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Asymptotic behavior and subtraction problem of 

the perturbation-theoretical integral representation (PTIR) 

are investigated in detail. Six theorems are rigorously 

proved in this connection. It is shown that a function 

represented by an unsubtracted PTIR may asymptotically increase . 

in particular directions. The relation between the 

asymptotic behavior and the subtraction number is clarified 

for the subtracted PTIR. As a by-product one obtains a 

consistent definition of a finite part of the integral involv- 
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ing x 0 (x) . 
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I. INTRODUCTION 

Analyticity and uniqueness properties of perturbation- 

theoretical integral representations (PTIR) were investigated 

in detail in our previous papers. 1) 2)  But asymptotic property 

of PTIR was studied only for some subseries of perturbation 

expansion,*) and no general discussions are made on this subject 

as yet. Recently, PTIR has been applied to the investigation 

of the high-energy behavior of the scattering amplitude in the 

3 )  Bethe-Salpeter formalism , and we have found that the unsub- 

tracted PTIR can describe the Regge behavior and more general 

high-energy behaviors. This is an interesting feature of PTIR, 

which is not known in the conventional dispersion theory. 

It will, therefore, be desirable to explore the asymptotic 

behavior and subtraction problem of PTIR. 

For simplicity, we consider the two-variable PTIR 

only: 
fb1 n w  

Here Jldz . Jwdn should be understood as JWdz i d a  

0 0 -03 - O D  

with an integrand having a support {O < z < 1, a 2 01. If (1.1) 

is not convergent at a = w , it is necessary to make subtractions. 

From the knowledge of the conventional dispersion theory, one 

might make the following subtraction: 



f(s1t) - f(slto) - - ~'d. fda 7 (2.a) I 

t - t  
0 0 0 

a-ZS- (1-Z) t 

with to < 0. But if one applies this subtraction procedure 

to a function for which (1.1) converges, then one finds that 

#., 

o(zla) is generally completely different from p(z,a). Indeed, 

an elementary calculation shows 

Since the invariance of the weight function is important 

in the subtraction procedure, (1.2) should not be accepted as 

a good one. Hence, we shall merely subtract a constant term 

f(s ,t ) instead of a one-variable function. In general, we . o o  
have the following subtracted PTIR1): 

where P(s,t) is an (N-1)th order polynomial of s and t, 

t ) being a fixed point in the analyticity domain of PTIR, (so' 0 

i.e.. (solto) E Dst. Then the following questions will arise. 

Is (1.4) general enough to represent any function holomorphic 

in D and bounded by a polynomial of 1st and It1 at infinity? st 

If the subtracted PTIR is possible, how can we determine the 



subtraction number N? To answer these questions was the 

motivation of .the present work. 

In the next section, we give.six theorems which 

can be proved rigorously. The proof of each theorem is given 

in the Appendix of the same number. In Section 3, we discuss 

the singularity in z of the weight function in the unsub- 

tracted PTIR. In Section 4, we consider the subtracted PTIR, 

and answer the questions of last paragraph with a reasonable 

degree of confidence. The final section is devoted to 

another topic concerning a new consistent definition of the 

-1 
finite' part of x (x), which is a by-product of the consider- 

ation in Section 4. In Appendix VII, we derive various formulas 

given in concrete examples of the text. 

Throughout this paper., n, m, N stand for zero 

or positive integers, and A, B, C ,  M I  R denote big positive 

numbers, whereas c ,  6 ,  y ,  a, T, etc. usually represent small 

A A - -  
positive numbers. While s, t, s, t, s, t are complex variables, 

s' , t' , s" , t" are used only as real variables. 



11. THEOREMS 

The f i r s t  aim of t h i s  s e c t i o n  i s  t o  i n v e s t i g a t e  t h e  

asymptot ic  p r o p e r t y  of PTIR under c e r t a i n  assumptions. F i r s t ,  

we cons ide r  (1.1). The convergence of  t h e  i n t e g r a l  i n  t h e  

r ight-hand s i d e  i s ,  of course ,  i m p l i c i t l y  assumed i n  (1.1). 

Since  it i s  t o o  d i f f i c u l t  t o  d e a l  w i t h  t h e  g e n e r a l  c a s e ,  we  

'6 s h a l l  assume t h a t  p ( z , a )  dec reases  a t  l e a s t  l i k e  a  ( 6  > 0) 

. a t  i n f i n i t y ,  and s i m i l a r l y  t h a t  o ( z , a )  has  a  f i n i t e  number 

- l+o  
of s i n g u l a r i t i e s  i n  z  of o r d e r  z  ( a  > 0 )  a t  wors t .  For 

f i n i t e  va lues  of a ,  p ( z , a )  w i l l  b e  a  d i s t r i b u t i . o n  of a ,  which 

may be  dependent on z a s  i s  suggested by t h e  fo l lowing 

simple example. 

-1 -1 
f ( s , t )  = (a-s) (b- t )  , (a 2 0 ,  b  2 0 ) .  

I ts  weight f u n c t i o n  i s ,  of course ,  given by 

p ( z , a )  = 6 (a-za- (1-z)b)  . 

I t  w i l l  b e  n a t u r a l  t o  expect  i n  a  na ive  sense  t h a t  

i f  t h e  above c o n d i t i o n s  on p ( ~ , a )  a r e  s a t i s f i e d  then  t h e  

function f  (s, t) gf ven by (1.1) van i shes  a t  i n f i n i t y  i n  U 
s t -  

But i f  we want t o  p rove  t h i s  s t a t ement ,  w e  must express  it i n  

a  mathematical ly wel l -def ined manner. Care must be t aken  f o r  

t h e  d e f i n i t i o n  of  t h e  asymptot ic  r eg ion  because,  f o r  example, 

no matter how l a r g e  1s 1 .may b e ,  t h e  f u n c t i o n  (2.1) does n o t  

become smal l  i f  t approaches t o  b. Namely, i n  g e n e r a l ,  we 



should avoid to consider the asymptotic behavior in a 

neighborhood of an unbounded singularity. Now, we obtain 

the following theorem. 

Let f (s,t) be an analytic function 

which can be represented as (1.1), where the weight function 

p(z,a) has the following properties. There exists a function 

such that 

h 

P(z,a) E H(z) P(z,a) 

satisfies the following conditions. 

(i) There exists an integer n such that 

A 
P (z.a) = (a/aa)n P(~la), 

where (2,~) is a continuous function of z and a. FB 

(ii) There exists a positive number R (2-independent) such 

A that when a > R p(z,a) is a function of a and satisfies 

the following inequalities: 

- 6  a) a 1 < A a  I (2.6) - 

. A b) l$(z,a+~a) - o (2.a) I < B lna lU  for lac1 u I (2 .7 )  

where 6 ,  U, u, A, B are positive constants. 



Then, f(s,t) has the following properties: 

(A) For any closed subset K of Dst, we can always find 

positive numbers y ,  C, M such that 

whenever Isl+ltl > M  and (s,t) EK. 

