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Abstract

The USW SD-7 drill hole is one of several holes drilled under Site Characterization Plan Study
8.3.1.4.3.1, also known as the Systematic Drilling Program, as part of the U.S. Department of Energy char-
acterization program at Yucca Mountain, Nevada. The Yucca Mountain site has been proposed as the
potential location of a repository for high-level nuclear waste. The SD-7 drill hole is located near the
southern end of the potential repository area and immediately to the west of the Main Test Level drift of the
Exploratory Studies Facility. The hole is not far from the junction of the Main Test Level drift and the pro-
posed South Ramp decline. Drill hole USW SD-7 is 2675.1 ft (815.3 m) deep, and the core recovered
nearly complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah
Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. Core
was recovered from much of the underlying Calico Hills Formation, and core was virtually continuous in
the Prow Pass Tuff and the Bullfrog Tuff. The SD-7 drill hole penetrated the top several tens of feet into
the Tram Tuff, which underlies the Prow Pass and Bullfrog Tuffs. These latter three units are all formations
of the Crater Flat Group.

The drill hole was collared in welded materials assigned to the crystal-poor middle nonlithophysal
zone of the Tiva Canyon Tuff; approximately 280 ft (85 m) of this ash-flow sheet was penetrated by the
hole. The Yucca Mountain Tuff appears to be missing from the section at the USW SD-7 location, and the
Pah Canyon Tuff is only 14.5 ft thick. The Pah Canyon Tuff was not recovered in core because of drilling
difficulties, suggesting that the unit is entirely nonwelded. The presence of this unit is inferred through
interpretation of down-hole geophysical logs. The Topopah Spring Tuff consists of 1005.5 ft (306.5 m) of
mostly densely welded pyroclastic flow deposits. Lithophysae are well developed in two principal vertical
intervals within the Topopah Spring, and these features include lithophysal cavities that are up to several
feet (many tenths of a meter) across. The Calico Hills Formation in drill hole SD-7 consists of about 220 ft
(67 m) of nonwelded and mostly zeolitized tuffaceous materials. The top of the formation has been lost
during drilling, but contacts have been reconstructed through interpretation of geophysical logs. The Cal-
ico Hills formation has been subdivided into three units dominated by pyroclastic-flow materials and
underlain by a reworked, “bedded tuff” interval and a basal tuffaceous sandstone.
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The upper two units of the Crater Flat Group, the Prow Pass Tuff (554 ft; 170 m thick) and the
Bullfrog Tuff (418 ft; 127 m thick), have each been subdivided into four units dominated by pyroclastic-
flow material that may include some reworked tuffaceous materials near the base of each ash-flow
sequence. Ash-flow unit 3 (numbered sequentially from the bottom) of both the Prow Pass and the Bull-
frog is at least moderately welded in part. The remaining ash-flow units consist generally of nonwelded
and generally zeolitized tuffs. Each of the four-unit sequences is underlain by reworked tuffaceous depos-
its: a bedded tuff unit at the base of the Prow Pass Tuff and a tuffaceous sandstone unit at the base of the
Bullfrog. SD-7 cored only 77 ft (23 m) of the lowest unit of the Crater Flat Group, the Tram Tuff, which at
this location consists of nonwelded, partially zeolitized ash-flow tuff.

Quantitative and semiquantitative data are included in this report for core recovery, rock-quality
designation (RQD), lithophysal cavity abundance, and fracturing. These data are spatially variable, both
within and among the major formational-level stratigraphic units. Rocks of the Calico Hills Formation and
Crater Flat Group yielded markedly higher recoveries and RQD values than did the densely welded units
of the Paintbrush Group. Both core recovery and RQD are particularly low in the two lithophysal intervals
of the Topopah Spring Tuff; RQD values indicate “very poor” ground conditions in these zones. RQD is
“fair” within the proposed repository horizon of the crystal-poor middle nonlithophysal Topopah Spring.
Nonwelded intervals within the Paintbrush Group tuffs exhibited extremely poor core recovery. This is
attributed to essentially unconsolidated lithologies in these reworked and distal pyroclastic units.

This report includes quantitative data for the “framework” material properties of porosity, bulk and
particle density, and saturated hydraulic conductivity. These data confirm previously reported first-order
control of material properties by the degree of welding and presence of zeolite alteration minerals. Many of
the finer-scale lithostratigraphic subdivisions identifiable in core are not well expressed in the material-
property profiles. Approximate in-situ saturation and volumetric water content data for core samples pre-
served immediately upon recovery from the drill hole are included in the data tabulation. Quantitative min-
eralogical analyses by X-ray diffraction are also included for samples taken from the vitric-to-zeolitic
transition interval underlying the Topopah Spring Tuff.

"Geophysical well-log data have been obtained from virtually the entire SD-7 drill hole. The suite
of petrophysical traces include density, gamma-ray, epithermal-neutron porosity, electrical resistivity, and
caliper profiles. The density log provides perhaps the best stratigraphic information and most of the major
material-property subdivisions described using core samples can be identified in the petrophysical profiles.
Petrophysically based measurements may also be more appropriate for capturing “bulk-effective” proper-
ties of the in-situ rock because of limitations on the size of the core that can be retrieved from the hole or
tested in laboratory equipment. The identification and quantification of properties of lithophysal rocks
within the Paintbrush Group tuffs is particularly affected by this mechanical limitation.

Material-property based subdivisions of the USW SD-7 drill hole do not correspond in detail to the
major lithostratigraphic subdivisions, although some of the lower-order lithostratigraphic subdivisions do
approximate units of substantially different material-property character. Material-property based subdivi-
sions of the SD-7 drill hole appear to correspond essentially to the thermal/mechanical stratigraphic units
of historical usage.
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Geology of the USW SD-7 Drill Hole
Yucca Mountain, Nevada

Introduction

The U.S. Department of Energy is evaluating a
site in volcanic tuffs at Yucca Mountain, located in
southern Nye County, Nevada, as the potential
location for an underground high-level nuclear-
waste repository (fig. 1). This report contains the
results of the geologic logging and lithologic
description of core from drill hole USW SD-7,
which is one of a number of holes being drilled at
the Yucca Mountain site to characterize the subsur-

face geology of the proposed repository block. A
suite of framework bulk and hydrologic properties
are also reported in the context of the geologic
description. These logging activities have been
conducted under Site Characterization Plan (SCP)
Study 8.3.1.4.3.1, “Systematic Acquisition of Site-
Specific Subsurface Information” (DOE, 1988),

which is also referred to as the Systematic Drilling
Program.
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Figure 1. (a) iIndex map showing location of the potential Yucca Mountain repository site in southern
Nevada in relationship to the southwestern Nevada volcanic field (after Byers and others, 1989). (b)
Expanded map of the Yucca Mountain site showing location of drill hole USW SD-7 and selected other site

characterization drill holes.

Purpose of the Systematic Drilling
Program

The Systematic Drilling Program (Rautman,
1993) was proposed to provide critical information
for repository design and performance assessment
in a systematic sampling pattern (fig. 2) from the

volume of rock to be occupied by the potential
Yucca Mountain repository. Holes of the System-
atic Drilling Program were believed to be particu-
larly important in the geologic characterization of
the Yucca Mountain site because they generally are
located within the proposed conceptual-design
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Figure 2. Gridded drilling pattern for the System-
atic Drilling Program as proposed in Study Plan
8.3.1.4.3.1 (Rautman, 1993).

perimeter drift (the SD-7 drill hole is a modest
exception, being located 800 ft (240 m) outside this
design boundary [fig. 1(b)]). The drilling program
is to provide descriptions and samples of the repos-
itory host rock and of rocks both above and below
the repository horizon along the postulated flow
path(s) of deep, unsaturated-zone ground-water
percolation. The Systematic Drilling Program will

also provide descriptive information and samples

of rocks within the upper portion of the saturated
zone, which includes zeolitically altered materials
that may act to retard radionuclides migrating away
from a constructed repository.

In addition to descriptive geologic information,
core samples provide the raw material for quantita-
tive measurements of thermal, mechanical, hydro-
logic, and geochemical material properties
necessary for numerical modeling and regulatory
evaluation of the waste-isolation performance of a
potential nuclear-waste repository at Yucca Moun-
tain. A basic set of framework material properties
from USW SD-7 is included as part of this report.
Other site-characterization studies (DOE, 1988) are

also testing samples obtained from the USW SD-7
drill hole. Pore waters extracted from appropriately
preserved core specimens and drill cuttings can
provide isotopic evidence relevant to the age or
residence time and source of the ground water,
including data on the infiltration of water contain-
ing bomb-pulse isotopes from past atmospheric
testing of nuclear weapons. The drill holes them-
selves provide access to the interior of Yucca
Mountain for geophysical logging, down-hole
video examination of the boreholes walls, air-per-
meability testing, water table monitoring and
geochemical sampling, and in-situ instrumentation
for monitoring temperatures, gas pressures, and
changes in gas chemistry with time. Simple, down-
hole plots of geophysical logs from the USW SD-7
drill hole are included at a reduced scale in this
report.

Regional Geologic Setting

Yucca Mountain is located within the southern
portion of the southwestern Nevada volcanic field
(Lipman and others, 1966; Christiansen and others,
1977; Byers and others, 1976; 1989). The south-
western Nevada volcanic field [fig. 1(a)] consists
of a thick sequence of widely distributed, 7- to 15-
million-year-old silicic volcanic rocks, centered
around the Timber Mountain, Oasis Valley, and
Silent Canyon caldera complexes (Noble and oth-
ers, 1968; Sawyer and others, 1994).

Yucca Mountain itself consists of a series of
north-trending, eastward-dipping structural blocks
that are bounded by mostly west-dipping normal
faults (Carr and others, 1986). These fault blocks
are composed principally of thick, welded ash-flow
tuff deposits that are separated by thinner, non-
welded ash-flow tuffs, silicic lavas, and tuffaceous
sedimentary units. Previous drilling at Yucca
Mountain has shown that Tertiary volcanic rocks
are in excess of 6000 feet (1800 m) thick in the
vicinity of the potential repository. Pre-Tertiary
rocks underlying Yucca Mountain include thick
carbonate and clastic assemblages varying in age
from Precambrian to Mississippian. A Mesozoic or
Tertiary pluton may lie beneath the Calico Hills on
the north end of the site (Carr, 1984).

Geology of the USW SD-7 Drill Hole, Yucca Mountain, Nevada




Volcanic Stratigraphy

Yucca Mountain comprises a thick sequence of
variably welded and nonwelded ash-flow tuffs
intercalated with thinner intervals of bedded
(reworked) and air-fall tuffs. The general sequence
of stratigraphic units is illustrated in table 1. Sur-
face exposures within the main repository block
are formed by the several formations of the
Miocene Paintbrush Group. In descending
sequence, these are the Tiva Canyon, Yucca Moun-
tain, Pah Canyon, and Topopah Spring Tuffs (Saw-
yer and others, 1994). The Tiva Canyon and
Topopah Spring Tuffs occur as thick sheets that are
regionally extensive and generally densely welded.
The Yucca Mountain and Pah Canyon Tuffs are
generally nonwelded to only moderately welded,
and they are much less extensive in thickness and
laterally, thinning to extinction toward the south.
Each formational level unit of the Paintbrush
Group is separated from its neighbors by thin non-
welded ash-flow tuffs, air-fall tuffs, pumice-fall
units, and reworked tuffaceous bedded deposits.
These intervening tuffaceous materials are typi-
cally referred to collectively as “bedded tuff” with-
out specific consideration of their actual lithologic
character

The Paintbrush Group is underlain by a hetero-
geneous sequence of rhyolitic rocks known as the
Calico Hills Formation (Sawyer and others, 1994).
Within the repository vicinity, the Calico Hills con-
sists of a downward sequence of five nonwelded
ash-flow tuffs underlain by bedded tuffs and a
basal tuffaceous sandstone unit (table 1; Moyer and
Geslin, 1995). Elsewhere in the Yucca Mountain
region, the Calico Hills Formation consists of rhy-
olitic lava flows, ash-flow tuffs, air-fall tuffs, and
tuffaceous sediments. Much of the Calico Hills
Formation has been zeolitized; vitric tuffs are pre-
served principally in the southwestern portion of
the Yucca Mountain site.

The Calico Hills Formation in the general\'

vicinity of the potential repository is underlain by
the Crater Flat Group (Sawyer and others, 1994;
Moyer and Geslin, 1995), which comprises, in
descending sequence, the Prow Pass, Bullfrog, and
Tram Tuffs. Each of these three units represents a
large-volume ash-flow eruption. Generally, the
degree of welding in these units is much less than

that exhibited by the tuffs of the Paintbrush Group.
The greater part of each ash-flow sequence is non-
welded, with welded tuffs constrained to the inte-
rior of each unit. The three formational-level units
are separated from one another by thin intervals of
nonwelded tuff and tuffaceous sediments (“bedded
tuff”’) in a manner similar to that of the Paintbrush
Group.

Volcanic units underlying the Crater Flat
Group are somewhat poorly known by comparison.
They have been encountered at Yucca Mountain
only in the deeper drill holes (for example, Spen-
gler and others, 1981; Maldonado and Koether,
1983; Scott and Castellanos, 1984; Whitfield and
others, 1984). None of these units were encoun-
tered in drill hole USW SD-7.

Petrogenesis and Zonation of the
Paintbrush Group Tuffs

Early field and petrologic descriptions of the
stratigraphic units of the southwestern Nevada vol-
canic field include works by Lipman and Chris-
tiansen (1964), Christiansen and Lipman (1965),
and Lipman and others (1966). In later work more
directly focused on the potential Yucca Mountain
repository site, the thick, welded intervals of the
Tiva Canyon and Topopah Spring Tuffs were sub-
divided by Scott and Bonk (1984) into a large num-
ber of informally named zones (table 1). This early
zonation was based on a number of outcrop-based
characteristics, including weathering character and
color, in addition to more exposure-independent
lithologic characteristics such as phenocryst con-
tent, alteration phenomena, and rock type.

More recently, Buesch and others (1996) have
proposed a redefined zonation of the Paintbrush
Group tuffs. These changes affect principally the
thick, welded intervals of the Tiva Canyon and
Topopah Spring Tuffs. According to the nomencla-
ture of Buesch and others, these two major ash-
flow sheets are divided informally into crystal-rich
upper members and crystal-poor lower members
(table 2). This fundamental change in phenocryst
content, which is paralleled by a downward change
in whole-rock chemical composition from quartz
latite to high-silica rhyolite, originates in the erup-
tion of these ash-flow sequences from a composi-
tionally zoned magma chamber underlying the
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Table 1: Comparison of several stratigraphic subdivisions of volcanic rocks at Yucca Mountain
and encountered on the Yucca Mountain Site Characterization Project (no scale).
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source calderas to the north (Lipman and others,
1966). More differentiated, rhyolitic magma in the
upper portions of the magma chamber erupted first,
followed by less-differentiated quartz latitic mate-
rial from lower levels as the eruption progressed. A
gradational compositional-transition interval is

observed in both the Tiva Canyon and the Topopah
Spring Tuffs that exhibits attributes of both rock
types. Crystal settling within the magma chamber
prior to eruption produced phenocryst-rich quartz
latite and phenocryst-poor rhyolite compositions
corresponding to the two-member subdivision.

Table 2: Zonation of the Tiva Canyon and Topopah Spring Tuffs Showing Parallel Subdivisions
(simplified after Buesch and others, 1996)
[Lithophysal intervals are shaded]

Tiva Canyon Tuff (Tpc) Topopah Spring Tuff (Tpt)

crystal-rich member (Tpcr)

vitric zone (Tperv)
non- to partially welded subzone (Tpcrv3)
moderately welded subzone (Tperv2)
vitrophyre subzone (Tpcrvl)

nonlithophysal zone (Tpcrn)
subvitrophyre transition subzone (Tpcrnd)
pumice-poor subzone (Tpcrn3)
mixed pumice subzone (Tpcrn2)
crystal transition subzone (Tpcrnl)

crystal-rich member (Tptr)
vitric zone(Tptrv)
non- to partially welded subzone (Tptrv3)
moderately welded subzone (Tptrv2)
vitrophyre subzone (Tptrv1)
nonlithophysal zone (Tptrn)

lithophysal zone
crystal transmon subzone (Tpcrll)
crystal-poor member
upper hthophysal zone:
spherulite-rich subzone (Tpcpull)

crystal transmon subzone (Tptml)
Ilthophysai zone o
o crystal transmon subzone (Tptrll)
crystai—poor member

upper hthophysal zone -
cavernous lithophysae subzone (TptpulZ)

' small Tithophysae s subzone L ptpuli)

middle nonlithophysal zone (Tpcpmn)
upper subzone (Tpcpmn3)

middle nonlithophysal zone (Tptpmn)
upper subzone (Tptpmn3)

lithophysae-bearing subzone (Tpepmn2)

lower subzone (Tpcpmnl)

" lithophysae-bearing subzone (Tptpmn2) |

lower lithophysal zone (Tpepll)

lower lithophysal zone (Tptpll)

lower subzone (Tptpmn1)

lower nonlithophysal zone (Tpcpln)
hackly subzone (Tpcplnh)
columnar subzone (Tpcplnc)
spherulitic pumice interval (Tpcpinc3)
argillic pumice interval (Tpcplnc2)
vitric pumice interval (Tpcplncl)
vitric zone (Tpcpv)
vitrophyre subzone (Tpcpv3)
moderately welded subzone (Tpcpv2)
non-to partially welded subzone (Tpcpvl)

Pre-Tiva Canyon Tuff bedded tuff (Ppbt4)

lower nonlithophysal zone (Tptpln)
hackly subzone (Tptplnh)
columnar subzone (Tptplnc)
spherulitic pumice interval (Tptplnc3)
argillic pumice interval (Tptplnc2)
vitric pumice interval (Tptplncl)
vitric zone (Tptpv)
vitrophyre subzone (Tptpv3)
moderately welded subzone (Tptpv2)
non-to partially welded subzone (Tptpv1)

Pre-Topopah Spring Tuff bedded tuff (Tpbtl)
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Buesch and others (1996) further subdivide the
crystal-rich and crystal-poor members into a num-
ber of informal, smaller zones and subzones (tables
1, 2). Some of these zones are based on widespread
petrogenetic phenomena, principally cooling pro-
cesses, that affected the ash-flow tuffs during and
shortly after deposition. Both the Tiva Canyon and
Topopah Spring Tuffs exhibit a quenched, non-
welded, vitric zone at the upper and lower margins,
where the hot mass of glassy pyroclastic shards
cooled rapidly from exposure to ambient air or to
the relatively cold existing topography. Welded vit-
ric zones, usually expressed as vitrophyres that
compacted, fused, and cooled before devitrification
could begin, are found inside the nonwelded vitric
zones. The vitrophyre zones are thicker and more
laterally extensive at the base of each ash-flow
sequence because of the weight of the overlying,
progressively accumulating pyroclastic deposit.
The major part of both the Tiva Canyon and
Topopah Spring Tuffs compacted and cooled
slowly because of the insulating effect provided by
the quenched and largely nonwelded upper and
lower margins of the deposits. The interior parts of
each ash-flow sheet thus consist of moderately to
densely welded, devitrified tuff.

Buesch and others also define other zones and
subzones (tables 1, 2) that are related more to later-
stage alteration phenomena. Residual magmatic
gasses exsolved from the compacting and devitri-
fying mass of glassy shards and these gasses pro-
duced vapor-phase alteration consisting principally
of microcrystalline, open-space growths of high-
temperature silica and feldspar minerals. These
phases are distinct from the more “primary” assem-
blages of minerals resulting from devitrification.
Locally, the vapor pressure of the exsolving gas
was sufficient to inflate secondary “bubbles,”
known as lithophysal cavities, along crudely hori-
zontal horizons where the internal pressure
exceeded the weight of the overlying column of
compacting tuff. These lithophysal cavities are
themselves rimmed by vapor-phase alteration min-
erals and alteration may extend some distance into
the groundmass surrounding the cavity as rims and
borders, The resulting, alternating lithophysae-
bearing and non-lithophysae bearing intervals fig-
ure prominently into the zonation of Buesch and
others (table 2, shaded intervals). Additional fac-

tors, such as presence, quantity, and composition of
pumice, foreign lithic clasts, presence of spheru-
lites, and fracturing habit, also have been used to
define some of the subzones shown in table 2.

The tabular nature of a cooling and compacting
ash-flow sheet forces most of the thermal and pres-
sure gradients that control alteration to be oriented
essentially normal to the long dimensions of the
deposit. Thus, the alteration phenomena of vapor-
phase alteration zones, intervals of lithophysal cav-
ity development, and zones of strong, near-vertical
cooling joint development tend to be subhorizontal
and roughly stratiform. However, because these
features are the result of secondary alteration phe-
nomena, they can—and do—<cross-cut “primary”
stratification features such as the crystal-rich/crys-
tal-poor transition.

Subdivisions of the Calico Hills Formation
and Prow Pass Tuff (Crater Flat Group)

Recent review by Moyer and Geslin (1995) of
older samples, data, and published lithologic
descriptions of rocks underlying the Paintbrush
Group tuffs has led to a refined subdivision of both
the Calico Hills Formation and the Prow Pass Tuff,
as these units were redefined by Sawyer and others
(1994). The names and sequence of the informal
units described by Moyer and Geslin from the Cal-
ico Hills Formation and the Prow Pass Tuff are also
illustrated in table 1.

Moyer and Geslin (1995) indicate that the Cal-
ico Hills Formation in the vicinity of Yucca Moun-
tain comprises five pyroclastic units, a dominantly
reworked “bedded-tuff,” unit and a basal volcani-
clastic sandstone. Some of these units appear
regionally discontinuous. The pyroclastic intervals
are generally ash-flow tuff deposits separated by
locally preserved air-fall tuff horizons; the content
and composition of pumice clasts and lithic frag-
ments are locally diagnostic of the different ash-
flow groupings. The Calico Hills Formation, in
notable contrast to the tuffs of the entire Paintbrush
Group, contains volumetrically significant quanti-
ties of quartz phenocrysts, whereas the Paintbrush
Group Tuffs are virtually quartz-free. There are
indications that the basal sandstone may represent
material reworked from the Wahmonie Formation,
a distinctive, more mafic volcanic assemblage
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(Sawyer and others, 1994) not generally present in
the Yucca Mountain region.

Moyer and Geslin have concluded that the
Prow Pass consists of four correlative pyroclastic
tuff units plus an underlying interval of bedded
tuff. Separation of the different ash flows is based
in part on differences in welding and in the propor-
tions and types of phenocrysts, pumices, and lithic
fragments. The Prow Pass Tuff is crystal rich in
comparison with the volumetrically dominant crys-
tal-poor lower members of the Topopah Spring and
Tiva Canyon Tuffs. In contrast with the Paintbrush
units, the Crater Flat Group tuffs are quartz-bear-
ing.

The USW SD-7 Drill Hole

Location

Drill hole USW SD-7 is located about half-
way up Highway Ridge, approximately 3300 feet
(1000 m) to the east of the crest of Yucca Moun-
tain. SD-7 is located at Nevada State Plane coordi-
nates (North American Datum of 1927) 758,949.9
ft North, 561,240.3 ft East’ [fig. 1(b)], and the col-
lar of the hole is at an elevation of 4472.0 feet
(1363.1 m). The hole is 500 feet (152.4 m) to the
west of the proposed ESF Main Test Level drift, as
it was shown on design documents current when
the hole was sited (fig. 3). The hole was sited to be
near the southern end of the north-south Main Test
Level where it turns to form the South Ramp. The
hole is approximately 3000 feet (915 m) south of
drill hole USW SD-12 and 9000 feet (2745 m)
south of USW SD-9 near the north corner.

Drilling History

Drilling at USW SD-7 was started on October
3, 1994, when the top of the borehole was drilled to
set a 20-inch surface-conductor pipe to eight feet,
and then drilled with a 17-1/2 inch hammer and

T Note: Nevada State Plane coordinates in feet are widely
used on the Yucca Mountain Project. These coordinates are
for the central zone of Nevada and are based on a Trans-
verse Mercator projection. The origin of this projection for
the central zone of Nevada is latitude 34°45’N., and the cen-
tral meridian is at longitude 116°40°W. Metric conversions
of Nevada State Plane Coordinates are distinctly separate
from true metric coordinates obtained using the 10,000
metre Universal Transverse Mercator grid, Zone IL

Tost Lovel D/m

N

i “ ESF Main

Figure 3. Location map of the potential repository
region showing the USW SD-7 drill hole in relation-
ship to nearby drill holes and the Exploratory Stud-
ies Facility.

cased with 13-3/8 inch pipe to a depth of 50 feet
through drill pad-fill and colluvium. Continuous
coring operations commenced in bedrock consist-
ing of the Tiva Canyon Tuff at 50.1 feet (15.27 m)
on November 8, using PQ-sized tools (3.27-inch
core). Drilling problems involving very low core
recovery were encountered immediately; these
mechanical difficulties were attributed to the frac-
tured nature of rocks at the top of the hole. Because
of continuing hole-collapse and bridging problems,
coring was halted temporarily at a depth of 256.4
feet (78.2 m). The hole was reamed to 6 inches in
diameter to a depth of 248 feet beginning Decem-
ber 1, then to a diameter of 8-3/4 inches beginning
December 5, and finally to 12-1/4 inches beginning
December 13. A string of 7-inch casing was suc-
cessfully set to a depth of 255.0 feet on January 5,
1995, and coring was resumed using PQ tools.

Extremely low core recovery continued
through the soft, nonwelded materials lying
between the welded Tiva Canyon and Topopah
Spring intervals. The average core recovery
through this zone was 35.2 percent (27.1 feet of
core recovered from 77.0 feet drilled), including
44.5 continuous feet of zero recovery near the base
of the nonwelded section. Recovery through the
non- to partially welded uppermost Topopah
Spring Tuff was only 17.7 percent. Recovery prob-
lems were also encountered in the upper and lower
lithophysal zones of the Topopah Spring Tuff, and
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in‘the nonwelded basal Topopah Spring Tuff, pre-
Topopah Spring Tuff bedded tuff, and Calico Hills
Formation.

The top of the proposed repository horizon
(base of the Topopah Spring Tuff upper lithophysal
zone) was encountered at a depth of 682.5 feet
(208 m) on January 25. Damp core was encoun-
tered on March 6 at a depth of 1489.8 feet (454.1
m) in the upper ash-flow unit of the Calico Hills
Formation (unit Tac3, table 1). Perched water was
encountered on March 7 between depths of about
1592.4 and 1602.0 feet (485.34—488.27 m); this
water quickly rose 27.8 feet (8.5 m) to a depth of
1574.1 feet. At that time, drilling was suspended so
that water samples could be collected. Extended
pump tests were conducted by U.S. Geological
Survey scientists working under Study Plan
8.3.1.2.2.3 between March 17 and May 25. Follow-
ing this period of testing and water-level monitor-
ing, casing was removed and the hole was reamed
from a depth of 232.0 to 1575 feet (70.77—480.04
m). Open-hole geophysical logs were run on July
11 from a depth of 1575 feet (481.0 m) to the sur-
face, following completion of the reaming opera-
tion.

A string of 7-inch casing was set to a depth of
1576.1. feet (480 m) on July 21 to prevent further
collapse of the hole, the PQ core track was deep-
ened to 1632.2 feet (497 m), and additional pump
testing of the perched water table was conducted.
On August 28, coring resumed using PQ tools and
the hole was drilled to a depth of 1660.8 feet (506.2
m). A string of 4-1/2-inch casing and a packer were
set to a depth of 1661.4 feet (506 m, and coring
resumed at HX-size (nominal 3.0-inch core) on
September 1, advancing the hole to 1997 feet. The
packer on the 4-1/2 inch casing was then perforated
and the casing pulled from the hole. The hole was
reamed from a depth of 1660 to 2020 feet (506—
616.67 m), ending on September 20, and the 4-1/2
inch casing was reset to a depth of 2020.9 feet
(615.94 m). HX-size coring resumed and the
regional water table was encountered at a depth
between 2179.0 and 2185.3 feet (664.2—-666.1 m)
on October 4. The water level immediately rose
approximately 100 feet (30 m) to a depth of 2085
feet (635.48 m). Once wet drilling conditions were
encountered, injection of water became necessary

to wash the drill cuttings from the hole beginning
on October 10; drilling water was taken from NTS
well J-13. Drill hole SD-7 reached a final depth of
2675.1 feet (815.4 m) on November 9, 1995 (in
297 drilling shifts).

Method of Study

Geologic Logging and Core Description

Geologic logging and description of drill core
is principally an interpretive activity. As such, the
resulting geologic log is dependent upon the skill
and experience of the individual performing the
examination. The logging procedure used to
describe core from drill hole USW SD-7 and other
holes of the Systematic Drilling Program empha-
sizes physical description in an attempt to elimi-
nate partially dependence on stratigraphic
nomenclature that may change over time (compare
Scott and Bonk, 1984; Buesch and others, 1996). A
standardized geologic log form is used to record
observations of lithology, composition, alteration,
structure, and similar features, and of changes in
those multiple characteristics with depth. The
observations are thus effectively independent of
the names applied to units of similar or contrasting
character.

Interpretive geologic logging and core descrip-
tion consists of observing the rock in its intact, rel-
atively undisturbed state. Core was laid out in
continuous profile on examination tables at the
Yucca Mountain Project Sample Management
Facility. A graphical geologic log was prepared at a
scale of 1:120 (one inch equals 10 feet) after mac-
roscopic visual examination using a hand lens, bin-
ocular microscope, videotaped images and
photographs of cored intervals previously removed
for laboratory measurement of selected materials
properties. The geologic log includes description

contacts between geologic units

degree of welding

degree of devitrification

size, type, and abundance of pumice
size, type, and abundance of lithic clasts
size, type, and abundance of phenocrysts
size, type, and abundance of lithophysal
cavities

type, nature, and degree of alteration
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* presence or absence of bedding or other
depositional features

* fault zones or shear zones

* joints or fractures and fracture frequency

*  percent core recovery

*  RQD (rock quality designation)

Rock color descriptions follow the naming conven-
tions prescribed in the rock-color chart published
by the Geological Society of America (1991).

Laboratory Hydrologic Properties

A limited suite of framework material proper-
ties were measured in the laboratory for core sam-
ples taken from the USW SD-7 drill hole.
Adjoining core samples were preserved at the drill-
ing rig in sealed steel cans and plastic Lexan tub-
ing. In-situ water contents were determined by
gravimetry from the canned samples. Porosity,
bulk density and particle density also were deter-
mined by gravimetry for the canned samples using
Archimedes’ principle. Initial gravimetric water
contents and porosities were used to determine
approximate in-situ saturations and volumetric
water contents. Machined core plugs were cut from
the larger samples preserved in Lexan and used to
determine saturated hydraulic conductivity using
Darcy’s law relating water flow and pressure drop;
the corresponding porosity values for these plugs
were also determined. The laboratory property
determinations were a collaborative effort of San-

dia National Laboratories and the U.S. Geological
Survey, Hydrologic Research Facility (USGS,
1991a).

Geology of Drill Hole USW SD-7
Overiew

Drill hole USW SD-7 is located approximately
halfway up Highway Ridge on the eastern slope of
Yucca Mountain; the hole was located to be
roughly 500 feet to northwest of one west-dipping
splay of the Ghost Dance-Abandoned Wash fault.
This topographic and structural position allowed
sampling and examination of the lower 250 feet
(75 m) of the Tiva Canyon Tuff. The drill hole also
encountered the depositionally thin Paintbrush
nonwelded interval and all of the welded Topopah
Spring Tuff. Mostly nonwelded units underlie the
densely welded Topopah Spring section, and these
units tested by the SD-7 drill hole include the low-
ermost Topopah Spring Tuff, the Calico Hills For-
mation, and the Prow Pass and Bullfrog Tuffs of
the Crater Flat Group. Drilling was terminated
slightly below the upper contact of the Tram Tuff
(also of the Crater Flat Group). A summary of the
interpreted geologic unit contacts is presented in
Table 3. Lithologic descriptions of the rocks
encountered in drill hole USW SD-7 are presented
in Appendix A and the corresponding detailed geo-
logic log sheets are in Appendix B.

Table 3: Stratigraphic Unit Upper Contacts and Unit Thicknesses fot the USW SD-7 Dirill Hole

[--: not present in this hole, or otherwise not identified]

Depth to Tops from
. . . . o Upper Apparent Stratigraphic
Lithostratigraphic Unit Abbreviation contact thch;tness Compendium
(f) ® (f)
Tiva Canyon Tuff (Tpc) — 277.9 ft thick’
Crystal-poor middle nonlithophysal zone Tpepmn 50.1 2477 50.2
lower nonlithophysal subzone Tpcpmnl 50.17 2477 50.2
Crystal-poor lower lithophysal zone Tpepll 74.8 120.2 140.0
Crystal-poor lower nonlithophysal zone Tpcpln 195.0 100.4 195.2
hackly subzone Tpcplnh 195.0 60.8 --
columnar subzone Tpcplne 255.8 39.6 --
Crystal-poor vitric zone (“shardy base”) Tpepv 295.4 32.6 295.0
moderately welded subzone Tpepv2 295.4 21.0 -
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Table 3: Stratigraphic Unit Upper Contacts and Unit Thicknesses for the USW SD-7 Drill Hole
(Continued)

Depth to Tops from

Upper A?parent Stratigraphic
thickness .
contact (ft) Compendium
(ft) ™
nonwelded subzone Tpepvl 316.4 11.6
Pre-Tiva Canyon Tuff bedded tuff Tpcbt4 328 25 326.0
Yucca Mountain Tuff (Tpy) — not present -- 0.0
Pre-Yucca Mountain Tuff bedded tuff Tpbt3 330.5 0.0*
Pah Canyon Tuff (Tpp) — 14.5 ft thick 345% 14.5%
Pre-Pah Canyon Tuff bedded tuff Tpbt2 357% 1.5%
Topopah Spring Tuff (Tpt) — 1005.5 ft thick
Crystal-rich vitric zone Tptrv 358.5% 29.8
nonwelded subzone Tptrvi 358.5%
moderately welded subzone Tptrv2 381
densely welded subzone Tptrv3 387.2
Crystal-rich nonlithophysal zone Tptrn 388.3
Crystal-rich lithophysal zone Tptrl --
Crystal transition interval -~ 4737487.8
Compositional transition -- 472.2-532.0
Crystal-poor upper lithophysal zone Tptpul 487.8

Lithostratigraphic Unit Abbreviation

Crystal-poor middle nonlithophysal zone Tptpmn 682.5
Crystal-poor lower lithophysal zone Tptpll 803.3
Crystal-poor lower nonlithophysal zone Tptpln 1020.0
Crystal-poor vitric zone Tptpv 1191.4
densely welded subzone Tptpv3 1191.4
moderately welded subzone Tptpv2 1274.5
nonwelded subzone Tptpvl 1295.0
Pre-Topopah Spring Tuff bedded tuff Tpbtl 1364
Calico Hills Formation (Tac) — 221.2 ft thick
unit 3 Tac3 1405%
unit 2 Tac2 1493.3
unit 1 Tacl 1523.8
bedded tuff unit Tacbt 1567.2
basal sandstone unit Tacbs 16103
Prow Pass tuff (Tcp) — 554.0 ft
unit 4 Tepd 1626.2
unit 3 Tep3 1655.0
unit 2 Tep2 1837.8
unit 1 Tepl 1878.5
bedded tuff unit Tepbt 2167.5
Bullfrog Tuff (Tcb) — 417.8 ft
unit 4 Tcb4 2180.2
unit 3 Tcb3 2218.01
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Table 3: Stratigraphic Unit Upper Contacts and Unit Thicknesses for the USW SD-7 Drill Hole

(Continued)
Depth to rent Top.s from_
Lithostratigraphic Unit Abbreviation Upper tlt\\'iafl?ness Strat|grap_h|c
contact (ft) Compendium
(ft) (ft)
unit 2 Tcb2 247807 3,517
unitl Tebl 2481.5 97.9
tuffaceous sandstone unit Tcbts 2579.4 18.6
Tram Tuff (Tct) — 77.1 ft
upper ash-flow unit 2598.0 77.17

¥ Entire unit not penetrated; partial thickness only.

¥ Extremely poor core recovery in this general interval makes it impossible to determine exact contacts, or in some cases, the
presence/absence of units; contacts have been inferred through interpretation of petrophysical logs. See geologic log sheets
in Appendix B for interpretation and detailed descriptions of available evidence.

1 Fault contact; partial thickness only.

Drill hole USW SD-7 is collared in the densely
welded, crystal-poor middle nonlithophysal zone
of the Tiva Canyon Tuff. Only the lower nonlitho-
physal subzone (Buesch and others, 1996) of this
zone was actually recovered in the core, which
begins at a depth of 50.1 ft (15.3 m). Small, flat-
tened irregularly-shaped lithophysae mark the gra-
dational top of the crystal-poor lower lithophysal
zone at a depth of approximately 74.5 feet (22.7
m). The intensity of lithophysal-style alteration,
including a slight decrease in the degree of flatten-
ing and an increase in lithophysae size and volume
fraction of open lithophysal cavities, increases
between about 135 and 140 ft (41.1-42.7 m). The
most intense lithophysal-style alteration occurs
between depths of 168 and about 195 ft (51.2-59.4
m). Lithophysae that are visible in core are absent
below 195.0 ft (59.4 m); however, 2- to 5-ft (0.6—
1.5-m) intervals of lost core that potentially may
represent lithophysal cavities (?) are present to a
depth of 236.4 ft (72.0 m). The crystal-poor lower
nonlithophysal zone is defined beginning at a depth
of 195 feet (59.4 m). Hackly fractures, diagnostic
of the hackly subzone of Buesch and others (1996),
are not well developed in the SD-7 drill core, but
high-angle, columnar-style joints are present below
about 255 ft (77.7 m).

The base of the lower nonlithophysal zone of
the Tiva Canyon Tuff is marked by a progressive
decrease in the intensity of high-temperature devit-
rification and in the degree of welding. Preserved

vitric pumice clasts are identifiable below a depth
of about 279.1 ft (85.1 m), and the amount of glass
preserved in the core increases sharply from 291.4
to 303 ft (88.8-92.4 m). The degree of flattening
(welding) decreases below about 295 ft to non-
welded at 316.4 ft (96.4 m), and the base of the
Tiva Canyon Tuff has been defined at 325.7 ft
(99.3 m). The pre-Tiva Canyon Tuff bedded tuff
(Tpbt4) underlies the Tiva Canyon ash-flow depos-
its from 325.7 to 330.5 ft (99.3-100.7 m); the
upper contact of this reworked unit is marked by a
weakly hematitic paleosol.

Rocks identifiable as the Yucca Mountain Tuff
were not encountered in the SD-7 drillhole. The
fact that the drill hole is located in a distal position
with respect to the distribution of this small-vol-
ume ash-flow deposit, plus similar apparent
absence of the Yucca Mountain Tuff in drill hole
USW SD-12 (Rautman and Engstrom, in press),
suggests that the absence is depositional. However,
pre-Tiva-Canyon-Tuff faulting cannot be ruled out
based on the evidence from this drill hole (see fur-
ther discussion in Appendix A, “Yucca Mountain
Tuff (Tpy)” beginning on page 50). Rocks assigned
to the pre-Yucca Mountain Tuff bedded tuff inter-
val consist of a complex sequence of pumice-fall
deposits, pumiceous ash-flow beds, and reworked
sandy bedded tuffs. The lower contact of the pre-
Yucca Mountain Tuff bedded tuff interval, the Pah
Canyon Tuff (if present) and the upper, nonwelded
part of the crystal-rich vitric zone of the Topopah
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Spring Tuff were lost in an interval of more than 35
ft (10 m) for which no core or significant drill cut-
tings were recovered.

