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MADELUNG'S RULE AND I T S  GENERALIZATION 

The o r d e r  i n  which e l e c t r o n  s h e l l s  a r e  f i l l e d  i n  t h e  p e r i o d i c  system 

of t h e  elements  has  been s tud ied  i n  d e t a i l  i n  t h e  e a r l y  yea r s  of development 

of t h e  Bohr atom. It i s  no t  always apprec ia ted  t h a t  f o r  i on ized  atoms 

t h e  e l e c t r o n  s h e l l s  a r e  f i l l e d  i n  a  d i f f e r e n t  o r d e r  from t h a t  of n e u t r a l  

atoms. ~ a d e l u n ~ '  discovered a  s imple empi r i ca l  r u l e  f o r  n e u t r a l  a tnos .  

It c o n s i s t s  of two p a r t s .  

A.  *en cons ider ing  consecut ive  n e u t r a l  atoms t h e  e l e c t r o n  

s h e l l s  f i l l  up i n  t h e  o rde r  of t h e  quantum number sum (n + ) .  

B. For e l e c t r o n s  i n  s t a t e s  of equal  (n + t! ) t he  o r d e r  of 

f i l l i n g  goes wi th  inc reas ing  n .  

This  r u l e  i s  remarkably 'wel l  obeyed throughout t h e  p e r i o d i c  t a b l e .  

It g i v e s ,  for example, c o r r e c t l y  t h a t  4  8 - e l e c t r o n s  (n + 8 = 4) appear  

be fo re  3d -e l ec t rons  (n  + k = 5) , t h a t  4f - e l e c t r o n s  w i l l  appear  a f  t e r  

Z = 56 and 5 f - e l e c t r o n s  a f t e r  Z = 88. Many of t h e  minor d e v i a t i o n s  from 

t h e  Madelung Rule can be a sc r ibed  t o  t h e  l a r g e  spread of m u l t i p l e t  l e v e l s  

i n  complex e l e c t r o n  c o n f i g u r a t i o n s .  While t h e  c e n t e r  of g r a v i t y  of t h e  

m u l t i p l e t  l e v e l s  may obey t h e  Madelung Rule, one of t h e  l e v e l s  0.f a  h ighe r  

s t a t e  may have been pushed down below t h e  lower s t a t e  by l a r g e  exchange 

i n t e r a c t i o n s .  The s imple a r r a y  of t h e  p e r i o d i c  t a b l e  of t h e  elements a s  

g iven  f o r  example i n  Bacher and ~ o u d s m i t '  i s  .based on Madelung's Rule. 

The Cata lan  p e r i o d i c  t a b l e 3  r e f l e c t s  t h i s  r u l e  i n  even more d e t a i l .  
4 

Fermi has  shown by numerical computation t h a t  t h e  s t a t i s t i c a l  Thomas- 

Fermi atom g i v e s  approximately t h e  c o r r e c t  p l a c e  i n  t h e  p e r i o d i c  system f o r  

t h e  f i r s t  appearance of a  s h e l l  wi th  g iven  angu la r  momentum 6% More 

r e c e n t l y  p a r t  (A) of Madelung's Rule has  been der ived5  d i r e c t l y  from 

approximate s o l u t i o n s  f o r  t he  s t a t i s t i c a l  e l e c t r o n  d i s t r i b u t i o n  i n  t h e  

Thomas-Fermi atom. 

I n  t h i s  paper we wish t o  extend t h e s e  cons ide ra t ions  t o  ion ized  atoms, 

s i n c e  t h e  r e s u l t s  may be of i n t e r e s t  i n  connect ion wi th  r e c e n t  obse rva t ions  
6 

of s p e c t r a  of h i g h l y  ion ized  atoms . For v e r y  h i g h l y  ion ized  atoms the  

e n e r g i e s  a r e  almost  hydrogenic.  Very elementary c o n s i d e r a t i o n s  l ead  i n  t h i s  

c a s e  d i r e c t l y  t o  t h e  fo l lowing  r u l e .  . 

A. For  h i g h l y  ion ized  atoms t h e  e l e c t r o n  s h e l l s  f i l l  up i n  the 

o r d e r  of t h e  quantum number,n.  



