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Klystron Beam-Bunching Lecture

Bruce Carlsten
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

Introduction

Electron beam current modulation (the creation of a train of electron bunches) in a
klystron is the key phenomena that accounts for klystron gain and rf power generation.
Current modulation results from the beam's interaction with the rf fields in a cavity, and
in turn is responsible for driving modulation in the next rf cavity. To understand the
impact of the current modulation in a klystron, we have to understand both the
mechanism leading to the generation of the current modulation and the interaction of a
current-modulated electron beam with an rf cavity. The cavity interaction is subtle,
because the fields in the cavity modify the bunching of the beam within the cavity itself
(usually very dramatically).

In this lecture, we will establish the necessary formalism to understand klystron
bunching phenomena. (This formalism can be used to describe rf accelerator cavity/beam
interactions.) This formalism is strictly steady-state, and no transient behavior will be
considered.

In particular, we will discuss these concepts relevant to klystron operation:

(1) General description of klystron operation

(2) Define beam harmonic current

(3) Describe how beam velocity modulation induced by an rf cavity leads to current
modulation in both the ballistic and space-charge dominated regimes

(4) Use Ramo's theorem to define the power transfer between a bunched electron beam
and the cavity

(5) General cavity model with external coupling (including an external generator if
needed), used to describe the input cavity, idler cavities, and the output cavity, including
the definition of beam-loaded cavity impedahce.

Although all these components are conceptually straight-forward, there is a fair
amount of physics represented in these concepts and in order to derive some elements of
the formalism from first principles requires excessive steps. ~ Our-approach in the
followihg notes will be to present a self-consistent set of equations describing the




important elements of the beam/cavity interaction in klystrons, and to only derive a few.
relatively simple steps - derivations for moderately complex formulas will be outlined,
and a relatively complex derivation of the self-consistent set of equations can be found in
the Appendix. The main goal of this self-consistent model is to provide a mechanism that
leads to a quantifiable description of klystron behavior.

I. General Description of Klystron Operation

A klystron is conceptually a simple device, and can be thought of as a dc to rf
transformer. DC beam power is relatively easy to generate; a small amount of rf power is
transferred to the beam in an input cavity. The beam rf power grows from the interaction
with subsequent cavities (by increasing the current modulation as the beam travels
downstream), and is extracted in an output cavity. '

In Figure 1 we show a schematic of a generic klystron. In this figure, the electron
beam travels from left to right. The electron beam current before the input cavity is dc.
The input cavity is driven by an external generator so that an oscillatory electric field is
set up in the gap between the cavity noses. This axial electric field does work on the

electron beam J‘eE,f,Zdz ; the electron beam gets accelerated during half of the rf
gap ‘

period and decelerated during the other half of the rf period. (The instantaneous integral
of the axial electric field in the cavity gap is known as the gap voltage. The maximum
accelerating/decelerating potential seen by the beam is the gap voltage times a geometric
factor and a transit time factor, both less than, but close to unity.) Downstream, this
velocity modulation results in a current modulation as some of the electrons overtake
others. For small velocity modulations, this current modulation is sinusoidal (a typical
one is shown in Figure 2a) and for large velocity modulations, this current modulation
can become nonlinear (a typical one is shown in Figure 2b). We can assume that the
current modulation is zero at the center of the input cavity and increases for a while,
reaches a maximum at some distance from the input cavity, and then decreases. A typical
input cavity can produce a peak current modulation of 0.1% of the average beam current.

An idler cavity is placed at the location of the maximum beam current
modulation. This cavity is driven by the beam modulation to a gap voltage much higher
than that in the input cavity. The beam velocity is thus modulated by this cavity, and
additional current modulation is generated downstream of this cavity. A typical value for
the current modulation after the first idler cavity is 1% of the average beam current.




A second and third idler cavities are shown in Figure 1 also, each placed at the
location of the maximum beam current modulation from the preceding cavity. The beam
current modulation after these cavities can be 10% and 100% of the average beam
current. After the final idler cavity, the electron beam has become a train of well-defined
bunches, separated by essentially empty space. In the next section, we will learn how to
quantify the terms "bunch" and "empty space." Finally, an output cavity is placed at the
location of the maximum beam current modulation from the final idler cavity. This
cavity is tuned such that the fields induced in it by the beam current modulation oppose
the motion of the bunch, and it is decelerated and the power lost from it is extracted from
the cavity through an external waveguide.

