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I. INTRODUCTION

Analyticity and uniqueness properties of perturbation-
theoretical integral representations (PTIR) were investigated
. L. . 1)2) .
in detail in our previous papers. But asymptotic property
of PTIR was studied only for some subseries of perturbation
expansion,z) and no general discussions are made on this subject
as yet. Recently, PTIR has been applied to the investigation
of the high-energy behavior of the scattering amplitude in the

3)

Bethe-Salpeter formalism , and we have found that the unsub-

tracted PTIR can describe the Regge behavior and more general

high-energy behaviors. This is an interesting feature of PTIR,
which is not known in the conventional dispersion theory.
It will, therefore, be desirable to explore the asymptotic

behavior and subtraction problem of PTIR.

For simplicity, we consider the two-variable PTIR

only: 1 .
f(s,t) = Lf dz I aa elz,a) .
0 0 a—-2zs-(l-z)t
1 o w o
Here | J dz J' do should be understood as j dz I da -
0 0 - -

with an integrand having a support {0 < z <1, ¢ > 0}. If (l.1)
is not convergent at a = » , it is necessary to make subtractions.
From the knowledge of the conventional dispersion theory, one

might make the following subtraction:

(1.1)



1 o

f(s,t) - f(s,to) F(z,a)
= dz \[ da , (1.2)
t -t ' § o-zs-(l-z)t

0 0

with to < 0. But if one applies this subtraction procedure
to a function for which (1.1) converges, then one finds that
2(z,a) is generally completely different from p(z,a). Indeed,

an elementary calculation shows

P(z,a) = de J‘ds xp (x,8) 6'(x(a-to)—Z(B—to)). (1.3)

Since the invariance of the weight function is important

in the subtraction procedure, (1.2) should not be accepted as
a good one. Hence, we shall merely subtract a constant term

f( Sy to) instead of a one-variable function. In general, we

have the following subtracted PTIRl)

z(s5-5)+ (1-2) (t-t,) N p(z,0)
f{s,t) = P(s,t) + dz fdc(,

o0—Zzs ~(l—z)t

4

o a—-zs-(1l-2z)t

' (1.4)
where P(s,t) is an (N-1l)th order polynomial of s and t,

(so,to) being a fixed point in the analyticity domain of PTIR,
i.e., (so to) €D ot Then the following questions will arise.
Is (1.4) general enough to represent any function holomorphic

in DSt and bounded by a polynomial of ]s' and ltl at infinity?

If the subtracted PTIR is possible, how can we determine the
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subtraction number N? To answer these questions was the

motivation of the present work.

In the néxt section, we give s8ix theorems which
can be proved rigorously. The proof of each theorem is given
in the Appendix of the same number. In Section 3, we discuss
the singularity in z of the weight function in the unsub-
tracted PTIR. in Section 4, we consider the subtracted PTIR,
and answer the questions of last paragraph with a reasonable
degree of confidenée. The final section is devoted to
another topic concerning a new consistent definition of the
finite'part of x-le(x))which is a by-product of the consider-
ation in Section 4. In Appendix VII, we derive various formulas

given in concrete examples of the text.

Throughout this paper, n, m, N stand for zero
or positive integers, and A, B, ¢, M, R denote big positive

numbers, whereas ¢, §, Y, 0, mn, etc. usually represent small

. . . Pa) /N ~ ~ . *
positive numbers. While s, t, s, t, S, t are complex variables,

s', t', 8, t' are used only as real variables.



II. THEOREMS

The first aim of this section is to investigate the
asymptotic property of PTIR under certain assumptions. First,
we consider (l1.1). The convergence of the integral in the
right-hand side is, of course, implicitly aséumed in (1.1).
Since it is too difficult to deal with the general case, we

shall assume that p(z,a) decreases at least like a_5(6 > 0)

-at infinity, and similarly that ,(z,a) has a finite number

. c . -1+
of singularities in z of order z to (cd > 0) at worst. For
finite values of a, p(z,q) will be a distribution of g, which
may be dependent on z as is suggested by the following

simple example.

Example 1.

a-s) T-t)"Y, (@ s0, b 0.

]

f(s,tj

Its weight function is, of course, given by

o(z,a) = §’{g-2za-(1-2)b).

It will be natural to éexpect in a naive sense that
if the above conditions on pKz,a) are satisfied then the
function f(s,t) given by (1.1) vanishés at infinity in D, -
But- if we want to prove this statement, we must express it in
a mathematically well-defined manﬁer; Care must be taken for
the definition of the asymptotic region because, for example,

no matter how large |s| may be, the function (2.1) does not

become small if t approaches to b. Namely, in general, we

(2.1)

(2.2)
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should avoid to consider the asymptotic behavior in a
neighborhood of an unbounded singularity. Now, we obtain

the following theorem.

THEOREM I. Let f(s,t) be an analytic function
which can be represented aé (1.1), where the weight function
p(z,a) has the following properties. There exists a function
ofAz;

1-
H(z) |z—zi| ©, (0<o<1l, 0cx z, < 1),

[
i
[

4

such that

N\

p(z,c) = H(z) P(z,a)
satisfies the following conditions.

(i) There exists an integer n such that

n
2(z.,a) = (3/32) ?(z,a),
where ?(z,a) is a continuous function of z and a.

(ii) There exists a positive number R (z—indepgndent) such
that when ¢ > R 9(z,a) is a function of a and satisfies
the folléwing inequalities: |

)

a) |pz.)| < aq °,

b)  |8(z.atna) - Blz.a) | < Blaa|” for |pal < u .

where §, U, #, A, B are positive constants.

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)
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i

Then, f(s,t) has the following properties:

(A) For any closed subset K of Dst’ we can always find

positive numbers y, C, M such that
(s, v) | < C(|s|+|t|)_Y
whenever |s|+|t]| > M and (s,t) € K.

(B) We can always find a positive number M such that if
for any z satisfying 0 < z <1 s and t satisfy the inequality

Izs + (1-z)t| > M
and if (s,t) € Dst' then (2.8) holds.

In the above theorem, the condition (2.7) is called
the Holder condition or the Lipschitz condition of order u.
This assumption is usually necessary if one wants to discuss
bounds of a singulér integral. Thé main result in the theorem
is, of course, the property (A). The property (B) is a special
consequence of the assumption (2:6). For instance, the foliowing

example does not have the property (B).

Examgle 2.
£(s,t) = (-9)7t E (n2-5)71 ,
. » n=0

whose weight function is

m

Z é’(a-znz) .

n=0

p(z,a)

(2.8)

(2.9)

(2.10)

(2.11)



Theorem I can easily be generalized to the case

of the subtracted PTIR.

THEOREM II. If f(s,t) is represented as (1.4)
instead of (1.1), and if (2.6) is replaced by the condition

(i) a’) 18(z,a) ] <A P, (2.12)

then one has

l£(s,t) | < c(|s|+|e VY (2.13) -
instead of (2.8).

From Example 1, we can expect that the unboundedness

of f£(s,t) at the boundary of DS is generally caused by singu-

t
larities in o of p(z,a). Indeed, this is true, namely, we

have the following theorem.

THEOREM ITI. If f(s,t) is represented as (1.4), and
if $(z,a) defined by (2.4) is a continuous function satisfying
(2.12) and (2.7) for any o > O, then we can always find
positive numbers y and C such that
N-vy
lf(s,t)l < C(1 + |s|+|t|) ) (2.14)

in the whole Dg¢.

