

Singular Perturbation Analysis of the Neutron Transport Equation

by

D. C. Losey

Westinghouse Savannah River Company
Savannah River Site
Aiken, South Carolina 29808

J. C. Lee
University of Michigan
MI USA

A document prepared for 1996 AMERICAN NUCLEAR SOCIETY INTERNATIONAL MEETING/TRANSACTION OF THE AMERICAN NUCLEAR SOCIETY at Washington from 11/10/96 - 11/14/96.

DOE Contract No. DE-AC09-89SR18035

This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

NMP-PLS-960107, Rev 1
June 14, 1996

Retention: Permanent, RIDS #7175.

cc: Records, 704-F

To: Scientific/Technical Information, 703-43A (4 copies)

From: David C. Losey, 704-F

Summary I for ANS Conference_(u)

The attached paper on singular perturbation analysis in neutron transport
is for submission at the next ANS conference.

Singular Perturbation Analysis of the Neutron Transport Equation

by

David C. Losey (Westinghouse Savannah River Co.),
John C. Lee (University of Michigan)

A singular perturbation technique is applied to the one-speed, one-dimensional neutron transport equation with isotropic scattering. Our technique extends previous singular perturbation applications^{1,2} to higher-order and reduces the transport problem to a series of diffusion theory problems in the interior medium and a series of analytically solvable transport problems in the boundary layers. Asymptotic matching links the two solutions, yielding boundary conditions and a composite expansion valid throughout the media. Our formulation generates an accurate correction for the material interface condition used in global diffusion theory calculations.

Our analysis³ selects the small ordering parameter ϵ as the ratio of the neutron mean free path to the physical width of the system. We assume a power series expansion of the angular flux:

$$\Psi(x, \mu; \epsilon) = \sum_{j=0}^{\infty} \epsilon^j \Psi^j(x, \mu) = \sum_{j=0}^{\infty} \epsilon^j \sum_{k=0}^j \Psi^{jk}(x) P_k(\mu), \quad (1)$$

where x is the dimensionless spatial variable and the $P_k(\mu)$'s are Legendre polynomials. Since c , the number of secondary neutrons per collision, relates characteristic lengths in the system, an expansion in ϵ is assumed:

$$c(\epsilon) = 1 + \sum_{j=2}^{\infty} \epsilon^j c_j. \quad (2)$$

Similarly, we allow a small isotropic external source that is expanded:

$$\epsilon S(x; \epsilon) = \sum_{j=2}^{\infty} \epsilon^j Q_j(x). \quad (3)$$

These expansions are substituted into the transport equation and terms of each order in ϵ are equated to derive the equations in Table I. These equations are decoupled since the lower-order equations do not depend on the higher-order.

Our analysis finds that the c_j and Q_j expansion coefficients are not uniquely determined as just diffusion coefficients in diffusion theory are not unique. Although the c_j are not unique, $(c-1)$ is required to be $O(\epsilon^2)$ and the dispersion law, $c v_0 \tanh^{-1} 1/v_0 = 1$, must be satisfied. Here $v_0(\epsilon)$ is the transport discrete eigenvalue and also has a power series expansion since it relates characteristic lengths.

In fixed source problems one choice for the c_j is $c_2 = (c-1) / \epsilon^2$ so that $c_j = 0$ for $j \geq 3$, which gives the common form for the interior diffusion equations. Alternatively, we could choose $c_2 = -1 / (3\epsilon^2 v_0^2)$ so that the c_j vanish for j odd and are functions of c_2 for j even. This gives the transport-corrected form of the interior diffusion equations with asymptotic diffusion lengths of ϵv_0 . Our source expansion comes from reasoning that the lowest-order flux expansion, Ψ^{00} , can model the exact flux in an infinite medium with slowly varying source, if we choose $Q_2(x)(c-1) = c_2 \epsilon S(x; \epsilon)$.

In criticality problems, $c(\epsilon)$ becomes an eigenvalue and the c_j depend on the boundary conditions rather than material properties as in fixed source problems. For example, in a bare slab that is $1/\epsilon$ mfp thick, the eigenvalue is calculated as:

$$c(\epsilon) = 1 + \sum_{j=2}^{\infty} \epsilon^j c_j = 1 + \frac{1}{3} \pi^2 \epsilon^2 - \frac{4}{3} \gamma_1 \pi^2 \epsilon^3 - \left(\frac{4}{45} \pi^4 - 4\gamma_1^2 \pi^2 \right) \epsilon^4 + O(\epsilon^5) \quad (4)$$

from the interior equations and vacuum boundary conditions of Table I. A similar perturbation expression was derived previously⁴, but we solve through $O(\epsilon^2)$, without simplifying the boundary analysis.

