R
Novg g 1438
OSTy

STENMIN: A Software Package for Large, Sparse
Unconstrained Optimization Using Tensor Methods *

Ali Bouaricha'

Argonne National Laboratory

We describe a new package for minimizing an unconstrained nonlinear function where the
Hessian is large and sparse. The software allows the user to select between a tensor method and
a standard method based upon a quadratic model. The teasor method models the objective
function by a fourth—order model, where the third— and fourth—order terms are chosen such that
the extra cost of forming and solving the model is small. The new contribution of this package
consists of the incorporation of an entirely new way of minimizing the tensor model that makes
it suitable for solving large. sparse optimization problems efficiently. The test results indicate
that, in general. the tensor method is significantly more efficient and more reliable than the
standard Newton method for solving large, sparse unconstrained optimization problems.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra-
sparse and very large systems; G.1.6 [Numerical Analysis]: Optimization—unconstrained op-
timization; (i.4 [Mathematics of Computing}]: Mathematical Software '

Cieneral Terms: Algorithms

Additional Key Words and Phrases: tensor methods. sparse problems, large-scale optimization, -
rank-deficient matrices

*Part of this work was performed while the author was research associate at CERFACS (Centre Européen de
Recherche et de Formation Avancée en Calcul Scientifique, Toulouse, France). -

'Author’s address: Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
Illinois, 60439. bouarichWmcs.anl.gov. This work was supported in part by the Office of Scientific Computing, -
U.S. Department of Energy, under Contract W-31-109-Eng-38.

The submitted manuscript has been authored
by a contractor of the U.S. Government
under contract No. w-31-109-ENG-38.

Accordingly, the U. S. Government rotain? a
- M nonexclusive, royalty-free I.i:an'se 7] zab::t:
oduce the publish form i
Tf-“s DOCUMENT is UNLIMiTED :'om'r.i‘;'mion, or aliow others to de- so, for
ON OF \

U, 5. Government purposes.

DISTRIBUTI

-DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
‘assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible

in electronic image products. Images are
produced from the best available original
document.

1. Introduction

This paper describes a software package for solving the unconstrained optimization problem
given f : R* — R, find z, € R™ such that f(z.) < f(z) forallz € D, (1.1)

using tensor methods, where D is some open set containing z.. We assume that f is at least
twice continuously differentiable and V2 f(z,.) is large and sparse.

Tensor methods for unconstrained optimization are general-purpose methods primarily in-
tended to improve upon the performance of standard methods especially on problems where
VZf(x.) has a small rank deficiency, and to be at least-as efficient as standard methods on
problems where V2 f(z.) is nonsingular. Tensor methods for unconstrained optimization base
each iteration upon the fourth—order model of the objective function f(z)

Mr(ze+d) = f(z) + Vf(z)-d + %V'zf(zc) N —é—TC,-d3 + 2—141/ St (12)
where d € R", z. is the current iterate, V f(z.) and V2f(z,) are the first and second analytic
derivatives of f at z., or finite difference approximations to them, and the tensor terms at z.,
T, € R™***" and V. € R™*X"X"X1 are symmetric. (We use the notation V f(z.)-d for V f(z.)7d,
and V2f(z.)-d? for dTV2f(z.)d to be consistent with the tensor notation 7, - d> and V. - d*.
We abbreviate terms of the form dd, ddd, and dddd by d?, d>, and d?*, respectively.)

Schnabel and Chow [11] select T. and V. such that the model interpolates function and
gradient values from p past iterates, where p is a small number. This strategy results in 7.
and V. being low-rank tensors, which is crucial for the efficiency of the tensor method. Here,
we consider only the case where the tensor model interpolates f(z) and V f(z) at the previous
iterate (i.e., p = 1). The reasons for this choice are that the performance of the tensor version
that allows p > 1 is similar overall to that constraining p to be 1, and that the method is simpler
and less expensive to implement in this case.

The above choice of T. and V, yields the tensor model

Mr(z.+d) = flzo) + Vf(ze)-d + év‘lf(zc).d‘l + %(de)(sTd)z + 72%(3701)4, (1.3)

where s € R" is the step from z. to the previous iterate r_; (i.e., s = z_, — z.) and b € R"
and v € R are uniquely determined by the requirements Mr(z_;) = f(z_;) and VMr(z_1) =
V f(x_1). The whole process of forming the tensor model requires only O(n?) arithmetic oper-
ations. The storage needed for forming and storing the tensor model is only a total of 6n.

The tensor algorithws described in [11] are QR-based algorithms involving orthogonal trans-
formations of the variable space. These algorithms are very effective for minimizing the tensor
model when the Hessian is dense because they are very stable numerically, especially when the
Hessian is singular. They are not efficient for sparse problems, however, because they destroy
the sparsity of the Hessian due to the orthogonal transformation of the variable space. To pre-
serve the sparsity of the Hessian, we developed in [4] an entirely new way of minimizing the-
tensor model that employs a sparse variant of the Cholesky decomposition. This makes the new
algorithms very well suited for sparse problems. In this new approach, we show that the min-
imization of (1.3) can be reduced to the solution of a third-order polynomial in one unknown,

plus the solution of three systems of linear equations that all involve the same coefficient matrix
V2 f(z.). The STENMIN package is essentially based on this new approach.