In the above theorem it should be remarked that
the Holder condition (2.7) is required also for g = 0 and

A® < O with the convention

o(z,g) = 0 for.g <O . (2.15)



Now, .our next task is to consider the inverse
problem of Theorem I. Namely, we want to find PTIR for a given

function f(s,t) holomorphic in Dst and bounded at infinity.

This problem was discussed already twice,l)z)

4)

but the proof of

the theorem was still incomplete.

2)

As was noticed previously, it is not necessary
to assume that f(s,t) be holomorphic in the whole Dst' This
is because we have the following theorem, which is essentially

5)

due to Glaser.

THEOREM IV Let f(s,t) be holomorphic in domains
D, and D_ separately, and both boundary values on E coincide

with eacﬁ other, where

D, = {s,t; Ims >0, Imt>01],
D_ = {s,t; Ims <0, Imt <0}, A ~(2.16)
E = {s,t; Ims =1Imt =0, Re s <0, Re t < 0}.

If |£(s,t)| is bounded by a polynomial of |s| and |t| in any
closed subset of D, and D- , then f(s,t) is holomorphic in Dg¢.

For completeness, we write here the explicit shape

1)2)

of the domain Dy - Let

D*[s,t]

{s,t:i Ims>0, Imt <0, Imst* 0},

D*[s] = {s,t; Ims=0, Res 0} . - ' (2.17)



Then D, is the complement of

t
" D*[s,t] U D¥[t,s] y D*[s] U D*[t]

Hence, of course, Dg¢ includes D,, D~, and E. DSt is the

envelope of holomorphy of Dy y D~ y E.
Now, our main theorem is as follows.

THEOREM V Let f(s,t) be holomorphic in domains
BN AR A A e PP

Dy and D_ separately, and both boundary values on E coincide

with each other. Moreover, assume that f(s,t) satisfies the

following boundedness conditions.

(1) For any closed subset K of D, and D_, there exist positive

numberé §, A, M such that
|£(s,t) | <A(bkﬂt0_5
whenever |s|+|t| > M and (s,t) ¢ K.

{ii) For the same K, one has
m

| 3/at)£(s. &) | < B(|s|+|t)h ™Y EE:_lzis+(1—zith_l

i=1

\

whenever |s| + |t| > M in K, where vy > 0, B > 0. and

0sz <1 (1i=1, 2, .... , m.

Then £(s,t) can be represented as (l1.1), where p(z,a) is

defined for every z except forlzl, Zos eee 0 2o and 1.

=10 -

(2.18)

(2.19)

(2.20)
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For a fixed 2z, p(z,a) is a distribution of o, which is
given by

p(z,a)'= (21-ri)-.l lim [y (z,0+ie) -y (z,a-1i€) ],
e=~0+

Here w(z,w)Ais a holomorphic function of w except for w » O,

and we have for w <« O

o0}

plz,w) = (l—z)_l J as' ° f G' . w-zs ) ,
: S
ow 1-z

0

where fs(s',t) is the absorptive part of f(s,t), i.e.,

£ (s',t) = (2ni) 7 lim [£(s'+ic,t)-£(s'-ie,t)].

e—-0+

In the above theorem, the boundedness condition (i)

is essentially equivalent to the result (A) of Theorem I.

We may conjecture that the condition (i) will be enough to give

Lhe essential results of 1Theorém V because we know no

counterexample to this statement, but it seems to.be technically

extremely difficult to eliminate a condition on a partial

derivative of f(s,t).6)

One might suppose that the right-hand side of (2.20)
-y -1 . .
may be replaced by B(Js|+|t|) |t] = , but this bound is not
S : : ~-% -1
general. enough to admit a simple example. (-s) (-s-t) . It

should be remarked that z, cannot be equal to unity in (2.20).

We have,of course, some examples which satisfy (i) but not (ii).

(2.21)

(2.22)

(2.23)
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Example 3.

' -% % % 5
f(s,t) = (-s) “(-t) exp(-(-t) “], (Re(-t) “20).

This function does not. satisfy the condition (ii), but it still
has the representation (1.1) with a weight function satisfying

all the conditions of Theorem I.

Since the conditions of Theorem V are imposed only
on (s,t) belonging to K, p(z,q) is not necessarily bounded
by a_c(o > 0). For instance, Example 2 satisfies all the
conditions of Theorem V. It seems to be very difficult to
prove a fairly general theorem which gives the boundedness
of p(z,q) at @ = o . The following theorem is too restrictiVe

to be practical.

THEOREM VI, If the condition (ii) of Theorem V
is replaced by the stronger condition that

(ll') l—Y

| (3/3t)£(s,8) | < B(1+|s|+]t])”

in the whole Dy and D_ , then we have

lo(z,0) | < C(l+q) °

for z # 1, where 0 <. 0 « ¥ and C is a big positive number.

Both Theorems V' and VI conéern the unsubtracted PTIR.
The extension to the subtracted PTIR is by no means trivial.

The reason why it is difficult will be clarified in Section 4.

(2.24)

(2.25).

(2726)
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III. SINGULARITIES IN =z

In the preceding section, we have assumed that
singularities in z of p(Z{a) are integrable ones in the usual
sense. But this restriction is too stringent for éractical
applications, and we should admit for (z,q) to include
a distribution of z independent of a. For example, if
f(s,£) is independent of s, p(2z,a) 1s necessarily proportional

to §(z).

When o(z,a) contains such a distribution of z,
the asymptotic behavior (2.8) is no longer assured. The

following examples will be instructive.

Example 4. If
(n)

plz,a) = pla—-a) s (z-zo)
with a 2 0 and 0 « zo « 1 , Lheu
n! (t-s)
f(s,t) = .
! n+1
[a—zos—(l—zo?t]

Example 5. The weight function
-0 n
olz,0) = o % 8™ (z-2)
with 0 < Re 0 < 1 and 0 < zos 1 corresponds to

(t-s)"
f(s,t) = F(l—o)‘F(n+o) :

n+o
[—zos-(l—zo)t]

(3.1)

(3.2)

(3.3)

(3.4)
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From the above examples we see that if p(z,a)
contains an (n#l)th order singularity at z = zy then |f(s,t) |
can increase as (|é|+|t|)n only when one goes to infinity
in the direction in which |zos‘+ (l—zo)tl remains small.

The purpose of this section is to show that the above state-

ment is generally true, but no claim of rigor is made for

the reasoning in this section.

In what follows it is very important to consider the

7)

following distribution introduced by Schwartz ':

A1

[F(x)j_l Pf x o (x) for » # 0, -1, -2, .... ,

Y)\ (x)

= 5@ () for x = -n. (3.5)

If (x) is a test fﬁnction, ~f YX(X)»¢(#)dX is an entire
function of a complex parameter ). Yl(x) can be understood

as the discontinuity of an analytic‘function F(l—x)(—x)l-l.

Thus a §—function and its derivatives canAbe regarded as special

cases of a power of x.

For simplicity, we consider the singularity at z-= 0.
In this case we expect a special asymptotic behavior of f(s,t)
when s 2 « but t/s - 0. In a neighborhood of z = 0 the

weight function may be written as

Q

pl(z,a) = F(2) gla) at z ~ 0, (3.6)
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where the symbol =~ means that the ratio of both sides tends
to unity. Then the behavior for s — = but t/s - 0 is

determined by

H
]
o,
N
® |
' ~~
N N
m A d

where B = gq-t. For practical applications, the following

case is important and seems to be sufficiently general:
F(z) = ¢ Pf [zx-l(log l/z)v(log log l/z,g ceee ].