B. For e l e c t r o n s  i n  s t a t e s  wi th  equal  n  t h e  o rde r  of f i l l i n g  

goes wi th  inc reas ing  4? . 
This  r u l e  g ives  t he  o rde r  i n  which e l e c t r o n  s t a t e s  a r e  u s u a l l y  

enumerated namely, I s  2s 2p 3s 3p 3d 4s  4p Lid-4f . . and so on. 

F igure  1 r e p r e s e n t s  schemat ica l ly  t h e  e l e c t r o n  s h e l l  s t r u c t u r e  of n e u t r a l  

and h i g h l y  ion ized  atoms. The former.CFig.  l a )  i s  merely t h e  ske l e ton  of 

t h e  Pe r iod ic  Table r e p r e s e n t a t i o n s  mentioned above. 

Since t h e  Thomas-Fermi atom can be used t o  d e r i v e  p a r t  A of Madelung's 

Rule i t  should be considered a s  v a l i d  i n  t h e  l i m i t  of n e u t r a l  atoms wi th  

a  ve ry  l a r g e  number of e l e c t r o n s .  I n  t h i s  l i m i t  s t a t e s  wi th  t h e  same 

(n.  +J' ) a r e  expected t o  co inc ide  a s  f a r  a s  t h e  f i l l i n g  o rde r  i s  concerned. 

S i m i l a r l y  p a r t  A f o r  the. h i g h l y  ion ized  atoms can be considered a s  a  l i m i t i n g  

case  f o r  which s t a t e s  wi th  the  same va lue  of n  co inc ide .  I f  we make t h e  

s e l f - e v i d e n t  assumption t h a t  t h e r e  i s  a gradual  t r a n s i t i o n  between t h e s e  two 

l i m i t s ,  p a r t  B of t h e  r u l e s  fo l lows  a t  once. Th i s  i s  most e a s i l y  seen  i n  

, Figure  2 .  A t  t h e  top of t h i s  diagram we have arranged t h e  s t a t e s  i n  t h e  

o r d e r  i n  which they  a r e  f i l l e d  i n ' t h e  l i m i t i n g  c a s e  of n e u t r a l  atoms, a t  

t h e  bottom we have done the  same f o r  extreme ions .  The l i n e s  connect ing 

t h e  s t a t e s  s e p a r a t e  those  co inc id ing  and n e a r  t h e  two l i m i t s  t h e  o r d e r  

i n  each group i s  j u s t  t h a t  g iven  by p a r t  B of bo th  r u l e s .  

The diagram shows t h a t  up t o  t h e  3  p - s h e l l  t h e  o rde r  i s  t h e  same f o r  

n e u t r a l  atoms and i o n s .  The f i r s t , c r o s s - o v e r  i n  o r d e r  occurs  between 

4s  and 3d, f o r  n e u t r a l s  the  o rde r  i s  4 s  ,3d, f o r  i o n s  i t  i s  3d 4s .  The 

remaining problem i s  t o  determine a t  which ion  t h i s  and o t h e r  c ros s -ove r s  

occur .  

Thc r u l e s  can be expressed i n  formulas .  By i n s p e c t i o n  of F igu re  1 

one can d e r i v e  t h e  fo l lowing  expressions. ,  
/' 

For n e u t r a l  atoms , part A: A given  (n + C: ) - va lue  occurs  f o r  t h e  
dd5 

f i r s t  time wi th  (N + 1 ) s t  e l e c t r o n ,  N i s  g iven  by 
fi  

The l a s t  term occurs  only  f o r  (n  + ) even. 



For h igh ly  ion ized  atoms, p a r t  A: A g iven  n - v a l u e  begins  wi th  the  

(N + 1 ) s t  e l e c t r o n ,  

These equa t ions . shou ld  be"cons ide red  a s  l i m i t i n g  formulas .  I t  i s  a l s o  

p o s s i b l e  t o  express  t h e  complete r u l e ,  both p a r t  A and B i n  a  formula, namely, 

f o r  n e u t r a l s ,  a  (n  + 8 )-shel l  begins  a t  t h e  (N + 1 ) s t  e l e c t r o n ,  

The p l u s  s i g n  i s  f o r  (n + 1 ) odd, the.  minus s i g n  f o r  (n + 4! ) even. For  

n = [ + 1 ,' t h i s  formula reduces  t o  Equat ion (1 ) .  
17 

S i m i l a r l y  f o r  h i g h l y  ion ized  atoms, a  (n + -L ):-@shell - beg ins  wi th  t h e  

(N + 1 ) s t  e l e c t r o n .  

