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Ultrasonic Wave Propagation in Multilayered
Piezoelectric Substrates:

H.-T. Chien, S.-H. Sheen, and A. C. Raptis 2

Abstract—Due to the increasing demand for higher operating frequency, lower
attenuation, and stronger piezoelectricity, use of the layered structure has become
necessary. Theoretical studies are carried out for ultrasonic waves propagating in the
multilayered piezoelectric substrates. Each layer processes up to as low as monoclinic
symmetry with various thickness and orientation. A plane acoustic wave is assumed
to be incident, at varied frequency and incidence angle, from a fluid upon a multi-
layered substrate. Simple analytical expressions for the reflection and transmission
coefficients are derived from which all propagation characteristics are identified. Such
expressions contain, as a by-product, the secular equation for the propagation of free
harmonic waves on the multilayered piezoelectric substrates. Solutions are obtained
for the individual layers which relate the field variables at the upper layer surfaces.
The response of the total system proceeds by satisfying appropriate interfacial condi-
tions across the layers. Based on the boundary conditions, two cases, ”shorted” and
"free”, are derived from which a so-called piezoelectric coupling factor is calculated
to show the piezoelectric efficiency. Our results are rather general and show that the

phase velocity is a function of frequency, layer thickness, and orientation.

1Work sponsored by the U.S. Department of Energy, Arms Control and Nonproliferation, Ad-
vanced Concept Programs.

>The authors are with the Energy Technology Division, Argonne National Laboratory, Argonne,
IL 60439.




1 INTRODUCTION

In previous papers {1}, [2], Nayfeh and Chien presented a unified analytical treatment
for the interactions of ultrasonic waves in piezoelectric plates and substrates. The
media are allowed to posses as low as monoclinic symmetry and associated piezo-
electric coupling. They are also assumed to be immersed in water and subjected to
inclident acoustic beams at arbitrary polar and azimuthal angles. Simple analytical
expressions for the reflection and transmission coefficients were derives from which all
propagation characteristics are identified. Such expressions contain, as a by-product,
the secular equation for the propagation of free harmonic waves on the piezoelectric
media. Higher symmetries, such as orthotropic, transverse isotropic and cubic, are
contained implicitly in this analysis.

Because that the wave vectors of the incident and reflected waves all lie on
the same plane [3], a linear transformation can be applied to simplify the analysis
and to facilitate compact expressions of the final results. Previously, Nayfeh has
successfully applied the general approach utilized in [4] to develop solutions for the
interactions of ultrasonic waves with a wide variety of single and multilayered plate
media in the absence of piezoelectric effects. Techniques utilized in [4] and [5] have
also been employed to develop solutions for a variety of multilayered anisotropic media
[6]. A unified analytical treatment supported by extensive experimental data of the
interaction of ultrasonic waves with an arbitrarily oriented orthotropic elastic plate
[7], 8.

The purpose of this paper is to extend the analysis of a single piezoelectric
media to the case of a multilayered substrate, which consists an arbitrary number
of piezoelectric layers rigidly bonded at their interfaces on a solid half-space. The
analysis will be general and can be handle layers of either different materials or
layers of the same materials with different orientations. Solutions will be obtained by
utilizing the single plate’s formal solutions together with the matrix transfer method
[1]. Using the matrix transfer method, the reflection and transmission coefficients of
the total system will are derived and from which all of the propagation characteristics
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are readily extracted. The generic difficulties of the mathematical analysis of waves
in anisotropic media as compared with those pertaining to isotropic media are fully

discussed (included extensive literature review) in [1], [2], and [4]-(8], and need not

to be elaborated upon here.

2 GOVERNING FIELD EQUATION OF PIEZO-
ELECTRICITY

The linear theory of piezoelectricity introduces linear coupling between the acous-
tic field equations and Maxwell’s electromagnetic field equations and governs the
characteristics of wave propagation in a piezoelectric medium [9], [10]. The linear

piezoelectric constitutive equations, derived from the linear theory of piezoelectricity,

of a piezoelectric medium are

Ti; = Cijre Ske — exij Ex (1)
Dy = erij Sij+en B;

where T;; represents the stress, C;;xe the elastic stiffness constant, Si; =1/2(0u;/0z;+
Ou;/0z;) the strain, u; the mechanical displacement, e;;; the piezoelectric stress con-
stant, By = —0¢4/0zy the electric field, ¢ a scalar electric potential, D; the electric
displacement, ¢; the dielectric permittivity, z; = (z1, 22, z3) the coordinate system,
and ¢,j,k,¢ = 1,2,3. The coupled piezoelectric field equations are given by the
motion equations and the electrostatic charge. The linear electrostatic piezoelectric

