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SOME HEAT TRANSFER AND
FLUID FLOW CONSIDERATIONS
FOR A PACKED-BED FUEL ELEMENT

by

R. Viskanta

ABSTRACT

The problem of heat transfer and fluid flowina heat-
generating porous media has been studied analytically. The
study is limited to the range of parameters of interest to the
packed-bed fuel element concept. The available heat trans-
fer and pressure drop correlations are reviewed, and a
system of partial differential equations which govern the
velocity and temperature fields inan isotropic porous media
is derived. Steady-state temperature distribution in a one-
dimensional packed bed is studied, and a numerical method
is presented for calculating transient temperature distribu-
tions. Pressure dropinaheat-generating packed bed is con-
sidered, and flow and temperature stabilities are examined.

1. INTRODUCTION

There is no theoretical upper limit to the rate of energy release by
fission. In practice, however, the maximum power level of a reactor is
frequently determined by the heat-removal rate. Thus, in a nuclear reactor
operating at a sustained power level, the design of the core depends just as
much on the thermal aspects as on nuclear considerations. The transfer of
heat from fuel to coolant is facilitated by increasing both the contact area
and the coolant volume. However, the increase of the coolant volume gen-
erally requires additional fissionable material to make the reactor critical.

The heat generated in the fuel is transferred across the solid-fluid
interface to the coolant. From the properties of the fluid and the flow char-
acteristics areasonable prediction or an experimental determination of heat
transfer coefficient can be made. Experimentally, a critical heat flux of
0.01728 Mw/cm‘2 has recently been reported for subcooled water by Gambill
and Greene,(l) but the pressure drop in a test section 1.43 cm long and
0.485 cm in ID was 56.6 atm. It is doubtful, however, that a reactor will be
designed in a near future with a design heat flux of this order of magnitude.
Thus, to increase appreciably the power density, we can increase the sur-
face area per unit volume of the core. This, of course, is to be done by
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GEOMETRICAL ARRANGEMENT OF EXISTING
AND POSSIBLE FUEL ELEMENTS

keeping the coolant volume constant so as not
to decrease the multiplication factor. For
purposes of comparison three of many pos-
sible and existing fuel elements are given
below (see Fig. 1):

(A) The core is composed of a num-
ber of fuel-bearing plates with the coolant
flowing between them.

(B) The core is made from a block of
fuel-bearing material containing a great num-
ber of small holes for coolant flow.

(C) The core is composed of a porous
fuel or of a bed of small particles, the cool-
ant flowing through the interstices.

The approximate formulas for voids
and area densities of these three systems
are given as functions of pertinent param-
eters in Table 1.

The area densities for these systems
calculated from the formulas given in
Table 1 are presented in Table 2 for three
values of voids. The area density of porous
material composed of spherical particles is
considerably higher. Packed-bed fuel
elements would yield an area-density advan-
tage of at least an order of magnitude higher

over equivalent, more realistic elements of type A or B.

Table 1

FORMULAS FOR VOIDS AND AREA DENSITIES OF
THE THREE FUEL ELEMENTS

A B C
Voids s mD? €
S + t 8\/‘3’ CZ
Area Density 2 ™™D 6(1 - €)
s +t Zﬁ CZ Dp




Table 2

AREA DENSITIES FOR t =D = Dy = 0.02 cm
AS A FUNCTION OF VOIDS

Voids A B C
0.3 70 60 210
0.4 60 80 180
0.5 50 100 150

The possibility of using a packed-bed fuel element has recently been
emphasized by Rodin.(2) The study further shows that the packed-bed fuel
element appears to offer some significant advantages: (1) possibility of
achieving very high power densities and temperatures; (2) high fuel surface
per unit volume reconciles high power densities with small temperature
differences between the fuel particles and the coolant; (3) thermal stresses
produced in the particles should be relatively unimportant since the tem-
perature gradients are small; and (4) good heat transfer characteristics
and more uniform temperatures. Thus, the possible use of a packed bed as
a fuel element gives ample incentive for a study of fluid flow and heat trans-
fer characteristics of this system.

The present study has been undertaken with the hope that it will con-~
tribute toward better understanding of the potentialities of a packed-bed
fuel element. The purpose of the study was twofold: (1) formulation of the
general heat transfer equations for flow of fluid in porous media; and
(2) solution and clarification of some specific problems.

To this end, a short literature survey of both fluid flow and heat
transfer pertinent to heat-generating packed beds was made. The general
heat transfer problem was then formulated mathematically. Methods of
determining the flow field and temperature distribution were then examined.

To fulfill the second purpose of this study, solution of equations for
steady one-dimensional flow were then considered. Temperature distribu-
tion and the temperature difference between the fuel and the coolant were
obtained. A method of determining the transient temperature distribution
in a one-dimensional packed bed was presented. Finally, pressure drop for
a one-dimensional bed with temperature-dependent viscosity and constant
heat-generation rate was studied.



2. REVIEW OF PRESSURE DROP AND HEAT TRANSFER LITERATURE

2.1 Introduction

The study of flow of fluids and of heat through porous media has
become basic for many scientific and technical applications. The subject
has been studied by many investigators in such diversified fields as soil
mechanics, petroleum and chemical engineering, filtration, powder metal-
lurgy, and many others. All of these branches of science and engineering
have contributed vast amounts of information on the subject. The papers
on pressure drop and heat transfer through porous media and packed beds
have been published in a number of journals. No attempt has been made to
give a complete literature of these studies, and only a few pertinent refer-
ences are cited. In this review, emphasis is placed on more recent exper-
imental contributions. Before we proceed to review the literature, let us
define some parameters characteristic of porous media.

A characteristic particle dimension, Dp, is used to represent the
size of any particle. This particle dimension is defined as follows:

Dp = Effective particle diameter = , /Ap/'n' ,

where Ap is the particle surface area. For a packed bed, the surface per
unit volume of bed is given by Carman(3) as

a=6(1- e)/Dp Y (2.1)

where € is defined as the fraction of voids in the bed or the porosity of the
bed:

€ = Porosity = Volume of voids in bed/Volume of bed .

The Carman shape factor ¢4 is a function of sphericity,(3) defined as

"

Y = Sphericity

Surface area of a sphere having volume equal to that of the particle
Surface area of the particle

Essentially Eq. (2.1) is a relationship between the effective particle diameter
and a shape factor based upon the true particle area. The shape factor ¢4 is
unity for a sphere and less than unity for all other shapes.

