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Abstract

Dynamic disorder in the high-temperature solid phases of the Zintl compounds CsPb and NaSn is:
characterized by. fast orientational motions of the polyanions and coupled motions of the cations
Melting is characterized by slow translational motions of the centers of mass of the polyahions.
The dynamic behaviour of the ions is associated with dramatic increases in electrical conductivity
characteristic of the behavior expected of a mixed conductor.



1. Introduction

Melting of a crystalline solid into a liquid is generally thought of as a disordering process from a
state in which the atoms execute thermal motions about static equilibrium sites to one in which all
they migrate randomly over the whole space occupied by the material. In a complex system,
several different components of this disordering may be distinguished: these can include
translational disorder of one sublattice, chemical disorder between two or more sublattices,
orientational disorder of molecules or complex ions, or lattice melting in one or two directions in
the crystal. When such a system is heated towards the melting point, different dynamical |
disordering processes set in until complete long-range disorder is achieved in the liquid state.
Further distinctions can be made as to whether a particular disordering processes occurs gxaduaﬂy,_
over an extended temperature range, or suddenly, at a phase transition. If more than one prOc&ss"is
associated with a phase transition, these transitions may occur at a single temperature — the
melting point (Fig. 1a) — or a sequence of distinct temperatures (Fig. 1b) culminating in the
melting point. In either case the entropy of melting may be decomposed into a sum of partial
entropies associated with the different disordering processes: “

AS = AS +AS, _ +AS_

Along with the atomic structure changes taking place in this way, changes in the transport
properties and response functions of the systems, such as electronic conduction thermopower, Hall -
effect, magnetic susceptibility and ionic conduction, may be expected. These changes may occur
either abruptly at a phase transition or gradually over a‘temperature interval between transitions.

Zintl compounds of the form A M,, where A is an eleétro-posiﬁve (alkali or alkaline earth) metal
and M is an electro-negative element, provide a rich ground for investigating this kind of behavior.,
In these compounds, charge transfer from A to M leads to chemical properties characteristic of
elements one or two columns to the right of M in the periodic table, often involving directional
bonding and the formation of complex anions. They generally behave as semiconductors or semi
metals in both solid and liquid state, and exhibit a rich variety of transport properties, bonding and
structure as a function of composition, temperature and pressure.



II. Dynamically Disordered Solid Phases

A typical example of differences in melting behavior is provided by the equiatomic alkali-lead
compounds studied by Saboungi and coworkers, which form tetrahedral Pb,* Zintl ions in both
solid and liquid [1]. Fig. 2 shows the enthalpy as a function of temperature for KPb, which
exhibits a single transition, and CsPb, which exhibits two transitions about SOK apart [2]. To
investigate the disordering processes involved, quasielastic neutron scattering (QENS) i
measurements were carried out at the Institut Laue-Langevin [3], typical results of which are
shown in Fig. 3. The spectra in the low-temperature (clearly crystalline) phase (a) could be fitted
nicely by a delta function convoluted with the instrumental reduction function, those in the
intermediate phase (b) by a combination of delta and Lorentzian functions, and those in high
temperature (clearly liquid) phase (c) by a combination of two Lorentzians. These results show
immediately that the intermediate phase between the two phase transitions is a solid phase
characterized by some kind of dynamic disorder. |

The structure factors (intensities as a function of scattering vector Q) of the two peaks are shown in v
Fig. 4. Both sets of data are compared with theoretical curves based on a highly simplified model '
in which Cs4Pb4 units, which can be identified in diffraction results [4] from the crystalline phase,
exhibit random jump reorientations between the four orientations observed in the crystal. The
excellent agreement between this simple model and the data shows that the disordered solid is a
rotor phase involving both Cs+ and Pb,* motions.

Similar results for the disordered solid phase in NaSn [S5], obtained at ISIS, are shown in Fig. §.
NaSn is chemically analogous to CsPb, forming Sn,* Zind ions in solid and liquid [6]. The
neutron results, however, are somewhat different: in the QENS spectra (Fig. 5a) obtained from
measurements made at the high-resolution back-scattering spectrometer IRIS and at the lower-
resolution chopper spectrometer HET at two different incident neutron energies, two Lorenmans ,
of different widths can be distinguished at scattering vectors Q > 1 A™. Furthermore, elastic
scattering is not observable expect for the intense Bragg scattering around 1 A", despite the large
incoherent scattering cross section of Na. These results indicate that the dynamic disorder in NaSn
consists of fast reorientations of the Sn,* Zintl ions together with a slower translational migration
of the Na* cations [5]. Despite their different time constraints, the two processes must be coupled
since only a single phase transition is observed.




IOI1. Structure of the Disordered Solids

* Neutron diffraction measurements on the two disordered solid phases just discussed show that the
Bragg scattering observed around a wave vector of 1 A™ is in fact composed of several distinct
peaks. This implies crystal structures of relatively low symmetry, surprising since orientational
disorder usually proceeds into cubic phases. Diffraction data from the disordered phase of NaSn,
taken at IPNS [7], show that this phase is in fact orthorhombic, so that the overall crystal
symmetry is actually lowered at the disordering transition. |

Rietveld analysis of the diffraction profiles provide a detailed confirmation of the general picture
inferred from the QENS data: the Sn,* Zintl ions are actually found to occupy two different sites,
each with two different orientations, each configuration being occupied one quarter of the tin_ie.
The Na* cations occupy four different sites, of which two are fixed (presumably helping to
maintain the framework of the crystal) and two are mobile, providing pathways for rapid migration
parallel to the ¢ axis of the orthorhombic cell. These pathways exhibit pronounced convolutions -
parallel to the a axis (Fig. 6),

IV. Dynamic Disorder in the Liquids

Comparison of the QENS data for the disordered solid and liquid phases give insight into the final
disordering that takes place on melting [5]. In CsPb, the structure factor of the elastic scattering in
the disordered solid phases, shown above in Fig. 4(b), is mimicked by that of the narrower
component of the two Lorentzians fitted to the QENS spectra of the liquid (Fig. 7). The energy
widths of the two components differ by about a factor 8. It is reasonable to associate the narrow
component with translational diffusions of the centers of mass of the Pb,* Zintl ions and the broad
component with rotational diffusion of these units and associated motions of the Cs” cations.