equations are derived as

Cijre urje+ erij Ok = p i (2)

ekij Uijk — €ki Ok = 0

where p is the material density. The elastic stiffness constants (C;;ju), the piezoelectric
stress constants (e;jx), and the dielectric permittivities (e;;) are fourth, third and
second rank tensors, respectively, and follow the tensor transformation [10]. The
summation convention applies to equations (1) and (2).
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The field equation and the constitutive equation of a fluid are

TS =pr il (3)
and
T = Xpuf, 65 (4)

respectively, where p; represents the fluid density, A; the fluid bulk modulus, and §;;
the Kronecker delta.

3 FORMULATION OF THE PROBLEM

Consider a multilayered substrate consisting of an arbitrary number, n, of piezoelec-
tric layers rigidly bonded at their interfaces on a solid half-space. Layers are stacked
normal to the zs-axis of a global orthogonal Cartesian system z; = (z1, T2, z3). Hence
the plane of each layer is parallel to the z;-z; plane which is also chosen to coincide
with the bottom surface of the layered substrate. In order to maintain generality we
shall assume each layer to be arbitrarily oriented in the z;-z, plane. To describe the
relative orientation of the layers we shall assign for each layer k, k = 1,2,...,n, a
local Cartesian coordinate (z})x coinciding with its axis of symmetry such that its
origin is located in the middle plane of the layer with (z4); normal to it. Thus layer
k extends from —di/2 < (z})r < di/2, where dy is its thickness. The total thickness
of the layers is d. Equivalently, the orientation of the kth layer in the z; space can
be described by a rotation of an angle ¥, between (z}); and z;. Once all orientation
angles 1), are specified the geometry of the layered substrate will be defined. The
geometry and modeling of the multilayered substrate is shown in Fig. 1.

Without any loss in generality we shall assume that a plane wave is incident
in the z,-z, plane on the medium from the upper fluid at an arbitrary angle 6.
The problem here is to study the reflected and transmitted fields. A key condition
which is found to facilitate our subsequent analysis is the fact that the wave vectors
of the incident and refracted waves must all lie in the same plane [3]. This is a
consequence of the continuity conditions at the interfaces. We therefore conduct our
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analysis in a coordinate system formed by incident and reflected planes rather than
by material symmetry axes. Accordingly, the primed system (zi)x rotates with one
material symmetry axis while the global unprimed system z; remains invariant. This
approach leads to significant simplification in our algebraic analysis and computations
(1].

In this section we follow the analytical procedure of [1] to construct a transfer
matrix for each layer k. In order to derive the reflection and transmission coeflicients,
the field equations of fluid must also be given in a manner similar to those of solid.
In our problem, we shall assume that the fluid (water) does not support piezoelectric
effects and hence its electric potential is zero. Accordingly, there will be no change
in the fluid’s field equations or their formal solutions from those given in our earlier
work (1], [2]. For this reason we shall only quote such material from them later on in
this analysis.

Formally, we can proceed to analyze the most general anisotropic medium (the
triclinic one) for each layer which has 21 elastic constants, 9 dielectric permittivities,
and 18 coupling coefficients. The expressions will be algebraically complicated and
their utility will be numerically limited as was pointed out in [1]. For the slightly
more symmetric materials, i.e., the monoclinic ones, dramatic simplifications can be
achieved for the final expressions. Therefore, we shall limit the following analysis to
monoclinic materials.

Anisotropic medium with one plane of material symmetry is termed monoclinic.
Two classes of such materials exist: these belong to an “m” or “2” groups whose con-

stitutive relations are respectively shown in expanded matrix manner as the following