Often, one or more "penultimate” cavities are introduced just before the output
cavity. The purpose of these cavities is to further bunch and increase the harmonic
current at the location of the output cavity, to a level unattainable by a single cavity. A
typical way to do this is by detuning a cavity relatively far above resonance (known as
"inductively tuning"). This will cause the zero of this cavity's fields to be phased near the
maximum in the harmonic current, and the cavity fields will then "squish" the bunch
further, thereby increasing the harmonic current. Another trick used to increase the
harmonic current at the location of the output cavity is to include a cavity resonating at
the second harmonic of the operating frequency before the penultimate cavity. This
second harmonic cavity will create two smaller bunches per rf period; the penultimate
cavity will then be used to merge this two smaller bunches into one larger bunch. Both of
these tricks éssentially introduce nonlinear beam modulation in order (1) to increase the
harmonic current and (2) to increase the axial range over which there is a large harmonic
current. This process is the major element in klystron design, and is responsible for
increasing the output efficiency (defined by the 1f output power divided by the beam
power) from a nominal 25-30% to 50-60%, for high-power klystrons. At the location of
the output cavity (but with the output cavity not present), harmonic currents of 160% of
the beam current are common; with the output cavity present, the harmonic current will
typically drop to about 100% of the beam current. The output cavity voltage is typically
1.2-1.3 times the beam voltage.

In later sections of this lecture note, we will present formulas which allow us to
quantify the effects of cavity fields on beam bunching, and on beam loading, induced
current, and other aspects of beam-cavity interaction physics related to the beam-current
" modulation. However, in general, numerical solution of these formulas is requii‘éd
because of the inherent nonlinearity of the problem.




I1. Definition of Beam Harmonic Current

Although the beam harmonic current is not directly useful for determining how
much a cavity is modulated, it is used as a common figure of merit, and can give a
reasonable estimate of the extraction efficiency. The harmonic current is defined in terms
of the Fourier expansion of the beam current / at a given axial location,

I(z,t) =1, + Ij(2)cos(@t + ¢;) + I, (z)cos(Lwr + ¢y )+... 1¢))

where the drive frequency is f =@ /2 and the average beam current is given by .
When one refers to the harmonic current, one is usually talking about the fundamental
harmonic component of the harmonic current, /1. This component can range from zero to
twice the averége beam current (this is easily verified by calculating the coefficient for

the harmonic current for a periodic delta function of current). The product %IIVO is often

referred to as the beam rf power, where Vj is the. beam kinetic voltage. The nth Fourier

component of the beam current is given by

I,=C?+82 @)

where the coefficients C, and S§,, are given by .

27T
C,(2) =2} I(t,7)cos(nawt)d(wr)
J0
27 . (3)
Sp(2)=2 | I(t,2)sin(nwt)d(wt)
L4Y]

In these definitions, we are keeping the Fourier components of the beam current real,
because the beam current is physical and thus real. When we later use the induced
current model for cavity excitation, we will introduce complex currents (the induced

current is not physically measurable).

We can see how the fundamental harmonic current can be used to estlmate the '

‘maximum rf power extraction efﬁcmncy by usmg s1mple power considerations. The
power extracted in the output cavity is given by (this is essentially the instantaneous work
the rf fields do on the electron beam)




P(t)= J.j(i’,t) -E(F,0dv, @
Vv

where J is from the beam current and E‘,f is from the cavity's fields, which we will

assume have a cos(®t) time dependence. Only the fundamental Fourier component leads
to a nonzero contribution, and if we assume that the cavity is phased to extract the most
power and that the cavity fields only extend over a very short axial distance, the average

1 . o
extracted power reduces to Py, = 'Z'IIVgapM , where M is a transit-time factor, and the

gap voltage is defined as the line integral of the electric field along some path S of

interest,

Veap = J‘E(F) dl )
S

For optimal performance, the output cavity gap voltage is very nearly the same as the
beam voltage, so the extraction efficiency is about n=(1/2)I;/1,. Note that a train of

delta function bunches ( I; = 21,) gives a maximum extracted power of 1,V,, (the same as

the dc beam power), which is what we would intuitively expect.
III. Bunching due to Beam Velocity Modulation

In this section, we will present formulas that describe the beam harmonic current
evolution as a function of axial position downstream from a cavity which imposes a
velocity modulation on the beam and as a function of the cavity gap voltage.

Space-charge dominated bunching

The growth of the beam harmonic current can be either space-charge dominated
or ballistic, depending on the current, and the modulation voltage. In addition, it can also
be either small- or large-signal. For small momentum modulations, the bunching in the
space-charge-dominated regime results from space-charge compression waves initiated
by the cavity. The current modulation from this effect is givenby.- .- ---.... .. . |




L 1 Vgap T

1, (1"'7)73]2 | Vo

H (6)

where T is the transit time factor
S ( wd }
S —2*V—
T=—\""0/ )

for a gap of length d, where v, is the dc beam velocity and @, is the reduced plasma

frequency, given by @, = Po , Where now e is the electronic charge, m is the
’ mc

electronic mass, p,, is the dc charge density in the beam, c is the speed of light, and R is
the reduction factor. For modern, high-perveance klystrons, @, is can actually become
larger than @ (this provides additional complications in the space-charge bunching which
we will not consider).