For spherical particles the particle-to-particle contacts are point
contacts, and the entire particle surface area is effective in the transfer of
heat. However, this is not true for particles other than spheres. In addition
to having a larger value of a, the nonspherical particles have only a portion
of their surface area available for solid-fluid heat transfer due to significant




particle-to-particle contacts. The effective heat transfer area per unit
volume of bed can be written as

A=2a¢=6(1-€¢/Dpd; - (2.2)

The Carman shape factor ¢ should not be confused with the particle shape
factor ¢, defined as

Effective surface area for heat transfer
Particle surface area

b

¢ = Particle shape factor =

which represents the portion of the particle surface which participates in
the particle-fluid heat transfer.

The transfer of heat from stationary particles to fluids flowing
through porous media can be expressed by the equation

Q = hAAT , (2.3)

where h is the conventional heat transfer coefficient and AT is the tempera-
ture difference between the solid and the fluid. The product hA is some-
times called the volumetric heat transfer coefficient. The results of heat
transfer studies are generally correlated in terms of a heat transfer
factor-Reynolds number relationship, where

2/3
chHH
jp, = Heat Transfer Factor =B [ D ] (2.4)
ch k £

and a Reynolds number (often called modified Reynolds number) based on
particle diameter

Re = DpG/# . (2.5)

In order to correlate data for particles of various shape, the Reynolds
number may be modified as follows:

D G ¢
6 6
Re G G _p s

m AL adun (1-eud (2.6)

2.2 Fluid Flow

There exist several excellent literature surveys on fluid flow through
porous media. The most recent one is that of Scheidegger. 4) This book
presents a coherent exposition of the physical principles of flow through
porous media; however, it deals primarily with the low-velocity regime for
which Darcy's law(4)
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k —
u = - -lu—(grad p-pg) (2.7)

is valid. The concept of permeability k as introduced in Darcy's equation
permits phenomenological description of the flow through porous media in
a low-velocity domain. However, an actual understanding of the phenomena
can be obtained only if the concept of permeability can be reduced to more
fundamental physical quantities. Reference is made to Scheidegger's
treatise for a detailed review of the various theories that have been pro-
posed to obtain correlations between the permeability and the dynamic
properties of the porous media.

Many attempts have been made to determine the range of Reynolds
numbers for which Darcy's law is valid. So far, however, no general
picture has been disclosed, such, for example, as was made available for
pipes by O. Reynolds. This is probably due to the fact that there is actually
no physical basis for the expectation that flows should be analogous if the
Reynolds numbers ave. The transition from laminar to turbulent flow is
sometimes difficult to define. Cornell and Katz(5) used the term "quasi-
turbulent” to designate the situation in which the flow is obviously not
viscous, as shown by lack of proportionality between pressure drop and
flow rate, but where the small sizes of channels are difficult to reconcile
with the usual definition of turbulence. As far as the "critical" Reynolds
number is concerned, there exists a great discrepancy regarding the
"critical" Reynolds number above which the Darcy's law would be valid.
The values range from 0.1 to as high as 75. 4) The uncertainty of a factor
750 about the "critical" Reynolds number may reflect in part the indeter-
minacy of the particle diameter and the fact that porous media is not equiv-
alent to an assemblage of straight tubes, as postulated by the hydraulic
radius theory for porous media.

A commonly encountered correlation of pressure drop versus flow
rate data for porous media is formulated in terms of a Reynolds number
based on the so-called "equivalent capillary diameter" and a friction factor,
calculated by invoking the analogy between the laws of Darcy and Poiseuille,
which are valid only for low-velocity flow. This analogy would explain the
deviation from Darcy's law at higher flow rates because of the emergence
of the inertia effects in laminar flow, not necessarily due to onset of turbu-
lence within the interstices, which are visualized as straight, parallel
capillaries.

In reviewing the pressure drop correlations it is found that there is
a large variety of them. It is certain that they cannot all be universally
valid, since many of them contradict each other. To mention just a few,
Leva et al. 6) reviewed the literature on pressure drop and presented their
own data. The particle sizes used in the experiments were of the same
order of magnitude that are of interest in the packed-bed fuel element de-
sign. Correlating equations were given for laminar (Re < 10),




transition (10 < Re < 100), and turbulent (Re > 100) regions. In the turbulent
flow region, modified friction factor correlations were given for smooth
particles, rough particles, and rough granules.

Brownell e_til.(ﬂ have found that particle roughness is a minor
factor in the flow of fluids through random-packed beds. He was able to
correlate pressure drop data for such flow to Moody's friction factors for
pipe flow. A single curve was obtained when a modified friction factor was
plotted versus a modified Reynolds number. The two latter terms were de-
fined as follows:

Re'=D G Fp /p (2.8)
and
f'=2g. DppAp/L G* Fy (2.9)

where FRe and Fy are factors which are functions of porosity and sphericity
only. These factors were obtained from experimental data and are given
graphically(ﬂ as functions of porosity with parameters of particle sphericity.

A pressure drop correlation applicable for all types of flow through
beds of granular solids of any shape, size, orientation, and fraction of voids
was developed by Ergun, 8) using a theoretical as well as an empirical
approach:

2 g_pAp D
(T) (-I—f—)><l‘f3€> = 300 <1R—'e€> +3.5 . (2.10)

This expression is a result of the addition of the Blake-Kozeny equation for
laminar flow (Re <6) and €<0.5 to the Burke-Plummer equation valid for

Re > 6,000. The Ergun equation, like many others that relate pressure
drop to polynomials of the fluid mass flow rate, differs from them in that
the coefficients have definite theoretical significance.

The flow through porous media is determined by a large number of
variables, some of which are statistical in nature. A major obstacle to an
adequate a;lalysis of flow through porous beds is the difficulty of securing
geometrically similar beds over a wide range of porosity or of varying pore
diameter while retaining constant particle diameter. A generally applicable
correlation for predicting pressure drop during fluid flow through porous
media still awaits development. It seems probable that a controlling element
in the measurements is the bed configuration, a statistical concept with which
none of the formulas published to date can cope. The available correlations
are at best valid each for an application to particular system. In this in-
stance, the correlations may be very useful for engineering applications to
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particular systems, but proper caution should be used if they are applied in . R
any other system than for which they had been originally obtained.