(B) 'we can always find a positive number M such that if 

for any z satisfying 0 s z s 1 s and t satisfy the inequality 

IZS + (1-z)tl > M 

and if (s,t) E D then (2.8) holds. 
st' 

In the above theorem, the condition (2.7) is called 

the ~glder condition or the Lipsohitz condition of order u. 

This assumption is usually necessary if one wants to discuss 

bounds of a singular integral. The main result in the theorem 

is, of course, the property (A) . The property (B) is a special 

consequence 'of the assumption (2.6) . For instance, the following 

example does not have the property (B) . 

whose weight function is 
rn 



Theorem I can easily be generalized to the case 

of the subtracted PTIR. 

THEORFN 11. If f (s, t) is represented as (1.4) 

instead of (1.1) ,' and if (2 -6) is replaced by the condition 

(i) a') I$(z,a) 1 < A a N- 6 
I 

then. one has 

If(s1t) 1 < cclsl+ltl) N- Y 

instead of (2 -8) . 

From Example 1, we can expect that the unboundedness 

of f(s,t) at the boundary of D is generally caused by singu- 
st 

larities in a of ~(z,a). Indeed, this is true, namely, we 

have the following theorem. 

THEOR- If f (s, t) i s  represented as (1.4) , and - 
if i;(z,a) defined by (2.4) is a continuous function satisfying 

(2.12) and (2.7) for any a 2 0, then we can always find 

positive numbers y and C such that 

Ifcslt) I < c(1 + IsI+ltl> N- Y 

in the whole Dst. 

In the above theorem it should be remarked that 

the ~blder condition (2.7) is required also for a = 0 and 

g a  < 0 with the convention 

p(zlp) = 0 .for.@ < 0 . 



Now, .our next  t a s k  i s  t o  consider t h e  inverse  

problem of Theorem I .  Namely, we want t o  f i n d  PTIR f o r  a given 

funct ion f ( s , t )  holomorphic i n  D and bounded a t  i n f i n i t y .  
s t  

This problem was discussed a l ready twice.') 2,  bu t  t h e  proof. of 

t h e  theorem was s t i l l  incomplete. 4 ) 

2 ) A s  was not iced previously ,  it i s  not  necessary 

t o  assume t h a t  f ( s , t )  be holomorphic i n  t h e  whole D This 
s t '  

i s  because we have t h e  following theorem, which i s  e s s e n t i a l l y  

due t o  Glaser.  5 ) 

-2 Let f ( s , t )  be  holomorphic i n  domains 

D+ and D- s epa ra t e ly ,  and both boundary values  on E coincide 

wi th  each o the r ,  where 

D+ { s , t ;  I m s , >  0 ,  I m  t > 0 3 , 

D- z [ s , t ;  I m  s < 0,  I m  t < 0 1 , 

E =_ { s , t ;  I m  s = 1 m . t  = 0 ,  Re s < 0,  Re t < 01. 

I f  l f ( s . t )  I i s  bounded by a polynomial of Is1 and It1 i n  any 

closed subset  of D+ and D- , then f ( s , t )  i s  holomorphic i n  D s t -  

For completeness, we w r i t e  here the  e x p l i c i t  shape 

Let o f  t h e  donmin Ds.L. 

D * [ s , ~ ]  = { s , t ;  I m  s > 0 , I m  t < 0 , I m  s t *  2 01 , 



Then Dst is the complement of 

~*[s,tl U D*[~,s] u D*[s] U D*[t] . 

Hence, of course. Dst includes D+, D-, and E. Dst is the 

envelope of holomorphy of D+ u D- u E. 

Now, our main theorem is as follows. 

THEOREM V Let f (s , t) be holomorphic in domains --- 
D+ and D- separately, and both boundary values on E coincide 

with each other. Moreover, assume that f(s,t) satisfies the 

following boundedness conditions. 

(i) For any closed subset K of D+ and D-, there exist positive 

numbers 6, A, M such t h t  

whenever Isl+ltl > M and (.s,t) E K. 

(ii) For the same K, one has 

whenever Is1 + It1 > M in K t  where y > 0, B > 0 and 

0 5 zi < 1 (i = 1, 2, .... , m) .  

Then f (s, t) can be represented as ( 1  1) , where (2.a) is 

defined for every z except for z z2, ... I z m' and 1. 



For a fixed z, p(z,a) is a distribution of a, which is 

given by 

-1 
(2.a) = (2ni) lim C (  (z.a+ic)-,~ (zla-i€) 1 

F: 40+ 

Here ,J, (2.w) is a holomorphic function of w except for w 2 0, 

and we have for w < 0 

where f (s' ,t) is the absorptive part of f(s,t) , i.e., 
S 

-1 
f (sl,t) , (2ni) lim [f(sl+io,t)-£(st-ie,t)]. 
S 

E -'O+ 

In the above theorem, the boundedness condition (i) 

is essentially equivalent to the result (A) of Theorem I. 

We may conjecture that the condition (i) will be enough to give 

Llle essential results. of  heore or em V because we know no 

counterexample to this statement,.but it seems to be technically 

extremely difficult to eliminate a condition on a partial 

derivative of f (s, t) . 6 1 

One might. suppose that the right-hand side of (2.20) . .  

may be replaced by B (1 s I +  (t I)-' 1 t 1-I , but this bound is not 
-47 -47 general, enough to'idmit a simple example (-s) (-s-t) . It 

should be remarked that z cannot be equal to unity in (2.20). i 

We havelo£ course, some examples which satisfy (i) but not (ii). 



Example 3. 

4 % f (s, t) = (-s) -' (-t) -' exp[- (-t) ] , ( ~ e  (-t) >0) . 

This function does not. satisfy the condition (ii), but it still 

has the representation (1.1) with a weight function satisfying 

all the conditions of Theorem I. 

Since the conditions of Theorem V are imposed only 

on (s, t) belonging to K, p (z,a) is not necessarily bounded 

by a-'(o > 0 ) .  For instance, Example 2 satisfies all the 

conditions of Theorem V. ,It seems to be very difficult to 

prove a fairly general theorem which gives the boundedness 

of p(zIa) at a = . The following theorem is too restrictive 

to be practical. 

THEOREM VI. If the condition (ii) of Theorem V 

is replaced by the stronger condition that 

(ii ' ) 

in the whole D+ and D, , then we have 

for z # l,, where 0 < , a  < y and C is a big positive number. 

Both Theorems V and.VI concern the unsubtracted PTIR. 

The extension'to the subtracted PTIR is'by no means trivial. 

The reason why it is difficult will be clarified in Section 4. 



111. SINGULARITIES IN z 

I n  t h e  preceding s e c t i o n ,  we have assumed t h a t  

s i n g u l a r i t i e s  i n  z of ,,(z;a) a r e  i n t e g r a b l e  ones i n  t h e  usua l  

sense .  But t h i s  r e s t r i c t i o n  i s  t o o  s t r i n g e n t  f o r  p r a c t i c a l  

a p p l i c a t i o n s ,  and we  should admit f o r  D ( z , a )  t o  inc lude  

a d i s t r i b u t i o n  of z independent of  a .  For example, i f  

f ( s ,  t )  i s  independent of s ,  p ( z , a )  i s  n e c e s s a r i l y  p r o p o r t i o n a l  

t o  6 (2) . 

