSTRACT

Elastic and inelastic cross sections are computed using

the distorted wave impulse approximation. The WKB method and a

modified distorted wave code are compared. As input, we use

pion-nucleon phase shifts, nucleon density from electron

scattering, and microscopic inelastic form factors. It is

found that the interaction given by the impulse approximation

gives a fair fit to the elastic data and that the WKB approxi-

mation compares remarkably well with the distorted wave cal-

culation at all but the lowest energies. The microscopic form
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+                           -factors of the 2 level at 4.4 MeV and 3 level at 9.6 MeV

give a good account of the inelastic scattering. Discrepancies4

in the elastic scattering are similar to those observed in

1 GeV proton scattering from Carbon.

1.  INTRODUCTION

Various authors have investigated pion-nucleus scatter-

ing for the purpose of studying nuclear structure and the

pion-nucleon interaction inside the nucleus. (For a review

of the field, see ref. [l].) Kisslinger [2] introduced a

gradient term in the optical potential to account for the rise

of the cross section at large angles in pion-carbon scattering

at 62 MeV. A similar gradient term was found to be essential

in reproducing the data at 80 MeV [3]. Auerbach, Fleming and

Sternheim applied the same type of potential to obtain rea-

sonably good fits to data in the 20-150 MeV range [4].  How-

ever, Block and Koetke found that a simple impulse approxima-

tion worked well in explaining pion-helium data at 24 MeV,

when the extra absorption of pions by the helium nucleus was

included [5]. Recently, Bion et al. [6] measured the elastic

and inelastic cross sections of 120-280 MeV pions scattered
12from C. Krell and Barmo and also Sternheim and Auerbach [7]

used the Kisslinger potential to fit the above pion-carbon

elastic data. Schmit and also K. Bj0rnenak et al., have

applied the Glauber approximation to analyze the same elastic

data [8].
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The purpose of the present paper is to study the recent
elastic and inelastic data [6] using the impulse approximation..

The elastic cross sections are calculated by two independent

methods, the WKB approximation and a modified distorted wave

code by Tamura. It is interesting to compare the WKB approxi-
mation, which is a high energy and small angle approximation,
with the "exact" distorted wave code at these intermediate

energies. The inelastic cross section for 2  and 3 states
+-

are computed by the WKB-Glauber formalism.  Microscopic
inelastic form factors are used. There are no free parameters

in the calculations.

2.  OUTLINE OF CALCULATIONS

The optical potential is computed to lowest order,

ignoring the antisymmetrization of the target nucleons, and

off-shell effects for pion-nucleon scattering [9].

U(r) =   A 3 f<k'|t|k>F(q)ei 9.5 d3 (1)
(27T)

where k and k' are the initial and final pion momenta in the- -

pion-nucle&s CM system and F(q) is the Fourier transform of
the normalized nucleon density, i.e.,

F(q) = IP(r)e-i 9.r d3r (2)

3
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22ar
p(r) = PO(1+   / 2)exp(-r /

2) (3)
a a

C

<k'|t|k> is the pion-nucleon transition matrix in the pion-'V

nucleus center of mass system. A is the number of nucleons

in the target.  We relate <k'|t|k> to the t matrix in the
..V

pion-nucleon CM system [9J by

/E'El <k' 1

t 1 15 >     ,/EE'I   =    '/E 6 E i o     < 15 8  |  t |   0 >     ,/E
E (4)0 10

where E, El' E', Ei are the energies of the pion and nucleon
before and after the collision. The subscript 0 indicates

the corresponding quantitites in the pion-nucleon CM system.

The t matrices are related to the scattering amplitudes in

the pion-nucleon CM system via

EE
f (k ,q) = - T 'E +E <k6't']30> (5)

0 10

0  10 -

 R  = 'f 1 2 a = k -k'
2   -0 -0 (6)

Now, we can write f in terms of the nucleon spin operator c,
-

and the pion and nucleon isospin operators i and T [l].- -

f=f  +f, i·T + a·n[f  +f 3 i T] (7)0      i--     -  -   2         --

n is the unit vector perpendicular to the scattering plane.-

The coefficients f. are found from the pion-nucleon phase1

shifts 62I,2  where £,I,j are the quantum numbers of the

orbital an4ular momentum, isospin, and the total angular

momentum of the pion-nucleon system.  Define
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a I,2j = sin(6£ )exp(ia£    )                       (8)
2I,2j 2 I,2j