2.3 Heat Transfer

A study of the literature will reveal that exact mathematical solutions
of heat transfer problems have been obtained only in the case in which the
following three conditions are met: (1) the coolant is flowing at a constant
velocity, (2) the physical properties are constant, and (3) the heat generation
is a linear function of temperature of the porous solid. The theory.of the
transfer of heat between a porous body and a fluid has been developed by
Anzelius,(g) Schumann,(lo) and others. These authors have used a mathe-
matical model with two independent variables - the time and the distance
along the axis. The problem was extended by Brinkley(“) to the case in
which the solid is generating heat. The heat generation was assumed to be
a linear function of the temperature of the solid and the parameters of this
function independent of position and time. Amundson,(12,13) by including
both axial and radial conduction, considered the problem from a more
general point of view.

Experimental investigations of the fluid-particle heat transfer in
packed beds have been made utilizing both steady and unsteady methods.
Hougen and associates(l4’15’]6) studied simultaneous heat and mass trans-
fer in beds of spherical and cylindrical particles, Raschig and partition
rings, and Berl saddles. By using the analogy between heat and mass trans-
fer, they obtain heat transfer correlations.

Denton(l 7) carried out steady-state investigations in which test
spheres were placed at various positions in a packed bed and heat generated
in the test spheres by means of resistance heaters inside each sphere. The
heat was transferred to a fluid flowing through the bed. Using air as the
coolant, the average heat transfer coefficient was determined over a large
range of Reynolds numbers. Denton found that the influence of random pack-
ing on the average heat transfer coefficient was negligible and that for values
of N > 17.5 the wall effect is small; the average heat transfer coefficient can
be correlated by 'the equation

jp, = 0.583 Re”°3% (5,000 < Re < 50,000) . (2.11)

Glaser and Thodos(18) investigated the steady-state heat transfer in
the flow of various gases through fixed, random-packed beds consisting of
metallic spheres, cubes and cylinders. A uniform generation of heat in the
bed was obtained by passing electric current through the metallic particles
which were packed between perforated plate electrodes. External heat was
supplied to the bed to eliminate radial heat transfer. Direct temperature
measurement of both solids and gases in the bed was accomplished by the
insertion of thermocouples in the interstices of the bed and by permanent
attachment of thermocouples to the surfaces. The resulting expression for




the heat transfer factor for either spheres, cubes, or cylinders when the
wall effect is negligible was found to be

0.535
(Re n)0.3 - 1.6

Jh = (100 < Re" < 9,200) , (2.12)

where the Reynolds number was modified to

Va%s

= m (2.13)

Re

in order to obtain a single correlation for each of the various particle types
employed.

Steady-state heat transfer between a random-packed bed of spheres
and a stream of air was again a subject of investigation by Baumeister and
Bennett.(19) Heat was generated in the steel spheres comprising the bed by
high-frequency induction coils which surrounded the test section. Average
heat transfer coefficients for the bed were calculated from knowledge of
total heat generated in the particles, the surface area of the particles, and
the area mean temperature difference between the particles and the air
stream. For the case of no wall effect, the following heat transfer correla-
tion was obtained:

jp = 0.918 Re™0-2%7 (200 < Re < 10,000) . (2.14)

Most recently, DeAcetis and Thodos(zo) studied simultaneous heat
and mass transfer to air from porous spherical particles 1.59 cm in diam-~
eter. They correlated their results by the equation

= —a2% (13 < Re < 2136) . (2.15)

Re0.41 - 1 '5

The relationship between the j,-factor and the Reynolds number was found
to be independent of the type of packing arrangement employed.

The effect of wall voids on the average heat transfer coefficient for
spherical particles observed by various investigators is shown in Fig. 2.
It is seen that the heat transfer coefficient depends on the ratio of the con-
tainer diameter to the particle diameter, N, but the magnitude of the effect
changes with the Reynolds number. It is believed that the wall effect on
heat transfer and fluid flow will be small for particles and bed sizes of
interest to this study.

The heat transfer correlations just reviewed are shown graphically
in Fig. 3. They are not in good agreement with each other. Probably, the
errors in the measurement of the particle surface and the coolant tempera-
tures contribute the most to the disagreement between the various correlations.

11
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As mentioned earlier, there is no physical basis for the expectation that
flows should be analogous if the Reynolds numbers are. For example, it
has not been established experimentally that one would obtain the same
jh-factor for a given Reynolds number if in one experiment large particles
and low flow rates were used, whereas in another small particles and high
flow rates were employed. It is therefore possible that the data of these
investigators would be in a better agreement if a different type correlation
were found.

Part of the discrepancy between various correlations may in part
be due to the fact that the heat transfer coefficients determined in the papers
reviewed were based on the total surface area of the particles. The use of
the particle shape factor in the heat transfer correlations accounts for the
part of the particle surface area which is not available to participate in the
particle-fluid heat transfer. In fixed beds, there are two phenomena which
contribute to this unavailability of particle surface. Thefirst is the presence
of particle-to-particle contacts which, for all shapes other than spherical,
cannot be point contacts and will therefore prevent a part of the particle
surface area from being available as effective solid-fluid heat transfer area.
The second is the inaccessibility of a portion of the particle surface area to
the fluid stream. This effect occurs when particles, such as Raschig rings
and partition rings, are employed, since these particles present inner
surface areas which may be unavailable to the fluid stream.

13
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3. BASIC EQUATIONS
3.1 General

The prediction of the state of flow of fluid and of heat in a packed
bed requires the knowledge of the following quantities: the velocity vector,
two thermodynamic properties (usually temperature and pressure), and the
temperature of the solid. The problem is completely described if these
quantities are known at every point in the fluid and the solid, and for all
times subsequent to some initial time. The flow may be described by a
system of differential equations expressing the conservation of mass,
momentum and energy (for the fluid and solid phases), and appropriate
boundary conditions. The conservation equations are presented below.

3.2 Continuity Equation

Since the flow space between the particles is irregular, it would be
impossible to treat the flow field in detail. We shall therefore take the
packed bed as an isotropic porous medium and consider only the mean ve-
locity of coolant flow through a unit area perpendicular to the average
mass flow. Consider any volume V in the interior of the bed bounded by
a closed surface S, and let T be the mean velocity vector. Then for coolant
flowing through the bed it follows from the law of the conservation of mass
that the net mass of coolant entering any volume V must equal the increase
in the mass of coolant in V over the same period of time:

- pu-dS = f € <= dV . (3.1)
fs vy oT

Hence, using Green's lemma, we transform the left-hand side of Eq. (3.1)
and obtain

€ %{2 +div (pu) = 0 . (3.2)

Equation (3.2) is the equation of continuity for a coolant flowing through a
porous medium.