Our boundary layer analysis formulates a series of inhomogeneous transport problems in purely scattering media that can be solved by various methods of the singular eigenfunction technique⁵. Although the analysis is complicated, it is performed only once for each boundary condition, and the final transient component of the scalar flux is expressed as a

series of exponential integrals rather than in the singular eigenfunctions. For the interface problem the additional $O(\epsilon^2)$ transient component is:

$$\omega(y) = \pm \Delta \Psi_{xx}^{00}(x_0) \sum_{j=0}^{\infty} \Gamma_j E_{2j+2}(\pm y) / 6 , \quad y \geq 0 \quad (5)$$

where $y = (x - x_0)/\epsilon$, $x = x_0$ at the boundary, and the Γ_j are constants from the singular eigenfunction analysis. The boundary layer analysis also gives boundary conditions for the interior solutions listed in Table I. For material interfaces the lower-order conditions require continuity of the flux and its derivative, while the $O(\epsilon^2)$ conditions require a discontinuous interior flux that is matched by the Eq. (5) transient flux. For vacuum boundaries the $O(1)$ condition requires the flux to vanish at x_0 , while the $O(\epsilon)$ condition effectively adds an extrapolated endpoint.

Our perturbation techniques yield decoupled interior diffusion equations and boundary layer solutions involving exponential integrals. In analytic and numeric tests detailed in a companion summary⁶, the error in calculated scalar flux, relative to transport results, is reduced to about half that of conventional diffusion theory. Our analysis also provides a consistent method for deriving and comparing various diffusion theory approximations.

TABLE I
Interior Perturbation Equations and Boundary Conditions

Order	Interior Diffusion Equations for the Common or Transport-Corrected Forms	Boundary Conditions	
		Material Interface at $x = x_0$	Left/Right Vacuum at $x = x_0$
$O(1)$	$-\Psi_{xx}^{00}/3 - c_2 \Psi^{00}(x) = Q_2(x)$	$\Delta \Psi^{00} = \Delta \Psi_x^{00} = 0$	$\Psi^{00} = 0$
$O(\epsilon)$	$-\Psi_{xx}^{10}/3 - c_2 \Psi^{10}(x) = 0$	$\Delta \Psi^{10} = \Delta \Psi_x^{10} = 0$	$\Psi^{10} = \pm \gamma_1 \Psi_x^{00}$
$O(\epsilon^2)$	$-\Psi_{xx}^{20}/3 - c_2 \Psi^{20}(x) = -\frac{4}{15} Q_{2xx}$ + $\left\{ c_4 + \frac{4}{5} c_2^2 \right\} [\Psi^{00}(x) + Q_2(x)/c_2]$	$\Delta \Psi^{20} + \frac{4}{15} \Delta \Psi_{xx}^{00} = 0$ $\Delta \Psi_x^{20} + \frac{4}{15} \Delta \Psi_{xxx}^{00} = 0$	$\Psi^{20} = \pm \gamma_1 \Psi_x^{10}$ - .2190 Ψ_{xx}^{00}

Note: $\Delta \Psi$ is the change across the interface $\Delta \Psi = \Psi(x_0+) - \Psi(x_0-)$ and $\gamma_1 = .7104$

- 1 G. J. HABETLER and B. J. MATKOWSKY, "Uniform Asymptotic Expansions in Transport Theory with Small Mean Free Paths, and the Diffusion Approximation," *J. Math. Phys.*, **16**, 846 (1975).
- 2 E. W. LARSEN, "Diffusion Theory as an Asymptotic Limit of Transport Theory for Nearly Critical Systems with Small Mean Free Paths," *Annals of Nuclear Energy*, **7** 249, (1980).
- 3 D. C. LOSEY, J. C. LEE, W. R. MARTIN and T. C. ADAMSON, Jr., "Singular Perturbation Solutions of the Neutron Transport Equation," *Nucl. Sci. Eng.*, **123**, 68 (1996).
- 4 V. C. BOFFI, V. G. MOLINARI, and G. SPIGA, "Asymptotic Solutions in Neutron Transport Theory," *Nucl. Sci. Eng.*, **62**, 332 (1977).
- 5 K. M. CASE and P. F. ZWEIFEL, *Linear Transport Theory*, Addison-Wesley, Reading, Massachusetts (1967).
- 6 D. C. LOSEY and J. C. LEE, "Singular Perturbation Applications to Neutron Transport", submitted for presentation at the present conference.