Approximations s i m i l a r  t o  t hose  used f o r  n e u t r a l  atoms i n  t h e  papers  ,. 

c i t e d  above can a l s o  be  appl ied  t o  t h e  Thomas-Fermi d i s t r i b u t i o n  f o r  i ons .  

The r e s u l t ,  which s h a l l  be de r ived  i n  a  l a t e r  s e c t i o n ,  i s  a s  fo l lows .  

The number C L T  of f i l l e d  s h e l l s  w i th  an angu la r  momentum / ; In  a  
c. 

p o s i t i v e  ion  of N e l e c t r o n s . a n d  n u c l e a r  charge Z i s  approximately given by , .  

t h e  fo l lowing  equat ions  



I n  t h e s e  equa t ions  A st'ands f o r  (6Z) 'I3 and d i s  a  determined 

by t h e  degree of i o n i z a t i o n .  For  t o t a l  i o n i z a t i o n & =  0 ,  f o r  n e u t r a l  atoms 

and l a r g e  Z t h e  parameter  approaches i n f i n i t y .  

I n  a  s t a t i s t i c a l  t rea tment  t h e  number of p a r t i c l e s  i s  supposed t o  be 

l a r g e  and C2 i s  considered t o  be a  cont inuous v a r i a b l e .  I n  o u r  c a s e ,  however, 

t h e  number of e l e c t r o n s  i s  no t  l a r g e  and t h e  f i l l i n g  of s h e l l s  i s  n o t  a  

cont inuous p roces s  b u t  occurs  i n  s t e p s .  We must t h e r e f o r e  g i v e  a  s p e c i a l  

i n t e r p r e t a t i o n  t o  Eq. ( 5 ) .  We s h a l l  assume t h a t  t h a t  va lue  of t h e  p a i r  

N ,  Z f o r  which Clr = 0 i n d i c a t e s  where t h e  f i r s t  - s h e l l  begins  t o  f i l l  up, 

when C = 1 t h e  second & - s h e l l  s t a r t s ,  and so  on. Thus when .[= 2 I 
and C2 = 0 t h e  3d s h e l l  begins ,  a t  C., = 1 we start t h e  4d s h e l l ,  and s o  on. 

h 

Thi s  i n t e r p r e t a t i o n  i s  chosen so t h a t  t h e  r e s u l t s  of Equat ions (5)  and (6 )  

approach Equat ions (1)  and ( 2 ) .  However f o r  t h e  l i m i t i n g  cases&+- and 

oCIeO(Z+ca  , N f i n i t e )  t h e s e  Equat ions (5) and (6) g i v e  on ly  t h e  cub ic  

term of Equat ions (1) and (2 ) .  

There i s  a  s imple r e l a t i o n  between n and C 
d' 

based on t h e  convent ion 

t h a t  n 3 [ + 1, namely 

I n  o r d e r  t o  de te rmine  a t  which ion  t h e  3d and 4 s  s h e l l s  c r o s s  over  we n o t e  

t h a t  t h e  beginning of t h e  3d s h e l l  i s  g iven  by Equat ions (5)  and ( 6 )  when 

[ = 2 and C2 = 0 and t h e  4 s - s h e l l  s t a r t s  when & = 0 and Co = 3.  These two 

cond i t i ons  determine a  va lue  f o r  Z 'and N ,  i n  t h i s  example Z = 27.4, N = ,17.6. 

Thus i n  t h e  neighborhood of t e n  t imes  ion ized  c o b a l t  o r  n i c k e l ,  t h e  3d and 4s- 

s h e l l  r e p r e s e n t  approximately equal  b inding  e n e r g i e s  f o r  t h e  l a s t  added 

e l e c t r o n .  