3.3 Equation of Motion

Darcy's law for flow of fluids through porous media is valid only in
the low-velocity domain, outside of which more general flow equations must
be used to describe the flow. The limitations of Darcy's law due to turbu-
lence and due to molecular effects are not the only ones. A series of other
possible effects can cause Darcy's law to break down.




The physics of fluid flow through porous media, when the tempera-
ture of the coolant and the particles are not equal and uniform throughout
the space considered, and the flow velocity is quite high, has been studied
very little. The interactions between the coolant and the particles are
much more difficult to describe analytically; in fact, the equation of motion
for these types of conditions is not known. For the problem considered
here, Darcy's law must be modified. Thus, assuming that the flow is
laminar up to a "critical" Reynolds number, and turbulent above, we can
postulate an equation of motion of the form suggested by Engelund:(4)

F(plG)T= - grad p + pE (3.3)
where
— _ H/k (Re( Recrit)
F(plal) = {a+ bp|T| (Re>Re(rit)

Both a and b depend only on viscosity of the coolant and the structure of
the porous media. The force terms in the equation of motion that account
for the acceleration of the fluid have been neglected. In Section 6 it is
shown that the acceleration pressure drop is really negligible compared
to the frictional pressure drop, and therefore the simplification of the
equation of motion is justifiable.

3.4 Equations of Energy

When heat is generated in a porous media through which fluid is
flowing, heat may be transferred from one part of the system to another
by four basic mechanisms: (1) conduction of heat through the solid and the
fluid phases; (2) convective heat transfer between the solid and the fluid
phases; (3) physical movement of the fluid which carries its own heat con-
tent; and (4) radiant heat transfer. The equations of energy for the fluid
and the solid phases are derived separately, first for the fluid and then
for the solid phase.

Consider any element of volume V in the interior of the porous bed
bounded by a closed surface S. The equation of energy conservation for the
fluid phase at any point in the bed, neglecting energy dissipation, the work
of pressure, and gravity forces, can be written as

‘%‘E’IT = El + EZ 3 (3.4)

where E is the energy content per unit volume, E; is the rate of convection
of energy across the boundaries of V, and E, is the heat transferred from
the solid to the fluid phase. Thermal conduction through the fluid phase

15
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was neglected. The validity of this assumption can be checked by direct
computation with measured effective conductivities for porous media
through which fluids are flowing.('?'l)

The change in heat content of the fluid in the element of volume V
per unit of time is

%:fvs-%’—la; v (3-5)

where e is the energy content per unit mass.

The rate of convection of energy, E,, through the element of area
dS is given by

E, = -fpeII.d§ . (3.6)
S

Transforming the right-hand side of Eq. (3.6) by Green's lemma, we
obtain

E, = -f div (peu) dV . (3.7)
V
The energy transferred from the solid to the fluid per unit of time,
E,, is given by
EZ:fAh(t—T) av . (3.8)
A%

Now substituting Eqs. (3.5), (3.7) and (3.8) into (3.4) and noting that
the element of volume is arbitrary, we obtain

€ ig-}zﬁt div (ped) = Ah (t- T) . (3.9)

Using the vector identity
div (pel) = e div (p1) + pU-grad e
and the continuity Eq. (3.2), we can write Eq. (3.9) as

de

T EpP 87_+ pu-grade= Ah (t-T) . (3.10)

In deriving Eq. (3.10) it was assumed that the fluid does not absorb and emit

thermal radiation. The effect of radiation is then onlyto change the surface
temperature of the particles,

-



Consider a packed bed through which heat is transferred by conduc-
tion, heat is generated in the solid, and heat is transferred at the interface
of the solid and the coolant by convection. The law of energy conservation
for the solid phase in the element of volume V bounded by the surface S
can be expressed as

) -
f (1-€) pgecsg 5_:' dv - f keff grad t-dS =
A% S

fq'” dV+fAh(T-t) av. . (3.11)
v A\

Transforming the second term on the left-hand side of Eq. (3.11) by
Green's lemma and noting that the element of volume V is arbitrary, we
obtain

(1-€) pgcg % = div (keff gradt) + q" + Ah(T -t) . (3.12)

The effective thermal conductivity keff depends not only on the temperature,
pressure, and chemical composition of the solid and the coolant, but also

on the structure of the bed. In a bed of spheres or of particles of other
shape where essentially a point contact exists between separate parts of

the solid, conduction cannot take place only in the solid but must also occur
across narrow gaps existing near each point of contact. Since the energy
transfer by thermal radiation cannot be formulated in a rigorous fashion
because of the complex geometrical arrangement of the particles, the con-
tribution due to thermal radiation is also included in kesf.

3.5 Discussion of the Basic Equations

In the derivation, the bed was assumed to be nonadiabatic, so that
heat transfer by conduction had to be taken into account. The particles
were assumed to be so small that the bulk and surface temperatures of
the solid phase at any point were thus taken to be the same. This assump-
tion is most valid for small particles of high thermal conductivity. The
major resistance to heat transfer in this case is at the particle surface.
As the particle size increases, however, radial temperature gradients
will arise within the individual particles, and the diffusion of heat in the
particle may become the controlling mechanism in the transfer of heat.
Equations of energy will have to be then modified to account for the tem-
perature gradients in the solid particles.

Equations (3.2), (3.3), (3.10) and (3.12) together with the equation of
state are now completely sufficient for solution of the problem. If the
boundary conditions and the heat source gq" are given, the unknown quantities

17
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P, P T, t, and T can be found. It is evident that an exact solution is im-
possible in the majority of cases. However, some simplifying assumptions
can be made and analytical solutions obtained. For example, as an ex-
tremely simplified approach to the problem, Green(22) has suggested the
assumption Ah = ». Setting Ah to infinity is equivalent to assuming that at
any point in the system the solid and the fluid temperatures are equal. The
assumption is tenable, however, only when the heat generation is small
and/or the mass flow rate is very large. A closer approach to physical
reality can be made if the main resistance to heat transfer is assumed to
be in the solid-fluid interfacial film, and the conduction in the solid phase
is negligible. Special cases of equations presented in this section are
solved in the following sections.




4, TEMPERATURE DISTRIBUTION IN A
HEAT-GENERATING PACKED BED

4.1 Temperature Distribution in One-dimensional Packed Bed

Since no general solution of the problem can be obtained, some
simplifications are introduced to make the problem more readily tractable
mathematically. The case of one independent space variable is considered
in this section. The assumptions involved in the calculation of temperature
distribution in a one-dimensional heat-generating packed bed are asfollows:

(1) The coolant flow and heat transfer are steady.