The remainder of this paper is organized as follows. In §2 an iteration of tensor methods
for large, sparse unconstrained optimization is outlined. In §3 we give an overview of the input,
output, and important options provided by the software package. We describe the user interface
to the package in §4, which includes both a simplified (default) and a longer calling sequence. In
§5 we describe the meaning of the input, input-output, and output parameters for the package.
In §6 we present the default values provided by the package. A few implementation dependencies
are described in §7. In §8 we give an example of the use of the package. Finally, in §9 we describe
comparative testing for an implementation based on the tensor method versus an implementation
based on the Newton’s method, and we present summary statistics of the test results.

2. An Iteration of Tensor Methods

In this section, we present the overall algorithm for tensor methods for large, sparse uncon-
strained optimization. Algorithm 2.1 is a slightly modified version of the algorithm described in
[4] in the way the tensor step is selected when the 3 equation (see algorithm below) has more
than one root. In general, this new way of computing the tensor step appears to perform better
than the strategy described in [4], in both function evaluations and execution times. A summary
of the experimental results for this implementation is presented in §9.

Algorithm 2.1. An [teration of Tensor Methods for Large, Sparse Unconstrained Optimization

Let z. be the current iterate, z, the next iterate, d, the tensor step, and d,, the Newton step.
1. Calculate V f(z.), and decide whether to stop. If not:
2. Calculate V2 f(z.)
3. Calculate b and v in the tensor model (1.3), so that the tensor model interpolates
f(x) and Vf(z) at _, '
4. Find a potential minimizer d; of the tensor model
4.1. Factor V2 f(z.) using the MA27 package [8]
4.2. if V*f(z.) has full rank then
4.2.1. Form the 3 equation (3 € R) :
—u+ (yw—uv —)8 = 2u8% + (wz — Lw — 1oH)3°,
where u = sTV2f(z.)" 'V f(ze), v = sTV2 fzo) 710, w = sTVEf(z.) s,
y =0TV f(2.)7 'V f(z,), and z = BTV f(z,)"'b
4.2.2. Compute the roots of the 3 equation
4.2.3. Select 3. = min(|3;]) where j3; are the roots of the 3 equation
4.2.4. Substitute 3, into
9. = __(u + B+ %vﬂf + %wﬁf)
wH.
4.2.5. (lalculate the tensor step:
dy = =V f(2) UV f(ze) + 0.Bus + 5820 + 3835)
4.3. elseif V3 f(x.) is singular with rank(V2f(z.)) = n — | then
4.3.1. Form the 3 equation (3 € R):

u+ (14 Bv)3 + (11; + 2 wﬂ)ﬂ2 + Fw?,
where u = sTV2f(z.)” ‘Vf(zc) sz(zc) V2 f(zc) + ssT
Vi(ze) = Vf(ze) + Vif(ze)d+ 0Bs + 13% + 13, B = sTd, 0 = b7d, d is the global
step computed in the previous iteration, v = sT‘72f(xc)—1b, and w = STVZf(xc)"‘s
4.3.2. Compute the roots of the J equation
4.3.3. Select 8, = min(]3;|) where 8; are the roots of the 8 equation
4.3.4. Substltute B. into

= - 2o f w232y
b = Sy (WwB — v — woB + (yw + 2wp* — 208 - v*3’ — v 1)5,_

+(3zwpB - Zwf — 3v— 302B) + lzw — 2)83), .
where y = bTVZf(x)~ ‘Vf(a:c), and z = bTVZf(m)"b
4.3.5. Calculate the tensor step of the transformed tensor model (2.1) below
§ = =V2f(zc) N (Vf(2c) + BBub + 3.5 + Bubus + (30 + 185)52 + L63s)
4.3.6. Calculate the tensor step of the original model (1.3) :
de=6+d
4.4. else {rank(V*f(z.)) < n -1}
4.4.1. Modify the negative eigencomponents of V2 f(z.)
4.4.2. Perform steps 4.2.1-4.2.5
endif
5. Compute a next iterate r,
5.1. if dt is descent then
z+. = I + dt -
if f(z4) < f(zo)+ 1074 Vf(z.)Td, then -
Ly = £+
else
Find an acceptable z} in the Newton direction d,,
using the line search Algorithm A6.3.1, page 325 [7]

Find an acceptable z! in the tensor direction d;
using the line search Algorithm A6.3.1, page 325 [7]

if f(z7) < f(z%) then

Iy =2z}
else
Iy =af
endif
endif
endif
5.2. else
Find an acceptable z% in the Newton direction d,,
using Algorithm A6.3.1, page 325 [7]
Ty =rlh
endif

6. z. =z, flz.) = f(zy), go to step |

[n step I, the gradient is either computed analytically or approximated by the algorithm
A5.6.3 given in Dennis and Schnabel [7]. In step 2, the Hessian matrix is either calculated
analytically or approximated by a graph coloring algorithm described in [6]. In step 4.3, we first
compute the tensor step & of the transformed model (obtained by substituting d + é for d in
(1.3), where d is the global step computed in the previous iteration)

Mr(ao+d) = flao) + Vi) d + 59%0(z)- & + S(6Td)(sTd)?
+ l sTd)* + (Vf(ze) + Vif(z)d + (de>(<Td)e
—(er) b+ 5o(sTd)s) -5 + —<v2f(zc> (2.1)
+ (bTd + g—ssT)-éz + (sTd)BT6)(sT) + §(bT6)(sT 5)?
+ %(ST&)(S%P + 572(3%)4.