Then,

f  = 1/3kl £ OI£(al,22-1 +
2a  )+(£+1) (ag +2af     )]3,22-1 1,22+1 3,22+1

xp£(cose) (9)

fl = 1/3k  £ OI£(-al,2£-1+a ,22-1)+(2+1)(-al,22+1+a ,2£+1)1

xP£(cose)
(10)

f2 = i sine  I I-az     -2az     +ag        z
3ko £=O 1,22-1   3,22-1  1,2£+1+2a3,2£+llPE

(11)

f  = i sine I££££
3         /3kO £=0[al,22-1-a3,2£-1-al,2£+1+a3,2£+1 P 

(12)

The functions P£ are the Legendre polynomials and

dP£(t)
t = cose£   dt

For the optical potential, we take the average of f over the

spin and isospin of the C ground state, which has T=J=0.
12

Since

A                 A
<T=01 E Ii|T=O> = <J=O| I a.|J=O> = 0 (13)j=l J

j=l-]

in the present approximation, in which we ignore the anti-

symmetrization of the target nucleons, only fQ contributes

to the optical potential. We keep the terms in eqs. (9) - (12)
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up to and including Z = 3. The phase-shifts are taken from      ·

Roper, Wright and Field [10].  The parameters for the proton
point density (3) are deduced from electron scattering [11],

a = 4/3, a = 1.66 fm,       a  = 1.66 fmC

These constants are also used for the neutron density.

The elastic scattering amplitude  is,   in.  the  WKB

approximation [12],

S = exp (ixs) {fpt (q)-ikf Jl(qb) [exp(ix(b)+ixp(b))

-exp(ix (b))]bdb}
(14)

Pt

where fpt(q) is the usual Rutherford scattering due to a point
charge Ze and

E     , COX(b) = _r 1 U(b,z)dz (15)A '-0

b is the impact parameter.  Xpt and x   are the same as X with
U replaced by the Coulomb p6tentials due respectively to a

point charge and a charge distribution of the form of eq. (3)
with a = 1.71 fm, corresponding to a charge radius of 2.5 fmC

[11].  Xs is a real constant factor which depends on the cut-

off radius of the Coulomb potential of a screened point charge.

The elastic cross sections were also calculated with

Tamura's distorted wave code using the same optical potential,
but without Coulomb. This code was originally written for

proton-nucleus scattering at lower energies but was suitably
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modified for pion-nucleus scattering at relativistic
energies.

The inelastic scattering amplitude for a transition

to the state JL, S, J, p> is in the WKB-Glauber formalism

[13, 14],

S(L, S, J,V) = ik
FA fexp(ig·b+ix(b))

(16)
A

x<L,S,J,VI Ir(b-s.)|0>d2b
j=1 - -J

where w  is the z component of the total angular momentum J,
and

r(b-sj) = 2Alko Jexp(-i6•(b-sj))f(kl,6)d26

Since the final states we are interested in have isospin
T= 0, only f  and f2 contribute due to eq. (13).  For the

final state S = 0, L = J, and T=0, we have

S(L,O,J,w) = 2k fexp(ig·b+ix (b)d2b[  1   f
27Tik0 '

exp(-if·b)fl(kl,&)d26 fexp(i6·s )F  (r')Y  (e' 0')d3r,]LOJ     *
-- L,W   '

(17)

When the final state has S = 1, L = J, and T=0,



8

S(L,1,J,11) = 2k fexp(ig·b+ix(b))d2b[  1   f
27Tlk  '

0

exp(-i6·b)f2(ko,&)d26   I  <L,1,Ml'M2'J,v>i(6M  1
M .M                   2'1' 2

,  LlJ     *
+6M  -1) fexp(if·s.)F (r,)Y (e'.4')d3r'

2'                        L,V

(18)

where r' = (si, z') = (r',8',0'),

and Ml and M2 are the z components of L and S.  The inelastic
LSJform factors F are defined in terms of the reduced transi-

tion matrix and have been computed from the Gillet particle-

hole model .[13, 15].  For the 2  state at 4.4 MeV,

202
F      0.225(a )5/2(5.52r2-0.183air4) exp (-alr2)

1

212
F      0 225   )5/2(-3.54r2+0.665alr4) exp (-alr2)

Cal

and for the 3 state at 9.6 MeV,

F303   -0.54513r3 exp (-alr2)

313 33     2
F      0.178alr  exp (-a r )1

with

-2
al = 0.37 fm

3.  DISCUSSION

The optical potentials U have been computed using

eq. (1) and are shown in figure 1. The low energy real
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potentials UR are comparable in magnitude with the incident

energy, UR/E=l, violating a necessary condition for the WKB

approximation. However, since the strong imaginary potentials

UI will depress the scattering from these regions, we can

still expect the WKB method to work at least for some of the

low incident energies.  The real parts (UR) are attractive

up to and including 180 MeV and repulsive thereafter. The optical

potentials show considerable deviations in shape from the

standard potentials encountered in proton-nucleus scattering.