The maximum harmonic modulation occurs at an axial distance from the cavity of

! ,
Z ="V _ . 3)
b 2w4y3/2 .

This space-charge dominated bunching can be analytically evaluated by considering the
equation for the rf axial space-charge electric field due to a density modulation, the
Lorentz force equation (which shows how the time and axial derivatives of the rf beam
velocity is related to the rf axial electric field), and the continuity equation (which can be
used to relate the rf velocity to the rf density). Note that the maximum harmonic current
is always very low from space-charge bunching. ’

Now we will summarize the analysis leading to Eqns. (7) and (8), assuming 1-D
symmetry for simplicity. A full 3-D analysis will lead to qualitatively the same results)
because klystrons typically have heavily confined flow (a large axial magnetic field is
applied which constrains the electrons to move only axially). This analysis will be
Eulerian, or fluid in nature. We will consider the charge density, current density, and
velocity of a small; continuous element of the beam. Tn this analysis, we will assume the

dc electron density is given by N, the dc charge density is given by p;, the dc current -

density is given by J,,, and the dc beam velocity is v,. The rf number density will be




called n, the rf charge density will be called p, the rf current density will be called J,
‘and the 1f beam velocity will be called v, and the 1f axial electric field will be called E.
We will assume all rf components have an implicit /@ time dependence.

The Lorentz force equation for a small element of the beam then becomes

(N +mZ v =(p-p,)E. ©

To lowest order we can ignore the rf number density and rf charge density, and after
expanding the total derivative in terms as a convective derivative, using the assumed time

dependence, and using -‘-;l = 73 _v2_ , we end up with
. 14 c

v=—(e/m)E/'y3

jo - jpv a0
The definition of the total current density is
Jo +)=(P=po)v+7,) €3]
and the rf current density to lowest order is
J=pv,=pyv . (12)
The continuity equation also gives
%ﬁ-=—jwp : (13)

At this time, we will also assume an e IP2 axial dependency (this is the space-charge
wave assumption), and the continuity equation becomes

Bl=awp . (14)

Using Equs. (12) and (14) to find another equation for v we find - e




J(o-Bv,)=-wp,v , (15)
which, with Eqn. (10) gives

_ .03 BREl Y

16
o (B,-B) (10

where we have defined 8, = ® /v,. We now will get a second relation between J and

E by using the equation for the vector potential resulting from a current density, and set
these two expressions equal, and end up with a dispersion relation for the axial
propagation constant f.

The wave equation for the axial vector potential is

V2A, +k2A, = -] 17

where we are using k, = @ / ¢. Using the Lorentz gauge, the electric field in terms of the

vector potential is
d (= =
—|V-A 2 _p2
E=’—ijz+9i.( )="°. B, . (18)
joue joue
Combining Eqns. (17) and (18) we find
=L 19)
joe

Combining this equation with Eqn. (16) we finally arrive at the dispersion relation for f:
2 )
Bo=B) =758 . (20)
(0]
which has solution

Bi=ﬁo'(1i%ﬂy3’2). S e




The usual approach at this point is to write
J=AeiBsz 4 pemiBz 22)

and to set J=0 at z=0 in order to evaluate the coefficients. This is not strictly true
(really only the charge density vanishes at z=0), but is a good approximation if @, is

much less than @ (f this is not valid, the current modulation will end up having two
wave components). This immediately gives B=—A, and

J ==24je Jﬁ"zsm( af 3/2/302] . (23)

Using the equation for the rf current density and the continuity equation (Eqn. (13), not
Eqn. (14)), we find

. 2v 3/2 iB,z Dp 312
= Aj—2| L ~IPo —£ . 24
v pro(w ﬂ) COS[CO}' Boz (24)

Now note that the velocity modulation from a cavity with gap voltage Vy,, is given by

-~

Voanl
Wz=0)= Ly, 25)

i)

which immediately gives us

_ €VeapTVop, @

=- (26)
12(,},2 1)'}’5/27716'2 a)p
and
J=— eVgapT:;;ZPo '(wt—BoZ) Sln( P 3/2ﬁOZJ , ‘ (27)
( Yo - )7 me? a’p o




where we have now explicitly included the time dependence, and which gives the results
reported in Eqns. (6) and (8) (thé reduced plasma frequency arises from using a reduced
axial electric field in the Lorentz force equation). In Fig. 3 we show a plot of the plasma

frequency reduction factor of a solid beam as a function of beam-pipe radius, beam radius
and beam velocity. The factor wb /v, is typically about 0.5.