When p ( z , c )  c o n t a i n s  such a d i s t r i b u t i o n  of z ,  

t h e  asymptot ic  behavior  ( 2 . 8 )  i s  no longer  assured .  The 

fo l lowing  examples w i l l  b e  i n s t r u c t i v e .  

Example 4. If 

p ( z , a )  = n (a-a) 6'") (z-zO) 

w i t h  n 2 0 and 0 s z i 1 , L l ~ e l ~  
0 

n 
n! (t-s) 

f ( s , t )  = n + l  ' C a-z s- (1-zo) t] 0 

Example 5. The weight  func t ion  

w i t h  0 < Re a < 1 and 0 s z s 1 corresponds t o  
0 

(t-s)" 
f ( s ,  t) = T(1-a) T(n+o) 

n+ a 
I-zos- (1-zo) t l  



From the above examples we see that if p(z,a) 

contains an (n+l)th order singularity at z = z then If(s,t) 1 0' 
n 

can increase as (Isl+ltl) ~ n l v  when one goes to infinity 

in the direction in which lz0s'+ (1-zo)t( remains small. 

The purpose of this section is to show that the above state- 
, 

ment is generally true, but no claim of rigor is made for 

the reasoning in this section. 

In what follows it is very important to consider the 

7). following distribution introduced by Schwartz . 

yl (x) = c~(x) j-l ~f x @(XI for 1 # 0. -1, -2. .... 

= a (x) for = -n. (3.5) 

If g(x) is a test function, Yl(x) ,s(x)dx is an entire 

function of a complex parameter A. Y (x) can be understood 
X 

1-1 as the discontinuity of an analytic 'function T(1-h) (-x) . 
Thus a &-function and its derivatives can be regarded as special 

cases of a power of x. 

For simplicity, we consider the singularity at z.= 0. 

In this case we expect a special asymptotic behavior of f(s,t) 

when s 4 03 but t/s + 0. In a neighborhood of z = 0 the 

weight function may be written as 

p (z,a) 2: F(z) @ ( a )  at 2 %  0, 



where the symbol 2: means that the ratio of both sides tends 

to unity. Then the behavior for s - m but t/s - 0 .is 

determined by 

where G a-t. For practical applications, the following 

case is important and seems to be sufficiently general: 

For simplicity, we consider the case 

since the extension to the general case is straightforward. 

Putting s = -r eie , (r > 0, < n )  and z = y/r , we 

have 

r -I S d y  
pf ry'-'(log r - log y) 'J 

I = 

0 f3+yeig 

As is easily seen by a binomial expansion, the leading term 

v 
of the numerator is (log r) because the singularity of log y 

at y = 0 does not lead to infinity for r + . Thus one gets 

I z r-"log r)" J 

with 



When-the integration of (3.12) is carried out, we first assume 

0 < Re 1 < 1, and then analytically continue the result with 

respect to 1. Hence, (3.12) is true even for Re 1 5 0 .  Thus 

we have 

I s i n  T T  B 1-I (-s)-l ~log(-s)]~ . 

Putting 1 = -u ,  (Re U 2 O), we obtain the following 

asymptotic behavior of f(s,t): 

f(s,t) 2: TT d a )  ' (-s) [log (-s) 1 v. 
0 sin IT (u+l) (a-t)v+l 

Now, in the Bethe-Salpeter approach to the high-energy . 

behavior of the scattering amplitudet3) the momentum transfer 

in the crossed channel was treated as a parameter, hence u and v 

may be functions of the momentum transfer. Thus we were able 

to describe the Regge and Regge-cut behaviors by PTIR. However, 

if we consider the S-matrix theory and, hence, t is identified 

with the momentum transfer, u and v in (3.14) cannot be 

functions of the momentum transfer. In this case, u and v 

should be considered as functions of a. But, unfortunately, 

we cannot carry out.the integration over a if u and v are 

dependent on a. 

The special asymptotic behavior (3.14) .is, of course, 

due to the choice of the special direction t/s - 0. Our 

next task is to see that if the asymptotic behavior is considered 



i n  any o t h e r  d i r e c t i o n  then  f ( s , t )  s a t i s f i e s  (2.8), provided 

t h a t  p ( z , a )  s a t i s f i e s  a l l  t h e  c o n d i t i o n s  of  Theorem 1 excep t  

f o r  z = 0  and 

n+l-6 
z  p ( z , a )  = 0 f o r  z = 0 ,  ( 6  > 0 ) .  

' F i r s t ,  we  s h a l l  show an i n e q u a l i t y  

J 

f o r  I s I + I t I  > M  with  0  < y  < 6 and a >  0. Without l o s s  

of g e n e r a l i t y ,  a  smal le r  va lue  than  u n i t y  can b e  taken a s  t h e  

upper l i m i t  of t h e  i n t e g r a l .  Then t h e  i n t e g r a n d  can b e  

r e w r i t t e n  a s  

1 • p ( Z 1 a )  

n 
(1-2) 

a-ZS- (1-2) t , 
(a+a)  I 

where P ( x , y )  i s  a  c e r t a i n  (n-1) th  o rde r  polynomial of  x  and y. 

The i n t e g r a l  coming o u t  from t h i s  polynomial p a r t  i s ,  of  course ,  

convergent i n  t h e  sense  of a  d i s t r i b u t i o n ,  and g i v e s  an (n -1 ) th  

o r d e r  polynomial of  s and t. A s  f o r  t h e  second term of  (3 .17) ,  

because of  t h e  assumption (3.15) t h e  weight  f u n c t i o n s  

k  
(-1) (1-2) -n 

k  -n n  
C a  (a+a) z  . p ( z , a ) ,  

n k  (k = O , l ,  ... , n), 

s a t i s f y  a l l  t h e  c o n d i t i o n s  of Theorem 1. Thus we have 

e s t a b l i s h e d  (3.16) . 



If we consider a special case 

,, (z,a) = ~ ( 2 )  6 (c - ao) , (ao 5 01, 

(3.16) leads to 

for lsl+!tl > M  and (tl > R with R 2 2a0. Next, we 

consider the case in which ,-,(z,a) is an integrable function 

of a and 

p(zla) = 0 for O. > R. 

Such a function can be written as 

p (z,a) = lim N p (2.a) 6 (a-N-lk~). 
N-)m k=O 

just as done in the definition of the Riemann integral. Using 

(3.20) with (3.19) and taking M > 4R, we obtain (3.20) for 

the present p(z,a). Thus the expected result has been established 

to a certain extent. As is indicated by Example 5, the contri- 

bution from a > R in the general case will not be important. 

Summarizing the above investigation, we have the following 

statement. 