The top of the Topopah Spring Tuff has been
estimated at a depth of 358.5 ft (109 m), and the
formation has an apparent thickness of 1005.5 ft
(306.5 m). The crystal-rich to crystal-poor transi-
tion in SD-7 is relatively sharp between depths of
about 473487 ft (144-148.4 m), but crystal-rich
quartz latite cognate lithic masses are present
throughout a compositional transition interval that
extends from 472 to 532 ft (143.9-162.2 m). The
Topopah Spring becomes densely welded at a
depth of 387.2 ft (118.0 m), just below the thick
unrecovered interval containing the upper contact.
The crystal-rich, densely welded vitric subzone
(“caprock vitrophyre”) appears quite thin in the
SD-7 drill core, and the rock becomes progres-
sively devitrified below 388.3 ft (118.4 m); this
depth marks the top of the crystal-rich nonlitho-
physal zone.

The uppermost lithophysae observed in the
SD-7 core occur at 455.4 ft (138.8 m), within the
crystal-rich member of the Topopah Spring Tuff,
but the crystal-rich lithophysal zone effectively is
not present at this geographic location. Widely
spaced, oval lithophysae increase in abundance at
487.8 ft (148.7 m), marking the gradational top of
the crystal-poor upper lithophysal zone. Closely
spaced lithophysae with significant vapor-phase
alteration rims are abundant below 533.5 ft (162.6
m), and larger-than-core-diameter lithophysal cavi-
ties are inferred from extensive broken and unre-
covered intervals below about 560 ft (170 m).
Lithophysae are absent below the top of the crys-
tal-poor middle nonlithophysal zone at 682.5 ft
(208.0 m). The middie nonlithophysal zone (pro-
posed repository host horizon) is 120.8 ft (36.8 m)
thick in the SD-7 core; both the upper and lower
contacts are relatively sharp and well defined. The
top of the crystal-poor lower lithophysal zone is
defined by the presence of intense lithophysal-style
alteration and lithophysae below a depth of 803.3 ft
(244.8 m). Lithophysae are less common below
about 900 ft (275 m), although the rock continues
to exhibit moderate lithophysal-style alteration,
including the vapor-phase “spots” and incipiently
lithophysal, very flat relict pumice. Essentially

only vapor-phase alteration spots occur below the
top of the crystal-poor lower nonlithophysal zone
at approximately 1020 ft (310 m). The crystal-poor
vitric zone is preserved below 1191.4 ft (363.1 m).
Welding decreases rapidly below 1274.5 ft (388.4
m), and the nonwelded basal subzone extends from
1295.0 to approximately 1363 ft (415 m). The
lower contact of the Topopah Spring Tuff, the
underlying pre-Topopah Spring Tuff bedded tuff,
and the upper contact of the Calico Hills Formation
occur within a thick unrecovered interval that
extends almost continuously from 1350.9 to 1410.0
ft (411.7-429.8 m).

The top of the Calico Hills Formation is
inferred at a depth of 1405 feet (428 m) and the
unit is 221.2 feet (67.4 m) thick. The Calico Hills
in SD-7 has been subdivided into three nonwelded
ash-flow tuff units, a reworked bedded tuff unit,
and a basal tuffaceous sandstone. The upper two
Calico Hills ash-flow units (numbers 5 and 4)
described by Moyer and Geslin (1995) and found
elsewhere at Yucca Mountain appear to be absent
here. Their absence tentatively is inferred to be
depositional, as only Calico Hills ash-flow unit 5
was missing in drill hole USW SD-12 to the north
(Rautman and Engstrom, in press), which is closer
to the source terrane. However, removal by these
units by pre-Topopah-Spring-Tuff faulting cannot
be excluded. Calico Hills ash-flow unit 3 is non-
welded and at least partially altered from 1402 to
1493.3 ft (427.2-455.1 m). A thin, Calico Hills
ash-flow unit 2 was encountered between depths of
1493.3 and 1523.8 ft (455.1-464.4 m); a 6.7-ft (2-
m)-thick bedded interval marks the base of this
unit. Both vitric and zeolitic materials of Calico
Hills ash-flow unit 1 extend from 1523.8 to 1567.2
ft (464.4-477.6 m). A relatively thick, zeolitized
“bedded tuff” interval containing alternating pum-
ice-fall deposits and reworked, ashy beds, under-
lies ash-flow unit 1 from 1567.2 to 1610.3 ft
(477.6-490.8 m). A ill-defined basal tuffaceous
sandstone unit that exhibits evidence of more sig-
nificant reworking by sedimentary processes
extends from 1610.3 ft to the base of the Calico
Hills Formation at 1626.2 ft (495.6 m).

The Calico Hills Formation is underlain by the
Prow Pass Tuff; this unit of the Crater Flat Tuffs is
554.0 feet (168.8 m) thick in SD-7. The four pyro-
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clastic flow units plus the underlying “bedded tuff”
unit that were described by Moyer and Geslin
(1995) all appear to be represented in the SD-7
core. The Prow Pass Tuff is dominated volumetri-
cally by ash-flow unit 3 (183 ft, 55.8 m thick) and
unit 1 (289 ft, 90.8 m thick). Ash-flow unit 3 is
moderately welded through most of its vertical
extent, but ash-flow unit 1 is essentially completely
nonwelded. This latter unit is zeolitized essentially
throughout, whereas ash-flow unit 3 is effectively
100-percent devitrified and consists of high-tem-
perature silica and feldspar phases. The basal bed-
ded tuff unit of the Prow Pass Tuff is zeolitized and
approximately 13 ft (4.0 m) thick; this interval
includes a thin volcanic breccia at its base.

The Bullfrog Tuff underlies the Prow Pass Tuff
beginning at a depth of 2180.2 ft (664.5 m), and the
unit has an apparent thickness of 417.8 ft (127.3
m). Four pyroclastic units plus a basal bedded
sandstone unit can be defined in the USW SD-7
drill core. Ash-flow units 4 and 2 are very thin:
37.8 and 3.5 ft (11.4 and 1.1 m) thick, respectively.
Ash-flow unit 3 is 260 ft (79.2 m) thick, and the
unit appears to be bounded below by a fairly signif-
icant fault zone that also may have cut-out a large
thickness of the highly pumiceous ash-flow unit 2.
Unit 3 exhibits a well defined welding profile and
appears to form a single cooling unit. Bullfrog ash-
flow unit 1 is almost 100 ft (30 m) thick, and this
lower nonwelded interval is characterized by
extensive silica veining. Unit 1 is also the most
intensely zeolitized of the Bullfrog subdivisions.
The basal zeolitized tuffaceous sandstone unit of
the Bullfrog Tuff is 18.6 ft (5.7 m) thick.

Drill hole USW SD-7 encountered some 77 ft
(23.5 m) of the Tram Tuff, which is the third and
lowest formation of the Crater Flat Group, begin-
ning at a depth of 2598.0 ft (791.8 m). The recov-
ered core consists of nonwelded and partially
zeolitized ash-flow tuff. The top of the interval is
hematite stained and may represent a paleosol.

Thermal/Mechanical Units

A somewhat formalized thermal, mechanical,
and hydrologic stratigraphy was defined originally
by Ortiz and others (1985), based upon preliminary
concepts put forward by Lappin and others (1982).
The concept was to define coherent rock units for

performance analyses based on rock properties,
rather than on more classical geologic criteria.
According to the original citation, “Two properties
used to differentiate units are porosity and grain
density” (p. 8). Further reading of the Ortiz refer-
ence indicates that this subdivision based on poros-
ity and grain density translates to a first-order
subdivision between welded and nonwelded mate-
rials, with additional subdivisions determined by
whether the rocks are still vitric, or whether they
have been altered either to a devitrification (high-
temperature “crystallization”) mineral assemblage
or to zeolites. The so-called thermal/mechanical
units were correlated with the more conventional
geologic stratigraphy in table 1 of Ortiz and others;
this correlation is essentially reproduced intact in
table 1 of this report. The thermal/mechanical
stratigraphy, as originally described, also subdi-
vided the Topopah Spring welded interval into a
lithophysae-rich upper portion in contrast with the
lower part, which was presumed to be relatively
poor in lithophysae (p. 11). In fact, the distribution
of lithophysal alteration and lithophysal cavities is
more complex than was recognized by Ortiz and
her coworkers.

It is important to note that the major changes in
material properties recognized as the basis for sub-
dividing the volcanic section at Yucca Mountain by
Ortiz and others do not correspond to the bound-
aries of the geologic units, which are identified
principally by major breaks and changes in the
genetic process that produced the southwestern
Nevada volcanic field. The descriptive but unfortu-
nate use by Ortiz and her coworkers of the conven-
tional geologic names as the “base” for the
thermal/mechanical unit names can cause confu-
sion if the critical distinction between property-
based and process-based nomenclature is not fully
understood. Nevertheless, this physical-property
subdivision that aggregates materials that behave
in a similar manner has proven to be an enduring
feature of the Yucca Mountain Project..

Table 4 presents the thermal/mechanical units
identified in the SD-7 drill core. In keeping with
Ortiz and others (1985), who presented a series of
surfaces representing the bottom of each ther-
mal/mechanical unit, table 4 gives the depths to
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Table 4: Basal Contacts and Thicknesses of Thermal/Mechanical Units for Drill Hole
USwW SD-7

[Definitions of thermal/mechanical units from Ortiz and others (1985), p. 11-12]

Lower Apparent
Thermal/Mechanical Unit Contact Thickness
(ft) (ft)
TCw: Tiva Canyon welded 305.57 255.41
PTn: Paintbrush nonwelded , 387.2 81.7
TSw1: Topopah Spring welded, “lithophysae rich” 682.5 295.3
TSw2: Topopah Spring welded, “lithophysae poor” 11914 508.9
TSw3: Topopah Spring welded, vitrophyre 1274.5 83.1
CHnl: cCalico Hills nonwelded unit 1-—lower nonwelded 1567.2 292.7
part of Topopah Spring Tuff plus ash-flow tuffs of
Calico Hills Formation
CHn2: Calico Hills nonwelded unit 2—basal reworked 1626.2 59.0
zone and “bedded tuffs” of Calico Hills Formation
CHn3: ““Calico Hills” nonwelded unit 3—upper nonwelded 1655.0 28.8
ash-flow tuffs of the Prow Pass Tuff
PPw: Prow Pass welded—welded ash-flow tuffs of the 1837.8 182.8
Prow Pass Tuff
CFUn Upper Crater Flat nonwelded—lower nonwelded 2218.0 380.2
ash-flow tuffs of the Prow Pass Tuff
BFw  Bullfrog welded—welded ash-flow tuffs of the Bull- 2478.0 260.0
frog Tuff
CFMnl Middle Crater Flat nonwelded unit 1—zeolitic par- 2579.4 101.4
tially welded to nonwelded ash-flow tuffs of the
lower Bullfrog Tuff
CFMn2 Middle Crater Flat nonwelded unit 2—zeolitic basal 2598.0 18.6
bedded and reworked portion of the Bull Frog Tuff
CFMn3 Middle Crater Flat nonwelded unit 3—zeolitic par- - 2675.11 77.1%

tially welded ash-flow tuffs of the Tram Tuff

T Entire unit not penetrated; partial thickness only

each basal contact as well as the apparent thickness
of each unit

Structural Geology of SD-7
Faulting

A moderately large number of small faults and
fractures exhibiting at least some evidence of dif-
ferential movement are present in the USW SD-7
drill core. One fault appears to have experienced
sufficient movement to remove an unknown, but
probably substantial interval of the Bullfrog Tuff.
Faulting also may be partially responsible for some

of the very poor core recovery that was experi-
enced during drilling of the SD-7 drill hole.

That the rocks penetrated at this location
would be highly faulted is not unexpected. The
hole is located only about 500 ft (150 m) west of
the west-dipping Ghost Dance-Abandoned Wash
structural zone. It is in this vicinity that the domi-
nantly southerly trending Ghost Dance Fault
changes orientation to a more south-southwest
trend and appears to form a diffuse zone of struc-
tural offset that connects to the north-south Aban-
doned Wash Fault to the south (Scott and Bonk,
1984). More recent, but still preliminary mapping
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(W.C. Day, U.S. Geological Survey, written com-
munication, 1996) shows the SD-7 drill site located
about 650 ft (200 m) northwest of a reinterpreted
Ghost Dance Fault that trends N 20° E. This same
mapping also shows a smaller fault, also trending
N 20° E, exposed on the hillside of Highway Ridge
(fig. 3) about 250 ft (75 m) south of the SD-7 loca-
tion; the projection of this fault passes only 150 ft
(45 m) to the east of the drill hole collar. A set of
small faults trending N 10° W is exposed on the
south-facing hillside of the drainage immediately
north of Highway Ridge. These faults, which are
mapped as forming a series of small graben struc-
tures, project directly toward the SD-7 drill pad.

Note that faults may be difficult to distinguish
from more generally rubblized core. Thus, even
though a large fraction of the rubble intervals
logged from the SD-7 drill core may be attributed
with some degree of confidence to in-situ disaggre-
gation of unconsolidated tuffaceous materials,
mechanical breakage of the rock during drilling or,
more particularly, to breakage associated with
lithophysal cavities, it is likely that other rubble
zones or intervals of highly fractured but poorly
recovered rock may represent unrecognized faults
or fault zones. This may be true particularly for
lost-core intervals that are directly associated with
unit contacts. For example, a thick interval of lost
core is associated in the SD-7 drill core with the
top of the Calico Hills Formation (approximate
depth 1400 ft or 425 m; see additional discussion in
Appendix A, “Calico Hills Formation (Tac)”
beginning on page 57) and a lesser lost-core inter-
val is associated with the intra-formational tops of
units 2 and 1 of the Bullfrog Tuff (approximate
depth 2500 ft or 760 m). Normal faults frequently
are associated with omitted stratigraphic sections.
Moreover, fault displacements are known (Scott
and Bonk, 1984; Scott, 1990) generally to increase
from north to south through the repository region,
suggesting that drill hole SD-7 might well be more
affected than drill holes located farther to the north.

Zelinski and Clayton (1996), who have devel-
oped a volume model of Yucca Mountain requiring
a full three-dimensional accounting of observed
elevations of unit contacts, stratigraphic unit thick-
nesses, and fault offsets, have documented that
there are a number of fauits at Yucca Mountain that

exhibit markedly more offset at stratigraphic levels
deeper than the Tiva Canyon Tuff than is identifi-
able in surface exposures of this latter unit. Some
faults that exhibit no surface expression whatso-
ever are required by the three-dimensional geome-
try at deeper levels; see also work by Majer and
others.” The model constructed by Zelinski and
Clayton extends to the Paleozoic basement under-
lying the Tertiary volcanic section. Although con-
strained by only sparse drill hole information at
stratigraphic levels underlying the general Calico
Hills—Crater Flat interval, their model attempts to
integrate drill hole data with information obtained
from gravity and reflection-seismic surveys (Bro-
cher and others, 1996). These latter data strongly
suggest major (thousands of feet of vertical offset)
down-to-the-west gradients in the inferred depth-
to-Paleozoic isopleth surface that have been inter-
preted by Zelinski and Clayton as preserved fault
scarps at this basement structural level. Although
control on the location of this gradient is not suffi-
cient to correlate it directly with the Ghost Dance-
Abandoned Wash structural zone (a correlation
with either or both of the Bow Ridge Fault or the
Paintbrush Canyon Fault is more likely; Scott and
Bonk, 1984; unpublished mapping by W. C. Day,
U.S. Geological Survey, written communication,
1996), the gradient is located to the east of the crest
of Yucca Mountain. A feature of this magnitude is
likely to be associated with structural complexity
higher in the section, and its effects are likely to be
spread somewhat horizontally.

Yet another factor complicating the identifica-
tion of faults in the drill core is that a significant
fraction of the recovered core material was
removed within minutes of retrieval to preserve the
in-situ hydrologic properties of samples for labora-
tory testing. These intervals were not available for
detailed study during creation of the geologic log
for this report. We thus also rely on indicators of
faulting recorded on the preliminary drill-site logs

i Majer, E.L., Feighner, M., Johnson, L., Lee, K., Daley, T.,
Karageorgi, E., Parker, P, Smith, T., Williams, K., Romero,
A., and McEvilly, T., 1995, Results of geophysical surveys
along the north-south and south ESF alignment, Yucca
Mountain Project Milestone 0BB02; also Summary report:
Interpretation of multiple geophysical surveys, Yucca
Mountain Project Milestone OBB03; both submitted by
Lawrence Berkeley National Laboratory, Berkeley, Calif.

Geology of Drill Hole USW SD-7 15




that also produced the core recovery and drill-site
RQD measurements. The amount of time available
1o the drill-site geologists, however, was extremely
limited.

Indicators of small-displacement faulting were
observed in a number of relatively short intervals
separated by substantial thicknesses of rock appar-
ently devoid of explicit indicators of movement.
Two small faults that may represent conjugate
breaks, each at about 20° to the core axis but dip-
ping in opposite directions were observed at a
depth of about 164.5 ft (50.1 m) within the crystal-
poor lower lithophysal zone of the Tiva Canyon
Tuff. Another small fault for which no definitive
orientation could be measured was observed at
168.7 ft (51.4 m) depth. A fourth small fault, also
lacking a reasonable orientation, was observed
within the lower lithophysal zone at a depth of
186.1 ft (56.7 m).

A zone of small, but better-defined faulting is
present within the lower nonlithophysal zone of the
Tiva Canyon between depths of 220 and 245 ft
(67-75 m) (geologic log sheet 4, Appendix B).
Specific features were observed as follows: at
223.4 (68.1 m), a thin zone of fault breccia dips at
25° to the core axis (c.a.); at 224.1 ft (68.3 m), an
oxidized surface exhibiting coatings of manganese
oxides dips at 55° c.a.; at 224.3 ft (68.4 m), a thin
breccia dips at only 45° c.a.; at 231.2 (70.6 m), a
small fault dips at 30° c.a.; at 239.4 (72.9 m), a 1-
cm wide fault breccia dips 30° c.a. and has been
cemented by white calcite; and at 241.0 (73.5 m), a
thin interval of breccia was observed but no orien-
tation could be measured for the bounding sur-
faces. Other calcite veining also was observed in
this general interval.

Two discrete faults were identified associated
with the top of the crystal-poor lower lithophysal
zone of the Topopah Spring Tuff. At 802.8 ft
(246.5 m), a fault surface exhibiting clay gouge
dips at 20° c.a., and a similar feature, also contain-
ing clay gouge, dips 5-10° c.a. at a depth of 810.9
ft (247.2 m). Core recovery was exceedingly poor
in this lower lithophysal interval (see discussion of
“Core Recovery” beginning on page 19), so it is
possible that other faults are present but could not
be identified.

Two well defined faults, both containing clay
gouge and exhibiting slickensides, are present in
Calico Hills Formation, ash-flow unit 2. One slick-
ensided fracture at 1511.1 ft (460.6 m) is present
near the base of this ash-flow sequence; this fault
dips at 60° c.a. A second slickensided fracture or
small fault is at a depth of 1517.3 ft (462.5 m),
associated near the contact of the ash-flow
sequence with the basal bedded tuff interval of Cal-
ico Hills unit 2. This latter feature dips at 75° to the
core axis. Another group of two slickensided fault
planes is present slightly deeper in the Calico Hills
Formation; these are associated generally with the
contact between ash-flow unit 1 and the Calico
Hills bedded tuff unit at 1567.2 ft (477.7 m). The
slickensides on the upper of these two faults (at
1566.8 ft; 477.5 m) are oriented at a nearly flat-
lying 85° to the core axis., whereas those on the
lower feature (at 1567.2 ft (477.7 m) dip much
more steeply at 25° to the core axis. Note that flat-
lying faults may have undergone large displace-
ments with only minimal effect on the stratigraphic
sequence (i.e., producing omission of units)

Limonite-stained high-angle (10° c.a.) frac-
tures that may or may not have experienced differ-
ential movement are present at 1728.8 and 1729.8
ft (526.9 and 527.2 m) in ash-flow unit 3 of the
Prow Pass Tuff. However, a clay-filled presumed
fault was observed only 5.4 ft (1.6 m) deeper
within ash-flow unit 3 at a depth of 1734.4 ft
(528.6 m). The clay was weakly iron-stained, and
the high-angle feature dips at only 5° c.a. A com-
pletely separate small fault was observed in Prow
Pass ash-flow unit 1 at a depth of 1943.6 ft (5§92.4
m). A poorly defined, possible fault surface was
also observed by drilling-support geologists at a
depth of 2178.7 ft (664.0 m), immediately above
the base of the Prow Pass bedded tuff unit. This last
feature is near a weakly hematite-stained probable
paleosurface and is associated with a breccia that
has been interpreted as volcanic in origin.

Well developed slickensides that rake 10°
across a fault surface at 70° to the core axis are
present at a depth of 2404.4 ft (732.8 m) in ash-
flow unit 3 of the Bullfrog Tuff. Iron-staining and
doubtful chloritic(?) alteration appear to be associ-
ated with this feature. The contact between Bull-
frog ash-flow unit 3 and the underlying pumiceous
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unit 2 at a depth of 2478.0 ft (755.3 m) appears to
be a fault contact (geologic log sheet 36). The fault
contains 0.2 ft (6 cm) of slickensided and hematite-
stained clay gouge, and the fault is oriented at a 10°
to the core axis. The general interval is intensely
broken, and there are a number of quartz veinlets
both above and below the fault. Because the pumi-
ceous Bullfrog unit 2 below the fault is only 3.5 ft
(1.1 m) thick, it appears that some section of the
Bullfrog may have been cut-out by the fault. Infer-
ence of the amount of section missing because of
the fault is difficult because there is little informa-
tion available regarding the stratigraphy of the
Bullfrog Tuff in this vicinity. It should be noted
that a fault has removed roughly 100 ft (30 m) of
the Calico Hills Formation plus the entire Prow
Pass Tuff, plus an unknown thickness of the Bull-
frog Tuff in drill hole USW WT-1 (Muller and
Kibler, 1985*), which is located some 3000 ft (900
m) to the southeast of SD-7. Note that drill hole
WT-1 is located in a completely separate fault
block from SD-7 and that WT-1 is immediately
west of the Dune Wash fault/structural zone (Scott
and Bonk, 1984) rather than the west of the Ghost
Dance Fault. The point, however, is that substan-
tial stratigraphic intervals can be removed by
faulting, particularly in the southern part of the
Yucca Mountain region.

A small fault was observed near the bottom of
the SD-7 drill core within the upper nonwelded
ash-flow unit of the Tram Tuff. This flat-lying fea-
ture, which dips at approximately 80° c.a., was
encountered at a depth of 2644.9 ft.

Lithophysal Zones

The definition of lithophysal zones within the
welded tuffs at Yucca Mountain is a complex prob-
lem that has a long history within the Yucca Moun-
tain Project. The issue involves distinguishing
(informally) named “lithophysal zones” from other
intervals that may contain lithophysae. T.C. Moyer
(Science Applications International Corpora-
tion/U.S. Geological Survey, personal communica-
tion, 1994), originally indicated that lithophysal
zones were to be defined simply based on “the

' more detailed information from DTN
GS930208314211.004; NNA.930701.0065

presence of lithophysae.” Ortiz and others (1985,
p. 11) gave a threshold of “approximately 10% by
volume lithophysal cavities” as the criterion for
separating their “lithophysae-rich” (TSw1) and
“lithophysae-poor” (TSw2) subunits of the
Topopah Spring welded tuff.

Buesch and others (1996) present a more spe-
cific description of criteria for the identification of
specifically named lithophysal zones (page 18;
quoted almost in its entirety):

Lithophysal zones occur where vapor con-
centrates in the densely welded parts of ignim-
brites [ash-flow tuffs] to form lithophysal
cavities (Ross and Smith, 1961).... Lithophysae
consist of a cavity, which is commonly coated
with vapor-phase minerals on the inner wall of
the cavity, a fine-grained rim surrounding the
cavity wall, and a thin very fine-grained bor-
der.... Many lithophysae in the Tiva Canyon
and Topopah Spring Tuffs have light-gray (N8)
to grayish-orange pink (10R8/2) rims of micro-
scopic to barely macroscopic elongate crystals
that radiate from the walls of the lithophysae
into the surrounding groundmass. These rims
are up to 3-cm wide. Locally, rims have I- to 3-
mm-wide, grayish red-purple (5YR4/2) bor-
ders. Associated with the lithophysae are light-
gray (N8) to grayish-orange pink (10R8/2)
spots 1- to 5-cm in diameter. Some spots may
represent the cross sections of rims on litho-
physae, whereas others have a crystal or lithic
clast in the core that could have acted as a
nucleation’site. There is no genetic interpreta-
tion for the spots; however, they are character-
istic for some lithophysal zones. Lithophysal
zones in the Tiva Canyon and Topopah
Spring Tuffs are identified by a combined
occurrence of lithophysae and spots [empha-
sis added]. The shape of the lithophysae and
spots and width of the rims on the lithophysae
can also be diagnostic of specific zones.
Locally surface exposures contain lithophysae
with diameters of up to 1 m; thus regions of
poor core recovery might indicate large litho-
physae [emphasis added].

Vapor-phase altered rocks containing abun-
dant (greater than 10 percent) lithophysae, with or
without significant open-space cavities, are readily

Geology of Drill Hole USW SD-7 17




recognized and are easily assigned to discrete litho-
physal zones. The real complication appears to be
the recognition and treatment of lithophysal-style
alteration associated with cavities that are too large
to be recognized directly in the core (and by exten-
sion, recognition of the mere presence of lithophy-
sae). Where very large lithophysae are penetrated
by the drill string, the thin, brittle septae of rock
dividing the cavities typically are shattered by the
force of the rotating drill bit; this logically results
in intervals of rubble and unrecovered core (cavity
plus rubble blown away from the bit face into other
parts of the cavity). Diagnostic, remnant vapor-
phase alteration rims and distinctive cavity-coating
minerals frequently can be identified in the recov-
ered rubble fragments. The question essentially
reduces to whether or not an interval exhibiting
these very large lithophysal cavities, but without
significant numbers of the small-scale lithophysae
or vapor-phase-altered spots, can be classified as a
“lithophysal zone.”

Descriptions of the SD-7 drill core for this
report use multiple criteria derived from the
description of lithophysal zones presented by Bue-
sch and others (quotation above). In keeping with
the logging philosophy presented in the section on
core description beginning on page 8, the principal
emphasis of the Systematic Drilling Program has
been placed on objective description of the core
and associated down-hole video imagery (particu-
larly that presented in the foot-by-foot geologic log
sheets contained in Appendix B). Association of
unit names with these descriptions is distinctly sec-
ondary. Generally, named “lithophysal zones”
identified in this report contain rocks exhibiting
small- to medium-sized lithophysae and/or “spots”
whose matrix is grayish red-purple in color, as rec-
ommended by Buesch and others (1996, p. 18).
This type of material typically is associated with
vapor-phase alteration of varying, but relatively
strong, intensity immediately adjacent to observ-
able lithophysae. The matrix of rocks from named
nonlithophysal zones is typically more brownish or
orangish in color; note that description of rock col-
ors is somewhat subjective, even when using stan-
dard rock-color charts (Geological Society of
America, 1991). The finer-scale texture of the rock
between lithophysal cavities in lithophysal zones is
typically stretched and foliated, as if distorted by

the inflating lithophysal cavities. Fracturing within
named lithophysal zones is generally distinctive as
well; fractures tend to be shorter and more irregular
in form, and to exhibit rougher surfaces than those
encountered outside the named lithophysal zones.
Unquestionably, some of the names assigned in this
report are somewhat in conflict with the descrip-
tion of the corresponding interval. The descriptions
should take precedence, as these do reflect local
heterogeneities in the tuff mass.

Drill hole USW SD-7 was collared in the crys-
tal-poor middle nonlithophysal zone of the Tiva
Canyon Tuff. The contact of this unit with the
underlying crystal-poor lower lithophysal zone is
anything but distinct. The uppermost lithophysal
cavities visible in core occur at 74.8 feet (22.8 m;
log sheet 2, Appendix B); these are accompanied
by a definite increase in the intensity of vapor-
phase alteration. Lithophysae are quite flattened
and are widely spaced down to a depth of about
130-140 feet (40-43 m). Vapor-phase alteration is
variable but relatively intense, and there are a mod-
est number of thin vapor-phase silica veinlets cut-
ting the core at various angles. The frequency of
flat, vuggy lithophysae increases somewhat below
140 ft (43 m), but these features become crowded
(log sheet 3) only between about 167.5 and 195.0 ft
(51.0-59.4 m). There are a number of unrecovered
and rubblized intervals throughout the lower litho-
physal zone that may be attributed in part to the
presence of additional, potentially somewhat larger
lithophysae. The lower contact, in contrast, is rela-
tively sharp with the intensity of lithophysal-style
alteration and the number of mesoscopically
observable lithophysal cavities diminishing virtu-
ally to zero at about 195 feet (59 m).

Within the Topopah Spring Tuff, the upper-
most lithophysae are encountered at a depth of
approximately 455.4 ft (138.8 m). These lensoidal
features are widely spaced, and their frequency
decreases by about 465-472 ft (142-144 m).
Widely spaced lithophysae without alteration rims
increase in number beginning at about 487.8 ft
(148.7 m), becoming closely spaced by about
507.6 ft (154.5 m). The 487.8-ft depth has been
taken as the contact of what appears to be the crys-
tal-poor upper lithophysal zone. Mesoscale litho-
physae appear virtually absent from a 18-20-ft
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(roughly 6-m) interval between 526 and 534 feet
(160-163 m) that consists of highly rubblized core
and unrecovered intervals. Lithophysae increase
markedly at a depth of 533.3 ft (162.5 m), and at
this depth the lithophysae exhibit significant vapor-
phase alteration rims. Lithophysal cavities
throughout the upper lithophysal zone appear to be
bimodal in size. Mesoscale cavities in core are
interspersed with what appear in down-hole video
imagery to be very large (larger than core diame-
ter), vapor-phase-coated lithophysal cavities.
Inferred large cavities are most abundant between
depths of about 560 and 625 ft (170-190 m). The
abundance of mesoscale lithophysae in core dimin-
ishes rapidly at about 646 ft (197 m), although
lithophysae are present in variable numbers down
to a relatively abrupt contact with the middle nonli-
thophysal zone at 682.5 ft (208.0 m).

The intensity of lithophysal-style alteration
associated with the crystal-poor lower lithophysal
zone increases rapidly over a 1-2 ft (0.3-0.7 m)
interval beginning at 801.6 ft (244.3 m). The con-
tact is placed at a depth of 803.3 ft (244.8 m), at the
beginning of a rubble zone associated with very
frequent “lost-core” intervals and other rubble
zones. Significantly more of the core throughout
the lower lithophysal zone was “lost” or rubblized
than was recovered intact. Down-hole video imag-
ery suggests that the large lithophysal cavities
interpreted as responsible for the exceedingly poor
core recovery encountered in this interval are larg-
est near the top of the zone and that they decrease
in size progressively down to a depth of roughly
875 to 890 ft (265-270 m). Mesoscale lithophysae
dominate recovered core below about 890 ft, and
these lithophysae become more flattened down-
ward. Several intervals between about 900 and
1050 ft (257-320 m) appear to be nonlithophysal,
but are still affected by quite intense vapor-phase
(almost lithophysal-style) alteration and mineral-
ization. The base of the lower lithophysal zone is
placed at a depth of about 1020 ft (311 m) at the
lowest occurrence of opened lithophysal cavities
that are accompanied by significant vapor-phase
rims. Relatively rare, flattened lithophysae without
alteration rims occur down to a depth of 1042 ft
(317.5 m).

Rock Quality Considerations

Core Recovery

Percent core recovery was determined at the
drill site by Yucca Mountain Project drilling sup-
port staff during the coring of hole USW SD-7.
Recording core recovery information is a relatively
mechanical process and follows a set procedure.
Core recovery data are presented in Appendix C,
Table C-1; this information is also presented graph-
ically in summary form in figure 4. Core recovery
information is presented in more detail on the geo-
logic log sheets of Appendix B, which allows
inference of possible lithologic controls of lost core
and as means of qualifying the reliability of the
associated lithologic descriptions. Description of
intervals with exceptionally poor core recovery
requires a subjective “reading” of multiple lines of
indirect evidence.

A generalized summary of the procedure used
to determine core recovery is as follows.

1) The core is laid out in an appropriate
manner. Broken segments are fitted back
together as best possible to represent in-
situ dimensions. Rubble is reaggregated to
continuous piles of approximately the core
diameter.

2) The start and stop depths of the core run
are identified from information provided
by the driller and the length of the core run
is determined.

3) The total length of core recovered from a
given run is measured using a steel tape
measure and the footage is recorded.

4) Recovery is computed as the percentage of
material actually recovered from that
interval.

Core recovery data are only estimates. The
accuracy of these estimates in reflecting the actual
recovery for a core run can be quite precise for
intervals of generally good recovery of essentially
intact core. Accuracy diminishes markedly as the
integrity of the core decreases, because loose rub-
ble recovered in the core barrel must be approxi-
mated back to in situ dimensions prior to
measurement.
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Figure 4. Plots showing (a) core recovery, (b) field measured core-run RQD, (c) 10-ft averaged field-mea-
sured RQD, (d) 10-ft averaged video-analysis RQD, and (e) geologic unit contacts for the USW SD-7 drill
hole as a function of depth. Dark grey bars are “enhanced” or original RQD values of Deere and Deere
(1989); lighter grey bars are raw RQD values uncorrected for coring-induced fractures. Dotted vertical lines
are RQD classes from table 5. Thinner geologic units not labeled.
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Reference to figure 4(a) and the geologic log
sheets of Appendix B indicates that core recovery
was generally fairly good down through the base of
the welded Tiva Canyon Tuff, although achieving
this good recovery required the use of very short
core runs. Core recovery decreased markedly
through the Paintbrush nonwelded interval (PTn
unit) between about 300 and 375 ft (90-115 m).
Recovery was particularly poor in the lower part of
this interval in what appear to be completely
unconsolidated pumice-fall deposits, and no core
was recovered from a 20-ft (6.1-m) interval begin-
ning at 342.0 ft (104.24 m). Identification of geo-
logic units is difficult in this depth range, and the
presence of the distal part of the Pah Canyon tuff
could not be confirmed in the SD-7 drill core.

Core recovery was quite good (exceeding 90
percent) in the uppermost welded units of the
Topopah Spring Tuff (fig. 4). However, recovery
was typically only about 50 percent through the
majority of the two lithophysal zones, and much of
what material was recovered was simply rubble.
Poor recovery in the lithophysae-bearing intervals
is attributed to breakage of the rock during the
drilling process followed by displacement of the
broken fragments into lithophysal cavities by the
force of circulating air and to the presence of sig-
nificant intervals of large in-situ cavities. Core
recovery was excellent in the crystal-poor nonli-
thophysal zone (the repository horizon) and rela-
tively good in the crystal-poor lower
nonlithophysal zone underlying the lower litho-
physal interval. Note in figure 4 that the transition
from low recoveries of 40-50 percent in the upper
half of the lower lithophysal zone to recoveries
approaching 100 percent in the lower half of the
lower nonlithophysal zone is gradational and that
there is no well defined “contact” between rock
“units” defined on the basis of core recovery. This
is in contrast to the relatively abrupt change in core
recovery observed associated with the base of the
crystal-poor upper lithophysal zone, where geo-
logic log sheet 10 (Appendix B) indicates that
lithophysal-style alteration decreases markedly
over a relatively thin 11-ft (3.35-m) interval begin-
ning at 646 ft (197 m) and is virtually absent below
a depth of 682.5 ft (208.0 m). Geologic log sheets
13-15 indicate that the size of lithophysal cavities
and the overall intensity of lithophysal-style alter-

ation within the lower lithophysal interval decrease
progressively over a nearly 200-ft (60-m) interval
from roughly 860 ft (260 m) to below 1040 ft (320
m). Rautman and Engstrom (in press) have docu-
mented for drill hole USW SD-12 that the presence
of large lithophysal cavities, in particular, is not
limited to the more strictly defined “lithophysal
zones” of Buesch and others (1996).

Core recovery was effectively zero through the
lowermost part of the nonwelded vitric subzone of
the Topopah Spring and the pre-Topopah Spring
Tuff bedded tuff, including approximately 45 con-
tinuous feet of total core loss. The detailed geology
of this interval is nearly uninterpretable using core.
Core recovery improved markedly within the Cal-
ico Hills Formation, and this improvement is
attributed to partial to moderate zeolitization (or
other alteration) of these nonwelded tuffs. Recov-
ery in the lower half of the SD-7 drillhole (below
the Paintbrush Group) typically exceeded 90 to 95
percent. An approximately 150-ft (45-m) interval
of lower (roughly 70-80 percent recovery) was
encountered associated with Prow Pass ash-flow
unit 3 (1600-1750 ft; 485-535 m). Ash-flow unit 3
is moderately to densely welded throughout much
of its thickness, and the lower core recoveries
observed in these more brittle rocks is attributed to
fracturing potentially associated with the west-dip-
ping Ghost Dance-Abandoned Wash fault system.
A second zone of very low core recovery and
highly fractured rock is associated with the lower
Bullfrog Tuff at a depth of almost exactly 2500 ft
(760 m).

RQD (Rock Quality Designation)

Measurement of RQD is also a relative
mechanical process, and it is usually performed as
an adjunct to measurement of core recovery. Like
core recovery, RQD has been defined on a per-run
basis for each drilling interval (Deere and
Deere,1989). RQD generally is also reported on the
basis of a standardized interval, typically 10 feet
(approximately 3 m). The use of a standard-length
measurement interval reduces the occurrence of
interspersed, wildly erratic RQD values that may
be associated with numerous very short core runs
(particularly in broken rock).
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The procedure for determining RQD data is as

follows.

1) The core is laid out in an appropriate
manner as for core-recovery
measurements.

2) The length of the core run is determined as
for core-recovery measurements.

The cumulative footage of intact, whole

core segments of sound rock longer than 4

inches (100 mm) as measured along the

centerline of the core is measured using a

steel tape measure. Ends that result from

diagonal fracturing of the rock mass are

excluded from the measurement (fig. 5).

There are two alternatives for the treatment

of fractures:

(a) all extant fractures are considered as
breaks in the core, regardless of
whether or not the fractures appear to
be natural or drilling induced; or

(b) only natural fractures are considered to
be breaks in the core.

The cumulative footage thus measured is

converted to a percentage of the drilling

interval and recorded to the nearest
percent.

~ core

centerline

Measured Length of “Intaét” Core

Figure 5. Conceptual sketch for measuring the
length of “intact” core segments for RQD
determinations. Ends, “ears,” and other segments
are not included in the length measurement.
Segments must be longer than 4 inches (100 mm)
to count toward RQD.

