

CONF-9608119--4

To be submitted to the International Conference on
Strongly Correlated Electron Systems (SCES 96),
August 19-22, Zürich, Switzerland. Proceedings
published by Physica B.

**Correlation Switching Between 3x1 and 6x1 Surface Reconstructions on
Si(111) with Submonolayer Ag Adsorption**

K. Kempa and D. A. Broido
Boston College
Chestnut Hill, MA

H. H. Weitering
The University of Tennessee
Knoxville, TN
and
Oak Ridge National Laboratory
Oak Ridge, TN

RECEIVED
SEP 09 1996
OSTI

"The submitted manuscript has been
authored by a contractor of the U.S.
Government under contract No. DE-
AC05-96OR22464. Accordingly, the
U.S. Government retains a nonexclusive,
royalty-free license to publish or
reproduce the published form of this
contribution, or allow others to do so,
for U.S. Government purposes."

MASTER

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
managed by
LOCKHEED MARTIN ENERGY RESEARCH CORPORATION
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-96OR22464

✓
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

July 1996

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Date: 6/28/1996

Title: Correlational switching between 3x1 and 6x1 surface reconstructions on Si(111) with submonolayer Ag adsorption.

Authors: K. Kempa ^a, D.A. Broido ^a, and H.H. Weitering ^b

Addresses:

^a Department of Physics, Boston College, Chestnut Hill, MA 02167-3811

^b Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996, USA, and Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Abstract:

Electron correlations are strongly enhanced in low dimensional systems. Taking correlations as the dominant mechanism, we provide an explanation of the recently observed electrostatically enforced structural phase transition (3x1 to 6x1) on a Si(111) surface with sub-monolayer Ag adsorption.

Key Words: silicon, surface reconstruction, correlations, ultrafast computing

Postal Address: K. Kempa, Department of Physics, Boston College, Chestnut Hill, MA 02167-3811, USA

fax: 617-552-8478

e-mail: kempa@bcvms.bc.edu

Main Text:

Submonolayer adsorption of monovalent metal atoms leads to a 3x1 reconstruction of the Si(111) surface [1]. A model which accounts well for most of the experimental data was proposed by Weitering and coworkers [2]. In this model, five-fold Si rings form quasi-one dimensional π -bonded Si chains along the [110] direction, separated by channels which can accommodate up to 1/3 monolayer of atoms. In order to account for the large band gap of this surface, Weitering et al suggested that the π -bonded Si chains undergo a Peierls-like distortion, resulting in alternating single-double bonds along the chain direction, similar to the bond order wave in polyacetylene. Fig.1a shows the outermost layer of the Si(111)3x1-metal surface according to this model.

Recently, Carpinelli and Weitering observed in STM images an intriguing "switch" of the Si(111)-Ag surface from 3x1 into 6x1 reconstruction [1], which was caused, apparently, by the STM tip-surface interaction. In this scenario, the STM tip causes a "flip" of the dimerized chain such that each double bond is shifted by one half period along the chain. The dynamics of the "switch" most likely involves the propagation of a soliton [1]. Fig. 2a shows the Si surface of Fig.1a after such "switch" has occurred in the middle chain. The most intriguing fact is that apparently a *long-range correlation* exists, which aligns the double bonds in neighboring chains. This results in doubling of the surface unit cell in the [100] direction, leading to long-range Si(111)6x1-Ag reconstruction.

In order to explain this fact that the neighboring chains, which are $\sim 10\text{\AA}$ apart, "communicate", we attempt an approach to the problem that emphasizes the correlational effects, which are expected to be crucial in this system [3,4]. We consider a classical model that includes only the π electrons that undergo a "switch" between the bonds. These electrons are allowed to collectively jump between two equivalent potential minima located at either side of the bond sites. Coulomb interactions between electrons in different chains are fully taken into account. The effect of the metal atoms depends on the configuration of their valence electrons. For alkali metals, no "active" electrons are assumed to exist at the metal sites since alkali metal atoms are known to donate their valence electrons to the Si bond in the second layer [5]. In contrast, we model the Ag atoms as having an extra electron charge "resonating" at the core. This is typical for transition metal atoms and originates from the centrifugal barrier for nonzero angular momentum in the APW equation for the radial part of the wave function (s-d hybridization)[6]. A simple double well potential can simulate the off-center confinement for such a resonating electron. We assume such double wells at each of the Ag sites.

In order to investigate the stability of the 6x1 phase, we have performed a classical Monte Carlo calculation that simulates an annealing process [7], in which, as the

temperature is lowered, electrons have an increasing tendency to move in directions that lower the total energy of the system. For the Si(111)-Alkali case, we find that the 3x1 reconstruction (shown in Fig.1b) has the lowest total energy per electron. The 6x1 reconstruction represents a local minimum in the total energy that is close to, but higher than that of the 3x1 reconstruction. For example, for a 20x20 array of Si electrons, the energy per electron in the 6x1 reconstruction is higher than that in the 3x1 reconstruction by only $E=0.01$ eV.

