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Bicriteria Network Design Problems

(Preiiminary Version)

M. V. Marathe*  R. Ravi’  R. Sundaram?!  S. S. Ravi! D. J. Rosenkrantz!"
H.B. Hunt III?

Abstract

We study several bicriteria network design problems phrased as follows: given an undirected
graph and two minimization objectives with a budget specified on one objective, find a subgraph
satisfying certain connectivity requirements that minimizes the second objective subject to the
budget on the first. Define an (a, 8)-approximation algorithm as a polynomial-time algorithm
that produces a solution in which the first objective value is at most o times the budget, and the
second objective value is at most 3 times the minimum cost of a network obeying the budget on
the first objective. We present the first approximation algorithms for bicriteria problems obtained
by combining classical minimization objectives such as the total edge cost of the network, the
diameter of the network and a weighted generalization of the maximum degree of any node in the
network.

We first develop some formalism related to bicriteria problems that leads to a clean way
to state bicriteria approximation results. Secondly, when the two objectives are similar (e.g.,
both the objectives are to minimize the total edge cost of the network) but only differ based
on the cost function under which they are computed (e.g., two different costs are specified on

—edges and the two objectives are to minimize the total edge cost based on the two different
costs), we present a general parametric search technique that yields approximation algorithms
by reducing the problem to one of minimizing a single objective of the same type. Thirdly, we
present an O(logn, logn)-approximation algorithm for finding a diameter-constrained minimum
cost spanning tree of an undirected graph on n nodes generalizing the notion of shallow, light
trees and light approximate shortest-path trees that have been studied before. Finally, for the
class of treewidth-bounded graphs, we provide pseudopolynomial-time algorithms for a number of
bicriteria problems using dynamic programming. These pseudopolynomial-time algorithms can
be converted to fully polynomial-time approximation schemes using a scaling technique.

Keywords: Approximation a,lgorithms, Bicriteria problems, Spanning trees, Network design,
Combinatorial algorithms.
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1 Introduction

Several fundamental problems in the design of communication networks can be modeled as finding
a network obeying certain connectivity constraints. The goal in such network design problems is
usually to minimize a certain measure of cost associated with the network. The cost may reflect
the price of synthesizing the network, or it may reflect the maximum delay between the ends of the
network or even some measure of the vulnerability of the network. Examples of such cost measures
are the total edge cost, the diameter and maximum degree of the network respectively. Finding
a network of sufficient generality minimizing even one of these measures is often NP-hard [17].
Moreover, in applications that arise in real-life situations, it is often the case that the network to be
built is required to minimize more than one cost measure simultaneously. In this paper, we consider
bicriteria problems motivated by practical instances arising in the design, analysis and synthesis of
communication networks.

We first develop a formalism for bicriteria problems and their approximations. A typical bicriteria
problem, (A, B), is defined by identifying two minimization objectives of interest from a set of possible
objectives. The problem specifies a budget value on the first objective, A, and seeks to find a network
having minimum possible value for the second objective, /5, such that this network obeys the budget
on the first objective. An («, #)-approximation algorithm is defined as a polynomial-time algorithm
that produces a solution in which the first objective value is at most « times the budget, and the
second objective value is at most § times the minimum for any solution obeying the budget on
the first objective. As an example, consider the following diameter-bounded minimum spanning tree
problem or (Diameter, Total cost) bicriteria problem: given an undirected graph G = (V| E) with
two different integral nonnegative weights f. (modeling the cost) and g. (modeling the delay) for
each edge e € E, and an integral bound B (on the total delay), find a minimum f-cost spanning
tree such that the diameter of the tree under the g-costs (the maximum delay between any pair of
nodes) is at most B. ' ‘
~ There are two natural alternative ways of formulating general bicriteria problems, one where
we impose the budget on the first objective and seek to minimize the second and two, where we
impose the budget on the second objective and seek to minimize the first. We show that an («, 3)-
approximation algorithm for one of these formulations naturally leads to a (3, «)-approximation
algorithm for the other. Thus we show that there is a clean way to state bicriteria approximation
results.

2 Summary of results and related research

We summarize our results in Table 1. The table contains the performance ratios for finding spanning
trees under different pairs of minimization objectives. All results in the table extend to finding Steiner
trees with at most a constant factor worsening in the performance ratios. We omit elaboration on
these extensions. The horizontal entries denote the budgeted objective. For example the entry in
row i, column 7 denotes the performance guarantee for the problem of minimizing objective j with
a budget on the objective i. As a result of the equivalence mentioned in the previous section, the
table is symmetric, i.e. entry (¢,7) is identical to entry (j,¢). For each of the problems catalogued
in the table, two different costs are specified on the edges of the input undirected graph: the first
objective is computed using the first cost function and the second objective, using the second cost
function.

In the table, the “Degree” objective denotes the maximum degree of any node in the spanning
tree; the entry (Degree, Degree) however refers to a generalization to a weighted variant based on
two cost functions defined on the edges. This weighted variant of the degree objective is defined as
the maximum over all nodes, of the sum of the costs of the edges incident on the node in the tree.




When all edges in the graph have unit weight, this reduces to the maximum degree of any node in
the tree. The “Diameter” objective is the maximum distance between any pair of nodes in the tree.
The “Total cost” objective is the sum of the costs of all the edges in the tree.

| Cost Measures Degree Diameter Total Cost
Degree (O(logn),O(logn))* | (O(logn), O(logn))[30] | (O(logn), O(logn))(28]
Diameter (O(logn), O(log n))[30] (1+4+7,1 —&jy-)* (O(logn), O(logn))*
Total Cost (O(logn), O(logn))[28] | (O(logn),O(logn))* (1+7v,1+ ;r)*

Table 1. Performance Guarantees for finding spanning trees in an arbitrary graph on
n nodes. Asterisks indicate results obtained in this paper. v > 0 is a fixed accuracy
parameter.