Then we set the tensor step d of the original tensor model (1.3) to d + 6. In step 4.4, we obtain
a perturbation g such as V2f(z.) + pl is safely positive definite by using the Gill, Murray,
Ponceleon, and Saunders method [9]. After we compute the LDLT of the Hessian matrix using
the MA27 package [8], we change the block diagonal matrix D to D + E. The modified matrix is
block diagonal positive definite. This guarantees that the decomposition L(D + E)LT is positive
definite as well. Note that the Hessian matrix is not modified if it is already positive definite. In
step 5, we perform a standard backtracking line search global strategy to compute a next iterate
z4+. The line search temsor method is much simpler to implement and to understand than
the two-dimensional trust region tensor method introduced in [4], and is appreciably faster.
For these reasons, this software uses a line search method. The global framework for the line
search method we used in conjunction with our tensor method for large, sparse unconstrained
optimization is similar to the one used for systems of nonlinear equations [3, 5]. This strategy
has proved very successful for large, sparse systems of nonlinear equations. This approach always
tries the full tensor step first. If this provides enough decrease in the objective function, then we
terminate; otherwise we find acceptable next iterates in both the Newton and tensor directions
and select the one with the lower function value as the next iterate. The Newton step d, (if
needed) is computed as a by-product of the minimization of the tensor model. It is the modified
Newton step (V2 f(x.) 4+ pl)"'V f(z.), where u = 0 if V?f(z.) is safely positive definite, and
> 0 otherwise. The stopping criteria of Algorithm 2.1 are described by the parameter TERMCD
in §3.

3. Overview of the Software Package

The required input to the software is the number of variables N, the function FCN that computes
f(z), an initial guess zg, the number of nonzeros NZ stored in the lower or upper half of the
Hessian matrix, and the row and column indices of these nonzeros given in any order.

Two methods of calling the package are provided. In the short version, the user supplies
only the above information, and default values of all other options are used. These include the
calculation of the gradient and Hessian matrix by finite differences, and the use of the tensor

rather than the standard Newton method. In the other method for calling the package, the user
may override any default values of the package options.

The user has the option to choose between the tensor method and the standard Newton
method. If the flag METHOD is set to 0, the package will use the standard method. The tensor
method is used otherwise.

Upon completion, the program returns with an approximation XPLS to the minimizer z., the
value of the objective function FPLS at XPLS, the value of the gradient GPLS(XPLS), the Hessian
H(XPLS), and a flag specifying under which stopping condition the algorithm has terminated.

The software package is coded so that if the user inputs the typical magnitude TYPX; of each
component of x, the performance of the package is the equivalent to what would result from
redefining the independent variable x with

[1/TYPX,

Lscaled = o ‘ (31)

] 1/TYPX, |
and then running the package without scaling. The default value of each TYPX; is 1. Scaling is
often important to use for problems in which the variable components are widely different in
magnitudes.

The user may supply analytic routines for the gradient and/or the Hessian. If they are not
supplied the package computes them by finite differences. The parameters GRDFLG and HSNFLG
specify whether analytic gradient and Hessian have been provided, respectively. When the
analytic gradient and/or Hessian are supplied, the user has the option of checking the supplied
analytic routines against the package’s finite difference routines.

The standard (default) output from this package cousists of printing the input parameters
and the final results. The printed input parameters are those used by the algorithm and hence
include any corrections made by the program module OPTCHK, which examines the input spec-
ifications for illegal entries and consistency. The program will provide an error message if it
terminates as a result of input errors. The printed results include a message indicating the rea-
son for termination, an approximation XPLS to the solution z., the function value at XPLS, and
the gradient vector GPLS. The package provides an additional means for the control of output
via the variable MSG described in §5. The standard output is the input state, the final results,
and the stopping conditions. The user may suppress all output or may print the intermediate
iteration results in addition to the standard output.

If the user sets the variable INFORM to 1, then the package uses reverse communication to
obtain the multiplication of the Hessian matrix at the current iterate by a given vector. If
'INFORM is set to 0, then this quantity is computed by the subroutine MATMV provided by the
package.

4. Interfaces and Usage

Two interfaces have been provided with the package. If the user wishes to use all the defaults
options provided by the package, then he should call TENSPDO (TENSPSO if single—precision is
used). Only the required input described in §3 needs to be supplied. The other interface,
TENSPD (TENSPS if single—precision is used), requires the user to supply all parameters. The user
may specify selected parameters only by first invoking the subroutine DFAULT, which sets all
parameters to their default values, and then overriding only the desired values.

The two calling sequences are as follows.

1. CALL TENSPDO(NMAX, N, X0, NZ, IRN, LIRN, ICN, LICN, FCN, D1iFN, D2FN,
* TYPX, MSG, XPLS, FPLS, GPLS, H, WRK, LWRK, IWRK, LIWRK, TERMCD)

2. CALL DFAULT(N, TYPX, FSCALE, GRADTL, STEPTL, ILIM, STEPMX,
* IPR, METHOD, GRDFLG, HSNFLG, NDIGIT, INFORM, MSG)

C USER OVERRIDES SPECIFIC DEFAULT VALUES PARAMETERS, E.G.