For simplicity, we consider the case

F(z) = Pf [zx—l(log l/z)v] "

since the extension to the general case is straightforward.

Putting s = -r ¢'® , (r >0, |g] <m and z = y/r , we
have
r
_ » a—1 _ v
I = A hr dy Pf [y flog r - log y) J ]
o
0 grye™®

As is easily seen by a binomial expansion, the leading term
of the numerator is (log r)v because the singularity of log y

at y = 0 does not lead to infinity for r - o, Thus one gets
I = ¢ * (log r)v J

_ with

dy - = — B e ',
gtye’® sin m)

' © )\—l]
| e [ |
J = u[ ! " R

0

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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When "the integration of (3.12) is carried out, we first assume
0 < Re ) < 1, and then analytically continue the result with

respect to ). Hence, (3.12) is true even for Re A < 0. Thus

we have
I = (/sin m) g% (=s) ™ T[log(-s)1” . (3.13)
Putting ) = -4, (Re U » 0), we obtain the following
asymptotic behavior of f(s,t):
~ A m nla) __\u _ v
f(s,t) = do . P (-s)~ [log(-s)]".
S sin m(u+l) (q-t)Hutl
(3.14)

Now, in the Bethe-Salpeter approach to the high-~energy -

3)

behavior of the scattering amplitude, the momentum transfer

in the crossed channel was treated as a parameter, hence y and v
may be functions of the momentum transfer. Thus we were able

to describe the Regge and Regge-cut behayiors by PTIR. However,
if we consider the S—matrix theory and, hence, t is identified
with the momentum transfer, u and v in (3.14) cannot be
functions of the momentum transfer. In this case, {4 and v
should be considered as functions of g. But, unfortunately,

we cannot carry out the integration over g if u and v are

dependent on ¢.

The special asymptotic behavior (3.14) -is, of course,

due to the choice of the special direction t/s - 0. Our

next task is to see that if the asymptotic behavior is considered
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in any other direction then f(s,t) satisfies (2.8), provided
that p(z,q) satisfies all the conditions of Theorem 1 except
for z = 0 and

+—
z" 1-% p(z,2) = 0 for z =0, (s > 0).

" First, we shall show an inequality

1 o n
j dz f go _elz@) (ot <a(ls|+e)™
5 5 a-zs-(1l-z)t ata

for |s|+|t| > M with 0 <y < and a > 0. Without loss

of generality, a smaller value than unity can be taken as the

upper limit of the integral. Then the integrand can be

rewritten as

n
-—l— ¢ _p_(ii)_ P(Z (a~g), (1-2) (a""t))+ (—ZT (a-s)

(1-z)" (a+a) " a-zs-(l-z)t ,

where P(x,y) is a certain (n-1)th order polynomial of x and y.
The integral coming out from this polynomial part is, of course,
convergent in the sense of a distribution, and gives an (n-1) th

order polynomial of s and t. As for the second term of (3.17),

because of the assumption (3.15) the weight functions

k -n
(-1) " (1-2z) nCx

satisfy all the conditions of Theorem 1. Thus we have

established (3.16).

k _—
a (0+a) n Znip(Z,G), (k = 0,1, ... ;, n),

(3.15)

(3.16)

(3.17)

(3.18)
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If we consider a special case

p(z,@) = F(z) s(@ -a)), (o, 20), | - (3.19)

(3.16) leads to
1 ©

f dz j do Q(Z,a) < A" (IS|+lt‘)n_:Y (3.26)

5 ) e T

for |s|+|t| > M and |t| > R with R » 2q,. Next, we
consider the case in which p(z,q) is an integrable function
of g and

p(Z,a) =0 for o > R. _ (3.21)

Such a function can be written as

. N .
. -1 -1 .
o(z,0) = 1lim N E p(z,a)8 (a-N "kR), . (3.22)
N k=0

just as done in the definition of the Riemann integral. Using
(3.20) with (3.19) and taking M-> 4R, we obtain (3.20) for

the present ((z,a). Thus the expected result has been established
to a certain extent. As is indicated by Example 5, the contri-
bution from o > R 1in the general case will not be important.
Summarizing the above investigation, we have the following

statement.

CONJECTURE I. Let f(s,t) be a function holomorphic
PN A AP\ el A A A P
in Dgt. If for any closed subset K of D, and D., whenever

|s{+|t] > M, the inequality
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. A
. m i
A - +
|£(s,t) | < a(]s]+|t] ™8 1+ Z s |t]
: i=1 |zis+(l-zi)t|
A
(3.23)
with &6 >0, 0 < z; <1, and Ay =20 (i =1,2,...,m) holds,
then f(s,t) can be represented as (1.1), and in a neighborhood
of z = z; p(z,a) is.defined as a distribution of z and the
order of the singularity does not exceed
|z = 2y |TMTHE (3.24)

apart from logarithmic factors. Conversely, if in (1.1)

p(z,a) has singularities at z = z. (i

i 1,2,...,m) of order (3.24)

and satisfies all the conditions of Theorem I in all other

points, then f(s,t) satisfies the inequality (3.23).
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IV. SUBTRACTED PTIR

" The purpose of this section is to extend the
conjecturelmade in Section 3 to the case of the subtracted
PTIR (l1.4). since the general mathematical consideration is
prohibitivély difficult, we shall deduce the general conclusion
from the previous results for the unsubtracted PTIR and some

concrete examples of the subtracted PTIR.

Example 6.
' 4 1 ” [zs+(l—z)t]Naxé(n)(z)
f(s,t) = \[\dz ~[ do — - .
§ . 5 .o [a-zs=(1~z) t]
(4.1)
This example is a generalization of Example 5. The integral
is convergent for
N>Re>N-1,
and nZN>Rei>-1, k4.2)
and then
£(s,t) = T(A+1) T(n-1) (t-8)"(-t)* ™ . C (4.3)
Example 7.
£(s,t) = (=8)" (-8)" (4.4)
Its weight function is given by
olz,a) = Y_(2) Y (1-2) v, . (a), | (4.5)
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where YX(X) is defined by (3.5).

It will be natural to inquire whether or not the
existence of distributional singularities in z (in tﬁe sense
df Section 3) can be predicted by the asymptotic behavior of
f(s,t). In Example 6, the special asymptotic behavior of
order |s|n'in the direction t/s ~ 0 is certainly owing to the
(n+1) th order singularity at z = 0. But éonsider Example 7
with ¥ > 0 and vV > 0. The (M+1l)th order singularity at z = 0
gives the'asymptotic bghavior of order |s|Ll in the direction
t/s ” 0. However, the asymptotic behavior in the general
direction |

[zys+(l-z ) t]/s = 0, (0 <z < 1) - (4.6)

+V ] ) 2l
|H , which-is stronger than lsl . Therefore,

is of order Is
if we consider a funetioen

S} v VERY -
f(s,t) = (-s) (-t) +(-s) , - (4.7)
it exhibits no special asymptotic behavior in the direction

t/s - 0. Thus the answer to the above question is negative.

