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Sign Change of the Flux Flow Hall Effect in HTSC
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 Landau [nstitute for Theoretical Physics, 117950 Mascow. Russia
® Theoretische Physik, ETH-Honggerberg, 3093 Zirich, Switzerland
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A novel mechanism for the sign change of the Hall effect
in the flux flow region is proposed. The difference én be-
tween the electron density at the center of the vortex core
and that far outside the vortex causes the additional con-
tribution to the Hall conductivity Sozy = —dnec/B. This
contribution can be larger than the conventional one in the
dirty case A(T)r < 1. If the electron density inside the core
exceeds the electron density far outside, a double sign change
may occur as a function of temperature. '
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The sign change of the Hall effect in the mixed state
of the high temperature superconductors (HTSC) is
the most puzzling and controversal phenomenon in the
physics of magnetic properties of these materials {1}. In
spite of the numerous attemps to explain this anomaly
even the origin of the sign reversal in the Hall resistivity
remains unclear [1]. The sign change of the Hall resistiv-
ity had also been observed in the conventional supercon-
ductors and thus is not a pecularity of the HTSC [1,2].
Comparing experimental data for different materials, Ha-
gen et al. {1] argued that the sign change is an intrinsic

property of the vortex motion, and moreover that the.

sign reversal occurs in the range of parameters where the
transport mean free path ! becomes of the order of the
vortex core size &.

In the present paper we propose an explanation of the
sign reversal in the Hall resistivity . We show that the
sign change may follow from the difference dn between
the electron density at the center of the vortex core and
the density far outside the core. '

In order to describe the Hall effect one has to find a
transverse force experienced by the vortex moving with
the velocity vz under the applied transport current j.
There are two contributions to the transverse force. The
first one arises from the nondissipative momentum trans-
fer from the moving vortex to infinity. This contribution
consists of the Magnus and lordanskii {3] forces. The
second contribution stems from the momentum transfer
from the vortex to the normal excitations in the vortex
core. The subsequent absorption of this transfered mo-
mentum by the thermal bath due to scattering of the
normal excitations leads to dissipation and the longitu-
dinal Bardeen - Stephen friction force.

In order to understand both contributions let us derive
the dynamic term in the adiabatic action for a moving
vortex. The effective action for a superconductor should
depend on the phase of the order parameter x in the

following gauge invariant combinations: S = S(Vyx —
2eA fhec, Ox /0t + 2ed/hc), where A and ¢ are the vector
and scalar potentials, tespectively. By variation of the

action with respect to the phase one gets the ‘current
conservation law:

8S h_. 8 §§
ox(r,t) — et e sox /ot 0. ()

where we use the definition of the electric current den-
sity j = ¢§5/6A(r,t). Because of the continuity equation
Vj/e+0n/0t = 0 (n is the particle density) for the parti-
cle current, we immediately see that the effective action
has to contain the following topological term:

ndx - : .
S = h/dth2Ta—t—. | 2)
The factor 1/2 is due to pairing, and is absent for the
superfluid Bose system. This topological term is irrel-
evant if n = const and x is a single valued function
but in the presence of vortices it is just the term in
action which determines their dynamics. Let us con-
sider for simplicity the two dimensional case. Express-
ing the phase in the presence of a vortex as a sum
of a singular O(r — Rz(¢)) = arg(r — Rz(t)), (Rc(®)
is the vortex line position) and a regular contribution,

- x = O(r — Ri(t))+x-(r,t), and taking only the singular

contribution into account one can rewrite the topological
term in the action as

S = -Z—/d'“’rdth@RL = /dta(RL)VL' @)

The quantity a(R;) = % [d%rn(r —~ RL)VO(r — Ry)
has the meaning of the ‘vector potential’ of a fake con-
stant magnetic field. To see this, one calculate

Vxa= %f nVOdl = 7h(ne — na), {4)

where we replaced the surface integral by the two contour
integrals at infinity and around r = Ry, with ne and ng
being the particle densities far outside the vortex core
and on the core axis respectively. This term in action
describes a particle (the vortex) moving in an ‘effective
magnetic field’ (4] resulting in the transverse force

FL = vy x zxh{ne —no), (5)

analogous to the Lorentz forced expetienced by a parti-
cle moving in a magnetic field (z is the unit vector along




thie vortex axist Note thae this foree 153 tndependent of
chacge d 15 not ol eloctromagnetic origin.  LFor supec-
thad Helinny an addivional Tactor 2 appears with 22 bewny
the denstty of the Helinm atoms.