(2) The physical properties are independent of temperature.
These assumptions simplify the problem considerably. The equation of
motion becomes uncoupled from the energy equation, and the solution of

the continuity equation is just a constant. Thus, the basic equations re-
duce to

d%t
keff —5 + Ah(T-t) = - g (4.1)
dx
and
dT
CPG&‘ + Ah(T—t) =0 . (42)

The physical model and the coordinate system are shown in Fig. 4. The
bed is assumed to extend indefinitely in the
directions normal and parallel to the plane of
the figure. If the boundary conditions and the
heat source q"' are given, the unknown tem-
peratures T and t can be readily solved. For
——3 bed sizes and heat generation rates of interest
in this study, the coolant temperature rise up-
stream of the bed is negligible compared with
the temperature rise across the bed, and
therefore it is not necessary to consider the

To differential equation governing the tempera-
= 4
ture distribution of the coolant in this region.
e N
0 — L Introducing the heat-generation dis-
tribution function, ® :q"'/qg've, a new indepen-
F16. Y dent variable defined as 77 = x/L, Egs. (4.1)

PHYSICAL MODEL AND COORDINATE SYSTEM

and (4.2) are written as

d*t
S+ N (T-1) = -N2(n) (4.1)
dn
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and
3—3;+ N3(T-t) =0 , (4.2)
where
N, = ihLz , Np= #ﬁ and Nj = CAhCI;
eff eff P

The complementary solution of this system of equations is easily
found to be

T.=c¢; +c; e c3em3n , (4.3)

where

m,,m; = N3/2 [-11./1+4N;/N2] . (4.4)

However, before a particular solution can be obtained, the heat-generation
rate must be known. For the sake of completeness, uniform and sinusoidal
heat-generation distribution functions are considered, but in general the
problem can be solved when ®(7n) is any arbitrary function of 7. Thus, the
particular solution for ®(n) =1 is

Ty, = N,Nn/N; (4.5)
and for ®(n) = sinmn is

N,N3 _ N,N, (72 + N;)
T = sin?1n) - 3 2 >
(" + Np)* + (7N3)*]

cosTIN . (4.6)

P (% + Ny )2+ (TN,)?
The general solution of the coolant temperature distribution is

T = TC + Tp =Cy + Czemzn‘l’ C3em3n + N2N3T)/N1 (4:°7)

and

2
37?+ el sinTm
(2 + N, )% + (7T N;)?

2N

m m
T = c;+ce + c3e

N,N,(m%+ Ny)
s[4 Ny )P+ (N2

cosTM (4.8)

for &(n) = 1 and &(n) = sinmM, respectively.




The general solutionfor temperature distribution in the solid phase
is given by

N m m
t = C1+—'_2 + 1 + ——E Czemzn + 1 'f'—2 C3em3n + N2N3T]/Nl (4.9)
N, N, N3
and
m; m," ms m;T)
t:c1+(l+N—3>c2e 2 +<1+T\I—3—>C3e 3

N,(N; + 7% + N3) sin N;N,N,
(m®+ N1)2+ (TTNs)Z [(m* + N1)2+ (WN3)Z]

cosT (4.10)

for ®(n) = 1 and ®(n) = sinmn, respectively.

For the evaluation of the constants of integration in Eqs. (4.7)
through (4.10), three boundary and initial conditions are required. In
general, the boundary conditions on t are of the form t known, dt/dT) known,
or f(t,T,dt/d”f)) known, and T is known at ) = 0. It is possible to perform
an experiment in which the temperature of the incoming coolant and the
temperature at both ends of the bed are measured. As only a link in the
total heat transfer problem is examined, it is impossible to write down
the temperatures t and T at 7= 0 andnn = 1. However, some important
conclusions can be reached by considering the magnitude of the param-
eters m, and mj.

Consider a packed bed composed of spherical UO,; particles,
200 microns in diameter and of porosity € = 0.35. The bed thickness is
1.0 cm and it is cooled by He at a pressure of 40 atm. Using the correla-
tion of Glaser and Thodos(ls) for the heat transfer coefficient, the values
of parameters m, and m; were calculated and are tabulated for various
mass flow rates in Table 3. It is evident from the values of m; and m;
and Egs. (4.7) and (4.8) that heat transfer by conduction is negligible. The
effect of conduction is confined to the immediate vicinity at the entrance
and exit from the bed, where the temperature distribution departs slightly
from a straight line.

Table 3

VALUES OF PARAMETERS m,; AND m;

G (kg/sec) 0.5 1.0 2
m, 79 106 138
ms -160 -162 -178
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It follows from Eq. (4.2) that the local temperature difference
(t- T) is given by

(t - T) = m2CZem2n+ m3C3em3n+ N2N3/N1 (4. 1 1)

for the case ®(n) = 1. Since m; and mj are large (t- T) is constant across
the bed, except at values of 1 = 0 and np = 1, for which there is a small de-
parture from a constant value. In view of this fact, the heat transfer by
conduction is negligible in problems of interest to packed-bed fuel element
design. The equations of energy therefore can be simplified.

4.2 Temperature Rise in the Coolant

In this section the energy Eqgs. (4.1) and (4.2) are considered. The
energy transfer by molecular conduction is neglected, and only the one-
dimensional case is studied. Assuming that the flow is one dimensional
and steady, Eqs. (4.1) and (4.2) reduce to

dT dive L _
37)—-—5;6—@(1;)-0 . (4.12)

If the temperature of the coolant at the inlet to the bed is T,, the solution
of Eq. (4.12) is

’r, o

q L

T = =¥ __g(n) dn + T, . (4.13)
cpCr

0

Assuming that the specific heat of the coolant is constant, Eq. (4.13) can
be written in dimensionless form as

T-T, n

dave L ch )

®(n) dn ) (4.14)

0

The coolant temperature rise calculated from Eq. (4.14) is given in Fig. 5
for uniform and sinusoidal heat generation.