CONJECTU&,Let f(s,t) be a function holomorphic 

in Dst. If for any closed subset K of D+ and D,, whenever 

~ s ~ + ~ t ~  > MI the inequality 



with 6 > 0, 0 5 zi 5 1, and ~i 2 0 (i = 1,2 ,..., m) holds, 
then f (s,t) can be represented as (1.1) , and in a neighborhood 

of z = zi p(z,a) is defined as a distribution of z and the 

orde'r of the singularity does not exceed 

apart from logarithmic factors. Conversely, if in (1.1) 

p.(z,a) has singularities at z = zi (i = 1.2.. . . ,m) of order (3.24) 
and satisfies all the conditions of Theorem I in all other 

points, then f (s, t) satisfies the inequality (3.23) . 



I V .  SUBTRACTED PTIR 

The purpose of t h i s  s ec t ion  is  t o  extend the  

conjecture  made i n  Sect ion 3 t o  t h e  case o f  t h e  subtracted 

PTIR (1 .4) .  Since t h e  genera l  mathematical considerat ion i s  

p r o h i b i t i v e l y  d i f f i c u l t ,  we s h a l l  deduce t h e  general  conclusion 

from the  previous r e s u l t s  f o r  t h e  unsubtracted PTIR and some 

concrete examples of the  sub t rac ted  PTIR. 

Example 6. 

N X (n) ( Z )  

' sdz Sdc [ z s + ( l - ~ ) t ]  a 6 f  ( s , t )  = 
N 

0 0 c [a-zs- (1-2) t] 

This example i s  a  genera l iza t ion  of Example 5. The i n t e g r a l  

i s  convergent f o r  

and 

and then 

I t s  weight funct ion i s  given by 



where ~h (x) is  defined by ( 3.5) . 

It w i l l  be n a t u r a l  t o  i n q u i r e  whether o r  not t he  

ex is tence  of d i s t r i b u t i o n a l  s i n g u l a r i t i e s  i n  z ( i n  t he  sense 

of Section 3) can be pred ic ted  by t h e  asymptotic behavior of 

f ( s , t )  . I n  Example 6, t h e  spec i a l  asymptotic behavior of 

order  I ~ ( ~ ' i n  t h e  d i r e c t i o n  t/s ' 0 i s  c e r t a i n l y  owing t o  t h e  

( n + l ) t h  order  s i n g u l a r i t y  a t  z = 0. But consider  Example 7 

wi th  IJ > 0 and V > 0. The (IJ+l) t h  o rder  s i n g u l a r i t y .  a t  i = 0 

P 
gives  t he  asymptotic behavior of o rder  Is 1 i n  the  d i r e c t i o n  

t/s ' 0. However, t h e  asymptotic behavior i n  t he  general  

d i r e c t i o n  

V-i-v I-[ 
i s  of o rder  I s 1 , which . i s  s t ronqer  than Is . Therefore,  

i f  we consider a funet isn  

it e x h i b i t s  no s p e c i a l  asymptotic behavior i n  the  d i r e c t i o n  

t/s - 0. Thus t h e  answer t o  t h e  above quest ion is  negative.  

Namely, we cannot say anythinq about t h e  non-existence of 

d i s t r i b u t i o n a l  s i n q u l a r i t i e s  i n  z of p (z ,a )  f rom' the  asymptotic 

behavior of f (s, t) i n  the  subtracted PTIR. This means t h a t  the  

in t roduc t ion  of d i s t r i b u t i o n s  of z i s  q u i t e  n a t u r a l  and 

i n e v i t a b l e  i n  t he  subtracted PTIR, and t h i s  is  the  reason why 

it i s  d i f f i c u l t  t o  extend t h e  proof of Theorem V t o  t he  case of 

t h e  subtractcd PTIR. 



Thus, we a r r i v e  a t  the fo l lowing  c o n j e c t u r e .  

CONJECTURE 11. L e t  f ( s , t )  b e  a f u n c t i o n  holomorphic 

i n  D s t .  I f  f o r  any c l o s e d  s u b s e t  K o f  D+ and D,, whenever 

I s [ + l t l  > M, the i n e q u a l i t y  

w i t h  X < N ,  0 s z i  S 1, a n d X i >  0 (i = 1 , 2  ,..., m) h o l d s ,  

t h e n  f  (s,  t) can  b e  r e p r e s e n t e d  as (1.4) , and t h e  s i n g u l a r i t i e s  

i n  z o f  p ( z , a )  o f  more t h a n  (X+l)th o r d e r  can b e  l o c a t e d  -- 
-1 -1 i-1 

o n l y  a t  z = zi w i t h  t h e  o r d e r  o f  a t  most 12-zil . The 

. second  s t a t e m e n t  o f  Con jec tu re  I i s  l i k e w i s e  extended.  

W e  can now answer t h e  q u e s t i o n s  i n  S e c t i o n  1. The 

answer to t h e  S i r s t  q u e s t i o n  i s  "yes". The s u b t r a c t e d  PTIR  

w i l l  be g e n e r a l  e n o u g h , t o  r e p r e s e n t  any r easonab le  f u n c t l o n  

holomorphic i n  Dst i f  p ( z , a )  is a d i s t r i b u t i o n  of n o t  o n l y  a 

b u t  a l s o  z. The answer t o  the second q u e s t i o n  w i l l  be  a s  

fo l lows .  I f  f o r  any (non-zero and non-n'egative) complex number k 

one always h a s  

I f  (s.ks)l < A lslh 

when I s M ,  where (s ,Rs)  be longs  t o  a c l o s e d  s u b s e t  K of D+ and 

D, , t h e n  N i s  determined a s , t h e  minimal non-negat ive i n t e g e r  

g r e a t e r  t h a n  X .  The re fo re ,  t h e  number of s u b t r a c t i o n s  i n  PTIR 

i s  u s u a l l y  less t h a n  (sometimes equa l  t o )  t h a t  i n  t h e  double 

d i s p e r s i o n  r e p r e s e n t a t i o n .  



The weight funct ion p(z ,a )  sometimes contains  a  new 

d i s t r i b u t i o n  which is  not  we l l  known so  f a r .  T h e  following 

example w i l l  be such an i n t e r e s t i n g  one. 

Example 8. I f  we opera te  a2/allav on the  funct ion 

of Example 7, we see  t h a t  a  funct ion 

P V 
f  ( s ,  t) = (-s) log (-s) (-t) log  (-t) 

has  a  weight funct ion 

Here $ (x) s tands  f o r  t h e  polygamma funct ion,  i . e . ,  

where y is  Eu le r ' s  constant .  We a r e  i n t e r e s t e d  i n  t h e  

1 i m i t . u  ' 0 and v - 0 ,  namely, we want t o  f i nd  t h e  weight 

funct ion of 

f (s, t) = log (-s) log  (-t) . 



From (4.. 11) , not ic ing  

-1 
l i m  Y ( z )  v ( - ~ )  = -Z + 6 (2 )  l i m  [r(-,)+c (-,) ] 
u'O 

- U u+o 

We have 

-1 
p ( z , a )  = z + 6 ( z )  ( log  z  + y - l og  a )  

-1 + (1-2) + 6 (1-2) [ l o g ( l - z )  + y - l og  a] .  (4.15) 

Unfortunately,  (4:15) i s  not  wel l  defined a t  z  = 0 and z  = 1. 