For the Galilean tnvactant case ng = 0, ny = 1y,
and the force (3) 15 just the Magnus force. Based on a
similar Berry phase type of arguments Ao and Thouless
(5] arcived at the conclusion that the relevant density in
Eq.(5) is always n, rather than n. We believe that this
difference arises because in their arguments they use a
‘superfluid wave function’ ¥3 o ny, which is ill defined at
finite temperatures or tn the presence of disorder, where
the difference between n, and n occurs.

In general there are two major differerences between
the (5) and the Magnus force; first, ny is the total den-
sity rather than the superfluid one and thus this part is
* the sum of the Magnus and lordanskii [3] forces. Second,
and most important is that there is an additional term
proportional to the density at the vortex axis. In our
derivation of the Eq. (4) we have excluded the vortex
axis from the integration, since nVO has a singularity
there if ng # 0, and our adiabatic action is not appli-
cable very close to the core axis. The. fact -that ng # 0
means that not all the particles participate in the su-
perfluid motion and there are normal excitations inside
the vortex core {6]. As the Magnus force arises from the
nondissipative transfer of the momentum from the vor-
tex to infinity, the other term —nghvy X z is due to the
transfer of momentum from the condensate to the normal
excitations inside the vortex core. This term is just the
term obtained by Volovik [7] who, starting from the BCS
theory, derived an effective action describing the transfer
of the momentum from the condensate to the fermionic
modes in the vortex core. The subsequent absorption of
this momentum by the heat bath due to the scattering of
these excitations on the impurities leads to the Bardeen
Stephen dissipation. Thus the hidden assumption in the
derivation of the Eq. (5) was that impurity scattering is
so strong that all the momentum transfered to the nor-
mal excitation is absorbed by the heat bath. However,
for BCS superconductors we have ny — ng < N and
the Magnus force is compensated almost completely [7].
In this case the impurity scattering should be consid-
ered in more details. Such a calculations have been done
long ago (8] without the account for the nonzero ne, —no
difference. Our goal is to take into account both effects
simulteneously and show that their combination can lead
to a change of the overall sign of Hall conductivity.

An accurate treatment of the scattering processes in
the adiabatic action approach is complicated and is left
for future investigations. Instead we consider a simple
phenomenological model which is similar to the original
model of Noziéres and Vinen {9], but differs in that we
take into account both the impurity scattering and the

change in density. To this end we consider a model of the -

fully normal core with a carrier density no and a sharp

bonudiey at a tndius ro >~ € with the superconductive

material lowing o density n [10.9]. We denote the velocity
of the nonmal carrters tnside the core in the 1aborator'v
frame as v, and look at the transfer of the rﬁomentum i;1
the system. The conservation of the momentum dP/dt =
0 in the electron system, with a transport current jr, and
electric as well as magnetic fields present reads

JT X B/c+ neE — mngv f(B/H.)/T =0 (6)

The first two terms describe the momentum transfer
due to the Lorentz- and the electric field forces. The
third term accounts for the momentum transfer due to
the impurity scattering (7 and m are the transport time
and the effective mass respectively). For B > H,.o,
f(B/H.) =1, nev. = jr and the equation (6) gives the
Drude formulas for the longitudinal and Hall conductivi-
ties. For B <« H.» the impurity scattering happens only
in the vortex core and f o< B/ H.». If the carrier density
no inside the core is equal to that outside the core n,
than the transport current jr is equal to ngev, and we
obtain {9] worz x (v, — v.) = v,, where we introduced
Wy = eB/me(B/Hcg) (wo fad Az/Ep'at B & H,.2). The
same result can be obtained by writing the steady state
equation for the normal excitation inside the vortex core
[11]. Solving this equation one finds :

WwoT (wDT)Z .
= e———— — T
T S w o A

which coincides with the result of the microscopic cal-
culations in the relaxation time approximation [8]. If,
however, ng # n then ngev, can not be equal to the jr.
In the reference frame moving with the vortex the current
conservation gives noev, = jr. Going to the laboratory
frame we have ngev, = jr +0nevy, where én =no —neo
Inserting in Eq.(6) one sees that the equation for v, (7)
remains unchanged and ' ' ‘

Ve

R eNngWwo7TZ X V[
= + e
=T e T

1+ (wor)2 - 5n)vL. (8)
where the first term in r. h. s. is the Bardeen Stephen
longitudinal conductivity and the second term is the Hall
conductivity. The 6n term rewritten as the transverse
force is just the term which we derived in Eq. 5 consid-
ering the adiabatic action. From these topological argu-
ments (see also [7]) it follows that én in Egs. (8) is not
some averaged change in density but is the difference be-
tween the electron density on the axis of the vortex core
and that far outside the core. The transverse force can be
rewritten as Th(n— m)w‘ x z, where the first term

is the Magnus force and the second one is the force due

to impurity scattering which cancells the Magnus force

almost completly in conventional situation [3,7].
From the Eq. (8) we obtain the Hall conductivity

_ ngec (wor)? énec

(9)

75 = B 1+ (wr)® B




e additional conteibution to the Hux flow Hall condue-
uvily 8oy, = =dnee/ B s our madn cesult.

