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Abstract

The majority of MEG imaging techniques currently in use fall into the general class of (weighted) minimum
norm methods. The minimization of a norm is used as the basis for choosing one from a generally infinite set of solu-
tions that provide an equally good fit to the data. This ambiguity in the solution arises from the inherent non-unique-
ness of the continuous inverse problem and is compounded by the imbalance between the relatively small number of
measurements and the large number of source voxels. Here we present a unified view of the minimum norm methods
and describe how we can use Tikhonov regularization to avoid instabilities in the solutions due to noise. We then
compare the performance of regularized versions of three well known linear minimum norm methods [5][7] with the
non-linear iteratively reweighted minimum norm method [1] and a Bayesian approach described in our companion
paper (“MEG-based Imaging of Focal Neuronal Current Sources,” Phillips J.W., Leahy R.M., Mosher J.C.).

The Minimum Norm Approach to MEG Imaging

Since the forward model in MEG is linear, we may relate the N sources y (¥x1) and the M MEG measure-
ments b (Mx1) as b = Gy +n, where the ’th row of the MxN system matrix G is a discrete representation of the
lead field (sensitivity) of the i’th sensor. The j’th column of G specifies the gain vector for the j°th constrained dipole
component. The Mx1 vector n represents noise generated within the sensor and by unwanted electromagnetic
sources.

Since the inverse problem is inherently ill-posed, the search for an appropriate imaging method is concerned
with finding a way to choose within a set of images that produce essentially the same fit to the data. The weighted
minimum l,-norm approach to linear inverse problems involves solving the constrained optimization problem:

Ywmn = argmin yTC;ly such that Ib—GyI2 =0 ¢))

y
where C, is an arbitrary symmetric positive definite matrix. Writing C, = WWT, we can form the solution as,

-1
v = WWIGT(GWWTGT) b = W(GW) b [0))

where (GW)1 denotes the pseudoinverse of GW . The weighted minimum norm solution can also be formed from
the singular value decomposition (SVD) of GW :

o = W2 (P2, o

i=1\ S;

where s;, v;, and u; are the ’th singular value and corresponding right and left singular vectors of GW, respectively.
Several forms of W have been proposed for MEG imaging applications. In [6] and [7], the weight matrix is
implicitly  the identity matrix (W=I). In the normalized minimum norm  method [4],
Wnorm = diag(1/||g,|, 1/|g,]---» 1/[|gnf) » Where ||g ]| is the Buclidean norm of the i’th column of G. This weight-
ing is designed to compensate for the reduced sensitivity of MEG to deep sources resulting in a preference for super-
ficial distributions when W=I. The NxN Laplac1an operator B is commonly selected to smooth the reconstruction m
minimum norm imaging, with W = B™'. The LORETA technique [5] uses a weighting matrix W, = W B~

norm
The Laplacian operator tends to select smoother reconstructions than either of the previous two welght functions.

TThis work was supported by the National Institute of Mental Health Grant No. RO1-MH53213, and National Eye
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Exact matching of the data in (1) results in ill-conditioning and high sensitivity to noise. Regularized forms
of weighted minimum norm methods lower this noise sensitivity. One popular technique is to simply truncate the
summation in (3) at a threshold index. An alternative method, Tikhonov regularization [3], replaces the original prob-
lem (1) with the unconstrained minimization of a combination of the residual error norm and weighted l,-norm of the
solution vector:

y, = argmin  [b—Gy*+2y"C}'y. @)

y
For any value of the regularization parameter A, the solution can be found as:

M T
o= WWGT(GWWTGT+AD b= WY ﬁ(‘i"s—b)v, )
i=1 :
where the filter parameters f; = s?/ (s? + A) . Note that the filter coefficients decrease as s; decreases. Therefore, the
contributions of (u;Th/s;) v; to the solution from the smaller s; are effectively filtered out. In our implementation of
the regularized weighted minimum norm methods we use a regularization toolbox [3] which selects an optimal value
for A using the L-curve method.

The iteratively reweighted minimum norm approach, also known as focal underdetermined system solution
(FOCUSS)[1], is a novel inverse method which iteratively updates the weight matrix using the result of the previous
iteration. The algorithm first provides an initial estimate of y(0) using (2) with W as the weighting matrix. At
each step thereafter, a separate weight matrix W(k) = diag(y(k- 1)) is formed. At each iteration, we update the
solution using,

Y& = (W W) (GW, . W) Tb. B} ©
For any starting point y(0) asymptotic convergence to a fixed point is guaranteed [1]. The fixed points are, however,
unknown and highly dependent on the initial estimate. Also, the final error in fitting the data may be large, even for

the noiseless case. In our implementation we use Tikhonov regularization and the L-curve method [3] at each itera-
tion to avoid ill-conditioning.

norm

The New Bayesian Approach

We have developed a new approach to MEG imaging. We use a Bayesian formulation of the inverse problem
in which a Gibbs prior is constructed to reflect our specific expectations regarding the spatial distribution of sources.
The reconstruction method uses this prior to resolve ambiguities that are inherent in the inverse problem. A thorough
description of this Bayesian technique is given in our companion paper (“MEG-based Imaging of Focal Neuronal
Current Sources,” Phillips, J.W., Leahy, R.M., and Mosher, J.C.).