(T ) Cn Ciz Ciz 0 0 Cw 0 0 ey] (S
T2 Ciz Ca2 Co3 0O 0 C% 0 0 e3 Sa
T3 Cis Ca3 Ci3 0 0 Cizs 0 0 exm Sa3
T2 0 0 0 Cis Cys 0 €14 €24 0 Sa3
T p = 0 0 0 Cis Css 0 e5 e3s 0 { S} (5)
T1a Cis Cw Ciz 0 0 Ces 0 0 eg S1a
D1 0 0 0 €14 €1s 0 €11 €12 0 E1
D2 0 0 0 €24 €25 0 €12 €29 0 Eg
L Ds | [ €31 €32 €33 0 0 ez O 0 €33 | [ E3 )
and
(T (Cin Ciz Ciz 0 0 Cis en en 07 (Sy)
T2 Ciz Cz2 Ca O 0 Ci e2 e 0 S22
T3 Cia C3 Cs3 0 0 Ci ez e 0 Sas
T23 0 0 0 044 045 0 0 0 €34 523
< Ths = 0 0 0 Csi Css 0 0 0 ess| ¢Siap. (6)
Tyo Cie C Ci O 0 Co €16 e 0 S12
D, enn €2 €3 0 - 0 e €1 €2 0 E,
D, |- €21 €2 €3 O 0 ex €2 € O E,
\ D3 ) L 0 0 0 €34 €35 0 0 0 633_ § E3 J

In these expanded forms we used the contracting subscript notation 1 — 11,
2—22,3—33,4—23,5— 13, and 6 — 12 to relate Cpq and ex, to Cijre and ey,
respectively (p,q = 1,2,...,6 and 4,5, k,£ = 1,2,3). Thus, C,s stands for Caz3 and
e14 stands for ejq3, for examples. Notice that the purely elastic or electric portions
of these relations are identical whereas the coupled portions are different. In fact, by
further examination we conclude that the vanishing entries in one correspond to the
nonvanishing entries of the other; i.e., there are no common nonvanishing coupling
terms. As will be shown later, such unique properties have important consequences in
the manner in which the various waves interact. For this reason we need to treat both
cases separately. It is expected that, upon presenting solutions for one case,- results
for the second case will be identified by inspection. Accordingly, we shall proceed to

first analyze the case of monoclinic-2 case.

3.1 MONOCLINIC-2 CLASS

The particle motion generally have three nonzero spatial components u;, u2, and us
corresponding to longitudinal wave (P) along the z;-axis, horizontally and vertically
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polarized transverse waves (SH and SV), respectively, and the electric potential @.
In the absence of material symmetry these three waves will couple together and be
stiffened lending to a complicated response. For plane waves propagating along the

zy-axis and independent of z,-axis, a formal solution for u; and ¢ can be written as
{uh U2, U3z, ¢} = -[7 expi€($1+°=3-ct) (7)

where ¢ = /-1, £ is the wave number, w is the circular frequency, ¢ is the phase
velocity (= w/€), « is still an unknown parameter. U = {U,V, W, ®} are constant
displacement amplitudes. Combinations of equations (7) and (2) yield four linear

homogeneous coupled equations

Pmn(a)Un =0, m,n =1,2,3,4, (8)

where the summation convention holds and T'p,n = T

I'i(e) = Cu —pc? + Cssa® I'2(a) = Ci6 + Cysa®

[22(c) = Ces — pc? + Cyqc? Ia(a) = (Cis + Css)

I‘33(a) = (Cs5— pc2 + 0330!2 st(a) = (036 + 045)0! (9)
Ta(e) = (e1s+eam)a Ta4(a) = ey5 + eaza?

TPa(a) = (e1s+ ezs)x . TF4s(e) = —e11 — €30,

Nontrivial solutions for U, demand the vanishing of the determinant in equa-

tion (8) and yield an eighth-degree polynomial equation in « as
"a® 4 Are® + Aot + Aze® + As=0 (10)

which is a characteristic equation relating o to ¢ and whose coefficients A;, A,, As,
and A, are listed in Appendix A of [2]. Equation (10) now admits four solutions for

o? and leads to eight solutions for o which are restricted such that
Gy = —y, Qy = —Q3, Q= —Qs, Qg = —Qr. (11)

For each o, we can use equation (8) to relate the amplitude ratios as

I'11(Pa3l24 — 2al'ss) + T2(T1ala4 — T'1al'as) + Tia(Tiales — Tialaa)

[12(T23T34 — T'2433) + Tia(T23T24 — Ta2laa) + Tha(T22a3 — T23lz3)

W = ['11(T22T 34 — I'24l'23) + T12(T18T24 — T'1ol's4) + T1a(T12T23 — T1alas) (12)
! I'12(T23T34 — T'24Ta3) + ia(T2sT24 — T'22l's4) + T'14(T22T33 — T2al23)