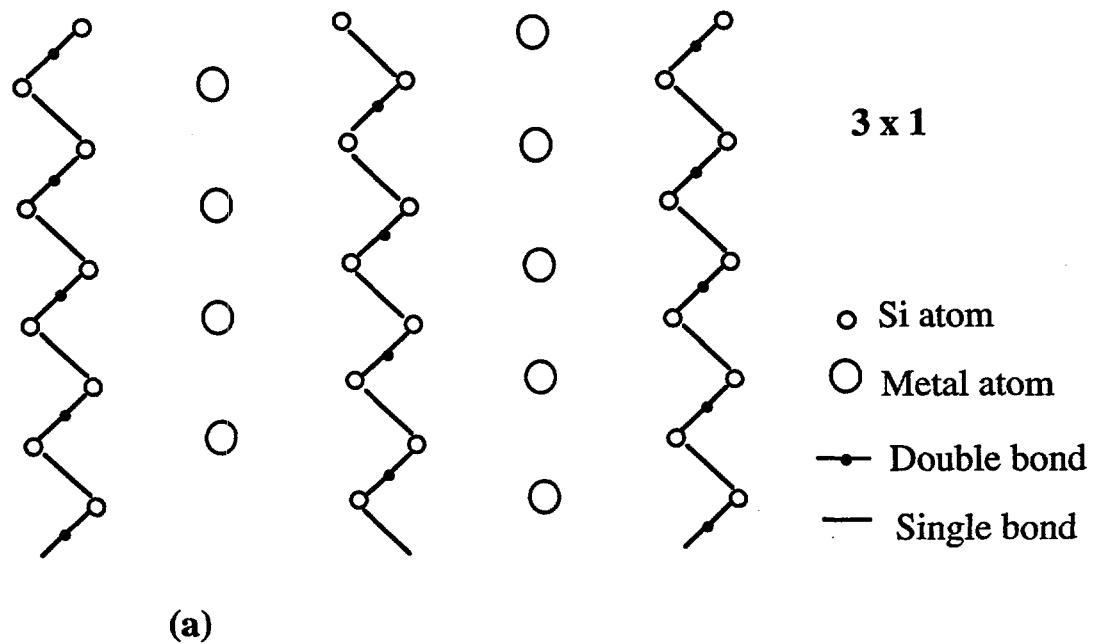
For the Si(111)-Ag case, when we assume only a single electron charge associated with each Ag atom, the 6x1 reconstruction (Fig.2b) has slightly lower total energy than the 3x1 reconstruction. For the 20x20 array (now 400 Si electrons and 400 Ag electrons) the 6x1 configuration has energy per electron that is about 0.01 eV lower than that for the 3x1 case. It should be noted that this energy difference increases with increasing charge at the Ag sites.

The 3x1 and 6x1 reconstructions can, in principle, coexist at room temperature, since the small difference in total energy could be accommodated by edge, or impurity pinning. Such a coexistence of these phases has indeed been observed [1]. Also, the energy difference between the two phases is small enough that a "switch" between the phases can be induced by a biased electrode (e.g. by STM tip, as demonstrated in Ref.[1]). In principle, other metal atoms (with $l\neq 0$ for the core resonance) should also lead to 6x1 phase having lower energy.

An interesting application could be envisioned here. The bi-stability of the chains in both 3x1 and 6x1 phases could be utilized, in principle, in ultrafast computing. Imagine a set of surface domains, say $100\text{\AA} \times 100\text{\AA}$, with 3x1 (or 6x1) phases. One could identify by electrostatic means (like in STM) both states of "polarization" of the dimerized chains in each domain. Also, one could "switch" electrostatically (like in STM) the states of each domain, and thereby change the information content of such an atomic-sized memory. Such switching should be very fast (of the order of the phonon speed), operate at room

temperature, and the compatibility with the Si technology might allow for a fabrication of "on-chip" electrodes capable of domain switching.

In summary, we have presented a classical model of the 3x1 and 6x1 reconstructions on Si(111)-metal surface. Using a classical Monte Carlo electron annealing simulation we have shown that the 3x1 phase is most stable for the alkali metal atoms. For the Si(111)-Ag, the 6x1 reconstruction has a slightly lower energy than the 3x1 phase. In all cases, however, both phases are found to be closely spaced, stable minima of the total energy, and therefore can coexist at room temperature. These phases can be switched by electrostatic interaction with an electrode (e.g. STM tip), or by near room temperature thermal processing (100 to 200°C). The qualitative agreement of our model with experiment suggests that long-range electron correlations play a dominant role in the 3x1 and 6x1 reconstructions.


References:

1. J.M. Carpinelli, H.H. Weitering, *Surf.Sci.* 331-333,1015(1995).
2. H.H. Weitering, N.J. DiNardo, R. Perez-Sandoz, J. Chen and E.J. Mele, *Phys. Rev.* B49, 16837(1994).
3. S. Suhai, *Phys. Rev.* B52,1674(1995).
4. G. Koenig and G. Stollhoff, *Phys. Rev. Lett.* 65, 1239 (1990).
5. S.C. Erwin, *Phys. Rev. Lett.* 75,1973 (1995)
6. N.E. Christensen, *Phys. Stat. Sol.* 31, 635 (1969)
7. F. Bolton, Ph.D Thesis, 1994.