In liquid NaSn, the structure factors of the peaks observed in the IRIS and HET measurements
follow clearly the behavior observed in the disordered solid phase, shown above in Fig. 5, the
most significant difference being that the Bragg peaks around 1 A are no longer observed [5]. As
in the disordered solid phase, it is reasonable to associate the narrow component with the center-of-
mass motions, now including those of the Sn,* Zind ions as well as of the Na* cations, and the
broad component with the Zintl ion reorientations.




V. Vibrational Aspects of the Disorder

Dynamic disorder can be expected to influence the dynamics on shorter time scales. The
characteristics of the vibrational spectra in the three phases of CsPb [3] are shown in Fig. 8. A
regular tetrahedron possesses three normal modes with frequencies in the ratios 1: V2 : 2 (for
central forces between the constituent atoms). The Pb,* Zintl ions can be expected therefore to
exhibit a librational mode and three vibrational modes. These can be clearly ider_xﬁﬁed in Fig. 8 (a).
As the temperature is increased into the disordered solid (b) and liquid (c) phases, the distinction
between orientational and vibrational modes is maintained, although separate vibrational modes can
no longer be identified. ’

V1. Electrical Conductivity

In a semiconducting compared with a small band gap one would expect a rather subtle interplay
between atomic disorder and electronic transport: on the one hand the disorder would tend to -
increase the scattering of mobile electrons or holes and hence decrease the conductivity, while on
the other hand the gap between valence and conduction bands would be expected to decrease,
leading to enhanced conductivity. Both effects are in fact observed in the compounds discussed
here. A typical behavior is that of NaSn [8] shown in Fig. 9. The conductivity shows a typlcally '
activated behavior as temperature is increased in the ordered crystal, drops at the disordering
transition and then rises by 2-3 orders of magnitude until the melting point is 'reach'ed, after which
is increases relatively slowly. In CsPb [8] there is instead a large increase by nearly two orders of -
magnitude at the disordering transition followed by a slow rise up to the melting point. The
general problem of “mixed” conduction, involving interacting fast ions and mobile fermions, has
been discussed on a phenomenological basis by Ramasesha [9], who finds a distinction between
the “wide-gap” situation characterized by a gradual increase with temperature in population of
mobile ions and fermions and the “narrow-gap” situation where both exhibit a jump increase at the -
disordering transition . In the present context, NaSn appears to represent the wide-gap case and
CsPb the narrow gap case. A similar distinction is found in other mixed conductor systems, e. g.;
between Ag,Te in the one class and Ag,S and Ag,Se in the other [10]. A




YL Conclusions

Dynamic disorder in the high-temperature solid phases of the Zintl compounds CsPb and NaSn is
characterized by fast orientational motions of the polyanions and coupled motions of the cations.
In CsPb these appear to be on a similar time scale, while in NaSn the orientational moﬁons are
more rapid. The cation motions in NaSn appear to be of a translational type in which the Na* ions
migrate through the crystal along pathways parallel to the ¢ axis. In both cases melting is
characterized by the appearance of slow translational motions of the centers of mass of the
polyanions. .

The dynamic behaviour of the ions is associatéd with dramatic increases in electrical conductiviiy.

Here again the detailed behavior shows significant differences, with CsPb exhibiting the behavior
expected of a narrow-gap mixed conductor and NaSn that of a broad-gap gap mixed conductor.
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Figure Captions

1. Schematic illustrations of the melting process in which different disordering processes set in
(a) at the same temperature or (b) at a sequence of distinct temperatures.

2. Enthalpy as a function of temperature near the melting pomts of alkali-lead compounds [2].
The solid lines are a guide to the eye. .

3.  Quasielastic neutron scattering spectra for the three phases of CsPb in the vicinity of the
pbase transitions shown in Fig. 2. Circles: data; solid lines: fitted delta and Lorentzian
functions, broadened with experimental energy resolution function [3].

4. Structure factors for (a) Lorentzian and (b) delta-function peaks in the disordered soli@ phaSe
of CsPb (880 K). Circles: data; solid lines: results of the model described in the text [3].
The calculated structure factor in (b) has been broadened with the instrumental Q resolution
function.

5. Structure factors for (a) Lorentzian and (b) delta function peaks in the disordered solid phase
of NaSn (773K).. Solid circles high resolution data from IRIS; open circles: medium
resolution data from HET (neutron energy of 20 meV); open triangles: low-resolution data
from HET (neutron energy of 40 meV) [5]. The lines are a guide totheeye

6.  Fourier contour maps of neutron diffraction in the ac plané of the disordered solid phase of
NaSn at 753K {7].

7. Structure factors of the narrow (circles) and broad (triangles) Lorentzian peaks, and total
intensities (inverted triangles), for liquid CsPb at 923K [5]. The lines give a guide to the
eye.

8.  Generalized vibrational density of states in the three phases of CsPb [3].

9.  Electrical conductivity and thermopower as a function of temperature in NaSn [8].
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