Ballistic bunching .

| In the limit of vanishing current, or large energy modulation from the cavity, the
space-charge forces can be ignored, and the motion is ballistic, with faster particles
overtaking slower ones. Ballistic motion is well known for the short-gap, nonrelativistic
limit, and always leads to large-signal bﬁnching. ‘For a relativistic beam without space

charge, the harmonic current in the limit of a small gap voltage (or equivalently short -

gap) is
L =21,J,(x) | (28)
where

Purely ballistic bunching eventually grows to large signal. The.harmonic current has a

maximum of 1.164 I, at ¥ = 1.84. These ballistic equations can be easily found by

explicitly following trajectories of particles at different phases after the rf cavity,
neglecting space-charge forces. _

We can derive Eqris. (28) and (29) by following the ballistic trajectories from a
gap to a downstream axial location. For simplicity, we will consider a very thin gap, with

a small-signal gap voltage. The exit velocity from the gap for a particle passing through
at atime ¢, isthen glven by

TeV,,, .
B __sin(at,) | . (30)

7(72 - l)mc2

Vexit =Vo| 1+

This particle will reach a location ! downstream at a time 7 given to lowest order in the

gap voltage by -

10




TeV
wt — ot, =ﬂ—ﬂ——ﬂ——sin(wto) ) (31)

Vo Yo 7(72—-1)m62

In Fig. 4, we plot the arrival time versus the exit time. The arrival time is single-valued

wl T?ng . . . . .
as long as ——-—-—7————2—<1. Note that if the arrival time is single-valued the
Vo y(y —l)mc

instantaneous current at z =/ is given by

dt,

I0=-1,—*% 32
O=-1I & (32)
We can Fourier decompose the current at z =1 by
IH=-1,+ E a, cos(n(wt - 8)) + b, sin(n(wt — 0)) (33)
n=1
where
1 o0+ .
a, = = I(t)cos(n(wt — 6))d(wr)
Yyo-r
. 00+ (34)
b, =— | I(t)sin(n(t - 60))d(wr)
b4
vO-r
Let us consider the case that the arrival time is single-valued, where we can use
I d(wt) =—-1, d(wt,) . 35)

The coefficients a, and b, become

11




T
a, = -—% cos(n(wr, — x sinox, ))d(a)to) ==21,J,(ny)
Joz
7T (36)
b, = —ln‘l sin(n(a)to ——xsinat,))d(wt,) =0 ,
Jog

and the current at z =1 becomes

©o

I(H=-1,- ZIOZJn(nZ)cos(n(a)t -0)) , 37
n=1
which gives us the results in Eqns. (28) and (29).

For axial positions where the arrival time is multi-valued, the Fourier integral has
to be broken into different time intervals that are single-valued; after doing so, the exact
same expressions for the coefficients a, and b, results. The time (arrival and exit)
values that define these intervals are shown in Fig. 4.

Nonlinear bunching (using either a second harmonic cavity or a penultimate
cavity) cannot be adequately described by either the small-signal or the ballistic
 representation, and can only be calculated with numerical simulations. Also, for single
cavity modulation, the beam harmonic current evolution in the regime between pure
space-charge bunching and ballistic bunching can only be numerically evaluated. It
should also be noted that significant second harmonic bunching can occur if the beam can
execute at least 1/3 of a reduced plasma oscillation between idler cavities.

IV. Ramo's Theorem for Power Transfer from a Bunched Beam to the
Cavity

A bunched beam will drive an 1f cavity, causing a nonzero gap voltage. This gap
voltage will in turn modify the bunch structure within the cavity itself. In this section, we
present the self-consistent model for steady-state cavity excitation by a current modulated
beam (including the effect of external coupling). This interaction model uses a fictitious
current, called the induced current, to mediate the interaction. The fundamental Fourier
component of this current will be denoted by i to distinguish it from the very physical

(but not as useful) fundamental Fourier component of the beam current, 7.

12




The cavity model, the external coupling model, the induced current model and the

match model all assume a steady-state condition has been reached. In Fig. 5 we present
the circuit model for the input cavity. The internal cavity impedance, Z_.,,, is given

either in terms of the cavity shunt impedance R, the cavity capacitance C, the cavity
inductance L, or alternatively in terms of R, the cavity resonant frequency f,, the

operating frequency f, and the cavity R/ Q factor by

(38)

where the two definitions are related by R/Q=1/2xf,C and (21;7‘0)2CL= 1. The
cavity gap voltage is defined as the line integral of the electric field along some path § of
interest, defined in Eqn. (5), and is the voltage across the cavity impedance in Fig. 5,

given by

Veap =Zeay(i+iy) (39)

where i is the current in the cavity circuit due to the génerator and i is the current in the
cavity circuit due to the beam, usually known as the beam induced current. For typical
input cavities of conventional klystrons, the induced current counters most of the
generator drive and the resulting gap voltage is much smaller than the absolute value of
]ianv|. The induced current physically arises from the slight bunching of the electron
beam within the cavity fields, as it reaches the downstream end of cavity, which then
feeds back and induces a counter drive to the cavity fields. For klystron cavities, the path
S in Eqn. (5) is typically taken along the axis from z=—co to z=1c0, The cavity shunt
impedance is defined from the power P required to establish a modulation Vgap in the

cavity:
R=-%8%2 (40)

Since the cavity Q is also defined in terms of the-power required to establish a.gﬁ/en
cavity modulation, the ratio of the shunt impedance to the cavity Q is independent of

power, and is just a geometrical factor,

13




| ( JSE(?) : df]z

= , 41)
meJV{E(?)Izd?