GRADTL = 1.0D-6
ILIM = 500
GRDFLG =1
HSNFLG =1

CALL TENSPD(NMAX, N, X0, NZ, IRN, LIRN, ICN, LICN, FCN, GRD, HSN,
* TYPX, FSCALE, GRADTL, STEPTL, ILIM, STEPMX, IPR, METHOD,

* GRDFLG, HSNFLG, NDIGIT, MSG, XPLS, FPLS, GPLS, H, WRK, LWRK,

* IWRK, LIWRK, TERMCD, VECTOR, INFORM)

5. Parameters and Default Values

The parameters used in the calling sequences of §4 are fully described here. TENSPDO uses only
those parameters that are preceded by an asterisk. When it is noted that module DFAULT returns
a given value, this is the default employed by interface TENSPDO. The user may override the
default value by utilizing TENSPD.

Following each variable name in the list below appears a one— or a two-headed arrow symbol
of forms —, —. and ——. These symbols signify that the variable is for input, output, and
input-output. respectively.

*NMAX—: A positive integer variable specifying the maximum dimension of the problem. This
provision allows the user to solve several problems with different N while using the same storage.
Restriction: NMAX >-N.

*N—: A positive integer variable specifying the number of variables in the problem. Restric-
tion: N > [.

-1

*X0—: An array of length N that contains an initial estimate of the minimizer z..

*NZ—: An integer variable that must be set by the user to the number of nonzeros stored
in the lower or upper half of the Hessian matrix. It is not altered by the program. Restriction:
NZ > 1.

*IRN—: An integer array of length LIRN. On entry, it must hold the row index of each nonzero
stored in the lower or upper half of the Hessian matrix.

*LIRN—: An integer variable that must be set by the user to the length of array IRN. LIRN
need not be as large as LICN; normally it need not be very much greater than NZ. It is not
altered by the program. Restriction: LIRN > NZ.

*ICN—: An integer array of length LICN. On entry, it must hold the column index of the
nonzeros stored in lower or upper half of the Hessian matrix. On output it holds the column
indices of the factors of the Hessian.

*LICN—: An integer variable that must be set by the user to the length of the Hessian ar-
ray H and ICN. LICN should ordinarily be 2 to 4 times as large as NZ. It is not altered by the
_ program. Restriction: LICN > NZ.

*FCN—: The name of a user supplied subroutine that evaluates the function f at an arhi-
trary vector . The subroutine must be declared EXTERNAL in the user’s calling program and
must conform to

CALL FCN(X, F, N),

where X is a vector of length N. The subroutine must not alter the values of X.
GRD—: The name of a user supplied subroutine that returns in G the value of the gradient
GRD must be declared EXTERNAL in the user’s calling program and must conform to the usage

CALL GRD(N, X, G),

where X is a vector of length N, and G is the gradient at X. GRD must not alter the values of N
and X. When using the interface TENSPD, if no analytic gradient is supplied (GRDFLG = 1), the
user must use the dummy name D1FN.

HSN—: The name of a user supplied subroutine that returns in H the value of the Hessian
VZ2f(x) at the current point X. HSN must be declared EXTERNAL in the user’s calling program
and must conform to the usage

CALL HSN(N, X, H, NZ),

where N is the dimension of the problem, X is the current point, H is the Hessian at the current
point, and NZ is the number of nonzeros in H. HSN must not alter the values of NR, N, or X.

Only the lower triangular part and the diagonal of H should be given. When using the interface

TENSPD, if no analytic gradient is supplied (HSNFLG = 1), the user must use the dummy name
D2FN.

*TYPX—: An array of length N in which the typical size of the components of X are speci-
fied. The typical component sizes should be positive real scalars. If a negative value is specified,
its absolute value will be used. When 0. is specified, 1. will be used. The program will not
abort. This vector is used by the the package to determine the scaling matrix D,. Although the
package may work reasonably well in a large number of instances without scaling, it may fail
when the components of x. are of radically different magnitude and scaling is not invoked. If the
sizes of the parameters are known to differ by many orders of magnitude, then the scale vector
TYPX should definitely be used. Module DFAULT returns TYPX = (1.0, ..., 1.0). For example, if it
is anticipated that the range of values for the iterates z; is

z1 € [-10'° , 1019
Iy € [—102 , 104]
3 € [-6x107% 9x 1079

then an appropriate choice will be TYPX = (1.0E+10, 1.0E+3, 7.0E-6).

FSCALE—: A positive real number estimating the magnitude of f(z) near the minimizer z..
It is used in the gradient stopping condition given below. If f(zg) is much greater than f(z.),
FSCALE should be approximately f(z.). If a negative value is specified for FSCALE, its absolute
‘value is used. When 0. is specified, 1. will be used. The program will not abort.

GRADTL—: Positive scalar giving the tolerance at which the scaled gradient of f(z) is con-
sidered close enough to zero to terminate the algorithm. The scaled gradient is a measure of the
relative change in F in each direction z; divided by-the relatlve change in z;. More precisely,
the test used by the program is

| Vf(z)]; max{|z; i,TYPX,-}
m?'x{ max{| f |, FSCALE}

} < GRADTL.

The module DFAULT returns the valup ¢!/3. If the user specifies a negative value, the default
value is used instead.

STEPTL—: A positive scalar providing the minimum allowable relative step length. STEPTL
should be at least as small as" 10~¢, where d'is the number of accurate digits the user desires in
the solution r.. The actual test used is

2% — 2571
max < STEPTL,
i | max{]z*, TYPX:|}

k-1

where z* and z are the new and old iterates, respectively. The program may terminate

prematurely if STEPTL is too large. Module DFAULT returns the value €2/3. If the user specifies
a negative value. then the default value is used instead.