Materials limitations frequently dictate that the maximum surface
temperature of the fuel be the critical factor in determining maximum re-
actor power density. The axial surface and the coolant temperature varia-
tion, being a function of the distributions of the heat-generation rate, may
be influenced by changing the fuel distribution; however, in packed-bed fuel
elements the maximum surface temperature occurs at the exit of the bed,
because the temperature drop across the film is very small compared to
the coolant temperature. Thus, from the heat transfer standpoint, it is
necessary to use a coolant with the highest heat-removal capacity between
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COOLANT TEMPERATURE VARIATION WITH THE
DIMENSIONLESS DISTANCE

the inlet and the outlet temperatures in order to obtain maximum power
density. For this purpose four fluids: hydrogen, helium, water, and air,
were investigated. The enthalpy and specific heat data for these coolants
were taken from Refs. 23, 24, and 25. The results are shown in Figs. 6
and 7. The heat-removal capacity of a liquid metal, such as sodium,
would lie between those of water and air. On the basis of mass flow rate,
molecular hydrogen has the highest heat removal capacity; then follow
helium, water (with vaporization taking place in the bed), and air. On the
mole-flow basis, water has the highest heat removal capacity and helium
the smallest.
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5. TRANSIENT TEMPERATURE DISTRIBUTION IN
A HEAT-GENERATING PACKED BED

5.1 Introduction

Most investigators working on heat transfer problems in packed and
porous beds have used a mathematical model with two independent variables -
the time, and the distance along the axis of the packed bed. This model intro-
duces a number of simplifications in that it assumes plug flow through the
bed and neglects the variation of temperature with the radial position. In
addition, the heat conduction along the length of the bed is overlooked; even
so, this one-dimensional model has proved very useful in studying, both
experimentally and theoretically, the performance of packed beds. However,
the equations which describe even this simplified model are as a rule too
complicated to be solved analytically.

The purpose of this section is to present a numerical procedure,
known as the method of characteristics, for solving the equations of the one-
dimensional model. This method has been used with success in the field of
compressible flow and, because of many attractive features, is being em-
ployed for the solution of a large variety of problems. The method of char-
acteristics is an approximate one, but it is capable of producing numerical
results of good accuracy.

The transfer of heat from the solid to the fluid for the one-dimensional
model is governed by the equations

pey, (e% +u —2—2—) = Ah (t - T) (5.1)
and
ot
pgcg(1-€) 3. = a' Ak (T - t) (5.2)

if, for simplicity, the mass flow rate is considered to be constant:
G = Pgug = constant

Therefore the initial conditions are
T =Tpatx = OforallT™ >0

(5.3)
= tgat T = 0 for allx 20

o+
1

In the analysis, the pressure drop across the bed is assumed to be small in
comparison with the absolute pressure of the coolant.
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The problem at hand is then the solution of Eqs. (5.1) and (5.2) subject . X
to the two conditions given by Eq. (5.3). The system has been solved to date
analytically only under the assumptions u = ug for all 7 and x and q'"' is a

linear function of t. )

Equations (5.1) and (5.2) can, for convenience, be put into the following
forms:

3T , , OT __Ah

o ) P 5.4
1Y
and
ot _ 1 [q""" + AR (T - t)] (5.5)
oT (1-€)pscs
where
€
g=SX gk o %y, = & o constant
e “o Ro Po

Therefore, the initial conditions become

T 0 for allT >0

Ty at £
(5.6)

o
|

0 for all € 20

= tgat T

5.2 The Method of Characteristics

Consider in the T -£ plane two families of lines, I and II, such that

d’l‘/dé = l/u.* for lines I (5.7)
and
€ = constant for lines II . (5.8)

Such curves are plotted in Fig. 8, and are known as characteristics of the
differential Eqs. (5.4) and (5.5). Since, now,

dT OT Jrd
o (5.9)
dé O or d€

along an arbitrary direction in the T-£€ plane, then, along any characteris-
tic I, from Eqgs. (5.4) and (5.7), we have

(gg—): %* (t - T) = f£,(t, T,€) . (5.10) .
1 P
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The notation (dT/di)I denotes the derivative of T along the characteristic
T = £ + constant. (5.11)

Along any characteristic II, from Eqs. (5.5) and (5.8), we have

<%>11 = (1—-?)1—52 (@' + AR(T - t)] = f,(t,, T,E,7) . (5.12)

Because of the initial conditions,

T = T, (5.13)
along the characteristic £ = 0 at all times, whereas
t = to (5.14)

along the characteristic dT/d€ = l/u*, with T = 0 when € = 0.

Equations (5.10) and (5.12) are now two independent ordinary dif-
ferential equations which have to be solved numerically. The procedures
for such a numerical computation can be found in Ref. 26. It follows,

27
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therefore, that the initial conditions and the solution of Egs. (5.10) and . ;
(5.12) provide a knowledge of the two dependent variables, T and t, along
the characteristic lines £ = const and dT/dﬁ = l/u*.

The characteristics II are parallel to the T axis. On the other
hand, because u* is not constant, the characteristics I cannot be drawn
a priori. A construction of the mesh network is shown in Fig. 8. First,
an arbitrary A€ is chosen, so that characteristics Il are

£ =nhE (5.15)
where n is an integer. Then, as u* = 1 at€ = 0, a line is drawn with
the slope

dr

- = ]

d€
The intersection of this line with the characteristic £ = AE£ is tentatively

point (0,1), denoted by (0,1);,. Now, using the simplest method known, the
Euler method, for the solution of a differential equation, the approximate
value of T(0,1), follows from equation (5.10):

T(0,1);, = Ty + £,(0,0)AE : (5.16)

Since the temperature of the coolant at the point (0,1); is known, the velocity
at that point can be readily computed from

u*(0,1); = po/P(0,1);

where p(0,1); is the density of the fluid at the point (0,1);. It must be
remembered that because u*, T, and t are known along the T axis, £,(0,0) can
be calculated a priori. Of course, because of Eq. (5.6), t(0,1) = t,.

The accuracy of T(0,1); and u*(0,1), can be improved by any one of
the methods suggested in Ref. 26. This iteration converges quite rapidly
and can be continued until both point (0,1) and, T(0,1) have been determined
with the desired accuracy.

The point (1, 1) is tentatively located at the intersection of the char-
acteristic £ = A£ and the straight line drawn from point (1,0) with the slope

ar/a¢ = 1

Then,

T(1,1); = Ty + £,(1,0) AE (5.17)



and
t(1,1); = to + £,(0,1) ATy, (5.18)

where AT(','I = 7(1,1); - 7(0,1). The results of this step can be improved by
iteration, and, in identical manner, the values of T, t, and u* along the char-
acteristic £ = Af can be determined. The same procedure is applied along
the characteristics € = nA€, withn = 2,3,4,. . . until the complete mesh
network is constructed.