I'11(T23T'23 — T'22Ta3) + 12(T12T33 — TaTas) + Tia(T1a3l22 — T'i2l23)

[12(T28T'3s — T'24l's3) + T'ia(Tal24 — T 22034) + ['14(T22033 — T'23T23).
6
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Using superposition and the amplitude ratios in equation (12), we finally obtain the

formal solutions

( Uy ) i 1 1 1 1 1 1 1 1 1( U11E1 )
U2 w v V5 Vi V5 V& W Ve U2 E,
Us Wy Wo Wz Wy Ws We W, W UsEs;
L2 % % 0 B 8 O O | ] DB |
1 Tos (7| Du Diw Dis D Dis Dig Dyr Dis | UssBs { 13)
Ta Dy Da; Das Dyy Das Dag Dy Dog UieFs
Tas D3y D3y Dsz Dizys Dss Dis Dar Dasg U7 Eq
( D3 ) | Da Dsz Dss Dss Dss Dyg Dyz Dy | | UssEs |
or
F=[X][D]U (14)

where F is the interfacial components at the interface between two solid layers, Tis=
Tja/i€, D3 = D3/i€, [X] is the 8 X 8 matrix of equation (13), I = {U14}7, [Dlk is the

8 x 8 diagonal matrix whose entries are B, = exp%*®3,¢ =1,...,8, and
Dyy = Ciz+ CsVy + CazagW, + 3301, @,

Dy = Cssoq + CusagVg + Css W, + €159, (15)
D3, = Cysog + CaaegVy + Cas W, + €149,
Dy, = ea + essV; + ez, Wy — €330,P,.

With reference to the relations (11) and by inspection of equations (12)-(15) we

recognize the restrictions

Vi=Vip, Wi=—-Wi, @ =-0n, (16)
Dyj = Drjy1, Doy = —Dajyy, Da3j = —Dajya, Dsj = Dajpr,5 = 1,3,5,7.
By eliminating the common amplitudes U, equation (14) can be used to relate
the interfacial components at bottom, (z3)r = —di/2, to those at top, (z5)r = di/2,

of the kth layer. After rather lengthy algebraic reductions and manipulations we

obtain (with the summation holding)
Fr=[ae F7, k=12,...,n, (17)

where
[a]k = [X]x (Dl [X]5? (18)
7




constitutes the most general transfer matrix for the monoclinic layer k. It allows
the wave to be incident on layer k at an arbitrary angle 8 from the normal z3 or
equivalently (25) and at any azimuthal angle ¢». Matrix transfer for higher symmetry
material such as orthotropic, transversely isotropic, and cubic can be obtained from
equation (18) as asymptotically limiting cases.

The matrix transfer technique then yields, via the continuity of displacements

and stresses at the various layer interfaces, i.e. Fit = Fi11, the response vector at

z3 = d in terms of that at z3 = 0:
Ft =[A F~ (19)

where
[A] = [a]x [a]a—1 ... [ah (20)
where [A] represents the global transfer matrix, and F+ and F~ the column vectors
with respect to the top and bottom of the layered medium, respectively.
Waves propagating in certain crystals and along certain cuts of those crystals can
be decoupled into two wave types: pure elastic waves of coupled P and SV waves, and
piezoelectric coupled SH waves [1]. The same procedure for obtaining the transfer

matrix can be applied to those decoupled cases, such as in the orthotropic-222 or

-mm?2 group, respectively.

3.2 MONOCLINIC-M CLASS

Results for the mono-m case with the constitutive relations (8) can be obtained by
following identical steps to those given above for the mono-2 case. The steps, resulting
equations and the final results are similar with the exceptions of some parameter

definitions as summarized below:
(i) In equation (9) I'y4(e@r), I'24(c), and T'z4(c) are now replaced with
Fuy(a) = e+ essa?

