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High Accuracy 3D Electromagnetic
Finite Element Analysis

Eric M. Nelson

Los Alamos National Laboratory,
Los Alamos, New Mezico 87545

Abstract. A high accuracy 3D electromagnetic finite element field solver employing
quadratic hexahedral elements and quadratic mixed-order one-form basis functions
will be described. The solver is based on an object-oriented C++ class library. Test
cases demonstrate that frequency errors less than 10 ppm can be achieved using modest
workstations, and that the solutions have no contamination from spurious modes. The
role of differential geometry and geometrical physics in finite element analysis will also
be discussed.

INTRODUCTION

Electromagnetic finite element analysis (FEA) is becoming more popular
as the accuracy and reliability of FEA codes improve. Accurate models of
complicated structures have long been sought, and FEA with warped and/or
unstructured meshes has been perceived as one path to achieve this accuracy.
Thermal and mechanical FEA has met great success, but electromagnetic FEA
has traditionally been plagued with reliability problems. Usually these relia-
bility problems take the form of spurious modes (see (1) for many references).
Fortunately, numerous workers have made steady progress in the past decade
to eliminate these problems.

Differential geometry has been mentioned a few times (1, 2) in the elec-
tromagnetic FEA literature. It is an excellent tool for understanding electro-
magnetic FEA. Unfortunately, most of the current literature continues to use
vector calculus notation, thus obscuring the simple nature of electromagnetic
FEA.

Some reliable 3D electromagnetic FEA codes have existed for some time
(see (3) and (4) for example). I have written an electromagnetic FEA code
which should be equivalent to the code described in (4). In this paper I would
like to (1) describe what I have learned about electromagnetic FEA from
studying some differential geometry, and (2) demonstrate the accuracy and
reliability of this FEA code.

*  Work supported by DOE, contract W-7405-ENG-36.




FINITE ELEMENT FORMULATION

In vector calculus notation, this FEA code is based on the following weak
formulation of the eigenmode problem for electric fields: find eigenvalues w?/c?
and the corresponding eigenmode fields E € UE such that VF € U,

2
/ (VxF) -u”l(VxE)—%F-eEdﬁzm (1)
Q

where €2 is the cavity interior and the space Ug of test functions F and trial
functions E is

Ug = {E € Heun() : AXE = 0 on dQ}, (2)

and Hcur1(2) is the space of vector fields on Q which are square integrable in
the following sense,

Hount() = {B : / (VXE[ + [E[? dQ exists}). 3)
Q

A similar formulation is based on the magnetic fields: find eigenvalues w?/c?
and the corresponding eigenmode fields H € Uy such that VG € Uy,

2
/Q(VXG)-G"l(VxH)—%G-quQ=O, (4)

where the space Uy = Hcun(2).

The cavity interior {2 is partitioned into quadratic hexahedral (27-node)
elements. Curved edges and faces allows these elements to closely follow curved
boundaries. On each element there are 54 quadratic mixed-order 1-form basis
functions, which are described in more detail below.

Numerical integration is used to compute the matrix components, and a
simple subspace iteration scheme with a conjugate gradient solve is used to
solve the sparse algebraic eigenvalue problem. A C++ class library handles
matrices and bookkeeping of elements, faces, edges, nodes and basis functions.

LESSONS FROM GEOMETRICAL PHYSICS

In the finite element method, the problem domain € is divided into ele-
ments with simple shapes like tetrahedra and hexahedra. Each element €2, has
a local coordinate system (i.e., a master element) and a map z. from local to
global coordinates. This map is typically only used to define basis functions
and to change variables to numerically integrate equation (1) over ..

There is a close parallel between FEM and differential geometry. In dif-
ferential geometry one considers a manifold (the problem domain 2) which is
covered by coordinate patches (the elements). Where the coordinate patches




overlap, the coordinate system of one patch is a differentiable function of the
coordinates in the other patch. Differential geometry does not demand that a
global coordinate system exist, but it accomodates one very well.

What does one learn from this comparison? First, the local coordinates
of an element are a valid coordinate system. The physical equations can be
expressed in local coordinates just like they are expressed in global coordinates.

Consider a vector basis function. There is no conceptual difference between
a vector in global coordinates and a vector in local coordinates. The two are
related by the transformation rule for vectors,

3
vt o=

2

e 5

2 5ui U 5)
j=1

where v* and %/ are the components of the vector in the global and local co-

ordinate basis, respectively, and :z:}z(uJ ) is the map from local coordinates u’

(j = 1,2,3) to global coordinates z* (i = 1,2,3). Note that early attempts

at 3D electromagnetic FEA violated this transformation rule. They would

use scalar basis functions for the vector components, and simply map these

components from local to global coordinates, v* = #¢. This procedure is ge-

ometrically incorrect, and thus the results of these FEA codes were usually

flawed.

Now consider which basis functions are appropriate for electromagnetic
FEA. In reference (5), Maxwell’s equations are described in terms of differential
geometry and geometrical physics. In particular, it is pointed out that the
electric field is most naturally expressed as a 1-form, or covariant vector. Hence
the appropriate basis functions for electric fields is most easily expressed as 1-
forms, not vectors. Recent literature typically shows complicated constructions
for these basis functions (see references (1) and (6) for example), but if one
writes the basis functions as 1-forms in local coordinates (u, v and w), they are
simple polynomials. This is the spirit of FEM—the field is a linear combination
of simple basis functions on simple elements.

The choice of basis functions is important, as described in (7) and (8).
The basis functions should be mixed-order, with the basis for the field along a
coordinate direction, say E,, being complete to order p in v and w, but only
p—1in u. The basis functions employed in this FEA are listed in table 1. The
local coordinates of the hexahedra are 0 < u <1,0<v<land 0 <w <1,
and the coordinate basis for 1-forms is du, dv and dw.