-1 
But (4.15) suggests  t h a t  t h e  sum z + 6 ( z )  l og  z w i l l  g ive  

a  meaningful r e s u l t .  Indeed, by a  d i r e c t  ca l cu l a t i on  we can 

show 

log  (-s) log  (-t) = s l d z  f d a  C zs+ (1-2) t+l] p ( z ,  a )  , .  

0 0 
( a+ l )  [a-zs- (1-2) t]  ' 

with 



where '(x) is a test function. Comparison of (4.15) with ap 

t (4.17) leads to the identification 



V. FINITE PART OF xmng (x) 

-1 
In (4.18) we have defined a distribution pf[x 8 (x) 1. 

A similar distribution was introduced by Schwartz in his 

famous book. ') But his definition of the finite part of 

-1 
x ~ ( x )  is simply to discard the logarithmically divergent 

part. As was noticed by himself, his definition has a serious 

difficulty, 'namely, it is not invariant under the transformation 

of .the integration variable. For instance, according to 

his prescription, one has 

1 J d-Y Pf [X-'~(X)J Schwartz = 0 .  
0 

But if one puts x = 2y, then one obtains 

r-2dy Pi iy-lg (y)l Schwartz = -1og2'. 
0' 

Thus the value of the integral changes. This is quite 

unsatisfactory, and his distribution cannot be used for practical 

-1 
calculations. On the other hand, our definition of Pf[x , 0 (x)] 

is free from this difficulty as is easily checked. Therefore, 

it will be desirable to investigate the properties of our 

distribution. 

We define 



f o r  any p o s i t i v e  i n t e g e r  n. where e 4 O+ should b e  t aken  

a f t e r  t h e  i n t e g r a t i o n  over x i s  c a r r i e d  o u t .  I t  i s  easy  t o  

s e e  t h a t  

where Pf x - l  i s  i d e n t i c a l  w i t h  Cauchy's p r i n c i p a l  p a r t  and 

Pf x-n can b e  d e r i v e d  from it by s u c c e s s i v e d i f f e r e n t i a t i o n s  

(with an a p p r o p r i a t e  c o e f f i c i e n t )  . Thus (5.3) i s  a  n a t u r a l  

-n 
g e n e r a l i z a t i o n  of  Pf x . 

Let  ? (x )  b e  a  t e s t  func t ion .  which is .  of course ;  

an i n f i n i t e l y  d i f f e r e n t i a b l e  func t ion .  W e  can e a s i l y  c a l c u l a t e  

t h e  i n t e g r a l  

according t o  t h e .  d e f i n i t i o n  (5.3) . We o b t a i n  

F[lp] = (n-1) : '{- . -n+j+l  ( j )  
(n-j-2) ! a  cP (a )+v  (n-l) ( a )  l o g  a  

j = O  



Especially, for n = 1 we have 

According to (5.3) , if one puts x = ky, (k > 0) , 

then. one obtains 

(5.8) 

The appearance of an additional term guarantees the invariance 

under the transformation of the integration variable. - 

Finally, carrying out the differentiation in (5.3), 

we have ' ' 

-1 (n-1) + - 1  - 1  n -  ! 6 ( x - s )  log x. 

Hence, we have the multiplication law 

xU ~f [x-"e (x) = x -11+p 0 (XI 

. . 

only for > n - 1, but 



f o r  0 < 5 n - 1. For i n s t a n c e ,  

b u t  

The above d e f i n i t i o n  may be  u s e f u l  f o r  p r a c t i c a l  

c a l c u l a t i o n s .  We can now c o n s i s t e n t z y  c a l c u l a t e  t h e  f i n i t e  

p a r t  of a  l o g a r i t h m i c a l l y  .d ive rgen t  i n t e g r a l .  I t  might be  

p a r t i c u l a r l y  u s e f u l  f o r  t h e  c a l c u l a t i o n  of an in f ra red-d ive rgen t  

t r a n s i t i o n  ampli tude.  
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APPENDIX .I. PROOF OF THEOREM I. 

We shall first prove &he following lemma. The 

method is an extension of that of ~2ll;n~) a n d ~ r ~ e  and 

Warnock. 9) 

Lemma 1 Let 
m 

where p(a) has the following properties. 

(i) There exists a continuous function i p (a )  such that 

~ ( a )  = q(n) ( a ) .  

(ii) There exists a positive number R such that for &, > R 

"'(a) is a function of a satisfying the following conditions 

- 6  a) !p(a)l - = ~ a  

where 8 ,  p l  u l  A, B are positive constants. 

Then we can always find positive numbers l a l  C, M such that , ,  

(Al. 1) 

whenever Iwl > M except for the positive real axis. 



P r o o f :  F r o m  ( ~ 1 . 3 )  w e  have for  a > R 

I ( a + n a )  - ( a )  I < 2A a-6, 

provided t h a t  a >> I ACZ 1 . H e n c e  (A1  . 4 )  and ( ~ 1 . 6 )  y i e l d  

I p ( a + n a )  - p ( c )  I < ( 2 ~  a-')'(B- ~ d a ( ~ ) ~ - ~  (A1.  7 )  

w i t h '  0 < v  < 1. W e  can,  therefore,  take 

b') I p ( a + a a )  - p ( c )  I < B '  a-" ~ n a l " '  f o r '  IAQI s N. ( ~ 1 . 8 )  

w i t h  0 < 4 '  < 8 and > 0 i n s t ead  of (A1 .4 )  w i t h o u t  loss  of 

gene ra l i t y .  

L e t  r Iwl  > 2R and H < R. W e  d ivide t h e  

i n t e g r a l  ( A l . 1 )  i n t o  f i v e  parts: 

(A1  .9)  

l o )  W e  m a y  a s s u m e  n 2 1 w i t h o u t  loss  of genera l i ty .  



F r o m  ( A l .  3 )  , for  a > R there i s  a j-th order p o l y n o m i a l  

P j  ( c )  ( n  a j 1 1 1 ,  such t h a t  
% 

( a )  I < P .  (a)a-\ 
3 

H e n c e ,  

r / 2  I n . . I m a x  qp ( a )  
( a )  I ,J 

0 r a 5 r / 2 -  -8  
= . O ( r  ) .  ( A l .  1 3 )  

(a-w) ( r / 2 )  ? 

rU - - r' H j+nda 
r- u 

~ ( a ) - p ( r )  + p ( r )  
da S"' 

r-H. a - w  



B e c a u s e  of (A1.8)  we have 

T h u s  we. obtain ( ~ 1 . 5 ) .  , 

da 

a-w 
r- K 

Now, we a p p l y  L e m m a 1  t o  

$da A F ( z , w )  5 
0 ( z , c )  

0 a-w 

- 6  5 A r  
r+ K-w 

log - 
r- x-w 

- 6  ' = o ( r  1. 