The originator of the RQD measurement sys-
tem (Deere, 1963; see also Deere and Deere, 1989,
p. 15, 43) recommended that only natural breaks in
the core be considered. Deere and Deere explicitly
state that breaks that are obviously an artificial
result of the drilling and/or core-handling process
are to be discounted in the determination of “bro-

ken” core. Criteria for identifying natural fractures
may include: fracture in-filling or mineralization;
obvious non-matching sides; the presence of
gouge, slickensides, or other structures suggestive
of relative movement; and potentially other site-
specific features. Criteria for induced fractures
include: actual observation of core breakage during
handling; absence of any fracture-filling material
other than drilling mud (which was not used in site-
characterization drill holes at Yucca Mountain);
clean, sharp edges that fit tightly together; and
breaks at 90° to the core axis. If the origin of a par-
ticular break is in doubt, their procedure is to count
it as a natural break, which would produce an RQD
value that is conservative from a rock-stability
standpoint. If all fractures are considered breaks in
the core, the value that results is referred to in this
report as “raw RQD.” If induced fractures are dis-
counted, the value is referred to as “enhanced
RQD” or “Deere RQD.”

The requirement for “sound rock” is also sub-
jective, but it is intended (Deere and Deere, 1989,
p. 16) to exclude intervals of altered, weathered, or
otherwise unstable material that might conceivably
be recovered “intact” (not fractured or broken). If
the soundness of a particular core segment that
would otherwise qualify is in doubt, it is excluded
from the cumulative piece-length measurement for
RQD determination. The intent is to be conserva-
tive from a design standpoint of estimating ground
stability. In practice, such subjective decisions
involving Yucca Mountain core are not an issue, as
the type of alteration that typically produces “soft,”
intact core is virtually unknown from the upper
part of the volcanic section.

Measured RQD data for the individual core
runs of drill hole USW SD-7 are given in Appendix
D, table D-1. The 10-ft composite (averaged) RQD
values are in table D-2. RQD values for the SD-7
drill hole are presented in graphical form in figure
4, parts (b), (c), and (d). RQD values are also
included graphically on the detailed geologic log
sheets in Appendix B.

Note that there are two sources of RQD data
and RQD composites. The data in table D-1 and
the columns in table D-2 that are headed “Drilling
Support” are based on actual physical measure-
ment of the core by drilling support staff at the time
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of recovery of the core from the hole. The values in
the columns of table D-2 that are headed “Study
8.3.1.14.2” are based on interpretation of video
images of the core that were filmed immediately
upon opening of the core barrel in the field. The
field-measured values benefit from direct physical
observation of the core, including the ability to
examine actual fracture surfaces for the presence of
mineralization and other phenomena that may bear
on the issue of natural versus induced. However,
the logistics of sampling the core at the rig site and
preserving those samples in near-in-situ hydrologic
conditions limits the time that can be spent examin-
ing a core run to a few minutes. The video-based
RQD measurements, which were actually obtained
as part of SCP Study 8.3.1.14.2 (Soil and Rock
Properties of Potential Locations of Surface Facili-
ties; USGS, 1991b), are not subject to this time
limitation; however, these data are limited by the
inability to examine the core itself physically. The
values portrayed on the detailed geologic log of
drill hole SD-7 are the 10-foot composite, field-
measured, raw and enhanced RQD values from
table D-2.

A relatively minor, potentially confounding
lack of information for the SD-7 drill hole results
from the fact that the video-analysis-derived RQD
values were developed specifically for use in
design of the Exploratory Studies Facility, and
because of accelerating design schedules and bud-
getary restrictions, these data were obtained only
for the immediate repository-host horizon (the
crystal-poor middle nonlithophysal zone of the
Topopah Spring Tuff). The video-analysis values
simply were not recorded above 670 ft (204 m) nor
below 830 ft (253 m), as the shallower and deeper
parts of the SD-7 drill hole are outside the zone of
short-term engineering interest. In fact, the differ-
ences between the RQD values derived from the
two different sources are relatively insignificant in
light of the fact that RQD is a rough, preliminary
estimate of rock mass integrity. Design decisions
for ground support of underground openings, such
as the Exploratory Studies Facility or a potential
repository, are generally based on large categorical
groupings of RQD values (table 5), or on the basis
of more sophisticated indicators of rock mass sta-
bility, such as those provided by the “RMR” or “Q”
rating systems (Barton and others, 1974; Bieniaw-

ski, 1989). Engstrom and Rautman (in press) and
Rautman and Engstrom (in press) have presented
data which indicate that the drilling support RQD
information [parts (b) and (¢) of fig. 4] should be
completely adequate as simple indicators of rock
mass integrity and stability. These data are avail-
able for the entire SD-7 drill hole down to TD.

Table 5: RQD and Rock-Quality
Descriptors
[after Deere and Deere (1989)]

RQD Description
90-100 Excellent
75-90 Good
50-75 Fair
25-50 Poor

0-25 Very poor

As anticipated, the core-run RQD values [col-
umn (b) of fig. 4] are noticeably more variable than
the ten-foot composites (('52run =35.4; czlo_ﬂ =
30.0 for enhanced RQD). For these composite val-
ues, the enhanced or Deere RQD values are logi-
cally higher than the raw values (Mlopn = 35; lpaw =
37), for which the impact of drilling and sample
handling have not been discounted. Note that in
many intervals, such as that from 430 to 530 ft
(130-160 m), the effect of ostensibly coring-
induced fractures may be rather significant. Gener-
ally, the integrity of the thick welded Topopah
Spring interval (400-1200 ft; 120-365 m) is rather
poor by any measure. The presence of abundant
lithophysal cavities and brittle welded materials
combine to produce very low values of RQD (very
poor ground conditions; table 5). Typically the
nonlithophysal zones (for example, 390-490 ft;
119-149 m) exhibit higher values than do the litho-
physal zones (compare 800-960 ft; 244-293 m).
Rock quality is markedly higher in the largely non-
welded and in general at least partially zeolitized
intervals below 1450 ft (440 m). Note however that
there are moderately thick intervals even in these
lower units that exhibit only “fair” to “good”
ground conditions (table 5). Although once-
planned excavation of a “Calico Hills test-level
drift” as part of the Exploratory Studies Facilities
currently appears to have very low priority, thus
reducing any near-term design need for this infor-
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mation, the fact that RQD is a quantity directly
related to the spacing of open fractures may pro-
vide relevant, indirect information on fracture fre-
quency for more hydrologic-related studies.

Measured Lithophysal Cavity Information

A very minor amount of quantitative informa-
tion regarding the abundance of the smaller litho-
physal cavities (as distinct from the abundance of
lithophysae and of large cavities) was obtained
from the USW SD-7 drill hole for the proposed
repository-host horizon only (Tptpmn) because of
resource restrictions (similar to the case of the
video-analysis RQD measurements). These data
were obtained by comparing the surface area of the
core and core-video images occupied by actual
cavities with standard charts for estimating mineral
percentages in thin sections. This minimal data is
reported in Appendix E, table E-1. Because the
middle nonlithophysal zone typically contains very
few lithophysae and in SD-7 the unit is virtually
free of lithophysae, the data are rather uninterest-
ing and a graphical representation of these data is
not warranted. Only the uppermost 10-ft (3-m)
interval ending at a depth of 680.0 ft (207.25 m)
contained lithophysae; the areal fraction of litho-
physal cavities in this single depth increment is
only 2 percent.

Fracture Information

Fracture information has been recorded as part
of logging of the core from drill hole USW SD-7.
Fractures are represented schematically on the geo-
logic log sheets in Appendix B. This representation
is qualitative; however, it does capture much of the
general style of fracturing. Fracture density is
approximately shown, and fracture orientations are
shown with respect to the core axis (effectively
vertical at SD-7). The simultaneous presentation of
fracture style with the other geologic indicators
allows some understanding of controls on fracture
density, orientation, and mineralization. This quali-
tative fracture description is available for the entire
drill core. Only minimal more quantitative fracture
information from detailed counting and measure-
ment in the style of Engstrom and Rautman (in
press, fig. 7) and Rautman and Engstrom (in press,
fig. 7) has been obtained from the SD-7 drill core,
and this information is available effectively for

only the potential repository host horizon, the crys-
tal-poor middle nonlithophysal zone of the
Topopah Spring Tuff. These few data have been
summarized in 10-foot depth increments and are
presented in Appendix F, table F-1.

The quantitative fracture data for the crystal-
poor middle nonlithophysal zone are presented in
figure 6. The fracture density log shown in part (a)
of figure 6 distinguishes coring- and handling-
induced fractures from natural fractures. The “nat-
ural” category actually includes both natural frac-
tures and fractures of “indeterminate” origin. Part
(b) of figure 6 portrays fracture orientations by 30-
degree increments; a somewhat expanded fre-
quency scale has been used to allow better visual-
ization of the different orientation classes. The
appendix contains a more detailed 10-degree cate-
gorization of fractures. Neither the fracture data of
Appendix F nor figure 6 has been corrected for the
well-known effect of fracture dip on the numbers
of fractures observed in a vertical borehole (Scott
and others, 1983):

Foom
¢ coso

; M
where F, is the fracture frequency corrected for
fracture dip, o (from the horizontal), and F,, is the
measured fracture density. The impact of this
cosine-correction factor will be relatively large in
some intervals.

Part (c¢) of figure 6 provides a breakdown of
clean fractures in contract to fractures that contain
some degree of mineralization or veining. Mineral-
ized fractures are fairly common in this part of the
drill hole, accounting generally for at least half of
the total fractures from this limited vertical inter-
val.

RQD values and core recovery information are
also shown in figure 6 for comparison [columns (d)
and (e) respectively]. Although rock quality and
RQD values should be inversely related to fractur-
ing, there appears to be a clear direct correspon-
dence between the more highly fractured intervals
and intervals of high RQD (presumably less broken
rock). The cause of this correlation is that actual
counting and measurement of fractures cannot be
accomplished for core that is not recovered. Mea-
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Figure 6. Graphs showing (a) measured fracture density, (b) fracture orientation (dip angie),

(c) mineralized fractures, (d) 10-ft videc-analysis RQD, and (e) core recovery for the upper par of the
USW SD-7 drill hole. Solid horizontal lines indicate top and bottom contacts of the Tiva Canyon and
Topopah Spring Tuffs. Dashed horizontal lines are contacts of selected zonal subunits.
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surement of RQD is affected in a similar manner in
that missing core adds zero footage to the cumula-
tive footage of core segments greater than four
inches.

Rautman and Engstrom (in press) discuss the
implications of this somewhat illogical observed
relationship between fracturing and rock quality in
drill hole USW SD-12, for which quantitative frac-
ture data were available for nearly the entire Paint-
brush Group. They also attempted to correct the
observed fracture frequencies for the impacts of
lost core, lost core plus rubble (highly broken
material for which individual fractures were not
individually counted), and for the combined influ-
ence of these two confounding factors. The almost
trivial amount of quantitative fracture data avail-
able for the USW SD-7 drill hole renders this type
of analysis virtually meaningless. However, equa-
tions 2—4 of Rautman and Engstrom (in press)
could be applied to the data in table F-1. The
impact would be relatively small for the influence
of “lost core, as the core recovery log (column (e)
of fig. 6) indicates nearly 100-percent core recov-
ery in the repository host horizon. The “lost core”
and “rubble” data required for the adjusting equa-
tions can be found in table E-1.

Framework Hydrologic Properties

Laboratory Techniques

Core samples were obtained from SD-7 at
approximately regular intervals for laboratory mea-
surements of framework material properties.
“Framework material properties” are defined in
Study Plan 8.3.1.4.3.1 (Rautman, 1993) as poros-
ity, bulk and particle density, and saturated hydrau-
lic conductivity. Water contents were also
determined and used to compute approximate in-
situ saturations and volumetric water contents.

Approximately 800 eight-inch long core sam-
ples were collected for hydrologic analyses on a
nominal 3-foot, regular sampling interval. Each
core sample was subdivided into two subsamples.
A 2-inch long core fragment was placed in a metal
container and sealed within minutes of core
retrieval from the hole. An immediately adjacent 6-
inch subsample was preserved in a Lexan tube that
was capped and sealed with duct tape. The intent

was to preserve in-situ moisture contents as closely
as possible, and especially to prevent dry-out of the
core and subsequent changes in pore geometry
caused by desiccation of clays and zeolites. Such
changes have been demonstrated to affect perme-
ability measurements irreversibly.

Porosity, bulk density, particle density, and
water content were determined in the laboratory for
the hermetically sealed 2-inch core fragments. Sep-
arately, a subset of the 6-inch core samples were
subcored to produce specimens suitable for mea-
surement of saturated hydraulic conductivity. Core
plugs were trimmed using a small diamond saw to
approximate right-circular cylinders approximately
2.5 cm in diameter and 3—10 cm long prior to test-
ing. Porosity, bulk density, and particle density
were also measured for these prepared specimens.

Water content was determined by gravimetry
and is reported as volumetric water content in
cubic centimeters per cubic centimeter. Porosity (0,
in cubic centimeters per cubic centimeter and
expressed as a decimal fraction for simplicity),
bulk density (p,, in grams per cubic centimeter),
and particle density (p,, in grams per cubic centi-
meter) were determined using gravimetry and
Archimedes’ principle to determine sample vol-
ume. There were two departures from the classical
application of this technique. First, the samples
were saturated initially with carbon dioxide gas by
introducing the gas into an evacuated bell jar con-
taining the samples; this process, repeated three
times, prevents air entrapment in small pores
within the densely welded tuff samples because the
CO, is water-soluble. The samples were then satu-
rated with degassed distilled water under a vac-
uum. Scoping studies have indicated that saturated
weights did not change meaningfully following a
single iteration of this vacuum-saturation process,
even with the addition of a pressure-saturation
step. Second, the samples were dried in a relative-
humidity (RH)-controlled oven at 60°C and 65-
percent RH (after concepts of Bush and Jenkins,
1970), rather than at 105°C and associated ambient
RH. Soeder and others (1991) advocated the use of
a lower temperature, humidified technique, not
only to preserve water present in the crystal struc-
ture of any clays or hydrated minerals (such as zeo-
lites), but also to retain water loosely bound to
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grain surfaces which is otherwise unavailable for
unsaturated flow. The selected RH of 65 percent
translates to an estimated residual-saturation pres-
sure for Yucca Mountain samples of approximately
-700 bars (L.E. Flint, U.S. Geological Survey, writ-
ten communication, 1996).

Particle density, as used in this report, is simi-
lar to the more commonly reported grain density.
However, because particle density is a property
computationally derived from intact core samples,
totally encapsulated void space (which thus is inac-
cessible to water flow) is not considered. Particle
density is almost invariably lower than a grain den-
sity determination obtained by crushing the rock
and measuring the change in total volume. Particle
density will approach grain density for rocks that
have little totally encapsulated pore space. Bulk-
property measurements were repeated after more
conventional sample drying at 105°C to allow for
comparison with other reported data (ASTM,
1990). Sample weights were reduced to the desired
bulk properties as follows:

dry weight

Po = bulk volume ° @)
_ pore volume
~ bulk volume ° and (3)
= dry weight
Pr = bulk volume — pore volume where (4)
pore volume =
(saturated weight — dry weight) )

Pw

and p, is the temperature-adjusted density of water
(in grams per cubic centimeter). Bulk volume is
simply the mass of the fully saturated sample sub-
merged in water (by Archimedes’ principle). “Dry”
weight is the weight of the sample for either the
RH- or 105°C-dried conditions. Volumetric water
content (VWC) was determined as:

VWC =

saturated weight — dry weight)
dry weight Py

©)

Saturated hydraulic conductivity, K, in meters
per second and usually presented as log;g K¢

throughout this report, was measured using a con-
stant-head method. The core plugs were saturated
with tap water using the vacuum evacuation/CO,
flooding technique. Each sample was encased in
heavy vinyl tubing and placed in a chamber (Has-
sler permeameter) that produced a hydraulic con-
fining pressure (~0.41-0.55 MPa), slightly
exceeding the gradient across the sample, to pre-
vent escape flow around the sides of the sample.
Confining pressures of this magnitude do not affect
the permeability of the rock, especially since
welded samples have compressive strengths on the
order of 100 MPa (Nimick and Schwartz, 1987).
Even the nonwelded tuffs within the Paintbrush
Group typically exhibit unconfined compressive
strengths of at least 3 to 5 MPa (Martin and others,
1994). A separate system provided J-13 tap water
under pressure for flow through the sample. Efflu-
ent was weighed on a top-loading balance and the
mass was recorded as a function of time as the
water left the sample. Saturated hydraulic conduc-
tivity was computed from Darcy’s law:

0 L
K, = N A @)
where Q is the quantity of water flowing through
the sample (cm¥/sec), A is the cross-sectional area
of the sample core plug (cm?), AH is the change in
total head (cm) across the sample, and L is the
length (cm) of the core plug. Note that K has been
converted to units of meters per second in all tables
and figures in this report.

Material-Properties Data

Results of the laboratory material-properties
determinations are presented in Appendix G. Table
G-1 contains bulk properties (porosity, bulk den-
sity, particle density) and initial water contents and
apparent saturations for both relative-humidity
oven-dried and 105°C-dried samples. Saturated
hydraulic conductivity measurements are presented
in table G-2. Separate porosity measurements were
also obtained from the permeability-plug samples.
These latter porosity data are given in the table of
conductivity values.

Data from table G-1 are presented graphically
in log format in figures 7 and 8. Figure 7 shows the
laboratory results for the entire Paintbrush Group
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Figure 7. (a) Porosity, (b) bulk density, (c) particle density, (d) saturation, and (e) water content profiles of
core samples collected from the upper portion of the USW SD-7 drill core. Solid circles—relative-humidity
oven-dried samples; open squares—105°C-dried samples. Horizontal lines indicate top and bottom con-
tacts of the Tiva Canyon and Topopah Spring Tuffs (solid) and internal zones (dashed).
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Figure 8. (a) Porosity, (b) bulk density, (c) particle density, (d) saturation, and (e) volumetric water con-
tent profiles of core samples collected from the lower portion of the USW SD-7 drill core. Solid circles—
relative-humidity oven-dried samples; open squares—105°C-dried samples. Horizontal lines indicate top

and bottom contacts of the Topopah Spring Tuff, Calico Hills Formation, and the Prow Pass, Bullfrog,
and Tram Tuffs (solid) and internal zones (dashed).
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interval down to the pre-Topopah Spring Tuff bed-
ded tuff. Figure 8 is an identical presentation, only
the displayed interval extends from just above the
base of the Topopah Spring Tuff through the Calico
Hills Formation and the Prow Pass and Bullfrog
Tuffs of the Crater Flat Group. this two-part pre-
sentation allows both halves of the hole to be dis-
played without excessive vertical compression.
The figure includes both the relative-humidity and
105°C data, which are represented by different
symbols. Note that the two values for each sample
are essentially identical throughout most of the
upper portion of the drill hole. Major differences in
the properties measured under these two test condi-
tions occur only in the presence of hydrated miner-
als, such as clays and particularly zeolites.
Generally, the picture that emerges from the mate-
rial-properties data is reflective of the ther-
mal/mechanical units identified in table 4
(marginal labels on figs. 7 and 8). The saturated
hydraulic conductivity data from table G-2 are pre-
sented in graphical format in figure 9, together
with the corresponding porosity measurements
from these subcored sample plugs.

The major lithologic subdivisions of the rock
column penetrated by drill hole USW SD-7 can be
identified in the material-property profiles shown
in figures 7 and 8. The welded portion of the Tiva
Canyon Tuff is represented by measured porosity
values of approximately 0.10, extending down to a
depth of about 300 ft (90 m). Below this depth,
porosity values increase progressively through the
lower vitric zone of the Tiva Canyon (the shardy-
base interval), and they remain high (0.30-0.50)
through the interval from the base of the Tiva Can-
yon Tuff to the top of the Topopah Spring welded
interval (much of this interval was lost during drill-
ing leading to very sparse sample spacings). The
bottom of this latter subzone is at about 387 ft (118
m). Welded materials with porosities typically less
than 0.10-0.12 form the bulk of the remainder of
the Topopah Spring Tuff below 387 ft (118 m) and
extending through the base of the basal vitrophyre
subzone of the lower vitric zone (Tptpv3) at 1191.4
ft (363.1 m).

A few of the internal zones of the Topopah
Spring Tuff can be identified within the thick
welded portion of this unit. Notably, the thin vitro-
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Figure 9. Porosity and saturated hydraulic con-
ductivity of core samples collected from the USW
SD-7 drill core.
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phyre subzone of the upper vitric zone (Tptrvl, or
“caprock” vitrophyre) is easily identifiable by its
particularly low porosity values, 0.05 or less) at
approximately 390 ft (118 m). The much thicker
“basal” vitrophyre subzone of the lower vitric zone
(Tptpv3) is also easily identified as the 83-ft (25-
m) interval below 1200 ft (365 m) of uniformly
low (less than 0.05) porosity values. Note also that
the lower vitrophyre subzone also exhibits uniform
and distinctly lower values of particle density com-
pared to the devitrified materials that overlie this
unit. A pronounced low-particle-density spike is
associated with the caprock vitrophyre as well.

With the exception of a part of the upper
Topopah Spring, specifically the intensely vapor-
phase altered crystal-rich nonlithophysal and crys-
tal-poor upper lifhophysal zones between 400 and
600 ft (122-183 m), the majority of the many
zones and subzones identified within the Topopah
Spring Tuff (table 1) are not particularly distinct in
the porosity profile. Both of the exception intervals
appear to exhibit higher porosity values of 0.15 to
as much as 0.20. A fairly prominent porosity
“break” is associated with the base of the crystal-
poor middle nonlithophysal zone at about 800 ft
(245 m), and porosity values are noticeably higher
in the lower part of the lower lithophysal zone
(about 950-1020 ft; 290-310 m).

The lowermost zones of the Topopah Spring
Tuff exhibit a general increase in porosity and con-
stitute a largely nonwelded, high-porosity interval
(including the pre-Topopah Spring Tuff bedded
tuff, Tptbtl, much of which was not recovered in
core) that extends downward to about the middle of
Prow Pass ash-flow unit 3 to approximately 1750 ft
(533 m) or somewhat deeper. The two porosity val-
ues (RH- and 105°C-dried) begin to diverge mark-
edly at approximately about 1520 ft (463 m),
indicating the presence of probable zeolitized
materials in unit 1 of the underlying Calico Hills
Formation. The dichotomy between the relative-
humidity dried samples and their 105°C-dried
counterparts is particularly well displayed by the
particle density data [profile (c) in figs. 8]. The
base of the Calico Hills Formation is present at
1626.2 ft (495.6 m), although the most prominent
change in porosity is associated with the transition
from ash-flow-type material to the bedded tuff and

basal tuffaceous sandstone units of the Calico Hills
(1567.2-1626.2 ft; 477.7-495.6 m). The upper part
of ash-flow unit 3 of the Prow Pass Tuff also con-
tains loosely bound water, as indicated by separa-
tion of the relative-humidity and 105°C data (fig.
8). The lower part of Prow Pass ash-flow unit 3 is
marked by much smaller differences between the
two laboratory property values and it appears to be
much less affected by hydrous-phase alteration.
Prow Pass ash-flow unit 1 appears to have been
intensely zeolitized.

The nonzeolitized ash-flow unit 3 of the Bull-
frog Tuff, beginning at a depth of about 2118 ft
(645 m), exhibits a classic c-shaped welding pro-
file of high porosity values at the base and top with
lower values in the interior. The < shape is
reversed (D) in the bulk density profile of figure
8(b). It seems unlikely that the single, isolated
high-porosity value at 2387.7 ft (727.7 m) repre-
sents an actual cooling break in this pyroclastic
sequence. Zeolitic material become prevalent in
the lower Bullfrog (ash-flow unit 1) and in the
uppermost Tram Tuff.

Saturation and initial water content (vol-
ume/volume) data are also presented in figures 7
and 8. Water contents [column (e)] invariably are
higher in the nonwelded than in the welded inter-
vals throughout the entire drill hole. There is sim-
ply more void space in these materials to contain
moisture. Note that a non-negligible fraction of the
total water content of the zeolitic samples, those
obtained from below a depth of about 1500 ft (455
m), consists of weakly bound water that is driven
off with heating above 105°C.

Saturations are extremely high in the upper
two zones of the Tiva Canyon Tuff that were
encountered in drill hole SD-7. These intervals are
immediately below approximately 50 ft (15 m) of
colluvial cover and pad fill, and they presumably
are well connected to the bedrock surface via frac-
ture networks. Saturations decrease toward the top
of the crystal-poor lower lithophysal interval of the
Tiva Canyon, but with increasing depth the sam-
ples become essentially fully saturated immedi-
ately above the gradational transition to nonwelded
materials below the lower nonlithophysal zone
(shardy base interval). Saturations associated with
the caprock vitrophyre subzone of the Topopah
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Spring Tuff are sharply higher than in samples
taken immediately above or below this densely
fused vitric unit.

Within the main part of the welded Topopah
Spring Tuff, saturations increase progressively
from about 40 percent at the top to greater than 90
percent in the crystal-poor middle nonlithophysal
zone (Tptpmn). Saturations decrease below the
middle non-lithophysal zone and remain relatively
constant at about 80 percent throughout most of the
remainder of the welded-devitrified unit, increas-
ing to nearly fully saturated in the top portion of
the lower vitrophyre subzone (Tptpv3).

Saturation decreases progressively through the
“shardy base” of the Topopah Spring Tuff as the
porosity increases gradationally to between 20 and
40 percent. Both saturation and volumetric water
content increase sharply at approximately 1500 ft
(460 m) near the base of the ash-flow unit 2 of the
Calico Hills Formation. Saturations approach 100
percent, and perched water was encountered at a
depth of approximately 1600 ft (488 m). The
perched water apparently had been confined by the
low-permeability zeolitic materials in this interval,
as the water level rose rapidly to a depth of only
1574.1 ft (479.76 m), a rise of more than 25 ft
(nearly 8 m).

Saturations of core samples collected from
below a depth of about 1650-1660 ft (500-505 m)
are significantly lower that those measured on sam-
ples collected immediately above this depth. Note
that the perched water interval was cased-off after
pump testing with the bottom of casing at 1660 ft
(506 m). This spatial coincidence suggests that
some of the high and/or erratic saturation values
measured near the top of Prow Pass ash-flow unit 3
may have been influenced by seepage from the
overlying perched water zone, perhaps after pene-
tration of this sequence by the drill hole. The less-
than-saturated condition of these deeper samples
also suggests that the perched water is not con-
tained within the matrix porosity of the rock mass,
but rather is present essentially only in fractures.
Saturations within the welded part of Prow Pass
ash-flow unit 3 are quite low: approximately 30
percent. The general level of saturation increases
markedly in the lower third of ash-flow unit 3 at
approximately 1780 ft (540 m); this increase is

associated with a decrease in the intensity of vapor-
phase alteration between about 1750-1780 ft (533—
543 m). Values continue to increase gradually, if
somewhat erratically, with depth to more than 90
percent at approximately 2000 ft (610 m). The
regional saturated zone was encountered at approx-
imately 2180 ft (665 m), after which the water
level rose rapidly to a depth of 2085 ft (635.48 m).
Core samples were near full saturation at a depth of
approximately 2050 ft (625 m) and again below the
first water at 2180 ft. However, a broad interval
from slightly deeper than 2200 to approximately
2450 ft (670-747 m) produced core samples that
are noticeably less than fully saturated (~0.85-
0.95). This anomalously undersaturated interval is
directly associated with the welded part of Bullfrog
ash-flow unit 3, which extends from 2218 to 2178
ft in depth (676.0—666.6 m). Samples from the
nonwelded units underlying Bullfrog ash-flow unit
3 are virtually 100-percent saturated within the
limits of laboratory error.

A relatively small number of samples from the
USW SD-7 core were selected for laboratory mea-
surements of saturated hydraulic conductivity.
These samples were rot selected on a quasi-regu-
lar, systematic sampling pattern, as were the sam-
ples for bulk hydrologic property determinations,
because of resource and time limitations. The Kj
values reported in Appendix G, table G-2 thus can-
not be presented as necessarily “representative” of
the entire SD-7 drill hole. However, these available
data are valuable in that they represent the only
“fully qualified” hydraulic conductivity values (as
of June 1996) from the Bullfrog Tuff. They are also
a major fraction of the qualified conductivity data
obtained from the Prow Pass Tuff. Sampling of the
SD-7 core for measurement of hydraulic conduc-
tivity emphasized nonwelded intervals in general,
and “bedded tuff” intervals in specific. The vertical
spatial distribution of saturated hydraulic conduc-
tivity measurements is presented in figure 9.

Examination of figure 9 indicates that the
“missing” intervals generally consist of welded
tuff, notably the thick, densely welded main part of
the Topopah Spring Tuff. Engstrom and Rautman
(in press, their fig. 10) have presented a moderately
detailed, systematic sampling of the Topopah
Spring Tuff in drill hole USW SD-9. These data
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indicate that the permeability of the welded
Topopah Spring is uniformly low at about 10710
m/sec. The apparent variability shown on their
illustration is caused by the presence of a number
of sample for which the hydraulic conductivity was
less than the sensitivity of the Hassler permeame-
ter. These samples were assigned a uniform “no
flow” value of 10714 m/sec. The need for system-
atic sampling and measurement of thick intervals
of uniform, low-permeability materials probably is
not worth the time and expense of more detailed
characterization.

Figure 9 confirms that the hydraulic conductiv-
ity of the nonwelded and vitric intervals are up to 4
or 5 orders of magnitude greater (10‘6—10‘5 m/sec)
than that of the more welded materials at Yucca
Mountain. Nonwelded but zeolitic rocks below a
depth of about 1425 ft (434.3 m) exhibit very low
permeability values, approximately equivalent to
those of densely welded tuff.

Table G-2 (Appendix G) also includes a set of
six hydraulic conductivity measurements from
within and immediately below the crystal-rich non-
lithophysal zone of the Topopah Spring Tuff. These
data confirm the earlier measurements in hole SD-
9 (Engstrom and Rautman, in press), which sug-
gested that this intensely vapor-phase altered zone
typically exhibits permeabilities at least an order of
magnitude greater than the densely welded but less
vapor-phase altered tuffs that constitute much of
the remainder of the Topopah Spring Tuff.

Mineralogical Data

A limited number of samples from the deeper
part of the USW SD-7 drill hole were collected for
quantitative X-ray diffraction analyses (D.T. Vani-
man, Los Alamos National Laboratory, written
communication, 19967). The specific purpose of
these analyses was to examine the mineralogical
transition from vitric to zeolitic materials beneath
the potential repository and within the unsaturated
zone. Mineralogical compositions were not

¥ Chipera, S.J., Vaniman, D.T,, and Bish, D.L., 1996, Zeolite
abundances and the vitric-to-zeolitic transition in drill holes
USW SD-7, -9, and -12, Yucca Mountain, Nevada: LA-
EES-1-TIP-96-005, Yucca Mountain Project Milestone
LA4244, submitted by Los Alamos National Laboratory,
Los Alamos, N. Mex.

obtained above a depth of approximately 1100 ft
(30 m) nor from below a depth of approximately
2525 ft (770 m). An overview of the mineralogical
data is presented in figure 10 using major group-
ings of specific, individual mineral species. The
actual data, including more specific mineral identi-
fications are given in Appendix H, table H-1. The
data are also shown on the appropriate geologic log
sheets of Appendix B at their proper vertical posi-
tion.

The mineralogical data indicate a relatively
broad overlapping or interfingering of vitric and
zeolitic horizons in the SD-7 drill hole; this phe-
nomenon has not been reported previously. A sig-
nificant amount of alteration appears to involve the
presence of opal-CT, both in association with zeo-
lite minerals and with high-temperature, presumed
vapor-phase alteration assemblages involving
tridymite and/or cristobalite plus feldspar. Note
that opal-CT alteration may be confused visually
with zeolitic alteration. Because the quantitative
mineralogic information is available only as spot
sampling at relatively widely spaced vertical inter-
vals, it is likely that some rocks indicated as zeolit-
ically altered of the geologic log sheets of
Appendix B may not, in fact, be zeolitic, but rather
weakly silicified. Smectite clays are present locally
within the vitric-to-zeolitic transition interval, but
are typically less than 10 percent of the whole rock
composition. A notable exception is the presence
of a sample from a depth of 1187.0 ft (361.8 m)
that contained nearly 60 percent smectite (Appen-
dix H, table H-1). The mineralogic data are inter-
esting to compare with the quantities of loosely
bound structural water indicated by the difference
between the relative-humidity oven-dried and
105°C-dried laboratory material property data,
which are also presented on the geologic log sheets
of Appendix B.

Geophysical Data

Down-hole petrophysical logs were recorded
in drill hole USW SD-7 on several dates, specifi-
cally during July, September, and December of
1995, for depths consistent with the major phases
of drilling and casing. The composite suite of logs
acquired at SD-7 consists of a bulk density log,
epithermal and thermal neutron porosity logs, two
induction-conductivity logs from which resistivity
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Figure 10. Mineralogical compositions of selected samples from the vitric-to-zeolitic transition interval
underlying the Topopah Spring Tuff.
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traces were computed, a spectral gamma-ray log
(K, U, Th, plus total Y), and a set of 4-arm caliper
traces. The set of log composites extends from near
the ground surface to approximately TD at a depth
of 2675 ft (815 m). Selected log traces are pre-
sented in figures 11 (upper part of the hole) and 12
(lower part), similar to the style of presentation in
figures 7 and 8. Because the geophysical logs con-
sist of digital data on 0.5-ft (15-cm) vertical spac-
ings, these data are not included as an appendix to
this report. The actual trace values can be obtained
from the Yucca Mountain Project records center
using data-tracking number
TMUSWSD7000096.001.

Density Log Response

The bulk density log is the principal strati-
graphic tool available through petrophysics at
Yucca Mountain, and the density trace [column (a)
on figs. 11 and 12] displays the expected geophysi-
cal response to intensity of welding and develop-
ment of lithophysal-style alteration. The bulk
density log was first recorded in the crystal-poor
lower nonlithophysal zone of the Tiva Canyon tuff
(the log begins below the lower lithophysal zone);
density values are typical for densely welded units
without significant lithophysae at about 2.4 g/cm3.
Bulk density values decrease rapidly at the base of
the welded interval through the shardy base transi-
tion interval, and they remain at values of approxi-
mately 1.5 g/cm3 (or less) through the PTn
nonwelded interval. At the top of the Topopah
Spring caprock vitrophyre (crystal-rich densely
welded subzone), rock density increases abruptly
to 2.5 g/cm3 , and then drops as rock is encountered
that has been subjected to devitrification and
vapor-phase alteration typical of the crystal-rich
nonlithophysal zone of the Topopah Spring Tuff.

The intensely vapor-phase altered and litho-
physae-bearing zones of the Topopah are fairly
readily identified from the bulk density trace (see
also log sheets 7-10 and 12-15 in Appendix B).
Geophysical bulk density values in the two main
lithophysal zones of the Topopah at SD-7 are typi-
cally about 2.0 g/cm3, plus or minus. The crystal-
poor upper lithophysal zone typically exhibits
somewhat lower densities than the lower litho-

physal zone. Note that these lithophysal density
values are distinctly lower than the corresponding
bulk density values obtained using laboratory
methods on core specimens [fig. 7, column (b)].
These latter density values almost never are less
than 2.0 g/cm3, and more typically they are in the
neighborhood of 2.25 g/cm3. The difference in
magnitude corresponds to the presence of larger-
than-core-diameter lithophysal cavities that cannot
be measured in the laboratory, particularly within
the upper lithophysal interval.

The gradational and non-definitive nature of
the contacts between lithophysal and nonlitho-
physal intervals is clearly indicated in the 0.5-ft
(15-cm) spacings of the geophysical data. Note that
bulk density within the crystal-rich nonlithophysal
zone progressively decreases below a depth of
about 460—470 ft (140.2-143.25 m), which is
almost exactly the depth at which geologic log
sheet 7 (Appendix B) indicates the uppermost
lithophysae were encountered. There is a promi-
nent change in the character of the bulk density log
trace at about 530 to 540 ft (161.5-164.8 m), which
is where log sheet 8 indicates that lithophysae
become crowded and exhibit vapor-phase alter-
ation rims. The gradational lower contact of the
crystal-poor upper lithophysal zone is clearly
defined in the bulk density trace from a depth of
about 620630 ft (189-192.0 m) down to approxi-
mately 690-700 ft (210.3-213.4 m) (compare with
geologic log sheets 9 and 10). In similar manner,
the base of the crystal-poor middle nonlithophysal
zone could be picked on the bulk density log as
high as 780 ft (237.7 m). However, no mesoscopic
lithophysae were observed in the core at this depth
(log sheet 12), although there is a fairly pro-
nounced increase in the number of rubble zones
recovered with the core at about that depth. The
lower contact of this lower lithophysal interval
could be placed as deep as almost 1080 ft (329.2
m), however, no mesoscale lithophysae were
observed below 1042 ft (317.0 m) (log sheet 15).
Note that the interval between 1042 and 1080 ft
does include some vapor-phase “spots” and a num-
ber of rather intensely veined intervals (log sheets
15 and 16).
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Figure 11. Geophysical log traces from the upper part of the USW SD-7 drill hole: (a) density log; (b)
gamma-ray log; (c) epithermal neutron log; (d) dual-induction resistivity log; (e) caliper log.
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Figure 12. Geophysical log traces from the lower part of the USW SD-7 drill hole: (a) density log; (b)
gamma-ray log; (c¢) epithermal neutron log; (d) dual-induction resistivity log; (e) caliper log.
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Bulk density values decrease gradationally at
the base of the Topopah Spring lower vitrophyre
(crystal-poor densely welded subzone) to typical
nonwelded values of approximately 1.5 g/cm3 (see
also log sheets 18-19). Density is markedly higher
in the pre-Topopah Spring Tuff bedded tuff; this
higher-density phenomenon is fairly typical of the
“bedded” and reworked materials throughout the
section. Presumably reworking and weathering of
these intervals increased the quartzose (sand) con-
tent at the expense of less-dense pumiceous com-
ponents. The bulk density log provides almost the
only lithologic information available from this
interval, most of which was not recovered in core.

Density increases somewhat erratically but
progressively through the subunits of the Calico
Hills Formation, varying from 1.5 g/cm? at the top
to about 2.0 at the base (and higher in the bedded
tuff unit. The bulk density log is relatively constant
through the majority of the Prow Pass Tuff, indi-
cating values of approximately 2.0 g/cm3. The
noticeable increase in density in the lower half of
moderately welded Prow Pass ash-flow unit 3
below approximately 1750 ft (530 m) is spatially
associated with a marked decrease in the intensity
of vapor-phase alteration shown on geologic log
sheet 26 (Appendix B). The marked change in
character of the bulk density trace midway through
Prow Pass ash-flow unit 1 does not correspond to a
change in defined units. However, geologic log
sheet 29 does note an increase in pumice content at
about this depth, and also describes a subtle change
in the style of alteration of the groundmass. Also,
the caliper log [column (e)] indicates that the diam-
eter of the borehole changes at approximately this
depth, suggesting that the shift in magnitude may
represent either borehole effects or calibra-
tion/adjustment problems associated with two dif-
ferent logging sondes.

Bullfrog Tuff ash-flow unit 3 is a moderately
to densely welded tuff (Appendix B, log sheets 32—
36); this intensity of welding is reflected by a pro-
gressive increase in bulk density in figure 12 to
values of approximately 2.0 g/cm3 , similar to val-
ues observed higher in the hole associated with the
densely welded Topopah Spring Tuff. Figure 8(a)
indicates a classical c-shaped porosity welding
profile from high porosity at the nonwelded base

and top to low porosity values in the more welded
center. This welding profile is inverted (D), but
quite evident in the petrophysical density log trace
of figure 12. Bullfrog ash-flow unit 1 is a low-den-
sity, nonwelded, and modestly zeolitized interval
underlain by a higher density tuffaceous sandstone
unit immediately above 2600 ft (790 m).