Similar objectives

The diagonal entries in the table follow as a corollary of the general result that is proved using a
parametric search algorithm.

Theorem 2.1 Let P denote a single criterion minimization problem defined on a graph G with costs
h associated with the elements of G and let v > 0 be a fixed accuracy parameter. Assume that there
exists a p-approximation algorithm for P. Then the bicriteria problem Ps defined on & by specifying two
different costs f and g on the elements of G and the two objectives being minimizing the objective of P
under the two different costs f and g has a ((1+7)p, (1 + %)p)—approximation algorithm.

The diagonal entries in the table correspond to such bicriteria problems in which the two objec-
tives.are similar but only differ in the cost function on the edges under which they are computed;
For example, the (Total Cost, Total Cost) problem is the following: given an undirected graph
G = (V, E) with two different integral nonnegative weights f. and g, for every edge e € E, and an
integral bound B, find a minimum f-cost spanning tree such that the total cost of the tree under the
g-costs is at most B. Thus, both objectives correspond to the total cost of the tree but under two
different cost functions ¢ and f. For such problems, we introduce a parametric search method on a
hybrid cost function he = fe+ pge on the edges e, such that the single objective problem solved using
the hybrid cost h for an appropriately chosen 4 yields a good approximation for both the original
objectives. For example, for the minimum-cost spanning tree problem, using Theorem 2.1 withp =1
gives the (Total Cost, Total Cost) result in our table. The result for (Diameter, Diameter) follows
similarly from known exact algorithms for minimum diameter spanning trees [13, 29].

The entry for (Degree, Degree) corresponds to the following problem: given an undirected graph
G = (V, E) with two different integral nonnegative weights ¢;(e) and ca(e) for every edge e € E,
and an integral bound D, find a spanning tree of minimum weighted degree under ¢y such that the
weighted degree of the tree under the ¢;-costs is at most D. Recall that the weighted degree of the
tree under a cost ¢ is the maximum over all nodes, of the sum of the c-costs of the edges incident
on the node in the tree. An O(logn)-approximation algorithm for the weighted degree problem was
presented by Ravi et al. in [28]. Hence the entry for (Degree, Degree) follows from Theorem 2.1 and
the results in [28].

Theorem 2.1 is quite general in that it allows translation of a single objective approximation for
any network design problem to one for two similar objectives of the same type with a factor-of-two
worsening in the performance guarantee. Consider, for example, the conjunction of this theorem
with the results of Goemans et al. [18]. This leads to a host of bicriteria approximation results
when two costs are specified on edges for finding minimum-cost generalized steiner trees, minimum




k-edge connected subgraphs, and other network design problems specified by weakly supermodular
functions introduced in that paper. Similarly we may specify two costs on every node in the graph
and get logarithmic approximations for the minimum node-cost Steiner trees using the result of Klein
and Ravi [22]. As another example, with two costs specified on edges, and an input number &, we
can use the result of Awerbuch et al. [6] to obtain (O(log?k), O(log? k)) approximations for the
minimum cost (under both functions) tree spanning at least & nodes.

Ravi et al. [28] studied the degree-bounded minimum cost spanning tree problem. They provided
an approximation algorithm with performance guarantee (O(log n), O(logn)). The problem of finding
a degree-bounded minimum diameter spanning tree was studied by Ravi [30] in the context of
finding good broadcast networks. He provided an approximation algorithm for the first problem
with performance guarantee (O(logn), O(logn)) with an extra additive term of O(log?n) for the
degree.

The {Diameter, Total cost) entry in Table 1 corresponds to the diameter-constrained minimum
spanning tree problem introduced earlier. This problem arises naturally in the design of networks
used in multicasting and multimedia applications [15, 16, 20, 23, 24, 25]. It is known [17] that this
problem is NP-hard. In the special case when the two cost functions are identical, i.e., fo = g, for all
edges e, the diameter-bounded minimum spanning tree problem reduces to finding a spanning tree
that has simultaneously small diameter (i.e., shallow) and small total cost (i.e., light), both under the
same cost function. Awerbuch, Baratz and Peleg [7] showed how to compute in polynomial-time such
shallow, light trees while Khuller, Raghavachari and Young {21] studied an extension called Light,
approzimate Shortest-path Trees (LASTs). Kadaba and Jaffe [20] and Kompella et al. [23] considered
the general diameter-bounded minimum spanning tree problem and presented heuristics without any
guarantees. We present the first approximation algorithm for this problem; the performance ratios
for both objectives are logarithmic. :

Treewidth-bounded graphs

We also study the bicriteria problems mentioned above for the class of treewidth-bounded graphs.
Robertson and Seymour in their seminal series of papers [31] introduced and developed the notion
of treewidth. Many hard problems have exact solutions when attention is restricted to the class of
treewidth-bounded graphs and much work has been done in this area (see [1, 2, 3, 4, 5, 9, 10, 11,
12, 14]). Examples of treewidth-bounded graphs include trees, series-parallel graphs and bounded-
bandwidth graphs. Independently, Bern, Lawler and Wong (9] introduced the notion of decomposable
graphs. Later, it was shown [5] that the class of decomposable graphs and the class of treewidth-
bounded graphs are one and the same.