To understand the unusual shapes, we write, assuming only s

and p wave contributions to f ,

2

fo = fol + f02 

Then, from (1), (4), and (5),

U = -CJF(q)(f  (k )+f  (k )q2)exp(ig·r)d3q01  0   02

2                                      (19)= -Cf p(r)+Cf V p(r) = U +W01 02          0

where

UO = -Cfoip(r) W = Cf02V2p(r)

A    k lC=
(21T)       0

2 E F

As the pion-nucleon interaction varies rapidly with energy in

the energy range considered, it must give rise to a non-local

optical potential which is approximated in the present work
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by a sum of local potentials UQ and W both of which have

energy dependent parameters.  The first of these, U , the
quasi-local part, comes from a zero range interaction giving

rise to an optical potential U and U (the real and            OR OI

imaginary parts of U ) which have the same shape as the
density distribution, i.e. a modified gaussian. The second,

W, has an extra non-locality indicated by its proportionality
to 92p which makes it very sensitive to the density distribu-

tion assumed. W has significant contributions where the

change of the slope of p(r) is great.  That is,

W = C f02 pO9(r) exp(-Br2)

g(r) = 6(pl-B)-(14BP1-482)r2+482plr4

where

B = 1/a Pl = 48/3 a = 1.66 fm
2

g(r) has a positive maximum at r = 0, a minimum (negative)

at r = 1.5 fm, and zeroes at r = 0.63 fm and 2.7 fm. The

plots of UR and UI' the real and imaginary parts of the total

optical potential U, when compared with U U   reflectOR OI
these features. The contribution of W is most signigicant

at lower energies, which explains the reason why the usual

optical potential fails at low energies [13]. We have

calculated the root mean square radii of UR and UI by
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<r >

=  JUr dr/
2 1/2 (23/

  1/2

/ fUd3rj

We note that the rms radii of U, as tabulated in Table 1,

decrease with energy except near the (3,3) resonance and

appear to converge to those of U .  The rms radii of UOR
and U are 2.45 fm at all energies. The effect of the0I
extra nonllocality contained in W is to add a grey penumbra

to the black sphere which is the main feature of the optical

potential. The penumbra shrinks as the energy increases and

the total optical potential is approaching the quasi local

potential UQ at 280 MeV.

The elastic cross sections were calculated four times

at each energy and are shown in figure 2, compared with the

experimental results of Binon et al. The solid line is

the cross section obtained by using a distorted wave calcula-

tion with the full optical potential but without Coulomb
interaction. The dashed curve is a WKB calculation using
the full optical potential with Coulomb; the dotted line is

a WKB calculation using the full optical potential without
Coulomb; and the dashed line with crosses is the WKB calcula-

tion with the quasi local potential U  only.
The inelastic cross sections to the 2 , (Q=4.4 MeV)

and 3-(Q=9.6 MeV) states were calculated using the WKB-

Glauber method  with  the full optical potential.     They  are ,

plotted in comparison with the experimental results of Binon

et al. in kigure 3.
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If we look at the lowest energy considered, 120 MeV,

we find that the modified Tamura code gives a reasonably

good fit to the elastic scattering while the success of the

WKB at this energy is marginal.  We see the importance of W

as the prediction of U  alone fails badly at larger angles.

The Coulomb interference is constructive at both forward

angles  and  at the minimum as both pion-nucleon and Coulomb

forces are attractive.  The peak in the 2  cross section
-1occurs at q = 0.9 fm This value is in good agreement

with the 156 MeV proton inelastic scattering [13] and

smaller than q = 1.2 fm for the peaks in 1 GeV proton
-1

inelastic scattering [16] and in electron scattering [17].

This discrepancy reflects the difference between the ranges

of the pion-nucleon interaction at 120 MeV and the nucleon-

nucleon interaction at 150 Mev which has r2 = 4 fm2 and the

ranges of the nucleon-nucleon interaction at 1 GeV and the

proton electromagnetic form factor, both of which have r2 =

0.6 fm2, where r2 is the mean square radius of the hadron-

hadron interaction or electromagnetic form factor. The dip

in the cross section at 70° is due to the largely p-wave

character of the pion-nucleon amplitude. The pion-nucleon

amplitude has a minimum at.6  = 90° in the pion-nucleon
center of mass which corresponds to an angle 8 = 72°cm
in the pion-carbon CM system. The 3 inelastic data are

not available at this energy.
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At 150 MeV the predicted cross sections are in

reasonably good accord with the elastic data except near
the first minimum and the second peak. It is interesting
to' note that similar diBcrepancies appear in 1 GeV proton
carbon scattering [16] and in the pion scattering analysis
using the,Kisslinger potential by Krell and Barmo [7]. The      '

agreement between the WKB and modified distorted wave code
is good. The strong diffraction features are due to the

large imaginary potential compared to the real part. The

potential U  gives good agreement up to 60° including the
first minimum but too large cross sections at larger angles.