Namely, we cannot say anything about the non-existence of

distributional singularities in z of p(z,a) from the asymptotic

behavior of f((s,t) in the subtracted PTIR. This means that the

introduction of distributions of z is quite natural and
inevitable in the subtracted PTIR, and this is the reason why
it is difficult to extend the proof of Theorem V to the case of

the subtracted PTIR.
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Thus, we arrive at the following conjecture.

CONJECTURE II. Let f(s,t) be a function holomorphic
in Dg¢. If for any closed subset K of D4y and D_, whenever

\s\+|t| > M, the inequality

Aj

lf(s, )| < ’!S|+l l A\ Ls m \s‘ + \t‘ (4.8)
- t a( t]) 12-1 ((zisﬂl-zi)tT

with A <N, 0 < z; <1, and A4 >0 (1 = 1,2,...,m) holds,

then f(s,t) can be represented as (1.4), and the singularities

in z of p(2,2) of more than (A+1l)th order can be located

only at z = z; with the order of at most lz—zil-l_ki-l. The

-second statement of Conjecture'I is likewise extended.

We can now answer the questions in Section 1. The
answer to the first question is "yes". The subtracted PTIR
will be general enough to represent any reasonable function
holomorphic in Dgy if p(2,%) is a distribution of pot only «

but also z. The answer to the second question will be as

follows. If for any (non-zero and non-negative) complex number k

one always has

|£(s.ks)| <A [s]* | (4.9)

when !s|> M, where (s,ks) belongs to a closed subset K of D, and
D_. , then N is determined as the minimal non-negative integer
greater than A\. Therefore, the number of subtractions in PTIR

is usually less than (sometimes equal to) that in the double

dispersion representation.
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The weight function p(z,a) sometimes contains a new
distribution which is not well known so far. .The following

example will be such an interesting one.

Example 8. If we operate a2//5I43V on the function
of Example 7, we see that a function
R Y
f(s,t) = (-s) log(-s)(-t) log(-t) (4.10)
has a weight function

plz,a) = Y_,(z) Y_,(1-2) ¥ (a) {[V(-H) -1log =

U+v+1

+loga ~ ¥ (M+v+)][ V¥ (-v) ~log(1~2) +logq
¥ (M4v4+1) -V (Mev+l) Y. ' (4.11)
Here ?(x) stands for the polygamma function, i.e.,

V(x) = T'(x)/ T(x) = -y + z__..; [ (n+l)_l—(x+n)"l] .
n=0

(4.12)

where v 1s Euler's constant. We are interested in the
limit 4 ~ 0 and VvV - 0, namely, we want to find the weight

function of

f(s,t) = log(-s)lag(-t). (4.13)
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From (4.11l), noticing

lim ¥_ (2) ¢(-p) = 2ty §(z) lim [T (~y)+y(-u)]
u-—>0 H Ll""o
...l ' 3
= -z " -2y - §(2), ' (4.14)
We have

plz,a) = 2"+ §(2) (log z+ vy - log a)
+ (l—z)_l + 5(1-2) [log(l-z) + v - log a]. (4.15)
Unfortunately, (4.15) is not well defined at z = 0 and z = 1.

But (4.15) suggests that the sum z_l + §(z)log‘z will give

a meaningful result. Indeed, by a direct calculation we can

show
. l o . .‘
log (-s) log (-t) = fdz jda [estU-zltrllolaa) |
0 § (a+1)[a-zs-(1-2)t] -
(4.i6)
with
-1 =1
plz,a) = Pf[z g (z) ]+P£[ (1-2) p(1l-2)]
~[6(2)+5(1-2)]log a. o (4.17)
Here; the distribution Pf[x_le(x)] is defined by
-1 o -1
dx Pf[x "g(x)]p(x) = lim J\dx [x "g(x-e)+g(x-¢)log X]ep (%), (4.18)

e-0+
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where q)‘(x) is a test function. Comparison of (4.15) with
(4.17) leads to the identification

PElz Tq(z)] = 2z T + 5(z)(log z + Y), (z = 0). (4.19)
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V. FINITE PART OF x g(x)

In (4.18) we have defined a distribution Pf[x—le(x)].
A similar distribution was introduced by Schwartz in his
famous book.7) But his definition of the finite part of
x—lg(Q) is simply to discard the logarithmically divergent
part. As was noticed by himself, his definition has a serious
difficulty,‘némely, it is not invériant under the transformation

of the integration variable. For instance, according to

his prescription, one has

"
O .

1
. -1
‘J.' dx Pf [x e(x)] Schwartz

But if one puts x = 2y, then one obtains

1.

2
-1
J; dy Pt [y e(y)] Schwartz ~leg2 .
5 .

Thus the value of the integral changes. This is quite

unsatisfactory, and his distribution cannot be used for practical

calculations. On the other hand, our definition of Pf[x_;g(xﬂ
is free from this difficulty as is easily checked. Therefore,
it will be desirable to investigate the properties of our
distribution.

We define

Pf [x—ne(xﬂ :;fl?:l g;ﬁ [}(x—e)logxﬂ

(5.1)

(5.2)

(5.3)
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for any'positive integer n, where ¢ - O+ should be taken
after the integration over x is carried out. It is easy to
see that

_n'

pEx ™ = pf [xPp] +(-D"pr [0 Pe-x0] |

where Pf x.l is identical with Cauchy's principal part and

Pf x  can be derived from it by successive differentiations

(with an appropriate coefficient). Thus (5.3) is a natural

generalization of Pf x_n.

Let cP-(x) be a test function, which is, of course,

an infinitely differentiable function. We can easily calculate

the integral

a

F[@]' = fdx Pf [x—ne(x)] q,(x),

0

according to the definition (5.3). We obtain

(5.4)

(5.5)

n-2
Flpl] = [(n-l)ij-l '{- Z (n-j-2) ! LA q,(j) (a)+cp(n'l) (a) log a
j=0 .

(5.6)
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Especially, for n = 1 we have

a . a

j; dx Pf [x_lg(x)] p(x) = gla)log a - jﬂ dx o' (x)log x. (5.7)
0. ‘ 0

According to (5.3), if one puts x = ky, (k > 0),

then one obtains

(n-1)

- - - - -1 -
pr [x "] = x " pe[y o] + D111 "k "log k 4 (v) .

(5.8)
The appearance of an additional term guarantees the invariance
under the transformation of the integration variable.
Finally, carrying out the differentiation in (5.3),
we have
. . n-1 "~
- - j 4 =-1,..,-1 -n+j (3-1
Pf [% ng(xi] = x ne(x—e) + E (—l)Jn(n-j) (3') "x n 35(3 )(X—e)
-1 -1 -1)
FED @177 (P (xee) 1og x. (5.9)
Hence, we have the multiplication law
xH Pf[x_ne(x)] = x M g (x) (5.10)

only for u>n- l, but

x4 Pf [x_ne(x)] ;{Pf‘[x_n+u e(x)] | (5.11)
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for 0 <y s n - 1. For instance,

L
j dx Pf [x'le(x)] =0, (5.12)
0 .
but 1 , | .
S dx - x Pf [x-ze(x)J = -1. ' (5.13)
0 .

The above definition may be useful for practical
calculations. We can now consistently calculate the finite
part of a logarithmically ‘divergent integral. It might be

particularly useful for the calculation of an infrared-divergent

transition amplitude.
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APPENDIX I. PROOF OF THEOREM I,

We shall first prove the following lemma. The
8)

method is an extension of that of Killén and'Frye and

9)

wWarnock.