Gamma-Ray Log Response

The gamma-ray logging tool responds princi-
pally to the presence of radioactive potassium
(40K) in the whole rock. The log response [figs. 11
and 12, profile (b)] indicates noticeably lower
count rates (in API units) associated with the “bed-
ded-tuff” intervals underlying the Tiva Canyon
Tuff at a depth of roughly 325-365 ft (99-110 m).
Presumably, these reworked intervals were weath-
ered sufficiently that some of the radioactive potas-
sium was leached from the rock. A much more
subtle low count rate is observed at the base of the
Topopah Spring Tuff, however, noticeable gamma-
ray lows are associated with the bedded tuff at the
base of the Calico Hills Formation. This “bedded”
interval is an amalgamation of a number of differ-
ent lithologies, including a basal sandstone unit
(Tacbs). No explanation for the distinct gamma-ray
low associated with Calico Hills ash-flow unit 1 is
immediately apparent in the geologic log of this
interval.

Epithermal Neutron Porosity

The epithermal neutron porosity log responds
principally to the presence of water (hydrogen
atoms). Higher “porosity” values indicate greater
absorption of neutrons by moisture. This log trace
(figs. 11 and 12, profile (c¢)] indicates very high
moisture contents (30 percent on a volume/volume
basis) in the near-surface colluvium and pad-fill
materials above about 50 ft (15 m), followed by a
rapid decrease within the bedrock of the crystal-
poor middle nonlithophysal zone of the Tiva Can-
yon Tuff. Moisture contents are typically above
0.10 throughout the Tiva Canyon welded interval,
with the exception of the very densely welded
lower nonlithophysal zone. Very high moisture
contents are present from approximately 175 to
225 ft (50-70 m), near the contact between the
lower lithophysal and lower nonlithophysal zones
of the Tiva. Reference to the geologic log sheets of
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Appendix B (sheet 3, especially) indicates that this
interval of very high moisture is associated within
and immediately below an interval of very intense
vapor-phase and lithophysal-style alteration,
including a well defined zone of small, closely
spaced, flattened lithophysae that end abruptly at
195.0 ft (59.43 m) defining the base of the lower
lithophysal zone. It is presumed that this relatively
near-surface, intensely lithophysal interval has
received percolating ground water, probably via
fracture flow, and has retained this moisture for
lengthy periods of time allowing the water to
imbibe into the vapor-phase altered, but nonlitho-
physal tuff below. Indicated moisture contents
increase gradationally through the shardy-base
interval at the base of the welded Tiva Canyon [see
also fig. 7(d) and (e)]. Moisture contents remain
high through the nonwelded interval of the PTn
overlying the caprock vitrophyre of the Topopah
Spring Tuff.

The epithermal-neutron porosity log indicates
relatively constant and low values of moisture
throughout the densely welded main body of the
Topopah Spring Tuff. Neutron-porosity values may
be somewhat higher in the more intensely vapor-
phase altered lithophysal zones; however, the indi-
cated values invariably are lower than 0.10. Sev-
eral pronounced “spikes” of high neutron-porosity
values occur at and slightly above the upper con-
tact of the lower vitrophyre (crystal-poor densely
welded vitric subzone). Buesch and others (1996)
describe the general occurrence of an “argillic
pumice subzone” near the base of the crystal-poor
lower nonlithophysal zone in approximately this
position within the Topopah Spring. Moisture asso-
ciated with montmorillonitic clays in the argillized
pumice clases may account for these epithermal
neutron highs, even though the geologic log sheets
(sheets 17-18, Appendix B) do not describe any
particular abundance of argillized pumice clasts at
this depth. Figure 7 does indicate separation
between the RH- and 105°C-dried bulk property
values, which is consistent with the presence of
structurally bound water as would be present in
clays.

The epithermal neutron log trace on figure 12
indicates increasing moisture contents through the
base of the Topopah Spring Tuff and throughout

the ash-flow sequences of the Calico Hills Forma-
tion. The lower part of this interval, particularly
that below Calico Hills ash-flow unit 3, is pre-
sumed to be moderately to intensely zeolitized, as
indicated by divergence of the RH- and 105°C-
dried laboratory property measurements shown in
figure 8. The neutron-porosity log responds to
water structurally bound in zeolite minerals as well
as to water in the pores of the rock. Mineralogical
data (Appendix H) suggest alternating glassy and
zeolitic units within this interval. The more general
separation of the two types of laboratory data (fig.
8) in Calico Hills ash-flow unit 2 and below sug-
gests that some of the glass may be partially
hydrated as well (?).

The neutron log response drops markedly at
the upper contact of partially to moderately welded
Prow Pass ash-flow unit 3. The upper part of this
unit is moderately vapor-phase altered and the
overall hydrogen content of the unit is distinctly
lower here than in the less vapor-phase altered and
nonwelded materials both above and below this
stratigraphic interval. Prow Pass Tuff ash-flow unit
1 is intensely zeolitized (fig. 8), and the neutron-
porosity values in this interval are quite high
(0.30-0.40).

Bullfrog ash-flow unit 3 is virtually unzeoli-
tized (coincidence of RH and 105°C laboratory
measurements on figure 8), and the extremely low
neutron-porosity values reflect the moderately to
densely welded nature of this portion of the Bull-
frog Tuff. Bullfrog unit 1 and the underlying Tram
Tuff are again nonwelded, zeolitic, and exhibit
high interpreted moisture contents.

Dual-Induction Log Response

The dual-induction log tool responds to the
electrical conductivity of the rocks surrounding the
bore hole; the tool response has been recalculated
and is displayed as apparent resistivity. Both the
induction log deep (ILD) and medium (ILM) traces
are portrayed in figures 11 and 12, column (d).

Stratigraphic interpretation of resistivity logs
in unsaturated tuff is somewhat problematic, and
these logs have been acquired principally to sup-
port quantitative calculations of various bulk mate-
rial properties using petrophysical relationships.
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For purposes of this report, resistivity values
throughout the hole generally decrease from
roughly 1000 Q-m in the upper Topopah Spring
Tuff to values less than 100 Q-m in Bullfrog Tuff
near TD. Superimposed on this general trend are a
number of quite high resistivity spikes and zones of
increased resistivity. Resistivity values exceed
3000 O-m in the crystal-poor lower nonlithophysal
zone of the Tiva Canyon Tuff (fig. 11) over an
interval of roughly 30 feet (10 m). Resistivity val-
ues are very low (<100 Q-m) in the PTn nonwelded
interval between the Tiva and the Topopah Spring,
but increase rapidly to off-scale values in excess of
5000 Q-m throughout much of the crystal-rich non-
lithophysal zone underlying the caprock vitrophyre
interval of the Topopah Spring. Resistivities are
much more variable through the crystal-poor upper
lithophysal and middle nonlithophysal zones of the
Topopah than they are in the remainder of the hole.
Another zone of high resistivity values (to 2000 Q-
m) with off-scale spikes in the ILM tool response is
present in the lower vitrophyre (crystal-poor
densely welded vitric subzone) and continues
through the “shardy base” (vitric nonwelded sub-
zone) of the Topopah Spring (spikes >20,000 Q-
m). Elevated resistivity values are also associated
with the pre-Topopah Spring Tuff bedded tuff
interval (fig. 12). Resistivity readings are notice-
ably higher in ash-flow unit 3 of the Prow Pass
Tuff (the partially welded unit). The moderately to
densely welded unit 3 of the Bullfrog also exhibits
markedly higher values, including resistive spikes
exceeding 15,000 Q-m recorded by both the
medium and deep induction tools.

Caliper Log Response

Drilling and hole-stability problems at drill
hole USW SD-7 required the use of a number of
different sizes of down-hole tools. Several intervals
were drilled using one bit size but were later
reamed to a larger diameter. The caliper traces,
shown in figures 11 and 12, column (3), reflect this
complex drilling history. Two different caliper logs
are shown. An oriented 4-arm caliper produced
two traces in mutually perpendicular directions A
single-arm caliper was also run in conjunction with
the bulk density tool [column (a) of the figures],
and the divergence of these two different logs, par-
ticularly in the upper 150 ft (50 m) of the hole

reflect differing hole sizes at different times and/or
the presence or absence of casing.

Generally, the different caliper tools correlate
quite well with one another for the intervals that
clearly were run in the open hole. Markedly out-of-
gauge hole is indicated throughout most of the two
major lithophysal intervals of the Topopah Spring
Tuff. Here the nominal 8-3/4-inch (20-cm) hole
diameter commonly is washed-out or caved to
diameters approaching 14-15 inches (38 cm). The
4-arm caliper traces in figure 11 indicate that some
of the hole enlargement in these intervals are mark-
edly asymmetrical; for example, at 900-960 ft;
275-290 m). Washed-out intervals that extend up
or down into the crystal-poor middle nonlitho-
physal or lower nonlithophysal zones may reflect
the continuing presence of larger-than-hole-diame-
ter lithophysal cavities in these otherwise ‘“non-”
lithophysal intervals (see discussion of lithophysae
beginning on page 17; also the geologic log sheets
of Appendix B). Significantly enlarged hole sizes
are also associated with some of the nonwelded,
and particularly vitric nonwelded, intervals, such
as the PTn interval (fig. 11) and the base of the
Topopah Spring Tuff through the upper part of the
Calico Hills Formation (fig. 12). Enlarged hole
diameters in these zones may exceed 20 inches (50
cm) over short intervals. The relatively continuous
nature of these washed-out zones (in contrast to the
more “spikey” washed and caved intervals in the
welded Topopah Spring) most likely is reflecting
the poorly consolidated nature of these units, par-
ticularly of the reworked bedded tuffs and tuf-
faceous sandstones.

Summary

The USW SD-7 drill hole is one-of several
holes drilled under Site Characterization Plan
Study 8.3.1.4.3.1, also known as the Systematic
Drilling Program, to provide geologic characteriza-
tion of the potential Yucca Mountain nuclear-waste
repository site. The SD-7 drill hole is located near
the southern end and immediately to the west of the
north-south-trending Main Test Level drift of the
Exploratory Studies Facility. The hole is also
located near the junction of the Main Test Level
drift and the proposed ESF South Ramp. The drill
site, which is located adjacent to the road to the
crest of Yucca Mountain atop Highway Ridge, is
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positioned to the west of the Ghost Dance fault,
approximately where the surface trace of this
mostly north-south fault swings to the west and
eventually merges with the north-south trending
- Abandoned Wash fault.

Location of the drill hole in the down-dropped
block west of the Ghost Dance fault allowed pene-
tration of approximately the lower half of the Tiva
Canyon Tuff, totaling some 280 ft (85 m). The hole
was collared in the lower nonlithophysal subzone'
of the crystal-poor middle nonlithophysal zone of
the Tiva Canyon. The drill hole also penetrated the
crystal-poor lower lithophysal, the lower nonlitho-
physal, and the vitric zones of the Tiva Canyon
Tuff. The pre-Topopah Spring Tuff bedded tuff
interval was also encountered. Core recovery was
extremely poor through the nonwelded units under-
lying the pre-Topopah Spring Tuff bedded tuff.
Although confidence in stratigraphic unit identifi-
cations is decreased by poor core recovery, inter-
pretation of short intervals of recovered core and of
petrophysical logging traces suggests that the
Yucca Mountain Tuff is absent at the SD-12 loca-
tion, but that thin intervals of the pre-Yucca Moun-
tain Tuff bedded tuff, the Pah Canyon Tuff, and the
pre-Pah Canyon Tuff bedded tuff are present.

The Topopah Spring Tuff is approximately
1040 ft (320 m) thick in USW SD-7 and dominated
by densely welded tuffs. Lithophysae are promi-
nently developed in two major intervals. The
194.7-ft (59.3-m)-thick upper lithophysal interval
is entirely crystal-poor at this location, and the
lower, also crystal-poor, lithophysal zone is 216.7
ft (66.0 m) thick. Lithophysae vary widely in size
and frequency within the lithophysal zone. Cavities
that are larger than core size are present in the mid-
dle portion of the upper zone and near the top of
the lower lithophysal zone; these intervals contrib-
ute locally to poor core recovery and intervals of
total core loss. The lower vitrophyre of the
Topopah Spring Tuff (densely welded vitric sub-
zone) is quite thick (83.1 ft; 25.3 m) in the SD-12
drill hole.

Nonwelded units at and below the base of the
Topopah Spring Tuff were mostly lost in drilling.
These lost-core intervals include the lower contact
of the Topopah Spring Tuff, the pre-Topopah
Spring Tuff bedded tuff, and the top of the Calico

Hills Formation. The contacts and lithologic char-
acter of these units have been reconstructed using
recovered core fragments, cuttings, and petrophysi-
cal log traces. The Calico Hills Formation is
approximately 225 ft thick in the SD-7 drill hole,
and these rocks have been subdivided (downward)
as ash-flow units 3 through 1 of Moyer and Geslin
(1995), plus a bedded tuff unit and a basal tuf-
faceous sandstone unit.

All three formations of the Crater Flat Group
were encountered in drill hole USW SD-7. The
upper unit, the Prow Pass Tuff, is 554.0 ft (168.9
m) thick, and has been subdivided into four pyro-
clastic-dominated units plus a lowermost bedded
tuff interval. Unit 3 (numbered from the base) is
mostly moderately welded; the remaining units are
effectively nonwelded. The Bullfrog Tuff is 417.8
ft (127.3 m) thick, and it also has been subdivided
into a series of four ash-flow intervals plus a basal
tuffaceous sandstone. A fault contact separates
Bullfrog ash-flow units 2 and 3 (numbered from
the base), and the very thin interval of ash-flow
unit 2 suggests that a substantial thickness of sec-
tion may have been removed by the fault. Bulifrog
unit 3 is partially welded to locally densely welded
in character. The SD-7 drill hole penetrated 77.1 ft
(23.5 m) into the top of the Tram Tuff, which is the
lowermost unit of the Crater Flat Group. These
rocks consisted of nonwelded, weakly zeolitized
ash-flow deposits.

Quantitative and semiquantitative data are
included in this report for core recovery, rock-qual-
ity designation (RQD), lithophysal cavity abun-
dance, and fracturing. These data are spatially
variable, both within and among the major forma-
tional-level stratigraphic units. Rocks of the Calico
Hills Formation and Crater Flat Group yielded
markedly higher recoveries and RQD values than
did the densely welded units of the Paintbrush
Group. Both core recovery and RQD are particu-
larly low in the two lithophysal intervals of the
Topopah Spring Tuff; RQD values indicate “very
poor” ground conditions in these zones. RQD is
“fair” in the proposed repository horizon of the
crystal-poor middle nonlithophysal Topopah
Spring. Nonwelded intervals within the Paintbrush
Group tuffs exhibited extremely poor core recov-
ery. This is attributed to essentially unconsolidated
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lithologies in these reworked and distal pyroclastic
units.

This report also presents quantitative data for
the “framework” material properties of porosity,
bulk and particle density, and saturated hydraulic
conductivity. Graphical analysis of variations in
these laboratory hydrologic properties confirm pre-
viously reported first-order control of material
properties by the degree of welding and presence
of zeolite alteration minerals. Many of the finer-
scale lithostratigraphic subdivisions identifiable in
core are not well expressed in the material-property
profiles. Approximate in-situ saturation and volu-
metric water content data for core samples pre-
served immediately upon recovery from the drill
hole are included in the data tabulation. Quantita-
tive X-ray diffraction mineralogical analyses of
samples collected from the lower vitrophyre of the
Topopah Spring Tuff to the water table indicate
that the nature of the vitric-to-zeolitic transition
interval in SD-7 and the southern part of the repos-
itory region is more complex than previously
assumed. Vitric and zeolitic horizons alternate over
a broad stratigraphic interval within the Calico
Hills Formation and Prow Pass Tuff.

Geophysical well-log data have been obtained
from virtually the entire USW SD-7 drill hole. The
suite of petrophysical traces include density,
gamma-ray, epithermal-neutron porosity, electrical
resistivity, and caliper profiles. The density log
provides perhaps the best stratigraphic information
and most of the major lithologic subdivisions of the
Paintbrush Group tuffs (in particular) can be identi-
fied readily using the downhole density trace. The
other petrophysical logs may be most useful in
computing quantitative values for various material
properties as well as for moisture saturation in the
unsaturated zone using established geophysical
logging relationships. Geophysical logs have been
used successfully at SD-7 to infer rock-unit and
contact identification in intervals of total core loss.

Units with generally consistent material prop-
erties are of major concern in numerical modeling
of physical processes such as hydrologic flow and
radionuclide transport at Yucca Mountain. In gen-
eral, the material property units identified in the
SD-7 drill hole, as defined using either laboratory
measurements of core samples, downhole petro-

physical measurements, or both, do not correspond
to the more genetic, first- and second-order litho-
stratigraphic unit boundaries defined by classical
geology. Some third- and lower-order lithostrati-
graphic units are well expressed as distinctive
material-property units; however, other low-order
lithostratigraphic subdivisions appear to exhibit lit-
tle if any differences in material properties or
petrophysical character from those of adjacent
rocks. Rock property units identified in the SD-7
drill hole correspond fairly exactly to the so-called
thermal/mechanical stratigraphic units.

The laboratory core measurements fail to iden-
tify lithophysal zones clearly, as many lithophysae
appear to be sufficiently large that it is impossible
to measure the “bulk” porosity of the rock because
of laboratory-apparatus limitations. Lithophysal
zones are clearly expressed in the raw downhole
density log, although the “contacts” of lithophysal
horizons inferred from geophysical signature are
distinctly gradational and may extend beyond the
same contacts selected by more conventional geo-
logic criteria. Other “bulk-effective” characteristics
of the volcanic section at Yucca Mountain may be
better characterized using downhole petrophysics
in addition to simple core observations.

The data and interpretations contained in this
summary report for drill hole USW SD-7 provide a
fundamental basis for more comprehensive inter-
pretations of the geology and physical behavior of
the Yucca Mountain site. Descriptive information
and contact “picks” should be useful for modeling
of the geologic framework of the site. Measured
rock properties data presented in this report,
together with the indicated references to the under-
lying data packages, should be crucial in quantita-
tive material-properties modeling and provide the
basis for performance assessment modeling and
regulatory assessment of the waste-isolation poten-
tial of the Yucca Mountain site.
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Lithologic Unit Descriptions

The following are unit-by-unit descriptions of
the USW SD-7 core. The SD-7 borehole was rotary
drilled through pad-fill materials and colluvial sur-
face deposits to a depth of 50.1 feet (15.27 m);
these materials have not been described. These
lithologic descriptions of core from the USW SD-7
drill hole are presented graphically on the detailed
core-log sheets in Appendix B.

The descriptions in this report attempt to use
stratigraphic nomenclature recently proposed by
Buesch and others (1996) for the various units of
the Paintbrush Group, as that interval was rede-
fined by Sawyer and others (1994). The unit
descriptions are also cross-referenced where feasi-
ble to the older zonation of the Paintbrush Group
tuffs used by Scott and Bonk (1984). The older
names and some of their historical modifications
are still frequently encountered and they appear in
earlier Yucca Mountain Project publications.
Nomenclature and descriptions for subunits of the
Calico Hills Formation and the Prow Pass Tuff (the
upper formation of the Crater Flat Group; Sawyer
and others, 1994) follow those of Moyer and Ges-
lin (1995).

Little precedence exists with respect to geo-
logic subdivisions of the Bullfrog Tuff or the Tram
Tuff (middle and lower units of the Crater Flat
Group). No other Site Characterization Plan (DOE,
1988) drill hole has penetrated to these strati-
graphic levels, although “older” drill holes at the
Yucca Mountain site have cored rocks belonging to
the Bullfrog and Tram Tuffs (for example: Spen-
gler and others, 1981; Maldonado and Koether,
1983; Scott and Castellanos, 1984). Because the
genetic-descriptive approach adopted by Buesch
and others and by Moyer and Geslin differs signifi-
cantly from the older, more purely descriptive
methods applied to the pre-1986, non-site charac-
terization drill holes, we have attempted to emulate
the genetic-descriptive approach adopted by these
more recent authors.

Tiva Canyon Tuff (Tpc)

Crystal-poor middle nonlithophysal zone
{Tpcpmn) 50.1-74.8 ft (15.2-22.8 m)

The crystal-poor middle nonlithophysal zone
of the Tiva Canyon section, formerly known as the
“clinkstone” or “rounded step” zones of Scott and
Bonk (1984) in the general vicinity of the potential
repository, has been divided by Buesch and others
(1996) into upper and lower nonlithophysal sub-
zones separated by a lithophysae-bearing subzone.
Only the lower 24.4 feet (7.44 m) of the lower non-
lithophysal subzone were cored at the USW SD-7
location. This subzone does not contain lithophy-
sae, but 10-15 percent of the rock is altered to
vapor-phase streaks and halos surrounding highly
flattened pumices; these features decrease down-
ward toward a depth of about 60 feet (18.3 m). The
rock itself throughout the crystal-poor lower mem-
ber of the Tiva Canyon contains between 3 and 5
percent small sanidine phenocrysts with or without
minor biotite. The groundmass is 35 to 40 percent
vapor-phase altered. There is strong subvertical
jointing, and rare low-dip silica veining.

Crystal-poor lower lithophysal zone (Tpcpll)
74.8-195.0 ft (22.8-59.4 m)

Widely spaced, flattened and irregularly-
shaped lithophysae are present at a depth of 74.8
feet (22.8 m), defining the gradational upper con-
tact of the crystal-poor lower lithophysal zone
(lower lithophysal zone of Scott and Bonk, 1984).
The intensity of lithophysal-style alteration
increases below the upper contact to a local maxi-
mum at about 80-90 feet (24-27 m), and then
decreases between approximately 95 and 135 feet
(29-41 m). Flattened, vuggy, irregular lithophysae
increase in number and size from 135 to about 144
feet (4144 m); the interval between 167.5 and
195.0 feet (51.0-59.4 m) contains abundant closely
spaced, flattened lithophysae that exhibit distinct
alteration halos of vapor-phase alteration 1-2 mm
thick. Lithophysal cavities are typically coated by
light-colored, coarsely crystalline vapor-phase
mineralization. An interval between roughly 155
and 168 feet (47-51 m) within the crystal-poor
lower lithophysal zone contains distinctly fewer
lithophysae.
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Crystal-poor lower nonlithophysal zone
(Tpepln) 195.0-295.4 ft (59.4-90.0 m)

The contact between the crystal-poor lower
lithophysal zone and the lower nonlithophysal zone
is relatively sharp and well defined, although a 3-ft
(1-m) interval of lost core was encountered just
above the contact. Two subzones typically can be
recognized in outcrop, formerly known as the
hackly and columnar zones of Scott and Bonk
(1984). Buesch and others (1996) have maintained
this distinction in subsurface investigations at
Yucca Mountain.

Hackly subzone (Tpcpinh) 195.0-255.8 ft (59.4—
78.0 m)

Hackly fracturing is not particularly well
developed in the lower nonlithophysal zone at
USW SD-7; however, the style of fracturing does
appear different above and below this contact. The
dominant change marking this subzone in the SD-7
core is the absence of even weakly opened litho-
physal cavities and the presence of identifiable flat-
tened, vapor-phase-corroded vuggy pumice clasts
that probably served as the initiation sites for litho-
physae in the overlying zone. Some relict pumices
are spherulitic, and siliceous vapor-phase veining
locally is weakly developed.

Columnar subzone (Tpcpinc) 255.8-295.4 ft (78.0—
90.0m)

High-angle, columnar-style joints can be
observed in the core below a depth of about 255.8
feet (77.9 m). The three subintervals of columnar
zone that were described by Buesch and others
(1996) based on the type of alteration exhibited by
the larger pumice clasts can be identified in the
columnar subzone at SD-7, although the demarca-
tion between the several intervals is not clear-cut.
Spherulitic, flattened pumice clasts that are set in
dense groundmass are characteristic of the upper
alteration interval. These pumices are locally
argillized to a pink clay material within a spheru-
litic border in SD-7. A relatively distinct interval of
crowded pink pumice clasts is present from 266.0
to 269.6 feet (81.0-28.2 m), and other intervals of
altered pumice can be identified at 288.9-289.8
and 291.4-298.0 feet (88.0-88.3 and 88.8-90.8 m).
The lower alteration interval is characterized by

dark, vitric, flattened pumice clasts that may
exhibit a 2-3 mm pink, argillic alteration border,
and the rock preserves more glass downward mark-
ing a transitional contact with the underlying crys-
tal-poor vitric zone.

Crystal-poor vitric zone (Tpcpv) 295.4-325.7 ft
(90.0~99.3 m)

The contact between welded, devitrified rock
and vitric materials belonging to the crystal-poor
vitric zone is gradational over an interval of as
much as 18 feet (about 3 m; log sheet 5). The
change from devitrified rock to preserved vitric
pumice clasts and shardy matrix is more rapid than
the decrease in the degree of welding (flattening).
This lower vitric interval was incorporated by Scott
and Bonk into their lowermost columnar zone.
Istok and others (1994) distinguished this mostly
vitric interval from the overlying, devitrified
columnar interval and referred to it as the “shardy
base” of the Tiva Canyon Tuff.

Moderately welded subzone (Tpcpv2) 295.4-316.4
ft (90.0-96.4 m)

The upper contact of the moderately welded
subzone is placed immediately below a pro-
nounced change in the style of fracturing that is
associated with the relatively rapid decrease in the
intensity of devitrification (Rautman and others,
1995). This partially-moderately welded section of
the lower vitric zone is composed of a matrix of
moderately deformed honey-colored bubble-wall
shards and 1-2 percent black shards containing
black, mostly flattened vitric pumice fragments.
The unit exhibits a progressive downward decrease
in the degree of welding.

Nonwelded subzone, (Tpcpv1) 316.4-325.7 ft
(96.4-99.3 m)

The nonwelded vitric subzone is distinguished
by an absence of flattening or deformation in the
constituents of the rock. The matrix is vitric, non-
welded and comprised of weakly argillized, honey-
orange bubble-wall shards. Up to 10-15 percent of
the shards making up the matrix are black and vit-
ric. Pumice clasts appear to be absent from this unit
in the SD-7 drill core.
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Nonwel, jts in the Poorl ver
Interval Between the Tiv. n nd T
rin ff:

Buesch and others (1996) have aggregated
nonwelded and mostly reworked tuffaceous mate-
rials separating the formational level units (i.e., the
major ash-flow tuff deposits) of the Paintbrush
Group into a pre-Tiva Canyon Tuff bedded tuff
(Tptbt4), a pre-Yucca Mountain Tuff bedded tuff
(Tptbt3), a pre-Pah Canyon Tuff bedded tuff
(Tptbt2), and a pre-Topopah Spring Tuff bedded
tuff (Tptbtl). Although identification of these
“bedded tuff” intervals is relatively straightforward
where all four formations are present, the Yucca
Mountain and Pah Canyon Tuffs thin to extinction
towards the south, and the local absence of these
distinctive units complicates identification, partic-
ularly of the upper three bedded tuffs. Identifica-
tion and description of these units in the SD-7 core
are further complicated by the total loss of core
from nearly 65 percent of the 91.8-ft (28.0-m)
interval lying between the densely welded portions
of the Tiva Canyon and the Topopah Spring Tuffs.
Continuous core loss through this interval of rap-
idly varying lithology exceeded 44 feet (13 m).

Figure A-1 summarizes the basis for attempts
to reconstruct the lithologic and stratigraphic
framework of this PTn interval for the USW SD-7
drill hole. Hole USW SD-12, which is located
approximately 3000 (900 m) almost due north of
SD-7, recovered essentially continuous core from
this mostly nonwelded interval. Comparison of
geophysical logs from the two holes should pro-
vide information regarding the correlation of phys-
ical property units between the drill holes;
Presurmably these units of similar, though not iden-
tical, petrophysical appearance approximate the
stratigraphic (genetic) units described from core.

Figure A-1 presents the bulk density and
gamma-ray traces for SD-12 and SD-7. The logs of
both holes are presented at the same vertical scale,
and the two profiles have been “hung” (perched?)
vertically on a prominent high-density peak [arrow
(a) on the figure] that corresponds approximately
to the relatively thin caprock vitrophyre of the
Topopah Spring Tuff (unit Tptrvl). The core pro-
file from USW SD-12 is essentially continuous,
although core from this interval did recover some

rubble zones; nevertheless, the lithologic control in
this hole is quite good. This profile has been anno-
tated with the lithologic abbreviations used in this
report (descriptions taken from Rautman and Eng-
strom, in press). The profile from USW SD-7 has
been annotated with indicators of unrecovered core
runs and intervals of core loss within runs. Note
that by YMP drilling support convention, all core
lost from a particular core run is assigned arbi-
trarily to the bottom of that run, even though the
loss may have occurred at multiple intervals within
any particular drilling episode. The petrophysical
profile has also been annotated with the appropri-
ate lithologic abbreviations where the stratigraphic
unit assignment has been relatively firmly estab-
lished by examination of recovered core.

Pre-Tiva Canyon Tuff Bedded Tuff (Tptpb4) 328—
330.5 ft (100.0-100.7 m)

The pre-Tiva Canyon Tuff bedded tuff unit is a
sandy, reworked, low-ash bedded interval with a
weakly hematite-stained paleosurface at the top.
The unit grades downward into a fine-grained
pumice-fall deposit at 328.7 feet (100.2 m). The
unit contains 7 to 10 percent small, light-grey lithic
fragments and it has a high percentage of black
shards in the matrix. The basal pumice-fall bed is
composed of 1-2 mm pumice clasts in an ash-free
matrix. The upper contact of this unit has been
defined based on the very prominent, somewhat
“pointed” density log low [arrow (c)]. A gamma-
ray low [immediately above the gamma-ray high
“shoulder” of arrow (e)] is directly associated with
this density low, suggesting weathering of the bed-
ded tuff and leaching of radioactive potassium. The
lower contact of this unit is present in the recov-
ered core at 330.5 ft (100.7 m).

Yucca Mountain Tuff (Tpy)

The Yucca Mountain Tuff (Tpy) appears to be
missing at the geographic location of the SD-7 drill
hole. It is possible that materials equivalent to the
Yucca Mountain Tuff are present in the interval
represented by 3.2-ft (1.0 m) interval of lost core
drilled between 334.8 and 338.0 feet (102.0-103.0
m); however, the Yacca Mountain Tuff is also not
identified in drill hole USW SD-12, which is
located approximately 3000 feet (915 m) to the
north of the SD-7 hole (Rautman and Engstrom, in
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Figure A-1. Petrophysical profiles from the USW SD-7 and SD-12 drill holes through the interval between
the lowermost welded Tiva Canyon Tuff and the uppermost welded Topopah Spring Tuff showing likely
stratigraphic correlations involved in the interval of major core loss in SD-7.

press). USW SD-12 obtained essentially continu-
ous core recovery through this stratigraphic inter-
val and there is no evidence of additional geologic
units in the density profile of figure A-1. There is
also no evidence for omission of this part of the
stratigraphic section by faulting at the SD-12 loca-
tion.

Pre-Yucca Mountain Tuff Bedded Tuff (Tptpb3)
330.5-345(7?) ft (100.7-105.2? m)

The recovered core from the pre-Yucca Moun-
tain Tuff bedded tuff unit comprises four distinct
units in the SD-7 drill core. The upper unit is a

sandy, clast-supported bedded tuff with 3-5 per-
cent white rhyolitic lithic fragments. This
reworked upper unit grades downward into a pumi-
ceous ash-flow deposit at a depth of 331.2 feet
(100.9 m). The ash-flow deposit contains 40-80
percent small pumice clasts in a sandy, but ashy
matrix. A coarse-grained pumice-fall unit underlies
the pumiceous ash-flow unit from 332.9 to 333.7
feet (101.5-101.7 m). the pumice-fall bed is com-
posed of coarse pumice clasts, with 10-15 percent
of the rock volume composed of dark-brown bub-
ble-wall shards plus 2-3 percent dark vitric lithics.
The lowest recovered unit of the pre-Yucca Moun-
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tain Tuff bedded tuff is a lithic-rich pumice-fall
deposit that is distinguished from the overlying
unit by its ashy matrix and a quartz-latite lithic
content of 10-15 percent.

Petrophysically, the pre-Yucca Mountain Tuff
bedded tuff is characterized by a prominent zig-zag
density profile [feature (d), fig. A-1]. This unit is
correlated to the pre-Yucca Mountain Tuff bedded
tuff in drill hole SD-12 by the presence of a promi-
nent gamma log “shoulder” [arrow (e)] at the top of
the unit. The lowermost part of the pre-Yucca
Mountain Tuff bedded tuff unit in SD-7 has been
lost in an unrecovered interval. However, the basal
contact is relatively prominent and characterized
by the major break at 345 ft (105.2 m) toward
lower density rocks that marks the base of the zig-
zag profile of feature (d). A distinct break toward
lower gamma-ray activity is also observed at this
same depth as the top of the broad gamma-ray high
marked as feature (f) on the figure.

Pah Canyon tuff (Tpp) 345(?)-357(7?) ft (105.27—
108.1? m)

The Pah Canyon Tuff appears to have been lost
in the thick unrecovered interval that extends from
342.0 to 362.6 feet (104.2-110.5 m) at the USW
SD-7 location. The Pah Canyon Tuff is known to
thin to the south, and the unit is only 14.5 feet (14.4
m) thick in the SD-12 core in an interval of near
100 percent core recovery (Rautman and Eng-
strom, in press). However, the petrophysical char-
acter of the interval identified as Pah Canyon Tuff
in SD-12 is moderately well reproduced in the
petrophysical profile for SD-7. The contacts indi-
cated on figure A-1 at depths of 345 and 357 ft
(105.2-108.1 m) would make the unit 12 ft (2.9 m)
thick in SD-7.

The most obvious correlative log feature is that
indicated by arrow (f): a broad, gently curving
gamma-ray high that is marked above by a sharp
“notch” toward lower count rates and bounded
below by an equally broad but very pronounced
gamma-ray low [feature (g)]. The inferred Pah
Canyon Tuff in SD-7 is marked by a bulk-density
low, and although the shape of the two density
traces is somewhat different in the two profiles, the
location of these density lows at the same depths as
the gamma-ray high of feature (f) and the presence

of the density lows immediately below the charac-
teristic zig-zag density profile of the pre-Yucca
Mountain Tuff bedded tuff [feature (d)] argue
strongly that the rocks are most likely correlative
between the two drill holes.

The Pah Canyon Tuff in the SD-12 drill core
contained 3040 percent pastel-colored pumice
clasts set in an weakly altered, mostly vitric, non-
welded matrix. The pumice clasts were bimodal in
appearance: a light gray, densely-textured, vitric
variety and a finely-laminated vesicular type that
varied in size from 0.5-1.75 inch (12—45 mm); the
unit also contained 1 percent dark, small, vitric
lithic fragments. A characteristic, vaguely-pumi-
ceous basal “white zone” was encountered at the
base of the unit (Rautman and Engstrom, in press)

Pre-Pah Canyon Tuff Bedded Tuff (Tpbt2) 357(?)—
358.5(7) ft (108.87~109.37 m)

The pre-Pah Canyon Tuff bedded tuff has also
been lost in the unrecovered interval between
342.0 and 362.6 feet (104.2-110.5 m), and the only
evidence for its presence in the SD-7 drill hole is
through interpretation of the geophysical well log
traces shown in figure A-1. Although lithologic
variability is to be expected between the SD-7 and
SD-12, which are some 3000 ft (900 m) apart, there
appear to be several petrophysical similarities in
the general interval indicated by amrow (g) in the
figure. Notably, both drill holes are characterized
by quite pronounced changes in the bulk density
curves (toward markedly higher densities) and in
the gamma-ray curves (toward much lower
counts). Under the presumption that the gamma-
ray values are influenced by weathering and leach-
ing of radioactive 4°K from feldspar phenocrysts in
the reworked “bedded” intervals, we have associ-
ated the lowest-count part of the gamma-ray log
trace in SD-7 with the pre-Pah Canyon Tuff bedded
tuff.

The bedded tuff unit is very thin (1.5 ft; 0.5 m)
in drill hole USW SD-7, as the contacts have been
inferred on figure A-1. In the SD-12 drill core, the
pre-Pah Canyon Tuff bedded tuff was vitric,
reworked, sandy-textured, and nonwelded. This
unit contained 8—10 percent small, light-gray, lami-
nated pumice clasts, 2—4 percent dark vitric lithic
clasts, 3—5 percent feldspar phenocrysts and 2 per-
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cent biotite flakes in an altered matrix (Rautman
and Engstrom, in press).

Topopah Spring Tuff (Tpt)

Crystal-rich vitric zone (Tptrv) 358.5(?)-388.3 ft
(109.37-118.35 m)

The top of the Topopah Spring Tuff in drill
hole USW SD-7 has been lost in the unrecovered
interval that extends from 342.0 to 367.7 feet in
depth (104.2-112.1 m). The upper contact of the
crystal-rich vitric zone has been estimated at 358.5
ft (109.3 m), based, in part, on a change in the color
of the fine-grained drill cuttings that were recov-
ered from the hole starting at 362.6 ft (110.5 m).
This inferred depth of the upper contact is roughly
compatible with the petrophysical character of the
profiles shown in figure A-1. In drill hole SD-12,
for which core recovery was essentially 100 per-
cent throughout the PTn nonwelded interval, the
top of the crystal-rich vitric zone of the Topopah
Spring Tuff is associated with a small, but fairly
prominent high-low-high reversal [feature (g)] in
the bulk density values. This reversal is part of a
much thicker interval of pronounced low density
rocks corresponding to the nonwelded ash-flow
units of the Pah Canyon Tuff and upper Topopah
Spring Tuff. This same prominent density low is
present in the SD-7 drill hole although the sharp
high-low-high trace reversal is much subdued in
this hole. A pronounced gamma-ray low is gener-
ally associated with the contact in both holes as
well. This interval of lower activity is compatible
with an interpretation of weathering at the top of
the unit that may have leached both radioactive and
nonradioactive potassium from feldspars.

Nonwelded subzone, (Tptrv3), 358.5-381 ft
(109.3-116.1 m)

The only core recovered from the nonwelded
subzone of the crystal-poor vitric zone of the
Topopah Spring Tuff was retrieved by drill run
number 78, the top of which was at 367.7 feet; only
4.5 feet (64 percent) of this 7-ft core run was actu-
ally recovered (table C-1).

Based upon the core and poor-quality cuttings
(at about 362.6 ft) that were recovered from upper
nonwelded subzone, it appears that this interval of
the Topopah Spring Tuff can be described as pum-

ice rich, containing 40 percent clasts of light-pink
fine-grained pumice and 30 percent clasts of a
darker and more altered pumice variety. The rock
also contains sanidine phenocrysts with a trace of
oxybiotite, 1-2  percent partially altered
(argillized?) black vitric shards, and about 1 per-
cent iron-stained small lithic fragments. The iron
staining is consistent with the presence of a paleo-
sol or other weathering horizon at the top of the
Topopah Spring Tuff.