This is consistent with the fact that the rms radii of U 
are smaller than those of U. The agreement between theory

and experiment is good for both 2  and 3- states.  The 3-
maximum occurs at q = 1.lfm 1, which, like the 2  state,

is in good accord with the 156 MeV proton scattering but
is less than the q=l.4fm-1, given by 1 GeV proton and electron

scattering, rendering evidence again, as for the scattering
of 120 Mev pions exciting the 2  state, of the different
ranges of the two body forces for different projectiles at
different energies. The inelastic cross-sections thus do

show some sensitivity to the range of the various forces..
The spin-flip contribution, F , to the inelastic scattering

LiJ

is negligible except for a 20% effect near the minimum where
the significance of the changes in the small numbers is

questionable.
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At 180 MeV the optical potential is largely imaginary,
which explains the sharp diffraction structures in both the

elastic and inelastic data.  The agreement between the cal-

culations (both Tamura and WKB) and the elastic data is good

except, again, at the minimum. The Coulomb interference is
-talmost zero in the forward direction due to the very small

real optical potential. Again, the
potentihl UI is success-

ful in giving the correct minimum position.  Also, there is

a reasonably good agreement between predictions and data

for inelastic scattering.

A new feature at 200 MeV is that the real part of

the optical potential is repulsive, which is evidenced by

the destructive interference in the forward direction and

at the minima in figure 2.  The minima are beginning to

"fill-up" due to the sizeable UR.  The potential U  does

remarkably well up to the first peak and is able to produce
the second minimum, although at too large an angle.

Discussions regarding the inelastic scattering are similar
to the pre*ious ones except for the fact that the height

of the predicted cross sections is slightly too low.

At the higher energies (230, 260 and 280 MeV) both

the shape and the rms radii of U are approaching U  although

significant differences persist even at 280 MeV. The optical

potential U predicts cross sections that are too small at
e.

large angles, while UQ gives a good fit at 280 MeV.  It

would be interesting to see whether U  would continue to
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give a good fit beyond 300 MeV.  The trend suggests that

the usual optical potential of modified Gaussian or Wood-

Saxon shape should work well at energies beyond 300 MeV.

To attempt to compare U and U  in futther detail would
take us beyond the limit of the assumptions of eq. (1).  The

contributions of the d and f phase-shifts are small at 230
MeV but are sizeable at 280 MeV. That is, we find that

omission of these phase-shifts would increase the cross

section by -30% near the first minimum and depress it by

-15% at larger angles.  The 2  and 3- form factors continue

to give reasonable agreement with the data.

4.  CONCLUSIONS

First, we find that optical potentials which are

obtained with the impulse approximation and contain no

free parameters give fair fits to the existing data in the

range 120-280 MeV. The term W which is proportional to the

second derivative of p(r) is essential at the lower energies.

The quality of the fits are as good as those obtained by

Krell and Barmo [7] who searched for the best parameters of

the Kisslinger potential.  ·It is evident that the simple

2approximation using V p works as well as the corresponding

terms in the Kisslinger potential.

Secondly, the WKB method works remarkably well for

elastic scattering in comparison with a distorted wave code
for 150 MeV incident energy and above. The reason for such
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success at these intermediate energies is believed to be        '

the strong imaginary part of the optical potential.

Nevertheless, there are distinct differences between the

WKB and the distorted wave calculation in the depths of

the minima and heights of secondary maxima at large momentum

transfers, a fact which has to be kept in mind if the

heights at minimum are used as criteria for the existence

of higher order effects such as correlations in an approxi-

mate calculation.

Thirdly, we see that for elastic scattering, except

at the lowest energy, there is a persistant discrepancy

between the calculated and experimental results in that

theory gives the first minimum and the secondary maximum

consistently at too low a momentum transfer, as if the

nucleus was somewhat smaller than that given by theory.
The same discrepancy was found by Krell and Barmo [7].