Lemma 1 - Let

-]

_J‘da ola)
a4 - W

0

F(w)

where p(g) has the following properties.

(i) There exists a continuous function m(a) such that

(@) = o™ (a).

(ii) There exists a positive number R such that for_d > R

p(a) is a function of a satisfying the following conditions

a) lp()| <aq 8,

b) lp(a+Aa).- pla)| < B |aa¥ for |aal| < «,

where §, u, %, A, B are positive constants.

Then we can always find positive numbers ', C, M such that

IF | < clw|78

whenever |w| > M except for the positive real axis.

- 30

(Al.1)

(al.2)

(a1.3)

(al.4)

(al.5)
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Proof: From (Al.3) we have for g > R

lolataa) = 5(@)]| < 2a a”8, (Al.6)
provided that o >> |pa|. Hence (Al.4) and (Al.6) yield
lo (a+aa) - o) ]| < (2a a—G)V(B-IAal-“)l_V (Al.7)

with 0 <« v < 1. We can, therefore, také

b') |P(a+Aa) - p(a)| < B' a_5l|Aa]“l for [pa] < (a1.8)

with 0 < ' < g and ;' > O instead of (Al.4) without loss of

generality.

Let r = |w| > 2R and 4 < R. We divide the

integral (Al.l) into five parts:
® r/2 r—y

N R

0] 0 r/2 r—y r+y - 2r

—
[
—
+

1°) We may assume n » 1 without loss of generality.

r/2 r/2

j j s o @)
a - w

-0 ' 0

n i . r/2
(n=3) (a)
< E (-1t @ (r/Z)_ + n! J\ da —m——+l .
=1 (/2 w3 | 0 (e-w) ™

(al.10)
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From (Al.3), for a > R there is a j-th order polynomial

Pj(a), (n 2 j » 1), such that

|¢,(n'j) (@) | < P, (@a 2 . . (Al.11)
Hence,
(n-3) . =8 -
® (x/2) | o Py /2 P 7y, (Al.12)
(xr/2 - w)J (xr/2)3
r/2 1 max p(a)
j do 2@} 0sasr/2 = o(c 9. (Al.13)
3 (a-w) Dl (r/2)n |
2°)
r—=y4 . r—=y =y -5
S < \g\ de. o () | < A S de &
'x/2 x/2 la—wl r/2 ra
< A(x/2)78 log(z/24)= o(x™8). . (al.14)
30)
. r+n r+u r+;4'
J = 5 s Pl@Ize) oy J‘ do .
r—n ) ey a - w ‘ - a-w

(A1.15)
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Becaﬁse of (Al.8) we have

r+y r+y

/ ]
' _ ' ’ =8| .__u
J\ do pla)=o(r) < B' f de & L :
a-w ' |<1‘r|
r—y Y=y
%
—_ ) _l+ 1
< 2B' (r-y) ° J‘ g~ "dg
' |_l LJ.' -6' -6I
= 2B'y n (r=u) = 0(r ~ ). (Al.16)
r+y
p (x) ) f _da_ . < A r—6 log Lu—w = o(r_6 ). (Al.17)
r a=w r—%—w . .
- , ,
o}
4°) 2r ‘ 2r -5 :
j < A j do & < A(r+K)-alog(r/u_)= o(xr %).
r+y r+y ar o '
(AL.18)
. 56)
[ o« (o]
-8 -8 .
f <A do & < A j‘.da qu 6'=O(r6)
27 2r arr R (a/2) t
(Al1.19)
Thus we. obtain (Al.5). Q.E.D.
Now, we apply Lemma 1l to
? A
F(z,w) = Jda o(z,2) . : (Al.20)
oa-w 2

0
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Then there exist positive numbers §', Cl’ M1 such that

'|F(z,w)| < C |w|-.6

1

whenever |w| > M, except for the positive real axis.

1
Let

K, = {w; w=zs+(1l-2)t, 0 <z <1, (s,t) e K}.

Then K is a closed set which does not intersect {w = 01.
Since the intersection of K and {lw] < M} is compact and

F(z,w) is holomorphic there, F(z,w) is bounded there, i.e.,

|F(z,w)| < C

-
Thus
. s
|F(z,w) | < Co (M, + |wl) in K_,
whoro Cy = max(z6 Cy Ml6 02)' By definition, we havo
1 . .
f(s,t) = \S dz [h(zi] -1 F(z, zs+(l-z)t).
0
Hence,

1
[£(s.t) | < C, ‘5 dz [?(zi} -1 {Ml+|zs+(l—z)t|}_6'
o

for (s,t) ¢ K. We divide the integration range [0,1] into

I[s,t] in which the inequality

|zs + (l—z)lt‘ <% M%Qs‘-!-]tD;i

(al.21)

(a1.22)

(Al.23)

(al.24)

(Al.25)

(al.26)

(A1.27)
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holds and the remaining part. Then

|£(s,t) | < c M -8 j dz [H(z)]—l |

01
I[s,t]

t

1

: -5’
vy Jan @iy« u Qe

0

Since the z integral is convergent, the second term evidently

. - -8'/2 .
behaves like 0((|s|+|t|) ) Therefore, the problem is
to estimate the first term. For this purpose, we use the

following lemma.

Lemma 2., Let s and t be complex, M > 0, and
g 2 >
I[s,t] = {z; 0<zs1, |zs+(l-2)t]| < M- (|s|+]t]) .
We denote the Lebesgue measure of a set S by ;(S). Then
5 %
ulIls,t]) < am*(Isl+|t]) * . for [s|+|t]| > am.

Proof: Putting g = 2z - 1, u = s+t, and
v = s-t, we have

zs +‘(l—z)t = %(u + gv),

M < |s|+|t] < |ul+|v]. °

(al.28)

(Al.29)

(Al.30)

(Al.31)
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Let

J[s,t]' = {g; el <1, |u+tev] <M%(lu-|+|v|)%} . (A1.32)

Then it is evident that

2 y(I[s,t]) < ,(I[s,t]). : (Al.33)

The inequality

L L
lu + gv]| <M2(|u|+|vl)2 - (Al.34)

can be rewritten as

]v|2 52 + 2 Re (uv¥) g + |u[2 - M(|u|+~|v|), < 0. (Al.35)

The discriminant D of this quadratic form is
= : 2 2 : :
D —M(|u|+|v|) |v© - (Im uv¥)“. (al.36)
For D » O

LT, t]) < 20%|v| 2, | (AL.37)

‘and for D « O

uw(dls,t]) = o. | . (al. 38)

Therefore, in general, we have

1 i
uls,t]) < 2u” (lul+|v])? |v (Al.39)



On the other hand, (Al.34) leads to

9 L
Jaf = Jel-lvl <u¥(ul + v])*
since |g| < 1, we have

1 i
vl = lel - Ivl > Jul - (] + |v()7

Adding [v] to (Al.41) and dividing it by two, we obtain

< i L L
i sl v D® [QuleivD® - u® ]

Substitution of (Al.42) in (Al.39) yields
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-1
1 i 1
wGTs,e) < an® [(ul+lvl)® - sz
Hence, (Al.33) together with (Al.31) iéads to
o L T N
pl(Ifs,t]) < 2m™ [(|s|+|t|) : - M’]
1 =L
< 4M° (|s|+|t|) 2
Thus, we have proved (Al.30). Q.E.D.