ILIM—: Positive integer specifying the maximum iterations to be performed before the pro-
gram is terminated. Module DFAULT returns ILIM = 150. If the user specifies ILIM < 0, the
default value is used instead.

STEPMX—: A positive scalar providing the maximum allowable scaled step length || D (24 ~z.)|]2,
where D, = diag(1/TYPX;, ..., 1/TYPX,). STEPMX is used to prevent steps that would cause
the optimization problem to overflow, to prevent the algorithm from leaving the area of interest
in parameter space, or to detect divergence in the algorithm. STEPMX should be chosen small
enouglr to prevent these occurrences but should be larger than any anticipated “reasonable”
step. The algorithm will halt and provide a diagnostic if it attempts to exceed STEPMX on five
successive iterations. If a nonpositive value is specified for STEPMX, the default is used. Module
DFAULT returns the value STEPMX = max{||zo||2 - 103, 103}, where z, is the initial approximation
provided by the user.

IPR—: The unit on which the routine outputs information. DFAULT returns the value 6, which
is the standard FORTRAN unit for the printer.

METHOD—: An integer flag designating which method to use.

METHOD = 0 : Use Newton’s method.

METHOD = 1 : Use the tensor method.

Module DFAULT returns value 1. If the user specifies an illegal value, module OPTCHK will set
METHOD to 1; the program will not abort..

GRDFLG—: Integer flag designating whether or not analytic Hessian has been supplied by the
user.

GRDFLG = 0 : No analytic gradient supplied. N

GRDFLG = | : Analytic gradient supplied (will be checked against finite difference gradient.)
GRDFLG = 2 : Analytic gradient supplied (will not be checked against finite difference gradient.)
When GRDFLG = 0, the gradient is obtained by finite differences. The module DFAULT returns
the value 0. When GRDFLG = 1 or 2, the name of the user supplied routine that evaluates V f(x)
must be supplied in GRD. When GRDFLG = 1, the program compares the value of the user’s ana-
lytic gradient routine at zo with a finite difference estimate and aborts if the relative difference
between any two components is greater than 0.01. DFAULT returns GRDFLG = 0. If the user
specifies an illegal value, the module OPTCHK supplies the value 0.

HSNFLG-—: Integer flag desiénating whether or not analytic Hessian has been supplied by the
user.

HSNFLG = 0 : No analytic Hessian supplied.

HSNFLG = | : Analytic Hessian supplied (will be checked against finite difference Hessian.)
HSNFLG = 2 : Analytic Hessian supplied (will not be checked against finite difference Hessian.)
When HSNFLG = 0, the Hessian is obtained by finite differences. The module DFAULT returns
the value 0. When HSNFLG = 0, the Hessian values are computed by finite differences. When
HSNFLG = | or 2, the name of the user-supplied routine that evaluates V2 f(z) must be sup-

10

plied in HSN. When HSNFLG = |, the program compares the value of the user’s analytic Hessian
routine at ro with a finite difference estimate and aborts if the relative difference between any
two components is greater than 0.01. DFAULT returns HSNFLG = 0. If the user specifies an illegal
value, the module OPTCHK supplies the value 0.

NDIGIT—: Integer estimating the number of accurate digits on the objective function f(z).

DFAULT returns the value -L0Gy(¢€), where ¢ is machine precision. If NDIGIT < 0 then the default
value is used instead.

*MSG——: An integer variable that the user may set on input to inhibit certain automatic
checks or override certain default characteristics of the package. Currently, three “message”
features can be used individually or in combination.

MSG = 0 : No output will be produced.

MSG = 1 : Print the input state, the final results, and the stopping conditions.

MSG = 2 : Print the intermediate results, that is, the input state, each iteration including the
current iterate ry, f(z), and V f(z), and the final results including the stopping conditions.
The module DFAULT returns a value of 1. On output, if the program has tennmated because of
erroneous input, MSG contains an error code indicating the reason:

MSG = 0 : No error.

MSG = -1 : Illegal dimension, N < 0 or NMAX < N was input. The program aborts.

MSG = -2 : Probable coding error in the user’s analytic gradient routine GDR. Analytic and finite
difference gradient do not agree within a tolerance of 0.01. The program aborts. (This check
can be overridden by Setting GRDFLG = 2.) '

MSG = -3 : Probable coding error in the user’s analytic Hessian routine HSN. Analytic and finite
difference Hessian do not agree within a tolerance of 0.01. The program aborts. (This check can
be overridden by setting HSNFLG = 2.)

*XPLS—: An array of length N containing the best approximation to the minimizer z,. upon
return. (If the algorithm has not converged, the last iterate is returned.)”

*FPLS—: A scalar variable that contains the function value at the final iterate XPLS.
*GPLS—: An array of length N containing the gradient value at XPLS.

H—: An array that is used to store the Hessian matrix at each iteration. It needs to be at
least of diinension LICN. On exit, H contains the Hessian value at the minimizer z..

*WRK—: An array of length LWRK. This is used as workspace by the package. Its length must be
at least 8xNMAX.

*LWRK—: An integer variable. It must be set by the user to the length of array WRK and is
not altered by the package.

*IWRK—: An integer array of length LIWRK. This is used as workspace by the package. Its

11

length must be at least 10*NMAX + 2.

*LIWRK—: An integer variable. It must be set by the user to the length of array IWRK and
is not altered by the package.

*TERMCD—: An integer that specifies the reason why the algorithm has terminated.

TERMCD = | : The norm of the gradient at the final iterate was less than GRADTL.