QX

where the volume integral is taken over the cavity volume.
The model is completed by using Ramo's theorem to define the instantaneous
induced current i, ,

J(2)- By (1) dF

iig () =X ) (42)
Veap(®)

Eqn. (38) defines the cavity impedance, Eqn. (39) defines the relation between the
induced current, cavity impedance, and the gap voltage, and Eqn. (42) defines the
induced current in term of the gap voltage. These three equations define a self-consistent
description of a beam/cavity interaction, in which the induced current drives the gap
voltage, but the gap voltage in turn effects the induced current.

From Eqgns. (38) and (39) we can determine useful phasing information of the gap
voltage. If the cavity is tuned on resonance (defined by f = f,), the cavity impedance is
purely real. For all cavities other than the input cavity (and for the output cavity in
particular), the internal generator current i is zero, and for resonant tuning, the gap
voltage is then in phase with the induced current. From the definition of the gap voltage
in Fig. 5, we see that this means that the gap voltage decelerates the bunch represented by
the induced current, and the maximum amount of power is extracted from it. This is
usually the tuning desired in the output cavity. Note that in an output cavity, the beam
harmonic current is comparable to the average beam current, as is the gap voltage to the
beam voltage. Thus, the cavity shunt impedance (including the loading to an external
waveguide) must be comparable to the beam impedance. For typical klystrons, the
unloaded cavity shunt impedance is several orders of magnitude higher than the beam
impedance, and the cavity must be heavily loaded by the external coupling. (In the

Appendix, it is shown that the proper shunt impedance to use in Eqn. (38) is the
externally loaded cavity shunt impedance, defined by the cavity R/Q times the loaded

cavity Q.).

14




Also, we can consider the case of a penultimate cavity, where we want to further
compress an existing bunch. If the cavity resonant frequency is higher than the rf
frequency, the cavity impedance has a negative complex phase (which is typically very
near —/2). In this case, the phase of the gap voltage is such that the gap voltage
vanishes for the center of the arriving bunch, accelerates electrons behind the center, and
decelerates electrons in front of the center, thereby further compressing the bunch. Note
that as the detuning is increased, the cavity impedance drops from several orders of
magnitude larger than the beam impedance (at zero detuning) to a level comparable to the
beam impedance, and even smaller for extremely high detunings. Thus, even for large-
signal beam current modulations, a penultimate cavity can be used to further compress
the bunch with a gap voltage not exceeding the beam voltage.

For maximum gain, idler cavities are typically tuned right on resonance. From
Eqgn. 6, we see that the gain (ratio of one idler cavity gap voltage to the previous idler
cavity gap voltage) is given approximately by (IpZc4, / Vo) @/ ®4)/2, which is
typically on the order of 10 (for high-perveance designs) to 100 (for low-perveance
designs). For example, a typical cavity impedance at L-band is 2(105) Q and a high
power tube may be designed with a beam voltage of 2(105 )V and an average current of
100 A, and with a reduced plasma frequency of 1-2 GHz.

V. General Cavity Model with External Coﬁpling

Using the model defined in the previous section, we can determine all sorts of
useful, quantitative features of the beam/cavity interaction. In this section, we will also
define the concept of the beam-loaded cavity impedance, which is often used to
approximate the beam/cavity interaction in an input cavity. We are also particularly
interested in determining the driving power requirements for the input cavity (in terms of
the externally loaded cavity Q and the cavity resonant frequency), as the input cavity is
the most difficult of all the cavities to analytically describe.

We'll start by examining the externally drive line in the circuit model in Fig. 5.
The external waveguide supports both an ingoing wave with current I, and voltage i,Z,

and an outgoing wave with current —i, and voltage i.Z,. The outgoing wave can be

thought of as the combination of part of the drive wave from the generator reflected at the
waveguide/cavity boundary and power being drained from the internal cavity modulation.
It is typically fully absorbed in a circulator load and is thus isolated from the generator

15

itself. The waveguide and the cavity are coupled through a mutual inductance M; the - e

self-inductance of the cavity is included in the cavity impedance and any stray self-




inductance of the waveguide in the waveguide-cavity coupling is ignored. This
assumption is not limiting, because the stray self-inductance of the waveguide only leads
to a slight effective detuning of the cavity's resonant frequency, with no other effect for a
high Q cavity.