Ta4(a) e1s + easr’ (21)
Iaa(e) = (e1s+ ess)a




(ii) The appropriate.coefficients of the characteristic equation (13) are listed in

Appendix A of [2] under mono-m class.
(iii) Equations (15) and (16) are replaced with

Diy = Ciz+ Cs6V + CazagW, + €130,

D2y = Cssag+ CasagVy + CssW, + e35@, (22)
-D3q = 045011 + 0440,1‘/; + 045Wq + 834@,1
Dyy = essoq + easyVy + e3s Wy — €330, 3,
and
Vi=Vin, Wj=-Win, ©;=0;, (23)

Dij = Dyj41, Dij = —Dijya, Dsj = —Dsjy1, Dyj=—Dyjs,.
3.3 TOP FLUID BOUNDARY

The multilayered medium is bounded with a fluid half-space on its top surface and a
substrate on its bottom. The input wave is assumed to be periodic and originating
in the top fluid half-space and incident on the medium at an arbitrary angle from
the normal. The displacements and stresses within the top fluid are given by prop-

erly specializing equation (13) and recognizing the absence of shear deformation and

electric potential within the fluid so that

U1 1 1 f i€ g (z3—d)
¥i U; expeasizs i£(z1—ct
T3s psec” —psc

where Tés = Tk /it, o} = (c?/c}) -1, U{ is the constant amplitude of the incoming
wave, U{ is that of the reflected wave and the sub and superscripts f denote quantities
belonging to the fluid. The continuity conditions at the plate-fluid interface are given
by

w=ul, TL=TL ¢ =Th=T%=0, atss=d. (25)




3.4 BOTTOM BOUNDARY SOLID SUBSTRATE

Since the bottom bounding medium is a solid substrate, its response is given by
specializing equation (13) to the substrate material and again ensuring boundness of

the solution by selecting only the appropriate amplitudes within the substrate so that

the substrate amplitude vector is

{U3,0,03,0,U8,0,U3,0}". (26)

The appropriate conditions at the bottom plate-substrate interface require the conti-
nuity of all displacements, stress components, and electric potential. Satisfying such
conditions for a shorted solid substrate finally yields the reflection coefficient

Rzgi_Ml—Q,M2

=——2I 2 27
Ul M+ QsM, @)

and the quasilongitudinal, quasitransverse shear and electric potential transmission

coefficients
Us 20,P;
T, = %=-—"T2X—-°__ 28
LS U T M+ Qi (28)
s__Ug_ P3 s __ Ug_—Ps s_U’;__P7
T -_— Uif —_— P TL, T5 == Uif = Pl TL, T7 = if = Pl TL
where Q5 = psc?/ay,
Ps; Ps3 Pss Psy Py, P33 Pjs Py
M. = Py Piz Py Py Mo = Py Pz Pys Py
! Psi Pes Pss Per 2 Py Pss Pss Por
P71 P73 P75 P77 PT]. P73 PTS P77
Pys Pys Py Py Pys Py
Py =|Ps3 Pes PFer Ps=|PFPs Pss Fsr
P73 P75 P77 P71 PTS P77
Py Py Py Py Py Py
Ps=|FPsy Pez PFer P;=|Psy Fss PFss
Pn P Prr P Pz Pps

and [P;] is the matrix product of [4;,] from equation (20) and the substrate’s char-

acteristic matrix from the specialization of equation (13) to the substrate.
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4 QUALITATIVE DESCRIPTION OF RESULTS

So far we have derived expressions for the reflection and transmission coefficients,
shown in equation (27), for multilayered monoclinic substrates with piezoelectric in-
iteraction. Results for arbitrary orientations of the individual layers, arbitrary fre-
quencies and angles of incidence are readily available. The reflection and transmission
coefficients contain, as a by-product, the characteristic equation for the propagation of
leaky surface waves on the corresponding medium. The vanishing of the denominator
in equation (27), namely,

M +QsM2=0 (29)

defines the characteristic equation for the propagation of leaky surface waves on the

multilayered substrate. In the absence of the fluid equation (29) reduces to

defining the characteristic equation for the dry system.

The similar results for free case can be obtained by assuming that there is a
very thin insulated coating on the surface of the top layer and setting the electric
displacement D3, rather than the electric potential, to vanish. The free case will not
be demonstrated here and can be derived without any problem by following the same
procedure shown for the shorted case.

The fraction change of phase velocities Av/v, so-called the piezoelectric coupling
factor, is used to evaluate the coupling efficiency and is defined as

2Y _ Yo (31)

v Voo

where v, and v are the phase velocities of free and shorted cases, respectively.