Then t h e r e  e x i s t  p o s i t i v e  numbers i j l ,  C1, Ml such t h a t  

whenever lwl > M1 except f o r  t h e  p o s i t i v e  r e a l  ax i s .  

Let 

K [w; W = z s + ( l - z ) t ,  0  s z  s 1 ,  ( s , t )  EK]. 
W 

Then Kw i s  a  closed s e t  which does not  i n t e r s e c t  [w 2 0) .  

Since t h e  i n t e r s e c t i o n  of K and [ Iwl s M l ]  4 s  compact and 
W 

F (z,w) i s  holomorphic t h e r e ,  F (z,w) i s  bounded t h e r e ,  i.e:, 

Thus 

Hence, 

f o r  ( s i l t )  E K. We d iv ide  the  i n t eg ra t ion  range r0.11 i n t o  

I [ s , t J  i n  which t h e  i nequa l i t y  

. . . . 

Izs + (1 -z ) t l  < % M ' ( J s ~ + J ~ u '  



holds and t h e  remaining p a r t .  Then 

Since t h e  z i n t e g r a l  i s  convergent, t h e  second term ev iden t ly  

behaves l i k e  o((( s I+  ( t 1) -' 'I2 ) . Therefore,  t h e  problem i s  

t o  es t imate  t he  f i r s t  term. .For  t h i s  purpose, 'we -use t he  

following lemma. 

Lemma 2 .  Let s and t be complex, M > 0 ,  and 

We denote t h e  Lebesguemeasure of a s e t  S by I,I(S). Then 

Proof: Pu t t i ng  < = 2 2  - 1, u = s + t ,  and 

v = S-t , we have 



Let  

Then it i s  ev iden t  t h a t  

2  u ( I [ s I t ] )  r u(JCs, t- j )  

can be  r e w r i t t e n  a s  

1vl2 52 + 2  ~ e ( i v * )  5 + I U I *  - M(Iul+lvl). < 0 .  

The d i s c r i m i n a n t  D of  t h i s  q u a d r a t i c  form i s  

2  
D = M ( I u I + I V I )  1vl2 - ( ~ m  UV*) . 

For D 2 0 

U ( J C S , ~ ] )  r 2D41v(-21 

and f o r  D < 0 

u ( J C s 1 t 3 )  = 0. 

Therefore ,  in g e n e r a l ,  we  have 

. u(J[s. t])  r zM' ( I U I + I V ~ ) '  IVI-l. 



On t h e  o t h e r  hand, (A1.34) l e a d s  t o  

I U I  - I S I -  1.1 < M ~ ( ~ ~ I  + 1 ~ 1 ) ~ -  

S ince  15 1 r 1, we have 

Ivl 2 I lvl > lul  - M4(lul + l V l ) + .  

Adding lv 1 t o  ( ~ 1 . 4 1 )  and d i v i d i n g  it by two, we o b t a i n  

S u b s t i t u t i o n  of  ( ~ 1 . 4 2 )  i n  ( A l .  39) y i e l d s  

Hence, ( ~ 1 . 3 3 )  t o g e t h e r  w i t h  ( ~ 1 . 3 1 )  l e a d s  t o  

Thus, we have proved ( ~ 1 . 3 0 )  . Q. E. D. 

Now, it i s  obvious t h a t  
m 



i f  a  i s  s u f f i c i e n t l y  l a r g e .  Hence, p u t t i n g  T 5 ( 1 r ~ ~ t - J )  

we have 

S 
zi+ T 

dz C H ( Z ) ] - ~  - l +  o+ r l -  rl 

I [ s , t ]  i= 1 Zi '  7 

Lemma 2  t e l l s  u s  t h a t  

17 < 4M'(1s1+1t~)-' . 

-0/2 
Thus t h e  f i r s t  term of ( A l .  2.8) behaves l i k e  ( 1s I+ 1 t 1) a t  most. 

Then p u t t i n g  

we o b t a i n  t h e  s ta tement  (A) ' of  Theorem I .  The s ta tement  (B) 

i s  l i k e w i s e  obtained.  by applying ( ~ 1 . 2 1 )  t o  ( ~ 1 . 2 5 )  d i r e c t l y  



APPENDIX 11. PROOF OF THEOREM I1 

Lemma 1 of Appendix I toge ther  with 

A 

p (a) = 
P ( z , a )  

[a-zs - (1-z) to ] N 
0 

leads  t o  

( z , c )  

[a-zs - (1-z) t o l N [ s - 2 s -  (1-z) tl 
0 0 

Hence, 

with 1 

j Since lz (1-z) N-J I i 1 ,  we see  

according t o  t h e  proof of Theorem I .  Thus 



APPENDIX 111. PROOF OF THEOREM 111. 

If we can prove the following lemma, then the rest 

of the proof is equivalent to that of Theorem 11. 

Lemma 3. If for any a 2 0 

!~(a+~a) - P(G)( < ~ ' l ~ a ! ~  for I A a l  1 , 

where 1 > 6 > 0. > 0, and 1 > 0, then we can always find 
positive numbers 6 '  and C such that 

for any non-zero and non-positive w. 

Proof: Let K = 1/3. In the case r Iwl 2 2 u ,  

.lo) 
we have 

immediately from the proof of Lemma 1 of Appendix I. In 

the case r < 2 x ,  (A3.2) yields 

1 P (a) 1 < l3aU, for 0 < a  s 3 ~ .  



because of  t h e  convention (2.15) .  Hence, 

< c o n s t .  

a - 6  
= cons t .  

3 x  3 x  a - 2 x  

Thus we  o b t a i n  

f o r  any w except  f .or w 2 0. 



APPENDIX IV. PROOF OF THEOREM IV 

-N- g. 
By multiplying f (st t) by (st) ( 8  > O), we can 

assume 

If(slt) I < ~(Isl+ltl)-' for Isl+ltl > M 

. . 

without loss of generality. 

11) According to the edge-of-the-wedge theorem , 

f(s,t) is a single analytic function holomorphic in . 

D+ U ,D- u 72. (E) , where 72 (E) stands for a complex neighborhood 

A 4 of E. For (s, t) E D+ we consider 

where Im q > 0, and c is an infinitesimal positive.constant. 

.The right-hand side of (A4.2) is well defined. because of the 

analyticity and the boundedness (A4.1) . of f (st t) . 
. . .  

A A 
If we take particular points arg s = arg t, then 

I 
we can close the 5 contour of (A4.2) by adding a large semi- 

A A 
circle because (5's - E ,  5 't - c )  D+ U D- U n (E) and 



Because of the uniqueness of analytic continuation, (A4.3) 

tells us that F ( B .  ?, 3 )  is the 'analytic extension of 
A A 

f(5s - s ,  ~t - c )  to the topological product of D+ and 

{Im 5 > 0 3. Thus f (s, t) is holomorphic in 

We will show D' = Dst in the following. 

For simplicity, we write 

6 arg s, arg t, 

then 

and 
A I\ 

O < O  < l - r ,  o < , < n ,  0 <$.<IT. 