Using Fig. 5 and the definition of the mutual inductance, we have these
expression for the currents in the cavity-waveguide circuit:

ig +i, = oM, (43)
ZO

and

Z
-l +i,. = (i+i) =& 44
74 r ( l)ja)M ( )

where as before @ =27xf is the radian operating frequency and Z, is the waveguide

characteristic impedance. Since we will assume that the generator current within the
cavity i is given and the induced current i1 can be calculated as discussed in the previous
section, these two equations are sufficient to define all other parameters.

Externally loaded cavity Q

First, we will find the externally loaded cavity Q, in the absence of the electron
beam and with the external generator off. We assume the cavity has some modulation
(possibly from by the current drive i) and some losses both internal and in the external
waveguide. The cold externally loaded cavity Q is then defined by

wEstored
= —Storea 45
QI 2P, loss @)

where E,),.4 is the stored energy in the cavity,

1 1T 2. 1.2
Estored = 2 2 CIlC| +§ L]‘Ll ’ (46)
where ic is the current through the capacitor and iy is the current through the inductor,

and the power loss is

16




| 1.2 1.,
Py, = ER[: o+ % lif* (47)

where |i RI is the current through the resistor in the cavity circuit model. Using the circuit

model in Fig. 5, we find that the loaded cavity Q without beam is given by

1

=0, , 48
¢ Q51+Rﬂﬁ) (48)
where the unloaded cavity Q is given by
oCR 1
= 1+ 49
%= [ wZCL) @
and we have defined a complex coupling coefficient 8 to be
B —_ ZOZCGV (SO)

w2M2

for convenience. Note that Z, and M are real; § 'and Z_,, have the same complex

phase angle. .
Power required from the generator

The generator must supply a power

P, = %zoligf . (51)

Eliminating the generator current in terms of the induced current and gap voltage, we find

this formula for the power supplied by the generator:

_ i anv
&P 1+8

ZelBl

1 2
Pg ='§ll+ﬂl

R
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which is accurate for an arbitrary cavity-waveguide coupling . The induced current
drive is only a function of the gap voltage, and can be expressed by |

i1=V

wap! Zo (53)

where the beam impedance Z, is a essentially independent of the gap voltage (as long as

the modulation is small signal), and can be easily found numerically (various analytic
expressions for Z, exists, but they are unreliable). We can write the power required from

the generator as

‘2

__|1+ﬁ|2 [ gapl Zeay

54)
lzcaVl Iﬂl 1+ﬂ )Zbl

Using the concept of the beam impedance, we can use Fig. 6 as an alternative circuit
model for small-signal operation, which is now independent of the induced current. The
total impedance of the cavity (the beam-loaded cavity impedance) is now given by
A/1Zy+1/ anv)"l. This concept of a beam-loaded impedance only requires small-
signal operation, and is valid in both the input cavity and also small-signal idler cavities.
The beam impedance is almost always much smaller than the cavity impedance, and thus
the beam-loaded cavity impedance is very close to the beam.impedance.

Special case of matched coupling

The coupling is matched if there is no reflected wave when the beam is present.
This case is desirable because it leads to the least amount of power from the generator for
achieving a desired cavity modulation. In this section, we will determine the match
condition on the coupling parameter 8, the power from the generator for a matched
coupling, and expressions for the cavity detuning and cold externally loaded Q that lead
to the proper match. Because f and the unloaded cavity impedance have the same
complex phase, not all unloaded cavity impedances can be matched; the input cavity
resonant frequency must be detuned to the proper value. ’

If the Coupling is matched, we find

Zb" chv

s (Match condition) . (55)
Z

B:
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Eqn. (27) for the powér from the generator can in turn be rewritten as

anv - Zb

(Match condition) (56)
Zb anv

Py = % lVgaplz

This expression is certainly not surprising since the last term is the beam-loaded cavity
admittance shown in Fig. 6. Note that the cavity impedance Z.,, is typically large and

mostly positive and, with the sign convention used to define the beam impedance, Z, is
small and mostly negative. Thus, the beam-loaded cavity admittance is essentially the
beam admittance, and the unloaded cavity impedance does not influence it as long as it is
sufficiently large.

Now let us find an explicit formula for the cavity detuning and cold externally
loaded Q that will lead to a matched coupling.

By comparing the definition of the coupling coefficient 8 from Eqns. (50) and
(55) we see

Zo

w’M? = . (Match condition) (57)
1/Z,0 ~1/2,

The left-hand side of this equation is real; the left-hand side depends on the resonant
frequency f, and can be made real by the proper choice of the resonant frequency. Note
that for a given cavity design, the cavity shunt impedance and R/Q factor are essentially
fixed, and that finding the detuning which leads to a real right-hand side of Eqn. (57)
uniquely determines the unloaded cavity impedance. If we define a fractional detuning
by (6+1)f = f, (0 is positive for a cavity resonant frequency greater than the operating

frequency), we see that the cavity detuning must be

5= —%—th(ll Z) (Match condition) (58)

in order to satisfy the match condition.
Once the cavity impedance is found using this detuning, the externally loaded
cavity Q without beam is given by (using Eqn. (48))
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(Match condition) (59)

Zy

Equations (58) and (59) together define the requirements for matching the input cavity
with the electron beam.