The base of the nonwelded vitric subzone has
been lost in the SD-7 drill core. The transition to
more welded rocks is quite well defined in the bulk
density profile from this hole, and it correlates well
with the character of the nonwelded to moderately
welded transition in drill hole SD-12 to the north.
This contact has been picked at a depth of 381 ft
(116.1 m) as indicated in figure A-1 by arrow (h).
This contact in USW SD-12 is also marked by a
well defined drop in the gamma-ray log values.
This same feature can be observed at arrow (h) on
the right hand side of the SD-7 profile as well.

Moderately welded subzone (Tptrv2), 381-387.2 ft
(116.1-118.0 m)

No additional core was recovered from the
crystal-poor vitric zone down to 384.4 feet (core
run 81); recovery in this 2.1-ft interval was only 24
percent. This one-half-foot core segment consists
of crystal-rich, moderately welded and pumice-rich
ash-flow tuff containing 12-15 percent sanidine
phenocrysts, less than 1 percent oxybiotite, and
about 5 percent dark-colored, partially altered
(argillized or devitrified) vitric lithic fragments.
Vapor-phase alteration appears to have affected this
material, and the cores of pumice clasts are vuggy
and recrystallized. The commonly observed “sin-
tered zone” of the uppermost Topopah Spring Tuff
may be contained in this interval. The basal contact
at 387.2 ft (118.0 m) was recovered in core.

Densely welded (“caprock vitrophyre”) subzone
(Tptrvi), 387.2-388.3 ft (118.0-118.4 m)

The densely welded (“caprock vitrophyre” of
Scott and Bonk, 1984) subzone is composed of
dark-colored, densely fused, crystal-rich glass.
Feldspar phenocrysts constitute 20-25 percent of
the rock, with 1 percent oxybiotite and rare pyrox-
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ene. The subhorizontal, platy joints typically
observed in this unit in outcrop are coated by red-
brown clay (?) minerals. The unit is extremely thin,
only 1.1 ft (33 c¢m) thick, in the SD-7 drill core.

Crystal-rich nonlithophysal zone (Tptrni) 388.3—
487.8 ft (118.4-148.7 m)

The crystal-rich nonlithophysal zone, formerly
known as the “rounded” zone of Scott and Bonk
(1984), is distinguished from the caprock vitro-
phyre by the presence of devitrification, or high-
temperature crystallization minerals that replace
the original densely fused glass. The contact of this
unit with the overlying “caprock vitrophyre” sub-
zone is gradational over 2-3 feet (less than 1 m).
The unit is composed of 20-25 percent white feld-
spar phenocrysts and 5-10 percent flattened,
recyrstallized pumice with a densely welded
groundmass that appears somewhat “grainy” and
which becomes increasingly vapor-phase altered
downward. The upper part of the crystal-rich nonli-
thophysal zone also contains a few percent lighter-
colored, indistinct bodies that appear to be more
rhyolitic composition blebs that are deformed
along with the welding foliation of the rest of the
rock. These are likely small cognate lithic clasts
related to the much larger “soft lithics” that are
more abundant deeper in the hole and which are
characteristic of the compositional transition inter-
val (see below).

Although most of the upper crystal-poor nonli-
thophysal zone exhibits what may be termed weak
“lithophysal-style” alteration with corroded and
vuggy pumice cores and diffuse white vapor-phase
alteration, the uppermost significant lithophysae
occur at a depth of 455.4 ft (138.8 m). These fea-
tures are widely spaced and lensoidal in shape.
They appear to originate as more altered versions
of the vuggy and recyrstallized cores of flattened
pumice clasts.

Crystal transition interval — 473?7-487.8 ft
(144-148.7 m): The crystal-transition interval—
that interval over which the phenocryst content of
the rock matrix changes from about 10-12 percent
at the top to 2-3 percent at the bottom—-is identifi-
able only with difficuity in the USW SD-7 drill
hole. The general interval overlying the lower con-
tact of the crystal-rich member of the Topopah

Spring Tuff is relatively intensely vapor-phase
altered, and the core itself has been extensively
sampled and the remaining material is heavily
coated by drilling dust. Sample Management Facil-
ity procedures prohibit washing of the core to
remove this obscuring material. The crystal transi-
tion has been identified tentatively as extending
from a depth of very roughly 473 ft (144 m) to the
top of the crystal-poor upper lithophysal zone at a
depth of 487.8 ft (148.7 m).

Compositional transition interval — 472.2-
532.0 ft (143.9-162.2 m): A roughly 60-ft (20-m)
interval that begins within the crystal-rich nonli-
thophysal zone at a depth of 472.2 ft (143.9 m) is
characterized by an overall downward change in
composition of the Topopah Spring from quartz
latite to rhyolite. Crystal-rich quartz latite contain-
ing deformed clasts of crystal-poor rhyolite domi-
nates the top of the transition interval, and the
relative proportions of the two rock types change
downward to crystal-poor rhyolite containing
deformed clasts of crystal-rich quartz latite. The
two materials unquestionably are comagmatic and
represent intermixed products of a compositionally
zoned source magma chamber (Lipman and others,
1966). The groundmass in the lower part of the
compositional transition interval exhibits a
“swirled” texture, also presumably caused by inter-
mixing of the quartz latite (above) and rhyolitic
(below) magmas on a much smaller scale than the
identifiable, discrete soft lithic clasts. The compo-
sitional transition interval is very weakly litho-
physal at the top, but becomes increasingly
lithophysal and more intensely vapor-phase altered
downward.

Crystal-poor upper lithophysal zone (Tptpul)
487.8-682.5 ft (148.7-208.0 m)

The transition from “nonlithophysal” to “litho-
physal” rocks in the SD-7 drill core is gradational,
as indicated on geologic log sheets 7-8 of Appen-
dix B. Small, widely spaced lithophysae that are
moderately coated by vapor-phase mineralization,
but which do not exhibit any particular alteration
rim extending outward into the groundmass, are
widely spaced in the core beginning at a depth of
about 487.8 ft (148.7 m); this depth has been
selected as the top of the crystal-poor upper litho-
physal zone. Note, however, that there is no crys-

54 Geology of the USW SD-7 Drill Hole, Yucca Mountain, Nevada




tal-rich lithophysal zone at the SD-7 location, as
the “alteration front” of lithophysal cavity develop-
ment is below the crystal-rich/crystal-poor “mem-
ber” transition. The rock also exhibits millimeter-
scale, white, vapor-phase, lithophysal-style alter-
ation spots and wispy streaks that probably repre-
sent the altered cores of highly compressed former
pumice clasts. Buesch and others (1996) cite the
presence of lithophysal-style “spots” as one of the
defining features of named lithophysal zones.

Between 497.9 and 507.6 ft (151.75-154.7 m),
the intensity of lithophysal-style alteration
increases as does the frequency of the small,
ragged lithophysae themselves. An essentially non-
lithophysal interval is associated with the lower
18-20 ft (about 6 m) of the compositional transi-
tion interval at 516.1-533.3 ft (157.3-162.5 m). At
533.3 ft, there is a marked increase in the abun-
dance of small, closely spaced lithophysae; these
lithophysal features exhibit cavities that are coated
by vapor-phase mineralization and have altered
rims that extend several millimeters into the
intensely vapor-phase altered groundmass. The
first larger-than-core-sized lithophysal cavities are
inferred at a depth of about 561.1 ft (171.0 m),
based on examination of down-hole video imagery
and the presence of thick unrecovered intervals
associated with intervals of rubblized core.

Well developed lithophysae of varying size,
spacing, degree of flattening and general intensity
of associated vapor-phase alteration continue
downward to about a depth of 646 ft (197 m).
Below this depth, the intensity of lithophysal style
alteration decreases markedly, and thin, apparently
nonlithophysal intervals can be distinguished in the
core. The last prominent very large lithophysal
cavities are probably at a depth of about 623.1 ft
(189.9 m). Distinct mesoscale lithophysae, litho-
physal-style alteration, and thin rubblized zone are
present to a depth of 682.5 ft (208.0 m); this depth
has been selected as the lower contact.

Crystal-poor middle nonlithophysal zone
(Tptpmn) 682.5-803.3 ft (208.0-244.8 m)

The crystal-poor middle nonlithophysal zone,
which was also identified simply as a nonlitho-
physal zone by Scott and Bonk (1984), is charac-
terized by the near-total absence of lithophysal-

style alteration. The rock contains 1-3 percent
sanidine phenocrysts and a trace of biotite. Weakly
vapor-phase corroded, relict pumice cores are
nearly indistinguishable from the groundmass.
More typical vapor-phase alteration is restricted to
wavy, subhorizontal wisps that potentially may
represent original pumice clasts. An interval of
sparse, white, subangular small lithic fragments of
mixed compositions is present between 694.1 and
714.7 ft (211.6-217.8 m). The abundance of small,
fine-grained lithic fragments appears to increase
near the bottom of the middle nonlithophysal zone.

Crystal-poor lower lithophysal zone (Tptpll)
803.3-1020.0 ft (244.8-310.9 m)

Lithophysal-style alteration associated with the
lower lithophysal zone (known by essentially the
same name in the terminology of Scott and Bonk,
1984) in SD-7 begins fairly abruptly at a depth of
about 801.6 ft (244.3 m) as a patchy increase in the
intensity of vapor-phase alteration. By a depth of
802 ft (244.4 m), relict pumice sites are rimmed
and bordered by lithophysal-style alteration, and
the first identifiable lithophysae are present at a
depth of 803.3 ft (244.8 m), which depth has been
selected as “the” contact. Unlike in the crystal-poor
upper lithophysal zone, the majority of lithophysae
in the lower lithophysal zone must be inferred from
interpretation down-hole video logs and from the
recovery of highly broken, intensely vapor-phase
altered lithophysal fragments in the core. The
upper 60 to 80 feet (1824 m) of the crystal-poor
lower lithophysal zone consist more of unrecov-
ered intervals than of recovered rubble and core
fragments (log sheets 12-13, Appendix B). Moder-
ately spaced large lithophysal cavities are visible in
down-hole video imagery.

The apparent size of lithophysae decreases
gradually beginning at a depth of about 840 to 860
ft (256-262 m), and the general intensity of litho-
physal-style alteration appears to decrease gradu-
ally over a much broader interval. Flattened
lithophysae are present at a depth of 886.5 ft (270.2
m); lithophysae become flatter and more vuggy
downward. Several intensely vapor-phase altered
but otherwise non-lithophysae-bearing intervals
that exhibit 10- to 15-mm alteration spots are
present below a depth of about 900 ft (275 m).
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Crystal-poor lower nonlithophysal zone (Tptpin)
1020.0-1191.4 ft (310.9-363.1 m)

The contact between the crystal-poor lower
lithophysal zone and the lower nonlithophysal zone
is gradational and was placed at a depth of approx-
imately 1020.0 ft (310.9 m) based principally on
differences in the style of alteration of the ground-
mass. Below this depth, the groundmass is more
dense and less grainy in appearance. The crystal-
poor lower nonlithophysal was referred to by Scott
and Bonk (1984) as the “mottled” zone. Sparse
(one or two every few feet), flattened lithophysae
are present down to a depth of 1042.0 ft (318 m).
ft; these lithophysae lack significant vapor-phase
rims and borders. Pervasive vapor-phase alteration
in the lower nonlithophysal zone forms light-pink
alteration halos and wisps that surround relict pum-
ice clasts, lithic fragments, and phenocrysts. Vapor-
phase alteration is visible as thin (mm-width) sel-
vages along micro-fractures throughout the rock.
The rock contains 1-2 percent phenocrysts and 3-5
percent small, white, altered rhyolite lithics. These
lithic fragments, principally white, altered, “hard”
rhyolitic clasts, increase in abundance downward
from 1029.0 to 1032.8 ft 313.6-314.8 m). Lithic
clasts appear to be present in poorly-defined
swarms, particularly from about 1140 to 1175 ft in
depth (347-358 m), and these contrasting-color
lithics add to the mottled appearance of this zone in
outcrop.

Crystal-poor vitric zone (Tptpv) 1191.4-1364 ft
(363.12-415.7 m)

Densely welded (“basal vitrophyre”) subzone
(Tptpv3) 1191.4—1274.5 ft (363.1-388.5 m)

The contact of the crystal-poor lower nonlitho-
physal zone with the underlying densely welded
subzone of the crystal-poor vitric zone (the lower
vitrophyre of Scott and Bonk, 1984) is somewhat
transitional in the SD-7 drill core. The highest evi-
dence of incomplete devitrification was encoun-
tered at a depth of 1159.0 ft (353.25 m) as the
upper limit of somewhat blotchy, vitric texture.
The core is noticeably less devitrified below
1177.0 ft (358.7 m), and the highest definitely vit-
rophyric material was encountered at a depth of
1181.8 ft (360.2 m). Devitrified welded tuff was
encountered below this thin glassy interval, and

again below a second vitrophyric zone at 1187.2 ft
(361.8 m), suggesting that these highest occur-
rences of quenched glass are remnant “islands” of
the much thicker, main part of the densely welded
vitric subzone interval that is present below a depth
of 1191.4 ft (363.1 m).

The majority of the “basal” vitrophyre of the
Topopah Spring Tuff below 1191.4 ft (363.1 m) is
dark colored, densely welded, and almost entirely
vitric. The unit is thick (83.1 ft, 25.3 m) in SD-7,
and extends down hole to a gradational lower con-
tact at 1274.5 ft (388.4 m). The rock contains
approximately 15-20 percent coarse, black, vitric,
flattened pumice clasts or fiamme, 3 to 5 percent
small rhyolite and quartz latite lithic fragments,
and 3-4 percent phenocrysts. The lithic fragments
exhibit thin vapor-phase alteration rims and typi-
cally average 5 mm (0.2 inch) in diameter but may
be as large as 10 mm. The vitrophyre typically
exhibits a densely spaced rectilinear fracture pat-
tern and major joints are coated by pale-blue,
vapor-phase siliceous material. Some core frag-
ments exhibit conchoidal fracturing.

Moderately welded subzone (Tptpv2) 1274.5—
1295.0 ft (388.5-394.7 m)

The moderately welded subzone of the crystal-
poor vitric zone (partially welded zone of Scott and
Bonk, 1984) is distinguished with difficulty from
the overlying vitrophyre subzone by a progressive
down-hole decrease in the degree of welding and
the presence of incipient alteration. Subangular,
orange pumice fragments are the highest indicators
of decreased welding, and the entire core becomes
pale orange and only partially welded by about
1288.0 ft (392.6 m). Large, ragged, black vitric
pumice clasts up to 60 mm across are rimmed by
weak alteration (argillization?); note, however, that
X-ray diffraction analyses from this general inter-
val indicate that the groundmass of those samples
is essentially wholly vitric (Appendix H, table H-1;
Appendix B, geologic log sheets 19-20). Approxi-
mately 5-10 percent of the groundmass is com-
posed of black bubble-wall shards. Lithic
fragments consisting of porphyritic volcanic clasts
averaging 4 mm in size constitute 2—4 percent of
the unit. Fracturing is less intense downward and
becomes dominantly subhorizontal as the intensity
of welding decreases. :
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Nonwelded subzone (Tptpv1) 1295.0-1364 ft
(394.7-415.7 m)

The contact between the moderately welded
and nonwelded vitric subzones is defined at a depth
of 1295.0 ft (394.7 m) at the uppermost occurrence
of undeformed pumice clasts. The nonwelded sub-
zone contains 15 to 20 percent light orange-brown
pumice fragments surrounded by 1-2 mm reaction
or alteration rims, 2—4 percent crystal-rich and
crystal-poor devitrified volcanic lithics, and 1-3
percent phenocrysts in a vitric matrix containing as
much as 5 to 10 percent black, glassy shards. The
pumice fragments are locally spherulitic. At a
depth of 1295.5 ft (394.8 m), the black shard con-
tent increases to 10-15 percent and the core is dark
orange-gray in color. The matrix is speckled by 2
percent finely crystalline black spots of manganese
oxide. The lower contact of the nonwelded vitric
subzone of the Topopah Spring Tuff has been lost
in a thick interval of lost core and poor core recov-
ery that extends from approximately 1350 to 1420
ft (410433 m) (fig. A-2). This contact has been
placed at a depth of approximately 1364 ft (415.7
m) for reasons that are discussed in the immedi-
ately following section describing the identifica-
tion and character of the pre-Topopah Spring Tuff
bedded tuff interval.

Pre-Topopah Spring Tuff Bedded Tuff (Tpbt1)
1364(?)-1405 ft (415.77-428.2 m)

Virtually all of the pre-Topopah Spring Tuff
bedded tuff unit was lost in the 40-ft (12-m) unre-
covered interval that extends from 1350.9 to
1390.7 feet (411.7-423.9 m). The contact between
the base of the crystal-poor Topopah Spring Tuff
and the underlying bedded and reworked interval is
estimated at approximately 1364 feet (415.7 m)
because of the rather marked change to increased
density values recorded by the down-hole density
tool [fig. A-2, feature (a)], in keeping with a some-
what general observation that “bedded tuffs”
appear to consist of materials with higher, rather
than lower, densities. This empirical observation
may be because low-density ashy materials have
been removed in the sedimentary reworking pro-
cess leaving a more sandy residue of higher density
phenocrysts. In contrast to the density log obtained
from drill hole USW SD-12 (Rautman and Eng-
strom, in press) where the pre-Topopah Spring Tuff

bedded tuff is absent from an interval of good core
recovery, the density trace from SD-7 shows a
prominent reversal toward higher densities at this
depth, and the next 40 ft (12 m) exhibit markedly
higher density values [arrow (a) in fig. A-2] than
anything observed in USW SD-12 [arrow (b) and
below]. Also in contrast between the two holes, the
gamma-ray log from SD-12 exhibits a broad peak
of higher values underlying the base of the crystal-
poor vitric zone of the Topopah Spring Tuff [arrow
(c)], whereas the corresponding interval in SD-7
exhibits relatively constant to somewhat lower
gamma-ray readings [arrow (d)].

Very fine-grained, pinkish, soft, clayey drill
cuttings that are speckled by black iron(?) oxide
minerals were recovered between 1390.7 and
1391.2 feet (423.9424.0 m). Fragments of core
that were recovered between approximately 1321.0
and 1398.1 feet (402.6-426.1 m) consist of
medium-grained, sandy bedded tuff with an ash
content of about 10-20 percent. The lower contact
of the pre-Topopah Spring Tuff bedded tuff was
also lost in an unrecovered interval. The contact
has been placed at a depth of 1405 ft (428.2 m)
because of the shift to distinctly lower density val-
ues in the down-hole density log (fig. A-2; feature
(e) in both drill holes) and because core that
appears to belong to the Calico Hills Formation
was recovered from 1405.6 to 1406.3 ft (428.4—
428.6 m). This lower contact is thus well con-
strained by high values of the density trace above
and actual core material below.

Calico Hills F jon (Tac)

The top of the Calico Hills Formation has been
lost in an unrecovered interval extending from
1398.1 to 1405.6 feet (426.1-428.4 m), and the
possibility that this unrecovered interval represents
a major fault cannot be ruled out. The upper con-
tact of the preserved Calico Hills Formation has
been estimated at a depth of approximately 1405
feet (428.2 m), as described in the immediately
preceding section (see also fig. A-2). Calico Hills
ash-flow units 4 and 5, identified elsewhere at
Yucca Mountain and described by Moyer and Ges-
lin (1995), appear to be absent in the USW SD-7
drill hole. No iron-stained paleosol or reworked
material was observed at the top of the Calico Hills
unit in SD-7, although it is unclear that the extent
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Figure A-2. Petrophysical profiles from the USW SD-7 and SD-12 drill holes for the interval between the
Topopah Spring lower vitrophyre and the Calico Hills Formation showing likely stratigraphic correlations
involved in the interval of major core loss in SD-7 (black bars).

of core and cuttings recovery from this interval is
sufficient to have much confidence in this (non)
observation.

Rocks belonging to Calico Hills ash-flow unit
4 were described by Rautman and Engstrom (in
press) in core from drill hole USW SD-12, located
some 3000 ft (900 m) to the north of SD-7. A com-
parison of the petrophysical character of the upper-
most units of the Calico Hills Formation for these
two holes is presented in figure A-2, and the differ-
ences in character strongly suggest that the two
drill holes are not correlative in this interval. Pres-
ervation of Calico Hills ash-flow unit 4 in SD-12 to

the north and its absence in SD-7 are compatible
with an interpretation of southward depositional
thinning away from the source of the Calico Hills
Formation (Carr, 1984), particularly if the intensity
of eruptive activity waned progressively during
Calico Hills time. Work by Moyer and Geslin
(1995) that was completed prior to the drilling of
holes SD-7 and SD-12 also indicated that Calico
Hills ash-flow unit 5 was absent in drill hole UE-25
UZ-16 (fig. 3) and that ash-flow unit 4 was very
thin in the UE-25 “c-hole” complex, which is
located about 8300 ft (2530 m) almost due east of
SD-7. Moyer and Geslin (1995, their fig. 2) present
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a stratigraphic cross section that is highly sugges-
tive of either post-depositional erosion of the Cal-
ico Hills Formation or lobate deposition from a
source to the northeast of the main Yucca Mountain
repository region (Carr, 1984).

Conversely, fault displacements are known to
increase generally from north to south through the
repository region (Scott and Bonk, 1984; Scott,
1990). Greater vertical displacement along the
Ghost Dance Fault at SD-7 compared to at SD-12
might have produced significant stratigraphic dif-
ferences at the SD-7 location; this is wholly com-
patible what is observed in the SD-7 core. Note
that the inferred absence of an iron-stained, weath-
ered profile at the top of the Calico Hills in SD-7
also would be compatible with a faulted or fault-
influenced contact characterized by aggressive ero-
sion, as is the extreme loss of core directly at the
contact.

Calico Hills ash-flow unit 3 (Tac3) 1405(?)—
1493.3 ft (428.27-455.2 m)

The uppermost unit of the Calico Hills Forma-
tion in drill hole SD-7 is inferred to be ash-flow
unit 3 of Moyer and Geslin (1995). Calico-Hills
ash-flow unit 3 is nonwelded and pumice-rich. The
ash-flow unit contains up to 25-30 percent pale
yellow-orange pumice clasts and 2-3 percent
quartz latite lithics down to a depth of 1431.8 feet
(436.4 m). Below this depth, the groundmass
appears to have been altered (potentially vapor-
phase alteration?), although X-ray diffraction stud-
ies indicate a very large content of glass in samples
taken from this interval (Appendix H, table H-1).
The pumice fragments also appear altered and they
are virtually indistinguishable from the matrix.
Core recovery near the top of the unit is poor, and
an argument could be made that the upper 20 ft
(about 6 m) of the Calico Hills could be assigned to
Moyer and Geslin’s “pumiceous” ash-flow unit 4
based on the abundance of pumice clasts and rela-
tively low content of lithic clasts. The gamma-ray
trace from this interval in SD-7 appears to lack the
broad, generally increasing count-rate appearance
of the log from SD-12 {feature (c) in fig. A-2], and
the gamma character is more akin to that exhibited
by ash-flow unit 3 in SD-12.

The content of lithic clasts increases markedly
between 1433.0 and 1442.0 feet, including 10-15
percent large, clear, perlitic, vitric lithics up to 25
mm, 5-7 percent small devitrified volcanic lithics
and 2-3 percent 5- to 7-mm subrounded, dark col-
ored crystal-rich lithics. Although core was lost
from 1430.3 to 1431.8 ft (435.9-436.4 m) and
again between 1433.8 and 1441.3 ft (437.0-439.3
m), the top of the lithic-rich interval appears to
have been recovered, and there is no evidence of
the “sharp depositional contact” overlain by bed-
ded and reworked tuffs, as described by Moyer and
Geslin (1995, p. 50). The total content of smaller
lithic clasts increases below a depth of 1455.0 feet
(443.5 m) and the ash-flow tuff is lithic-rich (10—
15 percent) near the bottom of the unit. A bedded
unit from 1493.0-1493.3 ft (455.0-455.2 m) con-
sists of a coarse basal lithic lag overlying a very
fine-grained ashy deposit that fines and become
lithic-poor downward. This thin, bedded interval at
the base of the unit may represent basal-surge dep-
osition.

Calico Hills ash-flow unit 2, (Tac2) 1493.3-
1523.8 ft (455-2464.5 m)

Calico Hills ash-flow tuff unit 2 is broadly sim-
ilar to unit 3. Pumice clasts are visible and consti-
tute about 25 percent of the rock, and the lithic
content remains constant at about 3—5 percent red-
brown devitrified volcanic and dark, vitric, perlitic
fragments. The pumice fragments are equally
divided between dense-textured and laminated
varieties. The fine, ashy matrix of ash-flow unit 2
has been heavily altered to an orange-pink color.
Again, X-ray diffraction analyses indicate a pre-
ponderance of glass in this unit (Appendix H, table
H-1). A basal “bedded” interval of ash-flow unit 2
is present between 1517.1 and 1523.8 feet (462.4—
464.4 m). This bedded tuff can be subdivided into a
coarse, lithic-rich upper zone containing a 0.2-ft
(6-cm) coarse-grained, lithic-rich pumice fall, a
1.1-ft (34-cm) fine-grained volcaniclastic sand-
stone, and a 2.6-ft (80-cm) medium-grained pum-
ice bed, underlain by a 2.2-ft (67-cm) thick lower
zone composed of ash-flow materials with sandy
texture and 10 percent small lithics. A crowded
lithic zone is present between 1506.7 and 1508.3
feet (459.2-459.7 m). Clay-covered fractures with
slickensides dipping at 6075 degrees to the core
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axis, indicating at least some differential move-
ment, are present at depths of 1511.1 and 1517.3
feet. (460.6-462.4 m). Vitric and zeolitized materi-
als may be finely interlayered at the base of this
unit ((Appendix H, table H-1).

Calico Hills ash-flow unit 1, (Tac1) 1523.8—
1567.2 ft (464.5-477.7 m).

Calico Hills ash-flow unit 1 is a zeolitized
pyroclastic-flow deposit containing 30—40 percent
light-green pumice clasts, 2—3 percent lithics of
varying compositions and textures, and 1-2 per-
cent phenocrysts of feldspar, quartz and lesser
biotite in pink, microgranular, devitrified and very
weakly zeolitized groundmass. The lithic clasts are
divided between red-brown, sub-rounded, devitri-
fied volcanic fragments up to 10 mm across and
dark-gray to black, perlitic, vitric lithics that aver-
age 5 mm in size. Differences between the relative-
humidity and 105°C-dried laboratory material
property measurements plotted on the geologic log
sheets of Appendix B (also fig. 8) suggest that
zeolitic alteration increases in intensity down hole
reaching maximum (macroscopic) intensity at
approximately a depth 1564 feet. The X-ray dif-
fraction mineralogic analyses indicate that some
parts of this interval may preserve significant
amounts of glass (Appendix H, table H-1); poten-
tially the glass itself is hydrated (?). A 5-ft (1.5-m)
swarm of large lithics is present at 1551.5-1116.5
ft. A lithic-rich, pumice-fall marker bed forms the
bottom of the unit.

Calico Hills bedded tuff unit (Tacbt) 1567.2—
1610.3 ft (477.7-490.8 m)

The complex, bedded tuff deposit that under-
lies the main ash-flow units of the Calico Hills For-
mation comprises a moderately to heavily
zeolitized sequence dominated by bedded
(reworked) tuffs, separated by alternating layers of
ash-fall and pumice-fall deposits. The bedded tuff
intervals exhibit a more sandy texture and lower
matrix-ash contents than unreworked ash-flow
materials. Thin, presumably unreworked, ash-fall
layers are typically more heavily zeolitized than
the bedded intervals. A number of individual
coarse-grained pumice-fall beds are present at
depths of 1569.5, 1571.1, 1583.0, and 1597.1 feet
(478.4, 478.9, 482.4, and 486.8 m). Rhythmically

interlayered pumice-fall and ash-flow materials are
present at depths of 1582.5 and 1587.7 feet (482.3,
483.9 m).

Calico Hills basal tuffaceous sandstone (Tacbs)
1610.3-1626.2 ft (490.8-495.7 m)

The basal, tuffaceous sandstone unit of the
Calico Hills tuff lies below an indistinct upper con-
tact at about 1610.3 feet (490.8 m) unmarked by
any obvious paleosol or hematitic staining, as the
top of the unit is more typically described by
Moyer and Geslin (1995). The rock texture exhib-
its a sandier texture with less fine-grained matrix
than is present in the overlying bedded tuffs. The
sandstone is fine- to medium-grained and contains
2-3 percent devitrified volcanic lithic fragments,
2-3 percent quartz, feldspar and biotite crystals,
and 10-15 percent small, pale-tan pumice frag-
ments with about 50-60 percent black, ashy
altered, intergranular matrix. Larger, altered pum-
ice fragments up to 75 mm in size increase in num-
ber below 1613.7 feet (491.8 m); these clasts
locally may constitute approximately 35 percent of
the rock. At about 1620 feet (494 m), the large
pumice fragments appear to be slightly vapor-
phase altered. The base of the tuffaceous sandstone
unit is marked by a thin pumice-fall bed.

Prow Pass Tuff (Tep)

Prow Pass ash-flow unit 4 (Tcp4) 1626.2—1655.0
ft (495.7-504.5 m)

Prow Pass ash-flow unit 4 is a relatively thin
unit in the SD-7 drill core. The rock is nonwelded
and zeolitized, and it contains 30—40 percent pale
yellow, rounded pumice clasts, 2-3 percent small
lithic fragments in dark volcanic or siltstone com-
positions and 2-3 percent phenocrysts. The
groundmass appears approximately one-third
zeolitized. Weak vapor-phase alteration, apparently
related to the underlying ash-flow unit 3 (see fol-
lowing section), produces lighter-colored rock
below a depth of 1647.0 feet (502.0 m). Zeolitiza-
tion appears to overprint the vapor-phase alter-
ation. No basal bedded tuff interval is associated
with this unit at the SD-7 drill hole.
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Prow Pass ash-flow unit 3 (Tcp3), 1655.0-1837.8
ft (504.5-560.2 m)

Prow Pass ash-flow unit 3 has been moderately
welded and vapor-phase altered, and the unit may
have been overprinted by zeolitic alteration near
the top of the interval. The rock itself is quite simi-
lar to the units above and below, containing 20-30
percent pumice clasts, 1-4 percent siltstone and
small devitrified volcanic lithics, and 5-10 percent
phenocrysts in a highly altered matrix. Welding
increases below the upper contact to a maximum at
about 1750 feet (533 m), and then gradually
decreases; welding ends abruptly at 1837.8 feet
(560.2 m) at the base of the unit.

Vapor-phase alteration associated with the
cooling and welding of ash-flow unit 3 appears to
have affected about 5 ft (1.5 m) of the overlying
Prow Pass ash-flow unit 4 as well, in that vapor-
phase alteration is present below a depth of 1647.0
feet (502.0 m) in Prow Pass unit 4 (geologic log
sheet 24). Vapor-phase altered core is lighter in
color, and the rock is almost white and textureless
in the most intensely altered intervals. Vapor-phase
alteration appears to peak at a depth of 1735-1750
feet (529-533 m), and then decreases below this
depth to a somewhat weak, but relatively constant
intensity below about 1760 feet (536 m). Vapor-
phase alteration appears absent below 1805 feet
(550.1 m). The change in intensity of alteration at
approximately 1750-1760 ft (533-536 m) is
clearly reflected both in the bulk-property profiles
(fig. 8) and in the geophysical density profile (fig.
12).

The presence of zeolitic minerals overprinting
vapor-phase alteration and devitrification near the
top of Prow Pass ash-flow unit 3 is suggested by
separation of the RH- and 105°C-dried laboratory
bulk property measurements shown on the geo-
logic log sheets of Appendix B [see also fig. 8(a)].
However, the few samples for which X-ray diffrac-
tion mineralogical results are available from the
top of Prow Pass ash-flow unit 3 (Appendix H,
table H-1) do not confirm the presence of zeolites
in this interval. Separation of the RH- and 105°C-
dried property measurements is less pronounced
below a depth of 1702 ft (518.7 m).

Prow Pass ash-flow Unit 2 (Tcp2), 1837.8—
1878.5 ft (560.2-572.6 m)

Prow Pass ash-flow unit 2 is a devitrified but
nonwelded, lithic-rich (Moyer and Geslin, 1995)
ash-flow tuff, roughly similar in composition to
unit 3, except that the lithic content is higher at 3-5
percent. Ash-flow unit 2 contains 20-25 percent
altered, white, pumice clasts up to 15-20 mm in
size and 10-15 percent phenocrysts including feld-
spar, quartz, oxybiotite, and pseudomorphs after
pyroxene. Lithics of red siltstone or devitrified vol-
canic compositions occur in two size fractions:
one-third of the lithics are 4-12 mm in size and
two-thirds are 3 mm or less. Very fine-grained
vapor-phase alteration appears to decrease down-
ward in the lower part of the unit (fig. 8), and the
lower 10-15 ft (3-5 m) appear to be zeolitic. An
intensely altered (zeolitized?) pumice-fall bed
forms the base of the unit from 1873.0-1878.5 ft
(5§70.9-572.6 m).

Prow Pass ash-flow unit 1 (Tcp1), 1878.5-2167.5
ft (572.6-660.7 m)

Ash-flow unit 1 of the Prow Pass Tuff com-
prises three zeolitic subunits, including an upper
subunit, a lithic-rich middle subunit, and a lower
subunit (log sheets 27-28ff). The upper subunit is
nonwelded and zeolitized (and possibly silicified;
see Appendix H, table H-1), with the intensity of
alteration decreasing downward. The upper subunit
contains 15-25 percent 10-mm zeolitized pumice
clasts, 2-3 percent siltstone and devitrified volca-
nic lithics up to 8 mm in size, and 8-10 percent
phenocrysts of quartz, feldspar, biotite, and possi-
bly pyroxene. A 0.2-foot thick zone of crowded red
siltstone lithics from 8 to 30 mm in size is present
at 1886.7 feet (575.1 m). The middle, lithic-rich
subzone, between depths of 1910.4 feet and 1949.2
feet (582.3-594.1 m), is defined by an increase in
the lithic content to 4-6 percent, with a slightly
higher fraction of volcanic fragments. The thin
ash-fall marker bed that typically caps this unit
(Moyer and Geslin, 1995) was not identified in the
SD-7 core. The lithic content of the lower subzone
decreases to 2-3 percent, and red siltstone clasts
become the dominant lithic species; the average
fragment size is much smaller, typically less than 3
mm. The lower subunit is thick and it contains 15—
25 percent large, subrounded pumice clasts that are

Appendix A: Lithologic Unit Descriptions 61




generally less than 10 mm in size near the top of
the interval, but which increase in abundance to
25-30 percent near the bottom and attain sizes up
to 45 mm. The pumice fragments are altered zeolit-
ically to pale pink or green-gray with green
intensely zeolitized spots. The rock contains 1-3
percent small, angular, red-brown volcanic lithics
up to 15 mm in size that occur with the pumice
clasts in swarms, less than 1 percent red siltstone
lithics that are generally less than 5 mm, and 4-8
percent phenocrysts of quartz, feldspar, and biotite.
A four-foot-thick (1.25-m) zone of flattened, large
pumice up to 100 mm in length with no associated
lithics is present near the base of ash-flow unit 1
between 2136.6 and 2140.6 feet (651.2—652.5 m;
log sheet 31); the degree of flattening suggests par-
tial welding. The tuff below the pumice-rich zone
exhibits an increased lithic content up to 5-7 per-
cent; some clasts may be as large as 10 mm in size.

Prow Pass bedded tuff unit (Tcpbt), 2167.5-
2180.2 ft (660.4-664.5 m)

The bedded tuff unit of the Prow Pass Tuff
consists of several thin units of different lithologies
underlain by a relatively thick (8.5-ft, 2.6-m),
lithic-rich ash-flow deposit that exhibits a
reworked but still ash-rich matrix. A 2.5-foot thick
pumiceous, basal volcanic(?) breccia forms the
base of the Prow Pass sequence. The uppermost
layered units (log sheets 31-32) consist of a 1.0-ft
(30-cm) fine-grained, laminated, reworked ash fall,
a 0.9-ft (0.3-m) pumiceous ash-flow deposit, and a
0.9-ft medium-grained pumice-fall bed. All of the
subunits have been weakly to moderately zeoli-
tized. Iron-manganese oxides commonly coat the
constituent phenocrysts and lithic grains in the
uppermost laminated ash-fall subunit.

Bullfrog Tuff (Tep)

Little precedent exists for subdivision of the
Bullfrog Tuff, as USW SD-7 is the first site charac-
terization (post-1986) drill hole to penetrate more
than a few feet (meters) into this stratigraphic inter-
val. The unit has been divided provisionally into
four pyroclastic flow units plus a basal tuffaceous
sandstone interval.

Bullfrog upper nonwelded unit 4 (Tcb4), 2180.2—
2218.0 ft (664.5-676.0 m)

The thin, upper nonwelded unit of the Bullfrog
Tuff in the USW SD-7 drill hole, hereby desig-
nated as unit 4, contains roughly 10 percent pumice
clasts, 20-25 percent dark quartz and feldspar phe-
nocrysts, 5—-10 percent oxybiotite, altered pyroxene
or homblende, and 1-2 percent lithic clasts of
mixed composition. Lithic types include red silt-
stone, pumiceous and laminated-pumiceous volca-
nic fragments up to 60 mm, and rare, dark vitric
clasts. Black iron-manganese oxides form thin
coatings on some of the lithic clasts and pheno-
crysts. The unit is devitrified, and this is reflected
in coincidence of the RH- and 105°C-dried mate-
rial property measurements shown in figure 8 and
on geologic log sheet 32. The groundmass has been
devitrified and much of the rock has been intensely
vapor-phase altered, resulting in a microgranular,
ashy texture at the top of this unit. The intensity of
recrystallization of the original tuffaceous material
increases downward.

Bullfrog welded unit 3 (Tcb3), 2218.0-2478.0 ft
(676.0-755.3 m)

Bullfrog unit 3 comprises a thick, devitrified
ash-flow tuff sequence that is partially to moder-
ately welded in its interior (geologic log sheets 32—
36). The unit is composed of 10-15 percent small,
flattened pumice clasts that average 7 mm in
length, 20-25 percent quartz and feldspar pheno-
crysts, 5-10 percent phenocrysts of biotite, horn-
blende and pyroxene, and 1-2 percent coarse-
grained, mixed lithics of siltstone and crystal-rich,
devitrified volcanic comipositions. The amount of
pumice increases downward to 50-60 percent of
rock volume between 2354 and 2385 feet (717.5-
726.9 m). Lithics vary in size and abundance from
very small (50 percent less than 2 mm) to large
(more than 30 mm across); soft, deformed lithics of
quartz latite that are up to 75 mm in size may con-
stitute up to 10 percent of the rock volume locally.
Large lithics are found less frequently below a
depth of 2242.0 ft (683 m).

Welding, expressed as flattening of the rock
texture, is observed beginning at a depth of about
2218.0 feet (676 m), and the degree of welding
increases down hole to a peak at approximately
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2240 feet (683 m). Welding decreases below this
depth and ends abruptly at a faulted contact with
the underlying pumiceous unit 2 of the Bullfrog
Tuff at 2478.0 feet (755.3 m). The intensity of
vapor-phase alteration (fig. 8) decreases downward
toward a minimum intensity at a depth of about
2360-2380 feet (720-725 m; log sheet 35-395),
concomitantly with the decrease in the degree of
welding. Decreasing grainy vapor-phase alteration
produces a locally prominent mottled devitrifica-
tion texture. Vapor-phase alteration increases
downward below about 2380 feet, and becomes
quite intense below 2445 feet (745.2 m; log sheet
35). The thickness of Bullfrog unit 3 that has been
omitted by the fault at the base of the unit is
unknown.