TERMCD = 2 : The length of the last step was less than STEPTL.

TERMCD = 3 : Last global step failed to locate a point lower than XPLS. It is likely that either
XPLS is.an approximate solution ef the function or STEPTL is too large.

TERMCD = 4 : The iteration limit has been exceeded.

TERMCD = 5 : Five consecutive steps of length STEPMX have been taken.

VECTOR<: An array of length N. It need not be set by the user on entry. If INFORM is set
to 1, a re-entry must be made with VECTOR set to H times VECTOR (see INFORM.)

INFORM~—: An integer variable. If it is set to 1, the user must obtain H times VECTOR and
re-enter TENSPD (TENSPS if single-precision is used) with INFORM unchanged.- The result of H
times VECTOR must be stored in VECTOR. The default value of INFORM is 0, meaning that H times
VECTOR is computed by the package.

6. Summary of Default Values

The following parameters are returned by the module DFAULT:

ILIM = 150

GRDFLG = O

HSNFLG = ©)
IPR = 6 _
GRADTL = €!'/3 (¢ is machine precision)

STEPTL = ¢2/3

METHOD = 1

NDIGIT = 'Lﬂclo(é)

STEPMX = 0.0

TYPX = (1.0, ..., 1.0)

FSCALE = 1.0

MSG = O

INFORM = O

7. Implementation Details

This software package has been coded in Fortran 77. The user has the choice between single—
and double-precision versions. The user must then preprocess the package at compile time
using either the tosngl or todble tools from CUTE [2], for the single- and double—precision

12

versions, respectively. The tosngl program picks up the appropriate version by selecting any
statement that begins with CS in the first column, where the S character means that this is
a single—precision version. On the other hand, the todble program picks up the appropriate
version by selecting any statement that begins with CD in the first column, with D meaning that
this is a double—precision version. Note that a statement that begins by neither CS nor €D will
be picked by both tools.

The following software are included in the package:

1. Harwell MA27 package [8], which is used to compute the LTDL factorization of the sparse
Hessian matrix. :

2. Gill-Murray-Ponceleon-Saunders code [9], which is used for modifying the negative eigen-
components of the Hessian matrix, in case this one is not safely positive definite.

3. The Coleman and Moregraph coloring algorithm [6], which is used for estimating a finite-
difference approximation of a sparse Hessian matrix.

The program was developed and tested on a Sun SPARC 10 Model 40 computer.

The machine precision is calculated by the package and used in several places including
finite differences stepsizes and stopping criteria. On some computers, the returned value may
be incorrect because of compiler optimizations. The user may wish to check the computer value
of the machine epsilon and, if it is incorrect, replace the code in the subroutine MCHEPS with the
following statement -

EPS = correct value of machine epsilon

8. Example of Use

In the example code shown in Figure 1, we first call the routine DFAULT, which returns the
default values. We then override the values of ILIM, GRADTL and MSG. Next we call either the
interface TENSPS or TENSPD for the single— and double~precision version, respectively, to solve)
the sparse unconstrained optimization problem coded in FCN.

13

C

PROGRAM

STENMIN

C EXAMPLE OF USE FOR TENSPD/TENSPS.

c

C Ali Bouaricha,

c

Cs
CD

Cs
Cs
cs
CD
Ch
CcD

C

INTEGER

INTEGER

INTEGER

REAL

DOUBLE PRECISION
PARAMETER (
PARAMETER (
PARAMETER (
REAL

REAL

REAL

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
INTEGER

INTEGER

EXTERNAL

READ(S,*) N
READ(5,*) (X(1),
READ(5,*) NZ

1994.

NMAX , N, NZ , METHOD, MSG, IPR, I
NDIGIT, ILIM , GRDFLG, HSNFLG, TERMCD
INFORM -

GRADTL, STEPTL, FSCALE, FPLS, STEPMX
GRADTL, STEPTL, FSCALE, FPLS, STEPMX

NMAX = 100, LIRN = 1000, LICN = 1000)
LIWRK = 10 * NMAX + 2)

LWRK = 8 * NMAX)

X (NMAX), TYPX(NMAX), XPLS(NMAX)
GPLS (NMAX), WRK (LWRK)

H (LICN), VECTOR(NMAX)

X (NMAX), TYPX(NMAX), XPLS(NMAX)
GPLS (NMAX), WRK (NMAX, LWRK)

H (LICN)

IWRK(LIWRK) -

IRN(LIRN), ICN(LICN)

FCN, DiFN, D2FN

I=1,N)

READ(5,*) (IRN(I), ICN(I), I =1, NZ)

CALL DFAULT(N, TYPX, FSCALE, GRADTL, STEPTL, ILIM, STEPMX,

IPR,

ILIM = 500

- GRADTL = 0.00001

MSG = 2

METHOD, GRDFLG, HSNFLG, NDIGIT, INFORM, MSG)

C CALL THE SPARSE OPTIMIZER.