To the hest of our knowledge this is the first time that bicriteria problems have been studied for
the class of treewidth-bounded graphs. We use a dynamic programming technique to show that for
any class of decomposable graphs (or treewidth-bounded graphs) , there are either polynomial-time
(when the problem is in P) or pseudopolynomial-time algorithms (when the problem is NP-complete)
for several of these bicriteria problems. We then show how to convert these pseudopolynomial-time
algorithms into fully polynomial-time approximation schemes using a general scaling technique. We
summarize our results for this class of graphs in Table 2. As before, the horizontal entries denote
the budgeted objective.

Our results for treewidth-bounded graphs have an interesting application in the context of find-
ing optimum broadcast schemes. Kortsarz and Peleg [26] gave O(logn)-approximation algorithms
for the minimum broadcast time problem for series-parallel graphs. Using our results for the (De-
gree, Diameter) case along with the techniques in [30], we can obtain an O(ﬁ%)-approximation
algorithm for this problem for the class of treewidth-bounded graphs (series-parallel graphs have a
treewidth of 2), improving and substantially generalizing the results of Kortsarz and Peleg. The




Appendix includes a proof sketch of this result.

Cost Measures Degree Diameter Total Cost
Degree {(open) (open)
pseudopoly pseudopoly poly-time
Diameter (open) (weak NP-hard) | (weak NP-hard)
pseudopoly pseudopoly pseudopoly
; Total Cost (weak NP-hard) | (weak NP-hard)
poly-time pseudopoly pseudopoly

Table 2. Bicriteria spanning tree results for treewidth-bounded graphs

In the next section, we discuss our approximations for general graphs. We then derive the results
for treewidth-bounded graphs in Section 4.

3 Approximation algorithms

In this section we discuss our approximation algorithms for general graphs. Our approximation
algorithms are based primarily on three techniques. We briefly comment on these techniques next.
The first technique is a variant of binary search that is used to prove equivalence of bicriteria
formulations. Our second techmique is parametric search that is used to solve the case of similar
objectives. Finally, we solve the diameter-constrained minimum spanning tree problem using a
logarithmic number of instances of perfect matching problems to iteratively build up a solution.

3.1 Equivalence of bicriteria formulations

- We formulate a general bicriteria problem in network design as follows: Given a graph G and two
integral cost functions, say ¢ and d, defined on a class S of subgraphs of G (e.g., spanning trees
of (), and a bound on the value of one of the costs (say C for the c-cost), find a subgraph in S
that has cost at most C under the cost function ¢ and the minimum possible cost under d given
this restriction on the c-cost.? We call this the C-bounded minimum-d-cost subgraph problem. The
alternative formulation would be to use a bound D on the d-cost of the solution and ask for a
minimum-c-cost subgraph under this restriction. This alternative formulation may be termed the
D-bounded minimum-c-cost subgraph problem.

Note that such bicriteria problems are meaningful only when the two criteria are “hostile” with
respect to each other in that the objective of minimizing one is incompatible with that of minimizing
the other. A good example of such hostile objectives are the degree and the total edge cost of a span-
ning tree in an unweighted graph [28]. The notion of hostility between criteria can be formalized by
defining two minimization criteria to be hostile whenever the minimum value of one of the objectives
is monotonically nondecreasing as the budget on the value of the other objective is decreased.

Define a (p,, pg)-approximation algorithm for the C-bounded minimum-d-cost subgraph problem
to be a polynomial-time algorithm that delivers a subgraph from S that has c-cost at most p. times
the bound C, and d-cost at most py times the minimum d-cost of any subgraph in S with c-cost at
most C.

Theorem 3.1 The existence of a (pc, pg)-approximation algorithm for the C-bounded minimum-d-
cost subgraph problem implies the existence of a (pg, pc)-approximation algorithm for the D-bounded
minimum-c-cost subgraph problem.

*We use the term “cost under ¢” or “c-cost” in this section to mean value of the objective function computed using
¢, and not to mean the total of all the ¢ costs in the network.




Proof: The proof of the theorem uses binary search on the range of values of the c-cost with an
application of the given approximation algorithm at each step of this search. Suppose we are given A,
a (pc, pa)-approximation algorithm for the C-bounded minimum-d-cost subgraph problem. Given a
D-bounded minimum-c-cost subgraph problem, we wish to derive a (pg, p)-approximation algorithm
for this problem.

To do this, we initially compute rough upper and lower bound estimates Cj; and Cj, on the ¢-cost
of a D-bounded subgraph. By using binary search in [C),, Cj;], we find a C’ in this range such that

(1) the algorithm A with c-cost bound C’ returns a subgraph from S with d-cost greater than
Pd - D, and

(2) A with c-cost bound C' + 1 returns a subgraph with d-cost at most pq - D.

Suppose the minimum-c-cost of a D-bounded subgraph in § is Cp. As a consequence of (1) above
and the performance guarantee of the approximation algorithm A we get that C' < Cp. Hence we
have that C' + 1 < Cp by our definition of hostility and the fact that the cost function c¢ is integral.
By (2) above we get that the approximation algorithm A with input ¢’ + 1 delivers a subgraph in §
with d-cost at most pg4 - D and the c-cost of this subgraph is at most p.(C’ +1). This latter quantity
is in turn is at most p. - Cp. Thus we have a (pg, p.)-approximation algorithm for the D-bounded
minimum-c-cost subgraph problem as claimed in the Theorem. O

Note however that the (pq4, pc)-approximation algorithm constructed in the proof above may not
be strongly polynomial since it depends on the range of the c-costs. But it is a polynomial-time
algorithm since its running time is linearly dependent on log B where B is the value of the largest
c-cost. -

3.2 Parametric search for approximations of similar objective functions

In this section, we present approximation algorithms for a broad class of bicriteria problems where
both the objectives in the problem are of the same type (e.g., both are total edge costs of some network
computed using two different costs on edges, or both are diameters of some network calculated using
two different costs etc.). Before we present our approximation algorithm, we state the following
hardness result that can be derived by a reduction from the Partition problem [17]. A proof is
sketched in the Appendix.