Bullfrog pumiceous unit 2 (Tcb2), 2478.0-2481.5
ft (755.3-756.4 m)

Bulifrog unit 2 is a medium-grained, pumice-
rich ash-flow tuff containing 35-45 percent oval-
shaped, devitrified or very weakly zeolitized (fig.
8) pumice fragments that average 10 mm in size
plus 20-25 percent quartz and feldspar pheno-
crysts, 2-3 percent biotite and pyroxene, and less
than 5 percent red siltstone and dark gray, devitri-
fied volcanic lithics.

The upper contact is faulted (log sheet 36) and
this fault has removed an unknown, but presum-
ably substantial thickness of unit 2. Only the low-
est 3.5 feet of the pumiceous unit was intersected
in the USW SD-7 drill hole. The fault contains 0.2
feet of gouge on a fault surface with an 80-degree
dip (10° to core axis), slickensides, and hematite
coating. Intensely broken, unrecovered and quartz
veined (probably fault-related) intervals occur both
above and below the fault gouge from 2466.0 to
2473.5 feet (751.6-753.9 m) and from 2464.1 to
2566.2 feet (751.1-782.2 m).

Bulifrog lower nonwelded unit 1 (Tcb1), 2481.5-
2579.4 ft (756.4-786.2 m).

The lower nonwelded ash-flow unit of the
Bullfrog Tuff contains 5-10 percent pumice clasts
that average 10 mm in size, 15-20 percent quartz
and feldspar phenocrysts, 5-10 percent biotite and

possibly pyroxene phenocrysts, 3—5 percent very
small red siltstone and black devitrified volcanic
lithics that occasionally reach 12-15 mm. The
groundmass is entirely altered and aphanitic, how-
ever the unit appears mostly to be devitrified and
only weakly zeolitic based on minimal separation
of the RH- and 105°C-dried bulk properties (fig.
8). A distinctive feature of Bullfrog unit 1 is sparse,
2-3-mm clear quartz veinlets with opaline borders
that cut through the rock, principally along what
are now open fractures.

Bullfrog basal tuffaceous sandstone unit
(Tcbs), 2579.4-2598.0 ft (786.2-791.9 m)

The lowermost unit of the Bullfrog Tuff in the
USW SD-7 drill hole consists of a medium-grained
tuffaceous sandstone unit containing 10-15 percent
small pumice grains (average size 5 mm), 15-20
percent quartz and feldspar grains, and 3-5 percent
small devitrified volcanic and red siltstone lithic
fragments. Reworked pyroxene and/or hornblende
crystals are also present. A finer-grained matrix is
ashy and weakly hematite stained. The sandstone is
noticeably coarser between 2588.0-2588.4 and
2592.0-2592.8 ft. Subvertical joints throughout the
unit exhibit very weak siliceous veining (fracture
coatings).

Tram Tuff (Tet)

Tram Tuff nonwelded unit (Tct), 2598.0-2675.1 ft
(791.9-815.4 m)

The SD-7 drill hole penetrated 77.1 feet (23.5
m) into nonwelded ash-flow tuff assigned to the
Tram Tuff, the lowest formation of the Crater Flat
Group, before drilling was terminated at a depth of
2675.1 feet (815.4 m). The upper part of the Tram
Tuff in the SD-7 core consists of a nonwelded,
devitrified and partially zeolitized (fig. 8) ash-flow
deposit containing 10-15 percent pumice clasts
smaller than 4 mm, 7-12 percent phenocrysts of
dark quartz and feldspar with lesser biotite, and 3—
5 percent dark-colored, devitrified volcanic lithic
fragments. The top of the unit is hematite stained,
and probably represents a former weathering sur-
face. The unit becomes light tan and with depth
and it appears to have been weakly zeolitized.
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Geologic Core Logs

The geologic core logs in this appendix are
reproduced in color at their original full scale of
1:120 (1 inch equals 10 feet). Full-size reproduc-
tion means that the log sheets that follow have not
been formatted or numbered in the same manner as
the remainder of this document, although the page
count of this report is continuous and the log-sheet
pages are themselves numbered consecutively.
Copies of the original log forms may be retrieved
from the Yucca Mountain Project records system
under data-tracking number
SNT02110894001.002.

The log form (figure B-1) contains a graphic
representation of the actual geology of the core.
Bedding within reworked units, clasts representing
lithic fragments, lithophysal cavities, fractures, and
similar textural features are drawn in a ‘“cartoon,”
but still highly realistic, fashion. For example,
large lithophysal cavities are drawn larger than
small cavities, and flattened cavities in the core are
represented as more oval features than spherical
lithophysae. Near-vertical fracturing is represented
by stylized fracture lines nearly parallel to the
depth axis of the diagram, as such jointing is nearly
parallel to the core axis in an essentially vertical
drill hole, such as USW SD-7.

The degree of welding, devitrification, and the
intensity of secondary alteration of the core is rep-
resented semiquantitatively by several parallel bars
of vertically varying width. A blank column repre-
sents “no alteration” of the indicated type; a fully
shaded column indicates “extremely intense alter-
ation.” This style of presentation can be very exact
over short core distances (feet to tens of feet) and it
allows relatively subtle, small-scale variation in
these phenomena to be represented quite precisely.
The gradational nature of several lithostratigraphic
“contacts” becomes quite obvious in this manner.
The representation, however, is not rigorously
quantitative, and a 3-mm-wide bar at one depth
should not be presumed to represent precisely the
same intensity of that phenomenon as a 3-mm-
wide bar several hundred feet away. Note that the
type of alteration indicated by a particular column
may change with depth to conserve space on the
log form; the column headings are kept consistent
over broad depth ranges, however.

Engineering and geologic information related
to the core itself is also presented on the log sheets.
Highly broken or rubblized zones are indicated by
a shaded pattern in the fracturing column, and
intervals of core loss are indicated by arrows
extending through the indicated interval of non-
recovery. The geology of these unrecovered inter-
vals has been interpreted through the intervals of
core loss where there is reasonable evidence for
such an interpretation (for example, down-hole-
video imagery or a relatively consistent lithology
in a known, thick geologic unit) Large intervals of
lost core in geologic units known from outcrop or
other drill holes to be highly variable vertically
have been left uninterpreted. Note that drilling sup-
port staff assigned lost-core intervals by conven-
tion to the bottom of the core run, whereas the
actual core loss may have occurred at multiple lev-
els during the drilling of a particular run. Quantita-
tive information (varying from 0 to 100) for per-
run core recovery and 10-ft-composite, drilling-
support Deere RQD values (from tables C-1 and D-
2) are presented in columns to the right of the geo-
logic descriptions.

The framework material properties, porosity
and bulk density (from table G-1) are presented in
similar columnar-graphic form to the right of the
core-recovery and RQD information. Saturated
hydraulic conductivity information does not
present well because the wide (orders-of-magni-
tude) variability of this framework property
requires a logarithmic scale; these values have
been omitted from the core log. Saturation values,
however, have been included as this information
may bear on the identification of geologic controls
of perched-water bodies. These graphic representa-
tions of materials-property data contain quantita-
tive information. Porosity values are scaled from 0
to 70 percent, bulk density values are scaled from
1.0t0 3.0 g/cm3, and saturation is scaled from O to
1. The locations of changes in the porosity and
density of core samples clearly indicate that the
boundaries between material property units do not
correspond exactly to the boundaries of the differ-
ent formation-level lithostratigraphic units (Tiva
Canyon Tuff, Bullfrog Tuff, etc.).

Mineralogical compositions for the units from
the Topopah Spring lower vitrophyre to the water
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table (Appendix H) have been included on the geo-
logic log sheets in this appendix. X-ray diffraction
analyses indicating the volume fraction the various
mineral species (table H-1) have been aggregated
into six categories. These categories are: the sum
of quartz plus feldspar, glass, the vapor-phase and
devitrification silica minerals of tridymite plus
cristobalite, total (combined) zeolite, opal-CT, and
smectite clay. The data are presented on the log

sheets as thin bars centered on the sample depth
and scaled from zero to 100 percent. The different
mineral aggregations are stacked as bar segments
of differing color keyed to the scheme presented in
figure B-1. This style of presentation conveys the
approximate volumetric proportions of the differ-
ent mineral phases and it underscores that the data
are from essentially spot sampling of the core.
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(Note: The actual log-sheet pages that follow figure B-1 are single sided.)
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3215 RO

749.1-1752.2 unrecvd Prow Pass Tuff Unit 3 (Tcp3) (1655.0-1837.8) (continued) --

alteration decreasing downward 10-15% small white pumice
<8mm; 2-3% red-brown, devitrified volcanic or red-orange
siltstone lithics, generally <3mm but locally up to 10mm; 2-

Pale pink-gray (2.5R8/2); nonwelded, with vapor-phase
3% quartz, feldspar, and biotite phenos; micro-granular

altered matrix, white pumice clasts (some with darker cores),

and fuzzy mm-thick halos surrounding lithic fragments.
By 1767.0, core is solid (no longer has microgranular matrix

texture); dark-cored pumice clasts exhibit 1-2mm white,

By 1755: vapor-phase alteration is limited to very pale-pink
altered borders but no halos.
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15% medium-gray quartz, feldspar phenocrysts; 3-5% dark-
colored devitrified volcanic lithics and lithics of same material

as matrix composition, but darker and slightly redder
(decreasing zeolitization?); rock becomes more competent

Tram Tuff, Upper Ash-Flow Unit (2598.0-2675.1) -- Light
red-gray (10R8/4), nonwelded, devitrified, partly zeolitized;
10-15% small white or light pink pumice less than 4mm; 7-
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Table E-1: Measured Lithophysal Cavity Abundances for 10-foot Composite
Intervals
{< ~less than. Source: DTN No. SNF29041993002.067]

Depth to

Base of Estimated Lost Core Rubble
Interval Cavities (feet) (feet)
(feet) (percent)

680.0 2.0 49 34
690.0 <1 55 4.5
700.0 <1 2.8 5.3
710.0 <l 0.5 4.1
720.0 <l 0.0 2.5
730.0 <l 0.4 1.0
740.0 <1 0.1 42
750.0 <1 0.0 0.8
760.0 <1 0.0 0.6
770.0 <1 0.1 0.1
780.0 <i 0.0 4.8
790.0 <1 0.1 5.0
800.0 <1 3.4 49
810.0 <I 5.0 1.5
820.0 <1 6.4 27
830.0 <1 7.6 19
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Table F-1: Measured Fracture Data for 10-foot Composite Intervals
[N-natural, I-indeterminate, C—coring-induced, Y-Vug; dip classes are 10-degree intervals ending with the indicated value.
Source: TDIF SNF29041993002.067]

Depthto Type of Fracture Dip of Natural Fracture (degrees) Natural Only
Base of )
Interval Ny | ¢ v 10 20 30 40 50 60 70 80 90 Clean Minera-
(feet) lized
680 1 1 6 0 0 0 I 0o 0o o0 0 I 0 0 2
690 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
700 7 5 3 0 6 0 0 1 0 1 1 0 3 4 8
710 9 2 13 0 1 0o o o o0 0 o0 2 8 2 9
720 10 7 14 0 4 0 0 1 2 1 1 1 7 10 7
730 3 6 14 0 3 2 4 4 1 0 0 2 3 6 13
740 18 9 1 0 9 0 5 0 1 3 2 0 7 1 16
750 12 10 19 0 5 2 2 3 1 o 5 3 1 14 8
760 5 8 21 0 3 1 0o 0 2 0 1 3 3 8 5
770 6 6 15 0 5 0 1 0 i 0 1 0 4 3 4
780 7 4 10 O 2 6 0o 0 3 0 0 3 3 7 4
790 11 3 12 0 4 0 0 1 1 1 2 2 3 5 9
800 6 2 5 0 1 0 o o0 o0 0 1 0 0 2 0
810 5 3 8 0 3 1 1 0 1 0 0 2 0 5 3
820 1 30 0 1 0 1 0 0 1 1 0 0 3 1
830 0 1 30 1 0 0 o0 0o 0 0 0 0 1 0
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from

Drill Hole USW SD-7

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
(GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried

105C Oven-Dried

Depth  Depth ; Vol. . Vol.
(fe‘;t) ("':) I)Dr:niliﬂ( Porosit):; ;::;?,:3 c\g::::“ R;Iaattri\‘.,e [:)Zni::;k Porosity ;2::;: c‘g:::;t Rg:attril\.re
(@gem®) ™M) (grem®) g 3 (glem®) ™M) gom® 3 3
(ecm*“/ecm®) (ecm®/cm®)
50.6 15.42 2.14 0.138 2.48 0.139 1.009 2.13 0.150 2.50 0.152 1.008
54.2 16.52 2.26 0.088 2.47 0.083 0.948 2.24 0.105 2.50 0.101 0.957
60.2 18.35 2.22 0.107 248 0.104 0.970 2.21 0.118 2.50 0.114 0973
63.4 19.32 2.19 0.119 2.49 0.103 0.867 2.18 0.127 2.50 0.111 0.875
66.9 20.39 2.26 0.092 2.48 0.082 0.894 2.24 0.105 2.50 0.095 0.907
74.1 22.59 224 0.096 2.48 0.084 0.875 2.23 0.109 2.50 0.097 0.889
75.4 22.98 2.28 0.085 249 0.083 0.978 2.26 0.096 2.50 0.094 0981
84.0 25.60 2.31 0.068 2.48 0.061 0.900 2.29 0.083 2.50 0.076 0.919
86.1 26.24 2.28 0.079 247 0.075 0.946 2.26 0.094 2.50 0.090 0955
89.9 27.40 2.26 0.091 248 0.079 0.861 2.24 0.104 2.50 0.091 0.878
93.1 28.38 2.19 0.123 2.49 0.083 0.677 2.18 0.131 2.51 0.091 0.697
96.1 29.29 2.30 0.068 2.46 0.060 0.881 227 0.095 2.51 0.087 0914
99.5 30.33 227 0.087 2.48 0.082 0.937 2.25 0.102 2.51 0.096 0.946
101.5 30.94 2.23 0.099 248 0.097 0.981 222 0.115 2.51 0.113  0.983
104.7 31.91 2.30 0.070 247 0.063 0911 2.28 0.090 2.51 0.084 0931
108.7 33.13 2.29 0.074 2.47 0.069 0.931 2.27 0.093 2.50 0.088 0.945
110.3 33.62 2.21 0.110 2.48 0.104 0.949 2.20 0.124 2.51 0.118 0.955
113.7 34.66 2.30 0.074 248 0.070 0.956 2.28 0.087 2.50 0.084 0.963
117.8 3591 2.17 0.130 2.50 0.088 0.673 2.16 0.138 251 0.095 0.692
119.9 36.55 2.26 0.099 2.51 0.097 0.981 2.25 0.110 2.53 0.108 0.983
122.5 37.34 2.23 0.098 2.47 0.080 0.824 2.22 0.109 2.49 0.092 0.842
126.0 38.41 2.29 0.078 2.48 0.073 0.936 2.27 0.091 2.50 0.086 0.945
1289  39.29 2.28 0.083 2.48 0.071 0.861 2.26 0.096 250 0.084 0.880
131.7 40.14 2.28 0.084 2.48 0.076 0.910 2.26 0.096 2.50 0.089 0.922
134.8 41.09 2.33 0.062 2.48 0.060 0.961 2.32 0.074 2.50 0.072 0968
137.7 41.97 2.25 0.092 248 0.081 0.875 2.24 0.105 2.50 0.094 0.890
141.3 43.07 2.31 0.070 2.48 0.062 0.887 2.30 0.082 2.50 0.074 0904
144.0 43.89 2.34 0.055 248 0.052 0.955 2.33 0.067 2.50 0.065 0.964
146.9 44,78 2.14 0.140 2.49 0.107 0.766 2.13 0.150 2.51 0.117 0.782
149.7 45.63 2.31 0.073 2.49 0.062 0.845 2.29 0.088 2.51 0.077 0.871
155.6 47.43 2.34 0.058 2.48 0.046 0.794 232 0.074 2.51 0.062 0.838
156.2 47.61 2.29 0.072 2.47 0.058 0.800 2.28 0.087 2.50 0.072 0.833
158.5 48.31 2.35 0.053 2.48 0.049 0.917 2.34 0.067 2.51 0.063 0.934
161.9 49.35 2.34 0.060 2.49 0.057 0.938 232 0.072 2.51 0.068 0948
164.0 49.99 2.35 0.055 2.48 0.045 0.826 2.33 0.068 2.50 0.058 0.859
167.7 51.12 2.32 0.066 2.49 0.049 0.736 2.31 0.079 2.51 0.062 0.779
172.8 52.67 2.31 0.069 2.49 0.057 0.823 2.30 0.082 2,51 0.070  0.850
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from
Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried

Vol. Vol.
Depth  Depth |pry Bulk Particle Dry Bulk Particle
. Porosity ! Water i X Porosity ! Water i
feet m Relative Relative
(feet) (m) | Density Density . . et Density Density . ot

@em®) ™M) gemdy | semd @om®) M) gemd) 5 s
1739 53.01 2.29 0.081 2.49 0.065 0.799 2.28 0.094 2.51 0.077 0.827
176.8 53.89 2.31 0.075 2.50 0.058 0.780 230 0.087 2.52 0070 0.810
181.4 55.29 2.30 0.074 2.48 0.050 0.671 2.29 0.086 2.50 0062 0717
184.8 56.33 2.29 0.080 2.49 0.053 0.661 2.28 0.090 2.51 0.063 0.698
186.1 56.72 2.28 0.085 2.49 0.058 0.680 227 0.096 2.51 0.069 0.716
1887 57.52 2.21 0.113 2.49 0.069 0.609 220 0.123 2.50 0.078  0.639
1942  59.19 2.32 0.066 2.49 0.046 0.694 231 0.080 2.51 0060 0.748

196.2  59.80 2.30 0.073 2.48 0.045 0.615 2.29 0.084 2.50 0.056  0.666
2003  61.05 2.37 0.046 2.48 0.040 0.851 2.35 0.061 2.50 0.054 0.887
201.1 61.30 2.35 0.053 2.48 0.043 0.807 2.34 0.067 2.50 0.057 0.847
2037  62.09 2.36 0.053 2.49 0.040 0.762 234 0.065 2.51 0.052  0.806
2066 6297 2.35 0.052 2.48 0.042 0.806 234 0.065 2.50 0055 0.845
2103  64.10 2.35 0.063 2.50 0.035 0.553 233 0.075 2.52 0.047  0.625
213.6  65.11 233 0.063 2.48 0.044 0.701 232 0.074 2.50 0.055 0745
2157 6575 233 0.061 2.49 0.037 0.602 2.32 0.073 2.50 0.048  0.666

22211 67.70 2.36 0.048 2.48 0.035 0.732 2.35 0.058 2.50 0.046  0.780
2250  68.58 2.37 0.046 2.49 0.035 0.754 2.36 0.057 2.50 0.046  0.801
230.1 70.13 2.31 0.073 2.49 0.045 0.615 2.30 0.082 2.51 0.054  0.657
2309  70.38 2.35 0.054 2.49 0.036 0.660 234 0.065 2:50 0.047 0717
2343 7142 2.37 0.048 2.49 0.036 0.758 235 0.060 251 0.049  0.807

2374 7236 235 0.056 2.49 0.032 0.575 2.33 0.068 2.50 004  0.647
2403 7324 2.30 0.071 2.48 0.049 0.686 229 0.082 2.50 0.060 0.728
2424 7388 2.35 0.056 2.48 0.046 0.819 233 0.068 2.50 0.058 0.851
246.1 75.01 233 0.058 2.48 0.046 0.804 232 0.072 2.50 0.061 0.844
249.1 75.93 237 0.049 2.49 0.025 0519 2.35 0.060 2.50 0.036  0.605
2522 76.87 2.36 0.050 2.48 0.040 0.809 2.35 0.063 2.50 0053 0.849
2549  77.69 2.36 0.049 2.48 0.039 0.794 234 0.063 2.50 0.053 0.840
2579  78.61 2.37 0.041 247 0.035 0.843 2.35 0.059 2.50 0.052  0.890
2616 7974 2.35 0.047 2.47 0.038 0.805 233 0.064 2.49 0.055 0.857
263.1 80.19 2.34 0.050 247 0.039 0.786 2.33 0.067 2.49 0.056  0.840
2640  80.47 232 0.058 2.46 0.057 0.975 2.30 0.079 2.50 0.078 0982
266.0 81.08 2.33 0.052 2.46 0.040 0.779 2.32 0.070 2.49 0.059 0.837
2699 8227 2.32 0.057 246 0.048 0.842 2.30 0.077 2.49 0.068  0.883
2732 8327 2.31 0.059 2.46 0.053 0.899 2.30 0.079 2.49 0073 0924
2755  83.97 232 0.056 2.46 0.051 0.908 2.30 0.076 2.49 0.071 0932
2795 8519 229 0.070 2.46 0.062 0.887 227 0.087 2.49 0079 0908
2815  85.80 2.29 0.071 2.46 0.060 0.850 227 0.091 250 0.081 0.883
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from
Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried

Vol. . Vol.
Depth  Depth |pry Bulk .. Particle Dry Bulk .. Particle
(teet) (m) | Density Porosity Density Water  Relative | pensity Porosity Density Water  Relative

(g/cm3) (em3emd) (glcma) (ccr::;‘/t:;ta) Satn. 3) {cm°fem®) ( glcm3) (::;/::en:;) Satn.
284.4 86.69 2.25 0.083 2.46 0.073 0.874 2.23 0.106 2.50 0.096 0901
287.6 87.66 222 0.093 2.45 0.080 0.860 2.19 0.121 2.50 0.108 0.893
290.7 88.61 2.22 0.089 2.44 0.080 0.899 2.19 0.122 2.50 0.113 0.927
294.0 89.61 2.23 0.087 2.44 0.077 0.887 2.20 0.118 249 0.108 0917
297.2 90.59 2.19 0.096 2.42 0.074 0.766 2.14 0.140 2.49 0.117 0.840
299.9 9141 2.20 0.065 2.35 0.062 0.958 2.13 0.130 245 0.127 0.979
302.8 92.29 2.08 0.128 2.39 0.112 0.874 2.03 0.181 2.48 0.165 0911
306.1 93.30 2.07 0.090 2.28 0.087 0.971 1.99 0.172 241 0.170 0985

(g/cm

308.6  94.06 1.96 0.150 2.31 0.146 0.974 1.88 0.227 2.44 0.224 0983
3121 95.13 1.91 0.157 227 0.156 0.992 1.834 0.231 2.39 0229 0995
3209 97.81 1.34 0.405 2.25 0.148 0.366 1.31 0432 231 0.175  0.406
3237  98.66 1.32 0.410 2.24 0.144 0.351 1.31 0423 227 0.157 037
330.1 100.61 1.01 0.539 2.20 0.277 0.513 1.00 0.557 2.25 0295 0.529
3329 101.47 1.66 0.280 231 0.131 0.468 1.62 0318 2.38 0.169 0.531
3389 103.30 1.56 0.321 2.29 0.140 0.436 1.51 0.366 2.38 0.185 0.505
341.5  104.09 1.66 0.269 227 0.153 0.567 1.58 0.346 242 0230  0.663
368.0 112.17 1.59 0.372 2.54 0.147 0.396 1.57 0.401 2.61 0.177  0.440

369.0 112.47 1.58 0378 2.54 0.128 0.339 1.56 0.398 2.59 0.148 0.371
3719 11336 1.58 0372 2.51 0.178 0.479 1.54 0.409 2.61 0215 0.526
386.3 117.74 1.86 0.173 2.25 0.124 0.713 1.83 0.195 228 0.145 0.745
389.7 118.78 235 0.079 2.55 0.032 0.399 2.33 0.097 2.58 0.049  0.506
3927 119.70 2.37 0.071 2.55 0.029 0.410 2.35 0.089 2.58 0.047 0.532
3958 120.64 2.14 0.164 2.56 0.052 0.318 2.13 0.174 2.58 0062 0.358
399.1  121.65 2.19 0.144 2.56 0.065 0.451 2.18 0.157 2.58 0078  0.498
4014 12235 2.11 0.173 2.56 0.073 0.420 2.10 0.184 2.58 0084 0454

404.6 123.32 2.12 0.168 2.55 0.070 0418 2.11 0.181 2.58 0.083  0.457
408.3 12445 213 0.168 2.56 0.068 0.406 2.12 0.177 2.58 0078 0437
411.1 12530 2.14 0.159 2.55 0.063 0.397 2.13 0.172 2.57 0076  0.441

4139 126.16 2.18 0.142 2.54 0.059 0.418 2.16 0.161 2.57 0.078 0485
416.6 12698 2.13 0.166 2.55 0.069 0418 2.12 0.176 2.57 0.080 0.453
419.9 12799 2.15 0.153 2.54 0.064 0.421 2.14 0.165 2.57 0.076  0.462
422.8 128.87 2.1 0.170 2.54 0.066 0.389 2.10 0.182 2.56 0.078 0.429
4253 129.63 2.08 0.182 254 0.071 0.389 2.07 0.191 2.55 0079 0417
429.1  130.79 2.14 0.158 2.54 0.073 0.461 2.13 0.168 2.56 0.083  0.493
4323  131.77 2.14 0.160 2.55 0.089 0.553 2.13 0.170 2.57 0.098 0.578
438.2 133.56 2.19 0.137 2.54 0.070 0.508 2.18 0.146 2.56 0.079  0.540
446.0 135.94 2.18 0.138 2.53 0.074 0.540 2.16 0.151 2.55 0.087 0.580
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from
Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried

105C Oven-Dried

Depth Depth . Vol. . Vol.
(fee) m) %anw Porostty SZ:::; ovaer Relative [S’:n?ijtg( Porosity ;2:513 ovaer Relative
(@emd) C™M) gemd) 5 3 @em®) ™M) gremd) 3 3
(em=/cm®) (cm“/cm®)
446.6 136.12 2.19 0.137 2.54 0.080 0.584 2.18 0.144 2.55 0.087 0.605
4498 137.10 2.18 0.139 2.53 0.075 0.541 2.17 0.148 2.55 0.084 0.569
453.1 138.11 2.16 0.147 2.53 0.080 0.542 2.15 0.156 2.55 0.089 0.569
456.1 139.02 2.08 0.179 2.54 0.071 0.395 2.07 0.186 2.55 0.078 0418
460.1 140.24 2.15 0.145 2.52 0.074 0.511 2.14 0.157 2.54 0.086 0.549
4619 140.79 2.16 0.141 2.51 0.074 0.526 2.14 0.154 2.54 0.088 0.567
465.1 141.76 2.18 0.134 2.52 0.074 0.556 217 0.146 2.54 0.087 0.593
468.1 142.68 2.14 0.148 2.51 0.078 0.524 2.12 0.162 2.53 0.091 0.564
470.8 143.50 2.05 0.183 2.51 0.082 0.446 2.04 0.194 2.53 0.093 0.478
4740 14448 2.02 0.191 2.50 0.078 0.406 2.01 0.203 2.52 0.090 0.441
477.2 14545 2.03 0.187 2.50 0.077 0413 2.02 0.199 2.52 0.090 0.450
4799 146.27 1.97 0.211 2.50 0.087 0.413 1.96 0.224 2.52 0.100 0.447
487.0 148.44 1.99 0.200 2.49 0.082 0410 1.98 0212 2.51 0.094 0.444
489.0 149.05 2.13 0.146 2.49 0.088 0.607 2.12 0.159 2.52 0.102 0.640
496.5 151.33 2.12 0.153 2.50 0.089 0.581 2.10 0.165 2.52 0.101 0.612
498.0 151.79 2.06 0.169 2.48 0.096 0.568 2.05 0.181 2.50 0.108 0.596
506.2 154.29 2.13 0.143 2.49 0.080 0.556 2.12 0.158 2.51 0.094 0.596
506.9 154.50 2.09 0.159 2.49 0.097 0.608 2.08 0.174 2.52 0.112 0.641
508.9 155.11 2.08 0.163 2.48 0.088 0.542 2.06 0.178 2.51 0.104 0.582
512.7 156.27 2.00 0.193 2.48 0.096 0.497 1.98 0.209 2.51 0.112 0.534
516.5 15743 2.14 0.139 2.49 0.095 0.684 2.13 0.153 2.51 0.109 0.713
523.6 159.59 2.09 0.157 2.47 0.126 0.804 2.07 0.173 2.50 0.142 0.822
523.8 159.65 2.11 0.150 2.48 0.114 0.755 2.09 0.167 2.51 0.130 0.779
5259 160.29 2.02 0.184 2.47 0.133 0.722 2.00 0.201 2.50 0.150 0.745
532.0 162.15 2.20 0.107 2.46 0.091 0.853 2.18 0.129 2.50 0.114 0.879
538.7 164.20 2.04 0.168 2.45 0.102 0.610 2.03 0.184 248 0.118 0.644
539.1 164.32 2.08 0.159 248 0.099 0.622 2.07 0.174 2.50 0.114 0.655
546.9 166.70 2.16 0.130 2.48 0.096 0.735 2.14 0.144 2.50 0.109 0.760
5479 167.00 2.11 0.149 2.48 (0.090 0.605 2.10 0.161 2.50 0.102 0.636
5494 167.46 2.16 0.129 2.48 0.094 0.727 2.15 0.142 2.51 0.107 0.753
550.9 167.91 2.13 0.140 2.48 0.101 0.719 2.12 0.153 2.50 0.114 0.743
5548 169.10 2.16 0.122 246 0.079 0.645 2.15 0.137 2.49 0.093 0.683
560.4 170.81 2.15 0.114 2.43 0.073 0.637 2.13 0.131 2.45 0.089 0.683
565.7 172.43 2.18 0.113 2.46 0.082 0.727 217 0.129 2.49 0.098 0.761
567.0 172.82 2.13 0.131 2.45 0.092 0.696 2.11 (0.148 2.48 0.108 0.731
569.7 173.65 2.18 0.113 2.46 0.086 0.757 2.16 0.131 2.49 0.104 0.791
5748 175.20 2.21 0.104 2.47 0.081 0.777 2.19 0.123 2.50 0.100 0.811
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from

Drill Hole USW SD-7 (Continued)

Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried

Depth  Depth i Vol. . Vol.
(o) (M |Donsiy P Dangry Welr  melive | pog’ Porosiy poly Weter - pelaive

@em®) C™™) (gem®) 3 3 " | eem® ©MM) (grom®y g

{cm~/ecm™) {cm~/em®)
5764 175.69 2.14 0.128 245 0.095 0.742 2.12 0.147 2.48 0.114 0774
578.1 176.21 2.22 0.101 2.46 0.086 0.848 2.20 0.121 2.50 0.105 0873
582.8 177.64 2.25 0.086 2.47 0.073 0.856 2.23 0.106 2.50 0.094 0.884
5849 178.28 2.18 0.116 2.47 0.091 0.783 2.16 0.135 2.50 0.110 03814
588.1 179.25 2.19 0.108 2.46 0.090 0.839 2.17 0.128 2.49 0.110 0.864
591.1 180.17 2.12 0.142 2.48 0.117 0.822 2.11 0.158 2.50 0.132  0.839
5944 181.17 2.20 0.102 2.45 0.083 0.819 2.18 0.126 2.49 0.107 0.853
596.8 18191 2.15 0.121 2.44 0.107 0.880 212 0.148 2.49 0.133 0902
600.0 182.88 2.10 0.136 2.43 0.094 0.692 2.07 0.161 2.47 0.119  0.740
603.0 183.79 2.08 0.154 2.46 0.097 0.628 2.06 0.173 2.49 0.115  0.669
606.2 184.77 2.10 0.152 2.48 0.100 0.655 2.08 0.171 2.51 0.118  0.692
6148 187.39 2.26 0.095 2.49 0.066 0.689 2.24 0.115 2.53 0.085 0.742
617.1 188.09 222 0.105 2.48 0.083 0.793 2.20 0.124 2.51 0.102 0.825
623.3 189.98 2.21 0.110 2.49 0.087 0.789 2.19 0.130 2.52 0.107 0.822
6259 190.77 221 0.109 2.48 0.071 0.649 2.19 0.130 252 0.092 0.706
627.7 191.32 2.27 0.081 2.47 0.066 0.825 224 0.104 2.50 0.090 0.865
629.8 191.96 2.27 0.076 2.46 0.064 0.843 2.25 0.101 2.50 0.089 0.881
632.6 192.82 2.26 0.080 2.46 0.066 0.815 224 0.104 2.50 0.089 0.856
636.6 194.04 2.29 0.073 2.47 0.060 0.831 227 0.093 2.51 0.081 0.869
638.3 194.55 2.29 0.072 2.46 0.055 0.771 2.26 0.095 2.50 0.079 0.828
643.5 196.14 2.31 0.067 2.47 0.056 0.837 2.28 0.088 2.51 0.078 0.877
6447 196.51 2.28 0.072 2.46 0.068 0.942 2.26 0.094 2.50 0.090 0.956
646.9 197.18 233 0.052 2.46 0.044 0.851 2.30 0.077 2.50 0.070  0.900
6509 198.39 233 0.051 2.46 0.044 0.875 231 0.076 2.50 0.069 0917
653.7 199.25 2.29 0.067 2.46 0.051 0.765 2.27 0.090 2.50 0074 0.824
656.6 200.13 2.28 0.064 2.44 0.053 0.822 225 0.090 2.48 0079 0.873
659.2 20092 2.33 0.058 247 0.053 0.921 2.30 0.083 2.51 0.078 0945
663.6 202.27 229 0.069 2.46 0.060 0.877 227 0.094 2.50 0.085 0910
665.4 202.81 2.30 0.068 2.47 0.059 0.862 228 0.092 2.51 0.083  0.898
668.8 203.85 2.26 0.083 247 0.076 0.918 2.24 0.103 2.50 0.096 0934
671.1  204.55 2.33 0.062 2.48 0.051 0.823 2.30 0.085 2.52 0.074 0.872
676.0  206.05 2.31 0.071 2.48 0.064 0.902 2.28 0.093 252 0.086 0925
677.6 206.53 2.35 0.054 2.48 0.052 0.961 2.32 0.077 2.52 0.075 0973
684.1 208.51 2.31 0.094 2.55 0.079 0.844 2.29 0.113 2.59 0.099 0.871
688.0 209.70 2.33 0.089 2.56 0.086 0.967 2.31 0.109 2.60 0.106 0973
690.4 21043 233 0.086 2.55 0.079 0.920 2.31 0.106 2.58 0.099 0935
693.5 211.38 2.30 0.071 2.48 0.067 0.945 2.28 0.095 252 0.091  0.959
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from
Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried
Depth Depth . Vol. . Vol.
oo ) Conay PO iy Wl Rl | gty PO panay Mol Rt
@em®) ©™D) (gremd) 3 @em® ™) (gemdy 3 3
(cm“/em®) (cm“/cm™)

696.8 212.39 2.32 0.088 2.54 0.081 0.921 2.30 0.109 2.58 0.102 0936
699.8 213.30 2.31 0.096 2.55 0.085 0.890 2.29 0.116 2.59 0.106  0.909
701.1  213.70 2.29 0.068 2.46 0.062 0.912 2.27 0.091 2.49 0.085 0934
704.8 214.82 2.29 0.098 2.54 0.091 0.929 2.27 0.120 2.58 0.113 0942
709.5 216.26 2.29 0.096 2.53 0.082 0.862 2.27 0.116 2.56 0.103  0.886
711.0 216.71 2.26 0.110 2.54 0.099 0.904 2.24 0.130 2.57 0.120 0919
713.8 217.57 2.27 0.096 2.51 0.083 0.871 2.25 0.117 2.55 0.105 0.895
717.0 21854 2.26 0.088 2.48 0.081 0911 2.23 0.112 2.51 0.104  0.930
720.0 219.46 2.24 0.097 2.49 0.096 0.993 222 0.121 2.53 0.121 0.995
7229 22034 2.24 0.087 2.45 0.079 0.914 2.21 0.115 2.50 0.108 0935
726.4 22141 2.27 0.081 2.48 0.075 0.922 2.25 0.108 2.52 0.101  0.941
729.1 22223 2.24 0.102 2.50 0.095 0.935 222 0.126 2.54 0.119 0947
7329 22339 2.27 0.114 2.56 0.110 0.966 2.24 0.135 2.59 0.131 0971
7349 224.00 227 0.114 2.56 0.107 0.942 2.25 0.133 2.59 0.127  0.950
7373 22473 2.26 0.116 2.55 0.105 0.909 2.24 0.135 2.59 0.125 0922
740.8 225.80 2.26 0.081 2.46 0.074 0.917 2.23 0.109 2.50 0.102 0.938
743.8 226.71 2.28 0.080 247 0.075 0.937 2.25 0.105 252 0.100 0.952
746.8 227.63 2.26 0.086 2.48 0.083 0.967 2.24 0.113 2.52 0.110 0975
7499 228.57 2.25 0.085 2.46 0.080 0.938 222 0.114 2.50 0.109 0953
753.1 22955 2.28 0.077 2.47 0.073 0.945 225 0.106 2.51 0.101 0.960
756.0 230.43 2.22 0.092 2.45 0.087 0.946 2.19 0.124 2.50 0.119  0.960
759.2  231.40 223 0.095 2.46 0.089 0.936 2.20 0.123 2.50 0.117  0.951
762.1 232.29 2.24 0.093 247 0.093 0.999 222 0.120 2.52 0.120  0.999
7647 233.08 2.26 0.087 2.47 0.079 0911 2.23 0.113 251 0.105 0932
767.4  233.90 2.25 0.080 2.44 0.068 0.845 2.21 0.114 2.50 0.102 0891
770.7 23491 2.27 0.080 2.47 0.076 0.942 224 0.107 2.51 0.103 0957
773.3 23570 2.28 0.083 2.48 0.077 0.925 2.25 0.109 2.53 0.102 0942
776.9 236.80 2.26 0.081 2.46 0.080 0.983 2.23 0.108 2.50 0.107  0.987
779.9 23771 2.29 0.067 2.46 0.061 0.921 2.27 0.095 2.50 0.090 0945
783.2 238.72 2.29 0.087 2.51 0.072 0.830 2.27 0.109 2.55 0.095 0.865
7859 23954 2.33 0.080 2.533 0.070 0.877 2.31 0.101 2.57 0.091 0.903
788.6 240.37 2.28 0.073 246 0.064 0.879 2.26 0.096 2.50 0.088  0.909
7945 242.16 2.35 0.046 2.46 0.042 0.919 2.33 0.070 2.50 0.066 0947
798.0 243.23 2.35 0.048 247 0.043 0.907 232 0.072 2.50 0.067 0.938
800.5 243.99 2.36 0.042 247 0.039 0.926 234 0.065 2.50 0.062 0952
809.2 246.64 2.25 0.099 2.49 0.085 0.862 2.23 0.115 2.52 0.101  0.881
819.0 249.63 234 0.073 2.52 0.066 0.904 2.31 0.095 2.56 0.088  0.926
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from
Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried
Depth  Depth |DryBulk .~ Particle “‘,';Lr  |oryBuk . Particle v;’;'er _
(feet) (m) | Density ty Density Relative | pepgity ty Density Relative
Content Satn. 3 Content  gatn.
(glcm3) (cm“/ecm®) (g/cms) 3, 3 ( Icm3) {cm~/cm®) ( glcm3) 3 3
(ecm“/fem™) 9 {cm~/ecm®)
824.7 25137 2.13 0.146 2.49 0.133 0.911 2.12 0.157 2.51 0.144 0917
8354 254.63 2.23 0.103 2.48 0.090 0.874 221 0.123 2.52 0.110 0.894
836.8 255.06 2.31 0.096 2.55 0.067 0.698 2.29 0.116 2.59 0.087 0.751
842.5 256.79 2.24 0.096 2.48 0.086 0.891 222 0.116 2.51 0.105  0.909
847.6 258.35 2.32 0.078 2.51 0.067 0.862 2.29 0.099 2.55 0.088  0.892
848.4 258.59 221 0.114 2.49 0.088 0.775 2.19 0.135 2.53 0.109  0.811