C

CS
CD
CD
CD
CD

CALL TENSPS(NMAX,
CALL TENSPD(NMAX,

N, X, NZ, IRN, LIRN, ICN, LICN, FCN, D1FN, D2FN,
N, X, NZ, IRN, LIRN, ICN, LICN, FCN, D1FN, D2FN,

TYPX, FSCALE, GRADTL, STEPTL, ILIM, STEPMX, IPR, METHOD,

* GRDFLG, HSNFLG, NDIGIT, MSG, XPLS, FPLS, GPLS, H, WRK, LWRK,

IWRK, LIWRK, TERMCD, VECTOR, INFORM)

14

STOP

END
C
C THE FOLLOWING IS A SUBROUTINE FOR THE BROYDEN TRIDIAGONAL
C PROBLEM (SOURCE: PROBLEM 30 IN [10].)

c
SUBROUTINE FCN(N, X, F)
INTEGER N, I
cs REAL X(N), F
cD DOUBLE PRECISION X(N), F
c
F=((3.0-2.0%X(1)) = X(1) - 2.0 * X(2) + 1.0) *
* ((3.0 - 2.0 *x X(1)) * X(1) - 2.0 * X(2) + 1.0) +
* ((3.0 - 2.0 * X(N)) * X(N) - X(N-1) + 1.0) *
* ((3.0 ~ 2.0 * X(N)) * X(N) - X(N-1) + 1.0)
DO 10 I = 2, N-1
F=F+ ((3.0-2.0%* X(I)) » X(I) - X(I-1) - 2.0 *
* X(I+1) + 1.0) * ((3.0 - 2.0 * X(I)) * X(I) -
* X(I-1) - 2.0 * X(I+1) + 1.0)
c
10 CONTINUE i
RETURN)
END

Figure 1. Code to solve a sparse unconstrained optimization problem

If we use the double—precision version of the package to solve the sparse unconstrained opti-
mization problem given by FCN, for the following input:

N : 10

X0: -1.0-1.0-1.0-1.0-1.0-1.0-1.0-1.0 -1.0 -1.0
NZ: 19

IRN: 11223 3445566778899 10

ICN: 122334455667 7488989 1010

we obtain the following output:

OPTIM TYPICAL X

OPTIM 0.1000000000000D+01 0.1000000000000D+01 0.1000000000000D+01
OPTIM 0.1000000000000D+01 0.1000000000000D+01 0.1000000000000D+01
OPTIM 0.1000000000000D+01 0.1000000000000D+01 0.1000000000000D+01
OPTIM 0.1000000000000D+01 ”

OPTIM TYPICAL F

OPTIM 0.1000000000000D+01

OPTIM GRADIENT FLAG =0

OPTIM HESSIAN FLAG 0

OPTIM METHGOD =1

OPTIM ITERATION LIMIT = 500

OPTIM MACHINE EPSILON = 0.2220446049250D-15

OPTIM STEP TOLERANCE = 0.3666852862501D-10

OPTIM GRADIENT TOLERANCE = 0.1000000000000D-04

OPTIM MAXIMUM STEP SIZE = 0.3162277660168D+04 -

RESULT ITERATIONK = 0

RESULT X(K)

RESULT ~ -0.1000000000000D+01 -0.1000000000000D+01 ~G.1000000000000D+01
RESULT ~ -0.1000000000000D+01 ~0.1000000000000D+01 -0.1000000000000D+01
RESULT ~ -0.1000000000000D+01 -0.1000000000000D+01 -0.1000000000000D+01
RESULT -0.1000000000000D+01

RESULT FUNCTION AT X(K)

RESULT 0.2100000000000D+02

RESULT GRADIENT AT X(K) S

RESULT -0.2599999804355D+02 -0.3999998057019D+01 -0.7999998136277D+01
RESULT ~ -0.7999998136277D+01 -0.7999998136277D+01 -0.7999998136277D+01
RESULT ~ -0.7999998136277D+01 -0.7999998136277D+01 -0.3999998169365D+01
RESULT -0.3799999783194D+02

OPTSTP RELATIVE GRADIENT CLOSE TO ZERG.

OPTSTP CURRENT ITERATE IS PROBABLY SOLUTION.

RESULT ITERATIONK = 9

RESULT X(K)

RESULT -0.5707221657357D+00 -0.6818070022789D+00 -0.7022101317047D+00
RESULT -0.7055106888506D+00 -0.7049061906923D+00 -0.7014966362260D+00
RESULT -0.6918893109300D+00 -0.6657965030791D+00 -0.5960350903456D+00
RESULT -0.4164122383914D+00

RESULT FUNCTION AT X(K)

RESULT 0.1451030732465D-12

RESULT GRADIENT AT X(K)

RESULT 0.4456254476679D-06 0.2759511839662D-07 0.4973660441711D-06
RESULT -0.5187295319932D-06 0.1411968231618D-05 -0.40396710190790-06
RESULT 0.2644468289644D-05 0.9521704223727D-06 0.1439646308990D-05
RESULT 0.1238884765740D-05

16

9. Test Results

We tested our tensor and standard methods on the set of unconstrained optimization problems
from the CUTE 2] and the MINPACK-2 [1] collections. Most of these problems have nonsingular
Hessians at the solution. We also created singular test problems as proposed in [3, 12] by
modifying the nonsingular test problems from the CUTE collection. The dimensions of these
problems range from 100 to 10000. All our computations were performed on a Sun SPARC 10
Model 40 machine using double-precision arithmetic.