If the beam impedance is purely real (and thus the match cavity tuning is on
resonance from Eqn. (58)), and is much smaller than the unloaded cavity impedance, the
right-hand-side of Eqn. (59) reduces to the beam-loaded cavity Q in the absence of any
external coupling. Thus, for a purely real beam impedance much smaller than the
unloaded cavity impedance, the waveguide coupling is matched when the beam is present
if the externally loaded Q without beam equals the beam-loaded cavity Q in the absence
of the waveguide coupling.

If the matching conditions are not satisfied, Eqn. (54) can be used to find the
power from the generator for achieving a desired cavity modulation. The coupling
parameter [ is fixed by the choice of the detuning and the measured cold externally
loaded cavity Q (assuming the cavity R/Q factor and shunt impedance are unchanged),

and is given by

p= Lo (9’4— J ' (60)

APPENDIX

In this appendix, we (1) derive Ramo's theorem for periodic current drives and arbitrary
cavity loadings and (2) show that Ramo's theorem is consistent with the parallel circuit
model in Fig. 5 and with the definition of the cavity impedance (Eqn. (38)) and the cavity
gap voltage (Eqn. (39)).

Ramo's theorem is usually derived from nonrelativistic energy conservation
arguments, or with the assumption of a sinusoidal current drive and high Q cavities. Here
Ramo's Theorem is derived exactly from the normal mode expansion of fields in a cavity

driven by a periodic current source, with arbitrary unloaded-cavity and externally loaded-

' cavity Os.

In general, at any time ¢, the electric and magnetic fields can be expressed
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EF.0=Y CuFp(P)+ Y, DpEp(?)
B} S G (A1)
HFE =Y LGP+ Y, KppHp (7)

m m

where the coefficients are in general functions of time, and where F, and G, are the
electric and magnetic irrotational fields and E, and H,, are the electric and magnetic
solenoidal fields satisfying the boundary conditions. In addition, we choose the

normalization

|

<|i

— 1
H,=—VXE,
o (A2)

!

<

E, X

1
ky g
and the eigenfrequency k,, is the same for both E,, and I?,,.

The periodic current source can be described in a Fourier series

JF0=Y T, (e . . (A3)
n

Because Maxwell's equations are linear and time invariant, we can likewise Fourier
decompose the steady-state electric and magnetic fields with no loss of generality (since
the output of linear, time-invariant, systems has the same exponential time behavior as
the input):

EF D= Y CpuFu@e™ + Y D, E, (F)e™
m,n m.n
HF =Y Ly 1 Gn(Pe™ ™ + Y Koy n (Pl

m.n m.n

(A4)

What we are really interested in is calculating the coefficient D,,, because the cavity TM

modes are E, modes. We start with the Maxwell curl equations for the nth harmonic,

and using the mode orthogonalities, we find:
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jvf,, -Fdeﬁ

m

- 1
E,= Y

- jnwe < [ |Ful av i

§S(ﬁxEn)-€7xEmds__ jneop
- (k,},-n2k2)jv|ﬁm|2dv (kz, - n*k?) J’V|Em|2dv

jvf,, E,dvV |_

1 § (A Ey)- GpdS _
"= jnop = = 2 Jm
m [ Gul av (AS)
ky, jvf,, .E,dV inwe §S(ﬁxE,,)-ﬁmdS .

m | Gy =%k’ A - [ || av

Because we used Stokes' theorem, we have gone to a closed surface S, which leaves the
metal and cuts across the waveguide (and transversely across the beam pipe) sufficiently
far from the cavity that only the normal waveguide fields are present. We have also
introduced the drive wavenumber k = a/c.

As expected, the field solutions are specified completely by the current source
term and the electric field at the boundary. ‘_

The tangential electric field on the metal satisfies

nou
20

AX By, =— 1+ HH,, . (A6)

Thus (using 7 fIm =0 on %),

§ (ixE,)-V x E,dz ) §zkam,m/£2?§;‘i(1 +j)H,, - H,d>

A7
[ JEn|"av [ \B| av D
because the earlier normalization is equivalent to
= 2 — 12
jV|Em| av = jV|Hm| v . (A8)

Using
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§2Hm HydZ ey

jvlﬁmlzdv = o ,_12%& (A9)
where Q,}, is the unloaded cavity O for mode m, the above integral is just
Ko (L J) (A10)
"o
The surface integral over the waveguide cross section is
b X E) VxEndS oy o AL

jvl E m|2 dyv B Qm,ext

where Qm ex is the cavity Q loaded by the external waveguide for mode m. Likewise,