The theory of the method of characteristics is treated in detail in
many standard references(27,28) and therefore further mathematical
details are omitted here. The method of characteristics replaces two
hyperbolic partial differential Eqs. (5.4) and (5.5) by two ordinary differ-
ential equations (5.10) and (5.12), which are solved by a stepwise process.
The method is simple and systematic; its accuracy at each step can be
checked and improved. By constructing a finer mesh of characteristics,
the method can be made as accurate as needed, and, finally, it is well
suited for programing on a digital computer.

The analysis here has been limited to those problems where the
mass rate of flow and the temperature of the entering coolant were
constant. These, however, are not limitations on the method of character-
istics, which can be used also, essentially with no modifications, when the
rate of flow and the temperature of the entering coolant are known functions
of time.
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6. PRESSURE DROP

6.1 Derivation of Equation for Pressure Drop

In order to investigate the flow and temperature stability of a
heat-generating packed bed, the pressure drop for steady flow of coolant
through porous media must be studied. Exact solution of the pressure
drop problem would require the solution of the system of conservation
equations, including the equation of state for the coolant. Because of the
nonlinearity of the conservation equations, an exact solution is not possible
to obtain by analytical means, and an alternate approach is taken to obtain
the pressure drop in a heat-generating packed bed.

Consider steady one-dimensional flow of incompressible fluid
through a porous medium. Since the mass flow rate, G = poug = pu, is
constant throughout the medium, pu may serve as an independent variable.
The mechanical work is given by equation

d
vdp +dF + —= 0 . (6.1)
gc

The frictional force dF is expressed as

G? a
dF = ——— |— +8| dx , (6.2)
2g P Dp{Re ]
where the parameters & and B are
c,(1-¢€)* cz(1-€)
a = -———3—-6 . [‘3 = —___3__—-6

The mechanical work due to the change in elevation has been neglected;
however, since the temperature of the fluid increases with the distance x,
the effects due to changes in the momentum of the fluid [last term in

Eq. (6.1)] cannot be ruled out a priori. Dividing Eq. (6.1) by v and intro-
ducing the variable pu gives

pdp + PAdF +p(pu)§i =0 . (6.3)
C

Since
dG = d(pu) = 0 = pdu + udp ,

Eq. (6.3) can be rewritten as

2
pdp + p*dF (Gde_ (6.4)
gcP
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For a constant rate of heat generation (any heat generation can be readily
treated), the temperature of the coolant at any position in the medium is
obtained from Eq. (4.13) as

B qII!L
T = To+(ch>'q . (6.5)

Since the viscosity of the coolant appearing in the Reynolds number varies
with temperature, we express the Reynolds number as

. (22 @

m

w7 - (7)
= = — = = —— ) (6'6)
Re, (G Dp> (_) (T/To)™ T

Mo 0
where Reg is the Reynolds number at the entrance to the porous medium and
m is a constant determined from the viscosity data. Assuming that the
coolant is a gas; the density is given by

Mp p

ZRT = oT (6.7)

where Z is the compressibility, R is the gas constant, and M is the molecu-
lar weight of the coolant. Substituting Eqgs. (6.7) and (6.6) into (6.4) and
rearranging, we obtain

d(p>

2 - m 2

d(pZ) n g TG [VC <TT> +[3J d'T)—OTG gT _— . (68)
0

D Re P
TR o (%)

The last term on the right-hand side of this equation cannot be readily inte-
grated. For problems of interest here, the variation of coolant temperature
is at least an order of magnitude greater than the pressure variation. There-

N —

fore as an approximation it is assumed that the pressure is constant.
Substituting Eq. (6.5) into Eq. (6.8) and integrating, we get

q"'LT)‘Z q"'LT)m
g G? + —— + ——
G (To c. G % {To c. .G

P P
D 2 + m) Rey To™ 2 G
2g <_P_) (q'""L/cpG) ( ) Reo To p

2
2
P

L
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Multiplying by 2 and putting in the limits of integration, p = pyat 7 = 0
and p = pat =7, we finally get

pi-p* (L/D) all + x,)™ B o B
= (1 + X )| =—————— =~ +=]| P+ 22Xy .
0 TG/ g, X N 1(2 + m) Reg = 2 (2 + m) Reg = 2 n
(6.10)
where
B q‘III_'L‘
Xz CpToG

If there is no heat generation in the porous media, X = 0, and the
temperature of the coolant remains constant. Without making the assump-
tion that the change in pressure is small in comparison with the absolute
pressure, Eq. (6.8) can be integrated exactly, and we get

2.“= 2 L Q B P
P17P ( >n +—l+2ln— . (6.11)

0TeG*/g.  \Dp Re;, 2 p

6.2 Discussion of Results

The results given here were based on the Ergun correlation for the
pressure drop [see Egs. (6.2) and (2.10)], except that the constants ¢, and ¢,
were taken to be 350 and 4, respectively. The first term on right-hand side
of Eq. (6.2), representing viscous energy loss, is a most important factor at
low flow rates and of little significance at high flow rates, whereas the second
term on the right-hand side of Eq. (6.2), representing the kinetic energy loss,
is the most significant at high flow rates, and of little importance at very low
flow rates.

The exponent m in Eq. (6.10) depends on the coolant. Helium, for
whichm = 0.57, was chosenas a coolant for the calculations reported here.
In general, the viscosity of gases increases with increase in temperature,
and the exponent m will be greater than zero; therefore the results reported
here should agree in trend with those for other gases as well.

In Section 3 it was assumed that the acceleration pressure drop is
negligible compared with the frictional pressure drop. It can be seen from
Eq. (6.10) that, even in cases where the gas accelerates through a region of
strong positive temperature gradient, the acceleration pressure drop, that
is, the last term in Eq. (6.10), is indeed negligible. The dependence of pres-
sure drop on the temperature rise parameter is shown in Fig. 9. The addi-
tional pressure drop due to microscopic increase in the momentum of the
expanding coolant has been neglected.

“'
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FI1G. 8
VARIATION OF THE PRESSURE DROP WITH THE TEMPERATURE RISE PARAMETER

The curves in Figs. 10 and 11 suggest operation of the packed-bed
fuel element at the point of minimum pressure drop. However, this may
not be always advantageous. A choice of two alternative positions, high
temperature, low flow rate or low temperature, high flow rate, is available
for each value of the pressure difference established across the bed.