Taken at its face value and given the fact that the zero

range interaction UQ gives a good fit at high energies, this
would suggest that the present local approximation exaggerates
the non-locality of U and that a smooth short range inter-

action would be more realistic.  .A Glauber type approximation

by K. Bj0rnenak et al. [8] which neglects some of the momentum

dependence of the two body amplitude but makes up for it by

averaging over the nuclear fermi motion, goes in the opposite

direction, predicting the minima at too large a momentum

transfer. This calculation .kept p-waves only in the pion-

nucleon interaction, and used antisymmetrized wave-functions
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which gave small contributions from the spin-flip part of the
amplitudes, and so is not directly comparable to the present
calculation. A recent calculation by Sternheim and Auerbach
[7] used the Kisslinger form of the optical potential obtained

from the pion-nucleon s and p wave phase shifts, but averaged
over the Fermi motion of the nucleons. They did not find             

any discrepancies in the position of the first minimum, but

they used for the nucleon point density a distribution of
the form (3) but with the parameters a = 1.5 fm and a  = 1.5 fm

C
taken from an earlier analysis of electron scattering, instead

of the 1.66 fm used in the present calculation. Their para-
meters correspond to a nucleus about 10% smaller than the one

assumed in the present work and would move the first minima

in figure 2 outwards by a corresponding amount. Thus most

of the discrepancy between the two calculations comes from
the difference in matter radius. It should be remembered

that a very similar discrepancy to the one found here occurs

between theory and experiment in the scattering of 1 GeV

protons from C, whereas no such discrepancy occurs from a
12

16similar comparison involving 0 as target, as has been
noted by several authors [16, 18], all of whom used the same

12parameters for C as used here. The discrepancy has been
12taken to mean that the ground state of C is deformed, or

12that as the 2 (4.4 MeV) state of C is strongly excited at

all energies, a coupled channel calculation may be necessary
for hadron scattering, even if the corresponding dispersive
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corrections for electron scattering are very small. In any

case, it needs to be determined whether there is a nucleon

distribution in C which is compatible with both electron
12

schttering and hadron scattering before significance can be

attached to more refined calculations. It would be very

convenient to have data in the same energy region for elastic

pion scattering from 0, which shows no anomalies in 1 GeV
16

proton scattering, so that the nuclear structure problem

is removed from the picture, and a better test of the two-

body interaction could be obtained. A calculation of second

order contributions to the optical potential, including

corrections to the hadron-hadron scattering amplitudes and

the effects of nuclear correlations, along the lines set out

by Feshbach and Hufner [19] would be of interest, however,

in establishing the convergence of the method for such strong

interactions. These second order corrections have been

shown [20] to be relatively small except at large momentum

transfer, .in the case of the scattering of 1 GeV protons
16from 0, but are expected to be considerably larger in the

present case.

Finally, the 2  and 3  inelastic form factors based

on the Gillet particle-hole picture give reasonably good

fits for the pion inelastic scattering as they did for 156

MeV [13] and 1 GeV proton scattering [16] and for electron

scattering [17] within the errors of the experimental data.

The momentum transfer at the maxima in the cross section
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1

, for these levels gives some indication of the range for two
body force involved, but inelastic scattering is not as
sensitive to the details as elastic scattering.

The authors wish to thank F. Petrovich for assistance

with the distorted wave code, and both the staffs at the
E 7 computer of the MSU cyclotron and at the computer center

of California State College, Dominguez Hills, for their
cooperation.
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Table 1. The root mean square radii of the optical potentials..

The rms value of UR at 180 MeV is not calculated.
The rms radii  of  U t are  2.45  fm  for  both  real  and
imaginary parts at all energies.

TABLE 1

120 MeV 150 180 200 230 260 280

U     3.2 fm· 3.05 2.64 2.66 2.6 2.56R

U     3.1 fm 2.96 2.88 2.84 2.87 2.72 2.7I
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•            FIGURE CAPTIONS

Fig. 1. Optical Potentials for pions of different incident

energies.  UR and UI are the real and imaginary parts
of the full optical potential: U , UoI the quasi-OR
local parts only as defined in the text. The notation
tu fU   indicates that the real parts of the opticalR   OR

potentials change from attractive to repulsive after
180 MeV.

Fig. 2. Comparison of theory with experiment for pion-carbon
elastic scattering. The experimental points are
those of Binon et al. The solid line is the distorted

wave calculation, without Coulomb, the dashed line
the WKB approximation with Coulomb, the dotted line

the WKB calculation without Coulomb, and the crosses
indicate a WKB calculation using the quasi-local

potentials U  only as defined in the text.

Fig. 3. Comparison of theory with experiment for pion-carbon

inelastic leaving the target in the 2  state

(Q = 4.4 MeV) and the 3- state (Q = 9.6 MeV).
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