The above constdecntions are valid for a wodel un-

charged superconductor, and in that cwe dnfn ~
(A/Ep) [7]. In real superconductors the Coulomb
screening is always present, and suppresses strongly any
inhomogenities in the charge density distribution, and
the total charge of the vortex becomes zero. We will
see, however, that the screening has no effect on the
value of the Hall conductivity, though the latter can’t
be expressed any more in terms of the density differ-
ence 6n. In order to account for the screening effect we
supplement the superconductive Lagrangian £,. by the
Coulomb terms: £,,, = £,. + £¢, where

Lo = 5= 3 By(@By(~a)e(@ (10)
q

where Ej(q) is the Fourier-component of the longitudi-
nal electric field, Ey(r) = —V¢, and £(q) is the dielectric
function, whose ¢ — 0 limit determines the screening
length rp, e(q) = 1 + 1/r}q?% nommally rp € &. A
distribution of the electric potential around the vortex is
determined now by the equation §L/6¢(r) = —ebii(r) +
(¢/rh — V?¢)/4x = 0, whereas the charge density eén =
~V%¢/(47) = ebn — ¢/(47r}), and we introduced for
future convenience the notation eén(r) = —8L,./6¢(r).
In the weak screening limit rp > £ one would get
én(r) =~ 67i(r), whereas at rp <« £ the density is al-
most constant and &n(r) = §7(r)(rp/€)? ~ no(A/EF)*
[12], whereas ¢(r) = 4xr}én(r). The key point now is
that the Hall conductivity can be expressed via the value
of §fi = 6n(0) which does not depend on screening. It
follows from the fact that the Coulomb part of the La-

grangian Lc depends upon the longitudinal electric field -

only, and thus does not contain contribution from the sin-
gular vortex-induced phase x,(r) = ©(r—r.). Therefore
the ‘topological’ contribution to the Hall conductivity is
determined by the effective action S;, Eq.(2), with n(r)
replaced by é7(r), so the result, Eq.(9), is recovered up
to the replacement of én by 67 = 9Q,./0p ( where pisa
chemical potential). In leading order of (Tc —T') 67 can

be expressed via the experimentally accessible quantities:

_HXT) 0ln(T. - T) (1)
47 ou

We will show now that the én term in the conductvity
we found is just the term which was obtained in Time
Dependent Ginzburg Landau (TDGL) model {13,14]. We
will follow the approach developed in [15] where it was

§n =

proposed that the imaginary part of the relaxation time .

can be obtained from the dependence of the transition
temperature 7. on the chemical potential . Then the
first term in the GL thermodynamic potential should be
modified to Q,. = —a(T. + e48T./0p — T)¥*¥ + ...

Taking into account that we should always have the

giuge wvaciaat combluation (2e0 — i3/dt) one obtains
the nuagimary part of the celuxation time in the TDGL
(5.1 v2 = =20T./du. Without Coulomb interaction
the change in density can Le obtained in the same way
as before: n = -9Q,./0px = const — 2y2|é(r)}®. Then
the §n contribution to the Hall conductivity in Eq. (9)
coincides with the result of [13,14] if the numerical pa-
rameter 8 (—a2 in notation of {13]) is equal to 1, which
corresponds to the value of the TDGL parameter u < 1
{14]. For large values of u the analysis of [13,14] gives
a similar result but with an additional coefficient of the
order of unity in front of the ‘6rn’ term. In these pa-
pers the condition of the local electroneutrality (Vj =0,
i.e. &n(r) = 0) was imposed in order to take Coulomb
screening into account. Actually for the consistent treat-
ment of the Coulomb effects one should add a term ¢/r}

" to the GL free energy and allow for local density varia-

tions. The microscopic calculation for superconductors

-with paramagnetic impurities [16] shows that these nu-

merical corrections to ‘6n’ term become small for the low
enough concentration of paramagnetic impurities.