5 NUMERICAL ILLUSTRATIONS AND DIS-
CUSSION

It is known that the Rayleigh wave propagating in a single substrate is not dispersive
with respect to frequency but to the propagation direction. However, wave prop-
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Material | Quartz Gads PZT-65/35
Properties | Trig.-3m | Cubic-43m | Uniaxial
» 5.651 5.307 7.500
Cn 86.74 118.8 159.4
Css 107.20 118.8 126.1
Caa 57.94 59.4 38.9
Ces 39.87 59.4 42.8
Cla 6.99 53.8 73.9
Cis 11.91 53.8 73.9
Ciy -17.91
en 0.171
€14 -0.0436 0.154
€is 8.39
€31 -6.13
exs 10.70
€11 4.52 12.5 639.3
€33 4.68 12.5 153.3

Table 1: Material properties of selected piezoelectric materials. Units of Chpq, €ip, and
p are 10° Nt/m?, 10° Coulomb/m?, and g/cm?, respectively. ¢;; is given undimensional
as €*/ej, where €} = 8.854 x 1072 farad/m.

agating in a multilayered substrate is a function of the propagation direction, the
frequency, and the thickness of each layer. We have derived the analytical expres-
sions of the reflection and transmission coefficients, equation (27), and the associated
characteristic equations, equation (29), for this problem. Numerical results are pre-
sented below in two categories as the following: in the first, the reflection coefficients
and the function Ay under various phase velocity ¢ (or equivalently with incident an-
gle 0 since sin§ = cs/c) and azimuthal angles 9 are illustrated. This will display the
criteria of surface mode identification. The dispersion relations in the form of varia-
tions of phase velocities with F'd of a GaAs layer on a z;-cut Quartz substrate are
illustrated and discussed. Then, the dispersion curves of multilayered substrate with
different number of layers, orientations, and lamination orders of PZT-65/35 and

GaAs are presented. The material properties of the selected piezoelectric materials

are listed in Table 1.




I'ig. 2 shows that the behavior of the reflection coefficient, which is a function of
frequency and the thickness of each layer, for a multilayered substrate. Analysis of
the behavior of the reflection coefficient allows us to identify all of the propagation
characteristics which influence the distribution of the reflected field. Fig. 2a-d show
the variations of the real and imaginary parts of the reflection coefficients with phase
velocity at four different F'd for a GaAs plate with ¥ = 30° rigidly bonded on a
zy-cut Quartz substrate. Also displayed in these figures are the normalized values of
the corresponding parameters M;. The wave behavior in the presence of liquid (so-
called leaky Rayleigh surface wave) [1] is also applied here, i.e. where the real part of
the reflection coeflicient approaches -1 which also coincides with the rapid variation -
(through zero) of its phase and the vanishing of the function M;. Furthermore, at
Fd =0, only one mode occurs and is at the surface wave speed of the substrate which
is 3.264 km/sec for the z;-cut Quartz substrate. This is expected since at the zero
frequency limit, i.e., for very long wavelengths, the plate will be essentially “washed”
out. As the frequency increases more modes appear successively; this behavior is
typical of all softening (loading) materials. By using the criteria stated previously.
and collecting the modes for various F'd, a dispersion curve for the shorted case of
this case is obtained and illustrated in Fig. 3. The fundamental mode, as discussed
above, starts from the surface wave velocity of the z;-cut Quartz substrate. The bulk
shear velocity of the sul’astra,te is the cut-off phase velocity for higher modes and these
modes do not exist if the phase velocity is higher than that velocity. Therefore, higher
modes start from the so-called cut-off frequencies. For high F'd the fundamental mode
approaches the surface wave velocity, 2.68 km/sec, of the GaAs.

In the following demonstrations, the multilayered media are chosen by putting
either GaAs or PZT-65/35 as the substrate and the other as the top layer with
different number of laminations of them on the substrate, where each layer has equal
thickness. The influence of the layer ordering in wave characteristics is also implicitly
included in this series of demonstrations. Fig. 4 shows the dispersion curve for a

PZT-65/35 layer on a GaAs substrate with ¢ = 45°, where solid and dashed lines
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are for shorted and free cases, respectively. Because the medium is softened by the
PZT-65/35 layer, the phase velocity starts from the surface wave velocity of the
substrate (2.87 km/sec) at fd = 0 and approaches to that of the layer (2.38 km/sec)
at high fd. Higher modes exist and have cut-off velocities at the bulk shear velocity
of the substrate (3.34 km/sec). By selecting a Gads layer on a PZT-65/35 substrate,
there exists only one mode because the layer is stiffer than the substrate. This leaky
type of wave, starting from the surface velocity of the substrate (2.38 km/sec) and
being cut-off at that of the layer (2.62 km/sec), is shown in Fig. 5.

