

MASTER

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

TECHNOLOGY CENTER • 10 WEST 35TH STREET • CHICAGO 16, ILLINOIS • CALUMET 5-9600

May 4, 1961

ARF 2198-16

U. S. Atomic Energy Commission
Chicago Operations Office
9800 South Cass Avenue
Argonne, Illinois

Attention: Mr. H. N. Miller
Contracts Division

Subject: EURATOM PROGRAM
"Improved Zirconium Alloys"
Contract No. AT(11-1)-578
Project Agreement No. 1

Gentlemen:

This is the twelfth monthly report, covering the period April 1 to April 30, 1961, on the subject program. The program objectives are development of alloys having superior 680°F water and/or 750° to 900°F steam corrosion resistance and development of higher strength alloys for current temperature ranges while maintaining corrosion resistance comparable to Zircaloy-2. Corrosion behavior in water and steam provides a screening test for acceptance of experimental alloys.

During this report period, specimens which previously showed promising corrosion resistance in 750°F steam after 329 hours exposure were re-entered in test for an additional 480 hours. Since binary tin alloys in 750°F steam had exhibited improved corrosion properties as the tin content increased to 7 per cent, additional compositions of Zr-10Sn and Zr-12Sn were included. Table I summarizes the corrosion behavior of selected alloys after 809 hours in 750°F steam. From the series of tin alloys, it appears that a minimum in corrosion rate occurs at 7 per cent tin; the corrosion resistance is not, however, sufficiently high to consider this alloy for further development. Nevertheless, the compositions Zr-0.5Nb, Zr-1V, and Zr-1Sb and the alloys Zr-Fe, Zr-Cr, and Zr-Mo appear promising for development of steam-resistant material. Promising compositions in Table I will be further exposed to 750°F steam.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.
As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

518 1

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The results of 680°F water tests after 1902 hours were reported last month in ARF 2198-15 (Quarterly Report No. 2). Compositions showing promising corrosion resistance were placed in test for further determination of corrosion behavior. Also being exposed to 680°F water are the compositions Zr-(0.25, 1, 2)In, a specimen of electron-beam melted zirconium, one of high-purity crystal bar, and an as-quenched (retained beta) alloy of Zr-30Nb-5Mo. Approximately 350 hours' exposure time has elapsed, and the test will be interrupted sometime in May. The indium alloys have not previously been tested; the crystal bar and electron-beam melted zirconium are being investigated for determination of purity effects on corrosion resistance, and the Zr-30Nb-5Mo alloy should indicate corrosion behavior of beta-zirconium as compared to corrosion of an equilibrium microstructure.

In anticipation of a second year's work, experimental continuity has been maintained. The data on corrosion resistance of binary alloys in superheated water and steam are being used for planning ternary compositions; hopefully, a number of successful alloys will result. Work on hydrogen pickup during corrosion will be initiated during the second year.

Respectfully submitted,


ARMOUR RESEARCH FOUNDATION OF
ILLINOIS INSTITUTE OF TECHNOLOGY

D. Weinstein
Associate Metallurgist

F. C. Holtz
Senior Metallurgist

R. J. Van Thyne
Assistant Director
Metals and Ceramics Research

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

TABLE I
CORROSION BEHAVIOR OF SELECTED
EXPERIMENTAL ALLOYS IN 750° F STEAM

Composition	Weight Gain, mg/dm ²	
	329 hours	809 hours
Zircaloy-2	24.88	41.57
Zr-0.5Nb	27.42	42.66
Zr-2Nb	51.20	84.32
Zr-5Nb	72.20*	---
Zr-10Nb	101.75*	---
Zr-25Nb	136.46*	---
Zr-30Nb	134.73*	---
Zr-0.5Sn	a*	---
Zr-1.5Sn	1202.88a*	---
Zr-3Sn	4763.23a*	---
Zr-5Sn	603.63*	---
Zr-7Sn	252.18	812.57*
Zr-10Sn	---	a* (480 hours)
Zr-12Sn	---	550. a* (480 hours)
Zr-0.25V	277.41a*	---
Zr-1V	27.19	46.32
Zr-3V	a*	---
Zr-0.25Sb	1745. a*	---
Zr-1Sb	29.51	47.83
Zr-2.5Sb	37.01	87.38
Zr-4Sb	41.65	113.73*
Zr-6Sb	75.40	217.14a*

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

TABLE I (continued)

Composition	Weight Gain, mg/dm ²	
	329 hours	809 hours
Zr-0.25Cr	22.44	38.76
Zr-1Cr	58.44	91.24a*
Zr-3Cr	23.09	33.12
Zr-0.25Cu	24.78	40.63
Zr-0.25Fe	26.77	40.65
Zr-1Fe	27.79	41.69
Zr-3Fe	38.65	59.47
Zr-0.25Si	56.96a*	---
Zr-0.25W	671.19a*	---
Zr-1W	652.00a*	---
Zr-0.25Mo	17.04	28.06
Zr-1Mo	20.08	57.24
Zr-0.25Ta	35.31	50.44*
Zr-0.25Co	38.90	48.88
Zr-1Co	27.30	41.45
Zr-3Co	33.13	52.20
Zr-0.25Pt	37.84	47.80*
Zr-1Pt	54.43*	---
Zr-0.25Pd	34.53	49.32
Zr-1Pd	48.83	68.76
Zr-0.25Rh	40.31*	---
Zr-1Rh	53.91*	---
Zr-0.25As	131.27*	---
Zr-1As	a	---
Zr-0.25Bi	1481.27a*	---

TABLE I (continued)

Composition	Weight Gain, mg/dm ²	
	329 hours	809 hours
Zr-0.25Te	19.01	37.03
Zr-1Te	39.09	65.14*
Zr-0.25Ge	43.30*	---
Zr-1Ge	202.96*	---
Zr-1Ag	1916.99*	---
Zr-0.25Ni	32.84	45.78
Zr-1Ni	33.23	46.33
Zr-3Ni	103.25	---

* Unacceptable corrosion resistance - discontinued from further testing.

a Severe spalling or disintegration.