Basic studies of functional activation, such as somatotopic or retinotopic mapping using fMRI or PET,
reveal the sparse and highly localized nature of activation in the cerebral cortex. Our Gibbs prior is therefore specifi-
cally designed to reflect the expectation that current sources tend to be sparse and focal. We combine this with a

Gaussian distribution for active sources and an assumption of additive |«
Gaussian noise to form the posterior distribution. An estimate of the pri- e

mary current source distribution for a specific data set is formed by maxi- { ' o "
mizing over the posterior probability.

Simulations

We have conducted extensive simulations based on a simplified
2D source model with a 1D array of 64 sensors. All sources are con-
strained to the annular segment of the x-y plane shown in Fig. 1. The dis-
tance between source locations was set to 2.8 mm providing an image grid

of 560 pixels. All dipoles were constrained in orientation perpendicular to
the x-y plane. The source images were chosen using stochastic sampling
from the prior distribution on the image. The results of one representative

Fig. 1. Sample plot of one simulation
solution showing representative posi-
tive and negative sources.
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simulation are shown in Fig. 2 for two scenarios, one noiseless, and one with added white Gaussian noise. We com-
pared the Bayesian technique to the methods previously discussed: the standard minimum 1, norm technique, the nor-
malized minimum norm technique, the LORETA method, and the iteratively reweighted minimum norm technique.
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Fig. 2. Sample 2D simulation with a 1D sensor array. 64 point measurements, 560 point image grid.
The percent residual error (% R.E.) is shown above and the range of source values (in nAm) is shown
below each image. Two scenarios are presented: (left) No noise added to the computed data
(right) White Gaussian noise added to the data to achieve a SNR of 20 dB

Phantom Experiments

We have applied the same techniques used in the
simulations to experimental phantom data collected with a
Neuromag-122 system [2] using the manufacturer’s 26
dipole phantom. The Neuromag-122 system employs 61
dual-channel planar first-order gradiometer units in a helmet-
shaped configuration at a radius of 10-11 cm, measuring the
magnetic field gradient in two orthogonal tangential direc-
tions, for a total of 122 individual sensor measurements.

The phantom consists of two half circles with a 7
cm radius in the x-z plane and y-z plane, with dipoles in
fixed positions in these planes oriented tangential to the
outer edge. The image reconstruction grid consisted of 768
locations spaced 4 mm apart on two 180 degree annuli, with
an inner radius of 3 cm and an outer radius of 7 cm. An
example of the imaging surface with the surrounding sensor
elements is shown in Fig. 3. The distance between sources
and sensors creates a gain matrix which is more poorly con-
ditioned than the one in the previous simulations, which
increases noise sensitivity. In all cases, the gain matrix was
constructed to include gradiometer effects and non-radial
sensor orientations assuming a spherical source volume [6].

v X

Fig. 3. Schematic representation of the phantom
reconstruction regions (two orthogonal, 180 degree
annular regions) with the locations of the planar
gradiometers of the neuromag-122 system super-
imposed.

The phantom data was scaled to reflect a reasonable evoked field response. We then added data collected in
the same system from a passive human subject (100 averages of a pre-stimulus interval from an evoked response par-
adigm). This background was added to the phantom data to obtain a specified SNR. Fig. 4 shows a comparison plot in
which noise was added to obtain a SNR of 10 dB. The minimum norm and Bayesian techniques tested on phantom

data performed comparably to the simulations.
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Fig. 4. Sample phantom results with three active dipoles on two orthogonal planes. 122 point measure-
ments, 768 point image grid. Percent residual error (Pct Res Err) is shown above and the range of
source values (in nAm) is shown below each image. Colored subject noise added to the data to achieve
a SNR of 10 dB.

Conclusions

These results show a wide variation in the characteristics of the solution obtained using different weighting
functions. All linear minimum norm methods produce results exhibiting a relatively large degree of smoothness. In
comparison, both iteratively re-weighted minimum norm and the new Bayesian method produce very sparse solu-
tions. For both simulations and the phantom experiment, all methods generally give similar residual errors in the fit to
the data. In some instances, the iteratively reweighted minimum norm method gives larger errors since there is noth-
ing inherent in the method to limit increases in the error from one iteration to the next. All results can be considered
‘correct’ in the sense that they are configurations that could have produced the observed data. This observation
emphasizes the severely under-determined nature of this problem. Clearly, in order to select between these feasible
solutions we must use additional information concerning the expected nature of the source. Our Bayesian approach
specifically introduces the information that sources are sparse and focal into the reconstruction method which results
in generally superior results for sources that exhibit these characteristics.
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