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Singular Perturbation Analysis
of the Neutron Transport Equation

by

David C. Losey (Westinghouse Savannah River Co.),
John C. Lee (University of Michigan)

A singular perturbation technique is applied to the one-speed, one-dimensional neutron
transport equation with isotropic scattering. Our technique extends previous singular
perturbation applications!:2 to higher-order and reduces the transport problem to a series of
diffusion theory problems in the interior medium and a series of analytically solvable
transport problems in the boundary layers. Asymptotic matching links the two solutions,
yielding boundary conditions and a composite expansion valid throughout the media. Our
formulation generates an accurate correction for the material interface condition used in global
diffusion theory calculations.

Our analysis? selects the small ordering parameter € as the ratio of the neutron mean free path

to the physical width of the system. We assume a power series expansion of the angular flux:
(-2 oo j
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where x is the dimensionless spatial variable and the Py(ut)'s are Legendre polynomials.

Since c, the number of secondary neutrons per collision, relates characteristic lengths in the

system, an expansion in € is assumed:

c(e)=1+Zeicj .
=2 )

Similarly, we allow a small isotropic external source that is expanded:

eS(x;e) = Z g Q) .
2 3




These expansions are substituted into the transport equation and terms of each order in € are

equated to derive the equations in Table I. These equations are decoupled since the lower-

order equations do not depend on the higher-order.

Our analysis finds that the ¢;and Q; expansion coefficients are not uniquely determined as
just diffusion coefficients in diffusion theory are not unique. Although the ¢; are not unique,
(c-1) is required to be O(e2) and the dispersion law, cvg tanh™! 1/vg = 1, must be satisfied.
Here vg(e) is the transport discrete eigenvalue and also has a power series expansion since it

relates characteristic lengths.

In fixed source problems one choice for the ¢;is ¢, = (c-1) / &2 so that ¢;=0 for j 2 3, which
gives the common form for the interior diffusion equations. Alternatively, we could choose
¢z = -1/ (3e2vyd so that the c; vanish for j odd and are functions of ¢, for j even. This gives
the transport-corrected form of the interior diffusion equations with asymptotic diffusion
lengths of ev,. Our source expansion comes from reasoning that the lowest-order flux
expansion, Y%, can model the exact flux in an infinite medium with slowly varying source,
if we choose Qy(x)(c-1) = c,eS(x;€).

In criticality problems, c(¢) becomes an eigenvalue and the c; depend on the boundary

conditions rather than material properties as in fixed source problems. For example, in a bare
slab that is 1/e mfp thick, the eigenvalue is calculated as:

cle)=1 +Ze’c —1+—1t g -—yln 2¢3 ( —-4Y%1t2)84+0(85)
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from the interior equations and vacuum boundary conditions of Table I. A similar
perturbation expression was derived previously4, but we solve through O(g2), without

simplifying the boundary analysis.

Our boundary layer analysis formulates a series of inhomogeneous transport problems in
purely scattering media that can be solved by various methods of the singular eigenfunction
techniqued. Although the analysis is complicated, it is performed only once for each
boundary condition, and the final transient component of the scalar flux is expressed as a




series of exponential integrals rather than in the singular eigenfunctions. For the interface
problem the additional O(g2) transient component is:

o) = £ A%¥%xp) I T Byl 16 , 330
j=0 ®)

where y = (x - xg)/€, X = Xp at the boundary, and the I'; are constants from the singular
eigenfunction analysis. The boundary layer analysis also gives boundary conditions for the
interior solutions listed in Table 1. For material interfaces the lower-order conditions require
continuity of the flux and its derivative, while the O(e?) conditions require a discontinuous
interior flux that is matched by the Eq. (5) transient flux. For vacuum boundaries the O(1)
condition requires the flux to vanish at x,, while the O(g) condition effectively adds an

extrapolated endpoint.

Our perturbation techniques yield decoupled interior diffusion equations and boundary layer
solutions involving exponential integrals. In analytic and numeric tests detailed in a
companion summary$, the error in calculated scalar flux, relative to transport results, is
reduced to about half that of conventional diffusion theory. Our analysis also provides a

consistent method for deriving and comparing various diffusion theory approximations.

TABLE I
Interior Perturbation Equations and Boundary Conditions

Interior Diffusion Equations Boundary Conditions

for the Common or Material Interface Left/Right Vacuum
Transport-Corrected Forms atx =X atx =Xp

~¥93 o, ¥%(x) = Q,(x) AP = Ap20 =g ¥
-9l ¥¥x)=0 AP0 = Apl0=g | w0=1q, @l
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Note: AW is the change across the interface A¥Y = ¥(xg+) — F(xy—) and y; = 7104
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