Theorem 3.2 The (Diameter, Total cost), (Diameter, Diameter) and the (Total cost, Total cost)
spanning tree problems are NP-hard even for series-parallel graphs.

We now present the approximation algorithm used to prove Theorem 2.1. We illustrate the proof
of the theorem by considering the case (Total cost, Total cost) in Table 1. In this problem, we are
given two costs f. and g. on the edges e € E of the input graph G = (V, E). We are also given a
budget B on the total cost under g of the spanning tree 7. Assume for now that the magnitude of
costs f on the edges are polynomial in the size of the input graph.

Let OPT denote the minimum cost of the tree under f which obeys the restriction that its cost
under g is at most B. For any tree T and cost function f, we use COSTy(T) to denote the cost of T’
under f. To simplify the analysis, we assume that -« divides OPT. This can be enforced by scaling
both the cost functions f and g by .

Algorithm TWO-COSt(G7 f7 g, B7 7)

Input: A graph G(V, E) with two cost functions f and g on the edges, a budget B on the cost of
the spanning tree under g and a performance requirement y > 0.




Output A spanning tree T of G such that the cost of T under g is no more than (1 + )B and the
cost of T under f is no more than (1 + fy)()PT

Initialize C := 1
While (Test(C) = NO) do

1

2

3 C:=C+1

4 Output the tree T computed by Test as the solution.

Procedure Test(C)

=
1 =

2 Compute a new cost function i on the edges e € E as follows: h(e) := f(e) + pg(e).
3 Compute a minimum spanning tree 7" in the graph G(V, E) under the cost function h.
4 If COSTH(T) < (1 +v)C then output YES else output NO.

Lemma 3.3 The function R(C) = w as C takes increasing integral values from 1,2,3,...
Is monotone nonincreasing.

Proof: Suppose for a contradiction that for two integral values of C, say C} and Cs with C; < Cs,
we have that R(C:) < R(C2). Let T; and T» denote minimum spanning trees of G under A when
C = C4 and C = C; respectively. For i € {1,2}, let F; and G; denote the costs of the tree T, under
f and g respectively. Thus, we have that R(C;) = % + %— for ¢ € {1,2}.

Consider the cost under h of the spanning tree T}y when C = (3. By the definition of F| and
G4, it follows that the cost of Ty is Fy + Qﬂz Thus the value of R(C;) is at most this cost divided
by C5 which is —-L + 3 SL. This in turn is less than ——‘- + 5 G since C; < Cy. But (Ei- + %L is exactly

R(CY) contradlctmg the assumption that R(C;) < R(Cg)

Theorem 3.4 Let C’ be the value of C when the Test procedure outputs YES. Let T¢» denote the
corresponding solution tree. Then COST;(Tcr) < (1+ = )()PT and COST,(T¢r) < (1 +7)B.

Proof: First consider the value of COST,(T) when C = C* = -Q% (Note that C* is integral
by assumption). This is at most OPT + g_%g < OPT + C* = (1 + v)C*. Thus the value of
R(C*) = COSTg(*MST) <1+

Since R(C*) < 1+ 4, the function R(C) is monotone nonincreasing by Lemma 3.3, and C’ is
the least integer such that R(C’) <1+ «, we have that C' < C*. It is now easy to verify that the
following inequalities hold for COSTf(T¢») and COSTy(Tcr). '

: ! 1.
COST;(Ter) < COSTH(Ter) < OPT + %B <OPT+C" < (1+2)OPT

'
%COST (Ter) < COSTH(Ter) < C'(1 +7)

The second chain of inequalities implies that COSTg(TC:) <(1+v)B.0O

We can obtain a better running time by doing a binary search for C' in Algorithm Two-cost
thus using only O(log F') calls to the polynomial-time test procedure Test, where F' denotes the ratio
of maximum edge cost to the minimum edge cost under f. This allows us to weaken the assumption
that the costs under f are polynomial to the condition that the ratio of the maximum to minimum
edge cost under f be polynomially bounded. In the most general case, we can obtain polynomial
running time for the whole algorithm by scaling the f-costs such that the ratio of the maximum to

6




the minimum edge cost under f is at most a polynomial, P(n), in the size, n, of the input graph.
The scaling results in an inaccuracy of the estimate of the total f-cost by a factor proportional to
1o which would result in a multiplicative factor of 1 + % in the performance ratio for the f-cost
of the tree. This factor tends to one asymptotically and hence is omitted in the statement of the

theorem. This completes the proof of this example of Theorem 2.1.

3.3 The algorithm for diameter-constrained trees

In this section, we study the diameter-bounded minimum spanning tree problem. To motivate whait
kind of approximations we can hope to look for, we present a hardness result on approximating the
diameter-bounded Steiner tree problem.

Theorem 3.5 Unless NP C DTIME(n'°81°%8™) given an instance of the diameter-bounded minimum
cost Steiner tree problem with £ sites, there is no polynomial-time approximation algorithm that outputs
a Steiner tree of diameter at most the bound D, and cost at most R times that of the minimum cost
diameter- Steiner tree, for R < logk/8.

The above theorem is proved using a reduction from set cover and invoking known hardness results
[8, 27] on approximating set cover. A sketch is provided in the Appendix. On the positive side, we
prove the following theorem.