§S(ﬁx E,)-H,dS

jvlfszdv

1+j 1
=—-nouk — - . (Al12)
a m,‘:n( Om Qm,ext}

We can identify Dy, , and K, , from Eqn. (AS), and using Eqns. (A10) - (A12), we have

m,n

knKmpn [14] 1 Jnoy IVJ” EmdV
=3 2,3 + YR T) )
=1k Om  Omext ) (kg —n°k?) jV|Em] dv

K oo JVJn'Ede ntoeuk, ,(1+j 1
mn = T = P T (2 —n22 +
(ky —n°k") jleml dv (kg —n°k") \ Om Qm,ext

(Al13)

Solving for Ky, , first and then for Dy, , gives
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where we have defined a loaded-cavity resonant wavenumber (and related frequency) to
be

1+1Q,,
(l+l/Qm )2 + (I/Qm +1/ O ext )2

k2 =k2 (A15)

We can define a shunt impedance for mode m to be (dropping the earlier subscript
notation)

- 2
Ry = (—I—Eg’;—rzil)— ) (A16)
m,dis

where the line integral is taken along the same path we choose for defining our gap
voltage and Py, dis is the power dissipated in the cavity walls for mode m. Since the gap
voltage of mode m generated from the nth harmonic of the current is

Veap mpn = Dm,nJ. Ep(r)-dl (A17)

we can rewrite Eqn. (A14) defining a cavity impedance for mode m and harmonic »,

gap n,n ." E, (- dl

cav m,n

_ ) (A18)
[, 7% DunEndv

v cavm,n -
gap m,n

The total gap voltage is th’én
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. jJEdV

-V 7 efnat (A19)
gap ~ =~ j (1)l

cavm,n

We can define an induced current for the nth harmonic of mode m as

_ [, 70 EwdV
bndmp="" - (A20)

gap m,n
The total gap voltage is then given by

14 ap = Eiind mnZcay m,ne]nwt (A21)

m,n

and we have proven Ramo's theorem under Fourier decomposition for arbitrary cavity
external coupling (the minus sign arises from the direction of the line integral for the gap
voltage). The cavity impedance is given by

l 1 nw

1 02 || O Cnen |Qn (nco wm)'w— '

= =4 myo, (A22)
Zeay m.n n2w2 1+ -Qi- R, @0, no 7;'"—
- m

We immediately see that this impedance can be represented by the circuit model in Fig. 5
with the correct choices of impedance, capacitance and inductance. Thus, we are
physically justified in using the parallel circuit model to represent a cavity driven by a
beam. We can take the no-external coupling and large-external coupling limits of Eqn.
(A22) to gain some physical insight. First, we assume that the cavity will be driven close
to the loaded resonance of the desired mode, nw = @,,, which makes the term that

modifies the R/Q term unity. We will also assume that Q,, is large. In the no-external
coupling limit, @, = @,,, and we find that the cavity impedance reduces exactly to the

usual form used in Section IV,

-1 1 1
'—“_——=_+](nw wm)R - T B (A23)
Zcav mn no ext Ry, @y  na. -Q—m : } o
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The cavity impedance in the large-external coupling limit is

__1__=[1+ 1 ] % L 10 Ba)ll

2 —
Zeay m,n ext Qm,ext Qm,ext Ry, oy nao -Q—-
-l

We notice several interesting features in this limit. First, the cavity R/Q term is basically
unmodified, and also the shunt impedance term scales with the loaded cavity Q, as we
would expect. Additionally, the first bracketed term suggests that the cavity shunt
impedance is decreased as the external coupling becomes large. For a given induced
current, this factor reduces the gap voltage. It also reduces the power in the cavity as well
as the power extracted from the cavity.
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FIG. 1

Multi-cavity klystron schematic (from Power Klystrons Today, by Smith and Phﬂhps Research
Studies Press, LTD).
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FIG. 2 Sample numeric current profiles
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" FIG. 3

Space-charge reduction factor for a solid beam (from Power lestrong Today, by Smith and
Phillips, Research Studles Press, LTD) _ :
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Arrival time ¢ versus exit time 7, for ballistic motion after a gridded gap. The values #, fp, 257, %22,
1,3, and 7,4 show how the time integrals will be broken up when the exit time is mulit-valued.
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FIG. 5

Equivalent circuit of a klystron cavity, including an external drive, using the induced current
defined in Eqn. (42) to describe the influence of a bunched electron beam.
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FIG. 6

Equivalent circuit of a klystron cavity, includin : .
; , an ) '
defined in Eqn. (53) to describe the influence o%a b‘f;:ée mai ?o?c;r% I:n;mg the beam impedance
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