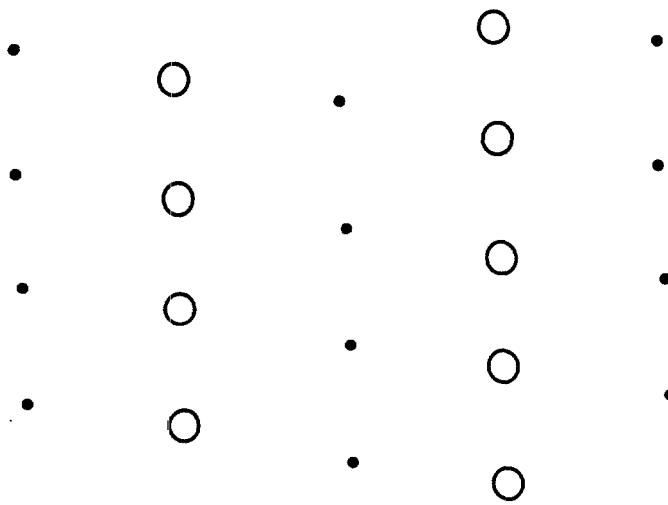
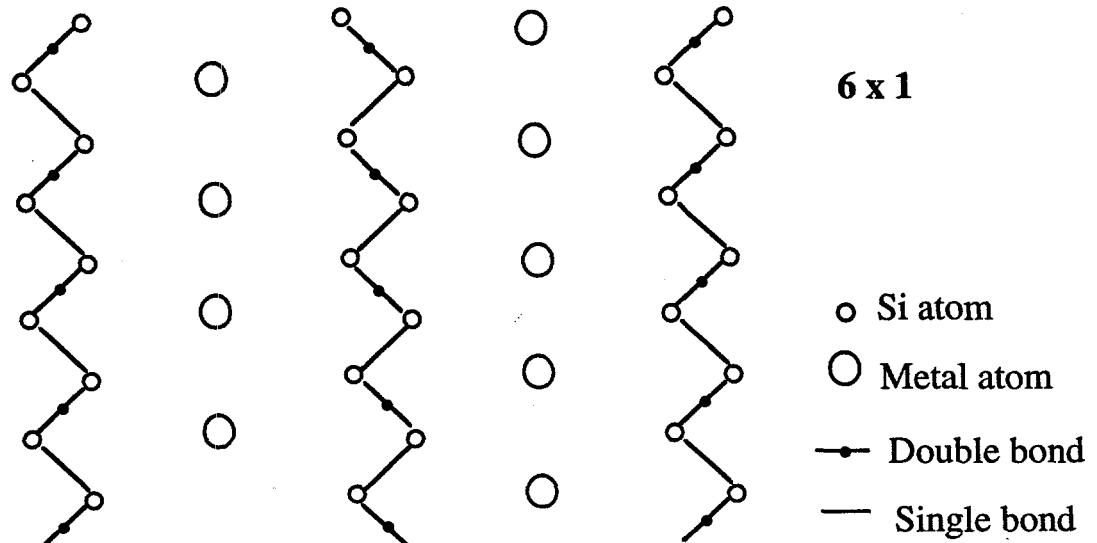
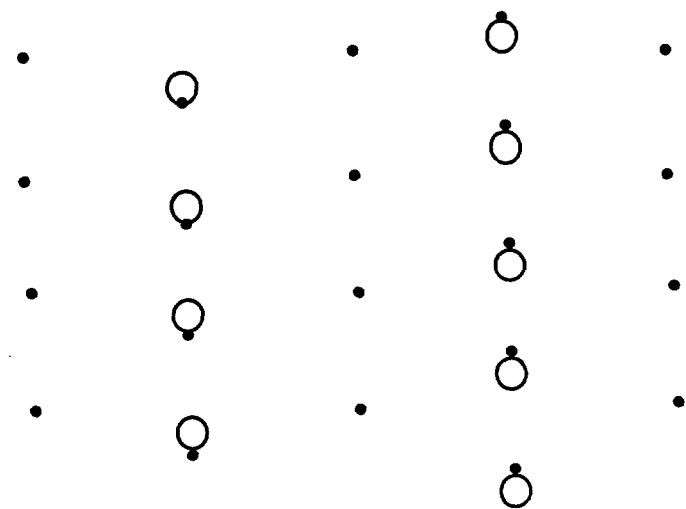

Figure Captions:

Fig.1: Top layer of Si(111) in 3x1 phase of the metal induced reconstruction: a) the model proposed in Ref.[2], b) the corresponding classical model for which the Monte Carlo simulations were performed.


Fig.2: Top layer of Si(111) in 6x1 phase of the metal induced reconstruction: a) the model proposed in Ref.[2], b) the corresponding classical model for which the Monte Carlo simulations were performed.


(a)

(b)

(a)

(b)

Acknowledgements

HHW is sponsored by the Petroleum Research Fund, administered by the American Chemical Society. The Oak Ridge National Laboratory is funded by the Division of Materials Research, United States Department of Energy under contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corporation.