The numerical  r e s u l t s  ob ta ined  i n  t h i s  way should of cou r se  not  be 

taken  l i t e r a l l y .  The n a t u r e  of t h e  problem i s  such t h a t  one can on ly  hope 

t o  determine t h e  v i c i n i t y  i n  which t h e  c ross -over  occurs .  I r r e g u l a r i t i e s  

and r e v e r s a l s  of o r d e r  can b e  expected between t h e  s t a r t  and f i n i s h  of -: , 

f i l l i n g  a  s h e l l .  It i s  t hus  no t  reasonable  t o  a t tempt  a more p r e c i s e  de t e rmina t ion  

of t h e  c r o s s  over  by us ing  b e t t e r  approximations of t h e  Thomas-Fermi d i s t r i b u t i o n  

o r  by performing e l a b o r a t e  machine computations.  More exac t  r e s u l t s  can 

e v e n t u a l l y  on1.y be  achieved by h igh  p r e c i s i o n  c a l c u l a t i o n s  of t h e  ground 

s t a t e s  of each i n d i v i d u a l  ion ,  though t h e  answer i s  more l i k e l y  t o  come f i r s t  

from new experimental  d a t a .  



Table I shows t h e  computed cross-over  p o i n t s  which f a l l  w i t h i n  t h e  

range  of e x i s t i n g  elements .  

F igu re  3 g i v e s  a  schematic r e p r e s e n t a t i o n  of t h e  r e s u l t s  we have 

obta ined .  The number of e l e c t r o n s  N i s  p l o t t e d  a g a i n s t  t h e  n u c l e a r  charge Z .  

The l i n e s  r ep re sen t  t h e  beginning of t h e  v a r i o u s  s h e l l s .  However only  

t h e  o r d e r  i n  which t h e s e  s h e l l s  occur  i s  s i g n i f i c a n t  i n  t h i s  graph,  no t  

t h e i r  p r e c i s e  p o s i t i o n .  For  example, i f  we cons ider  t h e  n e u t r a l  atoms 

we fo l low t h e  graph a long  t h e  45' l i n e  N = Z - 1. (The -1 a r i s e s  from t h e  

N - 1 i n  Eq. ( 6 ) ,  which i s  explained at t h e  end of t h k s  pape r ) .  I n  t h i s  . <L 
way we meet t h e  l i n e s  i n d i c a t i n g  t h e  s h e l l s  i n  j u s t  t h e  o rde r  i n  which 

they  a r e  f i l l e d .  I f ,  on t h e  o t h e r  hand, we cons ide r  a l l  twelvefold i o n s  

we must fo l low t h e  graph a long  t h e  l i n e  N = Z -13. We now f i n d  i n  two p l a c e s  

a  d i f f e r e n t  o rde r  of t h e  s h e l l s .  We can a l s o  t a k e  a  b a r e  nuc leus  of charge  Z 

and ask i n  which o r d e r  s h e l l s  w i l l  b e  f i l l e d  i f  we add e l e c t r o n s .  This  i s  

g iven  by a  v e r t i c a l  l i n e  a t  t h e  chosen Z.  I n  p r i n c i p l e ' i t  should be p o s s i b l e  

t o  r e p l a c e  t h e  l i n e  segments drawn i n  t h i s  diagram by a p p r o p r i a t e . s t e p s  and 

read  of f  t h e  e l e c t r o n  conf igu ra t ion  of t h e  ground s t a t e  f o r  any i o n .  However . 
t h e  computations a r e  no t  good enough f o r  t h i s  ref inement  which even tua l ly  
may be  obta ined  from experimental  d a t a  on s p e c t r a  of i o n s .  . 

APPROXIMATE SOLUTIONS OF THE THOMAS-FERMI DISTRIBUTION FOR IONS 

The Thomas-Fermi s t a t i s t i c a l  model f o r  atoms and i o n s  exp res ses  t h e  

e l e c t r o n  d e n s i t y ,  y, as a f u n c t i o n  of r a d i a l  p o s i t i o n ,  r ,  i n  terms of a 

d imens ionless  func t ion ,  d (x), of a  d imens ionless  v a r i a b l e ,  x: 

wi th  

2 2 
where a  i s  t h e  Bohr r a d i u s  /me ) and Z e  i s  t h e  n u c l e a r  charge  of t h e  

0 

atom o r  ion .  