The effect of the vortex charge on the Hall effect was
recently considered by Khomskii and Freirmuth {17]. Al-
though the treatment of the static charge distribution in
the vortex core is the same as ours, the transverse force
and the Hall conductivity found in [17] are much smaller
(by a factor ~ B/ H.2) and have the oppostte sign as com-
pared to our Egs. (5,9), which explicitely contradicts
well-known result for the Magnus force in the Galilean
invariant case where ng = 0. . o
. .The crucial point for the discussion is the sign of én.
Taking as an estimate én/n = sign(6n)(A/EF)? and
wo = A?/Er < 771 one arrives at

2
Oay = @;%((Ar)z — sign(sn)).- (12)
F
The new term we found is important in the dirty case
A7 < 1 and can lead to the sign change if §n > 0 (the
carrier density in the core is bigger than outside). Let
us consider this case in more details in application to
HTSC. In this materials AT > 1 at low temperature and
Ar — 0 at T,. Note that what enters in Eq. (5) is &(T)
rather than A(0). Thus at low temperatures we can ne-
glect this §n contribution and the sign of oy is positive
(as in the normal state). As the temperature approaches
T., At ~ 1 and oy becomes negative. Near Hoa(Tywo =
cyclotron freqyuency w,. , thus the first term in Eq.(11)
transforms to the normal state Hall conductivity o3Z,.
whereas the ‘6n’ contribution goes to zero x H.2 — H.
and the Hall effect changes sign back to the normal value
in this region [14]. These are just the two sign changes
observed in Bi and T1 based materials. In 90 K YBCO
the low temperature sign change back to the normal sign
is usually not observed since pzy is unmeasurably small
because of pinning. However in the experiments where




pinning wis suppeessed either by a high cuecent [E8] oc by
high trequensies [19) the second sign change seers to be
observed at low tetuperatuees. The temperatuce depen-
dence of the Hall conductivity (9) 13 tn very good agree-
ment with the data by Samotlov et ol {20] who tfound
for TBCCO that the B~!- term in the Hall conductivity
changes sign around 83 K and at higher temperature is
xT.-T.

In the {21) the Hall angle evidence for the superclean
regime in 60 K YBCO was reported. In this mate-
rial Hall angle changes sign and becomes relatively lacge
(O ~ —1/2) at low temperature. There are two quite
different ways to treat these da.t,a. in our scheme. The one
taken in [21] is that in 60 K YBCO superclean limit is
realized with wor > 1 and Magnus force has a ‘wrong’
sign due to the complicated structure of the Fermi sur-
face. Another possible scenario is that this material is not
the superclean but just moderately clean, with wor < 1,
and has the same sign of 65 as in 90 K material, but
with larger numerical value (due to the fact that 60 K

compound is closer to the half filling and the depen-

dence on chemical potential is sharper than for the 90
K compound). In order to estimate the value of é7i/n
we note that the additional term in the Hall conductiv-
ity is —éitec/ B, whereas the normal state Hall resistivity
is p2, = B/nec. Multiplying these two quantities one
can get an estimate for 6i/n. Analysis of the experi-
ments [21,20] gives é7/n ~ 10~ for Tl compound and
0.03 and 0.07 for 90 K and 60 K YBCO respectively.
Thus the difference between these two. Y based materi-

als seems to be much smaller than between Y and Tl

based compounds. Then the experimental data {21] for
the 60K YBCO can be understood under the assump-
tion that at low temperatures wor o2 0.1 € 1, i.e. of the
same order of magnitude as 67/n; in that case only the
second term in (9) is important and the Hall angle ac-
quires the value of the order unity (since the logitudinal
conductivity contains factor wo7), although the material
can still be rather dirty. (note also, that 60 K material
is traditionally considered as more dirty than the 90 K
one). On the other hand, the 90 K YBCO is expected to
have bigger low-T value of woT and smaller (as estimated
above) value of §7i/n, which makes the observation of
the second sign change in this material {18,19] quite nat-
ural. The proposed second scenario seems preferable to
‘us since it does not involve any ad hoc hypothesis about
the complicated Fermi-surface, and suggests an unified
decription of both 60 K and 90 K compounds.

In the simple BCS model T, depends upon the density
of states and increases with increased density leading to
the positive 87,/0u and thus én < 0. However one can
consider a simple tight binding model with large effective
mass exponentially dependent upon the lattice constant.
Then under compression carriers become lighter and T
decreases leading to 6n > 0. The case of HTSC is com-
plicated by the fact that the normal state Hall effect has

hole like sigu. although from the sitple electrons count-
ing the Fermi suclice should have an electron like shape.
[t would be tempting to wlate §n term with the dop-
tng dependence of T, via Eq. (11), which would lead to
a conclusiou that the sign change should occur for the
overdoped materials. This is dangerous, however, since
in some versions of the RVB-like theories [22] the doping
dependence of T, and superconducting energy away from
T. may have opposite signs.
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