Since Dst. is explicitly given as the complement of (2.18), 

we,compare D' with it in the following. . 

lo) D' 3 D+ and D' 2 D- are evident (the chcices of 

I! are + , 0 and $ , IT, respectively). 

2 O )  When Im s >'O and Im t < 0, the points belonging to 

Dst are characterized by Im st* < 0. This condition can be 

rewritten as 

O < ~ < n < ~ < 2 n .  O < v - ~ < n .  



On t h e  o ther  hand, i f  we choose 5 a s  

then we have 

A i ( e - $ )  , A 
s = Isl. e i (?*-I) 1 t =  It\ e . I 

A A 
hence ( s ,  t) E D+ . Thus t h e  po in t s  of D s t  belong t o  D'. 

Conversely, i f  I m  st* 2 0 ,  i . e . ,  cp - 0 2 n, which i n ,  t u r n  

A 
impl ies  3 - 0 2 n .  This con t r ad i c t s  (A4 .7 )  . Thus both 

domains i n  t h i s  por t ion  coincide wi th  each o ther .  

3O) When I m  s < 0 and I m  t > 0,  t h e  problem i s  ,reduced 

t o  t h e  above case by interchanging s and t .  

4O) When I m  s = 0,  t h e  po in t s  of D s t  i s  charac te r ized  by 

' Re s c 0 with a rg  t # 0. A s  f o r  D '  , ( ~ 4 . 6 )  and (A4 .7 )  imply 

a r g  s # 0 and a rg  t # 0 ,  hence I m  s = 0 g ives  Re s < 0. 

5O) The case I m  t = 0 i s  s imi l a r  t o  the  above. 



APPENDIX V, PROOF' OF THEOREM V. 

We consider a point (s,t) .E Dst such that 

where c > 0 .  Cauchy 's theorem leads to 

where the closed~contour C is indicated in Fig. 1. Let R 

be the radius of the semi-circle of C. As R , m, the 
contribution from the semi-circle vanishes because of the 

condition (i). Hence, 



W e  want t o  in te rchange  t h e  o r d e r  of t h e  s '  and t '  i n t e g r a t i o n s  

and t h e  z i n t e g r a t i o n .  But t h i s  i s  n o t  t r i v i a l  because t h e  

denominator of t h e  in tegrand  may n o t  n e c e s s a r i l y  be l a r g e  

when ls'l and I t ' l  a r e  l a r g e .  

Lemma 4. Le t  

where s '  and t '  a r e  r e a l  and 0 < o < %. Then i t s  .Lebesgue 

measure ~ ( ~ [ R , s ' , t ' ] )  uni formly t e n d s  t o  ze ro  a s  R , a. 

Proof: W e  cons ide r  two c a s e s  s a t '  2 0 and 's ' t o  < 0 

s e p a r a t e l y .  

l o )  The case  s ' t '  0 .  W e  may assume s '  2 0 and t '  2 0 

without  l o s s  of g e n e r a l i t y .  The main i f iequal f ty  i n  (A5.4) 

becomes 
* . 8 .  

2s' + ( 1 - z ) t l  < ( s l t ' )  %- 6 

When s ' = t ' , (A5.5) becomes 1 < s '  < s" 1-20 
. , which i s  

impossible.  When s '  > t ' ,  t h e  p o i n t s  z belonging t o  I [ R , s ' , ~ ' ]  

s a t i s f y  



namely, 

If t' s 1, the right-hand side of (~5.7) is 0 (R -$- U) 

If t' > 1, 

When ,s ' < t ' , by interchanging (s ' , z) and (t ' ,1-z) the 

problem is reduced to the above. 

20.) The case s't ' < 0. We may assume s' > 0 and t ' < 0 

without loss.of generality. Let t" , -tl > 0. The main 

inequality in (A5.4) become's 

f [zsl-(1-z)t"] < (s't")f-u . 

If 2s'-(1-z)t" 2 0, the points z belonging to I~R,s',~!! 

satisfy 

If 2s'-(1-z)t" < 0, we have only to interchange (sl,z) and 

t 1 -  . Hence 



Thus we have 

u ( ~ ~ ~ , ~ l , t l ~ )  = o(R-') 

f o r  any case.  

Now, denoting t h e  i n t e r v a l  [O, l ]  by I ,  we can 

rewr i te  (A5.3) a s  

( ~ 5 . 1 3 )  

I n  t h e  f i r s t  term of t h e  right-hand s i d e ,  s t  and t '  s a t i s f y  

e i t h e r  { l s ' l  5 R ,  I t1(  5 R ]  o r  

Therefore, i f . w e  choose a so as t o  s a t i s f y  % g  > o > 0, 

t h e  order  of t h e  s '  and t '  i n t e g r a t i o n s  and the  z i n t e g r a t i o n  

can be interchanged on account of t h e  condi t ion 4 i ) .  The 
,- 

second term tends  t o  zero a s  R , , because of Lemma 4. Thus 

J f ( s , t )  = dz h+ ( z ,  zs+ (1-z) t) 

with  . 



For w fixed, $+(z.w) is a function of z defined almost 

everywhere in 0 s z s 1. Since the contribution from z = 1 

is infinitesimal, we always assume z # 1 hereafter. 

We can carry out one of integrations in (~5.16) 

as follows. 

Cauchy's theorem leads to 

+=+ic 

+ w = i - z  J 
-ao+iE: 

Becdiise 01 Ll~e coiidiLioi'l (ii) , Llie iiiLeg~dl (AS. 18) is 

convergent if z # z . Thus tt, (z,w) is well defined except i f + 
for z = Z~,.Z~,...~ z 1. m' 

Our next task is to investigate the analyticity of 

!~,+'(z,w) in w for z fixed. It is evident from (A5.16) that 

$+(z,w) is holomorphic in Im w > E:. . Next, we consider the 

analytic continuation to 

{w; F: 2 Im w 2 0, Re w < 01. 



For this purpose, we investigate the analyticity of 

w-zz 
f - ) in when w is fixed in the second quadrant. 

1- z 

This can be easily done by using (2.18). The result is 

illustrated in Fig.2' in case of z # 0. The shaded areas 

stand for singularity regions, which are defined by 

-1 
z Im w 5 1m..Z s (Im w/ Re w) Re Z, 

and 

0 2 Im z.2 (Im w/ Re w) Re g. 

In case of z = 0, there is no singularity in the upper half- 

plane. ~ h u s  we can analytically continue (+(z.w) to (A5.19) 

by deforming the ?S contour of (AS. 18) . For Im w = 0, the 

Z becomes like Fig. 3. The singularity regions now become 

two cuts shown in Fig. 3. (The change of the limit -m+i~ into -m-ic 

causes no trouble because of the condition (ii) and continuity.) 

In the next step, we fix w on the negative real 

axis. Then we can further deform the Z contour into the 

lower half-plane. Since the contribution from a large semi- 

12) 
circle vanishes because of the condition (ii), we finally 



where the  contour C '  i s  shown i n  Fig. 4. 