8569 261.18 2.11 0.156 2.50 0.124 0.794 2.10 0.172 2.53 0.136  0.813
857.7 26143 224 0.101 2.50 0.086 0.845 222 0.121 2.53 0.105 0.870
862.3 262.83 2.32 0.084 2.53 0.072 0.863 2.30 0.105 2.57 0.093  0.890
8649 263.62 2.29 0.089 2.51 0.069 0.778 2.26 0.110 2.54 0.090 0.821
867.4 264.38 232 0.073 2.50 0.069 0.942 2.30 0.097 2.54 0.093  0.956
872.0 265.79 224 0.108 2.51 0.078 0.720 222 0.128 2.54 0.098 0.764
8744 266.52 2.20 0.120 2.50 0.092 0.772 2.18 0.136 2.53 0.109  0.800
875.5 266.85 2.28 0.085 2.49 0.071 0.835 2.25 0.108 2.53 0.094  0.870
878.8 267.86 2.27 0.087 2.48 0.074 0.844 225 0.106 2.52 0.093  0.872
884.2 269.50 225 0.093 2.48 0.077 0.821 2.23 0.113 2.52 0.096  0.852
885.0 269.75 231 0.075 2.50 0.066 0.879 2.29 0.098 2.54 0.089  0.907
887.6  270.54 226 0.096 2.50 0.085 0.888 223 0.117 2.53 0.106 0908
891.0 271.58 2.26 0.090 2.49 0.076 0.843 224 0.109 2.52 0095 0.870
894.0 27249 222 0.107 2.49 0.093 0.864 220 0.127 2.52 0.113  0.885
897.3 273.50 2.28 0.078 2.48 0.070 0.904 226 0.100 2.51 0.093  0.925
899.5 274.17 2.28 0.080 247 0.074 0.924 2.25 0.105 2.51 0.098 0.942
904.9 27581 226 0.090 2.49 0.071 0.793 224 0.110 2.52 0.092  0.831
910.7 277.58 223 0.102 2.49 0.087 0.855 221 0.122 2.52 0.107 0.878
9147 278.80 2.25 0.097 2.49 0.083 0.854 223 0.117 2.52 0.103  0.879
916.2 279.26 2.30 0.075 2.49 0.067 0.902 2.28 0.096 2.52 0.088 0.923
919.1 280.14 223 0.105 2.49 0.086 0.818 221 0.124 2.52 0.105 0.846

920.4 280.54 224 0.102 2.49 0.085 0.831 222 0.122 253 0.105 0.858
9241 281.67 227 0.087 2.49 0.073 0.847 225 0.105 2.52 0092 0.874
9284 282.98 2.30 0.084 2.52 0.076 0.903 228 0.106 2.55 0.098  0.923
929.7 283.37 2.29 0.085 2.50 0.074 0.871 227 0.105 2.53 0.094 0.895

932.8 284.32 2.09 0.164 2.50 0.131 0.798 2.08 0.178 2.53 0.145 0814
936.7 285.51 229 0.094 2.53 0.074 0.781 2.27 0.114 2.56 0093 0819
940.7 286.73 222 0.120 2.52 0.108 0.903 2.20 0.140 2.55 0.128 0917
9415 286.97 2.28 0.095 252 0.083 0.879 2.26 0.114 2.56 0.103  0.900
946.4 288.46 227 0.102 2.53 0.084 0.825 2.24 0.126 2.57 0.108  0.858
951.2 28993 233 0.085 2.54 0.077 0.906 2.30 0.110 2.59 0.102 0927
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from
Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried
Vol. Vol
Depth  Depth |pry Bulk .. Particle Dry Bulk .. Particle .
(feet) (m) | Density Porosity Density Water  Relative Density Porosity Density C‘g::::n Relative

Content Satn.
) (cmslcms) ) (cmslcm3)
9545 29093 2.29 0.098 2.54 0.083 0.847 2.27 0.122 2.58 0.107 0.877
957.0 291.69 2.13 0.163 2.54 0.127 0.778 2.10 0.184 2.58 0.148  0.803
961.4 293.04 1.95 0.228 2.53 0.174 0.762 1.93 0.245 2.56 0.191  0.779
962.5 29337 2.35 0.082 2.56 0.078 0.956 2.32 0.105 2.60 0.101  0.965
966.9 294.71 2.09 0.175 2.53 0.147 0.839 2.08 0.190 2.56 0.161  0.851
968.9 295.32 2.24 0.110 251 0.097 0.881 222 0.131 2.55 0.117  0.900
971.4 296.08 2.23 0.112 2.52 0.102 0.905 2.21 0.137 2.56 0.126  0.922
9745 297.03 2.18 0.136 2.53 0.116 0.850 2.16 0.159 2.57 0.138  0.871
978.1 298.13 2.26 0.096 2.50 0.088 0.918 224 0.120 2.55 0.113 0935
981.0 299.01 2.12 0.158 252 0.133 0.846 2.10 0.178 2.56 0.154 0.864
983.8 299.86 1.92 0.241 2.53 0.200 0.831 1.91 0.258 2.57 0217 0.842
986.2 300.59 2.18 0.130 2.50 0.126 0.965 2.15 0.153 254 0.149  0.970
990.2 301.81 2.26 0.099 2.50 0.091 0.918 2.23 0.123 2.55 0.115 0934

Satn.
3) {cm“/cm®) (g/cm3

(glcms) (em™/em™) (g/cm3 (g/cm

993.1 302.70 2.33 0.074 252 0.074 0.995 2.31 0.097 2.55 0.097  0.996
9943 303.06 2.25 0.098 250 0.097 0.985 223 0.118 2.53 0.117 0988
999.0  304.50 2.28 0.087 250 0.076 0.878 226 0.106 2.53 0.095  0.900

1005.0 306.32 222 0.114 2.51 0.103 0.901 220 0.131 2.54 0.119 0913
1008.2 307.30 2.30 0.079 2.49 0.072 0.909 2.28 0.099 2.53 0.092  0.927
1013.3 308.85 2.27 0.093 2.50 0.089 0.955 225 0.112 2.53 0.108  0.962
1017.6  310.16 224 0.103 2.50 0.098 0.952 222 0.125 2.54 0.120 0961
1020.8 311.14 2.26 0.095 2.50 0.088 0.921 2.24 0.115 2.53 0.107 0935

1022.5 311.66 232 0.075 2.51 0.068 0.909 2.30 0.096 254 0.089  0.928
1026.8 31297 2.34 0.069 2.51 0.061 0.873 232 0.093 2.55 0.084 0905
1028.8 313.58 2.29 0.085 2.51 0.080 0.942 2.27 0.108 2.54 0.103 0954

1031.2 31431 2.27 0.092 2.50 0.088 0.951 2.25 0.113 2.54 0.109  0.960
10352 315.53 232 0.078 2.52 0.07t 0.910 2.30 0.101 2.55 0.094 0930

1037.6 316.26 1.72 0.332 2.57 0.286 0.860 1.71 0.341 2.59 0.294  0.864
1040.5 317.14 232 0.081 252 0.074 0.922 229 0.103 2.56 0.096  0.938
1044.4 318.33 2.35 0.067 252 0.056 0.846 2.33 0.087 2.55 0.077  0.882
1046.7 319.03 235 0.067 252 0.059 0.886 2.33 0.090 2.56 0.082 0915
1050.2  320.10 2.36 0.060 2.51 0.055 0.920 2.33 0.086 2.55 0.081 0944
1053.2 321.02 2.10 0.165 2.51 0.155 0.944 2.08 0.180 2.54 0.171  0.948

1056.6  322.05 2.36 0.062 2.52 0.055 0.890 2.34 0.085 2.56 0078 0920
1058.8 322.72 232 0.073 2.50 0.064 0.881 2.30 0.095 2.54 0.086  0.908
1062.3 323.79 234 0.070 2.51 0.061 0.878 2.31 0.092 2.55 0.083  0.907
1066.4  325.04 2.35 0.064 2.51 0.058 0.900 2.33 0.088 2.55 0.081 0.927
1068.4 325.65 2.33 0.070 2.50 0.063 0.890 2.30 0.093 2.54 0.085 0917
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from

Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried
Depth  Depth i Vol. . Vol.
Gee) (m |Densiy PO Dengiy contont lative ‘Dansity porosity Density Comtony olative
3, (em“/em®) 3 3, (cm*/em®) 3
(gfcm”) (@em™) o m3emd) (gfem™) ©em”) . m3iem?)
1071.0 326.44 2.35 0.058 2.50 0.054 0.929 2.33 0.083 2.54 0.079  0.950
1074.1 327.39 2.37 0.063 2.53 0.057 0910 235 0.086 2.57 0.080 0934
1077.1  328.30 2.36 0.065 2.53 0.059 0.905 2.34 0.088 2.57 0.082 0930
1079.4  329.00 232 0.078 2.52 0.073 0.944 2.30 0.105 2.56 0.100  0.958
1082.7 330.01 2.33 0.090  2.56 0.071 0.787 2.32 0.108 2.60 0.089 0.823
1083.6 33028 2.34 0074 253 0.068 0.925 2.32 0.095 2.56 0.090 0942
1085.8 330.95 2.37 0.065 2.54 0.060 0919 235 0.089 2.58 0.084 0.942
1088.4 331.74 2.34 0.079 2.54 0.075 0.949 232 0.099 2.57 0.095 0.960
1092.2  332.90 2.34 0.071 2.52 0.062 0.878 2.32 0.091 2.56 0.082 0.904
1095.1  333.79 2.38 0.060  2.53 0.054 0.906 2.35 0.086 257 0.081 0.935
1097.1 334.40 2.36 0070 254 0.061 0.872 2.34 0.093 2.58 0.084 0.904
1100.6  335.46 2.36 0.067 2.53 0.060 0.895 2.34 0.090 2.57 0.083 0.923
1103.7 33641 2.35 0.068 2.52 0.058 0.847 2.33 0.092 2.56 0.081 0.886
1107.4 337.54 2.35 0.065 2.52 0.054 0.839 2.33 0.089 2.56 0.079  0.882
1109.7 338.24 2.27 0094 251 0.072 0.769 2.25 0.119 2.55 0.097 0.817
1113.1  339.27 2.33 0072 251 0.065 0.906 231 0.096 2.56 0.090 0.930
11154 33997 2.32 0.073 2.51 0.066 0.907 2.30 0.098 2.55 0.091 0.931
1119.1  341.10 2.35 0.073 2.53 0.062 0.856 2.32 0.098 2.57 0.087 0.893
1121.5 341.83 2.36 0.063 2.52 0.056 0.889 2.33 0.089 2.56 0.082  0.922
1124.7 34281 2.36 0.068 2.53 0.059 0.863 2.33 0.094 258 0.085  0.900
1127.3  343.60 2.34 0.074 2.53 0.066 0.884 232 0.098 2.57 0.090 0912
1131.0  344.73 227 0.097 2.51 0.074 0.757 2.24 0.123 2.56 0.099  0.807
11342 345.70 2.36 0.064 253 0.055 0.861 2.34 0.090 2.57 0.081 0.900
1137.2  346.62 2.29 0.085 2.50 0.074 0.865 2.27 0.109 2.54 0.098  0.895
11394  347.29 2.34 0.063 2.50 0.053 0.845 2.32 0.088 2.54 0.078 0.889
1142.0 348.08 2.34 0.065 2.50 0.057 0.886 232 0.090 2.55 0.082 0918
1145.5 349.15 2.36 0.066  2.53 0.058 0.885 2.34 0090 257 0.083 0917
11484 350.03 2.38 0.062 2.54 0.054 0.882 2.36 0.086 2.58 0.079 0916
1151.6 351.01 2.36 0070  2.53 0.059 0.844 2.33 0.095 2.58 0.084 0.886
1155.6 35223 2.37 0.063 2.53 0.056 0.880 2.35 0.088 2.58 0.080 0914
1157.6  352.84 2.38 0.061 2.54 0.055 0.901 2.36 0.087 2.58 0.081 0.931
1160.5 353.72 2.36 0.067 2.53 0.059 0.884 2.33 0.093 2.57 0.085 0.916
1163.1 354.51 2.33 0074 252 0.067 0.898 2.31 0.101 2.57 0.093 0925
1166.7 355.61 2.38 0.063 2.54 0.055 0.867 2.35 0090  2.58 0.081  0.906
11703  356.71 2.36 0.061 2.52 0.054 0.886 2.34 0.087 2.56 0.080 0919
11729  357.50 2.39 0.061 2.54 0.058 0.945 2.36 0.087 2.59 0.084 0.961
1175.4 358.26 2.37 0.059 2.52 0.050 0.851 2.34 0.087 2.56 0.078  0.899
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from
Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried
Depth  Depth |pry Bulk Porosity Particle V\\I’;Iér Relati Dry Bulk Porosity Particle V\‘Il:tlt;,r Relati
feet m i i elative " i elative
(feet) (m) | Density 5 Density o oot o Density Density i ont oot

3

(grom®) ©M) (grom @em®) CTM) gem®y

) (cmslcm3) 3Icm3)
1179.2 359.42 2.37 0.064 2.54 0.057 0.888 2.35 0.089 2.58 0.081 0919
1180.9 359.94 2.39 0.058 2.54 0.047 0.806 2.37 0.083 2.58 0.072  0.865

11853 361.28 2.29 0.022 2.34 0.021 0.966 224 0.071 241 0070 0.989
1188.0 362.10 241 0.037 2.51 0.029 0.782 2.40 0.056 2.54 0.048 0.855
1190.5 362.86 242 0.038 252 0.030 0.809 2.40 0.057 2.55 0.049  0.873
1195.0 364.24 2.35 0.011 238 0.010 0.889 2.34 0.025 2.40 0.023 0949
1197.2 36491 2.35 0.013 2.38 0.012 0.887 2.34 0.025 2.40 0.023  0.940
1199.6  365.64 2.25 0.037 234 0.036 0.997 2.20 0.087 2.41 0.087  0.999
12024 366.49 234 0.020 2.38 0.017 0.861 232 0.035 2.41 0.032 0921
1206.0 367.59 2.34 0.019 2.39 0.013 0.691 2.33 0.028 2.40 0.022  0.790
12089 368.47 2.35 0.017 2.39 0.014 0.800 234 0.025 2.40 0.022  0.865

1213.7  369.94 2.35 0.014 2.39 0.014 0.997 2.34 0.023 2.40 0.023  0.998
12150 370.33 2.34 0.016 2.38 0.015 0.924 233 0.027 2.40 0.026  0.956
1218.0 371.25 2.29 0.032 2.36 0.028 0.886 226 0.062 241 0.058  0.941]
1222.1  372.50 2.34 0.019 2.38 0.018 0917 232 0.032 2.40 0.031 00951
1225.0 373.38 234 0.015 2.38 0.015 0.958 233 0.028 2.39 0.027 0977
1226.8 373.93 2.33 0.021 2.38 0.018 0.860 232 0.032 2.39 0.029 0908
1220.5 37475 2.35 0.014 2.38 0.012 0.826 2.34 0.021 2.39 0.019  0.884
1235.2  376.49 2.34 0.016 2.38 0.012 0.785 2.33 0.023 2.39 0.020 0.854
1236.2 376.79 2.34 0.017 2.38 0.013 0.754 2.34 0.024 2.39 0.020 0.825
1239.1  377.68 2.35 0.014 2.38 0.011 0.833 234 0.020 2.39 0.018  0.886

1241.8 378.50 2.35 0.012 2.38 0.009 0.691 2.35 0.018 2.39 0.015 0.793
1248.4  380.51 2.35 0.013 2.38 0.009 0.702 2.34 0.019 2.39 0015 0.794
1251.0 381.31 2.35 0.015 2.38 0.011 0.734 2.34 0.021 2.39 0.017 0813

1253.6  382.10 2.35 0.013 2.38 0.010 0.741 2.35 0.018 2.39 0015  0.819
1256.2 382.89 2.35 0.011 2.38 0.009 0.795 2.35 0.016 2.39 0014 0.859
12609 384.32 2.35 0.014 2.38 0.012 0.871 234 0.021 2.39 0019 0914
1262.4 384.78 235 0.012 2.38 0.009 0.765 234 0.019 2.39 0.016  0.855

1265.6  385.76 2.34 0.012 2.37 0.011 0.914 2.33 0.022 2.39 0.021  0.953
1269.0 386.79 2.34 0.013 237 0.010 0.750 2.33 0.024 2.39 0.021 0.862
1271.6  387.58 231 0.026 2.37 0.017 0.645 2.30 0.039 2.39 0.029  0.758
12755 388.77 231 0.023 2.36 0.009 0.376 2.30 0.037 2.38 0023 0.622

1277.8 389.47 2.28 0.030 2.35 0.024 0.822 2.26 0.052 2.39 0.047  0.898
1283.1  391.09 220 0.065 2.35 0.052 0.795 217 0.091 2.39 0.078 0.854
12843 391.46 2.18 0.075 2.36 0.058 0.772 2.16 0.098 2.39 0081 0.827
1287.2 392.34 2.13 0.088 2.34 0.061 0.697 2.11 0.113 2.38 0.08  0.763
1289.8 393.13 2.15 0.076 233 0.059 0.768 2.12 0.102 2.36 0.084 0.825
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from

Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried

105C Oven-Dried

Depth  Depth i Vol. . Vol.
(o) () |Canaiy PO Donaty Weler  Reltve iy Porosty plID water - melatve
(@em® ™M) (gem®) "3 3 " gemd ™) gemdy g g o
{cm“/cm®) (cm~/cm™)
1292.6 393.98 2.07 0.117 2.35 0.073 0.627 2.05 0.134 2.37 0.091 0.676
1296.3 395.11 1.98 0.154 2.34 0.090 0.582 1.97 0.167 2.36 0.103 0.615
1298.6 395.81 1.96 0.149 2.30 0.087 0.585 1.95 0.159 2.32 0.097 0.611
1301.4 396.67 1.91 0.168 2.30 0.077 0.459 1.90 0.179 2.31 0.088 0.491
1305.0 397.76 1.87 0.182 2.28 0.074 0.409 1.85 0.193 2.30 0.086 0445
1309.1  399.01 1.80 0.217 2.30 0.070 0.325 1.79 0.225 2.31 0.079 0.350
1310.9 399.56 1.76 0.229 2.28 0.068 0.298 1.75 0.238 2.29 0.077 0.323
1314.1  400.54 1.74 0.231 2.26 0.063 0.271 1.73 0.237 227 0.069 0.291
1319.2  402.09 1.75 0.228 2.26 0.069 0.302 1.74 0.234 2.27 0.075 0.321
1319.6  402.21 1.75 0.231 227 0.058 0.250 1.74 0.238 2.28 0.064 0271
1323.0 403.25 1.68 0.259 2.26 0.072 0.278 1.67 0.264 2.27 0.077 0.293
1328.8 405.02 1.71 0.226 2.21 0.059 0.262 1.71 0.231 222 0.064 0277
1329.0 405.08 1.69 0.244 2.23 0.056 0.230 1.68 0.248 224 0.061 0.244
1332.2  406.06 1.70 0.235 2.23 0.063 0.268 1.70 0.240 223 0.068  0.282
1335.2 40697 1.78 0.192 2.20 0.075 0.388 1.78 0.196 221 0078 0.399
1338.2 407.88 1.74 0.176 212 0.074 0.422 1.74 0.182 2.13 0.080 0.441
1341.4 408.86 1.83 0.166 2.19 0.062 0.373 1.82 0.170 2.20 0.066  0.388
13444  409.77 1.84 0.164 2.20 0.060 0.367 1.83 0.168 2.20 0.064 0.383
13464 41038 1.81 0.172 2.19 0.063 0.365 1.81 0.176 2.19 0.067 0.381
1349.7 411.39 1.76 0.182 2.14 0.063 0.344 1.75 0.187 2.15 0.068 0.364
1390.8 42392 143 0.346 2.19 0.118 0.341 143 0.351 2.20 0.123  0.350
1396.4 425.62 1.66 0.298 2.36 0.074 0.248 1.65 0.306 2.38 0.082  0.268
1397.8 426.05 1.69 0.277 233 0.048 0.174 1.67 0.292 2.36 0.063 0.215
14103 429.86 1.61 0.272 2.22 0.112 0.413 1.60 0.291 2.25 0.132 0451
1411.0  430.07 1.52 0.325 225 0.079 0.245 1.51 0.333 2.27 0.088 0.264
1413.3  430.77 1.53 0.323 2.25 0.082 0.253 1.52 0.330 2.27 0.089 0.270
1415.6 43148 1.54 0.310 224 0.074 0.240 1.53 0.319 2.25 0.083 0.261
1418.3 432.30 1.53 0.316 2.24 0.072 0.228 1.52 0.325 2.26 0.081 0.249
1422.0 43343 1.54 0.308 2.22 0.072 0.234 1.53 0.316 224 0.079 0252
14245 434.19 1.55 0.310 2.24 0.078 0.250 1.54 - 0.318 2.26 0.086 0.270
1428.0 43525 1.59 0.221 2.04 0.119 0.540 1.55 0.264 2.10 0.163  0.616
14324  436.60 1.55 0.313 2.26 0.097 0.309 1.54 0.326 2.28 0.110  0.338
1433.4  436.90 1.57 0.307 2.26 0.093 0.302 1.56 0.317 2.28 0.103 0.324
1441.7 43943 1.44 0.356 2.24 0.107 0.301 1.44 0.361 224 0.111 0.309
1442.6 439.70 1.50 0.334 2.25 0.111 0.331 1.48 0.346 227 0.123 0.356
1446.2 440.80 1.44 0.296 2.05 0.116 0.393 142 0.314 2.07 0.134 0427
1448.3 44144 1.43 0.324 2.11 0.133 0.411 1.41 0.343 2.15 0.152 0.443
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from
Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried

Vol. . Vol.
Depth  Depth |pry Bulk Particle Dry Bulk Particle
. Porosity . Water Relati . Porosity . Water  Relati
feet m elative elative
(feet) {m) | Density 3 Density . - nt et Density . Density - e oot

@em®) CMN) (gemy o @em®) C™IEMY (gom®) 5

1451.6 44245 1.37 0.367 2.17 0.150 0.408 1.36 0.382 2.20 0.165 0.433

1455.1 44351 1.47 0.340 2.23 0.148 0.435 1.45 0.362 2.27 0.170  0.469
1457.5 44425 1.51 0.333 2.26 0.106 0.317 1.49 0.346 2.28 0.118 0342
1460.7 44522 1.54 0.305 221 0.103 0.338 1.53 0.319 2.24 0.117 0366

1463.8 446.17 1.39 0.326 2.06 0.104 0.318 1.38 0.337 2.08 0.115 0341
1466.5 446.99 1.37 0.390 224 0.093 0.239 1.35 0.402 2.26 0.105 0.262
1469.9  448.03 1.36 0.391 223 0.101 0.258 1.35 0.405 2.26 0.114  0.283
1470.5 448.21 1.44 0.362 226 0.108 0.299 1.43 0.376 2.28 0.122  0.325
1480.7 451.32 1.45 0.351 224 0.137 0.390 1.44 0.366 221 0.151 0414
1482.4 451.84 1.46 0.326 2.16 0.175 0.536 1.44 0.345 2.19 0.195 0.563

1484.1 45235 1.44 0.337 2.17 0.187 0.555 1.42 0.356 221 0.206  0.579
1488.1 453.57 1.48 0.278 2.05 0.196 0.706 1.46 0.299 2.08 0218  0.727
1490.8 454.40 1.45 0.292 2.05 0.205 0.702 1.42 0.316 2.08 0229 0.724
1494.0  455.37 1.57 0.314 2.29 0.184 0.585 1.55 0331 232 0.200  0.606
1496.8 456.23 1.49 0.287 2.08 0.248 0.866 1.46 0.311 212 0272 0.877
1499.8 457.14 1.41 0.349 2.17 0.252 0.723 1.39 0.369 2.20 0272 0.738
1502.8 458.05 1.46 0.309 2.11 0.282 0.915 1.43 0.337 2.16 0311 0922
1506.0  459.03 1.54 0.276 2.12 0.260 0.941 1.49 0.326 221 0310  0.950
1508.7 459.85 1.51 0.273 207 0.245 0.897 1.45 0.325 2.15 0297 0914
1512.0 460.86 1.51 0.298 2.15 0.289 0.970 1.46 0.352 225 0343 0974

15152 461.83 1.48 0.339 224 0.316 0.933 1.44 0.383 233 0360 0.941
1518.0 462.69 1.58 0.306 2.27 0.185 0.606 1.54 0.343 2.34 0222 0.648

1521.0 463.60 1.50 0.358 2.33 0.181 0.506 1.48 0.378 237 0.201  0.532
1523.9 464.49 1.62 0.296 2.29 0.275 0.930 1.58 0.332 2.36 0311 0938
1526.6  465.31 1.51 0.339 2.28 0.324 0.955 1.48 0.364 2.33 0349 0958

1530.5 466.50 1.48 0.333 222 0.329 0.987 1.44 0.373 230 0369  0.988
15333  467.35 1.50 0.317 2.19 0.310 0.975 1.45 0.370 2.29 0364 0982
15353 46796 1.54 0.313 224 0.309 0.988 1.49 0.367 2.35 0363 099

1538.6 468.97 1.51 0.319 222 0.292 0913 1.46 0.371 232 0343 0925
1541.2  469.76 1.54 0.312 223 0.286 0918 1.48 0.371 2.35 0345 0931
1545.1 470.95 1.51 0.316 221 0.267 0.846 1.45 0.375 2.32 0.327 0.870

1548.1 471.86 1.47 0.329 2.18 0.307 0.935 1.41 0.389 2.30 0367 0.945
1550.7 472.65 1.58 0.267 2.15 0.263 0.986 1.49 0.358 232 0354  0.990
1553.6 473.54 1.63 0.251 2.17 0.247 0.985 1.53 0.347 234 0343 0989
15569 47454 1.65 0.231 2.14 0.230 0.997 1.53 0.345 234 0344 0998
1560.5 475.64 1.57 0.268 2.14 0.255 0.951 1.46 0.374 2.33 0361 0965
1562.5 476.25 1.62 0.236 2.12 0.233 0.989 1.50 0.356 233 0354  0.992
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from

Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried
Depth  Depth i Vol. . Vol.
(ert) (mp) El))r:nzn:( Porosit\!3 ;2::::; CV::::;t R;I:ttri‘\‘le %Zni;;lyk Porosity ;::::3 CV:::::“ R;:i::.re
(glem®) C™™) (grem®) 5 3 @em® C™M) gem® 3 3
fem“/em®) (cm“/ecm®)
1565.6 477.20 1.88 0.122 2.14 0.122 0.995 1.76 0.240 2.32 0.240  0.997
1568.5 478.08 1.49 0.316 2.18 0.300 0.951 1.40 0.403 2.35 0.388  0.962
1572.0 479.15 1.68 0.244 2.23 0.237 0973 1.60 0.330 2.38 0.324  0.980
1575.1 480.09 1.84 0.156 2.18 0.150 0.959 1.72 0.277 2.38 0.270  0.977
1577.4 480.79 1.85 0.155 2.19 0.147 0.945 1.73 0.280 240 0.272  0.970
1581.0 481.89 1.76 0.160 2.09 0.154 0.964 1.60 0.316 2.34 0310 0.982
1583.7 482.71 1.66 0.256 2.23 0.246 0.959 1.57 0.345 2.40 0335 0970
1586.5 483.57 1.70 0.220 2.18 0.220 1.002 1.57 0.358 2.44 0.358 1.001
1589.9 484.60 1.69 0.248 2.24 0.237 0.955 1.61 0.328 2.39 0317 0966
1593.1 485.58 1.87 0.177 2.27 0.180 1.018 1.79 0.260 2.42 0.263 1.012
15955 486.31 1.89 0.171 2,28 0.172 1.007 1.80 0.264 2.44 0.266 1.005
1599.0 487.38 1.85 0.203 2.32 0.184 0.910 1.79 0.266 2.43 0.247 0.931
16029 488.56 2.07 0.096 2.29 0.097 1.011 1.95 0.222 2.50 0.223 1.005
16049 489.17 2.12 0.058 2.25 0.058 1.008 2.00 0.182 2.44 0.182 1.002
1607.4 489.94 2.18 0.093 2.40 0.091 0.976 2.06 0.212 2.61 0.210 0989
1613.3 491.73 2.15 0.096 2.37 0.092 0.954 2.01 0.230 2.61 0.226 0981
1617.8 493.11 1.94 0.138 2.25 0.154 1.120 1.78 0.290 2.51 0.307 1.057
1619.1 493.50 1.97 0.125 2.26 0.123 0.982 1.83 0.272 2.51 0.270  0.992
1620.5 493.93 2.00 0.100 222 0.093 0.924 1.83 0.271 2.51 0.263 0.972
1623.7 494.90 1.85 0.137 2.14 0.142 1.037 1.67 0.322 2.46 0.327 1.016
1626.3 495.70 1.69 0.236 2.22 0.228 0.967 1.55 0.376 2.49 0.368 0.979
1629.2  496.58 1.55 0.269 2.12 0.275 1.022 1.38 0.440 2.46 0.445 1.013
1631.3 497.22 1.55 0.305 2.23 0.308 1.009 1.44 0.415 2.47 0418 1.007
1634.7 498.26 1.69 0.212 2.14 0.185 0.871 1.53 0.367 242 0339 0926
1638.2 499.32 1.87 0.154 2.21 0.147 0.959 1.74 0.283 243 0.277 0978
1642.4  500.60 1.90 0.121 2.16 0.112 0.928 1.76 0.263 2.38 0.254 0967
1644.5 501.24 1.95 0.108 2.18 0.098 0.908 1.80 0.261 2.43 0.251 0.962
1647.2 502.07 1.78 0.175 2.16 0.045 0.258 1.71 0.248 2.28 0.118 0.476
1651.5 503.38 1.72 0.231 2.24 0.152 0.661 1.59 0.361 2.49 0.283 0.784
1653.4 503.96 1.78 0.195 2.21 0.150 0.767 1.65 0.326 245 0.280 0.861
1656.0 504.75 1.66 0.326 2.46 0.256 0.784 1.62 0.364 2.55 0.293 0.807
1658.8 505.60 1.76 0.237 2.31 0.139 0.587 1.64 0.358 2.55 0.260 0.726
1661.1 506.30 1.70 0.302 2.44 0.226 0.749 1.64 0.367 2.59 0.291 0.794
1664.7 507.40 1.70 0.299 2.43 0.039 0.131 1.64 0.360 2.56 0.100 0.278
1667.5 508.25 1.81 0.206 2.28 -0.0597 —0.289T 1.67 0.349 2.56 0.083 0.239
1670.6  509.20 1.84 0.211 2.33 0.001 0.005 1.70 0.349 2.62 0.139  0.397
1676.7 511.06 1.70 0.324 2.51 0.046 0.142 1.67 0.348 2.57 0.070  0.202
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from

Drill Hole USW SD-7 (Continued)
[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried

Vol. Vol.
Depth  Depth |Dry Bulk .. Particle Dry Bulk .. Particle
(feet) (m) | Density Porosity Density Water  Relative Density Porosity Density Water  Relative

Content Satn. Content  gatn.
3 3) (em®/em*~) (g/cm3

@em®) ™M) (gom (glem

) (cm3/cm3) ) (cm3/cm3)
1677.1  511.18 1.74 0.266 2.38 -0.009T  -0.034T 1.66 0.354 2.56 0.079 0.223
1680.2 51213 1.80 0.226 2.33 00517 02047 1.68 0.350 2.58 0.073 0210

16834 513.10| 1.72 0322 254 0043  0.135 1.70 0344 259 0.066 0.191
16859 513.86| 186 0202 233 -00587 -0286T| 172 0334 259 0074 0223
16889 51478 | 1.84 0231 239  -0018T -0077t| 173 0333 260 0084 0253

1691.5 51557 | 1.93 0144 225  -0103" -0718T| 174 0326  2.59 0.079  0.243
16948 51658 | 193 0149 226  -0091t o612t | 175 0329 260 0.088  0.269

1699.9 518.13 1.83 0.255 2.46 0.007 0.026 1.77 0318 2.59 0.070  0.219
1701.0 518.47 1.87 0.223 240 0012t -0.0547 1.77 0.316 2.59 0.081  0.258
1703.8 519.32 1.81 0.288 2.54 0.053 0.183 1.78 0317 2.60 0.082  0.259
1706.8 520.23 1.79 0.293 2.53 0.061 0.209 1.77 0.320 2.60 0.089 0277
1709.8 521.15 1.80 0.293 2.55 0.061 0.210 1.79 0311 2.59 0.080  0.257
1712.8  522.06 1.81 0.276 2.50 0.040 0.143 1.77 0.320 2.60 0.083  0.260

1716.1  523.07 1.83 0.260 2.47 0.022 0.086 1.77 0318 2.59 0.080 0.252
1718.5 523.80 1.86 0.248 248 0.029 0.118 1.80 0.305 2.60 0.086  0.283
1722.2  524.93 1.89 0.223 2.44 <0.001t  -0.003% 1.82 0.301 2.60 0.077  0.256
1728.8 526.94 1.86 0.247 247 0.026 0.105 1.80 0.307 2.59 0.085 0.278
17294  527.12 1.79 0.293 2.53 0.054 0.184 1.76 0.321 2.59 0.082 0.256
1730.6 527.49 1.84 0.286 2.57 0.081 0.283 1.82 0.304 2.62 0.100 0.327
17343 528.62 1.90 0.181 2.32 00731 04041 1.76 0323 2.59 0.069 0213
1736.8  529.38 1.84 0.258 2.48 0.025 0.097 1.78 0313 2.59 0.080  0.255

1740.1 530.38 1.83 0.242 241 0.000 0.000 1.75 0323 2.58 0.081 0.252
1744.1  531.60 1.81 0.271 2.48 0.050 0.186 1.76 0.316 2.58 0.095  0.300
17458 53212 1.79 0.303 2.57 0.089 0.294 1.78 0.319 2.61 0.105 0.329

1748.6 53297 1.80 0.289 2.54 0.129 0.445 1.79 0.299 2.56 0.139  0.464
17523  534.10 1.87 0.248 2.49 0.034 0.137 1.83 0.288 2.58 0.074  0.258
1754.6  534.80 1.87 0.248 249 0.043 0.173 1.83 0.290 2.58 0.086  0.295
1758.1  535.87 1.87 0.267 2.56 0.082 0.308 1.86 0.279 2.58 0.094  0.338

1760.8 536.6% 1.88 0.227 243 0.015 0.064 1.81 0.298 2.57 0.086  0.287
1764.1 537.70 1.92 0.237 2.51 0.061 0.258 1.88 0274 2.59 0.098 0.358
1766.9 538.55 1.94 0.236 2.53 0.073 0.311 1.91 0.263 2.59 0.101  0.383

17704  539.62 1.97 0.233 2.56 0.070 0.299 1.95 0.248 2.59 0.084 0.341
1772.3  540.20 1.99 0.222 2.56 0.055 0.247 1.98 0.240 2.60 0073  0.304
17755 541.17 2.04 0.198 2.55 0.092 0.464 2.02 0.221 2.59 0.115  0.521
1779.0 54224 2.11 0.169 2.54 0.133 0.785 2.08 0.195 2.59 0.159  0.814
1781.7 543.06 2.13 0.158 2.53 0.096 0.608 2.09 0.190 2.59 0.128  0.673
1785.0 544.07 2.13 0.156 2.52 0.109 0.700 2.09 0.193 2.59 0.146  0.757
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from

Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
(GS951108312231.009; 1. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried
Depth  Depth |DryBulk .~ Particle s |DryBuk L Particle o '
(feet) (m) Density Density Relative Density Density Content Relative

Content  gain, Satn.

(gremd) ©CMMD) (grem3 (glem®) ™M) (rom3

) (cm3/cm3) ) (cmslcms)
1788.1 545.01 2.09 0.183 2.56 0.126 0.688 2.08 0.200 2.59 0.143  0.716
1791.5 546.05 2.15 0.140 2.50 0.098 0.699 2.10 0.184 2.58 0.142  0.772

1794.1 546.84 2.13 0.152 2351 0.098 0.647 2.09 0.187 2.57 0.133  0.713
17973 547.82 2.14 0.156 2.53 0.110 0.706 2.11 0.183 2.58 0.137 0.748
1800.3 548.73 2.14 0.147 251 0.088 0.597 2.1 0.179 2.57 0.120  0.670

1803.1 549.59 220 0.122 2.50 0.094 0.775 2.16 0.159 2.57 0.131  0.827
1806.2 550.53 2.20 0.111 2.48 0.075 0.680 2.16 0.156 2.56 0.121  0.773
1808.6 551.26 223 0.099 248 0.069 0.696 2.19 0.142 2.55 0.112  0.788
1811.9 552.27 222 0.107 2.49 0.077 0.720 2.18 0.143 2.55 0.113  0.790
1815.1 553.24 2.28 0.072 245 0.047 0.657 222 0.127 2.54 0.102  0.805
1817.5 553.97 227 0.086 2.49 0.060 0.704 2.24 0.116 2.54 0.090 0.781
1821.1  555.07 2.29 0.080 2.49 0.063 0.787 226 0.110 254 0.093 0.846
1823.3 555.74 231 0.071 2.48 0.063 0.883 2.27 0.103 2.53 0.094 0919
1826.3 556.66 227 0.066 2.44 0.053 0.799 2.24 0.100 2.49 0.087 0.867
1829.2 557.54 2.26 0.092 2.49 0.069 0.750 2.23 0.121 2.54 0.098 0.810
1833.0 558.70 2.19 0.123 2.50 0.097 0.790 2.16 0.151 2.54 0.125 0.828
1836.1 559.64 2.13 0.150 2.50 0.108 0.717 2.10 0.174 2.55 0.131  0.755

1839.1 560.56 2.07 0.178 2.51 0.113 0.634 2.05 0.197 2.55 0.132 0.671
1841.8 561.38 2.03 0.193 2.52 0.193 1.002 2.02 0.209 2.55 0.210 1.002
1844.6 562.23 1.99 0.206 2.50 0.146 0.710 1.97 0.224 2.54 0.164 0.733
1847.0 562.97 1.93 0.218 247 0.160 0.737 1.91 0.237 2.51 0.180  0.758

1852.7 564.70 1.91 0.233 2.49 0.107 0.457 1.89 0.253 2.53 0.126  0.500
18537 565.01 1.90 0.235 248 0.129 0.547 1.88 0.252 2.52 0.146  0.578

1857.4 566.14 1.98 0.202 2.48 0.171 0.847 1.96 0.219 2.51 0.188  0.859
1860.1 566.96 1.98 0.187 2.44 0.174 0.927 1.97 0.205 247 0.192 0934
1863.2 567.90 2.02 0.167 243 0.159 0.952 1.99 0.194 2.47 0.186  0.959

1865.8 568.70 1.98 0.177 241 0.171 0.964 1.93 0.233 251 0226 0973
1868.7 569.58 2.00 0.162 2.38 0.148 0915 1.95 0.208 2.47 0.194 0934
1872.1  570.62 1.95 0.175 236 0.152 0.870 1.90 0.223 245 0201  0.899
1875.0 571.50 1.75 0.254 2.34 0.245 0.963 1.69 0.309 2.45 0299  0.969
1878.1 57245 1.70 0.290 2.39 0.183 0.632 1.63 0.358 2.53 0251 0.701
1881.0 573.33 1.69 0.287 2.37 0.214 0.746 1.62 0.360 2.52 0.287 0.797
1883.9 574.21 1.78 0.216 2.27 0.208 0.965 1.70 0.299 2.42 0201 0975
1886.9 575.13 1.78 0.228 2.30 0.209 0.919 1.70 0.308 2.45 0.289  0.940
1890.1 576.10 1.72 0.253 2.30 0.177 0.702 1.65 0.324 2.44 0.249 0.768
1892.7 576.90 1.76 0.241 2.32 0.169 0.701 1.69 0.309 2.45 0236 0.766
1896.2 577.96 1.74 0.253 2.32 0.191 0.754 1.67 0.321 2.46 0.259  0.806
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from
Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried
Vol. Vol.
Depth  Depth |pry Bulk .. Particle Dry Bulk . Particle
{feet) (M) | Density TOTOSY pengity WAter  Relative | pongity  POTOSIY  popgity  WAter  Relative

3

Content Satn.
@em®) C™EM) grom?)