A summary for the test problems whose Hessians at the solution have ranks n, » — 1, and
n — 2 is presented in Table 1. The descriptions of the test problems and the detailed results
are given in [4]. In Table 1 the columns “better” and “worse” represent the number of times
the tensor method was better and worse, respectively, than Newton’s method by more than one
gradient evaluation. The “tie” column represents the number of times the tensor and standard
methods required within one gradient evaluation of each other. For each set of problems, we
summarize the comparative costs of the tensor and standard methods using average ratios of
three measures: gradient evaluations, function evaluations, and execution times. The average
gradient evaluation ratio (geval) is the total number of gradients evaluations required by the
tensor method. divided by the total number of gradients evaluations required by the standard
method on these problems. The same measure is used for the average function evaluation
(feval) and execution time (time) ratios. These average ratios include only problems that were
successfully solved by both methods. We have excluded all cases where the tensor and standard
methods converged to a different minimizer. However, the statistics for the “better,” “worse,”
and “tie” columns include the cases where only one of the two methods converges, and exclude
the cases where both methods do not converge. We also excluded problems requiring a number
of gradient evaluations less or equal than 3 by both methods. Finally, columns “t/s” and “s/t”
show the number of problems solved by the tensor method but not by the standard method
and the number of problems solved by the standard method but not by the tensor method,
respectively. '

The improvement by the tensor method over the standard method on problems with rank
n—1 is dramatic. averaging 49% in function evaluations, 52% in gradient evaluations, and 60% in
execution times. This is due in part to the rate of convergence of the tensor method being faster
than that of Newton’s method, which is known to be only linearly convergent with constant
5} A typical convergence rate of the tensor method on rank n — | problems is around 0.01.
Whether this is a superlinear convergence remains to be proved. On problems with rank n — 2,
the improvement by the tensor method over the standard method is also substantial, averaging
34% in function evaluations, 37% in gradient evaluations, and 38% in execution times. In the
test results obtained for the nonsingular problems, the tensor method is only 2% better than
the standard method in function evaluations, but 32% and 37% better in gradient evaluations
and in execution times, respectively. The tensor method requires on the average more function
evaluations than the standard method on some nonsingular problems. This is because the full
tensor step does not provide sufficient decrease in the objective function, and therefore the tensor
method has to perform a line search method in both the Newton and tensor directions, which
causes the number of function evaluations required by the tensor method to be inflated.

The tensor method solved a total of four nonsingular problems, five rank » — | problems,

17

Table 1: Summary of the CUTE and MINPACK-2 test problems using line search

Rank Tensor/Standard | Pbs Solved | Average Ratio-Tensor/Standard
V*f(z.) | better | tie | worse | t/s | s/t | feval | geval time
n 54 38 4 4 0 0.98 | 0.68 0.63
n—1 18 2 0 5 0 0.51 | 0.48 0.40
n—2 18 1 1 7 0 0.66 | 0.63 0.62

and 7 rank n — 2 problems, stil Newton’s method failed to solve. The reverse never occurred.
This clearly indicates that the tensor method is most likely to be more robust than Newton’s
method. :

The overall results show that the tensor method is more efficient than the standard method

in solving large, sparse unconstrained optimization problems. Furthermore, the tensor method
is likely to solve a wider range of problems.

Acknowledgments. [am grateful to Nick Gould for his assistance and encouragements. I
also thank my CERFACS colleague Jacko Koster for reviewing this paper.

References

[1] B. M. Averick, R. G. Carter, J. J. Moré, and G. L. Xue. The MINPACK-2 test problem col-

lection. Technical Report ANL/MCS-P153-0692, Argonne National Laboratory, Argonne,
USA, 1992.

[2] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and
Unconstrained Testing Environment. Technical Report TR/PA/93/10, Centre Européen de
Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France,
1993.

[3] A. Bouaricha. Solving large sparse systems of nonlinear equations and nonlinear least
squares problems using tensor methods on sequential and parallel computers. Ph.D. the-
sis, Computer Science Department, University of Colorado at Boulder, 1992,

(4] A. Bouaricha. Tensor methods for large, sparse unconstrained optimization. Technical
Report TR/PA/94/02, Centre Européen de Recherche et de Formation Avancée en Calcul
Scientifique (CERFACS), Toulouse, France, 1994.

[5] A. Bouaricha and R. B. Schnabel. TENSOLVE: a software package for solving systems of
nonlinear equations and nonlinear least squares problems using tensor methods. Technical
Report TR/PA/93/23, Centre Européen de Recherche et de Formation Avancée en Calcul

- Scientifique (CERFACS), Toulouse, France, 1993.

[6] T. F. Coleman, B. S. Garbow, and J. J. Moré. Estimating sparse Hessian matrices. ACM
Trans. Math. Software, 11:363-377, 1985.

[7] J. E. Dennis and R. B. Schnabel. Numerical methods for unconstrained optimization and
nonlinear equations. Prentice-Hall, Englewood Cliffs, N.J., 1983.

(8] 1. S. Duff and J. K. Reid. MA27: A set of Fortran subroutines for solving sparse symmetric
sets of linear equations. Technical Report R-10533, AERE Harwell Laboratory, Harwell,
UK, 1983.

[9] P. E. Gill, W. Murray, D. B. Ponceleon, and M. A. Saunders. Preconditioners for indefinite
systems arising in optimization and nonlinear least squares problems. Technical Report
SOL 90-8. Department of Operations Research, Stanford University, California, 1990.

[10] J.J. Moré, B.S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization software.
ACM Trans. Math. Software, 7(1):17-41, 1981.

[11] R. B. Schnabel and T. Chow. Tensor methods for unconstrained optimization using second
derivatives. SIAM J. Optimization, 1:293-315, 1991. :

[12] R. B. Schnabel and P. D. Frank. Tensor methods for nonlinear equations. SITAM J. Numer.
Anal., 21:815-843, 1984.