Theorem 3.6 There is a polynomial-time algorithm that, given an undirected graph G on n nodes with
nonnegative integral costs d and ¢ on its edges, a bound D, and a fixed € > 0, constructs a spanning
tree of G of diameter ‘at most 2[log, n]D under the d-costs and of total c-cost at most (1 + €)[logy 1]
times that of the minimum-c-cost of any spanning tree with diameter at most D under d.

The above theorem extends easily to Steiner trees but we omit the details. We shall reserve the term
-“diameter cost” of a tree to mean the diameter of the tree under the d-costs, and the “building cost”
of a tree to mean the total cost of all the edges in the tree computed using the c-costs. We shall also
use the term “diameter-D path (tree)” to refer to a path (tree) of diameter cost at most D under d.

We now describe some background material that will be useful in understanding our algorithm
and its analysis. Given a diameter bound D, the problem of finding a diameter-D path between
two specified vertices of minimum building cost has been termed the multi-objective shortest path
problem (MOSP). This problem is NP-complete and Warburton [32] presented the first fully poly-
nomial approximation scheme (FPAS) for this problem. Hassin [19] provided an alternative FPAS
for the problem without a running-time dependency on the magnitude of the costs in the problem.
His algorithm runs in time O( IEI(% log 2)), where E is the edge set of the input graph. We use
the latter algorithm in implementing our algorithm. Next, we now recall a tree decomposition result
used in [22, 28].

Claim 3.7 Let T be a tree with an even number of marked nodes. Then there is a pairing (vy,w), ...,
(vg, wg) of the marked nodes such that the v; — w; paths in T are edge-disjoint.

A pairing of the marked nodes that minimizes the sum of the sizes of the tree-paths between the
nodes paired up can be seen to obey the property in the claim above. We use this result in the proof
of the performance guarantee.

Overview of the approximation algorithm

The algorithm begins with an empty solution subgraph where each node is in a connected component
(termed a cluster) by itself in the solution. Assume for simplicity that the number of nodes in the
graph n is a power of two. The algorithm works in {log, n] iterations where 7 is the number of nodes




in the original graph, merging clusters in pairs during each iteration by adding edges between them.
This pairing ensures that the number of iterations is as desired.

The clusters maintained by our algorithm represent node-subsets of the input graph G. However,
they do not represent a partition of the nodes of the input graph. This is because of the way in which
we merge the clusters in the algorithim. For each cluster we maintain a spanning tree on the nodes
in the cluster. The spanning trees of the clusters maintained by the algorithm are not necessarily
edge-disjoint as a result of our merging procedure. We sketch this procedure below. We identify a
center in the spanning tree of each cluster. In each iteration, every cluster is paired with another
cluster and merged with it by the addition of a path between their respective centers. This path may
involve nodes that occur in either of the merging clusters or even nodes in other clusters currently
maintained by the algorithm. However, while merging two clusters into one, we ensure that the new
cluster formed has at most one copy of any node or edge.

The Algorithm

1 Initialize the set of clusters C to contain n singleton sets, one for each node of the input graph.
For each cluster in C, define the single node in the cluster to be the center for the cluster.
Initialize the iteration count ¢ := 1.

2 Repeat until there remains a single cluster in C

3 Let the set of clusters C = {C} ... ’C;ﬁ—L }.

4 Construct a complete graph G; as follows.

5 The node set V; of G; is {v : v is the center of a cluster in C}.

6 Between every pair of nodes v; and v, in V;, include an edge (vg,vy) in G; of cost equal
to a (1 + €)-approximation of the shortest building cost of a diameter-D path between v,
and vy in G, where ¢ is the accuracy parameter input to the algorithm. Since a FPAS is

" available to compute such an estimate [19], the costs of all the edges in G; can be computed
in polynomial-time.

7 Find a minimum-cost perfect matching in G;.

8 For each edge ¢ = (v,,vs) in the matching

9 Let Prs be the path in G represented by e = (v, vs). Add this path to merge the clusters
C, and C; for which v, and vs; were centers respectively, to form a new cluster Cy;, say.
The node set of the cluster C,¢ is defined as the union of the node sets C,, Cs and the nodes
in Fp.
10 Define the union of the edge sets of the spanning trees for C; and C; and the set of edges
in P, to be E,s. The edges in F,; form a connected graph on Crs. Choose one of v, or
vy as the center v,; of the cluster C,;. Using only the diameter cost function d, find a
shortest-path tree rooted at v in the graph (Crs, Eys). This is the spanning tree for the
cluster C,;.
11 Set C :=C — {C,Cs} U {Cys}.
12 t:=1+ 1.
13 Output the spanning tree of the single cluster in C.
We prove the performance guarantee using a series of lemmas.
At each iteration, since the clusters are paired up using a perfect matching and merged to form
new clusters, the number of clusters halves. Thus we have the following lemma.

Lemma 3.8 The total number of iterations of the above algorithm is [log, n].

In the next lemma, we show that the diameter cost only increases by an additive 2D factor at
each iteration when we merge two clusters.




Lemma 3.9 Let C be a cluster formed at iteration i of the algorithm. Then the diameter cost of the
spanning tree of C maintained by the algorithm is at most 2iD.

Proof: We prove the lemma by maintaining the following stronger claim inductively.

Claim 3.10 Let C be a cluster with center v formed at iteration ¢ of the algorithm. Then any node u
in C has a diameter-iD path to v in the spanning tree of C maintained by the algorithm.