-1 
The f u n c t i o n  x &(x) i s  e s s e n t i a l l y  t h e  e l e c t r o s t a t i c  p o t e n t i a l ,  and 

& i t s e l f  i s  determined by t h e  Thomas-Fermi equat ion ,  

with 



The remaining boundary cond i t i on  on d can be expressed i n  a number of ways; 

f o r  our  purposes,  t h e  fo l lowing  form i s  t h e  most convenient  one. 

where N i s  t h e  t o t a l  number of e l e c t r o n s  i n  t h e  ion  o r  atom and t h e  i n t e g r a l  

extends over  t h e  reg ion  where d i s  p o s i t i v e .  
7 

I n  terms of t h e s e  q u a n t i t i e s ,  t h e  Thomas-Fenni theory  then  y i e l d s  t h e  

fo l lowing  s e m i c l a s s i c a l  express ion  f o r  t h e  number of e lec t r ions  having angu la r  

momentum A)-6, . 

a 

where = .- 

and t h e  i n t e g r a l  extends over  t h e  reg ion  where t h e  square  r o o t  is r e a l .  

These r e l a t i o n s  p e r t a i n  t o  t h e  o r i g i n a l ,  simple Thomas-Femi theo ry ,  

which we s h a l l  u s e  i n  t h e  fo l lowing  derivat ions. .  A c o r r e c t i o n  noted by 
8 

Fermi and Amaldi, however, can e a s i l y  b e  app l i ed  t o  ou r  f i n a l  r e s u l t s .  Namely, 

they  obsewed  t h a t  t h e  e l e c t r o s t a t i c  p o t e n t i a l ,  d / x , , s h o u l d  r e p r e s e n t  t h e  

p o t e n t i a l  seen by a  s i n g l e  e l e c t r o n ,  and i n  consequence, d i t s e l f  should r e f e r  

t o  only  N-1 e l e c t r o n s .  This  c o r r e c t i o n  merely amounts t o  r ep l ac ing  N by N - 1  

i n  Eq. 9 ,  bu t  we s h a l l  postpone i t  t o  s i m p l i f y  t h e  in t e rven ing  manipula t ions .  
9 

For n e u r r a l  atoms, I'ermi c a l c u l a t e d  b(x) and t h e , i n t e g r a l  i n  Eq. 10 

numer ica l ly ,  ob ta in ing  good o v e r - a l l  agreement wi th  t h e ,  experimental  v a l u e s  

of N .t and exp la in ing  f o r  t h e  f i r s t  t ime t h e  delayed appearance of f - s h e l l  
L 

e l e c t r o n s  and t h e  complete lack  of g - e l e c t r o n s  i n  t h e  atoms of t h e  p e r i o d i c  
-1 0 

t a b l e .  L a t e r ,  T i e t z '  observed t h a t  t h e  func t ion ,  



is a surprisingly good approximation to the solution, d , for a neutral 
0 

atom. (With the quoted value of a, the condition Eq. 9 is satisfied 

exactly.) With this approximation, Tietz obtained from Eq. 10 the simple 

result, 

. . 

With [ =  0, 1, 2, 3 for s, p, d, f electrons, this agrees closely with 

~ermi' s numerical results. . 

To obtain analytic ' results for ionized atoms, we must chose an 

approximation to the ionic solutions, d(x) with N # Z, and evaluate the . ,  

11 
integral in Eq. 10. Examination of numerically computed ionic solutions 

indicates that for very small N / Z  the graph of d(x) is nearly a straight 

line descending from d(0) = 1, while for N/Z close to unity, d(x) follows 

the solution for the.neutra1 atom near x = 0 and transfers to an approximately 

straight line crossing the 4-axis at rather large x. These observations suggest 

the approximation, 

that is, Tietz's function Eq. 11 multiplied by 1-(x/b). We expect this 

approximation to become quite accurate for small N/Z, and Tietz has shown 

that it is very good for NIZ = 1 (b = os ). We shall investigate the 

intermediate region later. 