A l l ' t h e  above procedure can be done q u i t e  analogously 

f o r  a  po in t  ( s , t )  E D, such t h a t  

Then we ob ta in  

For w on the  negat ive  r e a l  a x i s ,  we have 

Therefore, we see  

on t h e  negat ive  r e a l  ax i s .  This means t h a t  t+(z ,w)  and 

$ (2, w) def ine  an a n a l y t i c  funct ion $ (z,w) which is holomorphic - 
except f o r  t h e  E-neighborhood of t he  p o s i t i v e  r e a l  ax i s .  

F ina l ly ,  we inves t iga t e  t he  asymptotic behavior of 

$ (z,w) . For t h i s  purpose, we again apply t h e  condi t ion (ii) 

t o  (85.18) . I n  t h e  p re sen t  case, since Iw 1 i s  1 arge,  i.t is 

necessary to i nves t iga t e  t h e  behavior of t h e  integrand much 

more c lose ly .  Since the  i n t e r s e c t i o n  of K and the  d i s c  

1s1+1tl s M is cw~~pac l ,  we have 



Therefore, t h e  condi t ion (ii) can be rewr i t t en  a s  

i n  t h e  whole K, where 

E • m i n  1 z i s + ( l - z i ) t ! > 0 .  
. . 

i 
. . . . . . . . . .. . (s, t) EK 

... . 
, . ... : 

.3 . ' i ' ,  . .  . 
. . 

For Im w > E ,  we use (AS. 28) . 

where 



I 

with 

The'assumption z # z implies k' . #  0. Writing Re v v' i 

and Im v v" > 0, we have 

The transformation u = k'sl-(1-zi)vl leads to 

- -1 
with vi = (1-zi) v' and k; ' k-k' (1-zi) 0 (2. fl by assumption) . 

1 

We make use of the following inequality, which can be easily 

proved: If a 2 b 0, one has 

for any 'real values of X and Y, where 

a-b a-b 
c min c, - , -). 

2 2a 



~ p p l L i n ~  (A5.35) t o  t h e  f i r s t  f a c t o r  o f  t h e  in tegrand  o f  

(A5.34) ., we o b t a i n  

where h > 0 because o f  (A5.36) w i t h  k'#O. L e t  h' ' m i n ( l , h ( l - z i ) ) .  

Then choosing 0 such' t h a t  0 < cr < Y ,  we have 

Thus it has  been e s t a b l i s h e d  t h a t  

( (Z ,W)  = o(l.1-7 

f o r  I m  w > c .  The same i s  t r u e  a l s o  f o r  I m  w < - c .  Hence, 

~ i n d e l g f  ' s asymptot ic  theorem ' t e l l s  u s  t h a t  (A5.39) i s  t r u e -  

a l s o  i n  

Now, t h e  . a n a l y t i c i t y  and t h e  boundedness (A5.39) of  

$ (2, w) , y i e l d  



Taking the improper limit e O+ in (AS. 22) and in (A5.41) , 

we obtain 

for w < 0, and 

J 
0 

a-w 

for w 0. To interchange the order of c -, 0+ and an 

integration is not made in the usual sense, but it defines 

a distribution. Therefore, the asymptotic'behavior (~5.39) 

is not necessarily inherited by p(z,a). Theorem V has now 

been established by (~5.15) with $+ = $, (A5.43) , and (A5.42) . 



APPENDIX VI. PROOF OF THEOREM VI. 

The proof is the same with that of Theorem V except 

for the asymptotic behavior of $(z,w). In the present case; 

instead of (~5.30) , we have 

5 2 + Ja ds' (l+Isl (+(vl-ks' I+lv"o - 1-'y 
in the whole D+, where v = vl+iv" and k are given in (A5.32) . 

Since the last expression of (A6.1) is nothing but a special 

case of the right-hand side of (~5.33) , 'we obtain 

+ ( ,  1 d c '  (14. I W ! ) - ' .  -- (AG. 2 )  

The same is true also for $-(z,w) with w D-. In the present 

case, (~6.2) holds regardless to C ,  hence we can interchange 

the order of.€ 4 0+ and the integration in the ordinary sense. 



APPENDIX VII, DERIVATION OF FORMULAS IN EXAMPLES 

Examples 1 and 2. Trivial, 

Example 3. The weight function can be easily calculated by 

-4 
using the representation of (-8)-)" (-t) (see Example 7) 

and 
3 

L2 -1 r sin a . 
exp[-(-t) 1 = rr da 

a-t 

The result is 

whose singularities are located at z = 0 (order z-') and at 

a = 0 (order a -4) only, and (~7.2) behaves like 0 (a-') as 

a 4 
- .  
..b' 

Example 4. Trivial. 

Example 5. See the next. . . 

Example 6. When N > Re X > N-1, we have 



,'.. - .,. 

D i f f e r e n t i a t i n g  ( ~ 7 . 3 )  by z0 n t imes ,  we o b t a i n  (4.3) . 
I f  n 2 N ,  one has  an i d e n t i t y  

J a-zs- (1-2) t u a-zs- (1-2) t 

Hence, f o r  n 2 N > Re 1 > -1, 

r d a  a X ' f ( s , t )  = n! (t-s) 

0 
(a - t )  "+' 

. . 

Example 7 .  F i r s t ,  we  assume 0 > R e  u > -$ and 0 > ' ~ e  v > -$. 
. . . . 

Then we can use  (2.21) w i t h  (2.22) . 

Then we o b t a i n  (4.5) . For t h e  g e n e r a l '  c a s e ,  we a n a l y t i c a l l y  

con t inue  (4.5) w i t h  r e s p e c t  t o  p and v a f t e r  making s u b t r a c t i o n s .  

By t h i s  way we  get t h e  c o r r e c t  r e s u l t  because of t h e  i h v a r i a n c e  

p r o p e r t y  of t h e  weight  f u n c t i o n  i n  t h e  s u b t r a c t i o n  procedure ( 1 . 4 ) .  
,I, - .  . . .  ... 



r' 

~ x & p l e  8. We want t o  prove (4 .16)  . We denote t h e  

right-hand s i d e  of (4.16) by f ( s ,  t) . Then 

Since f ( s , t )  i s  a symmetric func t ion  of s and t ,  (A7.7) l eads  

t o  . 

f (st t)  = l og  (-s) l o g ( - t )  + (s) + q, (t) , 

where cp i s  an unknown funct ion.  On t h e  o the r  hand, because 

of (5,121, we obt.ain 

f ( s , s )  = -2 (s+l) l o g  a 
= rlog(-.S) 12: 

(l+a) (a-s) 

which impl ies  9 ( s )  = 0. 
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FIGURE CAPTIONS. 

F ig ,  1 The contour C on t h e  o r  plane. 

Fig.  2 The skngula r i ty  regions  of f 

plane when w l i e s  i n  t h e  second quadrant.  

Fig.  3 The deformed coptour when w l i e s  on t h e  negat ive  

r e a l  axis. 

Fig. 4 The contour C' on t h e  Z plane. 
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