Proof of claim: The proof is by induction on the iteration count 7. The basis when ¢ = 1 is trivial.
To prove the induction step, consider a cluster C,s formed at iteration ¢ (> 1) by merging two
clusters C, and C; with centers v, and v, respectively. Suppose v,; = v,. Consider a node u € C;.
u is in either C,.,Cs or the path P,;. In all these cases, using the inductive hypothesis and the fact
that the diameter cost of path P, is at most D, it is easy to show that v has a diameter-:D path
to the center v,y = v, in the graph (Cy, E.s). Since we compute a shortest-path tree in this graph
rooted at vrs using the diameter costs, it follows that the path in this tree between any node and v,
has diameter cost no more than iD. This completes the proof of both the Claim and the Lemma. O
We have the following corollary from the above two lemmas.

Corollary 3.11 The diameter cost of the spanning tree output by the above algorithm is at most
2[logy n]D.

Lemma 3.12 Let OPTp be the minimum building cost of any diameter-D spanning tree of the input
graph. At each iteration i of the algorithm, the cost of the minimum cost matching in G; found in Step
7 is at most (1 +¢€) - OPTp, where € > 0 is the accuracy parameter input to the algorithm.

Proof: It is easy to show using a simple induction on the iteration count that, at any iteration ¢, the
set of centers of clusters for this iteration are distinct nodes of G. Since these are exactly the nodes

‘in G;, we have that the graph G; has at most one copy of any node of G. We can now apply Claim

3.7 on the optimal diameter-D spanning tree of the input graph with the nodes of GG; marked. The
claim yields a pairing between these centers such that the pairs are connected using edge-disjoint
paths in the optimal tree. Note that all these paths have diameter cost at most D since they are
derived from a diameter-D tree. Furthermore, the sum of the building costs of all these paths is at
most OPTp since they form edge-disjoint fragments of a tree of total building cost OPTp. Thus we
have identified a pairing between the nodes in G; of “cost” at most OPTp where the cost of a pair
is the minimum building cost of a diameter-D path between its endpoints.

In constructing G, the cost assigned to an edge between a pair of nodes is a (1+¢)-approximation
to the minimum building cost of a diameter-D path between these nodes in G (see Step 6). Thus
between every pair identified above, there is an edge in G; of cost at most (1 +€) times the building
cost of the path between them in the optimal tree. This identifies a perfect matching in G; of cost
at most (1 +¢€) - OPTp and completes the proof. O

Note that the spanning tree finally output by the above algorithm is a subgraph of the union
of all the paths added by all the matchings over all the iterations. Since the number of iterations
is bounded as in Lemma 3.8 and the total building cost of all the edges added in any iteration is
bounded as in Lemma 3.12, we have the following bound on the total building cost of the output
tree.

Corollary 3.13 The building cost of the spanning tree output by the above algorithm is at most
(1+€)[logy n|OPTp, where € > 0 is the accuracy parameter input to the algorithm.

Corollaries 3.11 and 3.13 with the observation that the algorithm described above runs in
polynomial-time together prove Theorem 3.6.




4 Treewidth-bounded Graphs

In this section we consider the class of treewidth-bounded graphs and give algorithms with improved
time bounds and superior performance guarantees for several of the bicriteria problems mentioned
earlier. We do this in two steps. First we develop pseudopolynomial-time algorithms based on
dynamic programming. We then present a general method for deriving fully polynomial-time ap-
proximation schemes (FPAS) from the pseudopolynomial-time algorithms.

A class of treewidth-bounded graphs can be specified using a finite number of primitive graphs
and a finite collection of binary composition rules. We use this characterization for proving our
results. A class of treewidth-bounded graphs I' is inductively defined as follows [9].

1. The number of primitive graphs in I’ is finite.

2. Each graph in I" has an ordered set of special nodes called terminals. The number of terminals
in each graph is bounded by a constant.

3. There is a finite collection of binary composition rules that operate only at terminals, either
by identifying two terminals or adding an edge between terminals. A composition rule also
determines the terminals of the resulting graph, which must be a subset of the terminals of the
two graphs being composed. '

4.1 Exact algorithms

Theorem 4.1 Given a class of treewidth bounded graphs with no more than & terminals (where & is a
constant) and a bound B, each problem II in Table 2, has an O((n-B-C)°(M)-time algorithm for solving
the problem II. Here C denotes an upper bound on the value of the second objective and B denotes the

The above theorem states that there exist pseudopolynomial-time algorithms for all the bicriteria
problems from Table 2 when restricted to the class of treewidth-bounded graphs. In fact, the above
theorem can be used to obtain a polynomial-time (not just pseudopolynomial-time) algorithm for
the degree-bounded minimum cost spanning tree problem since the bounds on the degree of a node
in a tree is bounded by n. The basic idea behind all of these algorithms is to employ a dynamic
programming strategy. We illustrate this strategy by presenting in some detail the algorithm for the
diameter-bounded minimum cost spanning tree problem.

Theorem 4.2 For any class of treewidth-bounded graphs with no more than & terminals, there is an
O(n - k2k+4 . Bo(k4))-time algorithm for solving the diameter B-bounded minimum cost spanning tree
problem.

Let f be the cost function on the edges for the first objective {diameter) and g, the cost function
for the second objective (total cost). Let I' be any class of decomposable graphs. Let the maximum
number of terminals associated with any graph G in I’ be k. Following [9], it is assumed that a given
graph G is accompanied by a parse tree specifying how G is constructed using the rules and that
the size of the parse tree is linear in the number of nodes.

Let 7 be a partition of the terminals of G. For every terminal ¢ let d; be a number in {1...B}.
For every pair of terminals ¢ and j in the same block of the partition 7 let d;; be a number in
{1... B}. Corresponding to every partition m, set {d;} and set {d;;} we associate a cost for G,
C’o.sv:’{r dididg) = Minimum total cost under the g function of any forest containing a tree for each
block of 7, such that the terminal nodes occurring in each tree are exactly the members of the
corresponding block of 7, no pair of trees is connected, every vertex in (¢ appears in exactly one tree,
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d; is an upper bound on the maximum distance (under the f function) from i to any vertex in the
same tree and d;; is an upper bound the distance (under the f function) between terminals ¢ and j
in their tree. For the above defined cost, if there is no forest satisfying the required conditions the
value of Cost is defined to be oco.