Note, however, the flow and temperature instability may arise
because of the temperature dependence of the coolant viscosity. Should a
localized heating occur in the bed because of some inhomogeneity of the
porous material, the increase in viscosity would tend to decrease the flow
in that region, thus increasing the temperature and aggravating the situa-
tion. The temperature could increase in this fashion until melting occurred.
In view of this, it would appear that stability considerations may require
operation on the high-flow-rate side of the optimum point, where the pres-
sure drop is dominated by the quadratic nonviscous term of Eq. (6.2). In
addition, it is expected that stability would be promoted by high heat
capacity of the coolant.
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F1G. 10
VARIATION OF PRESSURE DROP WITH MASS FLOW RATE FOR T,=300°K AND .=0.Y

Figure 12 shows the relationship between the pressure drop and the
fractional thickness of the bed for various mass flow rates and bed thick-
nesses. It should be noted that the pressure gradient increases with the "
decrease in the coolant pressure, thus suggesting operation of the system
at a high pressure.
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7. CONCLUSIONS

Consideration is given in this report to some heat transfer and fluid
flow problems of a packed-bed fuel element. The conclusions listed below
are based on packed beds made of particles ranging in size from 50 to
300 microns in diameter and with Reynolds numbers ranging from 1 to 500.

(1) Little experimental work in the range of particle size and fluid
flow rates of interest to the packed-bed fuel element design has been done.
In particular, there has been no experimental work reported on fluid-
particle heat transfer (without simultaneous mass transfer) at Reynolds
numbers below 60. This is evident from the correlations given in Fig. 3.
The investigations reviewed in this report involve particles for which the
effective diameters range from 0.23 to 8.4 cm. Because the heat transfer
correlations are based on data for large particles and low flow rates it is
not certain whether the correlations would hold for small particles and high
flow rates, even though the Reynolds numbers might be the same.

(2) The steady-state temperature distributions calculated for a one-
dimensional, heat-generating packed bed show that, for conditions of interest
to the packed-bed fuel element design, the interparticle conduction is negli-
gible compared to the heat generation. In view of this fact, the conduction
term can be neglected from the energy equation, thus simplifying the solu-
tion of the problem.

(3) In general, the temperature drop across the film is small, and
therefore the highest temperature in the bed will occur at the exit. To in-
crease the power density it is suggested that a coolant with the highest heat-
removal capacity be used. From the study of a few coolants it was found
that molecular hydrogen has this capability.

(4) A study of pressure drop indicates that instability of the flow
rate and the bed temperature may arise from the temperature dependence
of the coolant viscosity. The stability considerations require operation on
the low-temperature, high-flow-rate side of the minimum pressure drop
point. The stability of flow through the bed is improved by high heat capacity
of the coolant and high flow rates, which tend to decrease the temperature
rise for a given power density.

(5) Calculations based on the heat transfer correlations available
at the present time indicate that the packed-bed fuel element is capable of
operating at power densities of 50 Mw(t)/ﬁ (of core), and possibly higher.
The power density of this type of fuel element will likely be limited by con-
siderations other than heat transfer, i.e., the sintering temperature and pres-
sure of the particles, radiation damage to the fuel, length of operation, and
so forth.




(6) In order to obtain an analytical solution of a heat transfer and
fluid flow problem for a packed bed, it is necessary to make many simplifi-
cations and assumptions. Thus, in some cases an experimental approach
would appear to be more fruitful.
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8. RECOMMENDATIONS

In view of the potential of a packed-bed fuel element, some general
heat transfer and fluid flow experiments for porous media are suggested.
Even if the feasibility of the packed-bed fuel element concept is not
demonstrated experimentally, information obtained in the experiments would
be useful for other applications.

(1) Undertake fluid flow studies with coolant and particle sizes of
interest to the packed-bed fuel element concept, and approach realistic con-
ditions of temperature, pressure, and mass flow rate.

(2) Investigate heat transfer to porous media in the region where
no experimental work has been reported. The author recognizes the dif-
ficulties involved in an experimental study of this type. Two major problems
are: (a)the measurement of particle surface temperature; and (b) the gener-

ation of about Mw(t)/ﬂ of heat in a bed - in out-of-pile or in-pile experiments.

The power density of 10 Mw(t)/ﬂ (of bed) is about the minimum necessary to
really prove the feasibility of the concept.

(3) Because of the difficulty of analyzing the flow and temperature

stability in a heat-generating porous media, an experimental approach is
suggested.




Symbol Definition

A

F (pla])

fl

Jnh

Keff

NOMENCLATURE

Effective area density for heat transfer defined by
Eq. (2.2)

Surface area of the particle

Area density of the bed defined by Eq. (2.1)
Integration constants in Eq. (4.3)

Specific heat of the coolant at constant pressure
Specific heat of the solid

Effective particle diameter defined as , /A,/m
Energy content of the coolant per unit volume

Rate of convection of energy across the boundaries of
a unit volume

Rate of energy transfer to the coolant at the solid-
fluid interface

Energy content of the coolant per unit mass
Frictional force defined in Eq. (6.2)
Function defined in Eq. (3.3)

Modified friction factor defined in Eq. (2.9)
Mass flow rate

Gravitational constant

Acceleration vector due to gravity

Heat transfer coefficient

Parameter defined by Eq. (2.4)
Permeability

Effective thermal conductivity

39



40

m,;, Mj

Ny, Nz, N;

P1

Bed Thickness

Molecular weight of the coolant

Constant defined in Eq. (6.6)

Parameters defined by Eq. (4.4)

Ratio of the container diameter to particle diameter
Parameters defined in Eqgs. (4.1) and (4.2)
Pressure

Pressure at the inlet of the bed

Pressure at the exit from the bed.

Volumetric heat transfer rate defined by Eq. (2.3)
Heat generation rate per unit volume

Gas constant

Reynolds number defined by Eq. (2.5)
Modified Reynolds number defined by Eq. (2.6)
Reynolds number defined by Eq. (2.8)
Reynolds number defined by Eq. (2.13)
Temperature of the coolant

Temperature of the solid

Superficial coolant velocity in the x direction
Superficial coolant velocity vector
Dimensionless velocity defined by u* = u/uo
Specific volume of the coolant

Compressibility factor of the coolant




Greek Symbols

Subscripts

f

41

Parameter defined in Eq. (6.2)
Parameter defined in Eq. (6.2)
Porosity

Dimensionless thickness of a bed, y/L
Dynamic viscosity

Independent variable defined as €x /uo
Density of the coolant

Density of the solid

Parameter defined as ZR/M

Time

m

Heat generation distribution function defined as q'"/qave

Particle shape factor for heat transfer
Carman shape factor
Sphericity

Parameter defined as q" L/cp Ty G

Refers to the film

Refers to inlet conditions
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