Content  gatn.

@em) C™M) (gem®)

cm3/cm3) cm3/cm3)

1899.4 578.94 1.73 0.253 2.32 0.172 0.679 1.66 0.326 2.46 0.245  0.751
1901.9  579.70 1.63 0.292 2.30 0214 0.731 1.56 0.358 244 0.280  0.780
19042 580.40 1.67 0.267 2.28 0.221 0.825 1.60 0.337 241 0.290  0.861
1908.1 581.59 1.77 0.232 230 0.164 0.706 1.68 0317 247 0249  0.785
1910.3 582.26 1.67 0.277 2.31 0.225 0.814 1.60 0.348 2.46 0297 0.852
19144 583.51 1.79 0.220 2.29 0.193 0.877 1.70 0.310 2.46 0.283 0912
1916.4 584.12 1.73 0.256 232 0.162 0.632 1.65 0.332 2.47 0238 0.717
1919.6  585.09 1.64 0.294 2.32 0.219 0.744 1.56 0.368 2.47 0292  0.795
1922.8 586.07 1.70 0.258 229 0219 0.848 1.63 0334 2.44 0295 0.883
1925.1 586.77 1.75 0.233 2.28 0214 0.918 1.67 0.314 2.44 0295 0939
1928.4 587.78 1.73 0.256 232 0.189 0.740 1.64 0.337 2.48 0271 0.803

1931.6  588.75 1.68 0.278 2.33 0.232 0.834 1.60 0.354 2.48 0.308  0.870
1934.6 589.67 1.80 0.220 2.30 0.195 0.885 1.71 0.302 2.46 0277 0916
1937.8 590.64 1.79 0.216 2.29 0.186 0.863 1.70 0.311 2.46 0281  0.905
1940.8 591.56 1.69 0.262 2.29 0.178 0.678 1.61 0.342 2.44 0258 0.754
19439 592.50 1.67 0.273 2.29 0.117 0.429 1.59 0.351 2.45 0.194  0.555
1946.7 593.35 1.68 0.265 2.29 0.202 0.760 1.60 0.346 245 0282 0.816

1950.5 594.51 1.67 0.274 229 0.215 0.786 1.59 0.353 2.45 0295 0.834
1952.8 595.21 1.67 0.269 2.29 0.163 0.606 1.59 0.350 245 0244  0.698
1956.8 596.43 1.73 0.233 2.25 0.179 0.766 1.64 0.320 241 0.266  0.830
1959.2  597.16 1.69 0.256 2.27 0.186 0.725 1.60 0.345 2.44 0275  0.796
1962.0 598.02 1.72 0.244 2.27 0.195 0.798 1.63 0333 244 0283 0.852
1965.1 59896 1.74 0.237 2.28 0.160 0.675 1.65 0.327 245 0.250 0.764
1968.1 599.88 1.71 0.245 2.26 0.198 0.807 1.61 0.342 2.45 0295 0.862
1970.7  600.67 1.69 0.254 227 0.200 0.788 1.60 0.344 2.45 0290 0.843
1973.7 601.58 1.79 0.214 2.27 0.167 0.780 1.69 0.307 2.44 0260  0.847
1976.6  602.47 1.75 0.231 2.28 0.184 0.795 1.66 0.321 2.45 0274 0853
1980.2 603.57 1.68 0.262 2.28 0.233 0.886 1.59 0352 2.46 0323 0915
1983.2 604.48 1.66 0.264 2.26 0.227 0.860 1.57 0.355 244 0318 0.896
1985.7 605.24 1.69 0.275 2.33 0.234 0.848 1.60 0.366 2.52 0.324  0.885
1988.4 606.06 1.63 0.277 226 0.258 0.930 1.54 0.364 243 0344 0947
1991.2 60692 1.65 0.266 2.25 0.219 0.822 1.56 0.354 242 0307 0.867
1994.7 607.99 1.68 0.250 224 0.228 0.911 1.58 0.346 242 0.324 0.936

1998.0 608.99 1.73 0.228 224 0.208 0.911 1.63 0.323 241 0303 0937
2000.9 609.87 1.68 0.254 224 0.237 0.936 1.58 0.345 242 0.329 0953
2004.2 610.88 1.61 0.279 2.24 0.264 0.945 1.52 0.370 242 0355  0.959

2007.5 611.89 1.76 0.212 2.24 0.192 0.906 1.67 0.303 2.40 0.284 0935
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from

Drill Hole USW SD-7 (Continued)

Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried

105C Oven-Dried

Depth Depth . Vol. - Vol.
(oo (m) | Dansty PO Donaity Welr et ol Porosty pLIL water - pelative
@om® ™™D (gom® 3 3 @em®) ©™C™) (gem®) 3 3
{em“/em®) (ecm“/em
2010.5 612.80 1.82 0.186 2.24 0.166 0.891 1.73 0.284 241 0.264 0929
2012.6 613.44 1.95 0.122 2.22 0.110 0.897 1.84 0.233 2.40 0.220 0.946
2016.1  614.51 2.01 0.098 2.23 0.083 0.853 1.90 0.213 241 0.199 0.933
2018.7 615.30 2.04 0.084 222 0.073 0.866 1.91 0206 241 0.195 0945
2022.1 61634 2.05 0.086 225 0.067 0.780 1.94 0.197 242 0.178  0.904
2025.2 617.28 2.10 0.059 2.23 0.051 0.863 1.97 0.180 241 0.172 0955
2027.5 617.98 2.08 0.065 222 0.055 0.852 1.96 0190 241 0.180  0.950
2030.5 618.90 2.04 0.079 222 0.066 0.843 1.91 0.206 2.41 0.194  0.940
20343 620.06 1.99 0.101 2.22 0.087 0.860 1.87 0.226 241 0.211 0.937
2037.3 62097 2.09 0.065 2.23 0.056 0.866 1.97 0.183 241 0.174 0953
2040.3 621.88 1.89 0.153 2.23 0.133 0.872 1.78 0260 241 0241 0.925
2042.6  622.58 1.89 0.147 2.21 0.132 0.897 1.77 0.261 2.40 0.246 0942
2045.7 623.53 1.99 0102 222 0.091 0.887 1.89 0200 237 0.188 0942
2048.7 624.44 1.96 0.117 2.22 0.119 1.017 1.86 0.215 2.37 0.217 1.009
20524 625.57 1.93 0.121 2.20 0.115 0.956 1.84 0.213 2.34 0208 0975
20544 626.18 2.02 0.102 225 0.089 0.872 1.93 0.191 2.38 0.178  0.932
2057.8 627.22 2.05 0.086 2.25 0.080 0.929 1.97 0.170 2.37 0.164 0964
2060.8 628.13 2.04 0.074 2.20 0.076 1.030 1.95 0.164 2.33 0.166 1.014
2063.6 - 628.99 1.94 0.124 222 0.113 0912 1.85 0.216 236 0.205 0.950
2066.4 629.84 1.92 0.135 2.22 0.133 0.984 1.82 0227 2.36 0.225 0.991
2070.0 630.94 1.99 0.105 2.22 0.100 0.952 1.89 0.199 2.36 0.193 0974
20753 63255 1.84 0.164 220 0.146 0.892 1.75 0250 234 0233 0.930
2076.4 632.89 1.98 0.104 221 0.090 0.870 1.89 0.194 2.34 0.181 0.930
20784  633.50 1.90 0.136  2.20 0.128 0.941 1.81 0.223 2.33 0215 0964
2081.6 63447 1.82 0172 220 0.171 0.994 1.73 0260 235 0259  0.996
2085.6 635.69 1.84 0.154 217 0.143 0.930 1.74 0.245 2.31 0234 0956
20874 636.24 1.79 0.184  2.19 0.176 0.957 1.70 0270 233 0262 0971
2090.6 637.22 1.77 0.201 221 0.195 0.967 1.68 0.288 2.36 0.282 0977
2093.6 638.13 1.72 0.209 2.18 0.183 0.877 1.64 0.291 232 0266 0912
2096.9 639.14 1.73 0214 220 0.202 0.944 1.64 0299 234 0.287 0.960
2100.8 640.32 1.71 0229 221 0.213 0.932 1.62 0314 236 0298 0950
2103.7 641.21 1.73 0209 219 0.188 0.903 1.65 0292 233 0272 0931
21054 641.73 1.75 0.208 2.20 0.190 0.917 1.66 0.295 2.35 0.278 0941
2108.5 642.67 1.76 0.204 2.22 0.174 0.854 1.67 0.300 2.38 0.270  0.900
2111.8 643.68 1.73 0.225 2.23 0.202 0.899 1.64 0.309 238 0.287  0.927
21147 644.56 1.77 0.196 220 0.176 0.897 1.68 0284 234 0.264  0.929
21177 645.48 1.79 0.185 2.20 0.163 0.880 1.70 0.272 2.34 0.250 0918
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from
Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; 1. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried
Depth  Depth |DryBulk , .~ Particle O ~ [oryBulk L Particle vO- _
{feet) (m) | Density Y Relative | pengity Y Density Relative

3

Density
3 Content Satn. cm3/em Content  gatn.
3 ( ) (glem3

em®) ™M) (grom®) o) ) (omPlom®)

21209 64645 1.71 0.231 2.23 0.220 0.952 1.63 0.316 2.38 0305 0.965
21238 647.33 1.68 0.220 2.15 0.163 0.740 1.59 0.304 2.29 0.247 0812
21265 648.16 1.77 0.182  2.16 0.155 0.852 1.68 0.274 2.31 0247 0902
2129.7 649.13 1.72 0.219 2.20 0.197 0.896 1.63 0.310 2.36 0287  0.926
2132.9 650.11 1.76 0.188 2.17 0.172 0.916 1.67 0.281 232 0265 0944
2136.0 651.05 1.77 0.189 2.18 0.179 0.944 1.67 0.285 2.34 0274 0963
21395 652.12 1.75 0.208 2.20 0.198 0.955 1.65 0.303 237 0293  0.969

(g/cm

21415 65273 1.63 0.261 2.21 0.216 0.826 1.54 0.347 2.36 0302  0.869
21449 653.77 1.81 0.186 223 0.173 0.930 1.72 0.279 2.38 0.266  0.953
2148.1 654.74 1.82 0.183 223 0.173 0.948 1.73 0.277 2.39 0.268  0.966
2151.1  655.66 1.83 0.179 222 0.160 0.897 1.73 0.272 2.38 0.254 0932
21539 656.51 1.82 0.180 222 0.172 0.955 1.73 0.275 2.38 0267 0.970
2157.0 65745 1.84 0.173 2.22 0.171 0.987 1.74 0.271 2.39 0269  0.992
2159.8 658.31 1.87 0.168 2.25 0.158 0.940 1.77 0.264 2.41 0254 0.962
2162.8 659.22 1.83 0.177 2.22 0.170 0.962 1.73 0.274 2.38 0.267 0975
2166.0 660.20 1.80 0.185 2.21 0.181 0.983 1.71 0.279 237 - 0276  0.988
21687 661.02 1.84 0.166 221 0.154 0.929 1.74 0.269 2.38 0.258  0.956

2171.8  661.97 1.86 0.179 2.26 0.167 0.931 1.76 0.270 242 0.258 0954
21748 662.88 1.71 0.229 222 0.219 0.955 1.62 0.316 237 0306  0.967
2178.0 663.85 1.57 0.326 2.33 0.330 1.013 1.50 0.391 2.47 0395 1.010
2181.2 664.83 2.02 0.213 2.57 0.171 0.804 2.00 0.233 2.61 0.191 0.821
21857 666.20 2.19 0.153 2.59 0.136 0.894 2.19 0.160 2.60 0.144  0.899
21869 666.57 2.14 0.167 2.57 0.158 0.943 2.13 0.175 2.58 0.165 0.945

21904 667.63 2.09 0.186 2.57 0.182 0.976 2.08 0.197 2.60 0.193 0977
2193.0 668.43 2.02 0.206 2.55 0.209 1.015 2.01 0.219 2.57 0222 1.014
2196.1  669.37 1.98 0.211 2.51 0.217 1.025 1.96 0.229 2.54 0235 1.023
2200.9 670.83 1.90 0.242 2.51 0.248 1.025 1.89 0.256 2.54 0262 1.023
2204.6 671.96 1.93 0.242 2.54 0.244 1.010 1.91 0.259 2.58 0262 1010
2208.2 673.06 1.63 0.302 2.34 0.401 1.330 1.62 0318 2.37 0418 1313

2211.0 67391 2.04 0.207 2.57 0.198 0.954 2.03 0219 2.60 0210  0.957
22139 674.80 2.14 0.169 2.58 0.188 1.108 2.13 0.183 2.60 0.201 1.100
2216.3  675.53 2.15 0.160 2.56 0.158 0.991 2.13 0.177 2.59 0.175  0.992
22202 676.72 2.19 0.140 2.55 0.132 0.944 2.17 0.157 2.58 0.149  0.950
22234 677.69 2.18 0.143 2.54 0.138 0.969 2.16 0.164 2.58 0.159  0.973

222577 67839 2.23 0.124 2.54 0.123 0.990 2.21 0.143 2.58 0.142 0991
2228.6 679.28 227 0.100 2.52 0.097 0.972 2.24 0.129 2.57 0.126 0978
2232.1 680.34 221 0.129 2.54 0.129 1.004 2.19 0.150 2.58 0.151 1.003
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from
Drill Hole USW SD-7 (Continued)

Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried
Depth  Depth |pryBulk . Particle “‘,':tLr o |pryBuk L Particle “‘,’;Lr _
(feety  (m) | pensity Y Density Relative | pensity Density Relative

3

Content Satn. Content Satn.
(gremd) ©M7CM) (gom

) (cmalcms) ) (cm3/cm3)

2235.1 681.26 2.24 0.121 2.55 0.110 0.906 2.22 0.142 2.59 0.131 0920
22379 682.11 2.27 0.108 2.54 0.101 0.940 2.25 0.129 2.58 0.122 0950
2241.0 683.06 2.29 0.101 2.55 0.098 0.969 227 0.119 2.58 0.116 0974
22429 683.64 2.24 0.120 2.54 0.116 0.967 222 0.141 2.58 0137 0972
22468 684.83 2.29 0.102 2.55 0.098 0.959 227 0.119 2.58 0.114 0965

3 3) (em~/cm™) (g,cms

(g/cm

2250.0 685.80 2.29 0.105 2.55 0.100 0.956 2.27 0.120 2.58 0.115 0962
22533 686.81 2.29 0.099 2.55 0.094 0.948 2.28 0.116 2.58 0.111  0.956
2255.8 687.57 2.29 0.099 2.54 0.094 0.955 2.27 0.117 2.57 0.112  0.962
22589 688.51 2.29 0.100 2.54 0.099 0.987 2.27 0.118 2.57 0.116  0.989
22614 689.28 229 0.102 2.54 0.099 0.969 2.27 0.115 2.57 0.112 0973

22649 690.34 231 0.092 2.54 0.099 1.079 2.30 0.104 2.56 0.111  1.070
2268.3 691.38 2.28 0.105 2.54 0.094 0.899 2.26 0.118 2.57 0.107 0.910
2271.1  692.23 2.31 0.093 2.55 0.091 0.975 2.30 0.105 2.57 0.103 0978
22736 692.99 233 0.083 2.54 0.080 0.959 232 0.094 2.56 0.090 0.564
2276.8 693.97 2.33 0.086 2.55 0.081 0.948 2.32 0.096 2.57 0.091 0954
2279.6  694.82 232 0.091 2.55 0.088 0.968 2.31 0.101 2.57 0.098  0.971
22825  695.71 2.35 0.080 2.55 0.074 0.928 2.34 0.090 2.57 0.084 0936
2286.1 696.80 2.27 0.108 2.55 0.103 0.951 2.26 0.122 2.57 0.116  0.956
2289.1 697.72 2.30 0.100 2.55 0.094 0.936 2.29 0.113 2.58 0.106  0.943
22923  698.69 2.31 0.098 2.56 0.093 0.945 2.30 0.111 2.58 0.105  0.951

22947 699.43 2.31 0.096 2.55 0.096 1.006 2.30 0.106 2.57 0.106  1.005
2297.5 700.28 2.30 0.099 2.55 0.098 0.989 2.29 0.109 2.57 0.108  0.990
2300.9 70131 2.32 0.088 2.54 0.089 1.014 2.31 0.100 2.56 0102  1.013

2303.6 702.14 2.30 0.096 2.55 0.090 0.941 2.29 0.107 2.57 0.101  0.947
2307.0 703.17 2.31 0.089 2.54 0.090 1.003 2.30 0.100 2.56 0.100  1.003
2309.3 703.88 2.32 0.085 2.54 0.082 0.963 2.32 0.094 2.55 0.090 0.967
2312.7 70491 2.29 0.095 2.53 0.089 0.938 2.28 0.105 2.55 0099 0.944
2316.1 70595 2.31 0.090 2.53 0.085 0.948 2.30 0.099 2.55 0.095 0.953
2318.7 706.74 2.30 0.090 2.53 0.084 0.934 230 0.099 2.55 0.093  0.941
23219 170772 2.31 0.090 2.53 0.086 0.959 2.30 0.100 2.55 0.096  0.963
232477 708.57 2.31 0.087 2.53 0.085 0.970 2.30 0.098 2.55 0.095 0973
2327.8 709.51 2.31 0.088 2.54 0.081 0.928 2.30 0.098 2.55 0.092 0936
2330.7 710.40 229 0.098 2.54 0.160 1.028 2.28 0.108 2.55 0.111 1.025
2333.9 71137 232 0.081 2.53 0.095 1.176 2.31 0.093 2.55 0.107  1.153
2337.8 71256 2.33 0.077 2.52 0.075 0.973 232 0.088 2.54 0.08 0.976
2339.8 713.17 2.35 0.069 2.52 0.064 0.935 2.34 0.078 2.54 0.074 0943
23424 71396 2.36 0.065 2.52 0.062 0.941 2.35 0.075 2.54 0.071 0948
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from
Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried

Depth  Depth |Dry Bulk Particle 0" Dry Bulk Particle 0"

(feet) (m) | Density Porosity Density cWater Relative | pensity Porosity Density Water  Relative
ontent Satn. 3. (emoremd) 3 Content  gatn.
{g/cm”) (g/cm

) (cm3/cm3) ) (cmslcm3)

23459 715.03 2.40 0.056 2.55 0.053 0.954 2.40 0.064 2.56 0.061  0.960
2348.6 715.85 2.35 0.079 2.55 0.087 1.105 2.33 0.090 2.56 0.098 1.092
2352.1 71692 2.40 0.058 2.55 0.057 0.982 2.39 0.070 2.57 0.069 0.985
2355.0 717.80 2.40 0.059 2.55 0.056 0.953 2.39 0.067 2.56 0.064 0.959
2358.0 718.72 2.33 0.086 2.55 0.105 1.227 232 0.098 2.57 0.117 1.199
2360.8 719.57 2.40 0.059 2.55 0.056 0.938 2.39 0.067 2.56 0.063  0.944
2363.4 72036 2.37 0.073 2.55 0.067 0.916 2.36 0.081 2.57 0.075 0925
2365.9 721.13 2.38 0.063 2.55 0.062 0.980 2.38 0.071 2.56 0.06% 0982
23713 72277 2.39 0.064 2.56 0.060 0.936 2.39 0.072 2.57 0.068 0.943
23750 72390 2.33 0.087 2.56 0.095 1.094 232 0.100 2.58 0.108 1.081
2379.9 725.39 2.37 0.072 2.55 0.066 0.911 2.36 0.082 2.57 0.075 0922
2369.3 722.16 242 0.052 2.55 0.051 0.984 2.41 0.059 2.56 0.059 0.986
2382.0 726.03 2.36 0.071 2.54 0.067 0.950 2.35 0.081 2.56 0.077  0.956
2384.7 726.86 2.37 0.069 2.54 0.067 0.965 2.36 0.080 2.56 0.077 0970
23877 72177 1.97 0.255 2.65 0.229 0.897 1.95 0.278 2.70 0.252  0.906
23909 728.75 2.40 0.055 2.54 0.050 0.912 2.39 0.065 2.55 0.061 0926
23935 729.54 2.39 0.058 2.54 0.077 1.336 2.38 0.070 2.56 0.089 1.279
2396.7 73051 2.38 0.068 2.55 0.058 0.853 2.37 0.079 2.57 0.069 0.872
2399.6 73140 227 0.116 2.56 0.093 0.795 2.25 0.132 2.59 0.108  0.820
2402.6 732.31 2.38 0.066 2.55 0.059 0.894 2.37 0.077 2.57 0.070  0.909
2406.3 733.44 2.36 0.083 2.58 0.082 0.989 235 0.094 2.60 0.093  0.990
24089 734.23 2.37 0.080 2.58 0.074 0.925 2.36 0.091 2.60 0.085 0934
24125 73533 2.40 0.068 2.57 0.065 0.958 2.38 0.079 2.59 0076 0964
24144 73591 2.41 0.059 2.56 0.057 0.962 2.40 0.068 2.58 0.065 0967
24185 737.16 2.25 0.106 2.52 0.122 1.151 2.23 0.133 2.57 0.149  1.120
2420.8 737.86 2.38 0.063 2.54 0.060 0.958 2.37 0.073 2.56 0.070  0.963
24240 738.84 2.34 0.080 2.55 0.073 0.919 2.33 0.091 2.56 0.084 0.929
2426.8 739.69 2.33 0.089 2.56 0.076 0.853 232 0.100 257 0.087 0.869
24299 740.63 2.30 0.108 2.58 0.101 0.931 2.29 0.119 2.60 0.111 0937
24321  741.30 229 0.120 2.60 0.118 0.982 2.28 0.130 2.62 0.128  0.983
2435.6 74237 2.28 0.125 2.60 0.122 0.973 2.27 0.135 2.62 0.132 0975
2439.2 74347 2,17 0.201 271 0.197 0.984 2.16 0.211 2.74 0.208 0.985
24435 74478 2.09 0.200 2.61 0.196 0.980 2.07 0.212 2.63 0.208 0981
24485 746.30 2.24 0.129 2.58 0.128 0.988 2.23 0.140 2.60 0.139 0989
24504  746.88 2.19 0.148 2.57 0.155 1.045 2.18 0.159 2.59 0.166  1.041
2453.1 74771 2.23 0.133 2.58 0.145 1.090 222 0.143 2.60 0.155 1.083
24559 748.56 2.17 0.157 2.57 0.157 1.002 2.16 0.169 2.60 0.169 1.001

@em® ™M) (gom®

Appendix G: Laboratory Material Properties 157




Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from
Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried

Depth  Depth i Vol. . Vol.
Geo) () |Dansiy PO Danaity Conent Clative Danaity POrOSHY D Contont Nolative

( g/cms) (em”/em®) ( glcms) 3 3 (g/cm3) (cm“/cm®) ( glcm3) 3. 3 .

{cm®/em®) (cm“/cm”)
2459.5 749.66 2.19 0.146 2.57 0.140 0.965 2.18 0.157 2.59 0.152 0.968
2463.1 750.75 2.18 0.147 2.56 0.143 0.971 2.17 0.160 2.58 0.155 0973
2465.3 751.42 2.13 0.173 2.57 0.170 0.981 2.11 0.193 2.61 0.190 0983
2468.1 752.28 2.10 0.177 2.55 0.159 0.901 2.09 0.189 2.58 0.172  0.908
2471.3  753.25 2.12 0.165 2.54 0.182 1.099 2.10 0.178 2.56 0.194  1.093
24742 754.14 2.07 0.187 2.54 0.171 0.914 2.06 0.199 2.56 0.183 0.919
2477.3 755.08 2.03 0.192 2.51 0.195 '1.014 2.01 0.204 2.53 0207 1.013
2480.7 756.12 2.00 0.119 227 0.121 1.010 1.96 0.160 2.33 0.161 1.008
2484.6 757.31 1.95 0.209 2.46 0.207 0.988 1.92 0.237 2.51 0235 0.990
2500.9 762.27 1.92 0.171 2.32 0.169 0.991 1.87 0.228 2.42 0.226 0993
2501.9 762.58 2.02 0.133 2.32 0.142 1.068 1.97 0.181 2.40 0.190 1.050
2505.8 763.77 2.00 0.137 2.32 0.153 1.116 1.95 0.190 2.41 0206 1.084
2507.7 764.35 1.95 0.158 2.32 0.158 0.999 1.90 0.209 2.40 0209  0.999
2511.8  765.60 2.02 0.128 2.31 0.127 0.992 1.98 0.169 2.38 0.168  0.994
2515.0 766.57 1.90 0.178 2.31 0.181 1.020 1.84 0.240 242 0243 1.015
2516.9 767.15 1.77 0.235 2.31 0.244 1.040 1.71 0.295 243 0305 1.032
2520.7 768.31 1.87 0.189 2.31 0.194 1.027 1.81 0.252 242 0.257  1.020
25233  769.10 1.92 0.154 227 0.162 1.054 1.87 0.207 2.36 0215 1.040
25259 769.89 1.94 0.149 2.28 0.151 1.012 1.89 0.202 2.37 0.204 1.009
2529.1 770.87 1.91 0.158 2.27 0.157 0.993 1.86 0.208 2.35 0.207 0995
2531.8 771.69 1.92 0.152 2.26 0.156 1.026 1.86 0.213 2.36 0.217 1.019
25348 177261 1.99 0.123 2.27 0.141 1.143 1.93 0.181 2.36 0.198 1.098
25375 77343 1.98 0.125 2.26 0.132 1.058 1.92 0.187 2.36 0.194  1.039
25414 774.62 1.93 0.145 2.26 0.174 1.204 1.87 0.205 2.36 0235 1144
25440 77541 1.91 0.147 2.24 0.147 1.001 1.86 0.199 232 0.199  1.000
25472  776.39 1.88 0.170 2.26 0.196 1.150 1.81 0.235 2.37 0.261 1.109
2549.6 777.12 1.91 0.144 223 0.148 1.025 1.85 0.207 2.33 0210 1.017
2552.8 778.09 1.93 0.136 2.23 0.142 1.047 1.88 0.187 2.31 0.194 1.034
25562 779.13 1.79 0.225 2.31 0.230 1.018 1.74 0.272 2.40 0276 1.015
2558.8 779.92 1.76 0219 2.25 0.216 0.989 1.70 0.272 2.34 0270  0.991
2561.8 780.84 1.68 0.271 2.30 0.278 1.026 1.63 0.316 2.38 0.323 1.022
2566.6 782.30 1.70 0.259 2.30 0.256 0.990 1.66 0.301 2.38 0299 0991
2567.9 782.70 1.68 0.274 2.32 0.275 1.004 1.64 0.320 2.40 0.321 1.004
2570.7 783.55 1.76 0.233 2.30 0.230 0.986 1.72 0.276 2.37 0272 0.988
2573.8 784.49 1.79 0.207 2.25 0.202 0.977 1.73 0.259 2.34 0254 0.982
2576.4 785.29 1.79 0.209 2.26 0.209 0.999 1.74 0.255 2.34 0255 0.999
2579.9 786.35 1.95 0.151 2.30 0.151 1.001 1.91 0.195 2.37 0.196 1.001
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Table G-1: Laboratory Material Properties and Water Contents Measured on Core Samples from
Drill Hole USW SD-7 (Continued)

[Measurements reported by Lorraine E. Flint, U.S. Geological Survey Hydrologic Research Facility: DTN No.
GS951108312231.009; J. Curtis and C. Vidano, analysts]

Relative Humidity Oven-Dried 105C Oven-Dried

. Vol. Vol
Depth  Depth |Dry Bulk .. Particle Dry Bulk .. Particle .
(feet) (m) |Density ForositY Density Water  Relative Density O pensity Water  Relative

2583.0 787.30 1.99 0.137 2.31 0.135 0.988 1.95 0.179 2.37 0.178  0.991
2586.3 788.30 1.96 0.169 2.36 0.169 1.000 1.92 0.206 2.42 0.206  1.000
2589.0 789.13 1.92 0.181 2.35 0.177 0.977 1.88 0.223 2.42 0219 0981
2591.8 789.98 1.93 0.200 241 0.198 0.992 1.89 0.238 2.48 0.236  0.993
2594.9 79093 2.06 0.124 2.35 0.123 0.986 2.02 0.163 241 0.161  0.989
2598.0 791.87 1.86 0.190 233 0.196 1.033 1.84 0.240 242 0247  1.026
2601.2  792.85 1.73 0271 2.37 0.284 1.047 1.68 0.313 2.45 0326 1.041
2604.0 793.70 1.76 0.252 235 0.247 0.982 1.72 0294 243 0.289  0.984
2606.0 794.31 1.70 0.275 2.34 0.337 1.227 1.65 0.329 245 0391 1189
26114 795.96 1.70 0.275 2.34 0.272 0.989 1.65 0.321 2.43 0318  0.990
26133 796.53 1.86 0.198 232 0.195 0.984 1.82 0.239 2.39 0.236  0.987
26159 797.33 1.86 0.193 2.30 0.188 0.978 1.81 0.239 2.38 0.234 0982
2618.6 798.15 1.86 0.197 231 0.195 0.990 1.82 0.235 2.38 0.233  0.991
26222 799.25 1.93 0166  2.31 0.163 0.980 1.88 0.212 2.38 0.209 0.984
2625.1 800.13 1.70 0.270 2.32 0.268 0.994 1.65 0.316 241 0315 0995
2628.0 801.01 1.62 0309 234 0.310 1.004 1.57 0.359 2.45 0.360  1.003
2631.0 801.93 1.53 0.341 2.33 0.335 0.983 1.48 0.393 2.44 0.387  0.985
26338 802.78 1.58 0.319 232 0.317 0.991 1.54 0.365 2.42 0362  0.992
2637.1 803.79 1.62 0.307 234 0.316 1.030 1.58 0.351 243 0.361 1.026
2639.5 804.52 1.61 0.307 2.33 0.350 1.141 1.57 0.353 242 03%  1.123
2643.5 805.74 1.54 0.338 2.32 0.351 1.038 1.49 0.387 243 0400 1.033
2646.7 806.71 1.70 0.266 2.31 0.263 0.987 1.64 0.317 241 0314 0.989
2648.6 807.29 L.75 0.248 2.33 0.246 0.991 1.71 0.292 2.41 0290 0.993
2652.0 808.33 1.60 0.323 2.36 0.329 1.018 1.55 0.367 245 0.373 1.015
26553 809.34 1.55 0.333 2.33 0.339 1.020 1.51 0.380 243 0.387 1.017
2658.0 810.16 1.58 0.325 2.35 0.330 1.015 1.54 0.373 245 0377 1.013
2660.7 810.98 1.52 0.359 2.37 0.354 0.986 1.48 0.401 2.46 0.396  0.987
2663.7 811.90 1.55 0343 237 0.341 0.994 151 0.391 247 0.389  0.995
26667 81281 1.43 0.417 2.45 0416 0.997 1.40 0.442 2.51 0440 0997
2670.0 813.82 1.56 0.343 2.37 0.344 1.003 1.51 0.385 2.46 0386  1.003
2673.0 814.73 1.67 0.298 2.38 0.302 1.014 l.o4 0.332 2.45 0336  1.013

(g/cm

—+

Negative values for RH-dried volumetric water content or relative saturation indicate that the sample actually adsorbed water
during the humidification process at 65-percent RH. This may indicate either that the sample was exposed to the dry Nevada
atmosphere for too long a period before being sealed in its can or that the mineral assemblage(s) are actually undersaturated with
respect to structural water at these test conditions. These saturation values have been set to zero in illustrations in this report.
Saturation values greater than 1.0 have been set equal to 1.0 in the illustrations.
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Table G-2: Porosity and Saturated Hydraulic
Conductivity Values Measured on Core Samples
From Drill Hole USW SD-7

[Measurements reported by L. E. Flint, U.S. Geological Survey
Hydrologic Research Facility, DTN No. 123456789012.123. Ksat
— saturated hydraulic conductivity; nf — no flow]

Depth Depth Porosity Ksat

(feet) (m) (cm®cmd) (m/sec)
128.9 39.29 0.060 nf'
176.8 53.89 0.079 1.60E-11
206.6 62.97 0.047 nf
230.1 70.13 0.063 nf
281.5 85.80 0.071 3.03E-11
287.6 87.66 0.097 3.30E-11
302.8 92.29 0.089 1.40E-10
312.1 95.13 0.193 5.40E-11
330.1 100.61 0.373 1.10E-05
332.9 101.47 0.308 7.30E-06
392.7 119.69 0.072 1.80E-09
399.1 121.65 0.141 2.30E-09
4253 129.63 0.187 3.90E-09
446.6 136.12 0.138 9.30E-09
470.8 143.50 0.176 7.60E-10
496.5 151.33 0.162 2.30E-10

1396.4 425.62 0.232 1.60E-05
1410.3 429.86 0.231 3.30E-06
1422.0 43343 0.257 7.10E-06
1428.0 435.25 0.227 2.80E-09
1595.5 486.31 0.118 nf
1617.8 493.11 0.128 2.10E-10
1626.3 495.70 0.192 1.80E-11
1634.7 498.26 0.162 nf
1661.1 506.30 0.324 4.20E-12
1829.2 557.54 0.079 2.60E-11
1844.6 562.23 0.186 1.40E-09
1878.1 572.44 0.238 2.03E-09
1890.1 576.10 0.192 nf
21539 656.51 0.148 nf
2193.0 668.43 0.218 3.90E-10
2213.9 674.80 0.160 6.90E-11
2237.9 682.11 0.106 nf
2363.4 720.36 0.058 8.70E-11
2507.7 764.35 0.058 nf
2561.8 780.84 0.058 nf
2586.3 788.30 0.152 nf
2606.0 794.31 0.241 1.70E-10
2666.7 812.81 0.394 4.60E-09

T “no flow” samples have been set arbitrarily to a value of
14 . . . . .
1x10™ " for display in illustrations in this report.
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Appendix H: X-Ray Diffraction Mineralogic Data
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Table H-1: X-Ray Diffraction Data for the Vitric-to-Zeolitic Transition Underlying the Topopah
Spring Tuff
[All values from DTN No. LASC831321DQ96001. Information provided by David T. Vaniman, Los Alamos National Laboratory.
Intervals containing significant (more than 10 percent) zeolite or smectite are shaded. Note: original error estimates omitted]

?fiztt;‘ Smectite ?illlcTitZ- Moitr: en- t?al;nat-e ;;::1; (t::.:itt:- Opal-CT Quartz Feld- 1ass Mica Other
11333 5 -- - - 1 20 - 18 53 - trace trace'
1156.7 7 - - - - 16 - 23 50 — trace trace'
1161.5 4 - - - 1 10 - 30 53 - trace trace!
1165.0 6 - - - - 18 - 24 52 -~ trace trace’
1169.9 6 - - - - 1 - 29 51 — trace trace’
1175.1 6 - - - - 16 - 25 51 - trace trace!
1179.5 5 - - 1 - 18 - 21 51 -~ trace trace’
1181.6 7 - - 1 2 17 - 20 49 — trace trace'
11870 59 - “ s - = .
1911 19 38 - s - 25 7 — trace
1193.4 6 - - - - - 21 1 15 57 trace -
1201.7 1 - - - - - 17 1 14 67 trace -
12135 1 - - - - - 17 1 12 69 trace -
1230.7 1 - - - - - 12 2 9 76 trace -
1245.5 trace - -- - - -- 10 1 9 80 trace -
1260.2 trace -- - -- - - 9 1 7 83 trace --
1278.6 1 - - - - - 18 1 13 67 trace -
1298.8 2 - - - - - 14 1 12 71 trace  trace®
1321.5 trace - - -- - - 4 2 7 87 trace --
1338.5 trace - - -- -- - 2 1 3 94 trace -
1350.5 trace - - - - - 16 5 20 52 trace 6
1391.0 1 - - - - - 2 3 6 85 trace 3ft
1421.1 trace -- - - - -- 2 1 6 91 -- --
1444.6 trace - - - - - 2 2 6 9  -- -
14574 trace 1 -- trace  -- -- 3 3 7 86 trace --
1471.5 trace 1 -- trace  -- -- 2 4 8 85 trace --

3 4

5 4

5 7

19 5

e 4 §
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Table H-1: X-Ray Diffraction Data for the Vitric-to-Zeolitic Transition Underlying the Topopah
Spring Tuff

[All values from DTN No. LASC831321DQ96001. Information provided by David T. Vaniman, Los Alamos National Laboratory.
Intervals containing significant (more than 10 percent) zeolite or smectite are shaded. Note: original error estimates omitted]

Depth .. Clinop- Morden- Cha- Trid- Cristo- Feld- .
(feet) Smectite tilolite ite bazite ymite balite Opal-CT Quartz spar Glass Mica Other

62

1647.7 1 4

1666.6 2 - -- -- 1 7 -- 30 55 -- trace
1688.2 2 -- - - 3 2 - 33 56 -- trace
1718.7 2 -- -- -- 5 2 -- 32 55 -- trace
1741.0 1 - -- -- 6 3 - 28 57 -- trace
1765.9 1 - -- -- 2 7 - 29 59 -- trace
1787.1 1 - - -- - 15 -- 25 58 -- trace
1796.7 2 -- - - - 16 -- 19 61 -- trace
1824.6 2 -- - -- -- 26 - 12 57 -- trace
1843.4 3

2180.0 1 - ~ - - 5 — 34 56 — 1 1

2201.7 1 - - - - 19 - 18 62 - U
2225.3 2 - - - - 19 - 18 59 - 1 1t
¥ Hematite
¥ Homnblende
1 Calcite
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