Note that the number of cost values associated with any graph in I' is O(k* - BO*)). We now
show how the cost values can be computed in a bottom-up manner given the parse tree for G. To
begin with, since I is fixed, the number of primitive graphs is finite. For a primitive graph, each cost
value can be computed in constant time, since the number of forests to be examined is fixed. Now
consider computing the cost values for a graph G constructed from subgraphs (G; and G2, where the
cost values for 7; and (G5 have already been computed. Notice that any forest realizing a particular
cost value for G decomposes into two forests, one for G and one for Gg with some cost values. Since
we have maintained the best cost values for all possibilities for ; and G5, we can reconstruct for
each partition of the terminals of G the forest that has minimum cost value among all the forests
for this partition obeying the diameter constraints. We can do this in time independent of the sizes
of G1 and (G5 because they interact only at the terminals to form &, and we have maintained all
relevant information. .

Hence we can generate all possible cost values for G by considering combinations of all relevant
pairs of cost values for G; and G9. This takes time O(k*) per combination for a total time of
O(k%*+% . BOK) . As in [9], we assume that the size of the given parse tree for G is O(n). Then
the dynamic programming algorithm takes time O(n - k2¥+4 . BO(’“4)). This completes the proof of
Theorem 4.2. ’

4.2 Devising polynomial-time approximation schemes

The pseudopolynomial-time algorithms described in the previous section can be used to design
fully polynomial-time approximation schemes (FPAS) for these problems for the class of treewidth-
‘bounded graphs. The main difficulty that arises in designing such FPAS is that no trivial upper
and lower bounds are known such that their ratio is bounded by a polynomial function of the input.
However, we use a technique similar to that of Hassin [19]. We illustrate our ideas once again by
devising a FPAS for the (Diameter, Total cost) problem for the class of treewidth-bounded graphs.
We now describe our algorithm.

Algorithm DMST-FPAS(e, f,g,B)

Input: A treewidth-bounded graph G(V, E) with two edge weight functions f and g, a bound B
and € > 0,

Ouptut: A tree T spanning the nodes of V such that the diameter of tree under g is at most B and
the cost of the tree under f is at most (1 + €)OPT, where OPT denotes the best tree under f which
obeys the diameter bound under g.

1 Choose the initial bounding values UB and LB for the cost of the tree under the f costs as
follows: The lower bound LB is the cost of a minimum spanning tree of G under f. The upper
bound UB is the sum of the costs of the n — 1 largest edge costs under f.

2 While UB > 2 LB do

3 Let V := (LB - UB)!/2

4 If Test(V) = YES set LB := V, else

5 Test(V) = NO, then set UB := V(1 +¢)

6 With the f-costs of edges scaled by a factor of ﬁ%)- find a minimum cost diameter-B-bounded

tree using dynamic programming. g
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Procedure Test(V)

1 C:=1;, flag:=FALSE

2 For all edges (7,7) of cost f; ; (under f) do
3 If f;; > V then throw the edge out else
4

fl,] l_v—c/f('hj

5 While F < 2=1 and flag = FALSE do

6 If the dynamic programming algorithm for F-total cost-bounded minimum diameter (under
: g) problem for G outputs a value less than B then flag = TRUE.

7 F:=F+1.

8 If flag = TRUE then output NO else output YES.

We show that given an € > 0, Procedure Test is an e-approximate test. Let V be a given value
and assume that we want to test if OPT > V.

Lemma 4.3 If TEST(V) outputs YES then OPT > V; If TEST(V) outputs NO then OPT < V(1 +e).

Proof: Observe that the scaling step decreases the f-cost of each edge fij by at most n‘ffl

total f cost of the tree by at most Ve. If the TEST answers NO then we have a tree which has a
cost no more than = F' + Ve < V(1+e¢), since F/ < 2=L. In the TEST procedure answers YES,

then every tree Wthh obeys the delay bound has a scaled cost of at least F' > &Zﬂ, which means
the unscaled f-cost of any tree is at least V. O '

Following {19], the total time required to scale the edges is O(|E|log(Z)). Executmg the dynamic
programming algorithm requires O(Z2poly(2)) (the dynamic programming procedure with the. total
cost_bound F is used 2 times). Observe that the maximum value of the bound placed on the
total cost is O(2) which is a polynomial in ¢ and the input size. Hence our dynamic programming
procedure runs in polynomial-time for any given value of € > 0.

To approximate OPT we now repeat the Test procedure by successively reducing the range
between the bounds (LB,UB) in Algorithm DMST-FPAS and finally when the ratio is less than
two, use a dynamic programming algorithm to derive an e-approximation for the problem. As in
[19], our algorithm reduces the ratio +% U 2 % by performing binary search over the range (LB,UB) in the
logarithmic scale. The number of testq to reduce the ratio below two is O(loglog(UB/LB)). The
details are identical to [19] and omitted.

Theorem 4.4 For the class of treewidth-bounded graphs, there is a polynomial-time approximation
algorithm for the (diameter,cost) problem with performance guarantee (1,1 4+ ¢).