The basis functions are assembled so that the tangential component of the
field at an interface between elements is continuous. Thinking of the basis
functions as 1-forms makes it easy to verify that the assembly process works.
The basis functions are characterized by their non-zero tangential field on an
edge or face. The first 12 basis functions have constant tangential field along
one edge. These basis functions, by themselves, are appropriate for a linear
mixed-order approximation to the fields. The next 12 basis functions (a3




Table 1. Quadratic 1-form basis functions a; for hexahedral elements.

a1 ={1-v)(1-w)du
az =(1—u)(1—w)dv
azg = u(l —w)dv
as =v(l —w)du

ag = (2’U - 1)0.1
a14 = (2v — 1)ag
a5 = (2v — l)as
a16 = (2u — 1)ay

as = (1 —u)(1—-v)dw

as = u(l—v)dw
ar = (1—wwvdw

ag = uv dw

a7 = (2’111 — 1)a5
aig = (2w - l)ae
a19 = (2w — Day
agz = (2w — 1)ag

ag = (1 —v)wdu
a0 = (1 — uw)wdv
a1 = uwdv
ajs = vwdu

91 = (2u - 1)a9

ase = (2v — 1)aye
a3 = (2v — 1)ayy
azq = (2u — Days

ags = 4du(l —u)(1 — w)dv

ase = 4v(1 —v) (1 - w)du
agr = (1 —-v)4dw(l —w)du
azs = 4u(l —u) (1 —v) dw
aze = (1 —u)dv(l —v)dw
aso = (1 —u)dw(l — w)dv

az7 = (2v - Lags
azg = (2u - 1)a26
ase = (2u — l)agy
a40 = (2’11) - l)azg
ag9 = 4v(1 —v) dw(l — w)du
asp = 4u(l — u) dw(l — w) dv
as; = 4u(l — u) dv(1 — v) dw

a4 = (2w - 1)a29
49 = (2’0 - 1)a30
a43 = (2’0 - 1)0,31
a44 = (2'w - 1)(132

az1 = uwdw(l —w)dv
azs = udv(l —v)dw
asz = 4u(l — u)vdw
aze = vdw(l — w)du
ass = dv(l - v)wdu
a3s = du(l — u)wdv

ass = (2w - 1)ass
ass = (2u — 1)ass
asr = (2u — 1)ass
ass = (2v — 1)ase
ase = (2u — 1aygg
ass = (2v — 1)aso

as4 = (2w — 1)as

to ag4) have linear tangential field along one edge. The next 24 basis functions
(a5 to a4g) have non-zero tangential field on one face but no edges. Finally,
the last 6 basis functions (a49 to as4) have no tangential field on the element
boundary.

To assemble global basis functions, the first 24 basis functions must co-
ordinate with all elements which share their one edge. The second 24 basis
functions must coordinate with the element which shares their one face. The
last 6 basis functions are valid global basis functions by themselves, and need
not coordinate with any neighboring elements.

In terms of exterior products (A) and exterior derivatives (d), equation (1)
can be expressed as

2
/ dF A p~'dE — Z-F A €E =0, (6)
0 C

where g and € are now Hodge-star operators which convert 1-forms (e.g., £
and H) to 2-forms (e.g., D and B) using some tensor (i.e., the permittivity and
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permeability tensors). Differential geometry reminds us that we can differenti-
ate in local coordinates (where the basis and their derivatives are simple) and
transform the result to global coordinates (where the permittivity, permeabil-
ity and metric tensors are usually simple). This avoids messy applications of
the chain rule and extra calculation. In some cases it may be cost-effective to
transform the tensors to local coordinates and perform all of the computations
in local coordinates.

TESTS OF THE FEA CODE

This FEA code was tested on (1) a 3x 2 x 1 rectangular cavity, (2) a pillbox
cavity with radius p = 1 and height [ = 1 and (3) a p = 1 spherical cavity. The
mesh was refined in a regular manner from a coarse mesh to a fine mesh. The
relative error of the computed eigenvalues for both electric and magnetic field
calculations is shown in figure 1. Excellent accuracies (less than 10ppm error)
are achieved on a modest workstation. The error is proportional to A%, where
h is the element size. The numerical eigenvalue of the spurious modes is less
than 10~'2, so spurious modes are well separated from the physical modes.

Test cases with inhomogeneously filled cavities show similar results. The
spurious modes still have zero eigenvalue, even when the dielectric properties
change within an element. The accuracy is excellent, with the caveat that
sharp corners cause a significant reduction in accuracy, so the mesh needs to
be refined in these locations.

The execution times are reasonable when compared with MAFIA. Figure 2
compares this FEA code (YAP) with MAFIA on a pillbox test cavity. A
uniform grid was employed in the MAFIA calculations in order to produce the
typical accuracy achieved by MAFIA in a more complicated structure. This
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Figure 2. Relative eigenvalue error versus CPU time for MAFIA and YAP. The
test structure is a pillbox cavity with radius p = 1 and height [ = 1. The YAP
results are electric field calculations. The MAFIA results employed a uniform grid.

FEA excels when good accuracy is desired since the FEA error scales like ¢!
instead of t~1/4. This difference is due to the discretization error (proportional
to h* for this FEA, and h for MAFIA).

CONCLUSION

A 3D electromagnetic finite element analyis code with high accuracy and
with no contamination from spurious modes has been demonstrated. Differen-
tial geometry and geometrical physics is useful for understanding the features
of these codes and why they work.
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