Now, it 1is obvious_that

- .
[',H(z)]_l < a(:l + EE: |z—zi|_l+ﬁ>
i=1

(Al.40)

(Al.41)

(A1.42)

(Al1.43)

(pl.44)

(Al.45)
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if a is sufficiently large. Hence, putting N = (Ils,t]),

we have
-1 -1+ -1+
b[\ dz [H(2)] < an+ a E ‘[ dz  |z-z; | 4ne o 7O
I[S,t] . i=1 Zi"'r]
0.
= 0(n’). (aAl.4e6)
Lemma 2 tells us that
1 -k
n<ac(sl+le]) 77 . (Al.47)
' . . -0/2
Thus the first term of (Al.28) behaves like (Isl+|t]) at most.
Then putting

'y = min($'/2, o/2), . (Al.48)

we obtain the statement (A) of Theorem I. The statement (B) -

is likewise obtained by applying (Al.21) to (Al.25) directly

M, =M, c, =25

0 cl)'
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APPENDIX TII. PROOF OF THEOREM 1II

Lemma 1 of Apéendix I together with

' P(z,a)
p(a) plz,a - (A2.1)
[a-zso—(l—z)toj
- leads to
(=] A "S' -
g[ do p(zga) < Co [¥l+|zs+(l—z)tl] .
5 [a-zso—(l—z)t01 fa-zs-(1-2)t] :
(a2.2)
Hence,
N :
C . 2 N_'
[£(s.8) | < |p(s,t) | + ¢ E 5C5 ls-sO[J le-t, | J oy(s.t)  (22.3)
j=
with 1
mj(s,t) = ‘f dz - zj(l—z)N—JrH(z)]_l fMl+|zs+(l-z)t]] -6'. (A2.4)
0

Since |z3(l—z)Nnj| < 1, we see

-Y
gy (s t) = 0@sl+ltl) ) - (a2.5)
according to the proof of Theorem I. Thus

[£(s.t) | = O<(|s|+|t|)N_Y>. (n2.6)



APPENDIX III. PROOF OF THEOREM TII.

If we can prove the following lemma, then the rest

of the proof is equivalent to that of Theorem II.

Lemma 3. If for any a > O
lp@)] <aa b,

lo(a+aa) = ()| < Bipal®  for |pa] < .

where 1 > 5 > 0, , > 0, and ) > 0, then we can always find
positive numbers §' and C such that

(=]

J da. p_(a_)- < C(l+|W|)_6'

o a—w

for any non-zero and non-positive w.

Proof: Let x = 3/3. In the case r = |w| > 24,
we havélo)
® s
< C'r
0

immediately from the proof of Lemma 1 of Appendix I. In

the case r <« 24, (A3.2) yields

lp(a)] < Ba* for 0 < a < 3.

40

(a3.1)

(A3.2)

(A3.3)

(A3.4)

(A3.5)
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because of the convention (2.15). Hence,

. 3y | 3y 3y

J‘ < B ;[ do lon-»rl—lﬂ‘l +  |p(x) do

0 0 oa-w
< Bu_. [¥u+(3u—r)u] + Br" log 3”—w,

: ) -w
< const.
j < A j‘ da const.
3n 3% G.‘ZK

Thus we obtain

L[ ’ < c(l+r)” 8
O .

for any w except for w s O.

(A3.6)

(a3.7)

(aA3.8)
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APPENDIX IV. PROOF OF THEOREM IV

"By multiplying f(s,t) by (st)—N—6> (8 > 0), we can

assume

|£(s,t) | < A(|s|+|t|)_8 for |s|+]t] > M

without loss of generality.

According to the edge-of-the-wedge theoremll),

f(s,t) is a single analytic function holomorphic in

D, UD_ U7l (E), where 7L (E) stands for a complex neighborhood
A A .

of E. For (s, t) € D, we consider

o0

| . A AN :
R R, g) = (Zni)_l \g‘d%. f(g's - e, g't - ¢) ’
| g' - €

[--]

where Im 2 > O, and ¢ is an infinitesimal positive constant.
The right-hand side of (A4.2) is well defined because of the

analyticity and the boundedness (A4.l) of f(s,t).

' A A
If we take particular points arg s = arg t, then
we can close the glcontour of (A4.2) by adding a large semi-
. . - A A
circle because (g's - ¢, g't - &) ¢ D, UD-U 72 (E), and
we obtain

A A
F(s, t, -5

R
A

I
Hh
Lo

o]

‘(A4.l)

(A4.2)

(a4.3)
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Because of the uniqueness of analytic continuation, (a4.3)
tells us that F(g, %, g) is the analytic extension of

A A _ :
f(gs - e, gt - ¢) to the topological product of D, and

{Im ¢ > 0}. Thus f(s,t) is holomorphic in

A A
D' = {s,t; s = gs, t = gt, (s,t) € D, Im ¢ > 0}. (a4.4)

We will show D' Dg¢ in the following.

For simplicity, we write

§ = arg s, @ = arg t,
A .

’e\ = arg s, ’p; = arg t, ¢ = arg g, - . (A4.5)

then
N A

B=0% v =t i - (ad.8)

and .
A
0 < 8 <Tm, 0 <gpat, O <y <, ' (A4.7)

1

Since Dgt is explicitly given as the complement of (2.18),

we compare D' with it in the following.

1°) D' > Dy and D' o D_ are evident (the chcices of

y are §y ~ 0 and § ~ T, respectively).

2°) when Im s > 0 and Im t < O, the points belonging to
Dgt are characterized by Im st* < 0. This condition can be
rewritten as

O <p<T<gp<2m, O0<g=-op<Tm. (A4.8)
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On the other hand, if we choose g as

p-T<y<6, |egl =1,

then we have

A

2 = lsl ei(e-\y) , £ = ltl ei(cp"1b)

A . .

hence (g, t) € D, . Thus the points of Dgt belong to D'.

Conversely, if Im st*¥ > O, i.e., 9 - 9 = T, which in turn
A

implies @ - 3 > m. This contrédicts (a4.7). Thus both

domains in this portion coincide with each other.

30) When Im s « O and Im t > O, the problem is reduced

to the above case by interchanging s and t.

4°) When Im s = 0, the points of Dgt is characterized by
Re s < 0 with arg t # 0. As for D', (A4.6) and (A4.7) imply

arg s # 0 and arg t # 0, hence Im s = 0 gives Re s < O.

5°) The case Im t = 0 is similar to the above.

(a4.9)

(a4.10)
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We consider a point (s,t) € Dgt such that

Im s > ¢, Im t > ¢ ,

where ¢ > O. Cauchy's theorem leads to

f(S,t) = (2TT1)_2 J ds at f(gl’ﬁ.l)l
S-s s t-t

where the closed -contour C is indicated in Fig. 1. Let R
be the radius of the semi-circle of C. As R o o, the
contribution from the semi-circle vanishes because of the

condition (i). Hence,

+otie +m+i€
- ds at ~ o~
f(s,t) = (2ri) __ f(s.,%t)
. - ) t-t
-otle S8 -wotle
o [--]

= (2TTl)_2 5 ds" J‘ dat’ f(S'+i€,t'+i€)
(

K K s'—stig) (t'—-t+ie)

-] -]

= (21'r:i.)—2 \S ds' dat' f(s'+ie,t'+ig)
-]

8

J; dz [zs'+(1- z)t'-zs-(l z)t+1r]
0

~ 45 -

(AS.l)

(A5.2)

(a5.3)
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We want to interchange the order of the s' and t' integrations
and the z intégration. But this is not trivial because the
denominator- of the integrand may not necessarily be large

when |s'| and |t'| are large.