5The idea of binary search in the logarithmic scale can be used to replace the ordinary binary search in Algorithm
Two-cost as well as in the proof of Theorem 3.1 if we are willing to settle for a constant factor increase in the
performance guarantees. The details follow from the treatment in [19].
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The Appendix

Proof of Theorem 3.5

We reduce an instance of the set cover problem to a diameter-bounded Steiner tree problem such that
any Steiner tree obeying the diameter bound provides a feasible solution for the set cover problem.

An instance of the set cover problem consists of a set G of ground elements {g1,92,..., 9k}, 2
collection of subsets S1,59,...,5; of G where each set S; has an associated cost ¢;. The set cover
problem is that of finding a minimum cost collection of the subsets whose union is G.

We construct an instance of the bounded-diameter Steiner tree problem from the set cover prob-
lem as follows. The underlying graph has a node g; for each ground element, a node v; for each set
S;, and an extra “enforcer-node” v.. For each set S;, we add an edge from v, to v; of building cost
c;. We also add edges of zero building cost from v; to all the ground element nodes such that these
elements are in S;. In addition to these edges, we add a path P. made of two edges of zero building
cost to the enforcer v,. All the edges described above have unit diameter cost. All other edges in
the graph are assigned infinite building and diameter costs. We specify the terminals for the Steiner
problem as the set of nodes in (' along with v, and the two nodes in F,.

We claim that any diameter-four Steiner tree provides a feasible cover for the correspondmg; set
cover problem. To show this, we show that in any diameter-four Steiner tree, the path from any
ground element node to v, must use an edge (ve,v;) corresponding to a set S; that contains this
element. To see this, observe that as a result of the way we assigned building and diameter costs to
all the edges incident on P, any diameter-four Steiner tree must contain the whole path P,. ‘Consider
the path from the terminal node of this path to a ground element node. This must pass through v,
and the subpath from v, to the ground element node has diameter cost at most two. But any path
of two edges from v, to any ground element must use an edge (v, v;) corresponding to a set S; that
contains this element.

Theorem 3.5 then follows from previous results [8, 27] that the set cover problem instance
with & ground elements cannot be approximated to better than a factor logk/8 unless NP C
DTIM E(nlogloen),

Proof of Theorem 3.2

Reduction from the Partition problem. An instance I of the Partition problem consists of a set
A = {ay,a9, --,an} along with weights s(a;) for each a;. The problem is whether there exists a
set A; C A such that Y ,c4, 5(a) = X,ca-a, s(a). Let 3 ;cq5(a) = 2B. Given an instance I of
the partition problem we construct a series parallel graph with n + 1 vertices z1,z9, - - zp+1 and 2n
edges. Betvveen every pair of consecutive vertices z; and z;..1, 1 < i < n, there are two parallel edges
elirq and e?;.1- Now we specify the f-costs and the g-costs for each edge. We will use the notatlon
(a b) to mean that the f-cost of the edge is a and the g-cost of the edge is b. The cost on edge e} ;|

is (s(a;),0) and the cost on the edge €7, , is (0,s(a;)). It can now be easily verified that the graph
G has a (Diameter, Total cost) tree of cost (B, B) if and only if the instance of partition problem
has a solution. A similar proof yields the NP-hardness proofs for the (Total cost, Total cost) and
(Diameter, Diameter) problems. O

Near optimal broadcast schemes

The algorithm for the (Degree, Diameter) case for treewidth-bounded graphs has a nice application.
It can be used in conjunction with the ideas presented in [30] to obtain a near-optimal broadcast
tree for the class of treewidth-bounded graphs. As mentioned earlier, these results generalize and
improve the results of Kortsarz and Peleg.
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Given an unweighted graph G and a root r, a broadcast scheme for the graph from the root is
one using which a message from the root can be transmitted to all the nodes of G. We consider a
telephone model in which the messages are transmitted synchronously and at each time step, any
node can either transmit or receive a message from one of its neighbors. The minimum broadcast
time problem is to compute a scheme that completes in the minimum number of time steps. Let
OPT,(G) denote the minimum broadcast time for the root and let OPT(G) = Min,OPT.(G)
denote the minimum broadcast time for the graph from any root. We call the problem of computing
OPT.(G) the minimum rooted broadcast time problem and that of computing OPT(G) the minimum
broadcast time problem. These problems are known to be NP-complete [17].

Given a tree T, let mazdegreer denote the maximum degree of a node in T and let diametery
denotes the diameter of the tree T'. We recall the following definition from [30].

Definition: The poise P(G) of the graph G is defined as follows.

P(G) = min {mazdegreer + diametery}
spanning trees T

The following theorem [30] points out the relation between the poise of a graph and the optimal
broadcast scheme.

Theorem 4.5

logn

UP(G)) < OPT(G) £ O(OPT(G) - P(G) o

)

The proof of this theorem is constructive and implies that a good solution to the poise of a graph
can be used to construct a good solution for the minimum broadcast time problem with a factor of
O(=2%2-) overhead. Using our results for the (Degree, Diameter) problem for treewidth bounded

loglogn
graphs, we thus obtain the following.

Theorem 4.6 For the class of treewidth bounded graphs, there is a polynomial-time algorithm to com-
pute a spanning tree T such that (mazdegreer + diametery) = P(Q), where P(G) denotes the poise
of the graph G.

Proof Sketch : Use the (Degree, Diameter) approximation algorithm to compute degree-bounded
minimum diameter spanning trees for all possible degree bounds. Since the graph is unweighted, the
overall running time is strongly polynomial. Choose the tree T' with the least value of (degreer +
diameterr). O

;From Theorems 4.6 and 4.5 we get the following theorem

logn

Theorem 4.7 For any class of treewidth-bounded graphs there is a polynomial-time O(E{%g_n

algorithm for the minimum rooted broadcast time problem.
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