The parameter' b should be chosen to satisfy E~.($; in this way, we 

ensure that J"'~L d l  = N. When Eq.Cl3)is substituted in ~~.(9)and the 

integration is performed, one finds 

where 



Thi s  r e l a t i o n  determines b f o r  a g iven  va lue  of N / Z .  Eq. (6)  i s  t h e  same 

a s  Eq. (14) ,except t h a t  N has  been rep laced  by (N-1) . 
An exac t  s o l u t i o n  f o r  N / Z  = 0.48 has  been t abu la t ed  i n  a n  appendix 

12 - 
by Gombas. Th i s  exac t  s o l u t i o n  can be  compared wi th  our  approximation =(;. 
(13) by s e t t i n g  b = 5.57, which corresponds t o  N / Z  = 0.48 accord ing  t o  

Eq. (14).  S ince  we propose t o  u s e  Eq. (13) i n  t h e  i n t e g r a l  Eq. ( l o ) ,  i t  . 

, i s  a p p r o p r i a t e  t o  compare t h e  f u n c t i o n s  x . It i s  then  found t h a t ,  where f 
xd h a s  app rec i ab le  magnitude, t h e  maximum d i f f e r e n c e  between t h e  exac t  and 

approximate f u n c t i o n s  amounts t o  about 12 pe rcen t .  S ince  xd occurs  under 

a square r o o t  and s i n c e  t h i s  express ion  i s  then  i n t e g r a t e d ,  t h e  f i n a l  

approximation t o  Ny w i l l  be  much c l o s e r  than  12 pe rcen t .  Note a l s o  - 
t h a t  we have ensured t h a t  f F I P  d i '  w i l l  be  e x a c t l y N .  

With t h e s e  j u s t i f i c a t i o n s ,  we proceed t o  s u b s t i t u t e  Eq. (13) i n t o  

Eq. (10). When t h e  r e s u l t i n g  i n t e g r a l  i s  c a r r i e d  o u t ,  one f i n d s  t h e  

fo l lowing ,  r e s u l t  a f t e r  cons ide rab le  manipula t ion .  

where , 

For  d.'+ os , corresponding t o  N -> Z ,  t h i s  reduces  t o  T i e t z l s  r e s u l t  \ 

r 

Eq. (12),  a s  i t  must. S ince  a f i l l e d  ~l - s h e l l  c o n t a i n s  2 . (2 d i  1)  e l e c t r o n s ,  
t- 

t h e  number of f i l l e d  s h e l l s  i s  g iven  by 

'I %) This  s u b s t i t u t i o n  t ransforms Eq. (15) i n t o  Eq. ( 5 ) .  Using \ 

- -, a s  v a r i a b l e s  t h i s  equat ion  s i m p l i f i e s  and t h e  c r o s s  over  p o i n t s  

can be obtained by elementary a lgeb ra .  
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CAPTIONS 

Table I Values of Z, N near which the order of electron shells 

reverses 

Fig. 1 The "Periodic System" for neutral (a) and for highly 

ionized (b) atoms 

Fig. 2 The order in which electron shells are filled and the 

transition between neutral and highly ionized atoms ' . . 

: .  

Fig. 3 The order of electron shells as a function of the nuclear ._. ' 

charge Z and the number of electrons N 



1 2  
3 4 

5-010 11 12 
13-018 1 9 2 0  

21.--30 31-36 37 38 
39.0-48 49-54 55 56 

57***-70 71***80 81-86 87 88 
89----I 02 etc .  

a. NEUTRAL ATOMS 

1 2  
3 4 5.-10 

11 12 139.18 19.0-28 
29 30 319-36 37.0046 47***-60 
61 62 639.68 69-0.78 79-***92 930.--*110 

111 112 etc .  

b. HIGHLY IONIZED ATOMS 

FIGURE 1 



. NEUTRAL ATOMS 

( n + 4 )  = I 2 ! , ., . 3 4 5 6 7 8 
I s  2 s  :::2p,3s 3 P , ~ S  3dl4p,5s 4d,5p16s 4fl5d,6p,7s 5f16d,7p,8s, 

I s  C 
~ S , P  3s,p,d 4s,p,d,f Ss,~,d,f,q Gs,p,d,f ,g,h Ss,p,d,f,q,h,i 

n = l  2 3 4 5 6 #  7 

HIGHLY 1-ONIZED ATOMS 

FIGURE 2 