Lemma 4. Let

IfR,s',t'] = {z; 0 <z <1, max(|s'|,]|t']) > R > 1,
-0
|zs'+(l-2)t'| < |s't"| 1. ‘ (A5.4)
where s' and t' are real and 0 < 0 < %. Then its Lebesgue
measure y(I[R,s',t']) uniformly tends to zero as R = .
Proof: We consider two cases s't' » 0 and's't‘ < 0
separately.
10) The case s't' 0. We may assume s' > 0 and t' » O
without loss of generality. The main inequaliey in (A5.4)
becomés
- k-0
zs' + (1-z)t' < (s't") . : " (A5.5)
1 ' f -.1‘20' . .
When s' = t', (A5.5) becomes 1 < s' < s'" ©7, which is

impossible. When s' > t', the points 2z belonging to I[R,s',t'j

satisfy

L
1ty 1y 72 0_ '
0 <z <« (s°t") t , (A5.6)
sl_tl
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namely,

u@R,s",t']) = . (A5.7)

. P .
If t' <1, the right-hand side of (a5.7) is O(R ° 7).
If t' > 1,
- 1 L_
. ' tlz O(S'Z—t'z) t|2 o
u(I[R,S .t ]) < = 1 1
s'-t" s'7 4 g2
<s' % . RO, (A5.8)

When s' < t', by interchanging (s',z) and (t',1-z) the

problem is reduced to the above.

2°9) The case s't' < 0. We may assume s' > 0 and t' < O
without loss of generality. Let t" = -t' > 0. The main

inequality in (A5.4) becomes

t [zé'4(1—z)t"] < (s't")%_o . | : | (a5.9)

If zs'-(1-2)t" s O, the points z beldnging to I[R,s',t']

satisfy

" (sltll)%—c+£n : v )
<z < - . (A5.10)
sl+tll S"}'t". .

If zs'-(1-z)t" < O, we have only to interchange (s',z) and
(t',1-z). Hence
E Vo
(s't")™? o -20

u(IfrR,s",t']) <2 - 27 -7 = < 2R, - (A5.11)
s'+t"
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Thus we have

u(@lR,s',t']) = o(R°

) . (35.12)

for any case. . Q.E.D.

Now, denoting the interval [0,1] by I, we can

rewrite (A5.3) as

Jar (o fa- fo (wff = o «

~® -® 0 - - I-I[AR,S',t'] IfR,s',t'] .

(a5.13)
In the first term of the right-hand side, s' and t' satisfy

either {|s'| < R, |t'| < R} or

L
|zs'+(1-z)t'| » |s't'|* °. . (A5.14)

Therefore, if we choose ¢ so as to satisfy % > o > O,

the order of the s' and t' integrations and the z integration
can bé interchanged on account of the condition {i). The
second term'tends to zero as R _, » because of Lemma 4. Thus

1
f(s,t) = ~Y dz m+(z, zs+ (l-2z)t) (A5.15)
0

with

@ (=]

(Z“i)—z \S o ‘S dat’ f(s'+ie,t'+i7) ,
[zs'+(l-z)t'-wtic]?

L
N
5

S
1

- 0

(Im w > =), (A5.16)



- 49 -

For w fixed, ¢+(z,w) is a function of z defined almost
everywhere in 0 < z < 1. Since the contribution from z = 1

is infinitesimal, we always assume z # 1 hereafter.

We can carry out one of integrations in (A5.16)

as follows.

: +eotic +otic
m+(z,w) = (21'ri)-—2 as ar — fif,?iﬁ i
~otice —etic zs —z)t-wi4
+otic _
= (2mi)7? a3 j-at £(E.1) ]
etic c . [z§4(l—z)%;w]2

Cauchy's theorem leads to

+otic

¢+(z,w) = (21'ri)'"l(]_..z)"l & 2 f3, w*zs‘)
' W 1-z .

Because of Lhe condilion (ii), Lhe inleyral (A5.18) is
convergent if z # zi. Thus ¢+(z,w) is well defined except

for z = 2 z ,1.

R
Our next(task is to investigate the analyticity of
m+(z,w) in w for z fixed. It is evident froﬁ (A5.16) that
¢+(z,w) is holomorphic in Im w > ¢. . Next, we consider the
analytic continuation to

{w; € >Imw > 0, Rew <« 0}.

(A5.17)

(A5.18)

(A5.19)
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For this purpose, we investigate the analyticity of

f<f, Y_ZS ) in ¥ when w is fixed in the second quadrant.
-z

This can be easily done by using (2.18). The result is
illustrated in Fig.2‘in case of z # 0. The shaded areas

stand for singularity regions, which are defined by

z Imw < ImS < (Im w Re w) Re §, (A5.20)

and

0 >ImT > (Imw/ Re w) Re S. (A5.21)

In case of z = 0, there is no singularity in the upper half-

plane. Thus wé-can analytically continue ¥, (z,w) to (a5.19)

by deforming the § contour of (A5.18). For Im w = 0, the

S becomes like Fig. 3. The singularity regions now.become

two cuts shown in Fig. 3. (The change of the limit -etie into -eo-ic

causes no trouble because of the condition (ii) and continuity.)

In the next step, we fix w on the negative real
axis. Then we can further deform the § contour into the
lower half-plane. Since the contribution from a large semi-
circle vanishes because of the condition (ii),zwe finally

_Obtain

V¢ (2,w) = (2ni)-l(l-2) 5 ds a_ f(, - > (A5.22)
o 3w 1-2 ’ :
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where the contour C' is shown in Fig. 4.

All the above procedure can be done quite analogously

for a point (s,t) € D_ such that

Im s < -¢ , . Im t < -€. , (A5.23)

Then we obtain

+cp-i€

¢ (zw = (2mi) T- 7t J a2 f<§, W'zs) (A5.24)
w — -
o—ie 3 1l-z
For w on the negative real axis, we have
b (z,w) = (2Mi) Lozt j ds 2 s, ‘% (A5.25)
c' Ow .
Therefore, we see
V (z,w) =V _(z,w) (A5.26)

on the negative real axis. This means that ¢+(z,w) and
¢_(g,w) define an analytic function V¥ (z,w) which is holomorphic

except for the e-neighborhood of the positive real axis.

Finally, we investigate the asymptotic behavior of
Y(z,w). For this purpose, we again apply the condition (ii)
to-(A5.18). In the present case, since |wi is large, it is
necesséry to investigate the behavior of the integfand much
more closely. Since the intersection of K and the disc

|s|+]t] s M is compacl, we have
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| (3Rt £(s,t) | < By

Therefore, the condition (ii) can be rewritten as

l (a/at)f(s,t)l < B.'(M+lsl'+|t|) Y Z <ei+‘zis+‘(l—zi)t[)-l

i=1
in fhe whole K, where
B' = max(2l+Y B, MY elBo),
€, = min lz.s+(1-zi)t] > 0.
(s,t) €K

For Im w > €, we use (A5.28).