Fig. 6 shows the dispersion curve for GaAs and PZT-65/35 layers on a GaAs
substrate with ¢ = 45°. The fundamental mode starts at 2.87 km/sec and decreases if
fd increases, like the case in Fig. 4, because of the softening. However, if the frequency
keeps on increasing, the phase velocity will decrease because of the extra layer of
GaAs which stiffen the medium at high fd. By adding an addition layer of PZT-
65/35 on top of the case shown in Fig. 5, higher modes exist rather than just a single
fundamental mode. Fig. 7 shows that the phase velocity of the fundamental mode
starts from 2.38 km/sec, increases if fd increased, and will decrease and approach
to 2.38 km/sec if fd keeps on increasing. Figs. 8 and 9 illustrate the piezoelectric
coupling factor for the last two cases, GaAs and PZT-65/35 layers on GaAs substrate
and PZT-65/35 and GaAs on PZT-65/35 substrate, respectively.

Fig. 10 show that four GaAs and PZT-65/63 laminations on a GaAs substrate,
while the Fig. 11 illustrates a PZT-65/63 substrate with four PZT-65/63 and GaAs
laminations. Both cases exhibits similar behavior as the last two cases, respectively.
However, with the increasing of the layer number, the phase velocity of the funda-

mental mode has minor pertubation and the cut-off frequencies of higher modes are

increased.

6 CONCLUSION

A theoretical investigations and formulations for ultrasonic waves in the multilayered

piezoelectric substrates with fluid loading are presented. Each layer processes up to as
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low as monoclinic symmetry. Reflection and transmission coefficients are derived from
which all characteristic behavior of the system is identified. Solutions are obtained
for the individual layers which relate the field variables at the upper and lower layer
surfaces and by satisfying appropriate interfacial conditions across the layers. It was
also proved that the results obtained under this assumption from fluid-loaded cases
are same as that of dry cases. Our results are rather general and contain a wide
variety of special cases. Multilayered substrates with different orientations, number
of layers, materials, and lamination order can be studied. Some numerical results for

multilayered piezoelectric substrates are demonstrated.
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LIST OF FIGURES

Figure 1: Geometry and modeling of a multilayered medium. Incident beam strikes

medium at angle  between the principle axis of material crystal and the plane
of incidence.

Figure 2: Variation of reflection coefficient with phase velocity for various frequency
of a GaAs layer on a z;-cut Quartz substrate. Solid line is the real part, long
dashed line is the imaginary part, and the short dashed line is the absolute
value of secular equation. (2a: Fid = 0; 2b: Fd = 0.5; 2c: Fd=1; 2d: Fd = 3)

Figure 3: Dispersion plots for a GaAs layer on a z;-cut Quartz substrate for shorted
case collected from Fig. 2.

Figure 4: Dispersion plot for a PZT-65/35 layer on GaAs substrate with ¢ = 45°.
Solid and dashed lines are for shorted and free cases, respectively.

Figure 5: Dispersion plot for a GaAs layer with 1 = 45° on PZT-65/35 substrate.
Solid and dashed lines are for shorted and free cases, respectively.

Figure 6: Dispersion plot for GaAs and PZT-65/35 layers on GaAs substrate with
¥ = 45°. Solid and dashed lines are for shorted and free cases, respectively.

Figure 7: Dispersion plot for PZT-65/35 and GaAs, with ¥ = 45°, layers on PZT-
65/35 substrate. Solid and dashed lines are for shorted and free cases, respec-
tively.

Figure 8: Variation of piezoelectric coupling constant of first two modes with F'd for
GaAs and PZT-65/35 layers on GaAs substrate.

Figure 9: Variation of piezoelectric coupling constant of first two modes with F'd for
PZT-65/35 and GaAs layers on PZT-65/35 substrate.

Figure 10: Dispersion plot for four GaAs and PZT-65/35 laminations on GaAs sub-
strate with ¥ = 453°. Solid and dashed lines are for shorted and free cases,

respectively.

Figure 11: Dispersion plot for four PZT-65/35 and GaAs laminations on PZT-65/35

substrate. Solid and dashed lines are for shorted and free cases, respectively.
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LIST OF TABLES

Table 1: Material properties of selected piezoelectric materials. Units of Crqy €ip,
and p are 10° Nt/m?, 10° Coulomb/m?, and g/cm3, respectively. €:; is given

undimensional as €’/¢3, where €j = 8.854 x 1072 farad/m.
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