+o4i€

j dnsa w—zs

5 aw -

3 , - w-zs'-iz€
2 fé""ie' w-zs'~iz >
Ow 1-z

where

I, = Sas- (uslat [ +]v-ks' D) ™" (e3+] (1-mg) vktst )

-1

(A5.27)

(A5.28)

(A5.29)

(A5.30)

(A5.31)



with

v = (l-z)—l(w-ize), (Im. v > 0),
k = z(1-z)'1 2 0,
k' = (z-2,) (1-z) % < (1-2,)k. (25.32)

1
<

The assumption z # z, implies k' # 0. Writing Re v =

and Im v 2 v" > 0, we have

00

I, < 2" Xd.s'.(M+|s'|+|V'_-kS'l+|V"D_Y(ei’fl‘(l‘zli)"'"k'slb-l :

(A$.33)
The transformation u = k’s'—(l—zi)v' leads to
|u+v ‘ku+k9v!| ' Y \ -1
1, < du@+ + il 4 |V'.'|> Ci+la) 7
. L | T T
| (AS.34)

with vi E"(l-z’i).v' and'.k;.:-E‘k-k"(l—zi)--l Z 0 (zi#l by assumption) .

We make use of the following inequality, which can be easily
proved: If a 2 b = 0, one has
|x+v| + |ax+by| 2 c(|X|+’YD (A5. 35)

for any real values of X and Y, where

¢ ¥ min <§, a-b ’ a-b . : (A5.36)
o 2 2a ’



Applying (A5.35) to the first factor of the integrand of

(A5.34), we obtain

o]

VIAi < ?Y |k'|_1 Sdu [M+h(|u|+|vi|)+|v"‘]_Y €i+|u|)—l,

-0
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(A5.37)

where h > 0 because of (A5.36) with k'#0. Let h' = min(l,h(l—zi)).

Then choosing 0 such that 0 < ¢ < Yy, we have

O

I, < 2Y|k-|‘f au e+ ul) ™ ®+h'|'u\>—Y+0 (u+n |v])7°

PR - -]

= o(lv|™)
= o(lwl™®)

Thus it has been established that

qﬂmw)=00wr%

for Im w > ¢. The same is true also for Im w < —¢. Hence,

LindelOf's asymptotic theorem tells us that (A5.39) is true.

also in

{w; |Im w| < ¢, Re w < 0}.

Now, the analyticity and the boundedness (A5.39) of

y(z,w) yield

y(zow) = (2ni) 7t a ¥zw
g wW-w

(A5.38)

(A5.39)

(A5.40)

(A5.41)
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Taking the improper limit ¢ - O+ in (A5.22) and in (A5.41),

we obtain

p(z,w) = (1-z) "% de' 3 fse', ‘”"zs'> (A5.42)
l-=z :

0 3w
for w < 0, and
v(z,w) = fda p(z.a) (A5.43)
a-w

for w £ 0. To interchange the order of ¢ - 0+ and an

integration is not made in the usual sense, but it defines
a distribution. Therefore, the.asymptétic‘behavior (A5.39)
is not necessarily inherited by p(z,q). Theorem V has now

been established by (A5.15) with y_ = y, (A5.43), and (a5.42).
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APPENDIX VI. PROOF OF THEOREM VI.

The proof is the same with that of Theorem V except
for the asymptotic behavior of v(z,w). In the present case,

instead of (A5.30), we have

"oo+ie

. :
< 21+Y B J ds' <l+|s'|+|v'—ks'|+|v"D_lmY

[-<]

in the whole D,, where v = v'+iv" and k are given in (A5.32).
Since the last expression of (A6.1l) is nothing but a special

case of the right-hand side of (A5.33),“we obtain -

|¢+(Z,W)| < C'(l+|wl)_c.

The same is true also for {_(z,w) with w ¢ D_. In the present

case, (A6.2) holds regardless to ¢, hence we can interchange

.the order of ¢ - 0+ and the integration in the ordinary sense."

Thus we oblain (2.26).

w-z% Iw-zs -ize| “loy
o 2] furam e
3w l1-z

(a6.1)

(AG.2)
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APPENDIX VII. DERIVATION OF FORMULAS 1IN EXAMPLES

Examples 1 and 2. Trivial,

4

Example 3. The weight function can be easily calculated by
-1 -3 .
using the representation of (-s) * (-t) * (see Example 7)

and

exp[~(~t)*] = 0} Sda sino® (a7.1)
0 o-t

The result is

1
: 2
o(z,0) =% n % [T 2 2 * jdx . x%(l—x)_%(x—z)_zJoq_xa/(X‘Z)]%),
z .
(A7.2)

-3

whose singularities are located at z = 0 (order z %) and at
) ' -1 -

a = 0 (order a %) only, and (A7.2) behaves like Of(a %) as

A - . . T

Example 4. Trivial.

Example 5. See the next.

Example 6. When N > Re )} > N-1, we have

1l o
: - N A (oo
yy dz da (zs+(1-z)t]" o 8(z-z

o - T(x+l)F(-x)f'ZOS-(l-zo)tTX.
0 . 0 aN[a—zs-(l-z)t]

(A7.3)
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Differentiating (A7.3) by z., n times, we obtain (4.3).

0

If n » N, one has an identity

. N - N (n)
Sdz [zs+(1-2)t] G(n) (z)=Sdz a8 (z) (A7.4)

a-2zs-(1-2)t a-zs-(l-z)t

Hence, for n a N > Re )} > -1,

]

A
"f(s,t) = nl! (t—s)n \y\da %
5 (a-t)D*1

T (\+1)T (n=1) (t-s) " (-t) 277, (a7.5)

Example 7. First, we assume O > Re g > =% and 0 > Re v > -,

Then we can use (2.21) with (2.22).

o

NV
(l-z)-} y\ds- 3 | s'H (:’w—zs';>

» aw | T DT (0 N\ 1=z

q;(z,W)

(-]

: - - —-—y- - V-
[F(u+l)r(-uﬂ 1(-V)Z u l(}fz) V-1 \[ ax - xM (x-w) 1
° 0 M ..

v-1 +v
-w) MY,

[T(=) T (=) ] T (-p=v) 2 ¥ (1-2) V71 (a7.6)

Then we obtain (4.5). For the general case, we analytically
continue (4.5) with respect to y and v after making subtractions. -
By this Way we det the correct result because of the invariance

property of the weight function in the subtraction procedure (1.4).
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Example 8. We want to prove .(4.16). We denote the
right-hand side of (4.16) by f(s,t). Then

1 ®

9 8 f£(s,t) = jdz da 2 = 1 (a7.7)
3s at 5 [q-zs-(l—z)t]3 st

Since f(s,t) is a symmetric function of s and t, (A7.7) leads
to -

£(s,t) = log(-s) log(~t) + w(s) + o(t), (a7.8)

where ? is an unknown function. On the other hand, because
of (5.12), we thain

© .

f£(s,s) = -2 | aq ‘StBloge _ rig-s11% . 7.9
(1+a) (a-s) ‘

which implies @(s) = 0.
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a4 ¢ A A A
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FIGURE CAPTIONS..

The contour C on the § or t plane.
w-2z5

The singularity regions of f<?,
1-2z

) on the §

plane when w lies in the second quadrant.
The deformed ® contour when w lies on the negative
real axis.

The contour C'! on the § plane.
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